
Security Policy Generation through Package
Management

Charles Levert
Open Systems Lab
Ericsson Research
8400 Décarie Blvd.

TMR (Qc) Canada, H4P 2N2

Charles.Levert@ericsson.ca

Michel Dagenais
Dept. of Computer Eng.

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Qc) Canada, H3C 3A7

Michel.Dagenais@polymtl.ca

Abstract

Generation and maintenance of security poli-
cies is too complex and needs simplification for
it to be widely adopted and thus truly make a
difference in delivering the promise of more se-
cure computing systems (rather than just being
ignored by administrators).

In practice, one of the great obstacles to the
adoption of security measures in system soft-
ware is the complexity of configuration that it
entails. Yet, information captured by software
package management systems is mostly not re-
layed to security configuration.

This paper covers the investigation to:

• Identify useful information already coded
in packages from various package man-
agement systems (RPM, dpkg), as well as
translation mechanisms to reuse this infor-
mation.

• Identify missing information that would
best be specified by the package integra-
tor and included in each package.

• Identify the remaining information that is
mostly site-specific and that would best be
specified by a local administrator.

• Prototype the coding of the resulting de-
sign ideas.

The approach taken follows these principles:
simplicity of design, best security practices as
default behavior (i.e., no or minimal configura-
tion/specification required, use of common pat-
terns), flexibility, and least privilege (at each
phase: installation, configuration, activation,
and execution). It builds on existing parts of
the Linux system landscape, without imposing
a total revolution: package management sys-
tems, the init process and init script system, file
system standards and file placement conven-
tions, as well as current security efforts such as
SE Linux (to express and enforce the policy).

1 Introduction

“Complexity is the worst enemy of
security.” [18]

A package management system provides a
structured way to install and de-install software
on a computer system. It maintains a database
that accounts for (ideally) all files that are not
user data on the system. Package management
really came of age with operating systems built



Ottawa Linux Symposium 2002 275

around the Linux kernel, although other sys-
tems with less functionalities, such as thepkg
system available on Solaris, predate them.

A security policy is an explicit set of rules that
govern (the configurable part of) the behavior
of a system’s security features.

The currently unresolved problem that is the
subject of this paper is the following. Soft-
ware package management systems, such as
RPM, already capture much information about
the nature of the files that make up a package
and about the interactions of a package with
other packages, yet this information is mostly
not relayed to security configuration. It is quite
possible that the complexity of configuration
stems from the current requirement to specify,
by hand, configuration information that is re-
dundant with what could already be gleaned
from packaging information.

Specific parts of the configuration informa-
tion naturally correspond to the software itself,
other parts to its inclusion via a package in an
operating system, and yet other parts to a site-
local installation. Currently, in the Linux and
open source software world, too much of this
configuration is unnaturally pushed to the local
installation and its human manager. Since se-
curity configuration information is not strictly
needed for software to perform its main task,
it is often left unspecified, which in practice
leads to a wide open system from a security
standpoint.

It is assumed that the roles of system ad-
ministrator and security administrator are dis-
tinct. Hence, the responsibilities for each of
these roles should, as much as possible, cen-
ter around the very nature of each. For exam-
ple, software installation by itself should not
grant the necessary privileges to activate ser-
vices with a security impact. Conversely, se-
curity administration should not be concerned
with the cumbersome details of software instal-

lation. In practice, total separation between the
two roles may be impossible. However, there is
still a gain in security from attempting to sep-
arate the two, if only because the human be-
ings that assume these roles are better sensibi-
lized about the responsibility and possible con-
sequences for every action they take.

Note that this paper is not about packaging a
security framework in itself. This other impor-
tant issue is being addressed elsewhere [4].

This paper is organized as follows. The first
few sections review existing parts of Linux sys-
tems that are pertinent to our endeavor. Sec-
tion 2 reviews pertinent features of package
management systems. Section 3 reviews exist-
ing execution control schemes for server pro-
cesses. Section 4 reviews file system standards
and file placement conventions. Section 5 re-
views how existing security frameworks are
configured. The remaining sections explore
how we approach the problem stated in this
introduction. Section 6 exposes proposed ad-
ditions to per-package information. Section 7
then does the same for site-specific informa-
tion. Section 8 suggests modifications to exist-
ing software. Finally, Section 9 covers a proto-
type implementation.

This work is done in support of the develop-
ment of the Distributed Security Infrastructure
(DSI) [17, 20] open-source effort that is tar-
geted for use in carrier-class (telecom) clusters.

