
Buried alive in patches:
6 months of picking up the pieces of the

Linux 2.5 kernel

Dave Jones
SuSE Labs

davej@suse.de, http://www.codemonkey.org.uk

Abstract

When development began on the 2.5 Linux ker-
nel, I volunteered to forward port 2.4 fixes to
2.5, and keep them in sync ready for when Li-
nus was ready to accept them. Additionally, I
collected the small bits Linus frequently over-
looked, and perhaps more importantly, tried to
keep the 2.5-dj tree in a usable, bootable state
even when 2.5 mainline wasn’t.

1 Introduction

With the advent of a new development series
of the Linux kernel, Linus Torvalds typically
hands off the current tree to someone else, who
becomes maintainer of that stable series, and
work on the development branch accelerates,
whilst the stable branch collects fixes and up-
dates rather than new features.

Typically, as focus on the development branch
is in other areas, important fixes continue to
pour into the stable series which are sometimes
not picked up in the development branch until
much later, or sometimes, not at all.

In the past Alan Cox has done sterling work in
picking up the fixes that go into stable series,
and collecting them together in his regularly
released -ac patches. At various points, Alan

would then push known good parts to Linus at
such a time that he is ready for them.

When the 2.4 kernel diverged to the 2.5 devel-
opment branch, there was still a considerable
number of fixes going into 2.4. Alan was busy
with other projects at the time, and so it was
suggested that ‘someone’ should pick up the
bits going into 2.4 and make sure they don’t
get left behind for 2.5.

Without fully thinking through the conse-
quences, I decided to step forward, and got a
lot more than I bargained for, but learned a lot,
and had a lot of fun on the way.

2 The problems

The easy part of the job looks something like
this:

repeat:
$ cd linux-2.5
$ cat ../patch-2.4.18-pre1.diff \

| patch -p1 -F1 --dry-run

(note rejects)

$ vi patch-2.4.18-pre1.diff

(chop out rejects)
until applies

Ottawa Linux Symposium 2002 243

The same process applies whenever Linus re-
leases a new 2.5 kernel.

This is however just a fraction of what the job
entails.

The first thing to be aware of is that a lot of
the fixes going into 2.4 may not be relevant to
what’s happening in 2.5. For example, maybe
the maintainer of relevant code wants things
fixed cleaning in 2.5, whereas a band-aid is ac-
ceptable in 2.4, or maybe large restructuring of
the code is planned for 2.5, so the fix is irrele-
vant. Sometimes development of a driver con-
tinues actively in 2.4 and 2.5, and takes wildly
different directions.

Keeping up-to-date with what every maintainer
is doing with their subsystem is a tricky task
that involves lots of mindreading, guesswork,
and occasionally email to ask, “What exactly
is going on with xxx?”

Another tricky part of the job is making sure
the tree is still in a state where you can test
that what you’ve just merged actually works.
Not easy at times in a development series when
there are bits of core functionality being ripped
apart. Sometimes this results in compromises
(not merging certain parts until they compile),
sometimes getting ahead of mainline (where
fixes appear faster than Linus merges them),
and sometimes by means of adding really ugly
hacks that don’t stand a chance to be accepted
for mainline, but “do the job” for most people
who are more concerned about their own spe-
cific part of the kernel.

Perhaps by far trickiest part of all however
is trying to split things up into Torvalds-size
pieces so that every so often, a resync can oc-
cur to push some of the more obviously cor-
rect, and well-tested bits back to the mainline
tree. As I found my feet with syncing, I tried
various approaches, some of which worked out
better than others.

There are several reasons for the difficulty.

• In the case of merging a 2.4pre to 2.5,
using the above method means I’m left
with a several MB patch which originally
consisted of perhaps dozens of smaller
patches. Whilst some of these are sent to
the Linux kernel mailing list, not all are
visible until they show up in Marcelo’s
tree.

• Maintainer issues. Sometimes it’s not im-
mediately obvious from reading the diff
(or even the code in a before and after
state) why a patch is needed. The main-
tainer however knows (or at least should
know) his/her own code inside out, and
know the precise reasoning behind every
diff going into Marcelo/Linus’ kernel. In
these circumstances, it’s often the best
policy to let them take care of merging
such patches, as they can explain to Li-
nus in much better terms why he needs
to take the patch instead of my guesswork
and hand waving.

• Patch drift. Patches I did manage to pick
up from the kernel mailing list, or were
Cc:’d to me were a little easier, as they
tended to come with good descriptions by
the patch author. The only problem with
these was that over time, the patch would
no longer apply to Linus’ vanilla tree, so
the patch would have to be kept up to
date. With so many patches applied, keep-
ing them all up to date seperately became
harder and harder, especially if several
patches wanted to touch the same files.

