
Maintaining the Correctness of the Linux Security
Modules Framework

Trent Jaeger Xiaolan Zhang Antony Edwards
IBM T. J. Watson Research Center

Hawthorne, NY 10532 USA
Email: {jaegert,cxzhang}@us.ibm.com

Abstract

In this paper, we present an approach, sup-
ported by software tools, for maintaining the
correctness of the Linux Security Modules
(LSM) framework (the LSM community is
aiming for inclusion in Linux 2.5). The LSM
framework consists of a set of function call
hooks placed at locations in the Linux kernel
that enable greater control of user-level pro-
cesses’ use of kernel functionality, such as is
necessary to enforce mandatory access control.
However, the placement of LSM hooks within
the kernel means that kernel modifications may
inadvertently introduce security holes. Funda-
mentally, our approach consists of complemen-
tary static and runtime analysis; runtime anal-
ysis determines the authorization requirements
and static analysis verifies these requirements
across the entire kernel source. Initially, the fo-
cus has been on finding and fixing LSM errors,
but now we examine how such an approach
may be used by kernel development commu-
nity to maintain the correctness of the LSM
framework. We find that much of the verifica-
tion process can be automated, regression test-
ing across kernel versions can be made resilient
to several types of changes, such as source line
numbers, but reduction of false positives re-
mains a key issue.

1 Introduction

The Linux Security Modules (LSM) project
aims to provide a generic framework from
which a wide variety of authorization mech-
anisms and policies can be enforced. Such
a framework would enable developers to im-
plement authorization modules of their choos-
ing for the Linux kernel. System administra-
tors can then select the module that best en-
forces their system’s security policy. For exam-
ple, modules that implement mandatory access
control (MAC) policies to enable containment
of compromised system services are under de-
velopment.

The LSM framework is a set of authorization
hooks (i.e., generic function pointers) inserted
into the Linux kernel. These hooks define the
types of authorizations that a module can en-
force and their locations. Placing the hooks in
the kernel itself rather than at the system call
boundary has security and performance advan-
tages. First, placing hooks where the opera-
tions are implemented ensures that the autho-
rized objects are the only ones used. For ex-
ample, system call interposition is susceptible
to time-of-check-to-time-of-use (TOCTTOU)
attacks [2], where another object is swapped
for the authorized object after authorization,
because the kernel does not necessarily use
the object authorized by interposition. Sec-

Ottawa Linux Symposium 2002 224

ond, since the authorizations are at the point of
the operation, there is no need to redundantly
transform system call arguments to kernel ob-
jects.

While placing the authorization hooks in the
kernel can improve security, it is more difficult
to determine whether the hooks mediate and
authorize all controlled operations. The system
call interface is a nice mediation point because
all the kernel’s controlled operations (i.e., oper-
ations that access security-sensitive data)must
eventually go through this interface. Inside
the kernel, there is no obvious analogue for
the system call interface. Any kernel function
can contain accesses to one or more security-
sensitive data structures. Thus, any mediation
interface is at a lower-level of abstraction (e.g.,
inode member access). Also, it is necessary
to link these operations with their access con-
trol policy (e.g., write data) to ensure that the
correct authorizations are made for each con-
trolled operation. If there is a mismatch be-
tween the policy enforced and the controlled
operations that are executed under that policy,
unauthorized operations can be executed. We
believe that manual verification of the correct
authorization of a low-level mediation inter-
face is impractical.

We have examined both static and runtime
analysis techniques for verifying LSM autho-
rization hook placement [6, 20]. Our static
analysis approach identifies kernel variables of
key data types (e.g., inodes, tasks, sockets, etc.)
that are accessed prior to authorization. The
advantage of static analysis is that its com-
plete coverage of execution paths (both data
and control) enables it to find potential errors
more easily. Many successes with static anal-
ysis have been reported recently [7, 11, 16].
The effectiveness of static analysis is limited
by the manual effort required for annotation
and the number of false positives that are gen-

erated1. Also, some tasks are very difficult for
static analysis. However, runtime analysis re-
quires benchmarks that provide sufficient cov-
erage and also creates false positives that must
be managed. Thus far, our experience has been
that runtime analysis provides a useful comple-
ment for static analysis, so both types of anal-
yses need to be performed to obtain effective
verification.

While our initial results have been positive2,
ultimately, we believe that it is necessary that
such analysis become part of the kernel de-
velopment process to really maintain the ef-
fectiveness of the LSM framework. As the
Linux kernel is modified, the LSM authoriza-
tion hooks may become misplaced. That is,
some security-sensitive operations that were
previously executed only after authorization
may now become accessible without proper au-
thorization. Since the subtleties of authoriza-
tion may be non-trivial, the kernel developers
need a tool that enables them to verify that the
authorization hooks protect the system as they
did before or identify the cases that need ex-
amination. Further, kernel developers need a
way of communicating changes that need to be
examined by the LSM community.

