
GConf: Manageable User Preferences

Havoc Pennington
Red Hat, Inc.

hp@redhat.com, http://pobox.com/˜hp

Abstract

GConf is a system for storing user prefer-
ences, being deployed as part of the GNOME
2.0 desktop. This paper discusses the ben-
efits of the GConf system, the strengths and
weaknesses of the current implementation, and
plans for future enhancements.

1 Introduction

GConf started out very simply in late 1999, as
my first project at Red Hat. It was a straightfor-
ward response to concrete problems encoun-
tered while creating the GNOME desktop, and
designed to be implementable in a few months
by a programmer with limited experience (i.e.,
by me). Much of the current implementation
(let’s call it Phase One) was created at that
time.

GConf saw some limited use as part of the
GNOME 1.4 platform—specifically in Nau-
tilus and Galeon—but it wasn’t widely adopted
until recently, as part of GNOME 2.0. It has
been quite successful as a GNOME 2.0 com-
ponent, both as a labor-saving device for pro-
grammers and as a foundation for some of
GNOME’s UI enhancements.

This paper first presents an overview of Phase
One from a conceptual standpoint; then dis-
cusses the Phase One implementation. Then it
goes on to briefly describe some other systems
for managing user preferences, such as Intel-

liMirror and ACAP. Finally, it presents some
initial ideas for a Phase Two version of GConf.
Phase Two is very much a work-in-progress.

2 Motivation

Several years ago it was becoming obvious that
GNOME’s initial approach to storing prefer-
ences (a simple API for writing key-value pairs
to files) had a lot of limitations:

• It did not work for preferences that af-
fected or were manipulated by multiple
applications, because there was no way
for applications to know a setting had
changed. GNOME 1.x contains numerous
hacks to work around this, and apps have
to be restarted before certain preferences
take effect.

• Administration features were missing,
such as applying different defaults to dif-
ferent groups of users, or storing defaults
for many machines on one network server.

• From a programmer standpoint, ap-
plications were usually designed with
load_prefs() and save_prefs()
routines, and had a number of bad hacks
to update parts of the application when
preferences were modified. To avoid
this mess, a model-view design would be
ideal.

• We wanted features such as “Undo” and



Ottawa Linux Symposium 2002 415

“Revert To Defaults” that were compli-
cated to implement manually.

• We wanted a way to document each con-
figuration option, and present the docu-
mentation in generic tools for managing
preferences.

• To change the default setting for a prefer-
ence, it was necessary to edit each code
path that loaded the setting, and modify
its fallback in the case that the setting was
not present.

Some of these issues can be avoided by sim-
ple elaborations to the trivial file-based API,
but others require a more elaborate solution.
GConf set out to decide on the right thing to
do and then do it.

3 Phase One: Design

The first principle of the GConf design was to
keep it simple; it had to be implemented in only
a short time, and had to be comprehensible to
application developers.

The second principle of the design was to make
GConf a system for storing end user prefer-
ences. Support for system configuration (e.g.
Apache or networking) was explicitly excluded
from the list of requirements. Support for stor-
ing arbitrary data was also excluded.

3.1 Key-Value Hierarchy

From an application point of view, GConf
looks like a hierarchy of key-value pairs. Keys
are named as UNIX-file-like paths. Here are
the default settings for the GNOME CD player
for example, listed using thegconftool-2
utility:

$ gconftool-2 -R /apps/gnome-cd

theme-name = red-lcd
on-stop = 0
on-start = 0
device = /dev/cdrom
close-on-start = false

The key/apps/gnome-cd/theme-name
has a string valuered-lcd , the key
/apps/gnome-cd/close-on-start
has the boolean valuefalse , and so forth.

Each key may be writable or not writable; ap-
plications are expected to disable the GUI for
modifying a writable key. That is, if a setting
is locked down and not available to a particu-
lar user, it should be made insensitive (“grayed
out”).

