
HPC Federated Cluster Administration with C3 v3.0

Brian Luethke and Stephen Scott

Abstract1

KEYWORDS: Cluster, Administration,
Federated-cluster, multi-cluster

While administrating TORC, HighTORC, and
the various other computation clusters at Oak
Ridge National Laboratory (ORNL), it quickly
became apparent that a solution for the admin-
istration of federated clusters, or “clusters of
clusters,” was needed. The few cluster tools
available when this work began could barely
manage a single cluster let alone a number of
clusters. They also required that the user be
directly logged onto a cluster machine. This
meant to administer ten clusters required that
the administrator login and repeat a task on
each of the clusters. This solution does not
scale and therefore is unacceptable for our en-
vironment. Thus, a solution was desperately
needed whereby an administrator could per-
form duplicate operations across multiple clus-
ters and portions thereof in a scalable and se-
cure fashion from a single location that may
not be directly logged onto the cluster being
administered. Thus the development of version
3.0 of the Cluster Command and Control (C3)
tool suite began.

1Research supported by the Mathematics, Informa-
tion and Computational Sciences Office, Office of Ad-
vanced Scientific Computing Research, Office of Sci-
ence, U. S. Department of Energy, under contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC.

The submitted manuscript has been authored by a
contractor of the U.S. Government under contract DE-
AC05-00OR22725. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or al-
low others to do so, for U.S. Government purposes.

C3 prior to version three required, as most tools
do, that one is physically logged into a clus-
ter in order to perform administration opera-
tions. The few existing tools that permit remote
administration of clusters were all web based,
therefore they suffered security problems and
set up hassles associated with installing and
maintaining a web server. What we tried to de-
sign is an easy to use command line interface
that is powerful enough to do most system ad-
ministrating jobs and secure. These tools also
needed to be useful to regular users in building
and maintaining their distributed applications.
C3 version 2.x already met those requirements
so we decided to emulate their functionality
while adding the ability to do this with mul-
tiple clusters. This paper describes the use of
the C3 3.0 tool suite.

1 Brief Description of Commands

Ten general use tools have been developed in
the effort thus far: cexec, cget, ckill, cpush,
cpushimage, crm, cname, cnum, clist, and
cshutdown. The cpushimage and cshutdown
are both system administrator tools that may
only be used by the root user. The other eight
tools may be employed by any cluster user for
both system and application level use.

The cexec command is the general utility tool
of the C3 suite in that it enables the execu-
tion of any command on each cluster node.
As such, cexec may be considered the cluster-
ized version of rsh/ssh[1]. A command string
passed to cexec is executed “as is” on each
node. This provides a great deal of flexibility

Ottawa Linux Symposium 2002 311

in both displaying the command output and ar-
guments passed in to each instruction.

The cget command will retrieve the given files
from each cluster node and deposit them in a
specified directory location on the local ma-
chine. Since all files will originally have the
same name, only from different nodes, an un-
derscore and the node’s IP or hostname and
cluster name are appended to each file name.
Whether the IP or hostname is appended de-
pends on which is specified in the cluster spec-
ification file. Note that cget operates only on
files and ignores subdirectories and symbolic
links

The ckill tool runs the standard Linux ‘kill’
command on each of the cluster nodes for a
specified process name. Unlike ‘kill’, ckill
must use the process name as the process ID
(PID) will most likely be different on the vari-
ous cluster nodes. The root user has the ability
to further indicate a specific user in addition
to process name. This enables root to kill a
specific user’s process by name and not affect
other processes with the same name but owned
by other users. Root may also use signals to
effectively do a broad based kill command.

The cpushimage enables a system administra-
tor logged in as root to push a cluster node
image across a specified set of cluster nodes
and optionally reboot those systems. This tool
is built upon and leverages the capabilities of
SystemImager[2]. While SystemImager pro-
vides much of the functionality in this area,
it fell short in that it did not enable a cluster-
wide push for image transfer. cpushimage es-
sentially pushes a request to each participat-
ing cluster node to pull an image from the im-
age server. Each node then invokes the pull
of the image from the cluster image server.
Of course, this description assumes that Sys-
temImager has already been employed to cap-
ture and store a cluster node image on the clus-

ter image server machine.

