
Scalability of the Directory Entry Cache

Hanna Linder
IBM Linux Technology Center

hannal@us.ibm.com http://www.ibm.com/linux

Dipankar Sarma
IBM Linux Technology Center

dipankar@in.ibm.com http://www.ibm.com/linux

Maneesh Soni
IBM Linux Technology Center

maneesh@in.ibm.com http://www.ibm.com/linux

Abstract

This paper presents work that we have done
to improve scalability of the directory en-
try cache (dcache). We investigated scal-
ability problems resulting from many cache
lookups, global lock contention, a possibly
non-optimal eviction policy, and cacheline
bouncing due to global reference counters.
This paper provides an overview of solutions
we tried, such as fast path walking, utilizing the
read-copy update mutual exclusion mechanism
[McKenney], and lazy updating of the LRU list
of dentries. We conclude with performance re-
sults showing scalability improvements.

1 Introduction

Every file and directory has a path. The path
must be followed to do a lookup in the dcache
to get the correct inode number of the file. A
path such as /etc/passwd contains three den-
tries: ’/’, ’etc’, and ’passwd’. Each dentry in
a lookup path has a reference counter called
d_count, which is atomically incremented and
decremented as the dcache is being checked.

This keeps the dentry from being put on the
least recently used (LRU) list.

Currently, the dcache is protected by a single
global lock, dcache_lock. This lock is held
during lookup of dentries (d_lookup) as well
as all manipulations of the dentry cache and the
assorted lists that maintain hierarchies, aliases
and LRU entries. The global dcache_lock
seems to be an issue as the number of CPUs
increase. We experimented with various ways
to improve scaling the dentry cache.

2 Workload and Measures

We have used three main workloads for mea-
suring scaling of the dentry cache: dbench
[Pool] (with settings to avoid I/O), httperf
[Mosberger], profiles [Hawkes] of Linux(R)
kernel compiles, and lockmeter [Hawkes2].
The system used is an 8-way Pentium(R)-III
Xeon(TM) with 1MB L2 cache and 2 GB of
RAM (unless otherwise noted).



Ottawa Linux Symposium 2002 290

Figure 1: Baseline contention with dbench

2.1 Summary of Baseline Measurements

The baseline measurements show that
dcache_lock suffers from an increasing level
of contention for some benchmarks. Although
other locks such as the Big Kernel Lock (ker-
nel_flag) and lru_list_lock are much higher in
the total contention numbers, once those are
dealt with, dcache_lock will move up the list.

The following work focuses on ways to in-
crease scalability of the dcache. While looking
at the distribution of lock acquisitions for these
workloads, it becomes obvious that d_lookup()
is the routine to optimize since it is the routine
where the global lock is acquired most often.

2.2 Dbench Results of Baseline

The dbench results from our initial investiga-
tions [Sarma] show that lock utilization and
contention grow steadily with an increasing
number of CPUs. On an 8-way system run-
ning 2.4.16 kernel, dbench results show 5.3%
utilization with 16.5% contention on this lock
(see Figure 1). One significant observation
with the lockmeter output is that for this work-
load d_lookup() is the most common operation.

This snippet of lockmeter output for an 8-
way in Table 1 shows that 84% of the

time dcache_lock was acquired by d_lookup().
Out of about fifteen million holds of the
dcache_lock, d_lookup() comprised twelve
million of them. The simple explanation for
this is that d_lookup is the main point into the
dcache. It does the looping search to find the
child of the given parent dentry in the hash,
then atomically increments the d_count refer-
ence of the dentry before returning it, all while
the dcache_lock is held.

Apart from contention, a large number of ac-
quisitions of a global lock result in excessive
bouncing of the lock cacheline in SMP ma-
chines as the number of CPU’s increase. It is
important to reduce contention as well as uti-
lization of the global lock to achieve better per-
formance.

2.3 Httperf Results of Baseline

The httperf results from our initial investiga-
tion show a moderate utilization of 6.2% with
4.3% contention in an 8 CPU environment.

A snippet of lockmeter output showing the dis-
tribution of acquisition of dcache_lock appears
in Table 2.