In this paper, we outline the analysis capabil-
ities of our static and runtime tools and de-
scribe how they are used together to perform
LSM verification. We do not provide a detailed
discussion of the analysis tools, so interested
readers are directed elsewhere for that infor-
mation [6, 20]. We would also like to make
such tools available and practical for the ker-
nel development community, so we examine
how effectively the analysis steps can be au-
tomated and what issues the users of the analy-

1Static analysis is overly conservative because some
impossible paths are considered which can lead to some
false positives.

2Five LSM authorization hooks have been added or
revised due to the results of our analysis tools.

Ottawa Linux Symposium 2002 225

sis tools must resolve in order to complete the
analysis. We find that much of the verification
process can be automated, regression testing
across kernel versions can be made resilient to
minor changes, such as source line numbers,
but reduction of false positives remains a key
issue. While the analysis tools are not yet avail-
able as open source, we are working to obtain
such approval.

The remainder of the paper is structured as fol-
lows. In Section 2, we review the goals and sta-
tus of the LSM project. In Section 3, we define
the general hook placement problem. In Sec-
tion 4, we review the static and runtime anal-
ysis verification approaches. In Section 5, we
outline how LSM verification experts use the
static and runtime analysis tools in a comple-
mentary fashion to perform a complete LSM
verification. In Section 6, we examine how the
analysis tools can be made practical for use by
the kernel development community. In Sec-
tion 7, we conclude and describe future work.

2 Linux Security Modules

The Linux Security Modules (LSM) frame-
work is being developed to address insuffi-
ciencies in traditional UNIX security. Histor-
ically, UNIX operating systems provide a sin-
gle authorization mechanism and policy model
for controlling file system access. This ap-
proach has been found to be lacking for a va-
riety of reasons, and these inadequacies have
been exacerbated by emerging technologies.
First, the UNIX policy model lacks the ex-
pressive power necessary for some security re-
quirements. UNIX file mode bits enable con-
trol of file accesses based on three types of re-
lationships that the subject may have with the
file: file owner, file group owner, and others.
Some reasonable access control combinations
cannot be expressed using this approach, so ex-
tension have been created (e.g., access control

lists (ACL)). Second, the UNIX access con-
trol model provides discretionary access con-
trol (DAC) whereby the owner of the objects
controls the distribution of access. Thus, users
can accidentally give away rights that they did
not intend, and the all-powerful userroot, as
which a wide variety of diverse programs run,
can change access control policy in the system
arbitrarily. Third, with the advent of new pro-
gramming paradigms, such as mobile code, the
UNIX assumption that every one of the users’
processes should always have all of the users’
rights became flawed [3], and it was found that
the UNIX access control model was too lim-
ited to enable the necessary level of flexibil-
ity [10, 1, 9]. Fourth, controlling access to a
variety of other objects besides files was also
found to be necessary, and, in some cases, re-
stricting the relationships that objects may en-
ter is necessary [17]. For example, the ability
to mount one file system on another is a con-
trolled operation on the establishment of that
relationship between the two file systems.

Initially, the authorization mechanisms pro-
posed to address these limitations were in-
serted at the user-system boundary (e.g., by
wrapping system calls [1] or callbacks [9]). By
not integrating the authorization mechanisms
within the kernel, the authorization mechanism
lacks the kernel state at the time that the oper-
ation is performed. Attacks have been found
that can take advantage of the interval between
the time of the authorization and the time at
which the operation is invoked [2]. Further,
the performance of the system is degraded be-
cause the kernel state must be computed twice
if the authorization mechanism is placed at the
system call interface. Recent research work on
improving the UNIX authorization mechanism
in Linux has focused on inserting hooks to
the authorization mechanism in the kernel di-
rectly [4, 13, 14, 15, 18]. However, the variety
of authorization hook placements and styles re-
sulted in ad hoc modifications to the Linux ker-

Ottawa Linux Symposium 2002 226

nel.

Another major advancement has been the sep-
aration between the authorization mechanism
and the policy model used. The work on
DTOS and Flask security architectures demon-
strated how the authorization policy server can
be separated from the authorization mecha-
nism [12, 17]. Thus, a variety of access control
policies can be supported. In particular, a va-
riety of mandatory access control (MAC) poli-
cies can be explored. An advantage of MAC
policies is that provable containment of overt
process actions is possible, so protection of the
TCB and key applications can be implemented.
Various flavors of MAC policy models have
been examined, but no one approach has been
shown to be superior. The design of effective
policy models and policies themselves remains
an open research issue.

