
A Comparative Study of Device Driver APIs
Towards a Uniform Linux Approach

Wadih Zaatar and Iyad Ouaiss
Lebanese American University

Byblos, Lebanon
iyad.ouaiss@lau.edu.lb

Abstract

Linux Application Program Interfaces (APIs)
lack stability and standardization. There is
a need for a standard API for Linux device
drivers that allow backward compatibility
while easing the development of new drivers.
The advantage of standardizing the API is
to make the kernel core more robust and the
development of new drivers easier; however
the main challenge is performance-based. This
work starts by carefully studying the available
APIs for Linux as well as for other platforms.
Current solutions studied include the Uniform
Driver Interface (UDI), the Intelligent I/O
architecture (I2O), WinDriver, and APIs
implemented in Solaris, and Windows XP.
By listing the strengths and weaknesses of
available APIs, a proposal for a new Linux
API is constructed that defines a standard
interface, provides backward compatibility,
ensures kernel security, and handles errors,
uniform block sizes, buffering, etc.

1 Introduction

Device driver implementations have always
been an important field of study in the world
of operating systems from proprietary mod-
els of companies such as Sun and Microsoft

to providers of open source technologies such
as RedHat, Mandrake, Suse, essentially tar-
geted towards the Linux platform or NewBus
toward the Unix platform [OpSys] [LinDriv]
[NTDriv] [DrivDes]. Other solutions proposed
by some companies such as WinDriver, would
allow you to get a shareware Graphical User
Interface (GUI) to build your set of drivers with
prewritten code to get you started. Recently,
an interesting approach with a mixed hardware
and software solution named I2O comes with
another innovative concept that would be ex-
plained later in Section 3.1. Therefore, we can
see that there exists a multitude of different so-
lutions for the problem, each with its own set
of advantages and disadvantages.

This paper does not pretend to give a final so-
lution to the problem; it simply tries to clas-
sify all the currently available models into cat-
egories and proposes a draft of a work matrix
for an improved device driver interface. But
proposing a solution requires a small introduc-
tion on how device drivers operate in general
and Linux in particular:

A device driver is essentially a kernel com-
ponent, but is developed independently form
the rest of the kernel. Therefore, there should
be some kind of interfacing service between
the driver and the host operating system. A
standard implementation would have two in-
terfaces: The first one would communicate



Ottawa Linux Symposium 2002 408

with the hardware itself, namely the Driver-
Hardware interface and the second one would
take care of communicating with the operat-
ing system and of course the user, called the
Driver-Kernel interface. This is where the
problem really resides: Due to several causes
(architecture, OS and hardware differences), it
is really rare to find a piece of software to be bi-
nary portable between two different machines,
and thus nearly impossible to have some device
driver (which is after all just a small specialized
program) to run on different computers, run-
ning different operating systems. This is where
layering and abstraction come handy: by an-
alyzing all common components of devices,
one could come up with a standard, platform-
independent API that would group all repeti-
tive system calls. This solution has two main
advantages: unify device driver implementa-
tion, which will lead to faster development and
better code reuse, but also would guarantee on
the long run platform independence; and, in the
case of API upgrade would allow old device
drivers to benefit from the new API.

The following sections describe the currently
available API implementations, starting with
proprietary API with Microsoft and Sun, inde-
pendent implementations with WinDriver and
UDI, and finally, a new approach towards solv-
ing the problem with the I2O architecture that
encompasses both hardware and software com-
ponents. The final section will recapitulate all
advantages and disadvantages of every API im-
plementation, giving a skeleton for a work ma-
trix and proposing a primary set of steps that
will guide the development of a Linux device
driver API that meets the requirements set forth
in this paper.

2 Review of Software Approaches

The following section describes the different
API implementations for the most widely used

NtCreateFile

System Service Table

KiSystemService

Kernel Mode

User Mode

A
pplication

K
ernel32.dll

N
T

dll.dll

NtReadFile

Nt Close

Figure 1: Windows API Model

operating systems, namely Microsoft Windows
and Linux/Unix main implementations along-
side some third-party commercial and public
license developers.

