
A Distributed Security Infrastructure for Carrier
Class Linux Clusters

Makan Pourzandi, Ibrahim Haddad, Charles Levert
Miroslaw Zakrzewski, Michel Dagenais

Open Systems Lab, Ericsson Research Canada
8400 Décarie Blvd, Town of Mount-Royal (QC) Canada H4P 2N2

Makan.Pourzandi@ericsson.ca, Ibrahim.Haddad@ericsson.com, Charles.Levert@ericsson.ca

Miroslaw.Zakrzewski@ericsson.ca, Michel.Dagenais@polymtl.ca

Abstract

Traditionally, the telecom industry has used
clusters to meet its carrier-class requirements
of high availability, reliability, and scalability,
while relying on cost-effective hardware and
software. Efficient cluster security is now an
essential requirement and has not yet been ad-
dressed in a coherent fashion on clustered sys-
tems. This paper presents an approach for dis-
tributed security architecture that supports ad-
vanced security mechanisms for current and fu-
ture security needs, targeted for carrier-class
application servers running on clustered sys-
tems.

Keywords: Linux, Security, Carrier Class
Clusters, Distributed Infrastructure, IPSec,
LSM.

1 Introduction

The interest in clustering from the telecom-
munication industry originates from the fact
that clusters address carrier-class characteris-
tics such as guaranteed service availability, re-
liability, and scaled performance, using cost-
effective hardware and software. There are
several efforts on going to use Linux as ba-

sic block for building next generation telecom
clusters [12, 7]. These carrier-class character-
istics have evolved and now include require-
ments for advanced levels of security. How-
ever, there are few efforts to build a coherent
distributed framework to provide advanced se-
curity levels in clustered systems.

Our work targets implementing security mech-
anisms for soft real-time distributed carrier-
grade applications running on large-scale
Linux clusters. These clusters are dedicated
to run only one application. They must pro-
vide five nines availability (99.999% uptime)
that includes hardware upgrade and mainte-
nance and operating system and applications
upgrades. In such clusters, software and hard-
ware configurations are under the tight control
of administrators. The communications be-
tween the nodes inside the cluster and to ex-
ternal computers are restricted.

In this paper, we present the rationale behind
developing a new architecture, named Dis-
tributed Security Infrastructure (DSI). We de-
scribe the main elements of this architecture,
and discuss our preliminary results. DSI sup-
ports different security mechanisms to address
the needs for telecom application servers run-
ning on clustered systems. DSI provides ap-

Ottawa Linux Symposium 2002 440

plications running on clustered systems with
distributed mechanisms for access control, au-
thentication, integrity of communications, and
auditing.

The paper is organized as follows: Section 2
illustrates the need for a new approach to se-
curity requirements for carrier-class clustered
servers. Sections 3 and 4 discuss the DSI archi-
tecture and its characteristics. Sections 5 to 12
present the main elements of the design. Sec-
tion 13 compares our approach to other related
work. Section 14 presents some preliminary
results. Section 15 concludes with our ongoing
work and future plans.

2 The need for a new approach

There exist many security solutions for Linux
clustered servers ranging from external to clus-
ter solutions, such as firewalls, to internal so-
lutions such as integrity checking software.
However, there is no solution dedicated for
clusters. The most commonly used security ap-
proach is to package several existing solutions.
Nevertheless, the integration and management
of these different packages is very complex,
and often results in the absence of interoper-
ability between different security mechanisms.
Additional difficulties are also raised when in-
tegrating these many packages, such as the ease
of system maintenance and upgrade, and the
difficulty of keeping up with numerous secu-
rity patches and upgrades.

Carrier-class clusters have very tight restric-
tions on performance and response time.
Therefore, much pressure is put on the system
designer while designing security solutions. In
fact, many security solutions cannot be used
due to their high resource consumption.

Currently implemented security mechanisms
are based on user privileges and do not support
authentication and authorization checks for in-

teractions between two processes belonging to
the same user on different processors. How-
ever, for carrier-class applications, there are
only a few users running the same application
for a long period without any interruption. Ap-
plying the above concept will grant the same
security privileges to all processes created on
different nodes for a long period of time. This
is due to the fact that the granularity of the
basic entity for the above security control is
the user. For carrier-class applications, some
classes of actions require fine-grained access
control to some resources, or enforcement of
specific security policies, or both. Therefore,
the user-based granularity is not sufficient. By
consequence, DSI is based on a more fine-
grained basic entity: the individual process.