1.1 Basic Principles

• Simplicity. All design and code, whether
they implement security or non-security
features, contribute to the total security of
a product. Security vulnerabilities creep
in with ordinary bugs when design or code
are not produced and then verified (au-
dited) with a security-minded approach.
By far the best way to ease this process



Ottawa Linux Symposium 2002 276

is to keep things as simple as possible:
to have design and code that do only one
thing at once, to limit the size and num-
ber of functions and modules, to specify
things in only one place, etc. This ap-
plies to the definition of a security policy
framework.

• Default behavior. Whenever possible, no
explicit security policy rule should have to
be specified when a situation is the most
typical one. Furthermore, custom startup
scripts for server programs with typical
behavior should not have to be provided.
Good practices, from a security stand-
point, should be used as default. On the
other hand, bad practices should require
explicit manual configuration from the se-
curity administrator, so as to discourage
them. Security relevant effects (e.g., per-
mission modifications) should be made to
be the result of existing actions when that
is what one would expect from these ac-
tions (e.g., service activation).

• Flexibility. If a system prevents its users
from accomplishing their tasks, it won’t
be used. For the security features of a sys-
tem, it means being turned off, which can-
cels out all their usefulness. Therefore,
there must always be a way to specify be-
havior that deviates from the default.

Lack of flexibility can also impose an
abrupt transition from an old way of do-
ing things to a new one. This is turn
can cause this new way to never take off
the ground. Deployment of package man-
agers on Linux systems is pervasive. For
the security related package management
changes that will be advocated later in this
document to be adopted, they must ac-
count for flexibility.

• Least privilege. The different tasks
that are accomplished in relation to

a given software package each require
their own minimal set of security priv-
ileges. These tasks (or phases of sys-
tem activity) include: installation/De-
installation/upgrade, configuration, ser-
vice assignment/activation, and regular
use/execution.

2 Features of Existing Package
Management Systems

Package management systems already carry in-
formation about their content (installed files,
mainly) that can be relevant to the generation
of a security policy. Although several package
managers are considered in this section, most
of the rest of this paper will focus more on
RPM.

2.1 Red Hat Package Manager (RPM)

RPM [13] is used by Red Hat distributions,
as well as others such as SuSE and Man-
drake. All information specified by the main-
tainer of an RPM package is included in a
package .spec file inside the.src.rpm
source version of the package. Configuration
files can be explicitly designated as such in the
.spec file of a package. There are several
possible declarations (or directives, or file at-
tributes):

• The%config directive is used to flag the
specified file as being a configuration file.

• %config(missingok) indicates that
the file need not exist on the installed
machine. It is frequently used for files
like /etc/rc.d/rc2.d/S55named
where the existence of the symbolic link
is part of the configuration in%post , and
the file may need to be removed when the



Ottawa Linux Symposium 2002 277

package is removed. The file is not re-
quired to exist at either install or de-install
time.

• %config(noreplace) indicates that
the file in the package should be installed
with extension.rpmnew if there is al-
ready a modified file with the same name
on the installed machine.

(Parts of these descriptions are plain transcripts
from [1].)

There is also the%ghost file attribute. It in-
dicates that the file is not to be included in the
package. It is typically used when the attributes
of the file are important while the contents is
not (e.g., a log file).

The package format itself is a binary that can
be handled using therpm library (and the
include file <rpm/rpmlib.h> ). It begins
with a header composed of several tag-and-
value pairs. Headers tags are 32-bit integers
(RPMTAG_*), so extensions should be possi-
ble. File tags (RPMFILE_* ) appear as indi-
vidual bits in an integer, so extensions should
also be possible, but there are much less free
bits available and conflicts are likely with fu-
ture versions.

Each package has the opportunity to provide
various scripts to be run before and after the
installation and de-installation steps.

2.2 Debian’s dpkg

Under the Debian Packaging scheme, bi-
nary packages are distributed in a single file
with a .deb extension. This file is an
ar archive that itself contains a file named
control.tar.gz . This file is in turn an
archive that contains plain text files, including
one namedcontrol and possibly one named
package .conffiles . This last file con-

tains a list of installed files, one per line, that
are configuration files.

The specification for the.deb file allows for
the future inclusion of new members and ex-
plicitly defines the behavior that current pro-
grams that manipulates those files should take
in order to maintain backward and forward
compatibility. This makes it easier to add fea-
tures to dpkg while allowing for a smoother
transition.

