
Automatic Regression testing of network code:
User-Mode Linux and FreeSWAN

Michael C. Richardson
Sandelman Software Works Inc.

mcr@sandelman.ottawa.on.ca http://www.sandelman.ca/mcr

Abstract

The Linux FreeSWAN project (IPsec for
Linux) produces rather complicated network-
ing code. The successful application of the
protocol results in all network data being en-
crypted. The use of dynamic keying means
that it nearly impossible for an observer (even
a trusted one trying to test) to know what is go-
ing on. The need for multiple systems (often
as many as 6) to be properly configured creates
an environment nearly impossible to test regu-
larily.

The emergence of virtual machine technology,
particularly, User Mode Linux, has provided a
solution to the testing problem: create as many
virtual machines as needed and control them
using standard testing scaffolding technology:
expect(1). This paper describes the scaffolding
and the resulting testing regime which is used.

The focus is around a modified network switch
emulator, “uml_netjig” which provides the
ability to play and capture network packets
through a single User-Mode Linux virtual ma-
chine.

A second iteration of this tool is also described,
combining more complicated expect scripts,
and a command mode for uml_netjig, permit-
ting coordination of the multiple virtual ma-
chines that are needed when doing fully nego-
tiated IPsec sessions.

1 Background: What is this about

The Linux FreeS/WAN project is a funded
project. It has the mandate to produce an IPsec
implementation for Linux. The ultimate goal
of this effort is to provide systems and soft-
ware to permit citizens for the world to keep
all of their Internet traffic private.1.

Testing networking protocols is often difficult.
By definition there is at least one network in-
volved and often several independent systems
attached to the network.

With many application layer network proto-
cols (e.g. http) one can cheat—the network is
the virtual “loopback” device, and multitask-
ing permits both ends of a protocol to run on
the same host. It is therefore common to see
people doing all sorts of network development
using a garden-variety notebook.

The situation is not the same for transport and
network layer protocols such as IP, TCP, and
IPsec. These layers of the protocol are more
fundamental. They are typically implemented
inside a system kernel. This makes develop-
ment work as difficult as generic kernel work.

If one is to test them on one’s notebook or
desktop, one risks putting one’s own devel-
opment environment at risk. It is common
experience that doing kernel development is

1See http://www.freeswan.org/2

Ottawa Linux Symposium 2002 460

much easier with at least two machines—one
machine is crashed every ten minutes and the
other machine is used as the development host.
The split between development and testing is
much better understood in embedded system
work—the machine under test is often of a to-
tally different type than the development ma-
chine. Historically, the machine under test (a
VCR or a modem) is incapable of even running
a development environment.

Network protocol development work is further
complicated by the need to have more than one
machine involved.

1.1 eXtreme Programming

The growing discipline of eXtreme
Programming[Bec01] has a number of
fundamental principles

• rapid feedback

• assume simplicitiy

• incremental change

• embracing change

• quality work

[Bec01] goes on to explain that the fundamen-
tal activities are coding, testing, listening, and
designing. XP tries to reach the point where
one writes the test cases before the code. To
do this, the cost (in effort and time) of test-
ing must be reduced such that all tests can be
run frequently—several times a day if possible.
This very rapid feedback reduces the risk of in-
troducing problems—permitting developers to
program more efficiently and with more confi-
dence.

This paper describes the typical requirements
for doing network testing. The reasons why

it is expensive and why it is difficult to auto-
mate are explained. Our solution uses User-
Mode-Linux to turn machines into processes.
The scaffolding is then used to control these
processes, to put them through their paces on a
regular basis.

No solution is perfect on the first pass—XP
actually encourages partial solutions to be im-
plemented and feedback to be received—so we
describe our second pass, which at the time of
writing, is still in the design phase.

2 How to test with physical hard-
ware

sky

WEST EAST

SUNRISESUNSET

router

Figure 1: Basic Physical Network configura-
tion

The basic network is shown in Figure 1. The
taxonomy for our test setup is that the Sun rises
in the east and the sun sets in the west. Thus
one can easily remember where each host is.

