
PILS: A Generalized Plugin and Interface Loading
System

Alan Robertson
International Business Machines Corporation

alanr@unix.sh OR alanr@us.ibm.com

Abstract

Many modern Linux application systems make
extensive use of dynamically loadable object
modules (plugins). However, most of these
systems implement their plugin and interface
management systems in a way that satisfies
their own immediate needs, and is not gener-
ally directly usable by other projects.

PILS is an generalized and portable open
source Plugin and Interface Loading System.
PILS was developed as part of the Open
Cluster Framework reference implementation,
and is designed to be directly usable by a
wide variety of other applications. PILS is
available under the terms of the GNU Lesser
General Public License (LGPL). Since it is
written in C, and built with automake and
libtool, it is portable to most modern operating
systems. PILS manages both plugins (loadable
objects), and the interfaces these plugins
implement. PILS is designed to support any
number of plugins implementing any number
of interfaces.

This paper describes the philosophy and goals
of PILS, presents an example of how to use
PILS, and discusses a few implementation
details of the PILS system.

Figure 1: Plugin-enabled Program

1 Introduction

Many modern Linux application systems make
extensive use of dynamically loaded object
modules, oftentimes called plugins.

Plugins can be used for many purposes, and
a complex program may use several different
types of plugins for different purposes. A
program which uses plugins can implement
a variety of dynamic capabilities which were
not explicitly planned for when the program
was compiled. This situation is illustrated by
Figure 1. The sample program has commu-
nications plugins, authentication plugins and
other types of plugins. Such a program can
take advantage of new types of communica-
tion systems, or authentication systems, etc.
without recompiling or relinking the entire
system. In some cases, the program can begin
using newly-written code without even being
restarted.

This is ideal when one wishes to create a



Ottawa Linux Symposium 2002 469

general platform for many different people and
organizations to build on. The Open Cluster
Framework (OCF) reference implementation
is such a system. It is not known how many
types of plugins the system may eventually
need, nor how many different implementations
of each there might eventually be. Plugins are
ideal building blocks for such general systems.

On most Linux-like systems, thedlopen(3)
[dlopen] suite of calls are sufficient to load and
unload shared objects (.so files) and to find
symbols. However, there is much more to man-
aging such plugins than is provided by either
dlopen(3) or libtool [libtool]. PILS pro-
vides the following capabilities which are not
provided by eitherdlopen(3) or libtool:

• Determining what capabilities or inter-
faces are implemented by a particular
shared object

• Determining which plugins provide a par-
ticular interface

• Registering exported interfaces

• Importing interfaces for the use of the plu-
gins

• Tracking the reference counts of inter-
faces

Additionally, the implementation of
dlopen(3) varies from platform to platform,
and is not available at all on some platforms.
PILS uses libtool to take hidedlopen(3)
idiosyncrasies.

PILS was written to provide basic capabilities
for the Open Cluster Framework [OCF] refer-
ence implementation. OCF is intended to allow
proprietary and closed software to coexist in
the same framework, with contributions com-
ing from many people, and to support plugins

Figure 2: Dynamic Objects and Interfaces

which were not compiled as part of the refer-
ence platform. As a result, the ideal model is
to drop a suitable plugin into the correct direc-
tory, and have it simply work in every respect.

As a result, simple automatic determination of
the type of plugin and its capabilities must be
supported.

PILS also standardizes certain common func-
tions, such as setting the debugging level, and
logging functions through mandantory plugin
interfaces. This standardization makes plugins
more manageable and flexible than would
otherwise be the case. PILS has similar goals
to the Glib 2.0 C class loader, but does not
require the plugins to use the GTK class hi-
erarchy, and provides some additional features.

2 PILS Model and Terminology

Before presenting more about PILS, it is
necessary to define some terminology which is
used in this paper. Many of the terms which
PILS uses do not have universally accepted
meanings. For the purposes of this document
the following definitions are assumed:

• Dynamically Loadable Object Module.
A dynamically loadable object module
is an independent object file which can



Ottawa Linux Symposium 2002 470

be linked at run time into a running
program, executed, and then unloaded
when desired. On Linux-like systems,
dynamically loadable object modules are
typically stored as shared object (.so)
files. The relationship between a shared
object file, its interfaces, and itsINIT
function is illustrated in Figure 2.