While cpushimage has the ability to push an
entire disk image to a cluster node, as an appli-
cation support tool, it is too cumbersome when
one simply desires to push files or directories
across the cluster. Furthermore, cpushimage
is only available to system administrators with
root level access. From these restrictions grew
the desire for a simplified cluster push tool,
cpush, providing the ability for any user to
push files and entire directories across cluster
nodes. cpush uses rsync[3] to push files from
server to cluster node.

crm is a clusterized version of the standard ‘rm’
delete file/directory command. The command
will go out across the cluster and attempt to
delete the file(s) or directory target in a given
location across all specified cluster nodes. By
default, no error is returned in the case of not
finding the target. The interactive mode of ’rm’
is not supplied in crm due to the potential prob-
lems associated with numerous nodes asking
for delete confirmation.

cshutdown is a cluster wide shutdown opera-
tion. cshutdown also has the ability to boot an
alternate lilo label for a single boot. This al-
lows you to test a new kernel without making
permanent changes or to boot into another op-
erating system temporarily.

The cname command returns the node number
based on the cluster and node name supplied
at the command line. Both this command and
the cnum command are useful when the node
names of your cluster and their positions in the
configuration file are not easily paired.

The cnum command returns the node name
based on the node number and cluster supplied
at the command line.

The clist command returns a list of clusters de-
fined in the cluster configuration file and the

Ottawa Linux Symposium 2002 312

type of cluster.

2 Installation and Configuration

C3 version 2.x used a list of nodes, one per
line, to define a cluster. While it is possible
to have several clusters in this list, each node
had to be visible to the machine that the C3
command was run from. Many clusters only
have the head node exposed with the individ-
ual compute nodes on a private network. A
list of nodes also does not allow the granular-
ity need to specify which cluster to execute the
command from. In version three you have the
concept of a cluster configuration block. Each
block defines a single cluster – its external en-
try point, an optional internal entry point (if the
nodes are on a private network) and then the
list of nodes. This type of cluster is called a di-
rect cluster – the configuration of the cluster is
known by the C3 command before runtime. It
is possible to have both a local cluster (the ma-
chine that the C3 command is run from is the
head node) and a remote cluster (the machine
that the command is run form is not the head
node) use a direct method of definition. One of
the advantages of this scheme is that it is pos-
sible to build both subsets and supersets of a
given cluster. The major drawback to using a
direct cluster block on a remote machine is that
the user must keep track of which machines are
offline and which are online – this can be a real
headache. C3 solves this problem with an in-
direct remote cluster. In this type of cluster
block the only thing the C3 command knows
is the external interface of a remote cluster.
When a C3 command is run it will execute that
command on the remote cluster using the de-
fault cluster configuration block (the first clus-
ter in the configuration file) on that cluster. In
this way a user using his or her desktop need
not know how many machines are currently on
each cluster they use, only that the head node
they have specified exists and has a working

copy of C3 version 3 on it. Below is an exam-
ple configuration file:

cluster home { #the cluster
named home.
The default cluster as it is the
first in the configuration file
node0 #the head node,
external name only
node[1-15] #the compute nodes
}

cluster TORC { #the cluster
named TORC
heimdal:node0 #the head node,
heimdal is
the external interface name
and node0 is
the internal interface name
node[1-64] #compute nodes
}

cluster htorc { #the cluster
named htorc
:htorc-00 #this is a indirect remote
#cluster, htorc-00 is the external
#interface name
}

3 Usage

In early versions of C3 we were tied to the im-
plementation of a PERL[4] package to parse
the command line. In version 3 we parse the
command line ourselves giving us much more
flexibility. When designing our API we tried
to stay as close to the respective Linux tool as
possible so that a user would have a minimum
amount of learning to do. We also now have the
ability to specify node ranges on the command
line. This is very useful for system administra-
tors for doing rolling upgrades. An example of
the new API that would execute hostname on
the default cluster would be as follows:

cexec hostname

Ottawa Linux Symposium 2002 313

Extending the paradigm to federated clusters is
just as simple, simply specify the clusters you
wish to execute on. To execute on the default
cluster and on nodes four through six and node
eight on the cluster named TORC would be as
follows:

cexec : TORC:4-6,8 ls -l

In the above example the command is cexec (a
general purpose exec, similar to a cluster wide
rsh) “:” signifies the default cluster, TORC:
signifies the cluster named TORC in the con-
figuration file, 4-6,8 is a node range, and ls –l is
the command to be run. There are several ways
the C3 tools were designed to be used. The
most basic way is from the command line, one
command at a time. Next is writing scripts us-
ing the C3 tools. And the third way is extend-
ing the C3 tools themselves for site-specific
functionality.