3 DSI characteristics

As part of a carrier-class clusters, DSI must
comply with carrier-class requirements such
as reliability, scalability, and high availabil-
ity. Furthermore, DSI to answer the needs
explained in 2 supports the following require-
ments:

• Coherent framework: Security must be
coherent through different layers of het-
erogeneous hardware, applications, mid-
dleware, operating systems, and network-
ing technologies. All mechanisms must
fit together to prevent any exploitable se-
curity gap in the system. Therefore, DSI
aims at integrating together different se-
curity solutions and adapting them to soft
real-time applications.

• Process level approach: DSI is based on
a fine-grained basic entity: the individual
process.

• Maximum performance: The introduction
of security features must not impose high

Ottawa Linux Symposium 2002 441

performance penalties. Performance can
be expected to degrade slightly during the
first establishment of a security context;
however, the impact on subsequent ac-
cesses must be negligible. It is possible
to disable security by security administra-
tion decision.

• Pre-emptive security: Any changes in the
security context will be reflected imme-
diately on the running security services.
Whenever the security context of a sub-
ject changes, the system will re-evaluate
its current use of resources against this
new security context.

• Dynamic security policy: It must be pos-
sible to support runtime changes in the
distributed security policy. Carrier-class
server nodes must provide continuous and
long-term availability and thus it is impos-
sible to interrupt the service to enforce a
new security policy.

• Transparent key management: Crypto-
graphic keys are generated in order to se-
cure connections. This results in numer-
ous keys that must be securely stored and
managed.

• Framework supports fast detection and re-
action to security incidents.

4 Architecture

DSI targets clusters and, in doing so, intro-
duces original contributions to their security.
Some of its parts, however, such as its Ac-
cess Control Service and its use of security
contexts and identifiers, owe much to existing
propositions, such as Security Enhanced (SE)
Linux [5].

Primary
�

Security
�

Server Node
�

Node 1 Node 2 Node 3

SM
�

SS
�

SM
�

SM
�

Proc123 Proc978 Proc222

K
er

n
el

Secure Communication Channel
�

Secondary
�

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
�

and�

O&M/IDS
�

O
u

ts
id

e
th

e
C

lu
st

er

SS
�

Security Server
�

SM
�

Security Manager
�

Authenticated
Encrypted

�

Communications
�

Primary
�

Security
�

Server Node
�

Node 1 Node 2 Node 3

SM
�

SS
�

SM
�

SM
�

Proc123 Proc978 Proc222

K
er

n
el

Secure Communication Channel
�

Secondary
�

Data TrafficIn
si

d
e

th
e

C
lu

st
er

Security
�

and�

O&M/IDS
�

O
u

ts
id

e
th

e
C

lu
st

er

SS
�

Security Server
�

SM
�

Security Manager
�

Authenticated
Encrypted

�

Communications
�

Figure 1: Distributed Architecture of DSI

4.1 Distributed architecture: Inside the cluster

DSI has two types of components: the manage-
ment components and security service compo-
nents. DSI management components define a
thin layer of components that includes a secu-
rity server, security managers, and a security
communication channel (Figure 1). The ser-
vice layer is a flexible layer, which can be mod-
ified or updated through adding, replacing, or
removing services according to the needs of the
cluster.

The security server is the central point of man-
agement in DSI, the entry point for secure op-
eration and management, and alarms coming
from the intrusion detection systems from out-
side the cluster. It is the central security author-
ity for all the security components in the sys-
tem. It is responsible for the distributed secu-
rity policy. It also defines the dynamic security
environment of the whole cluster by broadcast-
ing changes in the distributed security policy to
all security managers.

Security managers enforce security at each
node of the cluster. They are responsible for
locally enforcing changes in the security en-
vironment. Security managers only exchange

Ottawa Linux Symposium 2002 442

Security Context
�

Repository

Security Context
�

Security Manager
�

Security Policy
�

Key Repository

Key Management

Auditing
�

Service
�

Access Control
�

Service
�

Authentication
�

Service
�

Integrity
Service

�

Security Context
�

Repository

Security Context
�

Security Manager
�

Security Policy
�

Key Repository

Key Management

Auditing
�

Service
�

Access Control
�

Service
�

Authentication
�

Service
�

Integrity
Service

�

Figure 2: DSI Services

security information with the security server.
The secure communication channel provides
encrypted and authenticated communications
between the security server and the security
managers. All communications between the
security server and the outside of the cluster
take place through the secure communication
channel. To avoid a single point of failure, the
security services run on an equally hardened
secondary security server as hot swappable ser-
vices. These nodes are security hardened ver-
sions of Linux distributions to maximize secu-
rity. All connections from and to these nodes
are encrypted and authenticated.

