
POSIX Threads and the Linux Kernel

Dave McCracken
IBM® Linux® Technology Center

Austin, TX
dmccr@us.ibm.com

Abstract

POSIX® threading (commonly called
pthreads) has long been an issue on Linux.
There are significant differences in the multi-
thread archictecture pthreads expects and the
architecture provided by Linux clone().

This paper describes the environment expected
by pthreads, how it differs from what Linux
provides, and explores ways to add pthread
compatibility to the Linux kernel without inter-
fering with Linux’s current multithread model.

1 Introduction

POSIX threads has become a widely used way
of adding concurrency to an application. How-
ever, it doesn’t map well onto Linux because
of significant differences in how each of them
defines a process, and the effects those differ-
ences have on the runtime environment.

In this paper we will describe the two models,
how they differ, and offer some suggestions for
changes to Linux that will allow it to emulate
the POSIX model for those applications that
use POSIX threads while preserving the cur-
rent behavior for all other applications.

1.1 Definitions

In our discussion of POSIX threads, first we
need to define some terms. Much confusion

arises in thread discussions because of dis-
agreement over what various terms mean. For
the purposes of this paper we’ll use the follow-
ing definitions:

processTraditionally a UNIX® process cor-
responded to an instance of a running pro-
gram. More precisely it was an address
space and a group of resources all dedi-
cated to running that program. This defi-
nition is formalized in POSIX. For this pa-
per we will use the term ’process’ to mean
this POSIX definition.

thread The term thread comes from the con-
cept of a single thread of execution, ie a
linear path through the code. POSIX de-
fines a thread to be the resources neces-
sary to represent that single thread of ex-
ecution. A process contains one or more
threads. We will use the term thread in
this paper when referring to the resources
necessary to define a single execution path
as seen by the application.

task In Linux, the basic unit is a task. In
a program that only calls fork() and/or
exec(), a Linux task is identical to a
POSIX process. The difference arises
when a task uses the clone() system call to
implement multithreading. The program
then becomes a cooperating set of tasks
which share some resources. We will use
the term task to mean a Linux task.



Ottawa Linux Symposium 2002 331

2 History of POSIX Threads

Historically, the UNIX operating system has
always had the concept of a process, which
roughly equates to a running instance of a pro-
gram. Each process has a set of resources asso-
ciated with it, including an address space, a set
of CPU registers, a process ID, a set of open
file descriptors, a user ID, a stack, etc. While
this is a powerful model, it only allows a sin-
gle linear execution path. To gain any kind of
concurrency with this model it is necessary to
create multiple processes, often requiring some
kind of inter-process communication, which is
often expensive and unwieldy.

In the late 1980s, the concept of multiple
threads of control became popular in the UNIX
community. The fundamental idea was to
take a limited set of a process’s resources
and make multiple instances of them, thus al-
lowing concurrency within a single process.
The resources selected were the minimum nec-
essary to represent a single execution state.
This primarily consisted of CPU registers and
stack. Each instance was then called a ’thread’.
This allowed concurrency within an applica-
tion without the necessity of an inter-process
communication mechanism. It is important to
note that this model preserved the concept of
a single process, and extended the definition to
include multiple threads within that process.

At that time there were only a few experimental
implementations of threads, and none in pro-
duction. It was clear, however, that it addressed
a growing need, especially with the prospect of
multi-processor UNIX machines on the hori-
zon.

At around this time the POSIX standardization
effort was also underway. There was a strong
push to create a common set of APIs that all
UNIX implementations could be guaranteed to
have. Several people put together an API that

encapsulated the multi-thread model and pro-
posed it for inclusion in POSIX. It was ac-
cepted in draft form under the real time exten-
sions. While there was little real-world experi-
ence with threads at the time, the intent was to
provide a common framework before multiple
competing implementations appeared.