This shows that 74% of the time the global
lock is acquired from d_lookup(). Again, out
of about twenty million acquisitions of the
dcache_lock, d_lookup took fifteen million of
them.

3 Avoiding Global Lock in
d_lookup()

In the paper by Paul E. McKenney, Dipankar
Sarma, and Orran Krieger [McKenney] they
described the Read Copy Update mutual exclu-
sion mechanism (RCU). To summarize, RCU
provides support for reading an item without
holding a lock and a special callback method



Ottawa Linux Symposium 2002 291

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
5.3 16.5 0.6 2787 5.0 3094 0.89 15069563 16.5 dcache_lock

0.01 10.9 0.2 7.5 5.3 116 0.00 119448 10.9 d_alloc+0x128
0.04 14.2 0.3 42 6.3 925 0.02 233290 14.2 d_delete+0x10
0.00 3.5 0.2 3.1 5.6 41 0.00 5050 3.5 d_delete+0x94
0.04 10.9 0.2 8.2 5.3 1269 0.01 352739 10.9 d_instantiate+0x1c
4.8 17.2 0.7 1362 4.8 2692 0.76 12725262 17.2 d_lookup+0x5c

0.02 11.0 0.9 22 5.4 1310 0.00 46800 11.0 d_move+0x38
0.01 5.1 0.2 37 4.2 84 0.00 119438 5.1 d_rehash+0x40
0.00 2.5 0.2 3.1 5.6 45 0.00 1680 2.5 d_unhash+0x34
0.31 15.0 0.4 64 6.2 3094 0.09 1384623 15.0 dput+0x30
0.00 0.82 0.4 4.2 6.4 6.4 0.00 122 0.82 link_path_walk+0x2a8
0.00 0 1.7 1.8 0 2 0 link_path_walk+0x618
0.00 6.4 1.9 832 5.0 49 0.00 3630 6.4 prune_dcache+0x14
0.04 9.4 1.0 1382 4.7 148 0.00 70974 9.4 prune_dcache+0x138
0.04 4.2 11 2787 3.8 24 0.00 6505 4.2 select_parent+0x20

Table 1: Lockmeter output for 8-way

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
6.2 4.3 0.8 390 2.7 579 0.12 20243025 4.3 dcache_lock

0.02 6.5 0.5 45 2.7 281 0.00 100031 6.5 d_alloc+0x128
0.01 4.9 0.2 4.6 2.9 58 0.00 100032 4.9 d_instantiate+0x1c
5.0 4.5 0.8 387 2.8 579 0.09 15009129 4.5 d_lookup+0x5c

0.02 5.8 0.6 34 3.1 45 0.00 100031 5.8 d_rehash+0x40
0.19 8.8 0.5 296 2.8 315 0.01 933218 8.8 dput+0x30
0.89 2.3 0.6 390 2.5 309 0.01 4000584 2.3 link_path_walk+0x2a8

Table 2: Lockmeter output, distribution of acquisition of dcache_lock



Ottawa Linux Symposium 2002 292

to update all references to the data when it is
written.

The dcache_lock is held while traversing the
d_hash list and while updating the Least Re-
cently Used (LRU) list if the dentry found by
d_lookup has a zero reference count. By using
RCU we can avoid dcache_lock while reading
d_hash list [1].

In this, we were able to do a d_hash lookup
lock free but had to take the dcache_lock while
updating the LRU list. The patch does provide
some decrease in lock hold time and contention
level. Table 3 shows lockmeter statistics on a
4-way SMP running the 2.4.16 kernel without
any patches while running dbench.

Table 4 is the same dbench run with this first
RCU patch applied.

Spinning on the dcache_lock via d_lookup
went from 12.7% to 10.6%. This demonstrated
that simply doing the lock-free lookup of the
d_hash was not enough because d_lookup()
also acquired the dcache_lock to update the
LRU list if the newly found dentry previ-
ously had a zero reference count. This of-
ten was the case with the dbench workload,
hence we ended up acquiring the lock after al-
most every lock-free lookup of the hash table
in d_lookup().

From there we decided we needed to avoid ac-
quiring dcache_lock so often. Therefore, we
tried different algorithms to get rid of this lock
from d_lookup(), such as a separate lock for
the LRU list.

