PILS: A Generalized Plugin and Interface Loading
System

Alan Robertson
International Business Machines Corporation
alanr@unix.sh OR alanr@us.ibm.com

Abstract Dynamic Capabilities Program
: P II II PR
auth H comm JJ other JJ
plugins plugins plugins

Figure 1. Plugin-enabled Program

Many modern Linux application systems make
extensive use of dynamically loadable object
modules (plugins). However, most of these
systems implement their plugin and interface
management systems in a way that satisfie$ |ntroduction
their own immediate needs, and is not gener-

ally directly usable by other projects.

Many modern Linux application systems make

PILS is an generalized and portable openyyiensive use of dynamically loaded object
source Plugin and Interface Loading System,qqules. oftentimes called plugins.

PILS was developed as part of the Open
Cluster Framework reference implementationPlugins can be used for many purposes, and
and is designed to be directly usable by aa complex program may use several different
wide variety of other applications. PILS is types of plugins for different purposes. A
available under the terms of the GNU Lessemprogram which uses plugins can implement
General Public License (LGPL). Since it is a variety of dynamic capabilities which were
written in C, and built with automake and not explicitly planned for when the program
libtool, it is portable to most modern operatingwas compiled. This situation is illustrated by
systems. PILS manages both plugins (loadabl€igure 1. The sample program has commu-
objects), and the interfaces these pluginsications plugins, authentication plugins and
implement. PILS is designed to support anyother types of plugins. Such a program can
number of plugins implementing any numbertake advantage of new types of communica-
of interfaces. tion systems, or authentication systems, etc.
without recompiling or relinking the entire

])] system. In some cases, the program can begin
This paper describes the philosophy and goal§sing newly-written code without even being
of PILS, presents an example of how to US§gstarted.

PILS, and discusses a few implementation
details of the PILS system.
This is ideal when one wishes to create a

Ottawa Linux Symposium 2002 469

general platform for many different people and | Dynamically Loaded Object Module
organizations to build on. The Open Cluster B ——-
Framework (OCF) reference implementation | PIL PLUGIN INIT() function |
is such a system. Itis not knowmnhowmany | f — = — — — (— —= — — —

. I [~ HBauth
types of plugins the system may eventually interface | interface
need, nor how many different implementations | interface , | interface d
of each there might eventually be. Plugins are

ideal building blocks for such general systems. Figure 2: Dynamic Objects and Interfaces

On most Linux-like systems, triopen(3) which were not compiled as part of the refer-
[dlopen] suite of calls are sufficient to load and P bar .
ence platform. As a result, the ideal model is

unload shared objectssp files) and to find . o .

. to drop a suitable plugin into the correct direc-
symbols. However, there is much more to mans o nd have it simolv work in every respect
aging such plugins than is provided by either Y Py y respect.

dlopen(3) or libtool [libtool]. PILS pro- As a result, simple automatic determination of

vides the following capabilities which are not the type of plugin and its capabilities must be
provided by eithedlopen(3) or libtool: supported.

» Determining what capabilities or inter- . .
- : PILS also standardizes certain common func-
faces are implemented by a particular

. tions, such as setting the debugging level, and
shared object .) :
logging functions through mandantory plugin
« Determining which plugins provide a par- interfaces. This standardization makes plugins

ticular interface more manageable and flexible than would
otherwise be the case. PILS has similar goals
* Registering exported interfaces to the Glib 2.0 C class loader, but does not

require the plugins to use the GTK class hi-

* Importing interfaces for the use of the plu- ¢ 5 chy and provides some additional features.

gins

» Tracking the reference counts of inter-
faces 2 PILS Model and Terminology

Additionally, ~ the implementation of Before presenting more about PILS, it is
dlopen(3) varies from platform to platform, npecessary to define some terminology which is
and is not available at all on some platforms.;sed in this paper. Many of the terms which
PILS uses libtool to take hidelopen(3) PILS uses do not have universally accepted
idiosyncrasies. meanings. For the purposes of this document

PILS was written to provide basic capabilitiesthe following definitions are assumed:

for the Open Cluster Framework [OCF] refer-

ence implementation. OCF is intended to allow

proprietary and closed software to coexist in ¢ Dynamically Loadable Object Module.
the same framework, with contributions com- A dynamically loadable object module
ing from many people, and to support plugins is an independent object file which can

Ottawa Linux Symposium 2002

470

be linked at run time into a running
program, executed, and then unloaded
when desired. On Linux-like systems,
dynamically loadable object modules are
typically stored as shared objects@)
files. The relationship between a shared
object file, its interfaces, and itfNIT
function is illustrated in Figure 2.

