
EVMS: A Common Framework for Volume
Management

Steven Pratt
Linux Technology Center

IBM
Austin, TX 78758
slpratt@us.ibm.com

http://evms.sf.net

Abstract

The Enterprise Volume Management System
(EVMS) brings a new model of volume man-
agement to Linux. EVMS integrates all as-
pects of volume management into a single co-
hesive package. By introducing a new plug-
gable architecture, EVMS provides extendibil-
ity while ensuring consistency and cooperation
across multiple volume management schemes.

EVMS consists of two main components, the
Runtime, which resides in the kernel and han-
dles discovery and I/O functions, and the En-
gine, which resides in User Space and han-
dles setup and configuration. Packaged with
the Engine are three user interfaces, a GTK
based GUI, a command line interpreter, and an
ncurses based interface.

EVMS borrows from the existing Linux vol-
ume management technologies, combining
them into a single easy to use package. Imag-
ine being able partition your disk, create mir-
rors and raid devices, define volume groups
and logical volumes, all from one integrated,
easy to use interface. With EVMS you can do
this and more.

EVMS provides immediate benefit to system
administrators who wish to get a handle on

their storage configurations, as well as less
technical users who have not memorized all
of the various commands and config files. No
more scanning through raidtab files or issuing
multiple LVM commands just to find out how a
system is configured. Just bring up the EVMS
GUI and have all of this information at your
fingertips. Not only can you see what disks
or partitions make up which volumes, but you
can also see if these volumes are formatted or
mounted.

1 Introduction

Volume management is an integral part of any
operating system. Every major server oper-
ating system has some form of volume man-
agement capability. The methods vary from
simple DOS partitioning to complex volume
groups and everything in between. What stands
out about each operating system is that they
generally have a single method for perform-
ing volume management and with that a sin-
gle consistent interface for configuring storage.
When we look at Linux we see that, as with
most components, it offers multiple choices for
volume management. In most cases having
competing products that give the user differ-
ent capabilities and functions is good for Linux



Ottawa Linux Symposium 2002 452

as it fosters competition and technical advance-
ment. In the cases where the user chooses only
one of the competing technologies there is re-
ally no downside to this approach. However,
in the case where similar or competing tech-
nologies do not completely overlap, users may
desire to use multiple technologies in order to
get a combination of function not found in any
one technology. In these cases some problems
can arise.

This is the case with volume management in
Linux today. The three major volume manage-
ment schemes available in Linux today (parti-
tions, LVM and MD) each provide exclusive
features which are not available in the other
volume managers. This means that the user, in-
stead of choosing one method of volume man-
agement, may instead use many. This puts the
burden on the user/administrator to learn how
to use each set of tools. Not only that, but he
must figure out any interdependencies that ex-
ist and work around them.

To further complicate the task of managing
storage, it is not enough to define the storage
layout. Usually you must also associate a file
system with the volume. This adds another
layer in which multiple choices are available,
each with slightly different features and inter-
faces. Today there is little to no coordination
between volume managers and the file systems
for operations such as resize, where issuing the
commands in the wrong order can cause data
loss.

EVMS attempts to make sense out of this jum-
ble of components by providing a consistent
architecture and framework in which all of the
varying technologies can exist in harmony with
each other. By providing a consistent set of
APIs and common services, EVMS allows new
technologies to be added to the existing frame-
work while ensuring that they will interact cor-
rectly with all of the current functionality.

2 EVMS Architecture

In EVMS the task of volume management has
been divided into three main components, the
Engine, the Runtime, and the User Interfaces.
EVMS uses a layered, plug-in model in the En-
gine and Runtime to provide flexibility and ex-
tensibility for managing storage. This method
of managing storage allows for easy expansion
or customization of various levels of volume
management. The EVMS framework is fully
64 bit enabled and architecture independent. It
is also endian neutral, except for certain com-
patibility plug-ins for which the original imple-
mentation used native layouts.