As for RPM, each package has the opportunity
to provide various scripts to be run before and
after the installation and de-installation steps.

2.3 OpenPKG

OpenPKG [6] is somewhat a clone of RPM. It
targets systems that are not Linux based such as
Solaris and FreeBSD, as well as Debian Linux.
Support for some.spec tags has been left out,
but that does not include any of the tags that
are of interest in RPM for the purpose of this
investigation.

OpenPKG otherwise includes as an extension
an “rc script” that provides centralized appli-
cation control.

3 Existing Execution Control
Schemes for Server Processes

Most Linux distributions rely on an execu-
tion control scheme for server processes that
is inherited from System V Unix. Under that
scheme, the system operates at any given time
under a specific run level, which is repre-
sented by a small integer that takes its value
from a predefined set of values with specific
meanings. Each run level defines which ser-
vices should be activated and which should
not. Each service is expected to provide a
script that can be instructed to start the ser-



Ottawa Linux Symposium 2002 278

vice, to stop it, and possibly to inquire about
the current status of the service, to restart it,
etc. Each script also usually provide sug-
gested run levels under which the service
should run, a 2-digit sequence number for ser-
vice startup, and a 2-digit sequence number
for service shutdown. These are provided un-
der achkconfig: field that is located in
a commented-out line at the beginning of the
script. Every time the run level changes, ser-
vice are started and stopped in the order that
is defined by those sequence numbers. (Often,
both sequence numbers are chosen such that
they add up to 100, so that shutdown is done in
the reverse order as startup). Thechkconfig
utility command is used to configure the activa-
tion of services at various run levels. To facili-
tate writing these scripts, commonly used shell
functions are available from a single file that
can be sourced. There is no default behavior
facility that would prevent having to provide
these scripts and their suggested information,
even for simple services that fit a common pat-
tern.

These scripts are usually stored in the
/etc/rc.d/init.d or /etc/init.d
directory.

As these scripts are provided by the package
that implements a given service, they are re-
lated to package management. An init script is
not always provided by the author of the soft-
ware that is started by the script. Indeed, this
software may have initially been targeted at an-
other type of system, such as BSD, that does
not rely on these scripts. In such a case, the
init script for that software is contributed by the
distributor or third-party packager.

At this point in time, there is no strong co-
ordination between the various distributors as
to the meaning of the various run level val-
ues, the choice of sequence numbers, the utility
shell functions that are provided, or even the

instructions beyond “start” and “stop” that can
be given to the scripts. As a result, the scripts
for the same service that come with different
distributions (e.g., Red Hat and SuSE) will not
be compatible, and hence the packages them-
selves won’t be compatible (even if they agree
to use the same dynamic libraries and file loca-
tions).

The Linux Standard Base (LSB) effort [11]
now attempts to standardize many aspects of
system initialization in general, init scripts in
particular. The LSB standardizes run level def-
initions and init script actions. It also intro-
duces a smarter way to determine the order
in which the scripts should be run when the
run level changes. It is based on “Provides: ”
and “Required-*: ” declarations, and the new
notion of facility names that refer to generic
services rather than specific ones provided by
a package. Some commonly used functions
and the location of the file that scripts should
source has also been standardize. A few other
details are standardized by LSB, but they are
not related to security. The recommendations
of the current version of the standard, 1.1.0, are
not currently implemented by major distribu-
tors such as Red Hat.

The Linuxconf configuration and activation
system [8] adds a few conventions for init
scripts. It supports the following information
fields: autoreload, processname, pidfile, con-
fig, probe, description, and override [9]. Note
that the config field is then another, redundant
way in which configuration files are explicitly
identified to the system (see Section 2).

This init scripts way of doing service startup
and shutdown is also beginning to show its
age. For instance, there is now a need for tight
packet filtering rules that need to be changed
dynamically at service startup and shutdown.
This information is currently not provided in
the package, be it in the startup script or else-



Ottawa Linux Symposium 2002 279

where.

Moreover, it is less than obvious that the
init script provided with a package should be
trusted to actually perform a stop order. If this
is a security concern, a framework needs to be
devised to make sure that the service is actually
stopped, and perhaps even that its permissions
are revoked.

The init process also has the capability to di-
rectly launch services. It has the additional
ability to monitor and restart them if neces-
sary. Behavior of the init process is configured
through the/etc/inittab file. Typical ser-
vices that are put under init control include:

• getty processes that are started on con-
soles and serial lines to display a login
prompt;

• the xdm process that is started on an X
Window System console.

