
Prospect: A Sampling System Profiler for Linux
Design, Implementation, and Internals

Alex Tsariounov
Hewlett-Packard Company

3404 E. Harmony Rd., MS42

Fort Collins, CO 80528

alex_tsariounov@hp.com

Bob Montgomery
Hewlett-Packard Company

3404 E. Harmony Rd., MS42

Fort Collins, CO 80528

bob_montgomery@hp.com

Abstract

Prospect is a developer’s profiling tool for
the Linux operating system. Prospect is an
instruction-pointer-sampling flat profiler for
obtaining code profiles in a non-intrusive way.
One can obtain profiles (both symbol-level and
assembly-level) without undue requirements
on the target application. For example, there
is no need to specially instrument, rebuild, or
relink the application. In fact, the only require-
ment is that the application not be stripped.

Prospect has a history on the HPUX operating
system where it was invented in 1988. In the
last year’s time frame, we have moved this pro-
filer to Linux with the aid of the sampling mod-
ule oprofile released under GPL by John Levon
while at the Victoria University of Manchester,
UK. We describe the interface to oprofile, the
data structures and algorithms used to collect
and store the instruction pointer and system
event data, and the symbol profile generation.

1 Introduction

In 1988 Doug Baskins at HP wanted to know
exactly what an HP-UX machine was doing
during operations. He ended up designing and
implementing the Kernel Instrumentation (KI)

package (a kernel tracing facility) and a test-
ing tool for it. The testing tool became valu-
able in its own right and was named “Prospect”
after the gold prospectors of the past. Just as
when one prospects for gold and finds the oc-
casional nugget, so does one also use Prospect
to find nuggets of performance data. The KI
and Prospect live on to this day in modern HP-
UX systems.

In the last year’s time frame we have moved
this idea to Linux where we needed such a per-
formance analysis tool. Prospect produces flat
symbol and assembly-level profiles through in-
struction pointer (IP) sampling. All applica-
tions running on the system are profiled and
produce both user and kernel profiles. Prospect
also generates kernel-only profiles in its re-
ports. One can obtain profiles without undue
requirements on the target applications. For
example, there is no need to specially instru-
ment the application and there is no need to re-
build or relink. In fact, the only requirement
is that the applications not be stripped. Shared
libraries escape this requirement for the most
part as do assembly-level profiles.

Prospect on Linux uses the oprofile module de-
veloped by John Levon [Levon] while at the
Victoria University of Manchester, UK. Opro-
file is a neat project that uses the P6 perfor-
mance counters to clock an NMI sampler and

Ottawa Linux Symposium 2002 531

is an active GPL project at this time with grow-
ing contributions. The goals of oprofile and
Prospect are similar though parallel and thus
the two tools complement each other nicely.

Hewlett Packard has recently allowed Prospect
to become Open Source and released it un-
der the GNU General Public License Version
2. Hosting arrangements have not been deter-
mined yet for the project at the time of this pa-
per.

In your exploration of HP’s web sites you
may find reference to an HP-UX version
of Prospect. This is still an active project
currently maintained by one of the authors
but it is not Open Source. However, it
is available for free for the HP-UX op-
erating system and can be downloaded
from ftp://ftp.cup.hp.com in the
dist/networking/tools/prospect
subdirectory. The HP-UX version of Prospect
does not use oprofile or GDB in any way.

2 Architecture

Figure 1 shows the overall architecture of
Prospect. Note that not all parts are used all
the time. In fact, there are several phases that
Prospect goes through in the typical run that we
describe later on.

As can be seen from Figure 1, Prospect has the
following major architectural modules:

Oprofile Sampling Module This is the inter-
face that provides us with most of our
data. Prospect uses/proc upon initial-
ization to record all current activity on
the system, however, all data from that
point on is provided by oprofile. Opro-
file comes with a user-space daemon that
provides some parallel functionality to
Prospect. Prospect takes the place of the
oprofile user-space daemon and only uses

the oprofile sampling module. Most of the
attractive properties of Prospect – proper-
ties such as non-intrusiveness, no special
build nor link requirements, total system
picture, accurate kernel profiles – are in
fact provided by the oprofile module.

Prospect System ModelAll processes on the
system are modeled as data structures
of some process-specific information and
a virtual address space consisting of a
doubly linked list of executable regions.
These regions have path name and symbol
information encoded in them. The symbol
information is filled in after the sampling
run when all regions that had instruction
pointer hits are read in.

Data Storage and Retrieval Most data in
Prospect is stored in a digital tree (also
called a trie, see [Fredkin] and [Knuth])
data structure. This type of data structure
provides a way to store sparse data
without undue storage or management
requirements. Retrieval performance is
acceptable for most cases. In one case we
implement a cache in front of the tree to
improve retrieval performance.