Runtime

The EVMS Runtime refers to the in-kernel por-
tion of the system. The Runtime has two pri-
mary purposes:

1. Coordinating the discovery of logical vol-
umes and creating the necessary block de-
vices to represent those volumes in user-
space.

2. Handling I/O to the volumes.

The EVMS kernel component consists of two
parts, the common services and the plug-ins.
The common services provide the framework
which makes up the heart of the EVMS archi-
tecture. This framework coordinates the load-
ing and registration of plug-ins for each of
the four plug-in classes supported and the in-
kernel discovery process. The common ser-
vices also provide IOCTL routing and helper
routines for the plug-ins to use. Before look-
ing at the common services we should first de-
scribe each of the classes of plug-ins and how
they work.

EVMS kernel plug-ins are built as standard
Linux kernel modules and are compiled as part



Ottawa Linux Symposium 2002 453

Xlib

X Server Printer

Application

Toolkit

Pango Pango Core

PS rendering backend X rendering backendLanguage Module

Arabic X Shaper PS X Shaper

Figure 1: EVMS kernel architecture

of the Linux kernel build process. These plug-
ins add functionality to the EVMS runtime by
providing support for specific features of vol-
ume management. The plug-ins register with
the EVMS common services at init or module
load time.

The first class of plug-in is the Device Man-
agers. Device managers are responsible for
determining the available devices on the sys-
tem and presenting them to the EVMS frame-
work. Device managers are also responsible
for determining attributes of the devices (such
as hardsector size) as well as detecting if a de-
vice has been removed or modified. This is the
only class of plug-in which deals directly with
device drivers or device driver queues. There
is currently only one Device Manager imple-
mented (Local Device Manager) which man-
ages all devices found on the gendisk list. It
remains to be seen if other device managers
are required for features such as multipath IO,
NAS, and SAN, or whether the current device
manager is sufficient.

The second class of plug-ins is the Segment
(or Partition) Managers. Segment Managers
are responsible for dividing logical disks into
physically contiguous pieces or Segments. A
separate Segment Manager is required for each

partitioning scheme supported (DOS, S390,
Amiga, ...) and only one Segment Manager
may be assigned to a disk at a time. It is pos-
sible however, to ’stack’ Segment Managers,
which results in one partitioning scheme being
imbedded within a segment created using an-
other partitioning scheme.

The third class of plug-ins is the Region Man-
agers. Region Managers consume disks and/or
segments and produce regions which represent
logically contiguous storage space. The re-
gion layer is the layer in which containers or
groups are implemented, making this the place
where AIX and Linux LVM plug-ins are found.
Also, since this is the last layer before EVMS
specific on-disk data structures are introduced,
and the first which supports logically contigu-
ous space, it is where most of the compati-
bility plug-ins are found, including MD. Re-
gion Managers, like Segment managers can be
stacked, allowing for configurations such as
LVM on RAID.

It should be noted that the Device Managers,
Segment Managers and Region Managers have
no constraints on their size, placement, or for-
mat of metadata. Depending on what the plug-
in is trying to accomplish, such as compati-
bility with DOS partitions or Linux LVM, the
plug-in can layout metadata in any format de-
sired or required. The advantage of this is that
these types of EVMS plug-ins can support any
native metadata format. The downside is that
with some non-EVMS metadata formats, re-
dundancy and error checking may not be as
complete as desired.

The fourth class of plug-ins is Features. This
layer contains plug-ins which are designed
specifically for EVMS and make use of meta-
data layouts provided by and enforced by the
EVMS common code. Features consume one
or more objects created by any of the layers
and produce a new feature object. All features



Ottawa Linux Symposium 2002 454

share some common metadata, called Feature
Headers, on disk. Thus, it is possible to do con-
sistency checking and to even detect if a feature
which was configured on disk is for some rea-
son not compiled into the kernel. The Feature
Header is where common information like the
volume name, volume minor number, feature
id, feature depth or count, and versioning in-
formation is kept.

