
User Interfaces for Clustering Tools

John L. Mugler and Thomas Naughton and Stephen L. Scott∗

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN

{muglerj, naughtont, scottsl}@ornl.gov

Abstract

This paper discusses ongoing research at Oak
Ridge National Laboratory (ORNL) to make
computing clusters easier to use. Cluster ad-
ministration, setup, and use is an active re-
search area with many different components.
Two systems for cluster control and adminis-
tration, that have been experimented with at
ORNL, are Managing Multiple Clusters (M3C)
and Cluster Control GUI (C2G). M3C uses a
Java Servlet in conjunction with a Java applica-
tion server to handle communications between
a remote user and the head node. C2G takes
an alternate approach and uses the sshd to han-
dle these messages. Another important issue to
consider is the mechanism that is used to han-
dle communications between compute nodes.

A new system that is under construction at
ORNL is designed to allow a user to easily
keep track of software that is loaded on a node.
This system has two components, a node man-
ager daemon and a package services back-end
that is basically a database. Multiple soft-
ware configurations for a compute node can be
stored and loaded on a node with this system.

∗Research supported by the Mathematics, Informa-
tion and Computational Sciences Office, Office of Ad-
vanced Scientific Computing Research, Office of Sci-
ence, U. S. Department of Energy, under contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC.

1 Introduction

This paper generally addresses software that
is being used on High Performance Comput-
ing (HPC) clusters. The goal of such a clus-
ter is running computational code. However,
this does not preclude the software from being
used to manage or monitor server farms or even
groups of desktop workstations.

The control of clusters is a large research area
with a wealth of problems to be addressed. The
goal of this work is to make clusters easier to
install, administrate, and use. There are several
inherent problems with designing tools that at-
tempt to meet these goals.

Installation tools that install cluster software
have to be simple enough for a beginner to use,
and also flexible enough for the expert. This
can create the problem of having a tool at the
end of the day that pleases neither category of
user. Administration tools suffer similar design
difficulties, and the problem of differing user
skill levels remains. Most administration tools
that are available today are command line tools
with GUI interfaces. Not many have been de-
signed from the ground up as GUI only tools.
User level tool sets have some of the same is-
sues, as users have wide margins of skill when
it comes to basic UNIX/clustering knowledge.
Also, its difficult to provide a generic system
that can handle the wide range of tasks that



Ottawa Linux Symposium 2002 384

cluster users perform.

Additionally, representing a cluster with a GUI
is not a trivial task. So far, representing 64
machines or even 128 is possible with conven-
tional techniques. When the number of ma-
chines starts exceeding this margin, represent-
ing cluster nodes with individual icons starts to
fail. This is the issue of scalability, and it is a
real problem in GUI design for large clusters.
Yet scalability must be addressed in order to
have modern GUI tool sets for clusters.

The intent of this paper is to summarize ongo-
ing efforts at ORNL at designing and imple-
menting tools to make clusters easier to use.
Additionally, the next section surveys some
systems that have been developed in other
places. Like most software, each tool set has
both advantages and disadvantages.

2 Related Work

In order to design new interfaces for clusters, it
is important to understand what has been built
in the past, and what is in use today. Several
tool sets have been developed to help run com-
mands across clusters. These tools are typi-
cally command line oriented and are general
purpose in nature.

These tool sets basically give a cluster user
or administrator the power to easily run com-
mands across an entire cluster. Several differ-
ent approaches have been taken, and both new
software and revisions to existing software are
appearing rapidly. The following subsections
survey three different tools that are available
and in use today.

2.1 Cluster Command and Control (C3)

The C3 set of command line tools from Oak
Ridge National Laboratory (ORNL) is up to
version 3.x. C3 started life as a collection of

Perl scripts and has been re-written in Python.
C3 allows a user to run commands either se-
quentially or in parallel across a cluster. The
basic set of commands that C3 provides and
their general functionality is listed below [1, p-
5]:

• cexec: This is the command that C3 of-
fers, and can be thought of as the basis for
most of the other commands. This com-
mand enables the execution of any com-
mand across an entire cluster.

• cget: Enables file movement from the
compute nodes of a cluster to the head
node.

• ckill: Kills or terminates a process across
clusters.

• cps: Can do a ps command across an en-
tire cluster and produce output for each
node. The results are usually stored in a
text file.

• cpush: Utilizes rsync to push files or
whole directories from the head node of
a cluster to all of the compute nodes.

• cpushimage: Uses Systemimager to push
an operating system image to a cluster
node, or to all of the nodes at once.

• crm: Deletes a file or directory across an
entire cluster.

• cshutdown: Can shutdown an entire clus-
ter with one command.

