
Documentation/CodingStyle and Beyond

Greg Kroah-Hartman
IBM Linux Technology Center

greg@kroah.com | gregkh@us.ibm.com

Abstract

With more companies starting to write Linux
kernel code, an understanding of what is the
acceptable kernel coding style and conventions
is becoming a necessity. The goal of this
paper is to explain both the written and un-
written Linux kernel programming style. It
explains why a consistent coding style and
rules are a requirement for the kernel. It dis-
cusses the basic kernel style rules as outlined in
Documentation/CodingStyle and ex-
plains the large number of style rules that are
not documented. Each of these rules is docu-
mented with existing code, and why the rule is
considered a “good thing.”

1 Why rules?

Why are there kernel programming style rules
in the first place? Why not just let every au-
thor code in whatever style they want to, and
let everyone live with it? After all, code for-
matting does not affect memory use, execution
speed, or anything else a normal user of the
kernel would see. The reason can be summed
up with this quote from Elliot Soloway and
Kate Ehrlich in 1984[1]

It is not merely a matter of aesthet-
ics that programs should be written
in a particular style. Rather there
is a psychological basis for writ-
ing programs in a conventional man-

ner: programmers have strong expec-
tations that other programmers will
follow these discourse rules. If the
rules are violated, then the utility af-
forded by the expectations that pro-
grammers have built up over time is
effectively nullified.

A number of other studies and research has
proven that if a large body of code is written
in a common style, it directly affects how easy
it is to quickly understand the code, review it,
and revise it.

Since the number of developers that look at the
Linux kernel code is very large, it is in the best
interest for the project to have a consistent style
guideline. This allows the code to be more eas-
ily understood either by someone reading it for
the first time, or by someone revisiting their old
code later. It also allows someone else to more
easily read, understand, and potentially fix and
enhance your code, which is one of the greatest
strengths of open source code.

2 What are the rules?

Now that we have an understanding that there
should be some rules, what are they? Linus
Torvalds and other kernel programmers have
written a short document that details some of
the kernel programming rules. This document
is located in theDocumentation/CodingStyle
file in the kernel source tree. It is required read-
ing for anyone who wants to contribute to the

Ottawa Linux Symposium 2002 251

Linux kernel. Here is a summary of these rules.

2.1 Indentation

All tabs are 8 characters1, and will be the
<TAB> character. This makes it easy to
quickly locate where different blocks of code
start and end. If you find your code is being in-
dented too deeply, with more than three levels
of indentation causing the code to shift off to
the right of the screen, then you should fix the
code. It is a good warning.

2.2 Placing Braces

The original authors of UNIX placed their
braces with the opening brace last on the line,
and the closing brace first on the line, like:

if (x is true) {
we do y

}

Because of this, the kernel shall be written in
this style.

The exception to this rule are functions, which
have the opening brace at the beginning of the
line, like:

int function(int x)

{
body of function

}

Again, this is how Kernighan and Ritchie wrote
their code.

For good examples of the proper indentation
and braces style, look at any of thefs/*.c files,
or anything in thekernel/*.c files. Generally,
most of the kernel is in the proper indenta-

1To fit within a column, some of the examples have
been forced to deviate from this. —OLS Formatting
Team

tion and brace style, but there are some no-
table exceptions. The code infs/devfs/*.cor
drivers/scsi/qla1280.*are good examples of
hownot to do indentation and braces.

There is a script that can be used to run the
indent(1) program in the proper kernel in-
dentation and braces style. It is useful if
you have to convert a large amount of code
to the correct format. This file is located at
scripts/Lindentin the kernel source tree.

2.3 Naming

Your variables and functions should be
declared descriptively and concisely. You
should not use long flowery names like
CommandAllocationGroupSize or
DAC960_V1_EnableMemoryMailboxInterf() ,
but rather, cmd_group_size , or
enable_mem_mailbox() . Your names
need to be descriptive, and easily recognized.
Mixed case names are frowned upon and
encoding the type of the variable or function
in the name (like “Hungarian notation”) is
forbidden.

Global variables should be only used if they are
absolutely necessary. Local variables should
be short and to the point.i andj are valid local
loop variable names, whileloop_counter
is too verbose.tmp is allowed to be used for
any short-lived temporary variable.

Again, good examples of proper names
can be found in fs/*.c. Lots of driver
code has bad variable names, as they
have been ported from other operating
systems. drivers/block/DAC960.* and
drivers/scsi/cpqfc* are examples of how
to not name functions and variables.