The API for interacting with the key hierarchy
has a model-view design. That is, applications
receive a notification message when a key has
a new value; code in the application whichsets
a value need not have any relationship to code
which is affected bythe value.

The key hierarchy is process transparent; that
is, a change to the hierarchy made by one pro-
cess will be seen immediately by any other in-
terested processes as well. This avoids ad hoc
hacks for propagating settings changes across
the desktop, and is an essential feature when
writing single applications made up of multi-
ple processes.

A “symlinks” feature for the GConf hierar-
chy has been suggested several times, but links
(hard or symbolic) were deliberately left out of
the design because they create implementation
complexity. For example, notifying interested
applications when a key changes value would
require the ability to locate all symlinks point-
ing to the key that was modified.



Ottawa Linux Symposium 2002 416

3.2 Values

Values are limited to a fixed set of simple prim-
itive types: integer, double, UTF-8 string, and
boolean. Lists of each type are also allowed
(list of integer, etc.). Recursive lists (lists of
lists) are not allowed. Lists must be homoge-
neous in type. Phase One also supports pairs
of primitive types (as in Lisp pairs, withcar
andcdr ), but applications have universally ig-
nored the pair type and in retrospect it was not
a useful feature.

The limitations on value types caused a lot of
controversy in the GNOME community. Some
developers wanted the ability to push structs
or other complex data structures into the con-
figuration database, as a programming conve-
nience. There are several reasons why GConf
does not support this feature.

First, serialized structs are essentially binary
blobs, a frequent complaint about the Windows
Registry. All GConf data is human-readable.
While a complex type system such as CORBA
could be used to create a generic serializer, and
a generic un-serializer, the process of manip-
ulating an arbitrary, possibly-recursive serial-
ized CORBA data type is much more complex
than the process of manipulating strings and
numbers. With the current GConf limitations,
it’s very easy to write scripts and tools that can
handle any possible GConf value.

Second, many of the use-cases presented for
storing arbitrary structs imagined using the
GConf API for storing application data, rather
than user preferences. For example, the
GNOME 1.x configuration file API was used
for “.desktop” files and the session manager
save file in addition to user preferences. But
in the requirements phase, GConf was limited
to preferences only, so this was not a concern.
Uses of the API that were storing preferences,
rather than data, rarely benefited from anything

beyond the primitive types.

Third, there are at least two simple
workarounds if you need a “struct” type,
which don’t have the disadvantages of actually
using a serialized struct: do the serialization
yourself and store a string, or use a directory
containing one key for each field in the struct.

Finally, the elaborate type system needed to
handle serialization of arbitrary structs would
mean either binding GConf tightly to a par-
ticular object/type system, or making up Yet
Another Type System, not something anyone
would like to see. This would limit our abil-
ity to “drain the swamp” (Jim Gettys’s words);
broadening the adoption of GConf Phase Two
outside of the GNOME Project will require the
client side library to be dead simple. If we
had a widely-adopted object/type system, as
with COM on Windows, using that object/type
system to store complex types might make
sense. But instead we have XPCOM, UNO,
CORBA/Bonobo, GObject, QObject, ad infini-
tum, and no one is undertaking a serious effort
to fix this problem.

I believe that the lack of a “struct serializa-
tion” API was a good decision on the whole.
It places slightly more burden on application
developers, but a good kind of burden; it forces
them to describe their application’s preferences
in clear, human-readable terms. And it de-
ters people from storing non-preferences data
in GConf.

3.3 Schemas

Each key in the GConf hierarchy is associated
with a schema. A schema contains metainfor-
mation about the key, including the following:

• The expected type of the key’s value.

• A short one-sentence description of the
key.



Ottawa Linux Symposium 2002 417

• A longer paragraph documenting the key
and its possible values.

• The name of the application that provides
the schema and uses the key.

• A default value to be used when the key is
not set.

The documentation strings and default values
can be localized.

The main schema-related design question was:
where are they stored, and how are the de-
fault values located by applications at runtime?
We went with the simplest solution: store the
schemas in the configuration hierarchy itself.
In addition to the normal primitive types (in-
teger, string), GConf keys can store a schema
value, containing the above metainformation.