The LSM project includes several of the par-
ties working on independent Linux kernel au-
thorization mechanisms, in particular Security-
Enhanced Linux (SELinux) and Immunix Sub-
Domain, to create a generic framework for call-
ing authorization modules from within the ker-
nel. Motivation to unite these mechanisms
came when Linus Torvalds outlined his goals
for such a framework [19]. Linus stated that
he wants authorization to be implemented by
a module accessible via generic hooks. The
hope that an acceptable authorization frame-
work would be integrated with the mainline
Linux kernel has resulted in a comprehensive
LSM implementation.

As of Linux 2.4.16, LSM consists of 216 au-
thorization hooks inserted in the kernel that can
call 153 distinct authorization functions de-
fined by the authorization modules (i.e., load-
able kernel modules). The authorization hooks
enable authorization of a wide variety of op-
erations, including operations on files, inodes,
sockets, IPC messages, IPC message queues,

semaphores, tasks, modules, skbuffs, devices,
and various global kernel variables. Authoriza-
tion modules for SELinux, SubDomain, and
OpenWALL have been built for LSM, so LSM
is capable of enforcing MAC policies already.

3 General Hook Placement Prob-
lems

3.1 Concepts

We identify the following key concepts in the
construction of an authorization framework:

• Authorization Hooks: These are the au-
thorization checks in the system (e.g., the
LSM-patched Linux kernel).

• Policy Operations: These are the oper-
ations for which authorization policy is
defined in the authorization hooks. Be-
cause we would like to identify code that
is representative of the policy operation,
they are practically defined as the first
controlled operation (see below) requiring
this policy.

• Security-sensitive Operations: These
are the operations that impact the security
of the system.

• Controlled Operations: A subset of
security-sensitive operations that mediate
access to all other security-sensitive oper-
ations. These operations define amedia-
tion interface.

The definition of these concepts is made clear
by a comparison between system call media-
tion and the in-kernel mediation used by LSM
shown in Figure 1. When authorization hooks
are placed at the system call interface, the pol-
icy operations (e.g., the conceptual operation

Ottawa Linux Symposium 2002 227

S SSS S S

H: Authorization Hook
P: Policy Operation
C: Controlled
 Operation
S: Security-sensitive
 Operation

Syscall Trap

Kernel

...

User

System Call Approach LSM Approach

...

......

C C

H

P/C

P

H

Figure 1:Comparison of concepts between system call interposition framework and LSM.

write) and controlled operations (e.g., where
mediation of all file opens for write access oc-
cur at the system callsys_open with the ac-
cess flagWRONLY) are effectively the same.
This is because policy is specified at the sys-
tem call interface, and the system call inter-
face also provides complete mediation. The
security-sensitive operations in both cases are
the data accesses made to security-relevant ker-
nel data, such as files, inodes, mappings, and
pages.

When authorization hooks are inserted in the
kernel, the level of complete mediation is the
kernel source code, so the policy operations
and controlled operations are no longer nec-
essarily the same. For example, rather than
verifying file open for write access at the sys-
tem call interface, the LSM authorizations for
directory (exec), link (follow link), and ulti-
mately, the file open are performed at the time
these operations are to be done. This elimi-
nates susceptibility to TOCTTOU attacks [2]
and redundant processing. The kernel source
is complex, however, so it is no longer clear
that all security-sensitive operations are actu-
ally authorized properly before they are run.

Given the breadth and variety of security-
sensitive operations, we would like to iden-
tify a higher-level interface for verifying their
proper LSM authorization. This interface
must mediate all access from the authorization
hooks to the security-sensitive operation. This
interface is referred to as themediation inter-
faceand is defined by a set of controlled oper-
ations.

3.2 Relationships to Verify

Figure 2 shows the relationships between the
concepts.

1. Identify Controlled Operations: Find
the set of operations that define a medi-
ation interface through which all security-
sensitive operations are accessed.

2. Determine Authorization Require-
ments: For each controlled operation,
identify the policy operations that must
be authorized by the LSM hooks.

3. Verify Complete Authorization: For
each controlled operation, verify that
the policy operations (i.e., authorization

Ottawa Linux Symposium 2002 228

requirements) are authorized by LSM
hooks.

4. Verify Hook Placement Clarity: Pol-
icy operations should be easily identifi-
able from their authorization hooks. Oth-
erwise, even trivial changes to the source
may render the hook inoperable.