• Plugin. A plugin is a dynamically load-
able object module which implements the
Plugin interface described later. In ad-
dition to providing thePlugin interface,
plugins typically implement one or more
other interfaces.

• Interface. An interface is the set of
exported and imported functions and
data items which are shared by all im-
plementations of these interfaces. For
example, a communications interface
might export functions to read and write
packets, and import a function to lock a
communications device. The exported
functions are defined by a structure with
pointers to the various functions (and
optionally data items) which the plugin
wishes to make public. The imported
functions are similarly defined.

Each interface type defines a unique set
of imported and exported functions that
are part of the interface which implemen-
tations of this interface must meet. PILS
defines thePlugin interface, and allows
others to be defined. PILS supports an
arbitrary number of types of interfaces.

• Exports. The exports of an interface
are the set of functions and/or data items
which are provided by the plugin for
the use of the system loading the plu-
gin. These exported functions are pro-

vided through a single pointer to a struc-
ture containing all the individual func-
tions. A typical interface defintion is a C
structure consisting of a number of point-
ers to functions in a structure. Here is
a sample interface from the example we
will present in detail later.

struct HBAuthOps {
int (*auth)(struct HBauth_info*

authinfo,
const char* data,
char* result,
int resultlen);
int (*needskey) (void);

};

In this example, the HBauth authentica-
tion exports are defined as astruct
HBAuthOps . This structure in turn con-
tains two function pointers, theauth()
function, and theneedskey() func-
tion. All implementations of theHBauth
interface export this exact set of functions.

• Imports . The imports of an interface
are the set of functions and/or data items
which are provided by the loader of a
plugin for the use of the plugin. The
plugin implementation is then able to
use these interfaces to accomplish its
purpose. Most plugin loading systems do
not provide for importing capabilities into
a plugin. The provision of imports to the
plugin increases the reusability of plugins
in other contexts, and minimizes the use
of external symbols by plugins (which is
problematic on some platforms). These
imported functions are provided through
a single pointer to a structure containing
all the individual functions, similar to
the HBauth example in the Exports
definition.



Ottawa Linux Symposium 2002 471

• Type. The word type is used in two
closely-related senses in this document.
In the most proper sense,typerefers to the
type of an interface. All implementations
which share the same interface name
are constrained to implement the same
interface. This interface name is called
the type of the interface, and also the type
of the implementation.

The word type is also used to refer to the
type of a plugin. Although, technically
plugins don’t inherently have distinct
types, there is a convention that a plugin
namedbar in directory foo provides the
bar implementation of interface typefoo.
This convention is assumed by software
which automatically loads plugins in
order to load the particular interfaces.

• Implementation. An implementationof
an interface is a particular set of exported
functions and data which conform to the
definition of the type of interface which
it implements. When a plugin is loaded,
it registers its interface implementations.
Any given plugin can register as many im-
plementations of as many different types
as it wishes. Normally, applications pro-
vide multiple implementations of an inter-
face, and each is generally contained in a
separate plugin. As a shorthand for re-
ferring to interfaces (and sometimes plu-
gins), we use a simple pathname conven-
tion. The string "HBauth/md5" is a short-
hand notation for themd5implementation
of theHBauthinterface. This is consistent
with the way the implementations are ar-
ranged on disk - with all the plugins of a
given type being in the same directory.

3 Basic PILS Capabilities

The basic capabilities which PILS provides in-
clude the following:

• Loading a plugin

• Managing Reference counts

• Unloading a plugin (by reference count)

• Registration of interface implementations

• Provision of interface imports

4 Loading a PILS plugin

The process of loading a PILS plugin goes
through the following steps:

1. Request The application requests
the loading of a particular inter-
face of a particular type using the
PILLoadPlugin() function. Nor-
mally an application loads a particular
plugin assuming that it provides an
interface of the same type as the name of
the directory in which it resides. Plugins
which provide more than one interface
are not fully supported at this time. More
about this can be found in the Status and
Future work section of this paper.

If, as part of its configuration, the appli-
cation needs to ask the user which par-
ticular implementation of a particular plu-
gin should be loaded, the application can
use thePILListPlugins() function
to return a list of plugins of the given
type. If it wishes to validate whether
a particular plugin exists, it can use the
PILPluginExists() call



Ottawa Linux Symposium 2002 472

2. Load Shared Object The PILS sys-
tem then asks the libtoollt_dlopen()
function to load the shared object into
memory. lt_dlopen() then uses the
native library loading system (commonly
dlopen(3) to load the object into mem-
ory.