C3 leverages quite a few existing applications
to accomplish its work. It uses either SSH
or RSH for communication. Additionally, it
uses rsync to help speed cpushimage, cget, and
cpush, as only the difference between the old
and the new image must be transferred.



Ottawa Linux Symposium 2002 385

Another key feature of C3 is its ability to
handle multiple clusters from a remote host.
C3 uses a c3.conf file to specify both clusters
and nodes within clusters. This is currently a
unique feature among execution environments
for clusters, which is the ability to run the same
command across multiple clusters. Addition-
ally a user can use a personal configuration file
instead of the default on the host, or even spec-
ify a different configuration file when using the
tools.

2.2 Scalable Unix Tools (SUT)

This collection of utilities by Argonne National
Laboratory, leverages the MPI communication
environment to achieve scalability. This set
of programs is basically a reimplementation of
common UNIX tools to be useful in a paral-
lel environment. The commands are named the
same as most UNIX utilities, but are prefaced
by a pt[8, p-2,3], such as ptcp, the replacement
for cp. Additionally, all of the commands pro-
duce output in text, so this extends the UNIX
command line to a parallel environment. All
of the output can be piped to other common
UNIX utilities.

Four new utilities have been produced that
have no traditional UNIX counterpart, and it
is worth listing them here [8, p-3]:

• ptfps: A parallel implementation of the
classic UNIX find command with the
same syntax.

• ptdistrib: This command is used to basi-
cally run a complex task over a set of files
on a remote node. It can also retrieve the
results of its operation.

• ptexec: Executes a command on all the
nodes in a parallel fashion.

• ptpred: Runs a test to see if a file is present

on compute nodes, and returns a one if it
is there, a zero otherwise.

The tools also make use of MPD, or the multi-
purpose daemon, that can quickly start up jobs
across an entire cluster, although MPI must be
installed to run with MPD to make use of this
feature. MPD was created specifically for fast
command startup across clusters of computers.

2.3 Ganglia Execution Environment GEXEC

A new system that has been recently been re-
leased (April 23, 20002) is the Ganglia Exe-
cution Environment, or GEXEC. This system
is really a building block for other tools. It is
comprised of both a daemon/server and a client
that has access to the daemons. Additionally, a
library is offered as part of the package, so that
new applications can be written and directly
use the system. The daemons arrange them-
selves into a n-ary tree for scalabilityGEXEC

An authd must be run with the system, that ver-
ifies who a user is that wants to run a command.
This forces security by making a job authenti-
cate on the host on which it is trying to run.
The authd system makes use of RSA based en-
cryption via OpenSSL[2].

The client half of this system, uses the gexec
command on the command line. Real time
node information can be provided by the Gan-
glia monitoring core, which can prevent trying
to run jobs on nodes that are not responsive [2].

3 GUI interface tools

This section of the paper surveys some past
work at Oak Ridge National Laboratory, and
summarizes current work and development.
The last section of the paper dealt with some
toolkits that can expand a users control of one
cluster, with the notable exception of C3. This



Ottawa Linux Symposium 2002 386

is an important task, but control of multiple
clusters is becoming increasingly important. It
is common to leverage more than one cluster
in todays computing world. Splitting up large
clusters into multiple systems for better con-
trol or just simply segregation for various users
is also increasingly common. The notion of us-
ing multiple clusters within one domain gives
rise to the term federated cluster.

At ORNL, we are defining a federated cluster
to be one or more groups of clusters. Com-
mand line tool sets are probably not capable
of handling situations like this, when the num-
ber of clusters can rise to the hundreds and the
number of nodes to the thousands. Some type
of graphical user interface system will have to
developed to handle a system of this nature.

3.1 Managing Multiple Clusters

Managing Multiple Clusters or M3C, was a
system that was originally conceived to han-
dle multiple clusters. It was designed to be a
distributed application having several distinct
pieces. This consisted of a client application in
the form of a java applet, a server application
in the form of a cgi program running on a web
server, and a proxy [6, p2].

To use the system, a user would initiate an
action on the client, and pass a message via
HTTP to either the proxy or directly to the cgi
script. The action would be a request for a clus-
ter to do something. To perform an action on
a cluster, the cgi script, running on the head
node of a cluster, would write to a file or pos-
sibly send a message to a back end process.
The back end process would fulfill the request,
and provide some form of output back to the
cgi script. The cgi script would then send a
message back to the client and the client would
update the applet in the browser. The proxy
was the means by which a client could com-
municate with more than one cgi script, thus

the multiple cluster aspect of M3C [6, pp 3-4]
[5].

