
LART Lessons Learned: cpufreq

J.A.K. (Erik) Mouw, Koen Langendoen, Johan Pouwelse
UbiCom program

Delft University of Technology
PO BOX 5031, 2600 GA Delft, The Netherlands

{erik,koen,pouwelse}@ubicom.tudelft.nl

Abstract

In order to run as long as possible on a single
battery, battery-powered computers need to be
efficient. A large part of that efficiency can
be gained by using low-power hardware, but
software can also help to reduce power con-
sumption. One way to do that is to let the OS
control the CPU frequency and core voltage.
This paper will explain the backgrounds of
power consumption in CPUs and how clock
and voltage scaling can help to decrease the
power consumption. It will show the current
Linux implementation (cpufreq) and compare
it with other implementations.

1 Introduction

The Mobile Multimedia Communications
project (MMC, 1996 – 2000)[MMC] and
the Ubiquitous Communications program
(UbiCom, 1998 – 2002)[UbiCom] at the Delft
University of Technology are two related
projects that research high data rate cellular
networks. The MMC project focused on
multimedia communication protocols and
applications (text, audio, video) for mobile
use, while the UbiCom program extended this
to augmented reality and wearable computer
systems. Both projects needed a mobile
computer platform to test their theories. This

platform had to be small, low power, powerful,
affordable, and extendible. To solve the ten-
sion between these requirements, the emphasis
was put on best computing power per watt.
Unfortunately there was not such a computer
platform available on the market around
1997, so MMC project members decided to
design such a system themselves: the Linux
Advanced Radio Terminal (LART)[LART].

2 LART

The LART is build around the Intel Stron-
gARM SA-1100 CPU, an embedded processor
with an excellent power/MIPS ratio and a large
set of built-in peripherals[SA-1100]. The CPU
normally runs at 221 MHz, at which speed it
delivers a performance comparable to an In-
tel Pentium 200. The SA-11x0 CPU family is
well supported by the Linux operating system,
and the mature userland utilities (gcc, etc.) and
openness of Linux allows for easy integration
of special purpose device drivers.

Figure 1 shows the LART processor board
(7.5×10 cm), holding the CPU, 32 MB of EDO
DRAM, 4 MB of Flash boot ROM, a connector
for two (simple) serial ports, a JTAG debug in-
terface connector, a high-speed extension con-
nector and a low-speed extension connector (at
the back of the board). The complete LART
processor board weighs only 50 g.



Ottawa Linux Symposium 2002 377

Figure 1:LART processor board

An extension board known as the Kitchen Sink
Board (KSB) can be connected and provides a
PS/2 interface (2×) for keyboard and mouse,
USB client interface, IrDA infra-red link, IDE
disk interface, stereo 16 bit 48 kHz audio out-
put, mono 12 bit 26 kHz audio I/O (speakers
and microphone), telephony interface, touch
panel interface, and an LCD interface. Both
the LART and the KSB design files are avail-
able under an open license allowing everybody
to build boards for themselves or even improve
the designs.

At full CPU utilization the processor board
consumes about 1 W, which allows it to run for
several hours from a single 4.5 V battery. How-
ever, the LART design was flexible enough that
frequency and voltage scaling could be added
at a later stage. This allows the CPU to run
at lower frequencies and voltages thereby sav-
ing energy. The amount of energy saved de-
pends on the type of application: applications
with different CPU load patterns yield different
amounts of energy savings. This paper will fo-
cus on the Linux implementation of frequency
and voltage scaling, Pouwelse et. al. discuss
the power saving techniques for different kinds
of workloads[Pouwelse].

3 Frequency and voltage scaling

To understand the advantages of frequency
and voltage scaling, we will first discuss the
theory behind it. Digital CMOS (Comple-
mentary Metal-Oxide Semiconductor) circuits
as used in the majority of modern micropro-
cessors have both static and dynamic power
consumption[Pouwelse][Burd][Ishira]. The
static power consumption is caused by bias and
leakage currents, and can usually be ignored
for designs that consume more than 1 mW of
power.