Symbol Mapping with ELF All symbol in-
formation that Prospect requires is located
in each executable ELF file. Prospect
useslibelf to read this symbol infor-
mation out of the executable files (ap-
plications, shared libraries, and kernel).
The libelf library provides a nice,
platform-independent way to get at this
information. For each region that had in-
struction pointer hits, Prospect creates a
searchable symbol table from this infor-
mation: local (static) symbols are pro-
moted to global for searching purposes
and duplicate symbols are noted. At the
end of the run in the profile generation
phase, Prospect then has the addresses
of all instruction pointer hits stored for

Ottawa Linux Symposium 2002 532

Figure 1: Architecture of Prospect

each process in its hit trie as well as a
sorted array of symbols. Prospect then
bsearch es the symbol array for each
distinct instruction pointer address to pro-
duce the profile.

Stripped Shared Libraries If the executable
file is stripped, then there are no symbols
to read out. This is one of the few restric-
tions that Prospect places on executables
for generating symbol-level profiles (note
that assembly-level profiles are always
available). For shared libraries, it turns
out that Prospect can use the dynamic
symbol table even if the file has been
stripped. The caveat is that local (static)
symbols are removed. Since a lot of hits
are to local symbols, Prospect attempts
to produce useful data by bracketing the
hits between the closest global symbols.
For example, this produces profiling sym-
bols such asbsearch->qsort for a hit

to a static routine defined somewhere be-
tween the global symbols ofbsearch
andqsort in libc . While this is not a
perfect solution, it is hoped that it at least
points to where to look further for more
information and it is better than not pro-
ducing any data at all. The assumption of
course is that the static symbol is related
to one of the two global symbols in the
bracket.

GDB for Assembly-Level Profiles
Assembly-level profiles have been a
feature of Prospect from the early days.
Originally, these profiles were more of
a test than anything because they were
relatively easy to produce. Prospect
already had the exact addresses of the
instruction pointer hits and all that was
necessary was to read out the instructions
at those addresses and display them. It
turned out that this functionality became

Ottawa Linux Symposium 2002 533

very useful – even in light of the fact
that modern processors make this type
of profile almost impossible to produce
with 100% accuracy because of pipeline
effects and such. Nevertheless, if one is
familiar with the architecture and behav-
ior of the processor, the disassembled
profile produced by Prospect becomes a
valuable aid in determining cache and
TLB effects in the code being profiled.
Prospect wraps GDB with a lightweight
pipe communication wrapper to actually
perform the disassembly. This allows
Prospect to use GDB as a library and
escape disassembly complexities such
as variable instruction size on IA32
systems. Since a GDB process can
take approximately 3.2 MB in memory,
Prospect keeps a user-configurable queue
of open pipes to GDB processes for the
disassembly phase.

The short descriptions above give an overall
picture of the functional modules involved in
Prospect. To complete this picture, it is useful
to see an enumeration of run time phases that
the software shifts through for a typical run:

1. Load and initialize the oprofile sampling
module.

2. Go through all processes in/proc and
set up process data structures with virtual
address space (VAS) information.

3. Attach to and activate the oprofile module.

4. Set up periodic alarm signal to flush the
oprofile buffer.

5. Exec the child process.

6. Go into a blocking read loop on the opro-
file device file.

• Every alarm, flush the oprofile buffer
and check for child exit.

• The flush allows us to read the opro-
file buffers and store that informa-
tion in memory.

• Should the oprofile buffer fill be-
fore the alarm signal goes off, then
the read will just go through allow-
ing the information to be stored and
Prospect then reblocks in the read
loop.

7. If child has exited, stop profiling and
empty the oprofile buffer.

8. Go through the storage structures of all
processes and extract all program counter
hits. Match these to the files stored in each
process’s VAS and create the report.

9. Shutdown and leave the oprofile module
in memory.

3 Detailed Descriptions

Now that we have a general idea of the
Prospect architecture and control flow, this sec-
tion will describe a few functional modules
in greater detail. Three modules are of inter-
est: the oprofile interface, thedtree digital
tree implementation, and the GDB interface for
assembly-level profile generation.

3.1 The Oprofile Module Interface

The oprofile project is a very active GPL
project (see http://oprofile.sf.net) that provides
an instruction pointer sampling mechanism
that is clocked off the Pentium P61 series per-
formance counters.2 The performance counter
events are routed through the APIC to the NMI
pin of the processor. The module registers a
short sampling routine to the NMI vector that

1P6 series covers Pentium Pro through Pentium III
2There are two configurable counters on the P6;

AMD chips are also supported

Ottawa Linux Symposium 2002 534

actually does the sampling. The instruction
pointer samples are kept in a trick constant-size
hash table in kernel memory and dumped to
user space though a device interface file. Nor-
mal operation is to have the user-space daemon
block on reading this file. When the kernel
buffer nears capacity, or when a “1” is sent to
the buffer flush/proc oprofile interface file,
the read succeeds and the data is transfered.
In addition to instruction pointer samples, the
oprofile module also intercepts certain system
calls and passes this trace through another de-
vice interface file. Finally, oprofile also keeps
track of opened files in a hash table in kernel
memory for determining the path ofexec ’ed
and mmap’ed files. This hash table is acces-
sible from user space and is normally memory
mapped. All of this information taken in its en-
tirety allows Prospect to generate its profiles.