The security mechanisms are on widely
known, proved, and tested algorithms.

For the security mechanisms to be effective,
users must not be able to bypass them. Hence,
the best place to enforce security is at the ker-
nel level; all security decisions, when neces-
sary, are implemented at kernel level through
DSI Security Module (DSM) [9]. This module
is loaded on each node by the security manager
upon its initialization.

4.2 Service based approach

The DSI architecture at each node is based on
a set of loosely coupled services (Figure 2).

The security manager controls different secu-
rity services on the node. This service-based
architecture has the following advantages:

• The service implementation is separated
from the rest of the system. By keeping
the same API, the service implementation
can be changed without affecting the ap-
plication. However, an API for access-
ing security services is provided at user
level for applications with special security
needs (Section 10.1).

• It runs only predefined services according
to the needs, performance issues, or se-
curity environment. In addition, services
can be replaced on run time without ma-
jor drawback on the running application.
This enables the architecture to be modi-
fied and to resist changes throughout the
system’s lifetime.

• It is possible to add, remove, or up-
date different services without administra-
tive intervention. This reduces configura-
tion errors due to the numerous security
patches that need to be applied manually.

The security manager discovers the different
services. Each service, upon its creation, sends
a presence announcement to the local security
manager, which registers these services and
provides their access mechanisms to the inter-
nal modules. There are two types of services:
security services (access control, authentica-
tion, integration, auditing) and security service
providers that provide services to security man-
agers.

The security management is implemented at
all levels of DSI. There is a complete chain
of commands from security administrators (hu-
man beings) of the cluster to different DSI
components inside each nodes kernel. The ad-
ministartors access the Security Server through
the SCC. The Security server interprets the
commands and propagate them to the Security
Managers. Security managers translate these to
control settings for different security services.

Ottawa Linux Symposium 2002 443

For example, security administrator detecting a
back door on some software used indicates that
some external IP can not accessed from cluster
nodes. This is sent to the Security Server and
translated as modification in DSP forbidding
all connection to defined IP address. Propa-
gated through SCC to security managers, this
policy decision is enhanced at DSM level.

5 Security Server

The security server is the reference for all secu-
rity managers and has the authority to declare
a node as compromised. It subscribes to all up-
dates to keep its cache of different security con-
texts up to date, which makes it the ideal can-
didate for running Intrusion Detection Systems
(IDSs). It has a local certification authority1

(CA). This last issues the certificates for sec-
ondary certification authorities run by the secu-
rity managers. The primary tasks for security
server include auditing, triggering alarms and
warnings to inside and outside the cluster, man-
aging the distributed security policy, receiving,
interpreting and propagating security manage-
ment operations to security managers.

6 Security Manager

The security manager enforces security on
each node. It is primarily a lookup service
to register different security services and ser-
vice providers and connect them together. The
security manager is instantiated at boot time
with digital signatures to make certain that it
is not replaced with a malicious security man-
ager. Upon its creation, it joins the DSI frame-
work and exchanges keys with the security
server. Each security manager must publish
any change to the security contexts of its lo-
cal entities involved with remote entities and

1We mean that the CA is used for using inside the
cluster.

subscribe to changes in the security contexts of
remote, related entities (see Section 8). The
primary tasks for security managers include
access control, process authentication, audit
management, alarm publication, key manage-
ment, as well as maintenance, and update of
the locally stored distributed security policy.

7 Secure Communication Channel
(SCC)

The secure communication channel provides
secure communications for the security com-
ponents inside and outside the cluster. Within
the cluster, it provides with authenticated
and encrypted communications among secu-
rity components (Figure 3). It supports pri-
ority queuing to send and receive out-of-band
alarms. It is coupled to the security manager
by an event dispatching mechanism. For large-
scale clusters, an event driven approach based
on subscription to events from defined chan-
nels reduces the system load compared to the
polling mechanisms. Further more, the bene-
fits of this approach are:

• It does not present a single point of failure.

• It gives the possibility of event filtering,
therefore less bandwidth used, and less
time used for treating irrelevant informa-
tion before discarding it.

