
The Linux Kernel Device Model

Patrick Mochel
Open Source Development Lab

mochel@osdl.org

Abstract

Linux kernel development follows a simple
guideline that code should be only as complex
as absolutely necessary. This design philoso-
phy has made it easy for thousands of people
to contribute code, especially in the realm of
device drivers: the kernel supports hundreds of
devices on over a dozen peripheral buses.

This bottom-up approach to development has
provided a great deal of benefit for users of typ-
ical systems in the last decade. However, as
Linux progresses into new niches and more re-
quirements are imposed on operating systems
of modern hardware, lack of unification among
device subsystems poses some serious road-
blocks.

The new Linux Device Model (LDM) is an ef-
fort to provide a set of common interfaces for
device subsystems to use. This foundation is
intended to enhance the kernel’s support for
modern platforms and devices, which require
a more unified approach to devices.

This paper discusses the attributes of the LDM
and the issues they are designed to resolve.
It describes the interfaces in a bottom-up ap-
proach; in the same manner in which they were
devloped. It also discusses the current progress
of the effort, and some potential uses of it in the
future.

1 Introduction

The LDM was initially motivated by a single
goal: to provide a global device tree that could
be used to suspend and resume all devices in a
computer during system sleep transitions.

Figure 1 show how all devices in a computer
connected. Like devices are grouped on a bus.
Buses are linked together via bridge devices.
All physical devices can be represented via a
single tree structure. This tree structure can be
walked to provide proper suspend and resume
sequences.

Kernel device subsystems have been developed
to concisely represent devices of a particular
physical type. Because of this, and because
of the vast number of physical configurations
possible, there is little data or code shared be-
tween subsystems. Figure 2 shows how the
PCI device hierarchy is represented internally.
Though the PCI tree is physically connected
to other devices, this hierarchy is autonomous
with regard to other internal device representa-
tions.

2 The Linux Device Model Core

In order to construct a global device tree, a
common device structure was created to rep-
resent each physical device in the system.
Listing 1 includes the definition ofstruct
device , which is the minimum set of data
necessary to describe each device in the sys-



Ottawa Linux Symposium 2002 369

CPU

PIC

Host-PCI
Bridge

Video

Audio
USB Host

Controller

Keyboard

Mouse
IDE

Serial

Floppy

ISA
Bridge

Figure 1: Physical Device Topology

Host-PCI
Bridge

Video
Audio IDE ISA

BridgeUSB Host
Controller

Figure 2: Kernel Repesentation of PCI Topol-
ogy

struct device_driver {
char * name;
list_t node;
int (*probe) (struct device * dev);
int (*remove) (struct device * dev,

u32 flags);
int (*suspend)(struct device * dev,

u32 state, u32 level);
int (*resume) (struct device * dev,

u32 level);
};

struct device {
list_t g_list;
list_t node;
list_t bus_node;
list_t children;
struct device * parent;

char name[DEVICE_NAME_SIZE];
char bus_id[BUS_ID_SIZE];

spinlock_t lock;
atomic_t refcount;

struct device_driver * driver;
void * driver_data;

};

int device_register(struct device
*dev);

/* device reference counting */
void get_device(struct device *dev);
void put_device(struct device *dev);

/* device-level locking */
void lock_device(struct device *dev);
void unlock_device(struct device

*dev);

Listing 1: The Device Model Core



Ottawa Linux Symposium 2002 370

tem. It contains little detail about the physi-
cal attributes of the device, but provides proper
linkage information and support for device-
level locking and reference counting.

System bus drivers allocate a device struc-
ture for each physical device discovered when
probing. The bus driver is responsible for ini-
tializing the bus_id and parent fields of
the device and registering the device with the
LDM core. The LDM core will then initialize
the other fields of the device and add it to the
device hierarchy.

Device Reference Counting

The LDM core exports device reference count-
ing primitives

get_device , which increments the refer-
ence count, andput_device , which decre-
ments it. When the reference count reaches 0,
it is removed from the device hierarchy and the
remove callback of its driver is called to free
resources.

The LDM core does not export an interface
to explicitly unregister the device. Instead, it
relies on reference counting to handle proper
garbage collection and removal from the global
hierarchy.