Prospect acts as the user-space daemon func-
tionality wise (and in fact replaces the opro-
file user-space daemon for the purpose of
Prospect), but is not a daemon at all and is re-
moved from memory after every run (the opro-
file module is left resident). Both Prospect
and the oprofile tools have similar but different
goals and so the tools complement each other
nicely. The goal of Prospect was two-fold: (1)
make oprofile trivially easy to use; (2) create a
profile of all system activity specified within a
certain time interval. This interstice of time is
specified by the child of the Prospect process in
the same manner as for the/bin/time com-
mand.

The oprofile tools were designed to unobtru-
sively run in the background, sampling sys-
tem information continuously. Thus one would
have a long term profiling record of all pro-
cesses on the system. Also, the effects of short-
lived processes are merged into single profile
files identified by filenames in a/var location
when you use the oprofile tools.

While there are a number of events that
can be used to clock the oprofile sam-
pling module, Prospect always uses the
CPU_CLK_UNHALTED event by default.
However, the setup code was written in such a
way that if Prospect detects that oprofile was
set up already at initialization time, then the
existing set up is not changed. Thus you can
use a different event to clock the sampler by
using theop_start script supplied with the
oprofile distribution. In effect, you can gener-
ate profiles based on any of the performance
monitor events – see the oprofile documenta-
tion for details.

Using the oprofile modules entails the follow-
ing interesting phases:

Initialization Upon initialization, Prospect
first finds the oprofile module and if not
loaded, loads it. Prospect then attempts
to open the hash map device: if suc-
cessful, then Prospect has control of the
oprofile module. Only one user can have
the oprofile device files open at a time.
If this was a fresh load, then the per-
formance counter 0 is set up to clock
CPU_CLK_UNHALTED at a default fre-
quency of 200 Hz (unless specified oth-
erwise with the-H <Hertz> command
line parameter). If the oprofile module
was already loaded, then the counter setup
is not touched with exception of the fre-
quency. We do not open the sample device
yet since that starts profiling.

Next, Prospect goes through all processes
currently existing in /proc and cre-
ates data structures for all of them in-
dexed by PID. Prospect then reads in the
System.map file and locates an uncom-
pressed kernel image. If Prospect can’t
read in theSystem.map file then ker-
nel profiles are disabled; if an uncom-
pressed kernel image is not available, then
disassembled kernel profiles will not be

Ottawa Linux Symposium 2002 535

produced. You can specify both of these
files with the -K and -L arguments –
however, Prospect will check the specified
System.map against /proc/ksyms
and if they don’t match, kernel profiles
will not be available.

At this point, the oprofile devices are
opened which starts profiling. Prospect
next sets up the periodic alarm signal to
flush the oprofile buffer. Now, Prospect
fork ’s and exec ’s the command line
that was passed to it and goes into the
read-block loop on the oprofile device
files.

Periodic Flush Every two seconds by default,
Prospect flushes the oprofile buffer. This
causes oprofile to allow its profiling data
to be read out of the kernel holding buffers
through the oprofile device files. This
continues for the duration of the child run.
After Prospect blocks on the read on the
samples oprofile device, one of two things
can happen: (1) the alarm signal goes off
and takes us out of block, or (2) the noti-
fication and/or the samples buffer fills to
high water causing the read to succeed. If
the alarm goes off, then Prospect writes
a “1” to the oprofile flush device file and
re-reads the sample file. This time the
read will go through for both the samples
buffer and the notifications buffer.

The tradeoff when using periodic flushing
with oprofile is deciding how much data
the kernel gets to keep in the instruction
pointer hash table by adjusting the peri-
odic flush rate and balancing that against
the bounding time interval. The further
apart the periodic flush command is, the
more data is stored in kernel memory and
the longer a read will block. This rate can
be adjusted with the-M <value> com-
mand line parameter. The<value> is in
hundredths of a second; for example, 200

is every two seconds. If the flush rate is
set to a very short interval (0.01 seconds
is the minimum allowed), then Prospect
will stop sampling very shortly after the
child application terminates. If however,
the flush rate is longer then it can take
up to that amount of time before Prospect
stops sampling after the child application
exits. And of course, there is more system
intrusion for faster flush rates.

Shutdown Every time a read succeeds
Prospect checks for the child exit with
a waitpid . Upon child exit, Prospect
then empties the oprofile buffer by issuing
a flush and read combination twice in
succession. The buffers are read as
many times as there are CPUs for each
cycle. Next, the oprofile device files are
closed. This stops profiling. Prospect
leaves the oprofile module in memory on
assumption that it will be used later on.
At this point, Prospect has all the data it
needs and can generate the report.