The secure communication channel provides
channels for alarms and warnings, security
management, service discovery, and distribu-
tion of the security policy. It also provides a
portability layer to avoid dependency on the
low-level communication mechanisms.

Ottawa Linux Symposium 2002 444

Secure O&M Channel
�

Alarms Channel
�

Security Zone Y Channel
�

Security Zone X Channel
�

APPLICATION TRAFFIC

K
er

ne
l

SS
�

Primary Security
Server

�
Node 1

Secondary Security
�

Server
�

I N
S

ID
E

 C
 LU

S
T

E
R

O

 U
T

S
ID

E
 C

 LU
S

T
E

R

S
�

ECURITY O&M/IDS

Node 2 Node 3

SM
�

SM
�

SM
�

Su� n�

.

SPARC10S
�

un

SS: Security Server

SM: Security Manager

Authenticatd/Encrypted
Communications

Publish/Subscribe
Events

LEGEND

Figure 3: SCC is based on an event-driven
logic and different channels

8 Security Context

For efficiency, a security identifier (SID) is de-
fined as an integer that corresponds to a secu-
rity context. All entities in the cluster have a
SID. This SID is added at kernel level and can-
not be tampered by users. For example, a struc-
ture containing SID is added to the structure
presenting the process in kernel [9].

We define Cluster SID (CSID) as the pair
of SID associated to the subject and the
node where the subject belongs to. CSID is
transferred across processors by security man-
agers and interpreted through the whole clus-
ter. Once the security context for a subject is
needed outside of the local processor (for in-
stance if this process accesses a remote object),
its CSID is sent to the security manager of the
node containing the object. The CSID prop-
agation inside the cluster is based on SelOpt
open source software implementation [8]. To
avoid retransmissions, security managers rely
on caching mechanisms.

To ensure the pre-emptive access control, the
security manager of the node containing object
subscribes through SCC to the event of a possi-
ble change in the security context of the access
initiator entity.

9 A Coherent Vision: Security
Contexts and the Distributed Se-
curity Policy (DSP)

Security configuration must be kept simple.
Following this approach, DSI relies on a cen-
tralized security policy stored and managed
on the security server. However, to maintain
the cluster’s scalability, read-only copies of the
policy are pushed from the security server to
the individual security managers through the
SCC. This Distributed Security Policy (DSP)
is an explicit set of rules that governs the con-
figurable behavior of DSI. Each node, at secure
boot time, relies on a minimal security policy
that is either stored in flash memory or down-
loaded along with its digital signature. As soon
as the DSP becomes available on a node, it pre-
vails.

DSP allows a configurable behavior for secu-
rity services. The DSI administrator (a human
being) manipulates the primary copy of the
DSP that resides on the security server. Thus,
it must be represented in a human readable for-
mat. The basic update mechanism for DSP is to
push a full copy of each new version of the pol-
icy through the SCC. However, given the mere
size that the policy can take, an incremental up-
date mechanism will be made available.

There can be several possible originating
sources for the security policy rules. Man-
ual configuration by the DSI administrator al-
lows the most flexibility, but it rapidly becomes
cumbersome. Thus, default policy rules are in-
ferred from the very nature of the various soft-
ware packages that are installed and running on

Ottawa Linux Symposium 2002 445

the system. These default rules codify good se-
curity practices. The DSP should only need to
be updated because of events such as the in-
stallation of new software components, but it
should not be updated whenever ordinary re-
curring events occur. A security session man-
ager handles this kind of events by updating the
security context repository. A security context
defines privileges associated with each entity.
It is defined uniquely through the whole clus-
ter, but it is the responsibility of the security
manager who created it.

10 Access Control Service (ACS)

Access control can be defined as the prevention
of unauthorized use of a resource [4]. It re-
lies on the notions of subject (or access request
initiator), object (or target), environment, de-
cision, and enforcement. The Access Control
Service (ACS) assumes that the subjects have
been properly authenticated (see Section 11).
DSI allows verifying the access control priv-
ileges even when subjects and objects are lo-
cated on different nodes in the cluster. In order
to simplify, we handle the access control in two
levels: local when subject and object are on the
same node and remote when they are on differ-
ent nodes.

The local access control at each node is based
on SID added to the structure in the kernel
which, represents each entity (e.g., process,
socket...). For local access control, the ac-
cess rights are the functions of the security IDs
of the subject (SSID) and the object (TSID).
They are enhanced through DSI Secure Mod-
ule, which we implemented [9].