2.1 Microsoft Windows API

Microsoft’s device driver API [MSModel1]
[MSModel2] were gradually enhanced with
every new OS release, reaching a good level of
stability due to two important factors: the first
being software maturity starting from Win-
dows 3.0 until the latest release of Windows
XP based on NT technology, and second due
to Microsoft’s device driver compliance pro-
gram that would take every device driver for
any new hardware, run it and make sure that it
is stable enough to be released with a “Certifi-
cate of Compliance” for it to be properly inte-
grated with the latest OS release. This signifi-
cantly reduced erratic OS crashes and restarts
that made Windows platforms untrustworthy
amongst the IT community. This model is de-
picted in Figure 1.

To be Microsoft-certified, a device driver has
to have the following features:

• Handle I/O requests in standard format.



Ottawa Linux Symposium 2002 409

• Be object-based following the Windows
model.

• Allows plug and play devices to be dy-
namically added or removed.

• Allow power management.

• Be configurable in terms of resources.

• Be multiprocessor code reentrant.

• Be portable across all Windows platforms.

From these major points, we can draw the fol-
lowing advantages:

• Windows drivers are portable between all
platforms, as part of their requirements.

• Customizable as they are object based.

• Support new technology such as PnP and
Power Management.

Are these really applied in reality? According
to Microsoft themselves, their device model
suffers the following:

• System instability: since they are run in
kernel mode, and thus not isolated from
one another or from the operating system,
a failure in any device driver would result
in system instability or a blue-screen.

• Little abstraction: the device driver inter-
face is very low level and as such, there is
little abstraction of the inner workings of
the exported functions. This means that
the device driver developer has to under-
stand more about the workings to the in-
terface than probably necessary.

• Plug and Play implementation: the PnP
implementation is entirely set on the pro-
grammer’s shoulders, requiring additional
synchronizations and thus extra overhead.

2.2 Sun Solaris API

In System V Release 4 (SVR4), the in-
terface between device drivers and the rest
of the UNIX kernel has been standard-
ized and completely documented [SunModel1]
[SunModel2]. These interfaces are divided into
the following subdivisions:

• The Device Driver Interface/Driver Ker-
nel Interface (DDI/DKI) that includes
architecture-independent interfaces sup-
ported on all implementations of System
V Release 4 (SVR4).

• The Solaris DDI that includes
architecture-independent interfaces
specific to Solaris.

• The Solaris SPARC DDI that includes
SPARC Instruction Set Architecture
(ISA) interfaces specific to Solaris.

• The Solaris x86 DDI that includes x86 In-
struction Set Architecture (ISA) interfaces
specific to Solaris.

• The Device Kernel Interface (DKI)
that includes DKI-only architecture-
independent interfaces specific to SVR4.
These interfaces may not be supported in
future releases of System V.

The Solaris 2.x DDI/DKI allows platform-
independent device drivers to be written for
SunOS 5.x based machines. These drivers
would allow third-party hardware and software
to be more easily integrated into the OS. Fur-
thermore, it is designed to be architecture in-
dependent and allow the same driver to work
across a diverse set of machine architectures.
The following main areas are addressed:

• Interrupt handling.



Ottawa Linux Symposium 2002 410

WinDriver
UserMode Library

User Application

User Driver Code

Kernel PlugIn

WinDriver

Kernel Plug−In

User 
Performance

Critical

Functions

WinDriver − Kernel User Hardware

User Mode

Kernel Mode

Figure 2: WinDriver Model

• Accessing the device space from the ker-
nel or a user process (register mapping
and memory mapping).

• Accessing kernel or user process space
from the device (DMA services).

• Managing device properties.

2.3 WinDriver

The WinDriver API is a commercial, OS in-
dependent approach toward a common device
driver API [WDModel]. WinDriver has the fol-
lowing important features:

• Source code compatibility between all
supported operating systems: Windows,
Linux, Solaris and VxWorks.

• Binary code compatibility between all
Windows flavors (95, 98, Me, NT4, 2000,
XP).

• Supports numerous architectures (PCI,
E/ISA, and USB).