The init process is what actually manages the
run level on a Linux system.

On Debian, dpkg includes a wrapper named
start-stop-daemon that features the fol-
lowing security-relevant command-line op-
tions:

• -chuid changes the user ID before exe-
cuting the daemon process.

• -chroot changes the current directory
and then changes the root of the file sys-
tem to it so that the daemon process is
jailed.

This wrapper is commonly used by Debian
startup scripts.

Another system is D. J. Bernstein’s daemon-
tools and the/service directory on which

it relies [2]. It obviates the need for a
/var/run/ name.pid file and has the abil-
ity to monitor and restart services to insure
higher availability. It relies on standard UNIX
features to accomplish its task.

Service availability monitoring can be per-
formed at different levels, but it only needs to
be performed once. These possible levels are
the process such asinit that starts the ser-
vice, the init script that wraps around the ser-
vice, or the service itself (by forking into a
monitoring process and a service process).

4 File System Standards and File
Placement Conventions

Various Linux distributions and other UNIX
and UNIX-like systems reserve directories for
specific purposes. They have naming conven-
tions for sub-directories and files within those
directories. The conventions also cover the
kind of files (i.e., their purpose) that should be
stored in these directories as well as the own-
ership and access rights that they should have.
Depending on the operating system, these con-
ventions are more or less stated explicitly.

In the Linux world, there exists a common
standard for this known as the Filesystem Hi-
erarchy Standard (FHS) [10].

There are also other, independent proposals.
D. J. Bernstein’s/package hierarchy [3]
goes all the way and reuses the file system it-
self as the database for package management.

This is related to conventions in package man-
agement and security policy configuration. In-
deed, if

• a given directory serves a very specific
purpose,

• conventions related to security policy are



Ottawa Linux Symposium 2002 280

in place for this directory, and

• there is the notion that a package’s name
automatically reserves a subset of the
naming space for subdirectories and files
within that directory,

then this in itself defines default, clear rules
for security policy that can be made to em-
body good security practices. This removes
complexity as there is then no need to specify
package-specific rules for the purpose served
by that directory, for most packages.

There is an opportunity to extend the set of
such directories. For instance, creation of tem-
porary files or named sockets in the/tmp
directory has historically been the source of
many security vulnerabilities. This is because
this directory is a public space, no subset of it
is reserved to a specific package, and a com-
plex set of steps is then required to make sure
that the temporary resource is created securely.
These/tmp problems could all be avoided by
the introduction of conventions that are prop-
erly enforced by default on the system.

The downside of such conventions is that they
are difficult to adopt instantaneously. The old
way of doing things must be supported for
some time, while still providing incentives to
move to the new, provably secure way.

5 Configuration of Existing Secu-
rity Frameworks

There are two extreme approaches to specify-
ing the security privileges that a software pack-
age (and its various components) may enjoy.

• The privileges are entirely specified by the
package itself. The act of installing the
package by the system administrator im-
plicitly carries the approval of these stated

privileges. The problem is that those priv-
ileges can be complex and are not re-
stricted to anything. They are unlikely to
be reviewed by the administrator. More-
over, they have to be expressed in the
terms of each specific security framework
that is to be supported.

• The privileges are entirely specified out-
side of the package by the security frame-
work. The problem is that all possible
packages have to be accounted for in ad-
vance. If they are not for a given package,
the security administrator has to specify
privileges for it by hand. This either lacks
flexibility or is unrealistic.

The solution lies in abstracting the whole set of
permissions that a package requests in a form
that fits in a very small space (e.g., less than a
line) and have the system or security adminis-
trator approve that explicitly. To that end, there
must be a way to express these abstractions and
they must be installed/activated beforehand by
the administrator.

In order to express them, however, we must
gain an idea of the kind of permissions that
different existing security frameworks provide.
We will examine two popular frameworks, but
there are others [16, 21, 19, 7, 14, 12] (these
are the ones for Linux).

5.1 Security Enhanced (SE) Linux

SE Linux [15] configuration is performed in
two steps. First, an utility namedsetfile
is used to assign a security context to every file
on the system. This is done using a configura-
tion file (file_contexts ) that uses regular
expressions to full paths of file. This config-
uration file has been broken down into several
name.fc files, one for each covered package,
and a types.fc file for all other patterns.
This configuration operation can be performed



Ottawa Linux Symposium 2002 281

during the initial installation of SE Linux, be-
fore the system is actually running under it.
It can also be performed while running under
SE Linux. It is easily conceivable that the op-
eration could be customized to only touch files
that are part of a package at package installa-
tion time. Note that file names are no longer
used once security contexts are assigned to all
inodes when the system is running.