Kernel Discovery process

EVMS supports in kernel discovery. This
means that each kernel plug-in contains the
code required to probe for and recognize the
metadata on disk and build volumes without
user space intervention. This capability allows
an EVMS enabled kernel to recognize and ex-
port all volumes that exist in a system at boot
time without requiring a RAM disk or any user
scripts to be run. This also means that EVMS
is not dependent on any user space configura-
tion files that could be accidentally deleted or
damaged by file system or other errors. There
is some debate as to whether this function be-
longs in the kernel or in user space. The main
reasons for putting it in the kernel is that it
make boot setup much easier (no scripts or
RAM disks required) and it makes upgrades
easier since the kernel is not dependent on user
tools to discover volumes; thus the kernel can
be upgraded independently of the user tools.

The kernel discovery process starts with the de-
vice manager examining the gendisk list for ac-
ceptable devices. The device manager creates a
object representing each device to be managed
and adds this node to the discover list. This list
is returned to the common services which then
passes it on to each Segment Manager. Each
Segment Manager can examine each node and
remove it from the list if it claims the disk.
Once a Segment Manager claims a device, it
processes this device and creates new objects
for each Segment on the device. These new ob-

jects are placed on the discover list for further
processing. Once each Segment manager has
had a chance to claim devices, if any new ob-
jects were placed on the list, this process is re-
peated with the new list. This allows for nested
partitioning. This process continues until no
new objects are created and then the common
services takes the object list (which now con-
sists of disk and segments) and repeats this pro-
cess with Region Managers.

Once Region discovery is completed, the ker-
nel starts feature discovery. Due to the com-
mon Feature Headers for EVMS features this
process is much more streamlined and effi-
cient. Each object is examined for the exis-
tence of Feature Headers and if one is found,
that object is grouped together with other ob-
jects with the same volume serial number
(found in the Feature Header). Next the Fea-
ture Header depth is checked in each of the ob-
jects for the volume, and the objects with the
deepest or bottom most count are given to the
plug-in which will own the objects. This is
done based on a feature ID stored in the Fea-
ture Header. This process repeats for each level
of the feature stack, or until an error is encoun-
tered.

EVMS has the concept that only volumes and
not intermediate objects are actually exported
from the kernel. This helps prevent acciden-
tal access to objects in the middle of a volume
stack. Additionally, each storage object can be
marked as being a volume or not. If a storage
object is not marked as a volume via a bit in
the Feature Header, then it is not exported for
access from the kernel.

After all features have been applied, the com-
mon services adds the volume to the global
volume list and makes it available through the
EVMS block device using the minor number
and name stored in the Feature Header. For
volumes which do not have EVMS features



Ottawa Linux Symposium 2002 455

applied (compatibility volumes), they are as-
signed their Linux legacy device name (i.e.
hda3, group1/lv1) and are assign the next avail-
able minor number.

IO Path

The IO path in EVMS is slightly different from
many other block devices in Linux due to the
plug-in implementation. The entire EVMS
subsystem, including all plug-ins, functions as
a single block device driver. What this means
is that EVMS does not use the driver queue
interface to drive IOs from one EVMS layer,
or plug-in, to the next. Instead, each EVMS
plug-in exports a function table as part of its
initialization process. In this function table are
read and write entry points. When an IO is re-
ceived by EVMS on a volume via the EVMS
block device, the common services route this
request to the appropriate read (or write) en-
try point of the topmost object in the volume
stack. The plug-in owning that object pro-
cesses the request by modifying (duplicating,
splitting, changing offset, etc.) it and calling
the entry point of the object(s) to which the
request is now destined. This process repeats
for each object or layer in the call stack for
this volume, and only when the request gets
to the Device Manager is it then re-queued to
the device queue of the actual disk driver. This
is possible due to the EVMS framework, and
removes the requirement for each plug-in to
consume valuable system resources such as de-
vice major numbers and thus allows an infinite
number of internal objects such as partitions.