The basic idea is that we identify the con-
trolled operations and their authorization re-
quirements, then we verify that the authoriza-
tion hooks mediate those controlled operations
properly. This verifies, that the LSM hook
placement is correct with respect to this set
of controlled operations and authorization re-
quirements. When the mediation interface is
shown to be correct, it verifies LSM hook
placement with respect to all security-sensitive
operations. These tasks are complex, so it is
obvious that automated tools are necessary.

Controlled Operation

Security-sensitive Operation

Mediates

Mediates

1

2

3

4

Authorization Hook

Predicts

Policy Operation

Comprises

Figure 2: Relationships between the authorization
concepts. The verification problems are to: (1) iden-
tify controlled operations; (2) determine authorization
requirements; (3) verify complete authorization; and (4)
verify hook placement clarity.

In addition, we found that additional auto-
mated support is necessary to identify the con-
trolled operations and their authorization re-
quirements. First, manual identification of the

controlled operations is a tedious task. We
must develop an approach by which controlled
operations can be selected from the set of
security-sensitive operations. Once this ap-
proach has been determined automated tech-
niques are needed to extracted these operations
from the kernel source. Second, because the
controlled operations are at a lower level than
the policy operations, we need to determine the
policy operations (i.e., authorization require-
ments) for a controlled operation. Since we
expect a large number of controlled operations,
it is necessary to develop an approach to sim-
plify the means for identifying their authoriza-
tion requirements.

Lastly, to ensure maintainability of the autho-
rization hooks we can verify that the policy op-
erations can be easily determined from the au-
thorization hook locations. This work is has
been done, but in interest of focus it is outside
the scope of this paper. This is work is pre-
sented elsewhere [6].

3.3 Related Work

We are not aware of any tools that perform any
of the tasks outlined above. While static analy-
sis has had some promising results lately [7,
11, 16], the problems upon which they have
been applied have been different and narrower
in scope (e.g., buffer overflow detection). We
believe that static analysis tools will eventually
provide some important improvements in the
verifications described above, but some analy-
ses will be easier to do with runtime tools (e.g.,
due to reduced specification for comprehensive
tests).

4 Solution Background

In this section, we review the approaches we
devised for using static and runtime analysis
to verify the placement of LSM authorization

Ottawa Linux Symposium 2002 229

hooks.

4.1 CQUAL Static Analysis

We use the CQUAL type-based static analy-
sis tool as the basis for our static analysis [8].
CQUAL supports user-definedtype qualifiers
that are used in the same way as the standard C
type qualifiers such asconst . We define two
type qualifiers,checked and unchecked .
The idea is that a variable with aunchecked
qualifier cannot be used when a variable with a
checked qualifier is expected. This simulates
the need to authorize variables before they are
used in controlled operations.

The following code segment demonstrates the
type of violation we want to detect. Function
func_a expects achecked file pointer as its
parameter, but the parameter passed is of type
unchecked file pointer.

void func_a(struct file
*checked filp);

void func_b(void)
{

struct file * unchecked filp;
...
func_a(filp);
...

}

As input to CQUAL, we define type rela-
tions between thechecked andunchecked
type qualifiers that represent the requirement
that a checked type cannot be used when
an unchecked is expected. Using its infer-
ence rules, CQUAL performsqualifier infer-
enceto detect violations against these type re-
lations. These violations are calledtype errors.
CQUAL reports both the variables involved in
the type errors and the shortest paths to type
error creation for these variables. For a more
detailed description of CQUAL, please refer to
the original paper on CQUAL [8].

In order to do this analysis, CQUAL requires
that the target source be annotated with the type
qualifiers. This is an arduous and error-prone
task for a program like the Linux kernel, so we
use GCC analysis to automate the annotation
process. There are three GCC analyses we per-
form to prepare the source code for CQUAL
processing.

1. All controlled object must be initialized to
unchecked .

2. All function parameters that are used in
a controlled operation must be marked as
checked .

3. Authorizations must upgrade the autho-
rized object’s qualified type tochecked .

In order to ensure that static analysis is sound
(i.e., no type errors are missed by the analy-
sis), we perform some additional GCC analy-
ses. For example, we verify no reassignments
of variables and check for intra-procedural type
errors. These analyses are sometimes primi-
tive, but they have limited the amount of man-
ual work required sufficiently. We are work-
ing with the CQUAL community and others to
improve the effectiveness of static analysis for
this purpose. For a more detailed description
of our static analysis, see our paper [20].

With our static analysis, we have identified
some LSM vulnerabilities in Linux 2.4.9, but
since the runtime analysis tool was done first
we have found only one new, exploitable vul-
nerability. It has since been fixed in later ver-
sions of LSM [5]. Figure 3 shows the vulnera-
bility.