The second part of SE Linux configuration
is the security policy itself (policy.conf ),
which is then compiled into a binary form
under /ss_policy and read by the ker-
nel. Type Enforcement rules have been broken
down into several files (name.te ), one for
each covered package, and is combined with
other files to form the whole security policy.
The security policy has to be reloaded as a
whole. This complicates (or at least make more
heavyweight) what can be done at package in-
stallation time.

5.2 SubDomain

SubDomain [5] relies on a configuration
that directly uses the full path names of
files. Configuration profiles are stored in the
/etc/subdomain.d/ directory under the
name of the program that is executed and sub-
ject to control. Sub-processes are covered in a
recursive fashion by the syntax. A user-space
utility relies on asysctl() interface to feed
these rules to the kernel-space part of SubDo-
main. Add, delete, and replace operations are
supported, which means that updates to the in-
kernel policy should be possible at package in-
stallation time.

6 Proposed Additions to Per-
Package Information

6.1 Implicit, Enforced Conventions

As seen in Section 2, package management
systems support many file tags to distinguish,
e.g., configuration files, from other files. From
a security standpoint, one may wish to intro-
duce more tags to identify files that are specifi-
cally related to other phases of system activity,
such as service activation, as detailed in Sec-
tion 6.2.

An alternative to this approach is to designate
specific locations (typically directories) to nec-
essarily contain files of a given type (i.e., cor-
responding to what would have been new tags).

In both case, extension mechanisms would be
desirable to either add new custom tags, or
equivalently to designate new locations. This
idea is further expanded upon in Section 6.3
with the idea of generic “abstract” packages.

6.1.1 Naming of Packages

The naming of packages tends to follow some
unwritten conventions.

• Packages in a group of related packages
normally share a common prefix, although
there is nothing to formally separate the
prefix from the rest of the name. (Hy-
phens can be used anywhere else inside
a name, be it in a prefix or in a suffix, if
any.)

• For packages within a group with
that share the same prefix, commonly
used suffixes include: -common,
-util , -apps , -tools , -extra ,
-devel , -client , -server , -lib ,
-contrib , -doc , -perl , -python ,



Ottawa Linux Symposium 2002 282

and -X11 . Some of these suffixes are
sometimes found in a plural form. Some
packages even have several suffixes (e.g.,
openssh-askpass-gnome ).

• To complicate matters, some suffixes are
not preceded by a hyphen, e.g.,kdebase
andkdelibs . Fortunately, these specific
suffixes do not appear to be relevant to the
security nature of a package.

There is no internal representation of this in-
side the package.

If these naming conventions were clearly rep-
resented, it would be possible to assign a se-
curity policy semantic meaning to them. Some
package name suffixes, such as-util , imply
that the executables contained in the package
must not carry or be given any special privi-
leges. Conversely, a package with-server
as a suffix contains executables that should be
given specific privileges when activated to pro-
vide the service for which they were written.
Although this was originally done to enable
only the client or only the server to be installed,
it is a good security practice to isolate a server
executable and its related files in such a pack-
age, provided that the opportunity to assign
specific privileges is taken. It is possible that
several executable files be included in a server
package, one being the main server and the oth-
ers being there for support (to be executed as
sub-processes of the main server). In anticipa-
tion of such a case, there must be a clear way
to tell which executable is the main server.

6.2 Explicit New Facilities

“Any problem in computer science can be
solved with another layer of indirection.”

— David J. Wheeler.

An indirect mapping is introduced between
the actual package name and the service name

(e.g., TCP port), to which other information
can be coupled (interface, address subset, etc.).

This separates the act of installing a package
that can implement a service from the act of
designating it as being currently responsible
for doing so (and thus receiving the neces-
sary privileges for doing so). Conceptually,
this designation can be done in a finer grained
manner. For instance, different providers for
a given Internet service could be enabled for
each network interface (internal/trusted and ex-
ternal/untrusted).

Each (transport_protocol,
port_number) pair should have its own
set of security contexts by default. Explicit
configuration can be useful to put a group
of ports in a single set of security contexts.
SE Linux [15] relies on statements like

tcp 25 system_u:object_r:smtp_port_t

that have to be configured by hand. This
could be generated automatically from the
/etc/services file. The SE Linux syntax
also allow for a range of ports (e.g.,22-23 ) to
be specified. Specifying a port range requires
explicit configuration in all cases, but it is not
a frequent occurrence.