The device reference count is initialized to 2 in

device_register . It is decremented to
1 when the function exits, leaving the device
structure pinned in memory.

Device Locking

The LDM core exports simple primitives to
provide device-level locking. The current im-
plementation is a simple spinlock, though this
is abstracted from the caller should the type of
lock change (e.g. to a semaphore or R/W lock).

Device Drivers

A global device hierarchy allows each device
in the system to be represented in a com-
mon way. This allows the core to easily walk
the device tree to do such things as prop-
erly ordered power management transitions.
struct device_driver in Listing 1 de-
fines a simple set of operations for the core to
perform these actions on each device.

The suspend and resume callbacks pro-
vide power management functionality. The
remove callback is called to logically remove
the device from the system. It is called when
the device reference count reaches 0, or during
system reboot to quiesce all the devices in the
system.

probe is called when attemptingto bind a
driver to a device. This callback is currently
unused since driver binding currently happens
solely at the bus driver level.

Currently, many bus drivers define a driver
similar to this. Instead of converting every de-
vice driver to use this common structure, bus
drivers implement only one instance of this
common structure and bind it to each device
discovered. This generic driver then forwards
calls to the bus-specific driver. This solution
is an interim one only; eventually each driver
will use this common structure and register it-
self with the LDM core instead of a bus.

3 Completing the Device Tree

The Device Model core was designed to explic-
itly support the semantics of modern peripheral
buses and their drivers, such as PCI and USB.
These bus drivers have well-defined and ma-
ture methods for discovering devices and rep-
resenting them locally in a tree-like manner.
Because the LDM was based on the existing
data and behavior of these bus drivers, convert-



Ottawa Linux Symposium 2002 371

Host-PCI
Bridge

Audio IDE ISA
Bridge

USB Host
Controller

Root

Video

KeyboardMouse

Figure 3: Device Hierarchy with Logical Root
Device

ing them to the generic interface typically only
involves modifying references to bus-specific
structures to generic structures.

There is no common peripheral bus for many
of the devices in the system. These devices are
referred to as either “platform” devices, includ-
ing Host-Peripheral Bus bridges and legacy de-
vices; or “system” devices, including CPUs
and interrupt controllers. The Linux drivers for
these devices represent this logical autonomy.

To complete a global hierarchial representa-
tion, these devices must be also be represented.
The global hierarchy thus needs some com-
mon, top-level entry point.

Device Root

Referring to the figure of device topology, it is
apparent that devices are arranged in an acycli-
cal graph, though not necessarily a tree. The
kernel bus drivers map subsets of this graph
into local tree structures with an explicit root
node: the bridge device to the bus. The global
hierarchy binds the local trees into one global
tree.

Root buses (e.g. root PCI buses) do not have
upstream bridges to other peripheral buses. As
such, they do not have an explicit parent, and
create a forest of devices, instead of one unified
tree.

To bind all the devices together, the LDM core
creates a logical root device that is the ancestor
of all devices in the hierarchy. It is statically
allocated and initialized when the LDM core is
initialized. Buses that have no obvious parent
are registered as children of this device. Fig-
ure 3 shows the logical device root and the its
relation to the hierarchies of peripheral buses.

Platform Devices

Platform devices are all devices that are phys-
ically located on the system board. This in-
cludes all legacy devices and host bridges to
peripheral buses. host-peripheral bridges are
typically not represented in the kernel as de-
vices on a bus; only as parent devices to buses.

These devices appear as autonomous devices in
the system responding to I/O requests on hard-
coded ports. Drivers for these devices perform
device discovery and immediately bind to the
devices. These differ from modern bus drivers
which perform device discovery in a separate
stage than driver binding.

In many modern systems, the system firmware
provides information about the devices in the
system, often enumerating all of the platform
devices. The OS can use this information
in lieu of probing legacy I/O ports on plat-
forms that do not support them.To support this
firmware enumeration, drivers for platform de-
vices must be taught to use the firmware data
for discovery rather than their legacy methods.