• Conflicts. When two or more patches are
touching the same file, what happens next
depends on the level of change in the var-
ious parts. For example, if I had sev-
eral patches touching the tulip network
driver, one fixing an obvious bug, one fix-
ing a spelling mistake, and another adding

Ottawa Linux Symposium 2002 244

a MODULE_LICENSE tag, the latter two
are trivial enough that the patch doesn’t
need splitting.

Where there are two parts to the patch fix-
ing different problems, or perhaps adding
functionality, things get more compli-
cated, and tools such as editdiff become
huge timesavers.

It became apparent very quickly that splitting
up the several MB patches from 2.4 back into
their component parts for each release wasn’t
feasible due to the amount of time it took. Each
time a new Marcelo prepatch appeared, it was
merged wholesale after removal of unneeded
parts. When the periodic resyncs with Linus
then occured, there were in many cases quite a
few trivial patches to the same file, making it
easy to get rid of lots of the smaller parts of my
tree.

3 Patch Rejection

It would be an easy job to simply apply ev-
ery patch that ever gets sent either directly, or
to the kernel mailing list. However things are
never simple, and a number of factors have to
be taken into consideration.

Chances of Linus ever accepting them.
Some patches are just too ugly to live.
Various people sent me patches that Linus
had rejected, in the hope that as it was
coming from me, Linus would somehow
take a different view. Somewhat amused
by this, most of these patches are either
memorable, or discussion with the rele-
vant maintainer is usually enough to get
a “don’t apply” message back. If there’s
no chance of Linus ever taking it, then
keeping patches of this kind in my tree
was deemed pointless.

Controversial patches. A good example of
this case was Eric Raymond’s CML2
patch. A very large patch that touched
the configuration file of every part of the
kernel. It’s hard to imagine a more far-
reaching change. At one point, Linus even
made claims that he had no interest in the
kernel configuration language, and that it
would be probably better maintained out-
side the kernel tree. So this example also
falls into category 1. Had I merged CML2
at any point, this would have made it im-
possible to merge any configuration up-
dates from mainline without first rewrit-
ing them as CML2 rules, which was un-
acceptable. Likewise, any changes made
could not be sent back to mainline.

Orthoganal works. Sometimes patches ap-
pear, and there will be nothing technically
wrong with them, but perhaps the timing
is wrong due to someone else working in
the same area on maybe a larger scale.
An example of this was the i386 sub-
arch patches James Bottomley did, which
unfortunatly clashed with the consider-
able rewrites Randy Dunlap did to i386-
specific drivers such as MTRR.

4 Timeline of events.

4.1 December 2001

At the beginning of December, Linus had put
out 2.5.0, and was concentrating almost solely
on merging Jens Axboe’s block layer rewrite.
At the same time, Marcelo had begun his first
‘real’ patch merging, after having put out the
rush-released 2.4.16. It was noted that these
fixes were not getting merged into 2.5, and
Dave Miller suggested that someone collect
them, and keep them up to date until such a
time that Linus was ready to accept them. I
had been doing this partially at the time for my
own use anyway, so I decided to take it on.

Ottawa Linux Symposium 2002 245

Towards the end of the month, when Linus was
up to 2.5.1pre11, I made my first release of -dj,
which was around a 1MB diff against Linus’
current tree.

4.2 January 2002

In January, Linus had got up to 2.5.2pre, and
Marcelo had accelerated in patch merging as
he got used to his new role. The diffsize be-
tween my tree and Linus’ had started to in-
crease dramatically, and so the first resync of
the trees was planned. After pushing a con-
siderable amount of the more obvious fixes to
Linus, only some of the trickier-to-merge bits
remained, although still a sizable amount.

It was at this time that Linus started break-
ing things dramatically in 2.5. First came the
big kdevt redesign, which broke compilation
of many parts of the kernel. The linux-kernel
mailing list was awash with many fixes for
these compile errors, although it took Linus
some time to get many of them merged.

Another key point of note in January was the
introduction of the new Framebuffer API into
my tree. James Simmons wanted a 2.5 that
stood more chance of being able to compile,
and decided to use my tree as a basis for devel-
opment.

A great supplement to me picking up various
small patches on the Linux kernel mailing list
was Rusty Russell’s trivial patchbot. Patches
sent to the robot get archived, and automati-
cally retransmitted on the sender’s behalf, and
do all kinds of magic like automatically check-
ing that they still apply when a new kernel
appears, and bouncing a “doesn’t apply any
more—please rediff” back to the patch author.
With both Rusty and myself picking up and re-
transmitting these on the patch-author’s behalf,
the “Linus isn’t taking my patches” arguments
for trivial patches all but disappeared.