Schemas are then associated with another key
by name. That is, each key in the hierarchy
may have the name of the key containing its
schema value associated with it. By conven-
tion, schemas are stored under a “/schemas ”
toplevel, using names that parallel the main
key hierarchy. So/schemas/foo/bar
might be the schema name associated with
/foo/bar .

When an application requests the value of
/foo/bar , the GConf system first checks
for a value at/foo/bar ; if none is found,
it checks whether a schema key is associ-
ated with /foo/bar ; finding the schema
key /schemas/foo/bar , it then looks
up the value of/schemas/foo/bar . If
/schemas/foo/bar stores a schema value,
the default value is read from the schema value,
and returned as the value of/foo/bar .

3.4 System Administrator’s View

The system administrator sees a somewhat
more complex picture of the GConf key/value

hierarchy than the application does. To appli-
cations, GConf appears to be a single hierar-
chy of key-value pairs. Moreover, applications
have no idea how the data in the hierarchy is
stored.

From an administrator standpoint, GConf gen-
erates its hierarchy by merging a list ofcon-
figuration sources. A configuration source is a
concrete storage location, with three important
attributes:

• abackend, i.e. which configuration source
implementation should be used. For ex-
ample, you might have a backend that uses
XML files, or one that uses ACAP.

• flags, most importantly “read-only” or
“read-write.”

• theaddress details, for a file-based back-
end this might be the location to write
files, for a network backend it might be
the server’s hostname.

Configuration sources are listed in a config-
uration file, /etc/gconf/2/path . Each
time an application asks for the value of a
key, GConf searches the configuration sources
in order until it finds a value, or runs out of
sources. When an application sets a new value,
that value is stored in the first writable source.
However, the set will fail if a non-writable
source earlier in the search path sets the value
already. This allows administrators to impose
mandatorythree settings.

The default GConf search path has three el-
ements: one read-only systemwide configu-
ration source intended to contain mandatory
settings, one read-write configuration source
in the user’s home directory intended to store
changes made by the user, and finally one
read-only configuration source at the end of
the search path intended to contain both sys-
temwide default values and schema values.



Ottawa Linux Symposium 2002 418

To impose a mandatory value, the administra-
tor sets that value in the read-only source at the
front of the search path; to provide a system
default, the administrator sets the default in the
read-only source at the end of the search path.
Factory defaults are kept in the schemas, so are
separate from site defaults.

The documentation strings found in schemas
are intended to assist administration tools in
presenting a reasonable interface for perform-
ing these kind of tasks.

4 Phase One: Implementation

Even with a fairly simple design, there were
some challenging implementation issues that
had to be addressed for Phase One. In sum-
mary:

• Process transparency; how to make all ap-
plications see the same hierarchy and de-
liver dynamic notification of changes?

• Caching; the GConf hierarchy contains
a fairly large amount of data in total, it
would be bad if each application had to
maintain its own cache of this data.

• Storing the hierarchy; a filesystem-like
data structure is fairly complex to store on
disk, balancing efficiency, robustness, and
so forth.

• Locking; you can’t have two processes
trying to modify the same file at the same
time.

4.1 Per-Home-Directory CORBA Server

The implementation of Phase One is to have
a small per-user daemon communicating with
applications via CORBA. CORBA was used

as a prebuilt IPC mechanism, for speed of de-
velopment. The definition of “user” in per-
user was “home directory”; the GConf dae-
mon holds a lock in the user’s home directory,
and if the user logs in to two machines at the
same time, the same daemon instance will be
shared between those machines (one machine
connects to the daemon on the other).

The per-user daemon has three functions:

• it serves as a global shared cache

• it serves as a global lock on the configura-
tion data

• since it processes all changes to the data,
it can notify applications of said changes

CORBA was not a great match for the network-
ing needs of the GConf daemon. All com-
munication between client and server needs
to be nonblocking; this can only be achieved
through the use of ORBit-specific nonstandard
CORBA features. CORBA is pretty much
overkill for this very simple IPC, and discour-
ages the adoption of GConf outside of the
GNOME Project.