In the years since then the POSIX thread API
(commonly known as pthreads) went through
many revisions and was incorporated into the
POSIX standard in 1996. Most if not all UNIX
implementations include a pthread library, and
there are many applications that use it.

3 POSIX Thread Model vs Linux
Task Model

As we’ve stated before, the multithreading
model used by POSIX is that of a single pro-
cess that contains one or more threads. In con-
trast, the Linux multithread model is that of
separate tasks that may share one or more re-
sources. While this may sound like a small
difference, the effects of this difference are far
reaching.

3.1 Resources

The POSIX model is that all resources are
global to the process except for the minimum
set of resources that are necessary to represent
a single thread of execution. This means that
modifications to a resource will be seen by all
other threads in the process.

In contrast, the Linux model has an indepen-
dent set of tasks that have separate instances
of all resources except for a few selected re-
sources that may be shared. This sharing is se-
lectable on a per-resource basis via flags passed
to the clone() system call. All other resources
have a separate instance for each task. A
change to the resource in one task may not af-



Ottawa Linux Symposium 2002 332

fect the equivalent resource in any other task.

The following resources are specific to a thread
in POSIX, while all other resources are global
to a process:

CPU registers
User stack
Blocked signal mask

The following resources may be shared be-
tween tasks via clone() in Linux, while all other
resources are local to each task:

Address space
Signal handlers
Open files
Working directory

There are a number of resources that are
process-wide in POSIX, but only task-specific
in Linux, that cause compatibility problems. A
partial list of the ones that cause the most prob-
lems includes process ID, parent process ID,
credentials (user ID, group ID, etc), and pend-
ing signal mask.

3.2 Process-wide Actions

The fundamental difference between the mod-
els is that in POSIX a process can be addressed
as a single entity, while in Linux it is a col-
lection of independent tasks. There are several
actions that can be done both from outside the
process and within the process that will affect
the whole process. In Linux, however, each of
these actions will only affect one task, leaving
the other tasks to continue without knowledge
of the event.

The actions that are of special concern are:

SignalsPOSIX states that all signals sent to
a process will be collected into a process-
wide set of pending signals, then delivered
to any thread that is not blocking that sig-

nal. Linux only supports signals that are
sent to a specific task. If that task has
blocked that particular signal, it may re-
main pending indefinitely.

Exit In POSIX, there are several actions that
can request the death of the entire process.
All threads are killed and the process exits
with a status indicating the cause of the
death. All of these actions in Linux will
only kill the specific task, leaving all other
tasks unaffected.

Suspend/ResumeCertain signals have the
default action of doing a suspend or re-
sume. In POSIX, this action is defined
to take effect on the entire process, which
is translated to include all threads in that
process. In Linux, the action only takes
effect on the task the signal was delivered
to.

ExecIn POSIX, the effect of the execve() sys-
tem call is to terminate all threads in the
process, throw away the address space,
and instantiate a new address space with
a single thread. In Linux, if there is
more than one task that shares the address
space, the task that calls execve() is de-
tached from the address space and has a
new one created. All other tasks sharing
that address space will continue to run.

4 Implementations of Multithread
Libraries

4.1 Threading Styles

Multithread libraries typically come in one of
three basic styles. Each has its advantages and
disadvantages.



Ottawa Linux Symposium 2002 333

4.1.1 M:1

The first style, M:1, implements all threads
in user space and appears to the kernel as s
single-threaded process. This style is the most
portable, in that it does not require any special
features from the underlying kernel. One draw-
back is that it requires that all blocking sys-
tem calls be emulated in the library via non-
blocking calls to the kernel. This emulation
adds significant overhead to system calls, in
particular most IO. There are also some block-
ing system calls that can not be emulated via
non-blocking calls. When these calls are used
the entire process blocks. This style also does
not allow the application to take advantage
of any multiprocessor scheduling, since to the
kernel scheduler it is still a single-threaded pro-
cess.

This style is primarily of historical interest.
Most current operating systems provide some
support for multithreading at the kernel level,
which provides improved performance.