• Rapid device driver programming through
the availability of many wizards. These
wizards allow the device driver program-
mer, through a series of GUI-oriented
steps to build the skeleton of the driver

I/O RequestsApplication Programs

Drivers

Portable
Device

Hardware I/O Interface

UDI Environment

Operating System

Interfaces
System I/O

Configuration
Diagnostics
Error Handling
System Services
Interrupts

Computer CPU and I/O Hardware Interrupts

Figure 3: Uniform Device Driver Interface
Model

source code with initial procedure defini-
tion, global variables and program entry-
points and basic calls.

From these features, we can deduce the follow-
ing list of advantages:

• Cross platform compatibility and code
reuse: No need for re-writing new drivers
for the same hardware when porting to
different architectures.

• M inimal performance hit: WinDriver of-
fers a plug-in that would run performance
critical parts right into the kernel, thereby
achieving kernel mode performance.

• Easy drivers programming: WinDriver
supports generic code generation in sev-
eral programming languages, namely
C/C++ and Delphi.

2.4 Uniform Device Driver Interface

The Uniform Device Driver Interface (UDI) is
another initiative to create an architecture, plat-



Ottawa Linux Symposium 2002 411

form, and OS independent solution for device
drivers [UDIModel]; it is depicted in Figure 3.
Similar to WinDriver, UDI has the following
features:

• Platform neutrality, it abstracts all PIOs,
DMAs, and interrupt handling through a
set of interfaces that hide all architectures’
variations.

• Drivers are written in ISO standard C and
do not use any compiler specific exten-
sions.

• UDI imposes shared memory restrictions,
allowing system isolation of the driver
code from the remainder of the OS, im-
proving reliability and debuggability.

• Strict versioning allows evolution of the
interfaces while preserving full binary
compatibility of existing drivers.

The UDI device driver implementation is very
much similar to WinDriver; therefore one
could expect the following advantages:

• Cross platform compatibility, noting that
UDI supports a narrower range of operat-
ing systems.

• Performance is comparable to native I/O
drivers due to the fact that the code ex-
ecutes in kernel space, allowing minimal
performance degradation.

3 Review of Mixed Approaches

The following section presents a new approach
towards solving the device drivers’ incompati-
bilities: By proposing a software and hardware
components instead of a unique software ap-
proach.

OSM
* OS Specific
* OS Revision

Independent

Implementation−
Specific OS

Driver Code

Implementation−
Specific

(Host or IOP)
Code

Hardware

Traditional

Communication Layer

* Implementation−

Indepedent Layer

* Enables Node−Node
Communication

HDM

Hardware

Host

* OS Independent

* I/O Software

IOP

I2O Architecture

Figure 4: I2O Architecture Model

3.1 The I2O Architecture

The I2O Architecture model is depicted in Fig-
ure 4.

Contrary to the standard implementation that
relies on the host CPU to process all inter-
rupt requests, the I2O eliminates processing
bottlenecks by alleviating these tasks from
the processor and taking care of them di-
rectly [I2OModel].

The I2O defines three software layers:

• The OS Services Module (OSM), that
handles the communication between the
host CPU operating system and device
class.

• The I2O Messaging Layer that handles
communication between the OSM and
HDM in as standard way (see Figure).
The standard I2O messaging layer does
away the current requirement for OEMs
to develop multiple drivers for the same
device.

• The Hardware Device Module (HDM)
handles the communication between the
peripheral device and the I2O messaging



Ottawa Linux Symposium 2002 412

layer. The HDM is unique for each de-
vice. However, unlike a traditional device
driver, only one HDM is required because
it is independent of the host CPU operat-
ing system.

The I2O implementation offers the following
improvements over traditional I/O processing:

• Standardized extensible architecture that
is OS independent.

• Increased reliability and fault isolation to
improve stability.

• Provides optimized I/O and system per-
formance because the I/O process can be
managed directly.

4 Analysis

Based on the previous sections, we can draw
comparative measures that encompass all cur-
rently available solutions. The work matrix is
shown in Table 1.