Scoping the daemon per-home-directory
wasn’t the best decision either. One problem
is that fcntl() file locking doesn’t work so
well; most Linux distributions are shipping
buggy versions of nfs-utils that will leave
stuck locks in some situations, and some com-
binations of NFS client OS and NFS server
OS don’t work quite correctly. Due to rumors
of problems like this, the original GConf
implementation tried to use a home-brew
locking solution; but while that was portable,
it was also non-working, and duplicate copies
of the GConf daemon would often be created.

The per-home-directory solution was also un-
popular because it involves remote TCP/IP



Ottawa Linux Symposium 2002 419

connections (and open ports) between all ma-
chines where a user might log in using the same
home directory. This turned out to be inap-
propriate for many sites, especially those us-
ing AFS. It also involves enabling TCP/IP for
ORBit, meaning that a lot of programs are sud-
denly listening on open ports.

On a higher level, Owen Taylor pointed out that
definining “per-user” as “per-home-directory”
isn’t correct anyway; a user may have multiple
home directories, for example one on their lap-
top and one at work. You want preferences to
be associated with a real world human user, not
a specific login on a specific computer.

4.2 XML Backend

The GConf daemon dynamically loads back-
end modules that know how to read and write
configuration data to some persistent storage
location. Two backends were implemented for
Phase One, an XML backend and a Berkeley
DB backend. The DB backend was never en-
abled by default, and few users have tried it to
my knowledge. It stores the GConf hierarchy
in a single DB database file.

The XML backend stores a directory hierar-
chy on the filesystem that corresponds to the
GConf hierarchy, and in each filesystem direc-
tory stores an XML file containing GConf val-
ues. The general idea was to split the hierarchy
into multiple files (for robustness, and to avoid
having to parse a singe huge file on startup,
when relatively little of it might be used).

The XML backend’s approach is a little bit
messy, and inode-intensive. It’s also surpris-
ingly complicated to implement and has been a
noticeable source of GConf bugs.

However, in practice the XML backend has
worked reasonably well, now that it’s been de-
bugged; it is fairly scalable, assuming that a
single directory never contains a huge amount

of data. The problems of the XML backend
seems difficult or impossible to avoid while us-
ing human-readable text files—the alternative
design is to have one big file, which would re-
quire oceans of RAM to parse, and would put
all the user’s eggs in one basket.

5 Prior Art

GConf is hardly the first system for storing
preferences ever invented. It’s worth survey-
ing some of the other notable systems along-
side the Phase One design, to aid in planning
Phase Two.

5.1 Windows 95 Registry

The much-maligned registry really isn’t any-
thing complicated; it’s pretty much just a big
hash table. Though at least one entire book has
been written about it ([Petrusha]).

People like to compare GConf to the registry.
While GConf also stores key-value pairs, it has
little else in common with the registry:

• The registry stores systemwide configu-
ration, GConf contains only user prefer-
ences.

• The registry typically contains binary data
blobs, GConf goes out of its way to avoid
those.

• GConf keys are documented and clearly
named.

• The GConf design and application-visible
semantics do not expose a specific format
or location for the persistent data store.

• GConf provides mechanism for sys-
tem/workgroup defaults and mandatory
settings; the registry does not (but see the
next section on IntelliMirror).



Ottawa Linux Symposium 2002 420

• The registry lacks change notification; if
one application changes the registry, ad
hoc hacks must be used to notify other ap-
plications. Or the user has to reboot.

(Some of the above information may no longer
be accurate for newer versions of Windows; the
above is based on Ron Petrusha’s book.)