EAST andWEST, shown with firewall icons, are
FreeS/WAN IPsec gateway boxes.

SUNRISE and SUNSET are just ordinary hosts
whose traffic will be protected by their respec-
tive gateways.

The machineSKY is used to do network anal-
ysis (“sniff”). There are frequently problems
that occur when trying examine the traffic pro-
duced by a machine itself, so a separate ma-

Ottawa Linux Symposium 2002 461

chine to make unbiased observations if neces-
sary.3

The two gateway boxes are not directly at-
tached, but rather are connected via a router.
There are two reasons for this:

• the current implementation of
FreeS/WAN requires a default route
to operate correctly.

• a common operational issue is with links
where the Maximum Transmission Unit
(MTU) is restricted, and this router pro-
vides a place to cause such an impair-
ment4

This setup is very representative of the typi-
cally deployed scenario for FreeS/WAN sys-
tems in a VPN. It does not cover every sin-
gle situation—most of the most difficult-to-
reproduce bugs have occured in other setups.
More machines are needed to create such se-
tups.

Aside from the space and cost involved in pro-
viding each developer with six machines (it is
often the case thatsky is the developer’s desk-
top), there are a number of other factors that
make this difficult.

The major problem is maintaining this setup.
There are many machines with many files that
must be maintained. The systems must be
kept up-to-date so that the latest kernels can

3In particular, on Linux 2.2 or lower, turning on the
packet capture mechanism changes the control struc-
tures attached to the traffic and causes faults relating
to policy for the keying channels’ control packets.
PR#48 at http://bugs.freeswan.org:81
/bugs/gnatsweb.pl?&database=
freeswan&cmd=view&pr=48 2.4 has solved
this problem

4FreeS/WAN has adopted the term “impairment” to
denote any challenges which are introduced to a system
or network to permit another part of the system to be
tested

be tested, yet at the same time, testing against
older kernels is necessary. Different distribu-
tions need to be tested. The combinatorics are
quite high.

The other major problem is work environment.
Sitting in a room with six computers is a lot of
noise. Getting access to each system’s console
is difficult (one can not rely upon network lo-
gins!). If a monitor is attached to each system
(vs a monitor switch), then the developer prob-
ably gets too much exercise.

One answer to this is serial consoles. See Fig-
ure 2. Terminals attached to serial ports was
the primary way that people used Unix until the
advent of the X-terminal, and Linux continues
this grand tradition.

sky

WEST EAST

SUNRISESUNSET

router

Figure 2: Basic Network with console access

One simply puts the following in
/etc/lilo.conf :

serial=0,38400n
...
image=/boot/vmlinuz-2.4.18-6mdk

label=linux2418
root=/dev/hda1
append="devfs=mount \

console=ttyS0,38400 \

Ottawa Linux Symposium 2002 462

console=tty0"
read-only

The console then appears on both “COM1” and
on the VGA screen. In this situation, the ma-
chines may be located in another room, con-
nected to a console server. One logs in from
one’s (quiet) desktop to the console server, ac-
cessing each machine via a serial port. Serial
interfaces are readily available with either PCI
or USB interfaces. This makes building a 6-
port console server rather easy.

The developer now has ready access to each
machine, can reboot each machine, select dif-
ferent kernels, and can configure it without
even having networking on. In addition, ker-
nel panics (“kernel oops”) or other strange out-
put on the console can be cut and pasted into
emails, etc..

2.1 Still challenging to test

The serial consoles do not solve the other
problems—managing the very many different
configurations, or coordinating the systems to
perform a test case.

The author has used such a setup for many
years with many Unix operating systems. Us-
ing the “expect” program and the serial con-
soles one can automate some of the tests. Some
of tests are harder to deal with—ones that fail
can cause the system to hang—this will require
operator intervention. Further use of more
hardware can solve this problem as well—
relays can toggle reset switches or even power
cycles.

The result, however, is a very complicated test-
ing environment—it can take weeks to config-
ure it, and mere hours to break. There is far
too much specialized hardware involved, not to
mention the software.

There is a better way which will be described,

but first, the requirements for the testing envi-
ronment will be examined in a bit more detail.