M3C was designed as a framework first and a
package of services second, although six ap-
plications were designed in the initial package.
A significant advantage of this system was the
ability to accept plug-ins. The intent being that
many different applications could be written to
make use of the system. A plug-in would be
provided to the applet, the cgi script, and also
to the proxy to make this work.[6, p-2]

3.1.1 M3C: A Different Approach

M3C went through several design changes and
modifications. The last prototype of M3C re-
volved around a major design change. The
applet was bypassed in favor of a standalone
java client application. The proxy was dropped
completely, and the client was designed to be
enhanced to take over its responsibility in com-
municating with multiple clusters.

This simplified the system quite a bit. All com-
munication was still performed via HTTP. The
CGI script evolved into a Java Servlet, run-
ning on Tomcat which is an open source server
designed for running Java Servlets. A simple
GUI was constructed to be the client and hard
coded with the necessary instructions to run C3
commands on the back end. After implement-
ing and testing this simpler prototype of M3C,
it was decided that most of the goals of the sys-
tem could be met by a standalone client.

3.2 Cluster Control GUI (C2G)

The C2G system has been designed and is be-
ing implemented using most of the key ideas of
M3C, but with much less infrastructure. The
idea of extensibility and using plug-ins to ex-
tend a basic system has been kept. In fact,
the current design of C2G has been vastly sim-



Ottawa Linux Symposium 2002 387

plified to a standalone client. Since there is
such a problem representing large clusters, this
new approach tries to avoid the notion of a
strict GUI framework altogether. The design
approach has evolved to these basic goals:

1. Provide a framework for loading pro-
grams that are in the form of python
scripts, and provide some form of gen-
eral GUI interface that ties the system to-
gether.

2. Provide secure communication services,
or access to such services, that allow
these scripts to have access to cluster head
nodes. Provide some mechanism so that
information about available clusters can
be readily determined.

3. Give a script or plug-in writer the abil-
ity to provide for their own display of re-
sults. Avoid forcing a developer to use the
default style of GUI or inherit provided
classes.

4. Provide a simple default GUI and API for
displaying the output of simple programs.

5. Provide an API for communicating with
common cluster execution environments.

The guiding principal behind this system is
simplicity. While it might be possible to antic-
ipate some needs of some small subset of clus-
ter users and administrators, it is completely
impossible to predict how to support very many
cases within a rigid GUI framework.

A GUI does not have to be fast or scalable, it
must be responsive to a user. It is reasonable to
believe that a C2G client can be run by itself on
a user’s desktop, and thus computational over-
head is not so important. It is up to the GUI to
rely on scalable back ends and communication
packages to achieve the overall desired goal of
increased cluster throughput.

Initially, SSH is being used to pass the mes-
sages from the C2G client to the headnode. A
configuration file that supports the notion of
federated clusters is being used, so that clusters
can be defined in a uniform fashion. This file
is an XML format and a schema has been pro-
duced to describe the file. A basic GUI system
has been implemented using Python/tk, and a
prototype API is currently being constructed
and evaluated. The initial back end execution
environment is SSH or RSH, as C2G needs to
be able to run some basic commands without
reliance on any back end package. The sys-
tem is still a prototype, but initial results are
encouraging.

4 Node Manager/Package Services

As part of the SciDAC:SSS [4] initiative, new
software is being designed and written with
the purpose of creating scalable clustering soft-
ware. The goal is to design and implement a
complete system that has interoperability be-
tween all the pieces. A message passing API
has been agreed upon by the participating or-
ganizations, based upon XML over sockets.
This ensures that the independent pieces can
communicate with each other. At this juncture
the SciDAC:SSS working groups are princi-
pally concerned with identifying and publish-
ing these component interfaces. At Oak Ridge
National Laboratory, two components are cur-
rently under development Node Manager and
Package Services.

4.1 Node Manager

The Node Manager(NodeMgr) is a general-
ized administration component that oversees
most static characteristics of the cluster, (e.g.
OS, installed software). The current design
has NodeMgr providing a select set of func-
tions which can be requested through the pre-
scribed XML/socket interface. These functions



Ottawa Linux Symposium 2002 388

include reboot, halt, power (cycle), getimage,
setimage, rebuild, setstateand getstate. The
initial prototype leverages C3 [1], OSCAR [7]
and the current prototype of Package Services.

NodeMgr uses services provided by other com-
ponents like Package Services to determine
what software is available on a given node.
The state information is also currently main-
tained by the Package Services prototype but
may be transferred elsewhere as the system
evolves. NodeMgr delegates dynamic aspects
such as CPU load, available memory, etc. to
the monitoring components. When consider-
ing the example of rebuilding a compute node
there are obvious interactions among all these
components, which is performed through the
published component XML/socket interface.