Plugin. A plugin is a dynamically load-
able object module which implements the
Plugin interface described later. In ad-
dition to providing thePlugin interface,
plugins typically implement one or more
other interfaces.

Interface. An interface is the set of

exported and imported functions and
data items which are shared by all im-
plementations of these interfaces. For
example, a communications interface
might export functions to read and write
packets, and import a function to lock a
communications device. The exported
functions are defined by a structure with
pointers to the various functions (and
optionally data items) which the plugin

wishes to make public. The imported
functions are similarly defined.

Each interface type defines a unique set
of imported and exported functions that
are part of the interface which implemen-
tations of this interface must meet. PILS
defines thePlugin interface, and allows
others to be defined. PILS supports an
arbitrary number of types of interfaces.

Exports. The exports of an interface
are the set of functions and/or data items
which are provided by the plugin for
the use of the system loading the plu-
gin. These exported functions are pro-

vided through a single pointer to a struc-
ture containing all the individual func-
tions. A typical interface defintion is a C
structure consisting of a number of point-
ers to functions in a structure. Here is
a sample interface from the example we
will present in detail later.

struct HBAuthOps {
int (*auth)(struct HBauth_info*

authinfo,
const char* data,
char* result,
int resultlen);

int (*needskey) (void);

In this example, the HBauth authentica-
tion exports are defined as struct
HBAuthOps. This structure in turn con-
tains two function pointers, thauth()
function, and theneedskey() func-
tion. All implementations of théiBauth
interface export this exact set of functions.

Imports. The imports of an interface
are the set of functions and/or data items
which are provided by the loader of a
plugin for the use of the plugin. The
plugin implementation is then able to
use these interfaces to accomplish its
purpose. Most plugin loading systems do
not provide for importing capabilities into
a plugin. The provision of imports to the
plugin increases the reusability of plugins
in other contexts, and minimizes the use
of external symbols by plugins (which is
problematic on some platforms). These
imported functions are provided through
a single pointer to a structure containing
all the individual functions, similar to
the HBauth example in the Exports
definition.

Ottawa Linux Symposium 2002 471

« Type. The wordtype is used in two 3 Basic PILS Capabilities
closely-related senses in this document.
In the most. proper senslgperefers o t'he The basic capabilities which PILS provides in-
type of an interface. All implementations .
. . clude the following:
which share the same interface name
are constrained to implement the same
interface. This interface name is called < Loading a plugin
the type of the interface, and also the type
of the implementation. * Managing Reference counts

Unloading a plugin (by reference count)

The word type is also used to refer to the « Registration of interface implementations
type of a plugin. Although, technically

plugins don’t inherently have distinct « Provision of interface imports

types, there is a convention that a plugin

namedbar in directory foo provides the

bar implementation of interface typieo. 4 Loading a PILS plugin

This convention is assumed by software

which automatically loads plugins

in . :
The process of loading a PILS plugin goes
order to load the particular interfaces. P g pugin g

through the following steps:

1. Request The application requests
the loading of a particular inter-

« Implementation. An implementatiorof face of a particular type using the
an interface is a particular set of exported ~ PlLLoadPlugin() function. Nor-
functions and data which conform to the mally an application loads a particular
definition of the type of interface which plugin assuming that it provides an
it implements. When a plugin is loaded, interface of the same type as the name of
it registers its interface implementations. the directory in which it resides. Plugins
Any given plugin can register as many im- which provide more than one interface
plementations of as many different types are not f_uIIy supported at_ this time. More
as it wishes. Normally, applications pro- about this can bg found in the Status and
vide multiple implementations of an inter- Future work section of this paper.
face, and each is generally contained in a
separate plugin. As a shorthand for re- |f as part of its configuration, the appli-
ferring to interfaces (and sometimes plu- cation needs to ask the user which par-
gins), we use a simple pathname conven- ticular implementation of a particular plu-
tion. The string "HBauth/md5" is a short- gin should be loaded, the application can
hand notation for thend5implementation use thePILListPlugins() function
of theHBauthinterface. This is consistent to return a list of p|ugins of the given
with the way the implementations are ar- type. |If it wishes to validate whether
ranged on disk - with all the plugins of a a particular plugin exists, it can use the

given type being in the same directory. PILPluginExists() call

Ottawa Linux Symposium 2002

472

2. Load Shared Object The PILS sys-

tem then asks the libtodt_dlopen()
function to load the shared object into
memory. It_dlopen() then uses the
native library loading system (commonly
dlopen(3) toload the objectinto mem-
ory.