Ottawa Linux Symposium 2002 252

2.4 Functions

Functions should only do one thing, and do it
well. They should be short, and contain one or
two screens of text. If you have a function that
does lots of small things for different cases,
it is acceptable to have a longer function. If
you have a complex long function, it should be
rewritten to be simpler.

If you have a large number of local variables
within a function, it is also a measure of the
complexity. If there are more than 10 local
variables, it is too complex.

There are lots of good examples of nice
sized functions in thefs/*.c and other kernel
core code. Some bad examples of functions
can be found indrivers/hotplug/ibmphp_res.c
where one function is 370 lines long, or
drivers/usb/usb-uhci.cwhere one function has
18 local variables.

2.5 Comments

Comments are very good to have, if they are
good comments. Bad comments explain how
the code works, who wrote a specific function
on a specific date, or other such useless things.
Good comments explain what the file or func-
tion does, and why it does it. They should be
at the beginning of the function, and not neces-
sarily embedded within the function. You are
writing small functions, right?

There is now a standard format for function
comments. It is a variant of the documenta-
tion method used by the GNOME project for
their code. If you write your function com-
ments in this style, the information in them can
be extracted by a tool and made into stand-
alone documentation. This can be seen by run-
ning make psdocs or make htmldocs
on the kernel tree to generate akernel-api.psor
kernel-api.htmlfile containing all of the public

interfaces to the different kernel subsystems.

/ ∗∗
∗ function_name(:)? (- short description)?

(∗ @parameterx: (description of parameter x)?)∗
(∗ a blank line)?
∗ (Description:)? (Description of function)?
∗ (section header: (section description)?)∗

(∗)?∗ /

Figure 1: The format of a block comment

This style is documented in the file
Documentation/kernel-doc-nano-HOWTO.txt
andscripts/kernel-doc. The basic format can
be seen in Figure 1.

The short function description cannot be multi-
line, but the other descriptions can be, and they
can contain blank lines. All further descriptive
text can contain the following markups:

funcname() - name of a function

$ENVVAR- name of a environment variable

&struct_name - name of a structure (up to
two words including ‘struct’)

@parameter - name of a parameter

%CONST- name of a constant.

A simple example of a function comment with
a single argument looks like:

/ ∗∗
∗ my_function - does my stuff
∗ @my_arg: my argument
∗
∗ Does my stuff explained.
∗∗ /

void my_function (int my_arg)

{
...

Ottawa Linux Symposium 2002 253

}

Comments should be written for structures,
unions and enums. The format for them is
much like the function format:

/ ∗∗
∗ struct my_struct - short description
∗ @a: first member
∗ @b: second member
∗
∗ Longer description
∗ /

struct my_struct {
int a;

int b;

};

Some good examples of well commented func-
tions can be found in thedrivers/usb/usb.cfile,
where all global functions are documented.
The file arch/i386/kernel/mtrr.cis a good ex-
ample of a file with a reasonable amount of
comments, but they are in the incorrect format,
so they can not be extracted by the documen-
tation tools. drivers/scsi/pci2220i.cis also a
good example of hownot to create the com-
ment blocks for your functions.

2.6 Data Structure requirements

The addition of a chapter on data structures,
showed up in the 2.4.10-pre7 kernel release.
It describes how every data structure that can
exist outside of a single-threaded environment,
needs to implement reference counting to prop-
erly handle the memory management issues. If
you add reference counting to your structure,
you can avoid lots of nasty locking issues and
race conditions. Multiple threads can access
the same structure without having to worry that
a different thread will free the data from under
it.

The last sentence in this chapter is required

reading by any kernel developer:

Remember: if another thread can
find your data structure, and you
don’t have a reference count on it,
you almost certainly have a bug.

A good example of why reference counting is
necessary can be found in the USB data struc-
ture, struct urb . This structure is cre-
ated by a USB device driver, filled with data,
sent to a USB host controller where it will
be processed and eventually sent out over the
wire. When the host controller is finished with
the urb, the original device driver is notified.
While a host controller driver is processing the
urb, the original driver can try to cancel the urb,
or even free it. This led to long detailed argu-
ments on thelinux-usb-develmailing list about
when in the life span of a urb it was allowed to
be touched by either driver, and numerous bugs
in the core USB subsystem and different USB
drivers.