4 Per Bucket Lock for d_hash and
d_lru Lists

The goal was to enable parallel d_lookup. We
had to abandon this approach due to race con-
ditions and complicated code. The problem

was due to dcache having several additional
lists apart from d_hash and d_lru that span
across buckts. They are d_alias, d_subdir,
and d_child, in order to modify or access any
of these lists we would need to take multiple
bucket locks. This resulted in a serious lock
ordering problem which turned out to be un-
workable [2].

5 Separate Lock for the LRU List

The motivation behind having a separate lock
for the d_lru list was that as d_lookup() only
updates the LRU list, we could relax con-
tention on the dcache_lock by introducing a
separate lock for LRU lists. This resulted in
most of the load being transferred to the LRU
list lock. Many routines held the dcache_lock
as well, such as prune_dcache, select_parent,
d_prune_aliases, because they read or write
other lists apart from the LRU list [3]. Results
appear in Table 5.

6 Lazy Updating of the LRU List

Given that lock-free traversal of hash chains
did not significantly decrease dcache_lock ac-
quisitions, we looked at the possibility of re-
moving dcache_lock acquisitions completely
from d_lookup(). After using RCU based lock-
free hash lookup, the only remaining use of the
dcache_lock in d_lookup() was to update the
LRU list.

Our next approach was to relax the rules of
an LRU list by allowing dentries with non-
zero reference counts to remain in the list for a
short delay before being removed in the update
[4]. The beneficial side-effect was that multi-
ple dentries could be processed during the up-
date. Previously, the global dcache_lock was
held then dropped for every single entry as
each dentry was removed from the list during



Ottawa Linux Symposium 2002 293

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
6.3 9.2 0.4 1659 3.4 1648 1.3 23182304 9.2 dcache_lock

0.01 10.1 0.2 7.6 2.9 45 0.01 96649 10.1 d_alloc+0x124
0.03 11.0 0.2 70 2.9 316 0.01 184690 11.0 d_delete+0x10
0.04 8.8 0.2 95 2.7 175 0.01 281340 8.8 d_instantiate+0x1c
3.8 12.7 0.5 123 3.4 1648 0.80 10074944 12.7 d_lookup+0x58

0.02 9.9 0.8 24 2.8 56 0.00 37050 9.9 d_move+0x34
0.01 3.6 0.2 32 3.4 58 0.00 96639 3.6 d_rehash+0x3c
0.00 4.2 0.2 1.5 2.7 9.4 0.00 1330 4.2 d_unhash+0x34
2.3 6.4 0.3 120 3.3 1379 0.48 12336769 6.4 dput+0x18

0.00 5.2 2.0 882 3.9 50 0.00 3006 5.2 prune_dcache+0x10
0.02 4.8 6.1 836 3.2 23 0.00 5280 4.8 select_parent+0x18

Table 3: Lockmeter statistics, kernel 2.4.16 (unpatched)

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
4.3 7.5 0.3 1436 3.0 1222 0.88 23103201 7.5 dcache_lock

0.01 5.6 0.2 18 2.3 54 0.00 104404 5.6 d_alloc+0x128
0.03 8.1 0.2 20 2.4 322 0.01 184690 8.1 d_delete+0x10
0.04 6.9 0.2 30 2.2 79 0.01 289095 6.9 d_instantiate+0x1c
2.1 10.6 0.3 491 3.0 1222 0.54 9961665 10.6 d_lookup+0xd8

0.02 7.4 0.7 4.8 2.3 209 0.00 37050 7.4 d_move+0x34
0.01 3.4 0.2 4.8 3.0 43 0.00 104394 3.4 d_rehash+0x3c
0.00 2.5 0.2 1.3 2.9 8.6 0.00 1330 2.5 d_unhash+0x34
2.0 5.1 0.2 108 3.0 1080 0.32 12342240 5.1 dput+0x18

0.04 3.2 0.9 1436 3.1 74 0.00 65770 3.2 prune_dcache+0x140
0.02 4.1 6.6 926 2.7 8.3 0.00 5275 4.1 select_parent+0x18