The files linux_module.c and
linux_module.h hold the functions
and definitions that interface with the oprofile
module. The filerec_proc.c orchestrates
the sequence for data collection.

3.2 Thedtree Module

Most data used in Prospect is kept in a data
structure called a Digital Tree and is called
dtree in the code. The name trie is synony-
mous with this. This data structure is discussed
by Knuth[Knuth] in his third volume ofThe Art
of Computer Programming. The trie lends it-
self very well to managing sparse data, and the
data that Prospect collects is sparse consisting
mainly of: (1) process structures indexed by
PID, and (2) instruction pointer hits indexed by
memory address. The concept is easily stated:

Ottawa Linux Symposium 2002 536

the value of the index is implied in the struc-
ture of the trie itself. The subdirectorydtree
holds all the files for this implementation.

3.2.1 Basic Description

Prospect happens to use a quaternary trie. This
means that there are four items in each node
and so 2 bits translate each node path. This
equates into a trie that can be 16 levels deep
for a 32-bit entity (32 levels for 64 bits). Be-
cause of the quaternary nature, five consecutive
indices will extend the 32-bit trie branch to the
maximum level. This also means that five con-
secutive indices will extend the 64-bit version
to its maximum level too since the current im-
plementation does not double the order of the
trie along with the word size for the 32- to 64-
bit transition. This has not proven to be a per-
formance burden yet.

Traversing the trie to find a value consists of re-
peatedly using the top two bits to choose which
quaternary branch to follow and shifting up by
two after the choice until a value is arrived at.
If a node contains values, it is called a flower
and since it is a quaternary trie, it can have up
to four values in a flower.

3.2.2 Operation and Use

The dtree module is used to store avoid
pointer at the leaf. This can be an actual pointer
that points to some structure (as in the process
structures indexed by PID), or it can just be
used as along variable to store a count (as
for the number of hits indexed by memory ad-
dress). Thedtree functions return avoid*
that should be cast appropriately.

The dtree.h header file defines the follow-
ing shortcut functions for using the structure
easily:

Insert: DTI(Pdt, Idx)
Get: DTG(Pdt, Idx)

First: DTF(Pdt, Idx)
Next: DTN(Pdt, Idx)
Prev: DTP(Pdt, Idx)
Last: DTL(Pdt, Idx)

In these definitions,Pdt should be avoid
pointer to a dtree variable andIdx should be a
long for index value.

Since thedtree module handles all memory
management, setting up a trie is as easy as
declaring aNULL void pointer and inserting
the first value. For example, to add a certain
amount of hits to a counter variable indexed by
address:

void *hit_tree=NULL;
void add_hits(int hits,

char *addr) {
int *hptr;
hptr = (int*)DTI(hit_tree,

(unsigned long) addr);
if (hptr) *hptr += hits;

}

The DTI insert method (which stands for
“dtree insert”) will return a pointer to a non-
null quantity if an item at that index (addr
in the example above) exists, otherwise the re-
turned pointer points toNULL. The function
will return an actualNULLonly if sbrk fails.

Using this method to store a pointer to an arbi-
trary structure is very similar as the following
example shows.

struct big_struct **bs_ptr;
void *tree=NULL;

bs_ptr = (struct big_struct*)
DTI(tree, 451);

if (*bs_ptr==NULL) {
/* first insert */

Ottawa Linux Symposium 2002 537

*bs_ptr=malloc(
sizeof(big_struct));

*bs_ptr->bs_member = 42;
}
else {

*bs_ptr->bs_member += 42;
}

The next method isDTG which stands for
“dtree get”. This method is used to query the
trie if a value at an index is present. This func-
tion will return a NULL if there is no value
present, and a pointer to the value if it is. For
example:

int *var;
void *trie;
unsigned long PC;

/* some code here */

var = (int*)
DTG(trie, 0x80004533);

if (var)
printf("Value = %d\n,*var);

else
printf(

"No value at 0x80004533\n");

The next twodtree functions form the mech-
anism for the common way to extract all in-
formation out of the trie. These areDTF (for
“dtree first”) andDTN(for “dtree next”). An
actual code example from Prospect follows.
Here we pull out all instruction pointer hits for
a particular region for a particular process.

#typedef unsigned long ul;
process_t *p;
ul *P;
...
/* extract profile and build table */
for (Index=0L,

P = (ul*) DTF(p->pr_profile, Index);
P != (ul*) NULL;
P = (ul*) DTN(p->pr_profile, Index)

)
{

if (*P == 0) {
mBUG("*P=0 on user profile extract");
continue;

}

BuildUserSymbolTbl(Index, (ul) *P, p);
}

The functionBuildUserSymbolTbl does
the work of building a profile table and is
called for every address in the profile with the
amount of hits to that address. Note that these
dtree methods(DTF,DTN,DTP,DTL) ex-
pect a variable for theIndex argument. This
is because the methods set that variable to the
index where the returned value is found.