A good example of using the tools directly
on the command line is effecting rolling up-
grades. Using cpushimage and SystemImager
it is very simple to test out a cluster configu-
ration. A system administrator could build a
small test cluster using SystemImager to clone
the current cluster. After installing the soft-
ware and testing the new image you would find
it acceptable for roll-out. You would again
use SystemImager to retrieve the image from
the test cluster. Next, make sure you have a
backup image from the production cluster and
use cpushimage to test it on a small number
of machines. Assuming the image name is
new_image the sample command would look
like:

cpushimage -reboot :0-3 new_image

This pushes the new image to only the first
four nodes in the cluster and reboots the ma-
chine. This allows you easily test the new im-
age. Assuming it works, just type the same

command as before removing the :0-3 from the
command. That would push the image to every
node in the cluster. One of the nice features of
this is if you later find a problem with the new
image it is easy to roll back to an earlier image
that is known to work.

Using C3 from the command line is also useful
for a general user of a cluster. Using the indi-
rect remote cluster a user can develop an ap-
plication on their desktop and easily distribute
the binary to either a single cluster or multi-
ple clusters (via cpush). Using C3 in this way
makes a cluster a “black box” – that is the
user only has an indiscriminate resource out
there called a cluster. They do not need to
keep up with the addition of new nodes nor if
a few nodes have been taken offline. One of
the features of writing the C3 power tools in a
platform independent language is that the tools
only must run homogeneous within there self.
For example, take the above user who wishes
to push a binary to several clusters. One of
the clusters is an Intel PC cluster and the other
is an alpha cluster, both running Linux. Us-
ing the GNU gcc cross compiler the user has
compiled a binary for an Intel machine and a
binary for an alpha cluster (it is possible that
their desktop be a power macintosh). They are
using text data files so the data can be used
by all systems. Assuming that the head nodes
home directory is NFS mounted the following
commands would distribute the application, its
data, and run it:

cpush --head Intel: app.Intel app
cpush --head alpha: app.alpha app
cpush --head Intel: alpha: data.txt
cexec --head Intel: alpha: app

Notice that once the binaries are renamed when
pushed out to the cluster so that a single cexec
can start the application. This demonstrates
that the level of homogeneity required by each
command can be different. In the first two lines

Ottawa Linux Symposium 2002 314

each cluster must be separated but in the last
two command their actual architecture is irrel-
evant as the command being run is identical on
each cluster. This is a power paradigm for both
users and system-administrator.

The next way the C3 Power Tools can be used
is with scripting. Using scripting and image
management with C3 is useful for effecting
changes for a single user. With C3, once the
image is built, it is quite easy to temporarily
install a new image with differences ranging
from a slightly different communications pack-
age, to a different flavor of Linux one the fly.
For example we have a user who requires ker-
beros[5] to be installed in order to run their
code, we do not wish to support or maintain
this. It only a matter of an hour or so of time
(because of the size of the image being trans-
ferred, all the interaction required is the ini-
tial command run and after it is done checking
to make sure the machines rebooted) to switch
to a completely different image complete with
their data and special configuration fully oper-
ational. With scripting this can even be done
within a PBS script to change the image before
the run and to restore it to the default one after-
wards.

The next way the C3 can be used is in script-
ing. While administrating our clusters one of
the largest problems we encountered was gen-
erating and managing ssh keys when creating
a new user. Unfortunately it is very difficult
to write a tool that is a general purpose ssh
manager as the policies differ from site to site.
While this script is included with C3 it is not
part of C3 proper – it is in the examples direc-
tory due to the above problems. See figure 1 for
the example code. This script works by getting
the user-name and group of a new user from the
command and then calling the standard Linux
adduser binary. next it sets the password for
that user with the standard Linux password fa-
cility. Then, using C3 all the files that were

touched are sent to the cluster nodes, and the
any needed directories are created (/home is
NFS mounted so the directory only needs to
be created on the head node). Lastly the ssh-
keys are generated and the authorized_keys2
file is created (to allow users to ssh to one of the
compute nodes without the use of a password).
Where this script and C3 really show the power
available is in combining this method with a
command line. Assuming this script is located
in /usr/sbin a command as follows:

cexec -all /sbin/add_user zbml1 users

would add the user zbml1 with the group users
to every cluster that the machine this is exe-
cuted on has access to. Thus it is just as easy to
add a user to one cluster, as it is five. The only
redundant typing would be when the password
is generated but it is trivial to write an expect
script that handles this for you.