5.2 Windows 2000 IntelliMirror and Group
Policy

While the registry is boring, IntelliMirror at
least has good hype. Microsoft’s white paper
([Microsoft]) on IntelliMirror cites three prob-
lems addressed by the feature:

• “User Data Management”

• “Software Installation and Maintenance”

• “User Settings Management”

“User Data Management” means that Intel-
liMirror keeps a copy of a user’s documents
in a central network location. When the user
connects a machine to the network, their doc-
uments are copied to the local system. If the
user edits a document while disconnected, the
new document becomes the master copy and is
synced to the network later. This means that
documents are automatically backed up, and
available on any machine the user logs on to.

“Software Installation and Maintenance”
means that when a user logs on to a machine,
the software appropriate for that user gets
installed automatically. So users always have
the same applications available in their menus.

“User Settings Management” means that user
preferences (registry settings presumably) are
automatically synced to/from network storage
in the same way that documents and other
data are synced. Also, certain settings may be

locked down, and defaults may be established
for particular groups of user.

These three features are most useful in combi-
nation, because providing all three allows users
to easily move between machines, or switch to
a new machine when their old machine breaks.
Support for disconnected operation is a truly
useful feature of IntelliMirror that can’t be
achieved using NFS on UNIX. If you take your
laptop home, edit your preferences or a docu-
ment, then reconnect it to the network at work,
your changes will be automatically synced to
network storage.

The IntelliMirror process is driven by directory
services; Active Directory stores the informa-
tion about a user, including what software they
are supposed to have, where their data lives,
and so forth. Policies can be established for
particular workgroups and applied to all users
in those groups.

GConf needs to be part of an IntelliMirror-style
solution for Linux and UNIX operating sys-
tems, rather than an impediment to such a solu-
tion. Other existing components of the solution
might include Red Hat’s Kickstart, and filesys-
tems such as InterMezzo. For situations where
disconnected machines aren’t important, NFS
and AFS might also be useful solutions.

5.3 ACAP

RFC 2244 defines ACAP, or Application Con-
figuration Access Protocol. It seems that
ACAP never caught on, and is more or less
dead; the only server implementation is writ-
ten in ML, few if any applications support it,
and the web page doesn’t seem to have been
updated in years. ACAP was an attempt to do
almost exactly what GConf is supposed to do,
however, and is worth looking at. The RFC de-
scribes ACAP’s design goal thusly: “ACAP’s
primary purpose is to allow users access to



Ottawa Linux Symposium 2002 421

their configuration data from multiple network-
connected computers.” ACAP is a text-based
protocol similar to IMAP.

The ACAP RFC is somewhat vague, and
there’s not much in the way of implementation
code to look at, so some of my descriptions of
the system may be inaccurate.

Like GConf, ACAP defines a filesystem-like
hierarchical namespace. However, the con-
tents of a “directory” are (a lot) more compli-
cated than they are in GConf. A GConf direc-
tory contains entries, each of which is a name
and a primitive value. An ACAP “directory”
contains a difficult-to-explain object called a
“dataset.” [Troll] tries to explain datasets, as
the ACAP RFC itself isn’t very clear. They are
roughly speaking Yet Another Hash Table, but
with some twists.

A dataset can inherit from another dataset.
This feature allows system or workgroup de-
faults to be set up, much like GConf’s config-
uration source search path. However, it’s ap-
parently necessary to configure inheritance on
a per-dataset basis, which seems cumbersome.

ACAP datasets can have a “subdataset” asso-
ciated with them; as far as I can tell, the RFC
never explains the purpose or semantics of sub-
datasets.

ACAP has ACLs for settings, and quotas for in-
dividual users. ACLs allow settings to be made
read-only, in order to impose mandatory set-
tings. Quotas are useful for obvious reasons.

The concept of multiple users is visible to the
ACAP client application. ACAP also exposes
the inheritance chain (search path) for look-
ing up values. GConf keeps this information
purely in the configuration of the server; the
client sees only a single hierarchy.

ACAP provides server-side sorting and search-
ing, allowing clients to search through data

stored in ACAP without downloading all the
data.