Table 4: Lockmeter statistics, first RCU patch

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
3.7 5.7 0.3 1475 3.0 1551 0.63 22434872 5.7 d_lru_lock
1.7 7.9 0.3 90 3.1 1489 0.39 9956382 7.9 d_lookup+0xc8
2.0 3.9 0.2 144 3.0 1551 0.23 12346145 3.9 dput+0x18

0.04 2.8 0.5 22 3.5 79 0.00 127045 2.8 prune_dcache+0x150
0.03 3.6 9.2 1475 3.1 112 0.00 5300 3.6 select_parent+0x18
0.26 0.14 0.2 1474 1.7 204 0.00 1915750 0.14 dcache_lock
0.01 0.51 0.1 1.9 1.8 204 0.00 109702 0.51 d_alloc+0x124
0.02 0.15 0.2 9.3 2.6 169 0.00 184690 0.15 d_delete+0x10
0.03 0.16 0.1 11 1.6 57 0.00 294393 0.16 d_instantiate+0x1c
0.02 0.12 0.7 27 1.3 5.5 0.00 37050 0.12 d_move+0x34
0.01 0.12 0.1 61 1.7 3.5 0.00 109692 0.12 d_rehash+0x3c
0.00 0.23 0.1 1.6 1.1 1.7 0.00 1330 0.23 d_unhash+0x34
0.14 0.09 0.2 38 1.5 141 0.00 1099648 0.09 dput+0x4c
0.01 0.26 0.2 18 1.4 5.5 0.00 69655 0.26 prune_dcache+0x7c
0.03 0.26 8.7 1474 1.2 2.6 0.00 5300 0.26 select_parent+0x24

Table 5: Lockmeter statistics with separate lock for LRU List



Ottawa Linux Symposium 2002 294

the update.

To implement this new functionality, we in-
troduced another flag (DCACHE_UNLINK) to
mark the dentry for deferred freeing and a per-
dentry lock (d_lock) in struct dentry to main-
tain consistency between the flag and the ref-
erence counter (d_count). For all other lists in
struct dentry, the reference counter continued
to provide mutual exclusion.

Allowing additional dentries to remain in the
lru_list could lead to an unusually large num-
ber of dentries, causing a lengthy deletion pro-
cess during updates. We proposed two differ-
ent approaches to circumvent this problem:

1. Use a timer to kick off periodic updates.

2. Periodically update the d_lru list while al-
ready traversing it.

6.1 Timer Based Lazy Updating

A timer was used to remove the refer-
enced dentries from the d_lru list so that
it would be kept manageable. To take the
dcache_lock from the timer handler we had
to use spin_lock_bh() and spin_unlock_bh()
for dcache_lock. This created problems with
cyclic dependencies in dcache.h.

This approach did not prove to be any better
than the non-timer approach. However, the
patch is worth looking at as proper tuning of
timer frequency may give better results [5].

6.2 Periodic Updates During Traversal

The d_lru list is made up to date through se-
lect_parent, prune_dcache and dput. While
traversing the d_lru list in these routines, the
dentries with non-zero reference counts are re-
moved. This is the solution we chose to include
in the lazy LRU patches due to its simplicity.

6.3 Notes on Lazy LRU Implementation

Per dentry lock(d_lock) is needed to protect the
d_vfs_flags and d_count in d_lookup. There
is very little contention on the per dentry lock,
so this will not lead to a bottleneck. With this
patch the DCACHE_REFERENCED flag does
more work. It is being used to indicate the den-
tries which are not supposed to be on the d_lru
list. Right now apart from d_lookup, the per
dentry lock (d_lock) is used whereever d_count
or d_vfs_flags are read or modified. It is prob-
ably possible to tune the code more and relax
the locking in some cases.

We have created a new function in-
clude/linux/dcache.h: dentry_unhash() to
delete a dentry from the d_hash list. It sets the
DCACHE_UNLINK bit in d_vfs_flags, which
marks the dentry for deferred freeing.

As we do lockless lookup, rmb() is used
in d_lookup to avoid out of order reads for
d_nexthash and wmb() is used in d_unhash to
make sure that d_vfs_flags and d_nexthash()
are updated before unlinking the dentry from
the d_hash chain.