The dynamic power consumption is caused by
the logic transactions of the gates in the digital
circuit: every charge and subsequent discharge
of the gate capacitance drains power. The dy-
namic power consumption can be modeled by

Pdynamic =
N∑

i=1

Ci · fi · V 2
DD (1)

whereN is the total number of gates in the cir-
cuit, Ci the load capacitance of gategi, fi the
switching frequency of gategi, andVDD the
supply voltage. Equation 1 clearly shows that
lowering VDD yields the largest reduction in
power. However, reducingVDD will increase
the circuit delay, which can be described by

τ ∝ VDD

(VG − VT )2
(2)

whereτ is the propagation delay of the CMOS
transistor,VT the threshold voltage, andVG

the input gate voltage. The propagation de-
lay restricts the maximum clock frequency for
any clock driven digital CMOS circuit. Equa-
tions 1 and 2 show there is a trade-off between
switching frequency and supply voltage: dig-
ital CMOS circuits (and hence microproces-
sors) can only operate at a lower supply voltage



Ottawa Linux Symposium 2002 378

when the clock frequency is lowered to com-
pensate for the increased propagation delay.

Equation 1 can be simplified by assuming that
all gatesgi create a collective switching capac-
itanceC operating at a common switching fre-
quencyf :

P = α · C · f · V 2
DD (3)

This equation shows that lowering the clock
frequency linearly decreases power, but that
voltage reduction results in a squared power re-
duction. Figure 2 illustrates this conclusion for
a LART running a CPU intensive workload at
various clock frequencies.

0

100

200

300

400

500

600

700

800

 74 103 133 162 192 221

po
w

er
 c

on
su

m
pt

io
n 

[m
W

]

clock frequency [MHz]

fixed voltage

scaled voltage

Figure 2: Total power consumption for a LART
running a CPU intensive workload

An important observation is that frequency
scaling alone only savespower, but notenergy.
Running a task at a decreased clock frequency
makes that it takes longer to complete that par-
ticular task. The task completion time is pro-
portional to1/f , and hence the total energy
consumed remains the same. Combining fre-
quency scaling with voltage scaling will save
powerand energy becauseVDD can be scaled
with respect tof .

4 Implementation

To exploit the potentials of frequency and volt-
age scaling, we implemented it on our LART
computer platform. The LART frequency and
voltage scaling consists of a hardware and soft-
ware part. The SA-1100 natively supports fre-
quency scaling: the clock frequency can be set
in 15 MHz steps from 58 to 221 MHz. It does
not, however, support voltage scaling. There-
fore the LART design includes additional cir-
cuitry to control the core voltage supply.

A

D

Core Voltage
Regulator

Core

SA1100

GPIO

Vcore

Figure 3:LART voltage scaling hardware

Figure 3 shows how the CPU controls the core
voltage: eight General Purpose I/O (GPIO)
pins are used to set the output voltage of an
8 bit digital to analog converter (DAC), which
on its turn controls the core voltage regulator.
The core voltage is thus completely software
controlled, and there are a couple of hardware
safety measures to prevent the CPU from ex-
posing itself to excess voltages.

The SA-1100 is an embedded CPU and among
its built-in interfaces is a memory controller,
which should be programmed to generate the
necessary waveforms for the memory con-
nected to the system (e.g. SRAM and DRAM).
This memory controller is directly driven by
the core frequency oscillator, so it has to be



Ottawa Linux Symposium 2002 379

reprogrammed at each clock speed change.
The SA-1100 is special in that it needs soft-
ware to reprogram the core voltage and mem-
ory settings: most other CPUs have external
memory controllers independent of the CPU
frequency and hardware controlled core volt-
age regulators. Figure 4 shows the order of
events that have to happen when increasing
the clock speed. Decreasing the clock speed
reverses the order: decrease clock speed, de-
crease core voltage, tighten memory settings.
When switching to a higher clock speed, the
generated memory waveforms are too wide
for the current frequency speed and hence de-
crease the available memory bandwidth. How-
ever, this situation only exists for such a small
amount of time that it does not decrease the
system performance.

low frequency

relax memory timings

increase core voltage

increase clock speed

high frequency

Figure 4: Order of execution for switching to a
higher clock speed

The initial Linux driver for the LART clock
and voltage scaling hardware exactly followed
the procedure depicted in Figure 4. The
switching was controlled from a file in the

/proc file system: in this way the mechanism
was implemented in the kernel, while the pol-
icy of whento change clock speed could be im-
plemented in userland. The initial implementa-
tion worked well for a simple system with only
the LART processing board, but it did not have
enough flexibility to support a LART system
with more hardware (like hard disk, PCMCIA
interface, etc.), or a system build around a dif-
ferent kind of CPU.