Note also that all thedtree access methods
actually return a pointer to a pointer, thus cast-
ing is necessary to get things right.

3.2.3 Caching for Better Performance

Not much performance analysis was done on
thedtree structure itself, however, recogniz-
ing some patterns in the incoming data allowed
performance upgrading of the method overall
by putting a small cache in front of the trie.
This is especially useful for the process struc-
ture indexed by PID trie, and as it happens, the
cache is not used for the hits indexed by mem-
ory address tries.

The software cache size was selected to match
the cacheline size of the machine: the cache is
used to hold four indices and four correspond-
ing values. At machine word length, this corre-
sponds to a 32-byte cacheline for a 32-bit ma-
chine, and a 64-byte cacheline for a 64-bit ma-
chine. This cache can then store up to four in-
dex/value pairs. Every time through the cached
lookup routine, we first see if the index that is
asked for is in the cache. If it is, the corre-
sponding value is returned out of the cache. If
it is not, then we do a true lookup and after-
wards, we choose a index/value pair at random
in the cache and replace it with the new value.
The value looked up is then returned. The ran-
dom generator is the lower two bits of the free-

Ottawa Linux Symposium 2002 538

running counter – theTSC on an IA32 chip,
andAR44 register on IPF.

Even though the item replacement is ran-
dom, the cache is quite effective. You can
turn on some statistics output by uncom-
menting the#define PERFTEST line in
the prospect.h header file and running
prospect on any load.

3.3 Controlling GDB: The dass_gdb Wrapper

The initial HP-UX implementation of Prospect
had a built-in disassembler for the PARISC in-
struction set. This was a fixed-size instruc-
tion set and table driven. For the IA32 port
the instruction set was rather different and in-
structions were no longer of fixed size. Af-
ter realizing that GDB provides a nice disas-
sembly facility and that when Prospect was
disassembling instructions and generating the
IPD (Instruction Profile Disassembly) profiles,
it was in a non-performance-critical stage, we
decided to create a wrapper around this GDB
facility.

Use of this wrapper allows the programmatic
symbolic disassembly of any binary file on the
system and its use is almost transparent when
moving from IA32 to IPF as well. The wrapper
uses normal Unix pipes to open a GDB pro-
cess, send it disassembly commands, and read
back the disassembled instructions. Prospect
includes code for managing many such open
pipes to separate GDB processes. The subdi-
rectorydass_gdb contains the files that im-
plement the wrapper.

3.3.1 Interface Description

Thedass_gdb wrapper defines the following
functions as its interface:

void *dass_open(const char

*filename);
char **dass(void *handle,

char *begin,
char *end);

void dass_free(char **array);
int dass_close(void *handle);

These functions perform the following ser-
vices.

dass_open()This is the initialization function
that takes a file name to disassemble as ar-
gument and upon success returns avoid
pointer to a control structure. The func-
tion make sure the file exists and that
GDB is accessible. It thenfork/execs
a GDB on the file and sets GDB ready
to accept disassembly directives. The re-
turned control structure pointer can then
be used for subsequent management of
this process.

dass() This is the main work function in the
wrapper. It accepts as arguments: the
process control pointer, a starting address,
and a finishing address. The instructions
disassembled are inclusive of the begin
address and exclusive of the end address.
For example, a call withX begin ad-
dress andX+1 ending address will return
the disassembled instruction at addressX.
Note that for IPF, instructions are grouped
in bundles of three. Prospect always prints
out the full bundle for every disassembled
instruction on IPF.

The dass() function returns a list of
strings as the return value. Or rather, a
char** through which the caller can ac-
cess this list. It is up to the caller to free
the memory used for the list of strings
once the caller is done with it. Freeing
this memory is done with the next func-
tion das_free() .

dass_free()This function will free a block of
memory that serves as a list of strings for

Ottawa Linux Symposium 2002 539

the return value of the functiondass() .
Argument is thechar** variable that
was returned fromdass() .

dass_close()This function accepts a control
structure pointer to a running GDB. The
process is killed and all pipes are closed.

3.3.2 The Rolling Queue

Each GDB process can take 3.2 to 3.6
megabytes of memory on average. Since a
Prospect output can have potentially hundreds
(perhaps even thousands) of separate files as-
sociated with regions for all processes that ran
during the sampling period, having this many
running GDB processes at once can bog the
system down. At the same time, you don’t
want to start and stop a single GDB process ev-
ery time the profile switches to a different ex-
ecutable or library since that would add a dis-
tasteful overhead to this process.