Every dget() marks the dentry as referenced by
setting DCACHE_UNLINK bit in d_vfs_flags.
This forced us to hold the per dentry lock in
dget. Therefore, dget_locked is not needed.

6.4 Lazy LRU Patch Results

Contention for the dcache_lock reduced in all
routines. However, the routines: prune_dcache
and select_parent take more time because the
d_lru list is longer. This is acceptable as both
routines are not in the critical path.

We ran dbench and httperf to measure the ef-
fect of lazy dcache and the results were very
good. By doing a lock-free d_lookup(), we
were able to substantially cut down on the
number of dcache_lock acquisitions. This re-



Ottawa Linux Symposium 2002 295

Figure 2: Lazy LRU contention from dbench

Figure 3: Lazy LRU dcache_lock utilization
from dbench

sulted in substantially decreased contention as
well as lock utilizations. Results appear in Ta-
ble 6.

6.5 Dbench Results of Lazy LRU

dbench results showed that lock utilization and
contention levels remain flat with lazy dcache
as opposed to steadily increasing with the base-
line kernel. So for 8 processors, contention
level is 0.95% as opposed to 16.5% for the
baseline (2.4.16) kernel.

One significant observation is that maximum
lock hold time for prune_dcache() and se-
lect_parent() are high for this algorithm. How-

Figure 4: Lazy LRU contention from httperf

ever, these are not frequent operations for this
workload. Although, this latency could be an
issue with real time applications.

A comparison of baseline (2.4.16) kernel and
lazy dcache contention and utilization while
running dbench can be seen in Figures 2 and
3.

The throughput results show marginal differ-
ences (statistically insignificant) for up to 4
CPUs, of 1% (statistically significant) on 8
CPUs. There is no performance regression in
the lower end and the gains are small in the
higher end.

6.6 Httperf Results of Lazy LRU

The httperf results showed a similar decrease
in lock contention and lock utilization. With 8
CPUs, it showed significantly less contention.
See Table 7.

A comparison of the baseline (2.4.16) ker-
nel and lazy dcache contention and utilization
while running dbench can be seen in Figures 4
and 5.

The results of httperf (replies/sec for fixed
connection rate) showed statisticially insignif-
icant differences between base 2.4.16 and lazy
dcache kernels.



Ottawa Linux Symposium 2002 296

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
0.89 0.95 0.6 6516 19 6411 0.03 2330127 0.95 dcache_lock
0.02 1.7 0.2 20 17 2019 0.00 116150 1.7 d_alloc+0x144
0.03 0.42 0.2 49 35 6033 0.00 233290 0.42 d_delete+0x10
0.00 0.14 0.8 12 3.4 8.5 0.00 5050 0.14 d_delete+0x98
0.03 0.40 0.1 32 34 5251 0.00 349441 0.40 d_instantiate+0x1c
0.05 0.30 1.7 44 22 1770 0.00 46800 0.30 d_move+0x38
0.01 0.16 0.1 21 4.5 334 0.00 116140 0.16 d_rehash+0x40
0.00 0.65 0.7 3.7 8.4 57 0.00 1680 0.65 d_vfs_unhash+0x44
0.56 1.1 0.7 84 18 6411 0.02 1383859 1.1 dput+0x30
0.00 0.88 0.4 2.3 1.3 1.3 0.00 114 0.88 link_path_walk+0x2d8
0.01 4.4 4.3 6516 4.8 32 0.00 3566 4.4 prune_dcache+0x14
0.07 2.3 1.8 6289 4.4 718 0.00 67591 2.3 prune_dcache+0x150
0.11 0.79 29 4992 28 1116 0.00 6444 0.79 select_parent+0x24

Table 6: The effect of lazy dcache

SPINLOCKS HOLD WAIT
UTIL CON MEAN MAX MEAN MAX CPU TOTAL SPIN NAME

(%) (%) (µs) (µs) (µs) (µs) (%) (%)
1.4 0.92 0.7 577 2.2 617 0.00 4821866 0.92 dcache_lock