3. Initialize Shared Object Each plugin
has a single initialization function which
is then called to initialize the plugin.
The name of this function is computed
on the basis of its type and its name.
This function name is created by the
PIL_PLUGIN_INIT macro.

4. Register Plugin When the plugin’s ini-
tialization (PIL_PLUGIN_INIT ) func-
tion is called, it is is passed the Imports
portion of the Plugin interface as a param-
eter. This Imports structure includes the
following functions:

• register_plugin() A func-
tion to call to register oneself as a
plugin

• register_interface() A
function to call to register an
exported interface

• log() The preferred logging func-
tion - to be used by all the interfaces
in the plugin.

Once the plugin initialization func-
tion is called, the plugin then calls
register_plugin() to register
itself as a plugin. The register_plugin()
function is where the exports portion of
the Plugin interface is provided to the
system. These standard exported Plugin
functions include:

• pluginversion() Returns the
version of the plugin as a string.

• getdebuglevel() Returns the
current plugin debugging level.

• setdebuglevel() Sets the cur-
rent plugin debugging level to its pa-
rameter.

• close() Prepare to be unloaded
from memory.

5. Register Interfaces After registering
itself as a plugin, the plugin calls
register_interface() to register
each interface it implements.

Each type of interface has its own im-
port and export requirements. Pointers
to these structures are exchanged in the
register_interface() call. When
the register_interface() call is
made, theInterfaceMgr managing
this interface type then makes the inter-
face available to be called. The generic
InterfaceMgr does this by adding an
entry to aGHashTable for that inter-
face type. At this point, all the public in-
terfaces of the plugin are available to be
called.

5 Interface Managers

When interfaces are loaded, a plugin of type
InterfaceMgr is invoked to manage the
registered interfaces and make them available
to the calling program. PILS provides the
capability for each different type of interface
to export its capabilities in a unique fashion,
because each interface may have different
policies and mechanisms for using them and
making them accessible to the application.
PILS allows theseInterfaceMgr s to be
plugins because they implement a single
interface, and managing them as plugins
is consistent with the design philosophy of
the remainder of PILS.InterfaceMgr
interfaces are managed much like other
interface types, with the exception that the
InterfaceMgr/InterfaceMgr inter-
face manager is not dynamically loaded, but is



Ottawa Linux Symposium 2002 473

linked to a set of built-in functions which are
required to load other interface managers.

Any given type of interface can be managed
either using a type-specificInterfaceMgr
(named "InterfaceMgr/ type"), or the
generic interface manager. A type-specific in-
terface manager may register the plugin with
some other database or registry according to
the needs of the application. The generic
InterfaceMgr registers all the plugins it
manages in a set ofGHashTable s. One
GHashTable is maintained for each interface
type it manages. Many applications will find
that the generic interface manager meets most
common needs. This process sounds somewhat
tedious but in practice most of this tedium is
hidden and it is reasonably easy to use.

6 Sample Plugin

In this section, code for providing a sample
plugin are provided and explained. This ex-
ample code is based on the linux-ha [linux-ha]
authentication plugins. In this case, authenti-
cation operations are exported as astruct
HBAuthOps , which defines two exported
functions, one for calculating a signature
value, and another specifying whether or
not the signature method requires a key.
This is the same set of exported functions
described earlier. In this example, these
functions are calledmd5_auth_calc() and
md5_auth_needskey() respectively.

The first thing to do is set a few #defines which
are used by later macros. PIL_PLUGINTYPE
defines the interface being implemented, and
PIL_PLUGIN and PIL_PLUGIN_S define the
name of our implementation.

#define PIL_PLUGINTYPE HBauth
#define PIL_PLUGIN md5

#define PIL_PLUGIN_S "md5"
/* Our plugin is called

"HBauth/md5.so" */

Next, declare the set of operations to be ex-
ported to the world. In this case, an authen-
tication plugin only needs to export two func-
tions, so declare them, and set up the appropri-
ate structure to point to them, so they can be
exported later on.

static int
md5_auth_calc(const struct

HBauth_info *t,
const char * text, char * result,
int resultlen);

static int md5_auth_needskey(void);

/* Authentication plugin
operations */

static struct HBAuthOps md5ops =
{ md5_auth_calc,

md5_auth_needskey
};

Now, define a couple of shutdown functions for
managing the unloading of the interface and
plugin. These two are provided separately, one
or both of them may not have anything to do.