3 What do we really need

3.1 A brief primer on IPsec

IPsec[TDG98],[KA98a] consists of three
transport layer protocols: AH[KA98b],
ESP[KA98c] and IPcomp[DNP99].
There is one management pro-
tocol in existence at this time,
ISAKMP[MSST98]/IKE[Pip98],[HC98].

These transport protocols can be applied to up-
per layers of TCP, UDP, or any other trans-
port protocol. When the upper layer is the
“IPIP”[Per96], then the protocol is said to
be in “tunnel” mode. For most Virtual Pri-
vate Network (VPN) usages, tunnel mode is
the preferred method since it hides the ori-
gin source/destination address. VPNs are often
treated as being virtual leased lines.

Each of the transport protocols provide
session-layer encryption. They are referred to
as “security associations.” These are unidirec-
tional concepts—a pair is usually needed for
bidirectional communications.

3.1.1 Authentication Header (AH)

The Authentication Header provides origin au-
thentication and integrity of the headers and of
the data portion. No privacy is provided.

3.1.2 Encapsulating Security Payload
(ESP)

The ESP header provides origin authentication,
integrity and optional privacy of the data por-
tion only. Normally, this privacy option is pro-

Ottawa Linux Symposium 2002 463

vided by encryption, but the specification per-
mits a “null” encryption to be used in some cir-
cumstances.

3.1.3 IP compression header (IPcomp)

A good encryption algorithm produces cypher-
text that is evenly distributed. This makes it
difficult to compress. If one wishes to com-
press the data it must be done prior to encrypt-
ing. The IPcomp header provides for this.

One of the problems of tunnel mode is that it
adds 20 bytes of IP header, plus 28 bytes of
ESP overhead to each packet. This can cause
large packets to be fragmented. Compressing
the packet first may make it small enough to
avoid this fragmentation.

3.1.4 Internet Security Association Key
Management Protocol (ISAKMP)

ISAKMP is a framework for doing Security
Association Key Management. It can, in the-
ory, be used to produce session keys for many
different systems, not just IPsec.

3.1.5 Internet Key Daemon (IKE)

IKE is a profile of ISAKMP that is for use by
IPsec. It is often called simply “IKE.” IKE
creates a private, authenticated key manage-
ment channel. Using that channel, two peers
can communicate, arranging for sessions keys
to be generated for AH, ESP or IPcomp. The
channel is used for the peers to agree on the
encryption, authentication and compression al-
gorithms that will be used. The traffic to which
the policies will applied is also agreed upon.

3.2 Testing KLIPS

In FreeSWAN, the session layer encryption, se-
curity association management and traffic se-
lection is done by a kernel component called
KLIPS (Kernel Level IP Security). This com-
ponent can be built as a loadable kernel module
or statically built in.

As the security associations are unidirec-
tional one can effectively separate the en-
crypt/encapsulate and decrypt/decapsulate op-
erations for testing purposes.

For ease of thinking, the encryption operations
are always done on EAST and the decryption
operations are always done on WEST.

EAST

plaintext

ICMP, TCP

ciphertext

ESP

system
console

KLIPS

PLUTO

Figure 3: How to test KLIPS

As indicated in Figure 3, a source of plaintext
packets is needed, a way to examine the cipher-
text packets is needed, and a way to configure
the system is needed. In the physical setup
of the previous section, the source of plain-
text packets is provided by the machine SUN-
RISE, and the examination of the packets is
provided by SKY.

A typical initialization script for KLIPS is
shown in Figure 4.