0.02 2.2 0.6 30 1.9 7.8 0.00 100031 2.2 d_alloc+0x144
0.01 1.7 0.2 12 2.2 9.2 0.00 100032 1.7 d_instantiate+0x1c
0.03 1.5 0.7 9.2 2.3 10 0.00 100031 1.5 d_rehash+0x40
0.24 2.1 1.2 577 1.9 283 0.00 521329 2.1 dput+0x30
1.1 0.70 0.7 366 2.4 617 0.00 4000443 0.70 link_path_walk+0x2d8

Table 7: Results with 8 CPUs



Ottawa Linux Symposium 2002 297

Figure 5: Lazy LRU dcache_lock utilization
from httperf

7 Avoiding Cacheline Bouncing of
d_count

7.1 fast_walk()

On SMP systems and even moreso on some
NUMA architectures, repeated operations on
the same global variable can cause excessive
cacheline bouncing. This is due to the entire
cacheline being read into each CPU’s hardware
cache while it is being used. For some common
directories found in many paths such as ’/’ or
’usr’, this exessive cacheline bouncing will be
triggered.

Alexander Viro recommended a possible solu-
tion that we implemented. He proposed not
incrementing and decrementing the reference
counter for dentries that are already in the den-
try cache. Instead, hold the dcache_lock to
keep them from being deleted.

We used the path_lookup function to imple-
ment this change [6]:

Before:
read_lock(&current->fs->lock);
nd->mnt =

mntget(current->fs->pwdmnt);
nd->dentry =

dget(current->fs->pwd);
read_unlock(&current->fs->lock);

}
return (path_walk(name, nd));

After:
read_lock(&current->fs->lock);
spin_lock(&dcache_lock);
nd->mnt = current->fs->pwdmnt;
nd->dentry = current->fs->pwd;
read_unlock(&current->fs->lock);

}
nd->flags |= LOOKUP_LOCKED;
return (path_walk(name, nd));

The atomic increment of d_count is all that
dget and mntget do.

The rest of the changes were in path_walk (im-
plemented by link_path_walk). While the den-
try is found in the cache, just keep walking the
path. If a dentry is not in the cache, then incre-
ment the d_count to keep it synchronized and
drop the dcache_lock, and then simply con-
tinue. For coding simplicity, the dcache_lock
is always dropped in the path_walk code in-
stead of returned to path_lookup to be dropped.

This patch has been accepted by Linus Tor-
valds starting with the 2.5.11 kernel.

7.2 path_lookup()

We started with a simple cleanup of repli-
cated code involving path_init, path_walk, and
__user_walk [7]. There were sixteen occur-
rences of the following:

if(path_init(x))
error = path_walk(x)

Which changed to one call:
error = path_lookup(x)

In addition there were six
occurrences of the following:

a = getname(b)
if(error)

return
path_lookup(a)



Ottawa Linux Symposium 2002 298

Figure 6: FastWalk increases dbench through-
put

putname(a)
which changed to an existing call:

error = __user_walk(b)

This patch has been accepted by Alan Cox
starting in 2.4.19-pre5-ac2. Marcelo has not
merged this patch into mainline 2.4 as of this
writing.

7.3 Fast Path Walking Results

7.4 16-way NUMA Results of Fast Walk

Previously, we mentioned d_lookup was the
main user of dcache_lock. This is especially
noticeable on a 16-way NUMA system. Mar-
tin Bligh, in attempting to get the fastest kernel
compile, applied this patch on top of a few oth-
ers [Bligh]. Not only did it reduce time spent
spinning on the dcache_lock, it decreased total
kernel compile time by 2.5%.

Following is a profile of kernel duringmake
-j32 bzImage on a 16-way NUMA system.
This shows an almost 50% reduction in time
spinning on the dcache_lock.

Kernel compile time is now
23.6 seconds.

Here are the top 10 elements
of profile before and after
your patch (left hand column
is the number of ticks spent
in each function).