The tasks (or phases of system activity) include
the following.

• Installation/de-installation/upgrade.
This is performed by the package man-
ager itself. When installing files and
running package-provided scripts, the
package manager should minimize its
permissions (e.g., by forking a subpro-
cess) so as to only be able to modify the
sub-part of the system that is appropriate
for the package. A strong file placement
standard can tremendously simplify the
interpretation of this statement. An
installation should not interfere with



Ottawa Linux Symposium 2002 283

other packages that are already installed
or that could be installed in a sub-part
of the system that is reserved for them.
Package-provided scripts should not be
able to use services that are not strictly
related to installation, such as network
ports.

A package that implements a given ser-
vice (e.g., SMTP) should not, just by
virtue of it being installed, be able to ac-
tivate (designate) itself at the provider for
this service. This is a separate action to be
performed by the system administrator.

Typical steps for installation are:

– Check for validity of package name,
type, etc. The package type may re-
quire to be specified explicitly by the
administrator to signify approval of
the permissions that are inherent to
it.

– Add package-specific installation
rules to the security policy;

– perform actual install under the se-
curity context that is defined by
those rules (including file copy and
script execution).

– Add package-specific security rules
for other tasks.

The security policy rules are inferred from
the package name and type. They are not
specified by the package itself.

• Configuration. Globally, the responsibil-
ity for configuration can be assigned to
a dedicated management package. This
package can then delegate its author-
ity to application-specific configuration
packages. This means that a package is
not automatically responsible for its own
configuration. By default, it should not
even be able to probe various unrelated
part of the system during installation and

execution to adjust its behavior accord-
ingly. Configuration packages may need
and be given such permissions, though.

• Service assignment/activation. Several
packages can implement the same service
(e.g.: sendmail, qmail, and postfix are all
SMTP mail transport agents). It may be
desirable to have more than one installed
at once (testing, transition), yet at most
one can be assigned the same responsibil-
ity. Service activation can be performed
by the package manager (by explicit in-
struction from the administrator, not from
the packager) or it can be performed by a
service activation manager software, with
can possibly delegate its task to more spe-
cialized service activation packages (e.g.,
Internet service activation manager).

• Regular use/execution. During regular
use, software from a package should be
able to read (and only read) its configura-
tion (in /etc , possibly store some state
in /var , etc. Depending on whether it
is a service package, an utility package,
or other, it can also get other specific per-
missions, or inherit those of its invoking
process. It should not implicitly be able to
modify its own installation, configuration,
or activation, though.

6.3 Generic Package Types

Examples of generic package types include the
following:

• network server programs

• local service programs (e.g., gpm)

• utilities (which require no special permis-
sions other than those passed by their par-
ent process)

– read-only viewer/browser



Ottawa Linux Symposium 2002 284

– strict filters

• installer programs

• configurator programs

• activator programs

• security session managers (program that
set up a specific security context for oth-
ers)

• etc.

6.3.1 Generic Abstract Packages

Generic “abstract” packages (named after the
object-oriented concept of abstract class) are
incomplete packages that merely include a de-
fault init script or configuration files. In ef-
fect, they define a generic package type. Using
this facility, a generic service package could be
able to provide an activation script (or declara-
tion), whereas a specific service package could
not because such scripts implicitly carry the
definition of access rights to be handed to the
specific package. Instead, the specific package
can be declared as being of the generic package
type defined by the generic service package.

“Multiple inheritance” of generic package
types by specific packages should be disal-
lowed by default as it can cause problems re-
lated to the combination of specific power. In-
stallation of generic packages should stand out
and require special attention from system ad-
ministrators as they effectively imply the per-
mission to install packages that follow the pat-
tern they describe. This, in turn, means that
there must be a way to explicitly identify these
package as such.

6.3.2 Framework Packages

Some packages specify a framework (e.g.,
logrotate) under which other packages can reg-
ister, but only under their own name. This
is traditionally done by a/etc subdirectory
(e.g., /etc/logrotate.d ). Other frame-
works could introduce a/var subdirectory in-
stead.

From a security standpoint, a method is re-
quired to explicitly label this subdirectory. The
package manager must then only allow pack-
ages to register there under their own name.

6.3.3 Sample Packages Types

Here are typical permissions that are needed by
two sample package types.