Unlike GConf, the ACAP design goals include
storage for “lightweight data,” such as an ad-
dress book, in addition to preferences. GConf
is not intended to be used in this way; the as-
sumption is that users will have somewhere to
put documents and such anyway. By limiting
GConf to preferences only, a GConf configu-
ration source can realistically be locked down
entirely (no writable locations), and the GConf
design can assume that sending the value of a
key over the wire is a fairly fast operation. The
GConf implementation can be simple (does not
need to scale to large data values), and the de-
sign need not support a rich type system.

ACAP does not have a standard concept like
GConf’s schemas, though arbitrary attributes
can be added to a dataset. Keys in ACAP don’t
come with documentation as GConf keys do.

ACAP supports IMAP-like authentication
(SASL), so works nicely with Kerberos and
such.

The article ACAP vs. Other Protocols
([Wall2]) summarizes ACAP’s design as fol-
lows:

The key characteristics of ACAP
are:

• ACAP is designed to accom-
modate disconnected use

• ACAP is designed to allows
server data (and data structures)
to be writable by user/clients

• ACAP is designed to handle po-
tentially (though not necessar-
ily) large sets of data

• ACAP is designed to allow
granularity in access to data
through an Access Control List
mechanism



Ottawa Linux Symposium 2002 422

• ACAP is designed to allow per-
user storage of information (ac-
commodating problems of mo-
bile, disconnected, and "kiosk"-
model users)

• ACAP is designed to allow
client definition of data fields,
allowing user-side flexibility

• ACAP is designed with per-
user security and authenticated
operation states

• ACAP is structured to enable
server-side searching.

GConf needs to be modified to support many
of these design features. However, I would
not advocate using ACAP as-is; ACAP doesn’t
seem quite right, it is not compatible with the
current GConf client API, and because no one
else uses ACAP there’s little or no value to fol-
lowing an existing RFC. If a reasonable free
ACAP server implementation existed (vs. an
old one written in ML), it might be interesting
to use as the backend for GConf Phase Two.

6 Phase Two

6.1 Design Changes

The application-visible GConf model
has worked reasonably well so far. The
model/view architecture, process transparency,
filesystem-like hierarchical namespace, and so
forth are straightforward yet powerful. The
current architecture seems roughly correct in
terms of balancing simplicity and feature set;
much more complex, and people would not be
able to use it correctly, much simpler, and it
would not address all the problems that need
addressing.

However, the current GConfimplementation
needs a lot of work to scale beyond single-

user systems. Like ACAP, it should be client-
server oriented. Like IntelliMirror, it should
provide for disconnected operation. In gen-
eral, the Phase One implementation’s equation
of “user” with “home directory” was wrong;
users may have multiple machines, including
a laptop.

6.2 Implementation Changes

Phase Two should be mostly invisible to ap-
plications, in fact it could conceivably be done
without modifying the GConf ABI as shipped
with GNOME 2.0. The changes will all be in
the implementation.

6.2.1 Client-Server Architecture

In short summary, here is what I envision:

• The GConf daemon will become per-
user-login rather than per-home-directory.
(Side bonus: it can use a guaranteed-not-
to-be-on-NFS directory for locking.) It
will listen on a UNIX domain socket and
communicate with a simple, fast custom
protocol designed for “oneway” mode
(avoiding round trips).

• The client side of GConf will become as
trivial as possible; it will not use GLib or
CORBA, just a tiny custom protocol. The
current GConf client library will exist as
a GNOME-friendly API but will wrap the
more general API.

• More of the daemon’s functionality will
be moved to the loadable backends; in
particular, change notification will come
from the backend, instead of from the dae-
mon.

• The default backend will know how to
store data in two places; a local filesys-



Ottawa Linux Symposium 2002 423

tem cache, and a remote server. The lo-
cal cache will be used when disconnected.
On connection to the network, the lo-
cal cache is fully synced with the remote
server. While connected, it will sync on
a regular basis. For standalone systems,
the local cache is simply never synced.
(The name “cache” is somewhat mislead-
ing, since the cache never expires.)

