
An AIO Implementation and its Behaviour

Benjamin C. R. LaHaise
Red Hat, Inc.

bcrl@redhat.com

Abstract

Many existing userland network daemons suf-
fer from a performance curve that severely de-
grades under overload conditions to the point
of collapse. The design of AIO was such that
it should maintain a steady response rate when
faced with a multitude of outstanding connec-
tions. With AIO for Linux becoming ready
for more widespread use, the real world per-
formance characteristics of the design and its
shortcomings needs to be examined. What fol-
lows is an attempt to characterise the behaviour
of async poll and read under various condi-
tions, contrasting with poll(), and /dev/epoll.

1 Introduction

With the maturing of the Linux kernel, the scal-
ability of various subsystems is becoming a
greater concern for vendors in the quest for en-
terprise adoption. The advent of TUX [TUX]
has shown that very high thruput content deliv-
ery systems can be built on top of the kernel’s
internal infrastructure, yet implementing these
servers in userspace frequently exacts a large
hit in performance.

Traditional IO models based on non blocking
IO using select() or poll() have serious short-
comings when faced with loads that include
many idle connections (HTTP, FTP, LDAP
servers), or attempt to extract increased paral-
lelism from slow subsystems (filesystem and
disk IO). For example, the poll() syscall is at

best O(n), where n is the number of file de-
scriptors on which events are being monitored.
Issuing parallel disk IO requests requires the
use of threads, which have their own overhead,
in addition to adding a significant amount of
debugging effort to the application.

The Asynchronous IO implementation pre-
sented attempts to address these concerns
twofold: by providing asynchronous opera-
tions that can proceed concurrently with the
application, as well as utilising an event based
completion mechanism to return the results of
those operations in an efficient manner.

Previous work under Linux in this area in-
cludes the addition of SIGIO [SigIO] based
readiness notification, reductions in the over-
head of the poll() interface through the cre-
ation of /dev/poll [devpoll], and further op-
timizations with the event based /dev/epoll
[EPoll]. The AIO implementation presented
here should have similar performance charac-
teristics to the event interface that /dev/epoll
uses, as both models have a 1-1 correlation be-
tween events being generated and the potential
for progress to be made.

One area where AIO poll differs significantly
from /dev/epoll stems from readiness vs ready
state notification: an async poll is like poll
in that the operation completes when the de-
scriptor has one of the specified events pend-
ing. However, /dev/epoll only generates an
event when the state of the monitored events
changes. Further differences emerge once the

Ottawa Linux Symposium 2002 261

async read and write operations are introduced.

2 AIO Design and API

The basic design of AIO for Linux is based
on the POSIX AIO [PosixAIO] specifica-
tion and NT’s completion port mechanism
[Russinovich]. Primary design goals included:

1. lightweight completion events

2. usable for libraries as well as applications

3. support for general disk and network IO

4. scalable for servers handling many con-
nections

5. the desire to eventually suppport zero
copy io (O_DIRECT disk io, and hard-
ware checksum assist for TCP transmit)

6. a 64 bit kernel should be able to process
structures from both 32 and 64 bit pro-
cesses with minimal additional code

POSIX AIO fails to meet several of these cri-
teria, in part due to its reliance on signals, as
well as the nature of its io wait mechanism
(aio_suspend is O(n) where n is the number of
outstanding ios).

The core of this implementation centers
around the io context which specifies a
given completion queue. io contexts are
created by io_queue_init and destroyed via
io_queue_release. New ios are submitted via
io_submit (which is similar to lio_listio), but
can only be queued if there is sufficient space
in the completion queue to receive any result-
ing io_event.

Events are read by means of io_getevents. One
of the features of the design is that io_getevents
can be implemented as a vsyscall, which re-
duces the overhead of receiving completion
events under load.

3 Testing Methodoloy

The goals of testing are to highlight the
strengths and shortcomings of the various IO
models. To this end, the areas of interest ex-
amined include thruput under varying numbers
of open file descriptors, thruput with differing
message sizes, and the effects of increasing the
parallelism in request processing.

To demonstrate the scaling issues involved
when dealing with many file descriptors, a sim-
ple test application [PipeTest] was developed.
Pipetest attempts to measure the number of to-
ken passes per second that a given io model can
obtain under a set of conditions. The number of
idle file descriptors, parallel tokens passes and
message size are all parameters. In operation,
pipetest opens a specified number of pipes, be-
gins transmitting one or more seed tokens, then
proceeds to receive and transmit the tokens for
a number of repetitions.

Initial plans were to use TCP network con-
nections between a set of clients and a server,
but due to code maturity and other issues, the
decision to use a pipe based test was made.
Thankfully, use of the pipe mechanism elim-
inates several potential bottlenecks (including
IO bandwidth and driver performance), and re-
stricts measurements to the actual overhead of
the code under test. For all test runs, pipetest
was able to run at 100% CPU usage.

For the sake of simplicity, and to avoid
SMP scaling issues, all tests were run on
the 2.4.19pre5 kernel with /dev/epoll and AIO
patched in.

4 File Descriptors vs Thruput

It is well known that one of the crippling fac-
tors for heavily used server processes comes
from the number of active client connections

Ottawa Linux Symposium 2002 262

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of filedescriptors

"poll.res"
"aio-poll.res"

"epoll.res"

Figure 1: baseline performance vs number of
file descriptors

being serviced. To demonstrate this factor on
scaling, tests were run where the number of
open pipes increased while other factors were
held constant. Using Pipetest, the number of
token passes per second was measured as a
function of the file descriptor count and IO
model.