4.2 Package Services

Package Services (PS)is the back end database
to NodeMgr. PS is currently a PostgresSQL
database which is intended to run on the head
node of a cluster. PS has been designed to be
as general as possible, and merely stores infor-
mation. In the current implementation of PS,
tables are in place to store information about
the nodes and the software that runs on a clus-
ter. A few highlights of PS include:

• The ability to have an image associated
with a host or group of hosts. An image is
defined as a collection of software pack-
ages. Currently an rpm is considered to
be a package, but tarballs and other types
of packages will also be supported.

• The ability to further tune your software
bookkeeping by having software groups.
A software group is defined as a collection
of compatible packages.

• An image may be defined to be made up
of both software groups and images.

• The notion of a hardware group is also
available. A hardware group may be asso-
ciated with an image or collection of im-
ages.

PS is still in the design and prototype phase.
There are several issues that remain with PS.
The first is that it must be able to support large
numbers of nodes, and scale well. In its current
form this may not be possible, at least to the
extent that SciDAC:SSS envisions. It may be
necessary to build a front end to the database
that is capable of communicating with other
PS’s as necessary. This is somewhat dependent
on the functionality of NodeMgr and the topol-
ogy of a supported cluster.

The second modification/addition that may be
necessary is to provide PS with message pass-
ing ability. It has not been decided if NodeMgr
will provide all the necessary communications
with PS, if another SciDAC:SSS component
wants to talk with it.

5 Summary

This paper has summarized three general pur-
pose parallel execution environments that are
appropriate for High Performance Computing.
These environments are suited to many tasks
that administrators and users perform on clus-
ters everyday. A general Graphical User Inter-
face that allows general access to tools of this
type is a desired item, and an active area of re-
search.

ORNL is working on a tool named M3C/C2G
to satisfy this need, and it is thought that this
system can become an interface to many back
end clustering tools. The earlier efforts at de-
signing and implementing M3C, helped bring
about many of the current design decisions.
Like many pieces of widely used software,
C2G tries to solve the problem of a general



Ottawa Linux Symposium 2002 389

GUI interface by implementing a fairly small
utility, that is good at one thing, and interfaces
well with other software such as communica-
tions software and parallel execution environ-
ments.

Additionally, a system consisting of a pair of
services for controlling the software that is
loaded on compute nodes was discussed. The
design of this system is a direct result of work-
ing with the Scidac:SSS project. Cluster dis-
tributions like NPACI Rocks [9] and OSCAR,
have produced software that can do an initial
cluster installation, but the need for modifying
and managing compute nodes after the initial
installation is still apparent.

References

[1] M. Brim, R. Flanery, A. Geist, B. Luethke,
and S. Scott. Cluster Command & Control
(C3) tools suite. InTo be published in
Parallel and Distributed Computing
Practices, DAPSYS Special Edition, 2002.

[2] Brent Chun. Ganglia cluster toolkit.
http://www.cs.berkeley.edu/˜bnc/gexec/.

[3] Scyld Computing Corporation. Scyld
beowulf clustering for high performance
computing. Technical report, Scyld
Corporation, April 2001.

[4] Al Geist et al. Scalable Systems Software
Enabling Technology Center, March 7,
2001. http://www.csm.ornl.gov/scidac
/ScalableSystems/.

[5] R. Flannery, A. Geist, B. Luethke,
J. Schwidder, and S. Scott. The scalable
system administrator: via c3 and m3c
tools. InThe Second International
Workshop on Cluster-Based Computing,
2000.

[6] Al Geist and Jens Schwidder. Managing
multiple pc clusters. Technical report,
Oak Ridge National Laboratory, 2000.
http://www.csm.ornl.gov/˜geist.

[7] Thomas Naughton, Stephen L. Scott,
Brian Barrett, Jeff Squyres, Andrew
Lumsdaine, and Yung-Chin Fang. The
Penguin in the Pail – OSCAR Cluster
Installation Tool. InThe 6th World Multi
Conference on Systemics, Cybernetics and
Informatics (SCI 2002), Invited Session of
SCI’02, Commodity, High Performance
Cluster Computing Technologies and
Applications, Orlando, FL, USA, 2002.

[8] Emil Ong, Ewing Lusk, and William
Gropp. Scaleable unix commands for
parallel processors: A high-performance
implementation. Technical report,
Argonne National Laborotory, 2002.
http://www-fp.mcs.anl.gov/sut.

[9] Philip M. Papadopoulis, Mason J. Katz,
and Greg Bruno. Npaci rocks: Tools and
techniques for easily deploying
manageable linux clusters. InCluster,
2001. http://www.cacr.caltech.edu.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