5 Cpufreq

Quite some kernel drivers depend on the
udelay() function for timed access to hard-
ware. For the ARM family, this func-
tion is implemented as a busy wait that
uses the loops_per_jiffy variable to
check if the requested number of micro
seconds already passed. The value of
the loops_per_jiffy variable is derived
during the famousCalibrating delay loop
event when the kernel boots. Because
loops_per_jiffy depends on the CPU
frequency, it needs to be adjusted after a speed
change. Fortunately the variable does not need
to be recalibrated: it is directly proportional to
the CPU frequency so it can be calculated.

When frequency and voltage scaling support
for several 80x86 CPUs was added, it became
clear that those CPUs use a timer independent
from the CPU core frequency to calculate the
amount of time to be spend inudelay() .
Also, these CPUs did not need to reprogram
their memory controller. Therefore, Russell
King designed a flexible framework for clock
and voltage scaling: cpufreq [Cpufreq].

Cpufreq separates the act of changing the
CPU speed from the other measures that have
to be taken upon a speed change. At ker-
nel initialization, the CPU dependent driver
needs to register itsvalidatespeed() and



Ottawa Linux Symposium 2002 380

setspeed() functions with cpufreq. All
other hardware drivers that depend on the
CPU frequency also need to register them-
selves with cpufreq so they can be notified
for speed changes. A 80x86 cpufreq driver
only need to register itsvalidatespeed()
and setspeed() functions, while the SA-
1100 driver also has to register the func-
tions that change the memory timings. The
value of loops_per_jiffy is automati-
cally changed by cpufreq; it is not neces-
sary for 80x86 CPUs, but it is nice that
/proc/cpuinfo gives an indication of the
current CPU speed, even though it is a bogus
one.

Old speed

Query drivers about upcoming speed change

Adjust requested speed

Notify drivers speed will change

Change CPU speed

Notify drivers speed has changed

New speed

Figure 5:Cpufreq order of execution

Figure 5 shows the cpufreq order of execu-
tion at a CPU speed-change request. First of
all, all registered drivers are queried about the
speed range they can tolerate. A driver that
for some reason (like the SA-1100 LCD con-
troller that needs a certain amount of band-
width) currently can’t accept a speed range can
limit the requested range to the range it is able
to handle. If the new CPU frequency is out
of the range the drivers can currently tolerate,
it is adjusted to fall within the range. The
drivers are then notified about the upcoming

CPU speed change, so they can decide to adjust
certain parameters. For example: when going
to a faster speed, the SA-1100 memory driver
will relax the memory timings. Next, the CPU
speed will be changed to the requested value
using the CPUsetspeed() function. After
that, all drivers will be notified that the CPU
speed has changed, so they can adjust their
parameters. For example: when going to a
slower speed, the SA-1100 memory driver will
tighten the memory timings. This completes
the speed change and the system can continue
to do whatever it was doing before the speed
change. Again, the kernel only implements the
switching mechanism; the policy can be con-
trolled through a sysctl interface by a userland
process.

6 Discussion

The flexible cpufreq framework supports
StrongARM SA-1100, StrongARM SA-1110,
ARM Integrator, VIA Longhaul, AMD Elan,
AMD PowerNow K6, and Intel SpeedStep,
while work is underway to add support for
AMD PowerNow K7. The current cpufreq im-
plementation is stable and scheduled to be in-
cluded in Linux-2.5. Following the Unix de-
sign rules, cpufreq only implements themech-
anismto change the CPU speed; thepolicy of
when to change speed is left to userland.

A simple userland scheduler that changes the
CPU speed by observing the CPU idle time
works nice for most workloads, but it breaks
down at bursty real-time tasks like real-time
video decoding. The CPU speed scheduler
will select a low clock frequency when the
video decoder decodes low-complexity frames,
but it will be too late to select a high clock
frequency when the video decoder encounters
a high-complexity frame. As a result, the
frame will be decoded too late which will be
visible to the user. The CPU speed sched-



Ottawa Linux Symposium 2002 381

uler can also decide to select a high clock
frequency so all frames will be completed in
time, but in this case the CPU will waste en-
ergy. Pouwelse et. al. show that a power
aware video decoder is able to combine close-
to-optimal energy savings with real-time de-
coding performance[Pouwelse2][Pouwelse3].

7 Related work

There are two software frameworks for CPU
power management. Advanced Power Man-
agement (APM)[APM] is an older standard
still widely in use that allows the CPU to en-
ter a low power state when executing the idle
loop. APM only implements an on/off power
savings approach: intermediate power saving
levels are not available, even when the CPU is
able to switch to multiple performance levels.