IOCTLs

EVMS supports two types of IOCTLs, global
and volume specific. Global IOCTLs are sent
to the EVMS block device and are for com-
mands which are not specific to any one vol-
ume or plug-in. They are handled entirely by

the EVMS common services. These include
commands used by the Engine such as get ver-
sion, set debug info level, and rediscover. Vol-
ume specific IOCTLs are actually targeted at
the minor number of the volume in question.
These IOCTLs may be processed by the com-
mon services in some cases (such as get block
size) or the IOCTL may be passed down the
volume stack and processed by each plug-in in
the stack (such as delete volume). One Global
IOCTL which is worth mentioning is the direct
plug-in communication IOCTL. This IOCTL
allows for an instance of a plug-in in the En-
gine to communicate with its corresponding
plug-in in the kernel. This allows a plug-in
writer to code whatever communication is re-
quired, although in most cases this support is
not needed by the plug-ins.

3 Engine

The EVMS Engine is the core of the user-
space administration tools. The Engine is im-
plemented as a shared library. Like the kernel
component of EVMS, the Engine implements
the same layered plug-in model. The Engine
itself provides the common services and frame-
work, while plug-ins, which are also shared ob-
jects, provide the real functionality. The En-
gine has three sets of APIs defined. First, the
Engine library provides the front end API set
which is used by the User Interfaces. This ap-
plication interface provides a single well de-
fined set of entry points through which all ma-
nipulation of volumes is done, regardless of the
type of volume being configured. Second, the
Engine defines the Plug-in APIs. This is the
set of functions which must be implemented by
each plug-in. This standard API set for plug-
ins ensures that new plug-in will integrate with
the rest of the system. The third API set is the
common services provided by the Engine to the
Plug-ins to make their job easier.



Ottawa Linux Symposium 2002 456

Changes to a system with EVMS are accom-
plished by using one of the user interfaces to
open and interact with the Engine. When the
Engine is opened, it gets a list of devices via
an IOCTL to the EVMS kernel component.
The Engine then performs a discovery process
which is very similar to that found in the ker-
nel. Each device is probed by the plug-ins and
a complete in memory representation of entire
system is built. As each plug-in discovers de-
vices or objects that it manages, a tree structure
or graph is created.

When reading or writing data to or from de-
vices, the IO request is passed to the plug-in
appearing below the current plug-in in the vol-
ume tree. The IO request is transformed just
as it would be in the kernel IO path. This is
done to allow for a complete virtualization of
new configurations to occur. For example, an
LVM container or group can be created using
a RAID5 array which has not been committed
to disk, nor is running in the kernel. This al-
lows the user to make any number of changes
and configure the system exactly as they would
like it before writing any changes to the actual
on disk metadata or kernel configuration. If the
user decides that they do not like the changes,
they can simply quit the Engine session with-
out saving and nothing will have been mod-
ified. The user may also commit changes at
any point in the configuration process if he so
desires. Changes to the system are done by
writing metadata to disk by calling down the
stack of plug-ins until the device manager is
reached, The device manager then writes the
data to disk by calling a kernel IOCTL. Once
the new metadata is committed to disk, the ker-
nel is told to purge deleted or modified volumes
from memory and to go rediscover them from
changed metadata on disk. During this process
the volumes that have been modified are qui-
esced temporarily by the common services of
the EVMS runtime.

Each plug-in inside the Runtime has a cor-
responding Plug-in inside the EVMS Engine.
These Plug-ins provide administrative capabil-
ities for various kinds of logical volumes. For
example, the DriveLinking plug-in inside the
Runtime is responsible for I/O through Driv-
eLink devices, and the corresponding Driv-
eLinking plug-in inside the Engine handles
creation, modification, and maintenance of
DriveLink volumes.

Plug-ins in the Engine are typically more com-
plex than their counterparts in the kernel. This
is due to the greater number of APIs required
for configuration as well as support for the so-
phisticated user interface. The Engine plug-
ins contain all of the parameter validation code
for creating and modifying storage objects.
The Engine plug-ins must also duplicate the
read/write logic found in the kernel plug-ins in
order to support the complete virtulization of
volume configuration in the Engine.