If we further examine Prospect output, then
we see some more things that can be used to
advantage. For example, a large number of
files are used repeatedly for many processes
(the shared libraries), and if processes are re-
peatedly run, all of their disassembled output
comes from the same files. What we needed
was a way to hold open a number of GDB pro-
cesses, set at a reasonable default and config-
urable by the user. Thus, Prospect uses a most-
used-first queue of open pipes to running GDB
processes with the number of simultaneously
opened pipes set by the-g <number> pa-
rameter.

The way this rolling queue works is as follows.
When a file is to be disassembled, Prospect first
tries to find an open pipe to a GDB process for
that file in the queue by linear search through
the queue. If a pipe tied to the desired filename
is found, then Prospect moves that pipe to the
head of the queue. If the pipe is not found,

then Prospect opens a pipe to a GDB for that
file with a call todas_open() . The pipe is
then inserted at the head of the queue. At this
point, Prospect checks if there are too many
open pipes according to the-g <number>
parameter, and if there are, Prospect closes the
pipe held at the tail of the queue.

Thus, the most often used files for disassem-
bly gravitate toward the front of the queue and
are found quicker than the less often used files.
The length of the queue determines how many
simultaneous pipes to GDB processes are held
open and is user configurable. If you set the
-g <number> parameter to 1 (one), then this
mechanism will open and close a GDB process
for every file encountered even if it’s the same
file. This saves memory but costs time in the
open/close process overhead. If you set the pa-
rameter to a high number, then that many open
pipes (and hence running GDB processes) will
be held open. This will improve run-time per-
formance, but will cost memory. The default
amount of slots in the queue is set to 8. See
the file incache.c for details on this queue
implementation.

4 Example Use

Besides its obvious use in profiling single
benchmark and application programs, Prospect
is also useful for insight into the behavior of
the whole system during interesting workloads.
In this example, the netperf benchmark will be
used to create a multi-process kernel-intensive
workload and we’ll explore Prospect’s ability
to see what’s going on.

Our workload is created by this script:

for i in 1 2 3 4
do

netperf -t TCP_RR -H isv204 \
-l 60 -P 0 -v 0 &

done

Ottawa Linux Symposium 2002 540

wait

This starts four simultaneous netperf request-
response runs to remote server isv204, instruct-
ing each to run for 60 seconds. The script ends
when all the netperf processes have exited.

A timed run of the netperf4.sh script shows:

2.94user 57.08system
1:02.10elapsed 96%CPU

To profile everything on the system while this
script runs, a typical Prospect command line
would be:

$ prospect -f prospect.out -V4 \
-H1000 \
./netperf4.sh >netperf.out 2>&1

The -V4 option says to trace all active pro-
cesses on the system during the duration of the
command ./netperf4.sh. Prospect will produce
a user and kernel profile for each process that
meets the CPU time threshold, plus a global
profile of the time spent in the kernel. The -
H1000 option sets a sample rate of 1000 sam-
ples/sec.

Alternately, if the workload were ongoing, or
not easily startable from Prospect, you could
obtain the full system profile by “profiling” a
sleep command of the desired duration:

$ prospect -f prospect.out -V4 \
-H1000 sleep 60

The oprofile module provides Non-Maskable
Interrupt (NMI) sampling on hardware plat-
forms that support it, and Prospect normally
sets it up to use CPU clock cycle counting
to generate the interrupts that collect the IP
samples. On platforms where oprofile doesn’t

support NMI sampling, the Real-Time Clock
(RTC) hardware can be used to generate sam-
ple interrupts. RTC sampling is most useful for
profiling user-mode execution on uniprocessor
systems. Since it doesn’t use a Non-Maskable
Interrupt, it has a blind-spot in kernel mode that
will be illustrated in our example: RTC sam-
pling can’t catch execution in other interrupt
handlers.

4.1 Sampling System Idle Time

What do CPUs do when there is nothing use-
ful to do? They execute an idling routine in
the kernel and wait to be interrupted with use-
ful work. On most i386 Linux systems, the
cpu_idle and default_idle routines in the ker-
nel are where they wait. The implementation
of default_idle can create an interesting prob-
lem for Prospect with NMI sampling. The de-
fault_idle routine uses the HLT (halt) instruc-
tion to stop the CPU while it waits for some-
thing to do. But the CPU_CLK_UNHALTED
counter used to generate the NMI sampling is
so named because it does not advance when the
CPU is halted. Sampling just stops when the
CPU halts and Prospect doesn’t know it. That
part of the idle time simply disappears from the
profile. The interrupts used by RTC sampling
are driven by elapsed time, so the halted CPU is
awakened from its halted state and sampled, ef-
fectively caught in the default idle routine. But,
as mentioned before, RTC sampling has other
problems sampling the kernel.