During pushing bits to Linus, I discovered Tim
Waugh’s patchutils, which is a set of tools
for manipulating diffs. Until this point, when
sending a patch to Linus, I had been doing
pretty much everything in vim, and chopping
out unnecessary parts of the rest of my tree
from the patch. Quite a time-consuming pro-
cess. With patchutils, things got a lot easier as
I could now with a ‘simple’ command line ex-
tract all the related parts of a patch from my
tree. For example,

grepdiff pf_gfp_mask dj1.diff \
| xargs -n1 \
filterdiff dj1.diff -i

would extract all the diffs from my tree that
touch pf_gfp_mask. After doing this, and
deleting the irrelevant hunks of the the diff
from the output, the patch was more or less
ready to go to Linus.

As well as these, Patchutils also includes many
other useful tools that save more time to a
patch-merger than any other tool I’ve yet to
run.

Toward the end of the month, my tree was
around 2MB away from Linus.

4.3 February

At the beginning of February, Linus was up to
2.5.5, and with the block layer taking shape, he
had started merging some other large new fea-
tures. This kernel saw the introduction the x86-
64 port, the ALSA merge, and the first parts of
the new input layer (all of which had been in
-dj for a month).

On the downside, some other things had con-
tinued to break dramatically. Lots more drivers
no longer compiled due to the virt_to_bus
macros being changed in an attempt to get
more portable drivers. I made a compromise

Ottawa Linux Symposium 2002 246

in my tree and wrapped this change in an op-
tion called CONFIG_DEBUG_OBSOLETE.
When not selected, the old behaviour occurred,
and the drivers continued to compile. Crude,
but effective.

Other notable changes this month included the
various IDE cleanups by Martin Dalecki, Vo-
jtech Pavlik, Pavel Machek, and others. As a
result of this work, Andre Hedrick stood down
as 2.5 IDE maintainer.

It became aparent that I hadn’t pushed to Linus
for a while, as by now, my tree was 4MB away
from Linus, with quite a lot of patches pending.
The new framebuffer API work was taking up
a large percentage of this, as was the new input
layer work.

Christoph Hellwig had been regularly looking
through my patches, and with nearly every re-
lease he would spot something really dumb that
I did, like reintroducing calls to a now-dead
API, or CVS $ID: tag damage. (I use CVS and
frequently forget to add files with -ko). These
silly mistakes happened often enough that I de-
cided to write a simple perl script to check for
silly mistakes like this.

Ottawa Linux Symposium 2002 247

#!/usr/bin/perl -w
checkdiff.pl -- 2.5-dj kernel patch checker.
#
I’m stupid.
This script sanity checks diffs before I put them out, so
that hch doesn’t have to remind me I goofed.

use strict;

foreach (@ARGV) {
process ($_) or warn "Couldn’t check file $_: $!";

}

sub process {
my $filename=shift;

open INPUT, $filename or return undef;
my @lines=<INPUT>;
close INPUT;
chomp @lines;

my $linenr=0;

foreach my $line (@lines) {
$linenr++;

if ($line=~/davej/ and $line=~/\$Id:/) {
print "Found davej CVS damage at line $linenr\n$line\n\n";

}

We are adding a line, check its not obsolete.
if ($line=~/^\+/) {

if ($line=~/iorequest_lock/) {
print "Adding code to frob iorequest_lock" .

" at line $linenr\n$line\n\n";
}
if ($line=~/[]MAJOR[(]/) {

print "Adding code to frob MAJOR at line $linenr\n$line\n\n";
}
if ($line=~/get_fast_time/) {

print "Adding get_fast_time at line $linenr\n$line\n\n";
}
if ($line=~/strtok/) {

print "Adding strtok at line $linenr\n$line\n\n";
}
... other rules here ...

}
}
return 1;

}

Cut-down version of the Perl script used for checking patches before uploading to kernel.org

Ottawa Linux Symposium 2002 248

4.4 March

By March, mainline was up to 2.5.7. Proba-
bly the biggest change was the introduction of
Robert Olsen and co’s NAPI work.

In an attempt to get the diff size between my
tree and Linus’ down, I decided to drop the
arch updates for architectures like S390, m68k,
etc. The reasoning behind this was that even
with the updates from my tree, they never com-
piled in 2.5 anyway, due to the lack of other
necessary changes, such as those imposed by
the introduction of Ingo Molnar’s O(1) sched-
uler.

Linus had at this point been using bitkeeper
for a few weeks, and was just starting to get
comfortable with it. Patches seemed to be get-
ting applied at a much more accelerated rate
than previously. I wondered if it could help
out with the merging of my-tree to Linus’, and
played with it for a week or so, often exchang-
ing ideas/queries with Larry McVoy, but ulti-
mately, it didn’t work out for me. The only way
bitkeeper would work for such a large set of
diffs (at the time, up to 7MB away from main-
line) would have been to have many trees for
all the different patches, all combined into one
union tree. There was however a problem with
this. If I go to the extreme of splitting up my
tree into component parts to feed into bitkeeper
trees, I may as well just feed those small bits to
Linus as regular GNU patches.