/* Shut down the plugin */
static void
md5closepi(PILPlugin* pi)
{
}

/* Shut down the interface */
static PIL_rc
md5closeintf(PILInterface* pi,

void* pp)
{

return PIL_OK;
}

The plugin needs to invoke a magic boilerplate
macro which provides some common defaults
for a number of things that the plugin requires.



Ottawa Linux Symposium 2002 474

Next comes declarations about the information
to be exchanged when the plugin and interface
are registered.

PIL_PLUGIN_BOILERPLATE("1.0", Debug,
md5closepi);

static const PILPluginImports* PluginImports;
static PILPlugin* OurPlugin;
static PILInterface* OurInterface;
static void* OurImports;
static void* interfprivate;

Next comes the plugin initialization and reg-
istration function which gets called when the
plugin is loaded. ThePIL_PLUGIN_INIT
macro gives the initialization function a name
based on the plugin type and name, to avoid
symbol clashes.

PIL_rc
PIL_PLUGIN_INIT(PILPlugin* us
, const PILPluginImports* imports)
{

/* Save away imports for later */
PluginImports = imports;
OurPlugin = us;

/* Register ourselves as a plugin */
imports->register_plugin(us
, &OurPIExports);

/* Register an HAauth/md5 interface */
return imports->register_interface(us
, "HBauth" , "md5"
, &md5ops
, md5closeintf
, &OurInterface
, &OurImports
, interfprivate);

}

This is the end of all the PILS-specific code.
The real work of the plugin follows. Note the
use of the importedlog() function. This al-
lows the plugin to use the same logging method
as the application which loads it uses. The plu-
gin neither knows nor cares how logging is to
be done in the particular application in which
it has been loaded.

/* Real work (should) happen here... */

static int
md5_auth_calc(const struct HBauth_info *t
, const char * text, char * result
, int resultlen)
{

/* UhOh, No Code yet! <8-O */

OurImports->log(PIL_FATAL
, "UhOh! forgot to write code!");

/*NOTREACHED*/
/* Compute md5 authentication */
return 0;

}
static int
md5_auth_needskey(void)
{

/* md5 authentication requires a key */
return 1;

}

7 Plugin Usage Code

Plugin code doesn’t need to be aware of which
InterfaceMgr is managing it, but code
that needs to access the loaded functions
must be aware of how to interact with the
interface manager, in order to be able to
find the exported interfaces. For this example,
the genericInterfaceMgr code is assumed.

First, declare variables to hold a reference to
the plugin system, the loaded authentication
functions, and some authentication informa-
tion which the HBauth system needs.

/* Sample code ignores errors ;-) */

PILPluginUniv* PluginLoadingSystem = NULL;
GHashTable* AuthFuncs = NULL;
char result[64];
struct HBAuthOps* Auth;

struct HBauth_info authinfo =
{NULL, "md5", "TopSecretKey!"};

PILGenericIfMgmtRqst RegisterRqsts[]= {
{"HBauth", &AuthFuncs, NULL, NULL, NULL}
{ NULL, NULL, NULL, NULL, NULL}

};

Next, initialize the plugin system, telling it
where to look to find plugins.



Ottawa Linux Symposium 2002 475

PluginLoadingSystem = NewPILPluginUniv
("/usr/lib/heartbeat/plugins");

Load the generic plugin manager, telling
it (through RegisterRqsts ) to update
Authfuncs whenever an HBauth plugin is
registered or unregistered.

PILLoadPlugin(PluginLoadingSystem
, "InterfaceMgr", "generic"
, &RegisterRqsts));

At this point, the plugin system is completely
ready to go, and plugins can be loaded and un-
load at will.

PILLoadPlugin(PluginLoadingSystem
, "HBauth", "md5", NULL);

Now, the plugin is loaded, and can be accessed.
The generic plugin loader stashed a pointer to
the interface theAuthFuncs GHashTable .

/* Get the interface for the "md5" plugin */
Auth = g_hash_table_lookup(AuthFuncs,"md5");

/* Compute signature and put it in ’result’ */
Auth->auth(&authinfo, "ImportantStuffToSign"
, result, sizeof(result));

When the authentication plugin is no longer
needed, decrement the reference count, and the
plugin will automatically be unloaded.