10.1 Remote access control

For remote access control, we extend the lo-
cal access control mechanisms by adding a new
parameter: the security node ID. Therefore, the

access rights are no more just the functions of
the subject and target security IDs, but as well,
the function of the security node ID (NSID).
The SSID along with the NSID are sent to the
node containing the object added to each IP
packet as IP options (Figure 4).

A first level of access control based on SSID is
done at this level, by the security manager on
the source node. This is completely transparent
to the process initiating the communication.

The second level of security check is done by
the security manager on the target node based
on SSID and NSID. This is also transparent to
the process receiving the communication. Till
this point, the access control decision is trans-
parent. It is granted or denied based on SSID
and NSID (i.e., CSID). This level of access
control is enough for majority of the applica-
tions.

For applications with needs for finer grained
access control, DSI provides an API allowing
to take into account the SSID and NSID when
making access decision to resource on target
node.

We believe that it is not possible to implement
an enough flexible and usable fine grained ac-
cess control based only on platform. For fine
grained security the application needs to col-
laborate with the security mechanisms pro-
vided by the platform. The application through
DSI API asks to be set a new SID based on
the SSID and NSID. Notice that the SSID and
NSID are not revealed to the application. The
application asks to change the SID based on
the communication mechanism. For example,
for a server process it means to pass the socket
as an argument to DSI API. The security man-
ager sets the new SID for the server process
based on the original SID of the server (TP-
SID), SSID and NSID contained in each IP
packet.

Ottawa Linux Symposium 2002 446

Proc34Proc12

SMSM

SID Proc123
�

Error

SID CheckSID Check Drop

DSI LSM Module

main(){
.
.
.

connect(sock1,...);
.
}

main(){
.
.
.

accept(sock1,...);
set_delegate_sid(sock1);

.
reset_sid();

}

1
3

�
2

File A

U
se

r L
ev

el

K
er

ne
l L

ev
el

SSID + SNID

IP Packet

Source Node Target Node
�

Figure 4:Secure Remote access control:Fol-
lowing security checks are done: 1) local check
by the security manager (SM), if access agreed
the Node ID (NSID) and Process SID (SSID)
are added to each IP packet sent to the node 2)
Application transparent check by the SM based
on NSID and SSID, if access agreed the con-
nection is established 3) For some applications
with special security needs, the application can
choose to further enhance the security by tak-
ing into account the SSID and NSID. To do
this, the application needs to use DSI API (i.e.,
set_delegate_sid).

Therefore the final access control decision is
based on SSID, NSID, TPSID, and TSID.

Remark that DSI targets the carrier class plat-
forms, with software environment under tight
control with few applications running on the
cluster. Therefore, even if the support of an ad-
ditional API for security is a burden for appli-
cation developers, we believe that only a small
percentage of applications need to be modified.
As for the majority of applications, transparent
support of grant/deny based on SSID and NSID
provided by the security managers is enough.

10.2 ACS architecture

The ACS that runs on the cluster’s processors
is comprised of two parts:

• A kernel-space part: This part is respon-
sible for implementing both the enforce-

ment and the decision-making tasks of
access control. These two responsibili-
ties are separated, as advocated by [3].
The kernel-space part maintains an inter-
nal representation of the information upon
which it bases its decisions. This part is
implemented as a Linux Security Module
(LSM): DSI Security Module (DSM) [6].

• A user-space part: This part has many
responsibilities. It takes the informa-
tion from the Distributed Security Policy
and from the Security Context Repository,
combines them together, and feeds them
to the DSM in an easily usable form. It
also takes care of propagating back alarms
from the kernel space part to the secu-
rity manger, which will feed them to the
Auditing and Logging Service and if nec-
essary propagate to the security server
through SCC.

Both parts are started and monitored by the lo-
cal Security Manager (SM). The SM also intro-
duces them to other services and subsystems of
the infrastructure with which they need to in-
teract.

10.3 ACS principles of operation

The ACS aims to provide fine-grained access
control (at a sub-system call level). It respects
the minimization principles of least privilege
to limit the propagation and damage caused
by eventual security breaches. As such, it
provides defense in depth. The ACS that is
running on a processor must make as little
assumptions as possible about other proces-
sors, including whether they have been com-
promised. For that reason, an ACS instance is
always the one making access decisions about
resources that are local to its processor. For the
initial design of the ACS, only grant/deny de-
cision will be considered. Other more involved

Ottawa Linux Symposium 2002 447

decisions would involve rate limiting and total
usage limiting. Actions other than access con-
trol decision, such as interposition and active
reactions, are not implemented either.