The following criteria were selected to distin-
guish between all available solutions:

• Performance: It is an essential compo-
nent in any comparative study; however
the measurement factor was much debated
during the analysis of every solution. The
number of interrupts per second that could
be processed was finally selected. But due
to the difficult nature of the task, this work
is still taking an important amount of time
and still not completed. One important
note: The I2O group ceased operation and
it was not possible to get access to any I2O
based chips for testing.

• Security: This parameter describes the
various security-related issues in every so-
lution, memory-protection, and recover-
ability after a driver crash, etc. All four

software solutions specify in their imple-
mentation the need for memory protec-
tion.

• Compatibility: Despite the Microsoft re-
quirement that drivers should be upward
compatible. Some tests performed on
Microsoft Windows 2000 based drivers
would erratically crash the system if in-
stalled on Windows XP, which would
prove that these drivers still have compat-
ibility issues. WinDriver and UDI drivers
are still under test. The I2O alternative
seems excellent on paper but for the same
reason as described above, no tests were
performed.

• Portability: WinDriver is the most versa-
tile as it would run under most operating
systems and is fully source compatible, a
simple recompilation being enough. This
would be ideal for multi-OS based solu-
tions. UDI follows the lead with fewer
but still promising implementations. The
Windows and Solaris API models are pro-
prietary and as such are not portable.

5 Conclusion

This paper represents the results of a data col-
lection operation performed in order to ana-
lyze available device driver implementations
for several operating systems. Many parame-
ters still have to be exploited and carefully in-
vestigated. Most importantly, the performance
factor that would gear towards choosing one
solution over another is still being debated.
With a better understanding of device driver
APIs, the qualities and importance of each fea-
ture in the API and its role in the operating sys-
tem can be analyzed. The next step in this re-
search effort is to select a set of features that
can be bundled together in order to form a com-
pact, robust, and efficient Linux device driver
API.



Ottawa Linux Symposium 2002 413

Security Compatibility Portability Notes
Windows Microsoft Problems Windows, Generic

API Binary
Solaris Sun Yes SunOS Generic

API Binary
Win To be Yes All, Commercial

Driver tested Source
UDI To be Yes Most, Freeware

tested Source
I2O Hardware Hardware All, Discontinued

Independent

Table 1: Comparison Matrix

6 Acknowledgments

The authors would like to thank the students
who participated in this work: Jamal Maalouf,
Fady Matar, Naji Charbel, Francois Nader, and
Elie Hajj.

References

[OpSys] Andrew S. Tanenbaum,Modern
Operating Systems, 2nd Edition, Prentice
Hall. (2001).

[LinDriv] Alessandro Rubim and Jonathan
Corbet,Linux Device Drivers, 2nd
Edition, OReilly. (2001).

[NTDriv] Edward N. Dekker and Joseph M.
Newcomer,Developing Windows NT 4.0
Device Drivers, Addison Wesley
Longman. (1998).

[DrivDes] Introduction to Device Driver
Design. http://www.itpapers.com

/cgi/PSummaryIT.pl?paperid=

9103&scid=264

[MSModel1] Windows Driver Model:
Compatible Drivers for Microsoft
Windows Operating Systems.
http://www.itpapers.com/cgi

/PSummaryIT.pl?paperid=

20024&scid=273

[MSModel2] Windows Device Drivers
Architecture.
http://www.itpapers.com/cgi

/PSummaryIT.pl?paperid=

13052&scid=273

[SunModel1] Porting to Solaris 2.X, Sun
Whitepaper.
http://sunsite.nstu.nsk.su/sun

/inform/whitepapers.html

[SunModel2] An Engineering Tutorial on
Porting your Device Driver to Solaris
2.0, Sun Whitepaper.
http://sunsite.nstu.nsk.su/sun

/inform/whitepapers.html

[WDModel] Jungo Ltd.
http://www.jungo.com

/windriver.html

[UDIModel] Uniform Driver Interface,
Official Specification Documents
http://www.project-UDI.org

/specs.html

[I2OModel] Pauline Shulman,Overview of
the I2O Architecture. PC Developer
Conference. (1998).



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