• The remote server used by the default
backend has to be implemented. It will be
a system daemon, and will serve requests
from multiple users. It should support au-
thentication via SASL (and thus Kerberos,
etc.). The remote server is heavily in-
spired by ACAP.

The general goals are to move to a more se-
cure client-server architecture, support discon-
nected operation, encourage adoption outside
of the GNOME Project, increase robustness,
and improve performance.

One outstanding question is how to improve on
the current tree of XML files for storing the
GConf database. The tree of XML files is ro-
bust, but complex to implement and fairly inef-
ficient in terms of both space and speed.

6.2.2 Small Tweaks

In addition to the big-picture rearrangement,
there are a number of smaller features to be
creeped.

• Hints for interpreting values. This feature
adds a simple descriptive string such as
“keybinding” to a key, indicating that the
key’s value is to be interpreted in a partic-
ular standardized way. Generic configura-
tion tools can then provide a nicer UI for
editing the key.

• Atomic change sets. This feature allows
a block of changes to be made as a unit,
without exposing the intermediate state to
applications.

• Prompting for authentication. This fea-
ture means that backends have a way to
ask the user for passwords and other au-
thentication information.

• Clean up the C API a bit. The API has
various historical artifacts and just plain
mistakes, and better ideas have appeared
as it has become clearer how real applica-
tions use it. Most likely a new API will
be introduced alongside the old, and both
will be supported for a while.

• Convenience widgets for preferences di-
alogs. It’s nice to have “data-aware wid-
gets” for GConf, such as a text entry
box associated with a string value in the
GConf hierarchy.

• The server will probably need to enforce
a space quota on individual users to avoid
denial-of-service attacks.

• It might be nice to allow admins to de-
fine a separate configuration source search
path for a particular subtree of the GConf
hierarchy, instead of defining a single
search path for the whole thing.

• Searching through data needs to be imple-
mented on the server side, so that admin
tools can efficiently provide a search func-
tion.

7 More Information

For more information about GConf, including
an online copy of this paper (perhaps an up-
dated version), seehttp://www.gnome.org

/projects/gconf/ . To report bugs, see
http://bugzilla.gnome.org . To discuss
GConf, joingconf-list@gnome.org .



Ottawa Linux Symposium 2002 424

8 Acknowledgments

Many people have contributed to GConf. All
the hackers at Red Hat, especially Owen Tay-
lor and Jonathan Blandford, have given valu-
able feedback and design suggestions. Red
Hat deserves credit for supporting the initial
development of GConf when I first arrived at
“RHAD Labs” several years ago; Labs direc-
tor Michael Fulbright gave me the freedom to
work on GConf. Thanks are also due to Colm
Smyth at Sun for his contributions of code and
ideas, and to Sun Microsystems in general.

Dave Camp (now at Ximian) and Kjartan
Maraas tie for the honor of being the first out-
side contributors to GConf, according to the
ChangeLog. Since then many people have
helped out, too many to list here. Thanks to
everyone.

References

[ACAP] RFC 2244
http://asg.web.cmu.edu/rfc

/rfc2244.html (1997)

[Microsoft] Microsoft, Inc. White Paper,
Introduction to IntelliMirror
Management Technologies

[Petrusha] Ron Petrusha,Inside the Windows
95 Registry, O’Reilly and Associates.
(1996)

[Troll] Ryan Troll, ACAP Dataset Model
http://www.ietf.org/proceedings

/99nov/I-D

/draft-ietf-acap-dataset-

model-01.txt (1999)

[Wall] Matthew Wall,The Application
Configuration Access Protocol and User
Mobility on the Internet
http://asg.web.cmu.edu/acap

/white-papers

/acap-white-paper.html (1996)

[Wall2] Matthew Wall,ACAP vs. Other
Protocolshttp://asg.web.cmu.edu

/acap/white-papers

/acap-vs-others.html (1996)



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