11 Authentication and communi-
cation integrity services

The authentication standard for now is the au-
thentication by assertion. It means that the pro-
gram accessing resources on remote processors
asserts that it does this in behalf of a user. Nei-
ther the user schema nor the assertion only can
be trusted seriously in an environment exposed
to external attacks.

Local authentication in DSI is based on local
verification by the DSM of each subject at node
level.

The remote authentication of a process is the
result of the local authentication of the process
at the source node by DSM and the authenti-
cation of the node containing the subject to the
target node.

IPSec is used for authenticating each node in-
side the cluster.

Developing for carrier class clusters, we have
strong constraints on performance. IPSec has
the advantage of covering both TCP and UDP2.
To avoid applying the same policy to all IP traf-
fic between two nodes (in particular, to avoid
encrypting all data between two nodes), three
IP addresses corresponding to three different
subnetworks are assigned to each node. Each
subnetwork defines a security policy: No secu-
rity, authenticated only (IPSec AH mode), au-
thenticated and encrypted (IPSec ESP mode).
Filtering rules are further more used at net-
works elements (switches. . .) and at network

2The necessity of support of efficient security proto-
col for UDP is one of the main reasons why we have
chosen IPSec.

interfaces of each node to enhance further the
security rules.

The security manager at each node, based on
SID of the sending process and the target node
ID, and the target SID3 according to the DSP
transparently defines the security policy (e.g.,
subnetwork) to use: No Security, AH, or ESP.

Integrity and confidentiality of communica-
tions between two nodes is supported by use
of IPSec ESP mode when necessary.

FreeS/WAN IPSec implementation has been
used between nodes [2], however the support
for IPSec AH mode is an issue. FreeS/WAN
uses opportunistic encryption, which means
that ESP mode is used even when AH mode is
asked for. somehow in some cases for perfor-
mance issues, it is though preferable to support
AH mode without encryption load. At the end,
we hope that the support for certificates will
integrate the FreeS/WAN and will be not only
supported as a patch.

12 Auditing Service

The auditing services are responsible for mon-
itoring and auditing data and reporting secu-
rity related information. This information may
be used for several different purposes: intru-
sion and denial of service attacks detections,
providing evidence in case of litigation or in-
quiries.

Auditing service for each node is responsible
for analyzing the logs, detect the possible at-
tack patterns, trigger the alarms, and propagate
them through SCC. This service is responsible
for functionality related to the lawful intercept.

This service has increase functionality on se-
curity server. It also monitors the internal net-

3Target SID is defined by the port number on the tar-
get node.

Ottawa Linux Symposium 2002 448

work for the cluster and the distributed logs in
order to detect attacks using Snort IDS [13].
This service on security server is related to ex-
ternal IDS through SCC.

The auditing service is connected to external
log servers when needed. The connection be-
tween the auditing service and external loggers
is not through SCC for performance reasons.

The requirements for this service are currently
being defined.

13 Related work

This work distinguishes itself by being focused
on the design of a security infrastructure tar-
geted for clustered servers as compared to pre-
vious work that is focused on single comput-
ers or on clusters of general-purpose Linux ma-
chines. In addition, DSI takes into account all
the issues related to security management start-
ing at the design level. Some of the related
work includes CorbaSec, the CORBA security
service that handles the security issues regard-
ing access control and authentication for inter-
actions between different objects. CorbaSec
does not take into account all aspects of secu-
rity for example detection and reaction mech-
anisms like DSI and guarantees the security at
middleware level independently from platform
considerations.

On the other hand, Security Enhanced (SE)
Linux from the National Security Agency
(NSA) [5] or the Linux Security Module [6]
(LSM) effort run on a single computer; they do
not extend to a cluster.

Finally, Grid Security Infrastructure (GSI) was
subsequently developed, based on existing
standards, to address the security requirements
that arise in Grid environments [1]. The DSI
approach is more fine-grained and is based on
modifying the OS to enhance security mecha-

nism (as explained in Section 10.1). The ap-
proach of DSI is possible because the software
and hardware configuration in the cluster is un-
der tight control. In practice, DSI supports
a coherent vision of security throughout the
whole cluster as GSI supports secure interop-
erable mechanisms between different trust do-
mains for multiple users.