4.1.2 1:1

The second style, 1:1, creates a kernel thread or
task for each application thread. This has the
advantage of being the simplest to implement
at the library level, but each thread created
becomes more expensive of kernel resources.
This style is also the most dependent on the
multithreading model of the underlying kernel.

There are some types of applications where this
style is desirable, primarily when the applica-
tion wants to create a small number of threads
that each act independently and spend much of
their time in runnable state.

4.1.3 M:N

The third style, M:N, provides the most flexi-
bility. It is like M:1 threading in that it does
not create a kernel thread for each applica-
tion thread. The library creates multiple ker-
nel threads, then schedules application threads
on top of them. Most M:N thread libraries will
dynamically allocate as many kernel threads as
it needs to service the application threads that
are actually runnable. This style is in some
ways more heavyweight in that scheduling is
occurring both in the kernel among the kernel
threads for the process and in the library for
the application threads, but it has the advantage
of not consuming kernel resources for the ap-
plication threads that are not actually runnable.
This style also provides significantly better per-
formance when threads in an application are
synchronizing with each other, ie taking lo-
cal mutexes. The library-level scheduler can
switch between threads much faster because it
doesn’t have to enter the kernel.

Most multithreaded application perform better
with this style, particularly applications that
create large numbers of threads that only run
sporadically.

4.2 Current Linux Thread Libraries

There have been multiple efforts to provide a
pthread-compliant library for Linux. Early on
in Linux’s history only M:1 thread libraries
were created, but were mostly abandoned as
Linux developed better multithreading support
at the kernel level.

The default library shipped with all the distri-
butions is currently LinuxThreads. It is sup-
ported by the same group that provides glibc.
The LinuxThreads library provides a pthread
API, but internally it is primarily a wrapper for
the Linux task model. It uses the 1:1 style,
creating a task for each application thread us-



Ottawa Linux Symposium 2002 334

ing clone() and sharing the address space, the
signal handlers, and the open files. This ap-
proach generally performs well, but the under-
lying differences from the POSIX thread model
are exposed to the application. Applications
that were coded to work with pthreads as spec-
ified by the standard may not work, and must
be ported.

There is a new pthread library under develop-
ment called NGPT. This library is based on
the GNU Pth library, which is an M:1 library.
NGPT extends Pth by using multiple Linux
tasks, thus creating an M:N library. It attempts
to preserve Pth’s pthread compatibility while
also using multiple Linux tasks for concur-
rency, but this effort is hampered by the under-
lying differences in the Linux threading model.
The NGPT library at present uses non-blocking
wrappers around blocking system calls to avoid
blocking in the kernel.

5 Linux Kernel Changes for
POSIX Compatibility

While it would be possible to emulate POSIX
compatibility in a library, it would be ex-
tremely painful in many areas. A much simpler
solution would be to add compatibility code to
the Linux kernel, either to provide compatible
behavior or provide hooks that would make it
easier for a library to provide it. In this sec-
tion we will describe some changes that make
POSIX compatibility feasible. Some have al-
ready been included, some have patches avail-
able, and some have not yet been addressed.
All the changes are intended to be optional,
only enabled by request from the application
or library. This would most likely be via addi-
tional flags to the clone() system call.

5.1 Thread Groups

One of the fundamental barriers to adding
POSIX compatibility to Linux has been that
Linux had no easy way to group all the tasks
together that are part of what POSIX would
call a process, and iterate through them. It was
possible to find all tasks with the same address
space, but only by looking at all tasks in the
system. This limited what could be added at
the kernel level.

This was addressed during the 2.4 development
cycle with the addition of a concept called a
’thread group’. There is a linked list of all tasks
that are part of the thread group, and there is
an ID that represents the group, called the tgid.
This ID is actually the pid of the first task in the
group (pid is the task ID assigned with a Linux
task), similar to the way sessions and process
groups work. This feature is enabled via a flag
to clone().