Because of some hardware bug of long ago,
Linux provides a boot parameter that allows
NMI sampling to see idle time. Appending
“no-hlt=1” to the boot string in lilo.conf causes
default_idle to become part of a time-wasting
loop instead of halting the CPU, and allows
Prospect to show us the idle time as hits in the
cpu_idle and default_idle routines.

The results below came from three different

Ottawa Linux Symposium 2002 541

Prospect runs: Default NMI mode, RTC mode,
and NMI mode on a no-hlt=1 kernel. Since the
RTC sample rates are limited to powers of 2,
we used -H1024 for all runs so we can compare
hit counts as well as equivalent times. Here are
some highlights from the Prospect output for
the netperf workload:

4.2 Statistics of Run

The “Statistics of Run” section has stats on the
operation of Prospect itself. Three counts are
of interest here:

Num System User
samples Hits hits

Default 61667 58579 3088
RTC 65024 61798 3226
No-hlt 65657 62658 2999

Note that the Default case appears to be miss-
ing 3 or 4 seconds worth of 1024 Hz samples.
We’ll see why later. We can also see that user
time is not a significant part of this workload.

The output that Prospect provides is quite ex-
tensive. For clarity of presentation, we only re-
produce the relevant parts of the output in this
document.

4.3 Extrapolated Summary of Processes

This section summarizes all processes seen
during the profiling period, dropping the ones
that don’t meet the CPU usage thresholds (con-
figurable with -k and -m options). The two
methods produce similar results:

Default NMI sampling
Process User Hits/ System Hits/

Time Time
netperf 728 0.7109 14838 14.4902
netperf 709 0.6924 14197 13.8643
netperf 679 0.6631 14140 13.8086
netperf 666 0.6504 14557 14.2158
prospect 301 0.2939 769 0.7510
bash 5 0.0049 2 0.0020

RTC sampling
Process User Hits/ System Hits/

Time Time
netperf 776 0.7578 14634 14.2910
netperf 768 0.7500 14253 13.9189
netperf 699 0.6826 14442 14.1035
netperf 698 0.6816 14335 13.9990
prospect 278 0.2715 28 0.0273
bash 6 0.0059 4 0.0039

The No-hlt NMI case is not significantly dif-
ferent than the Default case in this section. The
missing System Time in the Default case does
not show up in the process summary.

Note also that Prospect sees and reports its own
overhead, but some parts of the oprofile mod-
ule necessarily run with sampling disabled, so
indirect methods would be required to assess
the complete effect of profiling.

4.4 Details of Processes

After the summary, each eligible process is
profiled in user mode and in kernel (or system)
mode. Although we see from the summary that
user mode execution is not a significant con-
tributor to CPU time in this workload, there are
a couple of interesting points.

The four netperf user profiles are expectedly
similar, showing these three routines and their
files:

send_tcp_rr in
/usr/local/netperf/netperf

recv->recvfrom in /lib/libc-2.2.4.so
send->sendmsg in /lib/libc-2.2.4.so

The libc shared library is stripped, so Prospect
shows the enclosing symbols from the dynamic
symbol table as a range to emphasize that there
is some uncertainty. In other words, samples
occurred between the recv and recvfrom en-
tries, and between send and sendmsg, but with-
out the normal symbol table, Prospect can’t

Ottawa Linux Symposium 2002 542

know what static functions might exist in that
range. A greater (and possibly too much
greater) level of detail within these ranges
could be seen by specifying disassembly. Oth-
erwise, linking static or building unstripped
shared libraries would also reveal more detail
in the user mode profile.

To compare the NMI and RTC sampling meth-
ods, here are the user hits reported for the top
routines of each netperf process in the USER
portion of profile:

Default NMI sampling
Routine name Hits Hits Hits Hits
send_tcp_rr 410 401 382 376
recv->recvfrom 167 158 155 158
send->sendmsg 145 140 134 126
Total 722 699 671 660

RTC sampling
Routine name Hits Hits Hits Hits
send_tcp_rr 387 373 359 352
recv->recvfrom 222 194 178 189
send->sendmsg 163 194 158 153
Total 772 761 695 694

Results with the No-hlt kernel are not signif-
icantly different than the NMI results shown
here. The big differences in the three methods
show up in the Kernel portions of the process
profiles and in the Global Kernel profile.

Here are the kernel (or system) hits reported for
the top kernel routines of each netperf process
in the KERNEL portion of profile:

Default NMI sampling
Routine name Hits Hits Hits Hits
speedo_interrupt 1411 1313 1354 1345
tcp_sendmsg 686 659 616 654
speedo_rx 517 529 544 587
. . .
speedo_start_xmit 482 491 452 465
. . .
do_softirq 223 200 226 219
. . .

RTC sampling
Routine name Hits Hits Hits Hits
do_softirq 2693 2698 2709 2681
speedo_start_xmit 1422 1383 1425 1339
tcp_sendmsg 665 700 696 650
. . .

