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1 Introduction

This is a short overview of Lustre, a new open
source cluster file system. The name Lus-
tre embodies “Linux” and “Cluster.” Lustre
focusses scalability for use on large compute
clusters, but can equally well serve smaller
commercial environments. Lustre runs over
different networks, including at present Ether-
net and Quadrics.

Lustre originated from research done in the
Coda project at Carnegie Mellon. It has seen
interest from several companies in the stor-
age industry that contributed to the design
and funded some implementation. Soon af-
ter the original ideas came out, the USA Na-
tionaL Laboratories and the DOD started to
explore Lustre as a potential next generation
file system. During this stage of the project
we received a lot of help and insight from
Los Alamos and Sandia National Laboratories,
most significantly from Lee Ward.

Lustre provides many new features and embod-
ies significant complexity. In order to reach
a usable intermediate target soon, Mark Sea-
ger from Lawrence Livermore pushed forward
with Lustre Lite. We are hopeful that Lustre
Lite will be the shared file system on the new
800 node MCR Linux cluster during 2002.

This paper provides a high level overview of
Lustre.
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Figure 1: A Lustre Cluster

2 Lustre Components

In Lustre clusters there are three major types
of systems, the Clients, the object storage tar-
gets (OST’s) and metadata server MDS sys-
tems. Each of the systems internally has a very
modular layout. Many modules, such as lock-
ing, the request processing and message pass-
ing layers are shared between all systems. Oth-
ers are unique, such as the Lustre Lite client
module on the client systems. Figure 1 gives
a first impression of the interactions that are to
be expected.

Lustre (see http://www.lustre.org) provides a
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clustered file system which combines features
from scalable distributed file systems such
as AFS [1], Coda [2] and InterMezzo (see
www.inter-mezzo.org), and Locus CFS [3],
with ideas derived from traditional shared stor-
age cluster file systems like Zebra [4], Berke-
ley XFS, which evolved to Frangipani Petal
[5], GPFS [6], Calypso [7], InfiniFile [8] and
GFS [9]. Lustre clients run the Lustre file
system and interact with object storage tar-
gets (OST’s) for file data I/O and with meta-
data servers (MDS) for namespace operations.
When client, OST and MDS systems are sepa-
rate, Lustre appears similar to a cluster file sys-
tem with a file manager, but these subsystems
can also all run on the same system, leading
to a symmetric layout. The main protocols are
described in figure 2.

3 Object Storage Targets

At the root of Lustre is the concept of object
storage see [10]. Objects can be thought of as
inodes and are used to store file data. Access to
these objects is furnished by OST’s which pro-
vide the file I/O service in a Lustre cluster. The
name space is managed by metadata services
which manages the Lustre inodes. Such in-
odes can be directories, symbolic links or spe-
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Figure 3: Object Storage Targets (OST)

cial devices in which case the associated data
and metadata is stored on the metadata servers.
When a Lustre inode represents a file, the meta-
data merely holds references to the file data ob-
jects stored on the OST’s.

Fundamental in Lustre’s design is that the
OST’s perform the block allocation for data ob-
jects, leading to distributed and scalable alloca-
tion metadata. The OST’s also enforce security
regarding client access to objects. The client -
OST protocol bears some similarity to systems
like DAFS in that it combines request process-
ing with remote DMA. The software modules
in the OST’s are indicated in figure 3.

Object storage targets provide a networked in-
terface to other object storage. This second
layer of object storage, so-called direct object
storage drivers, consists of drivers that man-
age objects, which can be thought of as files,
on persistent storage devices. There are many
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choices for direct drivers which are often in-
terchangeable. Objects can be stored as raw
ext2 inodes by theobdext2driver, or as files
in many journal file systems by the filtering
driver, which is now the standard driver for
Lustre Lite. More exotic compositions of sub-
systems are possible. For example, in some sit-
uations an OBD Filter direct driver can run on
an NFS file system (a single NFS client is all
that is supported).

In the OST figure we have expanded the net-
working into its subcomponents. Lustre re-
quest processing is built on a thin API, called
the Portals API which developed at Sandia.
Portals interoperates with a variety of network
transports through Network Abstraction Lay-
ers (NAL). This API provides for the delivery
and event generation in connection with net-
work messages and provides advanced capa-
bilities such as using remote DMA (RDMA)
if the underlying network transport layer sup-
ports this.

4 Metadata Service

The metadata servers are perhaps the most
complex subsystem. The provide backend stor-
age for the metadata service and update this
transactionally over a network interface. This
storage presently uses a journal file system, but
other options such as shared object storage will
be considered as well.

The MDS contains locking modules and heav-
ily exercise the existing features of journal
filesystems, such as ext3 or XFS. In Lustre
Lite the complexity is limited as just one sin-
gle metadata server is present. The system
still avoids single points of failure by offering
failover metadata services, based on existing
solutions such as Kimberlite.

In the full Lustre system metadata processing
will be load balanced, which leads to signif-
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Figure 4: Meta Data Servers (MDS)

icant complexity related to the concurrent ac-
cess to persistent metadata.

5 The client file system

The client metadata protocols are transaction-
based and derive from the AFS, Coda and In-
terMezzo file systems. The protocol features
authenticated access, and write-behind caching
for all metadata updates. The client again has
multiple software modules as shown in figure
5.

Lustre can provide UNIX semantics for file up-
dates. Lock management in Lustre supports
coarse granularity locks for entire files and sub-
trees, when contention is low, as well as finer
granularity locks. Finer granularity locks ap-
pear for extents in files and as pathname locks
to enable scalable access to the root directory
of the file system. All subsystems running
on Lustre clients can transparently fail over to
other services.

The Lustre and Lustre Lite file system provide
explicit mechanisms for advanced capabilities
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such as scalable allocation algorithms, security
and metadata control. In traditional cluster file
systems, such as IBM’s GPFS many similar
mechanisms are found, but are not independent
abstractions, but instead part of a large mono-
lithic file system.

6 Storage Management

Lustre provides numerous ways of handling
storage management functions, such as data
migration, snapshots, enhanced security and
quite advanced functions such as active disk
components for data mining. Such storage
management is achieved through stacks of ob-
ject modules, interacting with each other. A
general framework is provided for managing
and dynamically changing the driver stacks.

An example of stacking object modules is
shown in figure 7 for the case of hot data mi-
gration from one storage target to another.

7 Conclusions

Lustre provides a novel approach to storage. I
heavily leverages existing techniques and soft-
ware, yet breaks many patterns with new pro-
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tocols, heavy modularization. The next few
years will show if Lustre will establish itself
as a mainstream element of the storage indus-
try or will remain an exciting exploration in file
system design.
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