Linus agreed with this, and this is how we con-
tinued the merging.

I started to fall behind a little in this month
with syncing both from my tree to Linus and
vice versa. Mostly due to me moving house,
and having to make do without life’s essentials
(like ADSL) for a while.

After getting back online, and spending a few
days getting everything back up to date, Linus

went on holiday for a few weeks, with the part-
ing note “Jeff Garzik and Dave Jones will be
taking care of patches whilst I’m gone.” The
following two weeks were mostly quiet fortu-
nately, which gave me great opportunity to split
up patches ready for the largest resync so far.

4.5 April

April began with 2.5.8 still being current. Li-
nus had returned from his holiday, and ‘The
big resyncing’ ensued. With 7.5MB of diff be-
tween his tree and mine, this was no small task,
and not one that would be over any time soon.

I pushed 128 patches to Linus, 493KB worth,
and a further 474KB in 50 patches to Jeff
Garzik (network drivers and the like). 6 hours
later, 126 of the patches I sent direct to Linus
were applied. An hour later, most of what I
sent to Jeff also showed up in Linus’ tree. In a
state of shock, I wondered how I could “shovel
faster.” By the time Linus put out pre1, my tree
was 6MB away from mainline.

pre2 was another few hundred KB (although
mostly fixing wrong merges from pre1).
Whilst splitting up various bits for Linus, and
looking through the patches in my tree, I also
found a lot of other patches that really didn’t
make sense to continue carrying (whitespace
differences, superseded patches, updated CVS
idents, etc.).

A mistake that happened during merging
here was that CONFIG_DEBUG_OBSOLETE
slipped in as a Config.help text. Interest-
ingly, Linus decided to drop what this op-
tion was wrapping in my tree, and make it
unconditional. Whilst having more portable
drivers was an admirable goal, it hadn’t really
prompted any of the maintainers to fix their
drivers, causing more headache than anything
productive.

After this, I spent a week at Linuxworld—i.e.,

Ottawa Linux Symposium 2002 249

where I had hoped to do more patch splitting,
but it didn’t happen due to time constraints.
What did happen was the beginning of more
catch up work. By the time I returned, I had
to resync 2.4.19pre4,pre5,pre6 & 2.5.8pre2 &
pre3 to my tree.

In addition to this, there were now 113 patches
in my inbound queue. At this point it was re-
alised that I couldn’t ‘stop to do a resync’ every
so often, and that syncing a “moving target”
was considered only viable option.

Toward the end of the month, Linus stopped
doing -pre patches, and instead started doing
full releases more often. At the end of the
month, 2.5.11 was current, which featured an-
other large number of merges, including the
beginnings of the new framebuffer code. At
time of writing this paper, resync against 2.5.11
hadn’t been done, but estimated diffsize was
between 4-5MB.

5 Future Plans

At the time of writing, there are over two
months remaining before OLS, during which
much more resyncing will happen, and con-
versely, many more patches are likely to get
applied to my tree. The larger parts of my tree
(the Framebuffer code, new input API, ALSA
OSS updates) are slowly starting to get merged
into mainline. If by some freak opportunity
my tree manages to get down to a reasonable
size again, I’ll take a look at using bitkeeper
for merges once again.

Given a hypothetical perfect world, the plan
is that by the time 2.6 is ready, the -dj series
of kernel patches will become less necessary.
Depending on rates of merging, positions of
moon, and other acts of randomness, it may be
that 2.6-dj patches will become necessary until
fully merged, and some of the more experimen-
tal bits may end up being put back until 2.7.x

opens.

6 Links

http://www.kernel.org/pub/people

/davej/patches/2.5/

Where my -dj patches are to be found.

http://www.codemonkey.org.uk

/Linux-2.5.html

A list of known remaining problems with
current/recent 2.5’s.

http://diary.codemonkey.org.uk/

My online diary where I frequently write
about progress on 2.5

http://cyberelk.net/tim

/patchutils/

Tim Waugh’s patchutils

trivial@rustcorp.com.au

Rusty Russell’s trivial patch robot.

7 Acknowledgments

The work of patch integrator is largely a soli-
tary task, but there are countless people wor-
thy of gratitude, from the many people who
were prepared to download and try out my
-dj patches, especially those who sent feed-
back/reports/patches.

Tim Waugh for patchutils, which made merg-
ing so much easier.

Larry McVoy for making Linus scale despite
the critics.

And finally, Alan Cox for being busy with
other things in December 2001. Without
which, I’d probably have found something
much more boring to have spent the last 6
months hacking.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