The term SPI means “Security Parameters In-
dex.” Each security association is indexed by
a SPI. Note that a separate SPI is setup for

Ottawa Linux Symposium 2002 464

Figure 4: A typical initialization script for KLIPS

#!/bin/sh
TZ=GMT export TZ

ipsec spi --clear
ipsec eroute --clear

enckey=0x4043434545464649494a4a4c4c4f4f515152525454575758
authkey=0x87658765876587658765876587658765

ipsec klipsdebug --set pfkey
ipsec klipsdebug --set verbose

ipsec spi --af inet --edst 192.1.2.45 --spi 0x12345678 \
--proto esp --src 192.1.2.23 --esp 3des-md5-96 \
--enckey $enckey --authkey $authkey

ipsec spi --af inet --edst 192.1.2.45 --spi 0x12345678 \
--proto tun --src 192.1.2.23 --dst 192.1.2.45 --ip4

ipsec spigrp inet 192.1.2.45 0x12345678 tun inet \
192.1.2.45 0x12345678 esp

ipsec eroute --add --eraf inet --src 192.0.2.0/24 \
--dst 192.0.1.0/24 --said tun0x12345678@192.1.2.45

ipsec tncfg --attach --virtual ipsec0 --physical eth1
ifconfig ipsec0 inet 192.1.2.23 netmask 0xffffff00 \

broadcast 192.1.2.255 up

magic route command
route add -host 192.0.1.1 gw 192.1.2.45 dev ipsec0

ipsec look

Ottawa Linux Symposium 2002 465

the ESP operation and for the tunnel operation.
The two are then grouped together.

Theeroute (Extended Route) command then
selects traffic by source and destination ad-
dress for processing by the aforementioned
group. [KA98a] defines other selectors, includ-
ing TCP and UDP port numbers, but those se-
lectors are not implemented in KLIPS at this
time.

The tncfg command attaches the IPsec
pseudo to a physical device. This is necessary
in 2.0 and prior kernels to provide a path for the
resulting packets to actually leave the system.
Otherwise, theroute command at the end can
cause packets to loop internally. Eliminating
this problem—we refer to it as “stoopid rout-
ing tricks™”—is the major goal of revisions to
KLIPS.

The ipsec klipsdebug commands turn
on various debugging output. This debugging
output is important for diagnosing what has re-
ally happened when the system fails.

Finally, theipsec look command produces
a short summary of resulting system setup. The
output of this appears in Figure 5.

At this point, the system is ready to have pack-
ets sent through it. If the packets match the
criteria for the SA, then they will be encrypted
with the provided key.

3.2.1 KLIPS hassles

The observant will notice a number of
numbers in the above output which
were not in the script: the IV field
(0x24a4a14e81ee960e), the lifetime
values (it has been 9 seconds between the SA
was created and the look command occured),
and the date.

These variances cause two problems: the con-
sole output is not consistent on every run, and
the resulting encrypted packets will have dif-
ferent ciphertext on each run.

3.3 Testing Pluto

EAST

plaintext

ICMP, TCP

ciphertext

ESP

system
console

KLIPS

PLUTOPEER

Figure 6: How to test Pluto

4 The first virtual attempt

UML
(east)

eth1 eth0

screenkb

pty

host−test.tcl

(expect − child)

UML_NETJIG
switch + ARP simulator

startup

Figure 7: NetJig interface diagram

Ottawa Linux Symposium 2002 466

Figure 5: Output ofipsec look

east Tue Apr 2 04:32:28 GMT 2002
192.0.2.0/24 -> 192.0.1.0/24

=> tun0x12345678@192.1.2.45 esp0x12345678@192.1.2.45 (0)
ipsec0->eth1 mtu=16260(1500)->1500
esp0x12345678@192.1.2.45 ESP_3DES_HMAC_MD5: dir=out src=192.1.2.23
iv_bits=64bits iv=0x24a4a14e81ee960e alen=128 aklen=128 eklen=192
life(c,s,h)=addtime(9,0,0)
tun0x12345678@192.1.2.45 IPIP: dir=out src=192.1.2.23 life(c,s,h)=addtime(9,0,0)
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.0.1.1 192.1.2.45 255.255.255.255 UGH 40 0 0 ipsec0
192.1.2.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
192.1.2.0 0.0.0.0 255.255.255.0 U 40 0 0 ipsec0
192.0.1.0 192.1.2.45 255.255.255.0 UG 40 0 0 eth1
192.0.2.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
0.0.0.0 192.1.2.254 0.0.0.0 UG 40 0 0 eth1

4.1 How to configure to use “make check”

4.1.1 What is “make check”

“make check” is a target in the top level make-
file. It takes care of running a number of unit
and system tests to confirm that FreeSWAN has
been compiled correctly, and that no new bugs
have been introduced.