In the 2.5 kernel series,struct urb had
a reference count added to it, and the USB
core and USB host controller drivers had a
small amount of code added to properly handle
the reference count. Now whenever a driver
wants to use the urb, a reference count is in-
cremented. When it is finished, the reference
count is decremented. If this was the last user,
the memory is freed, and the urb disappears.
This allowed the USB device drivers to vastly
simplify their urb handling logic and fixed lots
of different race condition bugs. It also made
all of the developer’s lives simpler by quieting
all arguments about the topic.

3 Unwritten rules

If you follow the above set of rules, your code
looks like good Linux kernel code. There are
quite a few unwritten rules and style guidelines

Ottawa Linux Symposium 2002 254

that good kernel code follows. Here are some
of them.

3.1 Avoid NIH syndrome

There are a wide variety of well designed, well
documented, and well debugged functions and
data structures within the kernel. Take advan-
tage of them rather than reinventing your own
version. Among the most common of these are
the string functions, the byte order functions,
and the linked list data structure and functions.

3.2 String functions

In the file, include/linux/string.h, a number of
common string handling functions are defined.
These include:

strpbrk
strtok
strsep
strspn
strcpy
strncpy
strcat
strncat
strcmp
strncmp
strnicmp
strchr
strrchr
strstr
strlen
strnlen
memset
memcpy
memove
memscan
memcmp
memchr

And in the file, include/linux/kernel.h, a num-
ber of “simple” string functions are defined:

simple_strtoul

simple_strtol
simple_strtoull
simple_strtoll

If you need any type of string functionality in
your kernel code, use the built in functions. Do
not try to rewrite the existing functions acci-
dentally.

3.3 Byte order handling

Do not rewrite code to switch data between
different endian representations. The filein-
clude/asm/byteorder.h(asm will point to the
proper subdirectory, depending on your pro-
cessor architecture) brings in a wide range of
functions that allow you to do automatic con-
versions, no matter what the endian format of
your processor or your data.

3.4 Linked Lists

If you need to create a linked list of any
kind of data structure, use the code that is
in include/linux/list.h. It contains a struc-
ture, struct list_head , that should be
included within the structure for the new list.
You can easily add, remove, or iterate over a
list of data structures, without having to write
new code.

Some good examples of code that
uses the list structure can be found in
drivers/hotplug/pci_hotplug_core.c and
drivers/ieee1394/nodemgr.c. Some code
in the kernel that should be using the list
structure, can be found in the ATM core,
within thestruct atm_vcc data structure.
Because the ATM code did not usestruct
list_head , every ATM driver needs to walk
the lists of data structures by hand, duplicating
lots of code.

Ottawa Linux Symposium 2002 255

3.5 typedef is evil

typedef should not be used in naming any of
your structures. Almost all main kernel struc-
tures do not have atypedef to shorten their
usage. This includes the following:

struct inode
struct dentry
struct file
struct buffer_head
struct user
struct task_struct

Usingtypedef tries to hide the real type of a
variable. There have been records of some ker-
nel code using typedefs nested up to 4 layers
deep, preventing the programmer from telling
what type of variable they are really using.
This can easily cause very large structures to be
accidentally declared on the stack, or to be re-
turned from functions if the programmer does
not realize the size of the structure.

typedef can also be used as a crutch to keep
from typing long structure definitions. If this is
the case, the structure names should be made
shorter, according to the above listed naming
rules.

Never define atypedef to just signify a
pointer to a structure, as in the following ex-
ample:

typedef struct foo {
int bar;

int baz;

} foo_t, ∗pfoo_t;

This again hides the true type of the variable,
and is using the name of the variable type to
define what is is (see the comment about Hun-
garian notation previously.)

Some examples of wheretypedef is badly
used are in theinclude/raid/md*.hfiles where

every structure has atypedef assigned to it,
and in thedrivers/acpi/include/*.hfiles, where
a lot of the structures do not even have a name
assigned to them, only atypedef .

The only place that usingtypedef is ac-
ceptable, is in declaring function prototypes.
These can be difficult to type out every time,
so declaring a typedef for these is nice to
do. An example of this is thebh_end_io_t
typedef which is used as a parameter in the
init_buffer() call. This is defined inin-
clude/fs.has:

typedef void (bh_end_io_t)
(struct buffer_head *bh,
int uptodate);

3.6 No magic numbers

The Jargon file[2] describes a magic number
within source code as:

In source code, some non-obvious
constant whose value is significant to
the operation of a program and that
is inserted inconspicuously in-line
(hardcoded), rather than expanded in
by a symbol set by a commented
#define . Magic numbers in this
sense are bad style.