The baseline performance as shown in Figure 1
contains several striking features, most notably
that the existing poll() model exhibits a rapid
decay as the number of active file descriptors
increases. This stems from poll()’s O(n) work-
load in searching for active file descriptors.
Async poll remains flat as the number of fds
increases, as does epoll. The overhead of epoll
appears to be about half of async poll, which
points to a few shortcomings in the allocation
and initialization of the async poll structures.

5 A few optimizations

In an attempt to reduce the overhead present
in async poll relative to epoll, a fastpath that
does not allocate any control data structures
leads was created. In Figure 2 we can see this
leads to an approximately 20% improvement
in thruput. The addition of the io_getevents

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of filedescriptors

"aio-poll.res"
"aio-poll-fastpath-novsys.res"

"aio-poll-fastpath-vsys.res"
"epoll.res"

"poll.res"

Figure 2: addition of poll fastpath and vsyscall
mechanism to aio

0

50000

100000

150000

200000

250000

300000

350000

400000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of file descriptors

"2b.epoll.res"
"2b.aio-read.res"
"2b.aio-poll.res"

Figure 3: async read implemented

vsyscall lead to 20% increase in performance,
bringing async poll to roughly three quarters of
epoll thruput.

6 Async read

Figure 3 compares async read to epoll and
async poll thruput. It should be noted that
async read overhead includes walking the page
tables to find the underlying kernel pages for
the user virtual address. Since the token write()
is performed after the async read is posted,
async read benefits from a single copy of the
data. This brings async read throughput to

Ottawa Linux Symposium 2002 263

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

0 500 1000 1500 2000 2500 3000 3500 4000 4500

by
te

s
pa

ss
ed

 p
er

 s
ec

on
d

token size in bytes

"4.epoll.res" using 1:($2 * $1)
"4.aio-read.res" using 1:($2 * $1)
"4.aio-poll.res" using 1:($2 * $1)

Figure 4: thruput as message size increases

within 15of epoll in the worst case. Cache ef-
fects are much more apparent for async read
and epoll, probably owing to the differences
in physical page colours between runs. As
expected, async read also maintains a flat re-
sponse when the number of open file descrip-
tors increases.

7 Message Sizes

While epoll/read is faster than async reads for
small message sizes, async read should be-
come more efficient as the size increases and
the benefits of the single copy begin to out-
weigh the static setup costs.

In Figure 4 it is apparent that for message sizes
of 256 bytes or less, the async read overhead
outweighs the effects of single copy. However,
for message sizes of 512 bytes and greater,
async read is able to exceed epoll thruput, but
only by a small margin.

8 Multiple IOs in flight

The tests presented thus far only deal with one
in flight IO through each iteration of the event
loop. In real world servers, the number of IOs

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

to
ke

n
pa

ss
es

 p
er

 s
ec

on
d

number of ios in flight

"3.epoll.res"
"3.aio-read.res"
"3.aio-poll.res"

"3.poll.res"

Figure 5: thruput while increasing in flight ios

in flight will tend to increase with the number
of active clients.

Figure 5 shows the results of a run with the
number of IOs through to 60, 128 file descrip-
tors and a 12 byte message size. The event
driven models show a small increase in thruput
up to 122 IOs, then remain fairly flat. Poll
is included to show that it takes at least 15%
of the file descriptors to have IOs in flight to
match async poll performance, and almost half
to match async reads.

9 Conclusions

The first generation of AIO for Linux shows
that the event driven model is able to provide
significantly improved performance in cases
where poll() degrades severely. Comparisons
with /dev/epoll show that further work needs
to be done to mitigate the cost of mapping
userspace memory into kernel structures for
small message sizes, but that the overhead is
outweighed by the support of single and zero
copy as the amount of data transferred in-
creases.

Ottawa Linux Symposium 2002 264

10 Future work and directions

Much work remains to complete the imple-
mentation, as many existing parts of the ker-
nel were not designed with asynchronous op-
eration in mind. The first year of development
has yielded significant insight into the benefits
and drawbacks of various in kernel techniques
for the AIO implementation.

For example: during the recent addition of a
cancellation API for iocbs, the limitations of
using tqueues as the basis for the worktodo
helpers became apparent. It turns out that
tqueues cannot be cancelled safely in an SMP
environment. One option is to make use of
tasklets, but that path is hindered by the fact
that many internal APIs cannot be called from
bottom half context.

References

[TUX] TUX Web Server Manuals, Red Hat,
Inc. http://www.redhat.com/docs

/manuals/tux/ , (2002).

[RTSig] Analyzing the Overload Behavior of
a Simple Web ServerN. Provos, C.
Lever, S. Tweedie,
http://www.usenix.org

/publications/library

/proceedings/als2000

/full_papers/provos/provos_html

/index.html , (ALS 2000).

[EPoll] Improving (network) I/O
performance, Davide Libenzi
http://www.xmailserver.org

/linux-patches

/nio-improve.html , (2001).

[Russinovich] Inside I/O Completion Ports,
Mark Russinovich
http://www.sysinternals.com

/ntw2k/info/comport.shtml ,
(1998).

[SigIO] To Be Added.

[devpoll] To Be Added.

[PosixAIO] To Be Added.

[PipeTest] To Be Added.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