The task whose ID becomes the tgid is known
as the ’thread group leader’. This task takes
on special properties, since in most library im-
plementations it will be the initial task running
after exec(), and its ID is the one known to the
parent who originally invoked the application.

As part of the thread group change, the getpid()
system call was changed to return tgid instead
of pid. This means that all tasks in a thread
group will see the same pid. While this is cor-
rect for applications, pthread libraries will still
need to be able to get the actual pid of the task,
so the gettid() system call was added for them.

A corollary to the getpid() system call is getp-
pid(). At present it returns the pid of the task
that cloned() the task making the system call.
For POSIX compatibility it should return the
parent ID of the thread group leader.

While thread groups by itself only adds limited
functionality, it provides the grouping neces-



Ottawa Linux Symposium 2002 335

sary for other changes that will improve com-
patibility.

5.2 Signals

Signals have long been a difficult issue, be-
ginning with early versions of the UNIX sys-
tem. The question of how to handle signals in
a multithreaded process has been debated since
the early days of POSIX threading, and went
through extensive changes in various drafts of
the standard.

The kernel state maintained for a given sig-
nal consists of three pieces of information, the
signal handler, the blocked flag, and the pend-
ing flag. The signal handler is an address of a
user-level function to run when the signal is re-
ceived. Special values of the signal handler al-
low the application to specify default behavior
for that signal or to ignore it completely. The
blocked flag is a flag that can be set by the ap-
plication to temporarily prevent the signal from
being delivered. The pending flag is set when-
ever that signal is sent to the application, and
reset when the signal is actually delivered, ie
the handler is run or other action is taken.

Signal handlers in Linux can be either per-
process or per-task, controlled by a flag to
clone(). This allows POSIX compatibility for
handlers. POSIX specifies that the blocked flag
should be per-thread, so the existing Linux be-
havior of having blocked flags for each task is
compatible with POSIX.

The compatibility issue arises with the pend-
ing signal flag. POSIX states that signals
are sent to the entire process, which means a
thread context must be selected to run the han-
dler. POSIX specifies that the delivery code
must search the threads in the process and find
one that does not have that signal blocked.
If all threads are blocking that signal, it re-
mains pending until one thread unblocks it, at

which time that thread will run the handler. If
more than one thread is not blocking the signal,
POSIX does not specify which one will run the
handler.

In Linux, all signals are sent to a specific task.
Each task has its own pending signal flags, and
the flag for that signal will be set. If that task
has that signal blocked, it will remain pending
until the task unblocks it, even though there
may be other tasks in the process that do not
have it blocked.

It is possible to partially emulate POSIX be-
havior in a pthread library by providing a
complete signal layer, complete with its own
handler array, per-thread blocked masks, and
pending signal mask. This requires that the li-
brary register its own signal handler in the ker-
nel for all signals, and to not block signals at
the kernel level. The biggest problem with this
approach is the significant added complexity
and performance cost of duplicating the func-
tionality. There are also circumstances where
the application will still see interrupted system
calls when all threads are blocking a signal or
the signal is supposed to be ignored.

In support of the NGPT project I wrote a patch
that allows libraries to provide POSIX signal
emulation. The patch works in conjunction
with thread groups. When a signal arrives for
any task in a thread group, that signal is redi-
rected to the thread group leader. This allows
a pthread library to leave signals unblocked in
the thread group leader task, and receive all
signals directed at any task in the process. It
doest not directly support POSIX compatibil-
ity, but gives the library the tool it needs to pro-
vide its own compatibility.

The thread group leader patch has some draw-
backs of its own, however. It creates a bottle-
neck in an application with large numbers of
signals. It also still requires significant code in
the library to handle blocking signals for each



Ottawa Linux Symposium 2002 336

thread, ie if all threads block a signal, it still
needs to be blocked at the kernel level.