14 Results

We performed preliminary experiments on a
cluster of Linux nodes. The fact that the source
code of the Linux kernel is available and well
documented is a major advantage for develop-
ing DSI on Linux based clusters.

So far, a secure boot mechanism for a disk-
less Linux system was implemented. Using se-
cure boot with digital signatures, a distributed
trusted computing base (DTCB) will be avail-
able as of the boot of the cluster nodes. The
kernel at secure boot is small enough to be
thoroughly tested for vulnerabilities. Further-
more, the use of digital signatures for binaries
and a local certification authority will prevent
malicious modifications to the DTCB.

We also implemented a security module based
on Linux Security Module (LSM) that enforces
the security policy as part of the DSI access
control service [6]. This module is integrated
with SCC and provides distributed access con-
trol mechanisms. DSI currently supports pre-
emptive and dynamic security policy at the
process level throughout the whole cluster for
some operations. As future work, we will ex-
tend these capabilities to all operations on the
cluster.

At this time, we are implementing the dis-
tributed security policy. In order to ease ad-
ministration and maintenance of this policy, we
completed a study to devise methods to reuse
information already contained in package man-

Ottawa Linux Symposium 2002 449

agement systems (such as RPM for Linux) in
order to generate part of the security policy, or
to push such information to the package [10].
Specification of the exact language used to ex-
press the policy and of the compilation and
loading mechanisms remains to be completed.

We implemented a secure communication
channel based on OmniORB, an open-source
implementation of Corba [11]. The implemen-
tation of SCC is independent from the com-
munication middleware used. As mentioned in
Section 7, SCC logics are implemented on top
of a portability layer. This makes the imple-
mentation independent of any communication
middleware used. The choice of CORBA as
communication middleware for SCC was mo-
tivated by the following factors:

• Support from CORBA standard and im-
plementations for distributed real-time
and embedded systems,

• Support for advanced security mecha-
nisms by CorbaSec,

• Interoperability.

15 Conclusions and future works

In this paper, we presented the need for a new
security approach for carrier-class applications
running on Linux clusters. Based on our moti-
vations to develop a coherent solution address-
ing the security needs of carrier-class servers,
we proposed a new design for a secure dis-
tributed infrastructure. We presented the main
elements of this design and discussed some of
the preliminary results. We believe that this de-
sign is a practical approach to enhance security
for large-scale Linux clusters with carrier-class
needs.

To complete DSI, we plan to collaborate with
Open Source projects and initiatives, and other

organizations on the design and development
of this secure infrastructure.

Acknowledgements

We thank David Gordon and Dominic Pellerin
for their contributions to DSI. Also, we thank
Marc Chatel and Bruno Hivert for their sanity
checks on our design and implementation.

References

[1] Foster I., Kesselman C., Tsudik G.,
Tuecke G., A Security Architecture for
Computational Grids, 5th ACM
Conference on Computer and
Communication Security.

[2] Linux FreeS/WAN,
http://www.freeswan.org .

[3] ISO 10181-3: Security Frameworks for
Open Systems: Access Control
Framework, ISO, (1996).

[4] ITU-U Recommendation X.800: Security
Architecture for Open Systems
Interconnection for CCITT Applications,
ITU-T (then CCITT), (1991).

[5] Loscocco P.: Security-Enhanced Linux,
Linux 2.5 Kernel Summit, San Jose (Ca)
USA, (2001),http://www.nsa.gov

/selinux/docs.html .

[6] Linux Security-Module (LSM)
framework, (2001),
http://lsm.immunix.org .

[7] MontaVista Linux Carrier Grade Edition
2.1, http://www.mvista.com

/products/mvl_cge

/mvlcge_overview.html

Ottawa Linux Symposium 2002 450

[8] Morris, J. Selopt: Labeled IPv4
networking for SE Linux,
http://www.intercode.com.au

/jmorris/selopt

[9] M. Zakrzewski. Mandatory Access
Control for Linux Clustered Servers, In
Proceedings of Ottawa Linux
Symposium, June 2002.

[10] C. Levert, M. Dagenais, Security Policy
Generation through Package
Management, In Proceedings of Ottawa
Linux Symposium, June 2002.

[11] omniORB,
http://www.uk.research.att.com

/omniORB/

[12] Open Source Development Lab,
Carrier-Grade Linux Working Group,
http://www.osdl.org/projects

/cgl/

[13] SNORT, http://www.snort.org/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