Instead of creating special cases in the platform
drivers for every firmware discovery mecha-
nism, the method of device discovery is decou-
pled from the driver binding; legacy probing



Ottawa Linux Symposium 2002 372

becomes only one method of device discovery.

struct platform_device {
list_t node;
char name[BUS_ID_SIZE];
u32 instance;
struct device device;

};

int platform_add_device(
struct device * parent,
char * busid,
u32 instance);

struct platform_driver {
char * name;
list_t node;

};

int platform_register_driver(
struct platform_driver * drv);

Listing 2: The platform bus interface

To implement this, a “platform” bus driver
is created to manage platform devices and
drivers. As platform devices are discovered,
via legacy probing or via a firmware driver, it
is added to the bus’s list of devices. As drivers
are loaded, they register with the bus, and it
attempts to bind them to specific devices. List-
ing 2 lists the interfaces to the platform bus.

Firmware enumeration usually knows the
proper ancestral ordering of the devices, so the
device is added in the proper location in the
hierarchy. Legacy probing usually does not,
though it is not necessary to add any special
cases for those devices.

Platform devices are of two types: host-
peripheral bridges and legacy devices.
Bridges do not have parent devices, so
it is valid to pass a NULL parent to
platform_add_device . Figure 3
displays the logical relationship between
the device root and the Host-PCI bridge;
platform_add_device is the means for
representing that relationship in the kernel.

Root

CPU PIC

Serial
Floppy

Legacy
"Bridge"

System
"Bridge"

Figure 4: Logical Legacy and System Buses

Legacy Devices

Legacy devices usually do have a parent,
though it is difficult to infer exactly who
it is when legacy probing is used for dis-
covery. Rather than attempt to guess, a
logical “legacy bridge” is created to act
as surrogate parent for all legacy devices.
To register as a legacy device, a driver
uses legacy_add_device , which inter-
nally calls platform_add_device , the
legacy bridge as the parent.

int legacy_add_device(char * busid,
u32 instance);

Listing 3: Legacy device interface

System Devices

System devices are devices integral to the func-
tion of the computer, such as CPUs, APICs,
and memory banks. These devices do not
follow traditional Unix read/writesemantics.
They do have attributes though, and most have
drivers exporting sort of interface to the rest
of the kernel and userspace. However, there
are no common bus-level semantics for com-
municating with the set of system devices as a
whole.

It is desirable to group these devices for log-
ical organization. To do this, a logical bus



Ottawa Linux Symposium 2002 373

represents the bus that the system devices re-
side on. Similar to legacy devices, a logical
bridge device is created to parent system de-
vices. Devices are added to the system bus
usingsystem_add_device . Figure 4 dis-
plays the hierarchy of the logical buses, and
their relationship to the device root.

int system_add_device(char * busid,
u32 instance);

Listing 4: System device interface

4 The User Interface: driverfs

During the early development stages of the De-
vice Model, a debugging aid was desired to test
various aspects of the code. A device tree, it
turns out, maps nicely to a filesystem directory
structure.

The device tree was initially exported to
userspace using theprocfsfilesystem. A new
filesystem, driverfs, was soon created to
specifically represent the devices.driverfs is a
simple filesystem based onramfs. It is initial-
ized when the LDM core is initialized, and can
be mounted anywhere in filesystem hierarchy.

When registered, every devicehas adriverfs
directory created on its behalf. It is created
in its parent’s directory, representing the phys-
ical topology. The name of the directory is the
struct device::bus_id field .

Exporting Device Attributes

The device directories can be populated with
files to export device and driver attributes to
userspace. These attributes can be accessed us-
ing standard thereadand write system calls.

Attributes can be added at any level. The LDM
core adds three default files:name, power,
and status. Upon device discovery, the bus

drivers may add files to export bus-specific at-
tributes. When a driver is bound to a device,
it may add files to export device-specific at-
tributes.

struct driver_file_entry {
struct driver_dir_entry * parent;
struct list_head node;
char * name;
mode_t mode;
struct dentry * dentry;

ssize_t (*show)(struct device
* dev,
char * buf,
size_t count,
loff_t off);

ssize_t (*store)(struct device
* dev,
const char * buf,
size_t count,
loff_t off);

};

int
device_create_file(struct device

*device,
struct driver_file_entry * entry);

Listing 5: driverfs interface

Listing 5 shows thedriver_file_entry
object, which is how driverfs files are repre-
sented. Theshow callback is called when a
user reads from a file. Thestore callback is
called when a user writes to a file.