The execution of a network server requires the
permissions to (among others):

• read its own configuration file(s)

• produce its own pid file (that can also be
handled by the availability monitor)

• listen to its assigned service (proto-
col/port)

• append to own log file (or use log service
under its own name)

• spawn modules (possibly under another
security context)

Software installation requires the following
permissions (among others):

• to install program under samename or
name-*

• to create and populated subdirecto-
ries of same name under/usr/lib ,
/usr/share , etc.



Ottawa Linux Symposium 2002 285

• to install an initial configuration file
named/etc/ name.conf or placed un-
dername in /etc/sysconfig/

6.4 Self Restrictions

A package should be able to manage its own
private space, such as private directories, by
imposing additional restrictions through the
use of policy rules. In order to do so, the rules
should be expressible in a relative syntax that
does not require the redundant mention of the
package name. Conversely, it should not be
possible to specify rules outside of that pack-
age scope. This applies to all phases of system
activity for that package.

7 Site-Specific Information

7.1 Default Policy for Generic Package Types

In order to reduce the size of the site-local se-
curity configuration, each generic package type
must be configurable.

For comparison purposes, SE Linux [15] relies
on a system of macros to reduce the complexity
of the type enforcement policy files it includes
for each special user program and server pro-
gram.

7.2 Per-Package Configuration

Additional restrictions (e.g., read-only server,
local non-networked server) should be easily
configurable as site-local options.

8 Proposed Modifications to Exist-
ing Software

The previous sections have pinpointed their re-
quirements for many modifications to existing

software. These are gathered here for every
piece of software that is involved. We try not
to introduce new programs, but rather to push
the additional security checks into existing pro-
grams, at the point where they naturally be-
long.

The following assumes that dynamic updates
to the security policy are possible.

• /bin/rpm (and other package man-
agers). Explicit service activation scripts
(default preferred), distinct from installa-
tion scripts, should be introduced, along
with command-line options to specify that
a service should be activated at installa-
tion time. Naming conventions for pack-
ages should be enforced; e.g., utils pack-
ages should not include executables with
special permissions. Special security at-
tributes for files included in a package
should be supported; e.g., the server ex-
ecutable in a server package should be
identified as such. Namespace conven-
tions in the file system, as well as con-
ventions introduced by framework pack-
ages, have to be enforced. New meta-
information can be supported by introduc-
ing a new, extended,backward compati-
ble, version of the package format. Alter-
natively, separate package-specific meta-
information files can be used to augment
the information present in existing pack-
ages. Either way, the package manager
has to be able to interpret the new infor-
mation.

• /sbin/init . Provide default init script
behavior based on package declarations,
process tracking, dependable stops (and
restarts), and automatic cleanup of tempo-
rary storage (e.g.,/var storage) to pre-
vent keeping state across invocations (if
appropriate). This can involve manage-
ment of /var/lock/subsys/ name



Ottawa Linux Symposium 2002 286

files.

• /sbin/service . This program should
have its own security context and it should
perform the task that is currently handled
by run_init in SE Linux. Init scripts
should no longer be run by specifying
their full path from anywhere in a distri-
bution, but rather by invoking this pro-
gram systematically. The program should
be rewritten in C, rather than being an in-
terpreted script.

• /sbin/chkconfig . Activating a ser-
vice means enabling the initial transition
into a package-specific security context
(as is currently done in SE Linux with the
domain_auto_trans() macro and
type_transition rules). To guard
against cooperating malicious packages
where one transition into the other, the no-
tion of defined but forbidden security con-
text could be introduced for de-activated
services (SE Linux hasneverallow ,
but it is an assertion that can cause a pol-
icy to be rejected at compilation, and not
an actual rule).

• /sbin/telinit . Since some services
are only activated for a subset of the
available run levels, their associated se-
curity context will need to be allowed
or forbidden according to the current run
level. Note that/sbin/telinit and
/sbin/init are usually the same bi-
nary.

• Configuration programs (such as
/sbin/linuxconf ). Configura-
tion files for a program should be put in
a security context that is not accessible
for modification by the program itself.
Configuration programs should be able
to transition a subprocess into a security
context that can modify those files, as

well as restart the program if it is an
activated service.

9 Prototype Implementation

The implementation of the ideas exposed in
this paper is at a very early stage. Since this
work is done in support of the Distributed Se-
curity Infrastructure (DSI), which is an open
source project, feedback from the community
is important before work proceeds to actual im-
plementation. (As of writing, the actual pre-
sentation for this paper is two months in the
future and progress will have been made on the
prototype by then.)