Auth = NULL;

PILIncrIFRefCount(
PluginLoadingSystem

, "HBauth", "md5", -1);

Although the code to prepare the application
is somewhat more complex than the example
of the plugin itself, most of this code won’t be
repeated for each plugin or each plugin type.

Figure 3: Layers of Abstractions in PILS

8 PILS Implementation Overview

8.1 PILS Data Relationships

PILS is written using the Glib [Glib] library,
and makes extensive use ofGHashTable s.
There are basically two related abstraction
stacks which PILS maintains: the Plugin Uni-
verse, and the Interface Universe. These are, in
effect, parallel representations of related infor-
mation, or for the more pun-minded, parallel
universes. This is illustrated by Figure 3.

Each universe consists of a set of types, and
each type contains a set of instances of the
fundamental object (a Plugin or an Interface).
Most of the work is keeping the relationships
between the two layers and these two universes
synchronized, so that it is known what inter-
faces were instantiated from any given plugin,
and which plugin any particular interface was
loaded from. There are a number of reference
counts, and more complexity than one might
expect.

8.2 InterfaceMgr: Managing Interfaces

From the perspective of PILS, the most in-
teresting part of the world consists of inter-
faces.InterfaceMgr is PILS’ name for the
type of interface which is presented by plugins
which manage interfaces.



Ottawa Linux Symposium 2002 476

Interfaces are where the variation and interest-
ing behaviors are generally implemented. So,
PILS implements an interface for the manage-
ment of interfaces. This interface management
function of PILS is believed to be unique. In
PILS, the interface which manages interfaces
is called theInterfaceMgr interface. So
the InterfaceMgr interface which man-
ages other theInterfaceMgr interfaces is
the InterfaceMgr/InterfaceMgr
implementation. The
InterfaceMgr/InterfaceMgr is
built-in (not dynamically loaded) since it is
necessary for bootstrapping the dynamic load-
ing management system. It loads and manages
the other interface managers (including the
generic interface manager).

Normally, the name of an interface manager is
the same as the name of the type of interface it
manages. Not so for the generic interface man-
ager, which can manage any number of types
of interfaces. When it is loaded, it is passed a
parameter to tell it which types of interfaces it
should manage. Since it can register any num-
ber of implementations, it then registers itself
as the manager for each of these interface types
it was passed when it started up.

9 Security Considerations

There are a few additional security considera-
tions associated with plugin-enabled programs.
Programs which use plugins to provide ca-
pabilities have more files and directories
which need to be properly secured in order
to ensure the application is not compromised.
All programs have files and directories which
must be properly secured in order for them
to be secure, but software which uses plugins
typically have a few more such directories and
files. In addition to the location of the binary,
and the normal libraries, the location of the

plugins and the plugins themselves (and there
may be many of them) must also be properly
secured.

With an improperly secured system, and
plugins which meet well-known interfaces,
it is a very simple matter to create a plugin
which meets the well-known interface, but
which opens a wide security hole which can
go completely undetected for a long period of
time.

Plugins which provide security functions and
which provide extremely simple interfaces
(like the authentication example presented
earlier) make extraordinarily tempting targets
for intruders. It is prudent to assume that
attackerswill exploit such interfaces if they are
improperly secured.

Plugins run in the address space of the loading
program, so they can easily do any thing
which the program itself has permissions to
do. There is a difficult issue of trust associated
with a collection of plugins which come from
different sources.

It is necessary for software which uses plugins
(whether from PILS or some other source)
to ensure that they install their software in
properly secured locations. Although some
of the security enhancements described later
will help this problem somewhat, the need to
properly install and administer systems is still
fundamental.

10 Status and Future Work

The current implementation of PILS is func-
tional, and is currently used by the Linux-HA



Ottawa Linux Symposium 2002 477

project and part of the OCF reference frame-
work. It is currently generally available as part
of the Linux-HA distribution [ha-dist], but is
not currently available as a separate subpack-
age (but this will probably have occured by the
publication of this paper). The source to PILS
can also be directly viewed in CVS [ha-cvs].

Although PILS is a powerful tool providing
a rich set of capabilities, the area of plugin
management is broad and quite interesting, and
PILS is in the early stages of its evolution. As a
result, there are a number of needs which PILS
does not fully satisfy. Since it is an open source
project, all interested parties are invited to con-
tribute these or other enhancements. The fol-
lowing is a list of features which are under con-
sideration for the inclusion in future versions.