Another issue with this approach is that it
would make it more difficult to do a thin 1:1
pthread library, since it would still have to pro-
vide significant signal code in the library. A
better solution for this would be to actually add
a shareable structure to the kernel for pend-
ing signals, with the attendant code to check
all tasks in a thread group to see whether any
of them can receive the signal. This solution
would also address the bottleneck issue.

5.3 Credentials

Credentials are the collective identity associ-
ated with a process or task, ie the user ID, the
group ID, the list of groups, and the capabili-
ties. POSIX states that the credentials are per-
process, ie when one thread within the pro-
cess changes some part of the credentials, all
threads see the change. In Linux, the creden-
tials are per-task, so it’s possible to have two
tasks in a process running under different user
IDs, for example.

The simple solution to this is to change creden-
tials to be a shareable structure. This would
preserve existing behavior, but allow processes
that wish POSIX behavior to share credentials.

5.4 Semaphore Undo

Another resource that under POSIX is process-
wide is System V semaphores. This pri-
marily becomes an issue when an application
uses the undo feature. This feature will re-
set semaphores on process exit. In Linux, the
semaphore state is per-task, so when each task
exits it will undo the semaphore. POSIX pro-
cesses assume that the semaphore will continue
to maintain its state until the entire process ex-
its.

This problem is another one that can be solved
by sharing state between tasks when a flag is
passed to clone(). A patch for this exists, but
has not yet been accepted.

5.5 Process-wide Actions

There are some actions that POSIX defines to
be process-wide which under Linux are per-
task. Some of these actions are initiated from
inside the kernel and can not be detected and
emulated inside a library.

Exit A difficult compatibility issue is that of
exit. POSIX defines several actions that
can result in the entire process exiting, in-
cluding the exit() system call and default
actions for many signals. This process
exit should produce an exit status that can
be passed to a waiting parent. This means
that any thread in the process can cause
the entire process to exit and produce a
status back to a waiting parent.

The Linux behavior is dramatically differ-
ent. Each of these exit actions results in
the termination of a single task, leaving all
other tasks in the process running. If the
task is the initial one created by fork(), the
parent will receive its exit status and may
assume the process has exited when in fact
it is still running in other tasks.

Exec Under POSIX, an execve() system call
from any thread in a multithreaded pro-
cess will cause all other threads in that
process to terminate and the calling thread
will complete the exec. The entire address
space associated with that process will be
discarded, and a new one created.

In Linux, when a task calls execve(), it
is detached from the address space, then
a new address is created to complete the
exec. If any other task is using the old ad-
dress space it will continue to run.



Ottawa Linux Symposium 2002 337

Suspend/ResumeSome signals have the de-
fault action of initiating a suspend or a re-
sume. POSIX states that this will occur
on the entire process by suspending or re-
suming all threads in that process. Linux
only applies the suspend or resume to the
task receiving the signal and does not af-
fect any other task.

A possible solution for these would be a kernel
function that iterates through an entire thread
group and applies the requested action to each
task in that group. Special care would have to
be taken to preserve the proper exit status to
any waiting parent. Synchronizing all the tasks
in a thread group is expected to be a difficult
problem.

6 Conclusion

We have shown how POSIX threading uses a
different model than the Linux task model, and
how that affects pthread libraries on Linux. We
have also discussed some things that have been
and could be done to the Linux kernel to better
allow pthread libraries to emulate the POSIX
behavior. These changes could be added with-
out disrupting the current Linux task behav-
ior, allowing Linux to support both the POSIX
multithread model and its own cooperating task
model.

Lawyer Foo

This paper represents the views of the author,
and not the IBM Corporation.

IBM® is a registered trademark of International
Business Machines Corporation.

UNIX® is a registered trademark of The Open
Group.

POSIX® is a registered trademark of the IEEE.

Linux® is a registered trademark of Linus Tor-
valds.

Other company, product or service names may
be the trademarks or service marks of others.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