“make check” expects to be able to build User-
Mode Linux kernels with FreeSWAN included.
To do this it needs to have some files down-
loaded and extracted prior to running “make
check”. This is described in the FreeSWAN
documentation, under UML testing5.

4.2 Running “make check”

“make check” works by walking the
FreeSWAN source tree invoking the “check”
target at each node. At present there are tests
defined only for theklips directory. These
tests will use the UML infrastructure to test
out pieces of theklips code.

5http://www.freeswan.org/freeswan_snaps
/CURRENT-SNAP/doc/umltesting.html

The results of the tests can be recorded. If the
environment variable REGRESSRESULTS
is non-null, then the results of each test will
be recorded. This is used as part of a nightly
regression testing system.

“make check” otherwise prints a minimal
amount of output for each test, and indicates
pass/fail status of each test as they are run.
Failed tests do not cause failure of the target
in the form of exit codes.

5 The second virtual attempt

This attempt is illustrated in Figure 8.

6 Conclusions

Use of virtual testing environment massively
simplifies automated tests.

Limitations are that one can only test Linux 2.4
and beyond kernels.

It takes a lot of RAM and a lot of CPU, but
still is cheaper than coordinating many physi-

Ottawa Linux Symposium 2002 467

ARP sim
switch

UML_NETJIG

ARP sim
switch

UML_NETJIG

ARP sim
switch

UML_NETJIG

UML
(west)

eth0 eth1

screenkb UML
(east)

eth1 eth0

screenkb

ptypty

(expect)
net2−test.tcl

Figure 8: NetJig for multiple machines

cal machines.

References

[Atk95a] R. Atkinson. RFC 1825: Security
architecture for the Internet
Protocol, August 1995. Obsoleted
by RFC2401 [KA98a]. Status:
PROPOSED STANDARD.

[Atk95b] R. Atkinson. RFC 1826: IP
authentication header, August
1995. Obsoleted by RFC2402
[KA98b]. Status: PROPOSED
STANDARD.

[Atk95c] R. Atkinson. RFC 1827: IP
encapsulating security payload
(ESP), August 1995. Obsoleted by
RFC2406 [KA98c]. Status:
PROPOSED STANDARD.

[Bec01] Kent Beck.eXtreme
Programming: explained.
Addison-Wesley, 2001.

[DNP99] M. Degermark, B. Nordgren, and
S. Pink. RFC 2507: IP header
compression, February 1999.
Status: PROPOSED STANDARD.

[HC98] D. Harkins and D. Carrel. RFC
2409: The Internet Key Exchange
(IKE), November 1998. Status:
PROPOSED STANDARD.

[KA98a] S. Kent and R. Atkinson. RFC
2401: Security architecture for the
Internet Protocol, November 1998.
Obsoletes RFC1825 [Atk95a].
Status: PROPOSED STANDARD.

[KA98b] S. Kent and R. Atkinson. RFC
2402: IP authentication header,
November 1998. Obsoletes
RFC1826 [Atk95b]. Status:
PROPOSED STANDARD.

[KA98c] S. Kent and R. Atkinson. RFC
2406: IP Encapsulating Security
Payload (ESP), November 1998.
Obsoletes RFC1827 [Atk95c].
Status: PROPOSED STANDARD.

[MSST98] D. Maughan, M. Schertler,
M. Schneider, and J. Turner. RFC
2408: Internet Security
Association and Key Management
Protocol (ISAKMP), November
1998. Status: PROPOSED
STANDARD.

[Per96] C. Perkins. RFC 2003: IP
encapsulation within IP, October
1996. Status: PROPOSED
STANDARD.

[Pip98] D. Piper. RFC 2407: The Internet
IP security domain of
interpretation for ISAKMP,
November 1998. Status:
PROPOSED STANDARD.

[TDG98] R. Thayer, N. Doraswamy, and
R. Glenn. RFC 2411: IP security
document roadmap, November
1998. Status:
INFORMATIONAL.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