We also use the C3 tools to take the place of
some of the daemons we would probably run.
We do not run to run NTP[6] to keep our clus-
ter’s date in sync so we wrote our own bash
script that gets the current date on the head
node and then issues a cexec to set the clus-
ter nodes to the current date. The script is ran
once a day in a cron job to keep the cluster in
sync.

The third and most powerful way that the C3
Tools can be used is in extending them. When
we wrote C3 one of the focuses was to make
it modular. We chose Python[7] as a language
both because it is well known and common and
it is also very easy to write packages for. The
two main parts we separated out of the code
into packages are the command line parser and
the configuration file parser. This allows you
to add functionality such as hardware moni-
toring, BIOS maintenance, or any functionality
you would choose. Splitting the file parser into

Ottawa Linux Symposium 2002 315

its own package also allows a system adminis-
trator to both read the c3.conf file but to also
use it as a base. A nice example of this would
be setting a cron job that once a night reads the
c3.conf file and generates an up to date config-
uration file for PVM. The command line pack-
age lets a system administrator to create new
tools that have the look and feel of the C3 tools
making it easier on their users learning a new
command line API.

Included in C3 Version 3.1 is a “contrib” direc-
tory where the script mentioned here and other
are included. The scripts in this directory are
offered for use if your site is configured such
that they are applicable (such as the add_user
script assumes NFS mounted home directories
and use of ssh). These scripts are also intended
to be concrete examples of extending and using
C3. Also included are full package documen-
tation on the command line parsing object and
the c3.conf parser.

4 The Future

Versions 3.x of the C3 Power Tools offer both
a system-administrator and a general user great
power for managing both a single cluster and
multiple clusters. One of the areas that the cur-
rent versions of C3 are short in is scalability.
We are currently working on a version 4 of
the tools that take into account homogeneity in
clusters and their topography in order to scale
the commands into clusters with thousands of
nodes.

5 Conclusion

Version 3.0 of the C3 tools suite is a major
advance in the tools. The ability to admin-
istrate multiple clusters simultaneously from
anywhere you can access each head node is
very useful. In the same number of command

in C3 v2.7 it would take to add a user to a clus-
ter you can now add a user to any number of
clusters. Users who write a distributed applica-
tion that will run on several clusters now have
an easy way to distribute their application to
the clusters, even form their own desktop.

6 References

1. http:/www.openssh.org/

2. http://www.systemimager.org/

3. http://samba.anu.edu.au/rsync/

4. http://www.perl.com/

5. http://web.mit.edu/kerberos/www/

6. http://www.eecis.udel.edu/sim/

7. http://www.python.org/

8. http://www.csm.ornl.gov/torc/

Ottawa Linux Symposium 2002 316

Figure 1: add_user script
#!/usr/bin/env python2
###
#this script adds a user to the local cluster. It assumes that
#the home directory is nfs mounted and no others are. Put this in
#a well known location (/root/bin in our case) so it can be called
#with cexec. This is an example of using the C3 tools in a script
#to automate tasks on a cluster.
###
import os, sys
try: #get user name from command line

user_name = sys.argv[1]
except IndexError:

print "must supply a user name"
sys.exit()

try: #get group name from command line
user_group = sys.argv[2]

except IndexError:
print "must supply a group name"
sys.exit()

#adduser to local machine
os.system("adduser -g " + user_group + " -m " + user_name)
#set password for local user
os.system("/usr/bin/passwd " + user_name)
#distribute the password files and group files to compute nodes
os.system("/opt/c3-3/cpush /etc/passwd")
os.system("/opt/c3-3/cpush /etc/shadow")
os.system("/opt/c3-3/cpush /etc/group")
os.system("/opt/c3-3/cpush /etc/gshadow")
#create ssh directory
os.system("mkdir /home/" + user_name + "/.ssh")
#since the script is run by root change ownership of users file to that user
os.system("/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + "
/home/" + user_name)
#create users ssh-keys
os.system("/bin/su " + user_name + " -c \’/usr/bin/ssh-keygen -b 512 -t dsa
-N \"\" -f " + os.path.expanduser("~" + user_name) + "/.ssh/id_dsa\’")
#set up keys such that they can loginto nodes without a password
os.system("cp /home/" + user_name + "/.ssh/id_dsa.pub /home/" + user_name +
"/.ssh/authorized_keys2")
#make sure everything in their directory is owned by them

os.system("/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + "

/home/" + user_name)

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