Fortunately the kernel does not have many
instances of code that uses magic numbers.
The drivers/usb/serial/pl2303.cdriver used
to have the code shown in Figure 2 in the
open() function. This code contains a lot
of of different magic numbers. The current
version of the file can be seen in Figure 3.
Even with the odd use of the macrosFISH()
and SOUP() , some of the magic numbers
have been replaced with the more descrip-
tive VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST,

Ottawa Linux Symposium 2002 256

VENDOR_WRITE_REQUEST_TYPE and
VENDOR_WRITE_REQUEST. This code
could be cleaned up a lot more, detailing what
the other magic numbers mean. Unfortunatly
the driver was written by reverse engineering
a protocol stream captured from a computer
running a different operating system. Most of
these numbers’ true purpose are not known,
only that they are necessary.

#define FISH(a,b,c,d) \
i = usb_control_msg (serial −>dev, \

usb_rcvctrlpipe(serial −>dev,0), \
b, a, c, d, buf, 1, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d - %x", \
a,b,c,d,i,buf[0]);

#define SOUP(a,b,c,d) \
i = usb_control_msg(serial −>dev, \

usb_sndctrlpipe(serial −>dev,0), \
b, a, c, d, NULL, 0, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d", \
a,b,c,d,i);

FISH (0xc0, 1, 0x8484, 0);

SOUP (0x40, 1, 0x0404, 0);

FISH (0xc0, 1, 0x8484, 0);

FISH (0xc0, 1, 0x8383, 0);

FISH (0xc0, 1, 0x8484, 0);

SOUP (0x40, 1, 0x0404, 1);

FISH (0xc0, 1, 0x8484, 0);

FISH (0xc0, 1, 0x8383, 0);

SOUP (0x40, 1, 0, 1);

SOUP (0x40, 1, 1, 0xc0);

SOUP (0x40, 1, 2, 4);

Figure 2: Original version ofpl2303.c

3.7 Noifdef in .c code

With the wide number of different processors,
different configuration options, and variations
of the same base hardware types that Linux
runs on, it is very easy to start having a lot of

#define FISH(a,b,c,d) \
i = usb_control_msg (serial->dev, \

usb_rcvctrlpipe(serial->dev,0), \
b, a, c, d, buf, 1, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d - %x", \
a,b,c,d,i,buf[0]);

#define SOUP(a,b,c,d) \
i = usb_control_msg(serial->dev, \

usb_sndctrlpipe(serial->dev,0), \
b, a, c, d, NULL, 0, 100); \

dbg("0x%x:0x%x:0x%x:0x%x %d", \
a,b,c,d,i);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0x0404, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8383, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0x0404, 1);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8484, 0);

FISH (VENDOR_READ_REQUEST_TYPE,
VENDOR_READ_REQUEST, 0x8383, 0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 0, 1);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 1, 0xc0);

SOUP (VENDOR_WRITE_REQUEST_TYPE,
VENDOR_WRITE_REQUEST, 2, 4);

Figure 3: Current version ofpl2303.c

ifdef statements in your code. This is not the
proper thing to do. Instead, place theifdef
in a header file, and provide empty inline func-
tions if the code is not to be included.

As an example, consider the code in
drivers/usb/hid-core.cas shown in Figure 4.

Here the author does not want to call
hiddev_hid_event() if a specific config-
uration option is not enabled. This is because
that function is not present if the configuration

Ottawa Linux Symposium 2002 257

static void hid_process_event (struct hid_device ∗hid,

struct hid_field ∗field,

struct hid_usage ∗usage, __s32 value)

{
hid_dump_input(usage, value);

if (hid −>claimed & HID_CLAIMED_INPUT)

hidinput_hid_event(hid, field, usage, value);

#ifdef CONFIG_USB_HIDDEV

if (hid −>claimed & HID_CLAIMED_HIDDEV)

hiddev_hid_event(hid, usage −>hid, value);

#endif

}

Figure 4: Original version ofdrivers/usb/hid-core.c

include/linux/hiddev.h:

#ifdef CONFIG_USB_HIDDEV

extern void hiddev_hid_event (struct hid_device ∗,

unsigned int usage, int value);

#else

static inline void hiddev_hid_event (struct hid_device ∗hid,

unsigned int usage, int value) { }
#endif

drivers/usb/hid-core.c:

static void hid_process_event (struct hid_device ∗hid,

struct hid_field ∗field,

struct hid_usage ∗usage, __s32 value)

{
hid_dump_input(usage, value);

if (hid −>claimed & HID_CLAIMED_INPUT)

hidinput_hid_event(hid, field, usage, value);

if (hid −>claimed & HID_CLAIMED_HIDDEV)

hiddev_hid_event(hid, usage −>hid, value);

}

Figure 5: After removal ofifdef in drivers/usb/hid-core.c

option is not enabled.