The goals of the prototype implementation
are to assess the practicality of the proposed
changes and to measure their performance im-
pact on the system.

10 Conclusion

We have explored the possibility of generating
a system’s security policy, or at least part of it,
from the information that is or can be encoded
in software packages that are installed on the
system.

The approach described in this paper impacts
many people: distribution makers, packagers,
software designers and implementers, security
framework developers, and system administra-
tors.

Since security is a very sensitive subject, com-
munity review of this kind of work is primor-
dial. Also, since this work involves modify-
ing many existing subsystems, building com-
mitment from the community is essential.

This work highlights the following require-
ments on the security policy:



Ottawa Linux Symposium 2002 287

• Dynamic updates. Long running systems
cannot afford to be rebooted. A complete
reload of the security policy at every one
of its modifications also doesn’t scale well
with the size of the policy itself (which
is proportional to the number of packages
that are installed on the system).

• Elaborate security contexts. Associated
package, run levels, etc., need to be rep-
resented in the security contexts to avoid
overly complex rules or unnecessary up-
dates to the policy. A balance must be
achieved between those concerns and the
complexity of the security contexts them-
selves (and of their evaluation).

References

[1] Edward C. Bailey.Maximum RPM.
Sams, 1997.http://www.rpm.org

/local/maximum-rpm.tar.gz .

[2] D. J. Bernstein. Daemontools and its
/service directory.
http://cr.yp.to

/daemontools.html .

[3] D. J. Bernstein. The/package
hierarchy.http://cr.yp.to

/slashpackage.html .

[4] Russell Coker. Packaging NSA SE
Linux for Debian. InProceedings of
2002 Ottawa Linux Symposium, Ottawa
(On) Canada, June 2002.
http://www.linuxsymposium.org

/2002/ .

[5] Wirex Communications. SubDomain.
http://www.immunix.org

/subdomain.html .

[6] Ralf S. Engelschall and Michael Schloh
von Bennewitz. OpenPKG.
http://www.openpkg.org/ .

[7] Tal Garfinkel and David Wagner. Janus.
http://www.cs.berkeley.edu

/˜daw/janus/ .

[8] Jacques Gélinas. Linuxconf.
http://www.solucorp.qc.ca

/linuxconf/ .

[9] Jacques Gélinas. Linuxconf Enhanced
System V Init Script.
http://www.solucorp.qc.ca

/linuxconf/tech/sysvenh

/index.html .

[10] Free Standards Group. Filesystem
Hierarchy Standard (FHS).
http://www.pathname.com/fhs/ .

[11] Free Standards Group. Linux Standard
Base (LSB).
http://www.linuxbase.org

/spec/ .

[12] Serge Hallyn. DTE for Linux.
http://www.cs.wm.edu/˜hallyn

/dte/ .

[13] Red Hat. Red Hat Package Manager
(RPM). http://www.rpm.org/ .

[14] NAI Labs. Low Water-Mark Integrity
Protection for Linux (LOMAC).
http://www.pgp.com/research

/nailabs/secure-execution

/lomac.asp .

[15] National Security Agency (NSA).
Security Enhanced (SE) Linux.
http://www.nsa.gov/selinux/ .

[16] Amon Ott. Rule Set Based Access
Control (RSBAC).
http://www.rsbac.org/ .

[17] Makan Pourzandi, Ibrahim Haddad,
Charles Levert, Miroslaw Zakrzewski,
and Michel Dagenais. A Distributed
Security Infrastructure for Carrier Class



Ottawa Linux Symposium 2002 288

Linux Clusters. InProceedings of 2002
Ottawa Linux Symposium, Ottawa (On)
Canada, June 2002.
http://www.linuxsymposium.org

/2002/ .

[18] Bruce Schneier and Adam Shostack.
Results, Not Resolutions.
http://www.securityfocus.com

/news/315 .

[19] Huagang Xie, Philippe Biondi, and Steve
Bremer. Linux Intrusion Detection
System.http://www.lids.org/ .

[20] Miroslaw Zakrzewski. Mandatory
Access Control for Linux Clustered
Servers. InProceedings of 2002 Ottawa
Linux Symposium, Ottawa (On) Canada,
June 2002.
http://www.linuxsymposium.org

/2002/ .

[21] Marek Zelem, Milan Pikula, and Martin
Ockajak. Medusa DS 9 Security System.
http://medusa.formax.sk/ .



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