To create a file, a caller statically declares a
driver_file_entry object and initialize
the name, mode, show andstore fields of
it. device_create_file is used to add
the file to the device’s directory.

The LDM core clones the
driver_file_entry structure by al-
locating a new structure of that type and
copying the object passed in. This allows
the caller to reuse the same file description
to create files for multiple devices without



Ottawa Linux Symposium 2002 374

having to manually allocate and initialize each
instance.

Operation

The driverfs core stores a pointer to the
driver_file_entry structure in the pri-
vate data fields of the VFS objects representing
the file. From this pointer, thedriverfscore can
obtain the pointer to the device structure. This
pointer is then referenced on read and write op-
erations.

During a read operation,driverfs allocates a
page-sized buffer and passes the buffer pointer
to it to the show callback. The driver fills
the buffer and returns. It is then copied to
userspace.

When the file is written to,driverfs allocates
another page-sized buffer and fills it with data
copied from userspace. It passes the buffer
pointer to thestore callback of the driver,
which consumes the data.

File Format

The preferred contents ofdriverfsfiles is one
ASCII-encoded value per file. Although these
preferences are not enforced, maintaining this
standard has several usability advantages:

• A user can read from and write to the file
using cat and echo; tools found on any
Linux distribution.

• Coordination between kernel drivers and
user space consumers becomes easier;
there is no proprietary format for each file.

• A file’s contents are obvious to a com-
mand line user.

• A file’s contents are obvious to a program-
mer looking at the driver source code.

• It eases creation of automated tools to
export device attributes in a more user-
friendly manner (i.e. via a GUI).

5 Bus Drivers

struct bus_type {
char * name;
list_t node;
spinlock_t lock;
list_t devices;
list_t drivers;

};

int bus_register(
struct bus_type * bus);

void bus_unregister(
struct bus_type * bus);

int driver_register(
struct device_driver * drv);

void driver_unregister(
struct device_driver * drv);

Listing 6: Bus driver interface

At the time of this writing, most LDM develop-
ment is concentrated on creating a generic bus
type object and set of operations to operate on
this type. Listing 6 defines a structure to wrap
attributes common across all buses. Consoli-
dating bus data affords the creation of generic
routines to manipulate that data.

Bus drivers typically maintain a list of all de-
vices on all buses of their type. This allows for
easy searches of devices when binding drivers.
Insertion into this list can happen when the bus
driver callsdevice_register() for a de-
vice.

Device drivers register with their bus, which
insert the driver into an internal list and at-
tempt to bind it with every present device.
Drivers can instead be taught to use only the
genericstruct device_driver and reg-
ister with the LDM core.This would insert the



Ottawa Linux Symposium 2002 375

driver in the bus’s list of drivers, then attempt
to bind the driver to the devices on that partic-
ular bus (by calling the driver’s probe callback
for each device).

Device insertion at runtime requires register-
ing a device with the bus and attempting to
bind a known driver to it. A userspace agent
(/sbin/hotplug) is executed to finish configur-
ing the device.

Hotplug insertion events are nearly identical to
device discovery when a bus is initially probed,
though no buses attempt to bind drivers to de-
vices when they are initially discovered. Driver
binding can be coupled to device discovery
when the bus is probed, making all device dis-
coveries appear as hotplug events. With cen-
tralized lists to manage devices and drivers,
this binding can take place when the device is
registered with the LDM core.

Many buses do not do locking on their internal
lists or reference counting on their devices and
drivers. By centralizing the list manipulation
routines, proper locking and reference count-
ing can be guaranteed for all buses.

driverfsexports an accurate physical represen-
tation of the device hierarchy. It is difficult to
navigate, though, since devices can be buried
under several obscure directories. By centrally
managing bus lists, devices and drivers can
easily be added to a driverfs directory owned
by the bus.

Conclusion

The Linux Device Model is an effort to con-
solidate data and interfaces from the many dis-
parate device and driver models in the Linux
kernel today. It allows the kernel to do things
never possible before, like proper power man-
agement and shutdown sequences. It provides
common infrastructure to guarantee proper

locking, reference counting, and handling of
hotplug events for all bus types.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