In addition to the four classes of plug-ins found
in the kernel, there is one additionsl class
which is unique to the Engine. This class
is File System Interface Modules or FSIMS.
FSIMS are a special plug-in class and have
their own unique function table. FSIMS are
used to allow EVMS to communicate with var-
ious File Systems to coordinate changes to vol-
umes. Having an FSIM not only allows ac-
tions like mkfs and fsck to be performed di-
rectly from the EVMS interface, but it also en-
sure that actions such as expanding or shrink-
ing a volume are properly coordinated with the
File System without the user being required to
know the order in which operation must be per-
formed. This capability does not exists any-
where else in Linux.



Ottawa Linux Symposium 2002 457

4 User Interfaces

Because the EVMS Engine provides a pro-
grammatic interface instead of a direct user in-
terface, multiple user interfaces can be writ-
ten or tailored to a particular style or group of
tasks. Currently, four different user interfaces
have been developed:

1. A general command line which is useful
for automating tasks.

2. A graphical user interface (GUI) for easy
administration using a GUI desktop.

3. A text-mode, ncurses-based interface.

4. A set of command line utilities for emulat-
ing the Linux LVM (logical volume man-
agement) command set.

The first three of these interfaces are general
purpose and support all existing plug-ins. The
fourth, the command line utilities that emulate
Linux LVM, is one example of how the En-
gine application programming interface (API)
can be used to create a tailored user interface.
As the name implies, these utilities will only
interact with the LVM plug-in to manage LVM
containers and regions.

All of the user interfaces interact with EVMS
through the Engine application APIs. These
APIs abstract the specific options and param-
eters of each Engine plug-in into a well de-
fined interface known as the task interface. A
set of well known tasks have been defined (cre-
ate, expand, shrink, modify, ...) to allow for a
negotiation to occur between the user interface
and the plug-in. This allows the user interface
to write one set of screens or functions for each
task, but be able to use this code with any plug-
in. It is the plug-in’s responsibility to return to
the user interface all objects that can be used in

a task, and once an object(s) is selected, to re-
turn a list of options to the user interface. Each
option is described by an option descriptor data
structure which allows the user interface to se-
lect the proper display method and entry type
for the particular option. The descriptor also
indicates any restriction or limits on the option
such as minimum or maximum values. As each
option is set by the user interface, the informa-
tion is passed to the plug-in for validation. As
part of the negotiation or validation, the plug-in
can enable or disable other options, or change
the values possible for other options.

One of the additional advantages of this ap-
proach is the ability for the user interfaces to
enforce limits based on actual constraints in-
stead of theoretical ones. For example if there
is only 100M of freespace available for a cre-
ate command, the GUI will not let you enter
any value greater that 100M, rather then letting
you enter a larger value and fail the command.

5 Future Work

Two main work items will affect the EVMS
architecture in the coming year. The first is
a generic move capability. New APIs will be
added to allow the moving of one storage ob-
ject to another while the volume is mounted.
For example this capability will allow for the
moving of data on a mounted partition to be
moved to a LVM region or vise versa. This
same technology will be used within plug-ins
to provide functionality equivalent to the Linux
LVM’s pvmove.

The second, and larger work item is cluster
support. EVMS is currently working on adding
cluster support for configuration of shared stor-
age within a cluster. With this support, plug-
ins such as snapshotting and bad block reloca-
tion will be able to work on volumes backed by
shared storage and access from multiple nodes



Ottawa Linux Symposium 2002 458

in a cluster.

6 References

1. The Home Page for the EVMS Project
http://evms.sf.net

2. EVMS HowTo
http://evms.sf.net/howto

3. Linux Partition HowTo
http://tldp.org/HOWTO/mini

/Partition.html

4. Software Raid HowTo
http://tldp.org/HOWTO

/Software-Raid-HOWTO.html

5. Linux LVM
http://www.Sistina.com

/products_lvm.htm



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