Before:

22086 total 0.0236
9953 default_idle 191.4038
2874 _text_lock_swap 53.2222
1616 _text_lock_dcache 4.6304

748 lru_cache_add 8.1304
605 d_lookup 2.1920
576 do_anonymous_page 1.7349
511 do_generic_file_read 0.4595
484 lru_cache_del 22.0000
449 __free_pages_ok 0.8569
307 atomic_dec_and_lock 4.2639

After:

21439 total 0.0228
9112 default_idle 175.2308
3364 _text_lock_swap 62.2963

790 lru_cache_add 8.5870
750 _text_lock_namei 0.7184
587 do_anonymous_page 1.7681
572 lru_cache_del 26.0000
569 do_generic_file_read 0.5117
510 __free_pages_ok 0.9733
421 _text_lock_dec_and_lock 17.5417
318 _text_lock_read_write 2.6949

...

129 _text_lock_dcache 0.3696

8 Conclusions

This paper has demonstrated performance im-
provements of the dcache via the fast path
walking patches and the lazy updating of the
LRU patches. We are working with the VFS
and kernel maintainers to get these patches ac-
cepted.

Although the dcache continues to scale, there
is more work to be done, much of it happening
as this is being written.



Ottawa Linux Symposium 2002 299

9 Availability of Referenced
Patches

As of now, all patches have been tested on ext2,
ext3, JFS, and /proc filesystem. Our goal was
to experiment with dcache, extending it for use
with other filesystems, this is in the pipleline.

dcache patches can be found on Source-
Forge.net under the Linux Scalability Effort
project page.

[1] Lockfree read of d_hash
http://prdownloads.sf.net/lse

/dcache_rcu-2.4.10-01.patch

[2] Per Bucket Lock for d_hash and d_lru
http://prdownloads.sf.net/lse

/dcache_rcu-bucket-2.4.16-05.patch

[3] Separate lock for the LRU list
http://prdownloads.sf.net/lse

/dcache_rcu-lru_lock-2.4.16-02.patch

[4] Lazy LRU
http://prdownloads.sf.net/lse

/dcache_rcu-lazy_lru-2.4.17-06.patch

[5] Lazy LRU updating via timer
http://prdownloads.sf.net/lse

/dcache_rcu-lazy_lru-timer-2.4.16-04.patch

[6] Fast Path Walking
http://prdownloads.sf.net/lse

/fast_walkA1-2.5.10.patch

[7] Path walking code cleanup
http://prdownloads.sf.net/lse

/path_lookupA1-2.4.17.patch

10 Acknowledgements

Alexander Viro has been a tremendous help
to us and we thank him for his input and all

his hard work. SourceForge.net for support-
ing Open Source development. Paul Menage
for helping to debug. Martin Bligh for running
the NUMA tests. Hans-Joachim Tannenberger,
our manager. International Business Machines
Corporation and its Linux Technology Center.
This work represents the view of the authors
and does not necessarily represent the view of
IBM.

References

[Sarma] Dipankar Sarma, Maneesh Soni
Scaling the dentry cache
http://lse.sf.net/locking

/dcache/dcache.html

[McKenney] Paul E. McKenney, Dipankar
Sarma, and Orran Krieger,Read-Copy
Update

[Mosberger] David Mosberger, Tai Lin,
httperf: A tool for measuring web server
performance.Hewlett-Packard Inc.
Research Labs.
http://www.hpl.hp.com/personal

/David_Mosberger/httperf.html

[Hawkes] John HawkeskernprofSilicon
Graphics Inc.http://oss.sgi.com

/projects/kernprof

[Hawkes2] John HawkeslockmeterSilicon
Graphics Inc.http://oss.sgi.com

/projects/lockmeter

[Pool] Martin PooldbenchSamba.org

[Bligh] Martin J. Bligh’s 23 second kernel
compile (aka which patches help
scalibility on NUMA),
linux-kernel@vger.kernel.org, March 8,
2002.
http://marc.theaimsgroup.com

/?l=linux-kernel&m=101565828617899&w=2 .



Ottawa Linux Symposium 2002 300

11 Trademarks

IBM is a registered trademark of International
Business Machines Corporation in the United
States, other countries, or both.

Other company, product or service names may
be trademarks or service marks of others.

Linux is a registered trademark of Linus Tor-
valds.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