. Initialize Shared Object Each plugin
has a single initialization function which
is then called to initialize the plugin.
The name of this function is computed
on the basis of its type and its name.
This function name is created by the
PIL_PLUGIN_INIT macro.

. Register Plugin When the plugin’s ini-
tialization PIL_PLUGIN_INIT) func-
tion is called, it is is passed the Imports
portion of the Plugin interface as a param-
eter. This Imports structure includes the
following functions:

* register_plugin() A func-
tion to call to register oneself as a
plugin

* register_interface() A S
function to call to register an
exported interface

* log() The preferred logging func-
tion - to be used by all the interfaces
in the plugin.

Once the plugin

» setdebuglevel() Sets the cur-
rent plugin debugging level to its pa-
rameter.

» close() Prepare to be unloaded
from memory.

. Register Interfaces After registering

itself as a plugin, the plugin calls
register_interface() to register
each interface it implements.

Each type of interface has its own im-
port and export requirements. Pointers
to these structures are exchanged in the

register_interface() call. When
the register_interface() call is
made, thelnterfaceMgr managing

this interface type then makes the inter-
face available to be called. The generic
InterfaceMgr does this by adding an
entry to aGHashTable for that inter-
face type. At this point, all the public in-
terfaces of the plugin are available to be
called.

Interface Managers

When interfaces are loaded, a plugin of type
InterfaceMgr
registered interfaces and make them available
to the calling program. PILS provides the
capability for each different type of interface
initialization func- to export its capabilities in a unique fashion,

is invoked to manage the

tion is called, the plugin then calls because each interface may have different

register_plugin() to register

policies and mechanisms for using them and

itself as a plugin. The register_plugin() making them accessible to the application.

function is where the exports portion of PILS allows theselnterfaceMgr

s to be

the Plugin interface is provided to the plugins because they implement a single
system. These standard exported Plugiinterface, and managing them as plugins

functions include:

is consistent with the design philosophy of

the remainder of PILS.InterfaceMgr

* pluginversion() Returns the
version of the plugin as a string.

» getdebuglevel() Returns the
current plugin debugging level.

interfaces are managed much
interface types, with the exception that the
InterfaceMgr/InterfaceMgr
face manager is not dynamically loaded, but is

like other

inter-

Ottawa Linux Symposium 2002 473

linked to a set of built-in functions which are #define PIL_PLUGIN_S "md5"

required to load other interface managers. /¥ Our plugin is called
"HBauth/md5.so" */

Any given type of interface can be managed .
Yy 9 yp g Next, declare the set of operations to be ex-

ither usin - ifloterfaceMgr :
either using a type-specifinterfaceMg ported to the world. In this case, an authen-

(named TnterfaceMgr/ type), or the 57 .

generic interface manager. A type-specific in-t!Catlon plugin only needs to export two func- .
terface manager may register the plugin Withtlons’ S0 declare th_em, and set up the appropri-
some other database or registry according tgte structure to point to them, so they can be
the needs of the application. The genericeXported later on.
InterfaceMgr registers all the plugins it
manages in a set obHashTable s. One static int

GHashTable is maintained for each interface md5ﬁgl::tﬂc?r']‘;g°2:‘5t struct

type it manages. Many applications will find const char * téxt, char * result,
that the generic interface manager meets most iy resyitien);

common needs. This process sounds somewhattic int md5_auth_needskey(void);
tedious but in practice most of this tedium is

hidden and it is reasonably easy to use. /* Authentication plugin
operations */

static struct HBAuthOps md5ops =

; { md5_auth_calc,
6 Sample Plugm md5_auth_needskey
3

In this section, code for providing a sample

plugin are provided and explained. - This eX_Now, define a couple of shutdown functions for

ample code is based on the linux-ha [linux-ha] ing th loadi f the interf d
authentication plugins. In this case, authenti-anaging the unioading of the Intertace an

cation operations are exported astauct pluglrsr.] T?fhse two are ptrﬂwded setﬁgratte I{; one
HBAuthOps, which defines two exported or both ot them may not have anything to do.

functions, one for calculating a signature
value, and another specifying whether or/* Shut down the plugin */
not the signature method requires a keystatic void o
This is the same set of exported functiong"d°closepi(PILPlugin® pi)
described earlier. In this example, thes{
functions are callechd5_auth_calc() and
md5_auth_needskey() respectively. /* Shut down the interface */
static PIL rc
md5closeintf(PILInterface* pi,
The first thing to do is set a few #defines which void* pp)
are used by later macros. PIL_PLUGINTYPE{ _
defines the interface being implemented, anq return PIL_OK;
PIL_PLUGIN and PIL_PLUGIN_S define the
name of our implementation.
The plugin needs to invoke a magic boilerplate
#define PIL_PLUGINTYPE HBauth macro which provides some common defaults
#define PIL_PLUGIN md5 for a number of things that the plugin requires.