• Aliases. Add an alias capability. Al-
though each plugin can provide more than
one interface, the current implementation
of the "tell me all the plugins which im-
plement interface X", assumes that each
plugin actually only implements its main
interface. To remedy this limitation, it is
desirable to add an alias capability.

On many Linux filesystems, symbolic
links could be used, but it is believed that
even symbolic links would require some
additional implementation effort and then
they would be limited to being stored
on filesystems which implement symbolic
links.

• PATH support. Allow PATH-like
searches for the location of plugins.

• Porting. Complete and verify the ports to
other operating systems.

• Default InterfaceMgr. Add the abil-
ity for PILS to set an automatic de-
fault InterfaceMgr , rather than ex-

pecting the application to declare in ad-
vance which plugins they wish the current
generic manager to manage.

• InterfaceMgr management. Extend the
InterfaceMgr paradigm to add a new func-
tion to ask a particular InterfaceMgr to
manage a particular Interface type.

• InterfaceMgr interface Add the ability
to add new interfaces to manage after
an interface manager is loaded. This is
mainly for the generic interface manager,
but may also be necessary for plugins
whose interfaces have become inaccess-
able but whose plugin is still loaded. Note
that this may overlap or interact with the
previous item.

• Security awareness.Enhance PILS secu-
rity awareness. For example, verify who
owns plugins, plugin directories, and so
forth.

• Signed plugins. Add support for crypto-
graphic signatures for plugins.

• Plugin licenses. Add the license and li-
censeURL functions as standard member
functions for plugins.

• Independence. If sufficient interest is
shown, it would be good to make PILS
a completely independent open source
project. In any case, PILS needs to be
a completely independent package which
can be installed without any of the rest of
the OCF software.

• Gtype support. Extend PILS to load
GTK C types. If this were reasonable,
then it might be a better solution than the
C class loader which is scheduled to be re-
leased with the 2.0 version of Glib.

• C++ class support. Support loading of
C++ classes.



Ottawa Linux Symposium 2002 478

• Non-native languages. Generalize the
idea of plugins in such a way that PILS
could also load plugins written in arbitrary
languages like Perl, Python, or Java.

• Interface version management.There is
currently no built-in capability or conven-
tion for managing interface versions (in-
cluding the plugin interface).

11 Acknowledgments

Special thanks go to Neal McBurnett who con-
tributed both to the early design stages of PILS,
and also to the original design stages of the
HBauth plugin which is used in the examples.
Thanks also go out to Cliff White, Ramachan-
dra Pai and Xiaoxiang Liu who spent time re-
viewing and critiquing the paper. The author
also wishes to thank the developers of the Glib
library, who have created an extraordinarily
useful and functional C library. PILS devel-
opment would have been much more difficult
without Glib. The author notes that PILS is not
a commercial product and this paper represents
the views of the author, and does not necessar-
ily represent the views of his employer.

12 Trademarks

Linux is a trademark of Linus Torvalds. Other
company, product, and service names may be
trademarks or service marks of others.

References

[ha-cvs] PILS CVS Repository, Robertson, et
al, http://cvs.linux-ha.org

/viewcvs/viewcvs.cgi/linux-ha

/lib/pils/ ,
http://cvs.linux-ha.org

/viewcvs/viewcvs.cgi/linux-ha

/include/pils/

[dlopen] Linux dlopen(3) manual page, Linux
community.
http://www.freebsd.org/cgi

/man.cgi?query=dlopen

&apropos=0&sektion=0&

format=html&manpath=SuSE+

Linux%2Fi386+7.3

[Glib] Glib Reference Manual, Gnome
Project.
http://developer.gnome.org/doc

/API/glib/index.html

[ha-dist] High-Availability Linux
Distribution, Robertson, et al,
High-Availability Linux Project.
http://linux-ha.org/download/

[libtool] Libtool Reference Manual, Free
Software Foundation.
http://www.gnu.org/software

/libtool/manual.html

[linux-ha] High-Availability Linux Home
Page, Robertson, et al, High-Availability
Linux Project.
http://linux-ha.org/

[OCF] Open Cluster Framework Project
Home Page, Robertson, et al,
http://opencf.org/



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