To remove thisifdef , the changes shown in
Figure 5 were made.

If CONFIG_USB_HIDDEV is not en-
abled, the compiler replaces the call to
hiddev_hid_event() with a null func-
tion call, and then optimizes away the if

Ottawa Linux Symposium 2002 258

statement entirely. This keeps the code
readable and is much easier to maintain.

3.8 Labeled Elements in Initializers

gcc allows the use of labeled elements in ini-
tializers. This means that structures that are
initialized at compile time can have the individ-
ual field names used to specify what fields to
set. For example, if thestruct foo struc-
ture was defined as:

struct foo {
int a;
int b;
int c;

};

any static definition of a variable of this type
would traditionally be written as:

static struct foo bar =

{A_INIT, B_INIT, C_INIT };

With the gcc extension, this initialization
could also be written as:

static struct foo bar = {
a: A_INIT,

b: B_INIT,

c: C_INIT,

};

which is a lot more descriptive. If a field is
not specified with a specific value, the compiler
sets that field to zero.

The kernel is filled with large structures, and
lots of them are initialized at compile time.
Previously, if someone added a new field in
a structure, any variables that were declared
like the previous example would break. For
example, if thestruct foo structure was
changed to be:

struct foo {

int a;
char a1;
int b;
int c;

};

Any place that did not use labeled elements
would break.

A good example of this, is any file that de-
clares astruct file_operations vari-
able. Generally, you do not want to define all
fields of this structure, but rely on the VFS core
to handle the majority of operations. The file
drivers/char/raw.chas two good examples of
named initializers:

static struct file_operations
raw_fops = {

read: raw_read,
write: raw_write,
open: raw_open,
release: raw_release,
ioctl: raw_ioctl,

};

static struct file_operations
raw_ctl_fops = {

ioctl: raw_ctl_ioctl,
open: raw_open,

};

The code in Figure 6 from
arch/ia64/sn/io/hcl.c is a good example
of how much overhead is involved if you do
not use this style of code.

This file will have to be updated every time
the struct file_operations structure
changes in the future.

4 Conclusion

The Linux kernel consists of a very large
amount of source code, contributed by hun-

Ottawa Linux Symposium 2002 259

struct file_operations hcl_fops =

{
(struct module ∗)0,

NULL, / ∗ lseek - default ∗ /

NULL, / ∗ read ∗ /

NULL, / ∗ write ∗ /

NULL, / ∗ readdir - bad ∗ /

NULL, / ∗ poll ∗ /

hcl_ioctl, / ∗ ioctl ∗ /

NULL, / ∗ mmap ∗ /

hcl_open, / ∗ open ∗ /

NULL, / ∗ flush ∗ /

hcl_close, / ∗ release ∗ /

NULL, / ∗ fsync ∗ /

NULL, / ∗ fasync ∗ /

NULL, / ∗ lock ∗ /

NULL, / ∗ readv ∗ /

NULL, / ∗ writev ∗ /

};

Figure 6:arch/ia64/sn/io/hcl.c

dreds of developers over many years. Since
the majority of this code follows some simple
and basic style and formatting rules, the abil-
ity for people to quickly understand new code
has been greatly enhanced. If you want to con-
tribute to this code, please read theDocumen-
tation/CodingStyleguidelines and follow them
in your patches and new code. The “unwrit-
ten” rules can be just as important as the writ-
ten ones, when you are trying to convince peo-
ple to accept your contributions, and should be
followed just as closely.

5 Trademarks

IBM is a trademark of International Business
Machines Corporation.

Linux is a trademark of Linus Torvalds.

Other company, product or service names may
be trademarks or service marks of others.

This work represents the view of the author and
does not necessarily represent the view of IBM.

References

[1] Soloway, Elliot, and Kate Ehrlich. 1984.
“Empirical Studies of Programming
Knowledge”, IEEE Transactions on
Software Engineering SE-10, no. 5
(September): 595-609

[2] http://www.tuxedo.org/˜esr

/jargon/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