Once again, NMI no-hlt sampling was not sig-
nificantly different from Default NMI sam-
pling. But as you can see, the profile of the
top routines in the RTC version differs signifi-
cantly from that in the NMI version. While the
top two RTC routines do show up in the NMI
version with lower hit counts, the two speedo
routines in the top three of the NMI version
don’t show up in the RTC profile at all.

The routines that are missing from the RTC
profile are part of the interrupt handler for the
eepro100 network driver. They show up under
the netperf process KERNEL profile because
the interrupt came in when that process was on
the CPU. Other routines shown under the pro-
cess KERNEL profile are actually there as a
result of system calls made by the process, but
you can’t currently tell which are which with-
out knowing something about the code.

As an example of how an “innocent” process
can have its profile “corrupted” in this way, a
background cpuspin program was run at a nice
priority throughout another netperf workload.
When running alone on a system, the cpuspin
program normally gets 0.06 seconds of system
time in a run that consumes 58 seconds of user
CPU time. But during the netperf run interval,
Prospect reported that the background cpuspin

Ottawa Linux Symposium 2002 543

program picked up 7.3 seconds of user time
and 3.9 seconds of system time. The KERNEL
portion of cpuspin’s profile showed these rou-
tines at the top:

Routine name Hits

speedo_interrupt 714
speedo_rx 397
schedule 269
uhci_interrupt 259
tcp_v4_rcv 210
net_rx_action 173
...

You can see how this could mislead you into
believing something about the cpuspin pro-
gram that wasn’t actually true.

4.5 Global KERNEL Profile

Now it’s time to get back to the missing sys-
tem time in the Default NMI sampling method.
The last section of a -V4 Prospect report is the
Global KERNEL Profile. It provides a single
profile of all system hits in the run. Here are
the top routines:

Default NMI sampling:
Routine name Hits

speedo_interrupt 5436
tcp_sendmsg 2615
speedo_rx 2182
uhci_interrupt 1978
speedo_start_xmit 1890
schedule 1777
tcp_recvmsg 1623
__rdtsc_delay 1366
...
default_idle 11
...

No-hlt NMI sampling:
Routine name Hits

speedo_interrupt 5556
tcp_sendmsg 2612
speedo_rx 2202
default_idle 2070
cpu_idle 1945
speedo_start_xmit 1944
uhci_interrupt 1929
schedule 1716
tcp_recvmsg 1596
__rdtsc_delay 1414
...

Hit counts are pretty similar except for the
two idle routines. The No-hlt kernel allows
Prospect to see 4015 hits in the idle routines,
while it only saw 11 hits in the Default NMI
case. The reported difference in system hits
between the two runs was 4079, so we have
the culprit. The RTC version still insists that
do_softirq is the top kernel routine, but at least
it does attribute 4010 hits to default_idle.

A disassembly (-e) run with RTC sampling
showed that in the do_softirq routine, a huge
concentration of hits occurred in a three-
instruction cluster consisting of:

Hits Address Instruction
4117 <do_softirq+77>: lea 0x0(%esi),%esi

94 <do_softirq+80>: test $0x1,%bl
2961 <do_softirq+83>: je <do_softirq+93>

This doesn’t make a lot of sense until you look
at the two instructions just before these:

<do_softirq+74>: sti
<do_softirq+75>: mov %ebp,%esi

Ottawa Linux Symposium 2002 544

The sti instruction allows the processor to start
responding to external maskable interrupts af-
ter the next instruction is executed. With RTC
sampling, the sample is taken when the inter-
rupt is allowed to occur, not when the real time
clock wants it to occur. In this case it was held
off until after the sti instruction in do_softirq.
NMI isn’t held off at all, so the real kernel pro-
file can be seen.

These runs were performed on a 2.4.14 unipro-
cessor kernel. NMI sampling works well on
SMP as well, reporting times that are multi-
plied by the number of CPUs running. RTC
sampling is not as reliable on SMP systems,
since each interrupt is processed by only one of
the CPUs. The accuracy of the resulting pro-
file depends on the RTC interrupts being dis-
tributed evenly across the CPUs.

The drivers on this kernel were built in, not
loaded as modules. Prospect can not currently
provide profiles of kernel modules, but that ca-
pability should be available Real Soon Now.

5 Acknowledgments

A number of people have contributed in many
ways to this project, not the least of which are:
Doug Baskins, Keith Fish, Michael Morrell,
and Bob Metzger, all of whom are at HP.

We would also like to thank John Levon for
writing such cool software and putting it under
GPL.

References

[Fredkin] Fredkin, E. H.,Trie Memory,
CACM 3:9 (September), pp. 490-500,
(1960).

[Knuth] Donald E. Knuth,The Art of
Computer Programming, Volume 3
Second Edition, pp. 492-507, (1998).

[Levon] John Levon,The Oprofile System
Profiler. http://oprofile.sf.net

(2001).

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