The Advanced Configuration and Power Inter-
face (ACPI)[APCI] is the successor of APM.
ACPI has a fine-grained CPU power manage-
ment interface that can be controlled by the
OS. Unfortunately, the standard also allows the
ACPI BIOS to control the CPU speed without
notifying the OS thereby removing the abil-
ity for userland scheduling tools to control the
CPU speed policy. Another disadvantage of
ACPI is that it depends on the BIOS imple-
mentation. In many cases, frequency and volt-
age scaling is not implemented in the BIOS,
thereby missing an opportunity to save energy.
Fortunately, work is being carried out to fit
cpufreq within the Linux ACPI subsystem.

A hardware approach to CPU power manage-
ment is implemented in the Transmeta Crusoe
TM5400 CPU[Crusoe] which implements fre-
quency and voltage scaling in its microcode
(“LongRun”). This means that the policy is
implemented in the CPU and operates without
knowledge about the applications. The sched-
uler works the same as the simple scheduler de-

scribed in the previous section, and thus has the
same limitations.

8 Conclusions

A well designed experimental computer plat-
form can lead to interesting results: the flexible
LART platform allowed to exploit the theoreti-
cal power and energy savings of frequency and
voltage scaling. The resulting software frame-
work was used, together with other implemen-
tations, to get at the generic cpufreq frequency
and voltage scaling driver which allows the OS
to control the CPU power consumption. Other
approaches to control the CPU power either
lack the fine grained control cpufreq offers, or
try implement the power saving policy at the
wrong place.

Cpufreq only implements the mechanism of
frequency and voltage scaling. The policy
of when to change CPU speed is still an ac-
tive area of research. It is clear that the sim-
ple speed scheduler as described in Section 5
does not yield optimal power savings and fails
for bursty real-time tasks, but the ideal sched-
uler still has to be written[Pouwelse3]. As Li-
nus Torvalds remarked: “The really interesting
things happen in userland.”

9 Acknowledgements

This work was carried out within the MMC
project and the UbiCom program and funded
by the Dutch Foundation of Applied Sciences
(STW) and the TU Delft DIOC research pro-
gram. We would like to thank Jan-Derk Bakker
for designing an excellent low-power platform
and Russell King for the cpufreq framework
and the many discussions we had.



Ottawa Linux Symposium 2002 382

References

[APCI] Compaq Computer Corporation, Intel
Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., Toshiba
Corporation,Advanced Configuration
and Power Interface, Revision 2.0, July
2000.

[APM] Intel Corporation, Microsoft
Corporation,Advanced Power
Management (APM) BIOS Interface
Specification, Revision 1.2, February
1996.

[Burd] T. Burd, R. Brodersen,Processor
design for portable systems, Journal of
VLSI Signal Processing, Aug/Sept 1996.

[Cpufreq] D. Jones, R.M. King, J.A.K.
Mouw, J.A. Pouwelse, A. van der Ven,
Cpufreq homepage,
http://www.lart.tudelft.nl

/projects/scaling/

[Crusoe] Transmeta Corporation,The
technology behind the Crusoe processor,
http://www.transmeta.com

/crusoe/download/pdf

/crusoetechwp.pdf

[Ishira] T. Ishihara, H. Yasuura,Voltage
scheduling problem for dynamically
variable voltage processors, ISLPED,
Aug. 1998.

[LART] J.-D. Bakker, M.A.H.G. Joosen,
J.A.K. Mouw,Linux Advanced Radio
Terminal,
http://www.lart.tudelft.nl/

[MMC] Mobile Multimedia Communications
Project,
http://www.mmc.tudelft.nl/

[Pouwelse] J.A. Pouwelse, K. Langendoen,
H. Sips,Voltage scaling on a low-power

microprocessor, Mobile Computing
Conference (MOBICOM), Jul. 2001.

[Pouwelse2] J.A. Pouwelse, K. Langendoen,
R.L. Lagendijk, H. Sips,Power-aware
video decoding, Picture Coding
Symposium (PCS), 2001.

[Pouwelse3] J.A. Pouwelse, K. Langendoen,
H. Sips,Energy priority scheduling for
variable voltage processors,
International Symposium on Low-Power
Electronics and Design (ISLPED), Aug
2001.

[SA-1100] Intel StrongARM SA-1100
microprocessor developer’s manual,
available at
http://www.lart.tudelft.nl

/doc.php3

[UbiCom] Ubiquitous Communications
Program,
http://www.ubicom.tudelft.nl/



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