Ottawa Linux Symposium 2002 474

Next comes declarations about the informationsatic int
H ; d5_auth_calc(const struct HBauth_info *t
to be e>_<changed when the plugin and mterfacd’-ip const char * text, char * result
are registered. , int resultlen)
{
/* UhOh, No Code yet! <8-O */

PIL_PLUGIN_BOILERPLATE("1.0", Debug, Ourlmports->log(PIL_FATAL

mdSclosepi); "UhOh! forgot to write code!");
static const PILPluginimports* Pluginimports;
static PILPlugin* OurPlugin; ;:NgTREACHE(?*/ Hentication
static PlLInterface* Ourlinterface; omgute mdS authentication
static void* Ourlmports; return 0;
static void* interfprivate; } -
static int
md5_auth_needskey(void)
{
Next comes the plugin initialization and reg- /*tmd5lauthent'°a“°n requires a key */
return 1;

istration function which gets called when the,
plugin is loaded. TheIL_PLUGIN_INIT
macro gives the initialization function a name)
based on the plugin type and name, to avoid ~ Plugin Usage Code
symbol clashes.

Plugin code doesn’'t need to be aware of which

PIL_rc InterfaceMgr is managing it, but code
PIL_PLUGIN_INIT(PILPlugin* us that needs to access the loaded functions
, const PILPluginimports* imports) . .

{ must be aware of how to interact with the
[Save away imports for later */ interface manager, in order to be able to
Pluginimports = imports; . . .

OurPlugin = us; find the exported interfaces. For this example,

. . the generidnterfaceMgr code is assumed.
/* Register ourselves as a plugin */

imports->register_plugin(us
&OurPIExports);

F Register an HAauthimds interface */ First, declare variables to hold a reference to

return imports->register_interface(us the plugin system, the loaded authentication
: &HmB(?é’SBS’ mds functions, and some authentication informa-
mdscloseintf tion which the HBauth system needs.

&Ourlinterface
&Ourlmports
interfprivate);

/* Sample code ignores errors ;-) */

PILPluginUniv* PluginLoadingSystem = NULL;

This is the end of all the PILS-specific code.GhHashTable* AuthFuncs y 6NULL;

: char result[64];
The real work of the plugin follows. Note the . psauthopst Auth: (64l
use of the importedbg() function. This al- , _
| th | int th | . th truct HBauth_info authinfo =
ows the plugin to use tnhe same logging me OchULL, "md5", "TopSecretKey!"};
as the application which loads it uses. The plu- _ _

. . . . PILGenericlfMgmtRqgst RegisterRgsts[]= {

gin neither knows nor cares how logging is t0 pgauth', &AuthFuncs, NULL, NULL, NULL}
be done in the particular application in which}_{ NULL, NULL, NULL, NULL, NULL}

it has been loaded.

Next, initialize the plugin system, telling it

/* Real work (should) happen here... */ i i
where to look to find plugins.

Ottawa Linux Symposium 2002

475

PluginLoadingSystem = NewPILPluginUniv
("/usr/lib/heartbeat/plugins");

Load the generic plugin manager, telling
it (through RegisterRgsts) to update
Authfuncs whenever an HBauth plugin is
registered or unregistered.

PILLoadPlugin(PluginLoadingSystem
, "InterfaceMgr"”, "generic"
, &RegisterRgsts));

At this point, the plugin system is completely

Plugin Universe Interface Universe]

Plugin Types Interface Types

Interface

Plugin Instance .
Implementation

Figure 3: Layers of Abstractions in PILS

8 PILS Implementation Overview

ready to go, and plugins can be loaded and un-

load at will.

PILLoadPlugin(PluginLoadingSystem
, "HBauth", "md5", NULL);

Now, the plugin is loaded, and can be accesse
The generic plugin loader stashed a pointer t
the interface théuthFuncs GHashTable

/* Get the interface for the "md5" plugin */
Auth = g_hash_table_lookup(AuthFuncs,"md5");

/* Compute signature and put it in 'result’ */
Auth->auth(&authinfo, "ImportantStuffToSign"
result, sizeof(result));

8.1 PILS Data Relationships

PILS is written using the Glib [Glib] library,
and makes extensive use GHashTable s.
There are basically two related abstraction

&tacks which PILS maintains: the Plugin Uni-

yerse, and the Interface Universe. These are, in

effect, parallel representations of related infor-
mation, or for the more pun-minded, parallel
universes. This is illustrated by Figure 3.

Each universe consists of a set of types, and
each type contains a set of instances of the
fundamental object (a Plugin or an Interface).
Most of the work is keeping the relationships

When the authentication plugin is no longerPetween the two layers and these two universes
needed, decrement the reference count, and tif¥nchronized, so that it is known what inter-

plugin will automatically be unloaded.

Auth = NULL;

PILIncrIFRefCount(
PluginLoadingSystem
, "HBauth", "md5", -1);

faces were instantiated from any given plugin,

and which plugin any particular interface was

loaded from. There are a number of reference
counts, and more complexity than one might
expect.

8.2 InterfaceMgr: Managing Interfaces

From the perspective of PILS, the most in-

Although the code to prepare the applicationteresting part of the world consists of inter-
is somewhat more complex than the exampldaces.InterfaceMgr is PILS’ name for the

of the plugin itself, most of this code won’t be
repeated for each plugin or each plugin type.

type of interface which is presented by plugins
which manage interfaces.

Ottawa Linux Symposium 2002 476

Interfaces are where the variation and interestplugins and the plugins themselves (and there
ing behaviors are generally implemented. Somay be many of them) must also be properly
PILS implements an interface for the managesecured.

ment of interfaces. This interface management

function of PILS is believed to be unique. In

PILS, the interface which manages interfacedVith an improperly secured system, and
plugins which meet well-known interfaces,

is called thelnterfaceMgr interface. So F™) -
the InterfaceMgr interface which man- It IS @ very simple matter to create a plugin
ages other thénterfaceMgr interfaces is Which meets the well-known interface, but
the InterfaceMgr/InterfaceMgr which opens a wide security hole which can
implementation. The 90 completely undetected for a long period of
InterfaceMgr/InterfaceMgr is time.

built-in (not dynamically loaded) since it is
necessary for bootstrapping the dynamic loadp,,ins which provide security functions and

ing management system. It loads and manag&gyich provide extremely simple interfaces

the O'Fh?r m;[erface managers (including the(like the authentication example presented
generic interface manager). earlier) make extraordinarily tempting targets
for intruders. It is prudent to assume that

Normally, the name of an interface manager i@ttackerswill exploit such interfaces if they are
the same as the name of the type of interface #Properly secured.
manages. Not so for the generic interface man-

ager, which can manage any number of typeg,,sing ryn in the address space of the loading
of interfaces. When it is loaded, it is passed %rogram, so they can easily do any thing
parameter to tell it which types of interfaces itwhich the program itself has permissions to

should_manage. Sl_nce |t_can reglst(_er any NUMg, There is a difficult issue of trust associated
ber of implementations, it then registers |tselfWith a collection of plugins which come from
as the manager for each of these interface tyP&Sitterent sources

it was passed when it started up.

. . : It is necessary for software which uses plugins
9 Security Considerations (whether from PILS or some other source)
to ensure that they install their software in

There are a few additional security consideraProperly secured locations. ~Although some

tions associated with plugin-enabled programs?f the security enhancements described later
Programs which use plugins to provide ca-Will help this problem somewhat, the need to

pabilites have more files and directoriesProperly install and administer systems is still
which need to be properly secured in ordefundamental.

to ensure the application is not compromised.

All programs have files and directories which

must be properly secured in .order for the.m:l_0 Status and Future Work

to be secure, but software which uses plugins

typically have a few more such directories and

files. In addition to the location of the binary, The current implementation of PILS is func-
and the normal libraries, the location of thetional, and is currently used by the Linux-HA

Ottawa Linux Symposium 2002

477

project and part of the OCF reference frame-
work. Itis currently generally available as part
of the Linux-HA distribution [ha-dist], but is
not currently available as a separate subpack-
age (but this will probably have occured by the
publication of this paper). The source to PILS
can also be directly viewed in CVS [ha-cvs].

Although PILS is a powerful tool providing

a rich set of capabilities, the area of plugin
management is broad and quite interesting, and
PILS isin the early stages of its evolution. As a
result, there are a number of needs which PILS
does not fully satisfy. Since itis an open source
project, all interested parties are invited to con-
tribute these or other enhancements. The fol-
lowing is a list of features which are under con-
sideration for the inclusion in future versions.

» Aliases. Add an alias capability. Al-
though each plugin can provide more than
one interface, the current implementation
of the "tell me all the plugins which im-
plement interface X", assumes that each
plugin actually only implements its main
interface. To remedy this limitation, it is
desirable to add an alias capability.

On many Linux filesystems, symbolic
links could be used, but it is believed that
even symbolic links would require some
additional implementation effort and then
they would be limited to being stored
on filesystems which implement symbolic
links.

 PATH support. Allow PATH-like
searches for the location of plugins.

» Porting. Complete and verify the ports to
other operating systems.

o Default InterfaceMgr. Add the abil-
ity for PILS to set an automatic de-
fault InterfaceMgr , rather than ex-

pecting the application to declare in ad-
vance which plugins they wish the current
generic manager to manage.

* InterfaceMgr management. Extend the

InterfaceMgr paradigm to add a new func-
tion to ask a particular InterfaceMgr to
manage a particular Interface type.

* InterfaceMgr interface Add the ability

to add new interfaces to manage after
an interface manager is loaded. This is
mainly for the generic interface manager,
but may also be necessary for plugins
whose interfaces have become inaccess-
able but whose plugin is still loaded. Note
that this may overlap or interact with the
previous item.

Security awarenessEnhance PILS secu-
rity awareness. For example, verify who
owns plugins, plugin directories, and so
forth.

Signed plugins. Add support for crypto-
graphic signatures for plugins.

Plugin licenses. Add the license and li-
censeURL functions as standard member
functions for plugins.

Independence. If sufficient interest is
shown, it would be good to make PILS
a completely independent open source
project. In any case, PILS needs to be
a completely independent package which
can be installed without any of the rest of
the OCF software.

Gtype support. Extend PILS to load
GTK C types. If this were reasonable,
then it might be a better solution than the
C class loader which is scheduled to be re-
leased with the 2.0 version of Glib.

C++ class support. Support loading of
C++ classes.

Ottawa Linux Symposium 2002 478

* Non-native languages. Generalize the [dlopen] Linux dlopen(3) manual pagé&inux

idea of plugins in such a way that PILS community.
could also load plugins written in arbitrary http://www.freebsd.org/cgi
languages like Perl, Python, or Java. /man.cgi?query=dlopen

&apropos=0&sektion=0&

« Interface version managementThere is format=htmi&manpath=SuSE-+

currently no built-in capability or conven- Linux%2Fi386+7.3

tion for managing interface versions (in-

cluding the plugin interface). [Glib] Glib Reference ManualGnome
Project.

http://developer.gnome.org/doc

11 Acknowledgments IAPI/glib/index.html

Special thanks go to Neal McBurnett who con-[ha-dist] High-Availability Linux
tributed both to the early design stages of PILS, ~ Distribution, Robertson, et al,
and also to the original design stages of the High-Availability Linux Project.
HBauth plugin which is used in the examples. http://linux-ha.org/download/
Thanks also go out to Cliff White, Ramachan-
dra Pai and Xiaoxiang Liu who spent time re-
viewing and critiquing the paper. The author
also wishes to thank the developers of the Glib
library, who have created an extraordinarily
useful and functional C library. PILS devel- [linux-ha] High-Availability Linux Home
opment would have been much more difficult Page Robertson, et al, High-Availability
without Glib. The author notes that PILS is not Linux Project.

a commercial product and this paper represents http://linux-ha.org/

the views of the author, and does not necessar-

ily represent the views of his employer. [OCF] Open Cluster Framework Project
Home PageRobertson, et al,

http://opencf.org/

[libtool] Libtool Reference ManuaFree
Software Foundation.
http://www.gnu.org/software
/libtool/manual.html

12 Trademarks

Linux is a trademark of Linus Torvalds. Other
company, product, and service names may be
trademarks or service marks of others.

References

[ha-cvs] PILS CVS RepositoryRobertson, et
al, http://cvs.linux-ha.org
Iviewcvs/viewcvs.cgi/linux-ha
Nib/pils/ ,
http://cvs.linux-ha.org
Iviewcvs/viewcvs.cgi/linux-ha
finclude/pils/

Proceedings of the
Ottawa Linux Symposium

June 26th—29th, 2002
Ottawa, Ontario
Canada

Conference Organizers
Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Proceedings Formatting Team
John W. LockhartWild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