The code fragment demonstrates a time-of-
check-to-time-of-use [2] (TOCTTOU) vulner-
ability. In this case, thefilp variable is au-
thorized insys_fcntl . However, a new ver-
sion offilp is extracted from the file descrip-
tor and used in the functionfcntl_getlk .

Ottawa Linux Symposium 2002 230

Since a user process can modify its mapping
between its file descriptors and the files they
reference this error is exploitable.

4.2 Vali Runtime Analysis

We have developed a tool, called Vali3, for
collecting key kernel runtime events (Vali run-
time) and analyzing this runtime data (Vali
analysis) to determine whether LSM authoriza-
tion hooks are correctly placed [6]. The key
insight of the Vali analysis is that most of the
LSM authorization hooks are correctly placed,
so it is anomalies in the authorization results
that enables us to identify errors. Using this
approach, we have found 5 significant anoma-
lies in LSM authorization hook placement, 4 of
which have been identified as bugs and fixed.

Vali consists of kernel instrumentation tools,
kernel data collection modules, and data anal-
ysis tools. The kernel instrumentation tools
build a Linux kernel for which kernel events
(e.g., system calls and interrupts), function en-
try/exits, LSM authorizations, and controlled
operations can be logged by the data collection
modules. We use the same kind of GCC analy-
sis as we did for the static analysis to find con-
trolled operations in the kernel. Other events
are easily instrumented through GCC instru-
mentation (functions), breakpoints on entry ad-
dresses (kernel events), and the LSM autho-
rization hooks themselves (authorizations).

Loadable kernel modules for each type of in-
strumentation collect these events. The main
problem with data collection is not the perfor-
mance overhead, but the data collection band-
width. The performance overhead of instru-
mentation is only about 10%, and since the
analysis kernel is not a production kernel this
is quite acceptable. However, the rate at which
data is generated can exceed the disk through-

3Vali is the Norse God of Justice and the first four
letters in “Validate.”

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...
err = security_ops->file_ops

->fcntl(filp, cmd, arg);
...
err = do_fcntl(fd, cmd, arg,

filp);
...

}
static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){

...
case F_SETLK:

err = fcntl_setlk(fd, ...);
...

}
...

}
/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...
filp = fget(fd);
/* operate on filp */
...

}

Figure 3: Code path from Linux 2.4.9 contain-
ing an exploitable type error.

Ottawa Linux Symposium 2002 231

open for read access

1 = (+,id_type,CONTEXT)

(+,di_cfm_eax,sys_open)

(+,co_ecx,RDONLY)

2 (D,1) = (+,ALL,0,0)

open for read-write

1 = (+,id_type,CONTEXT)

(+,di_cfm_eax,sys_open)

(+,co_ecx,RDWR)

2 (D,1) = (+,ALL,0,0)

Figure 4: Filtering rules for open system call
(sys_open) with read and read-write access
flags. The (D,1) means that the rule should
use only the records that have matched this rule
number in the second argument. There is also a
negation counterpart (N,x) where the specified
records are excluded.

put rate, so we enable event filtering. Cur-
rently, this is simply collecting 1 out ofn
events wheren can be tuned. Ultimately, we
would like to be able to control the types of
events collected to ensure that rarer events are
not missed.

The logged data identifies the objects used in
controlled operations and the authorizations
made upon those objects. While different ob-
ject instances are used in different system call
instances, objects referenced by the same vari-
able (i.e., used in the same controlled opera-
tions) should normally have the same autho-
rizations. This is not entirely true as some sys-
tem calls (e.g.,open , ioctl , etc.) may imply
different authorizations based on the flags that
are sent. Therefore, we have defined a simple
filtering language to identify the kernel events
that should have the same authorizations for
all objects (see Figure 4 for examples). Per
filter, all objects should have the same autho-
rizations. Therefore, we can identify anoma-
lous cases that do not have the expected autho-
rizations, and these cases are often errors. Be-

cause the filters enable focusing on a small set
of operations, we have had more success find-
ing problems using the runtime analysis than
the static analysis. We have found errors rang-
ing from missing authorizations for an obscure
system callgetgroups16 to a missing au-
thorization for resetting the fowner of a file us-
ing one of the flag variants offcntl (see Fig-
ure 5).

The runtime analysis also does something that
the static analysis does not: it identifies the ex-
pected authorizations for an object in a system
call. Cases that are consistent identify a be-
lief in the set of authorizations that are required
on an object. These authorization requirements
can be used as input to the static analysis tool
which can then be used to verify the correct
authorizations, not just the existence of an au-
thorization. While most of the controlled oper-
ations require just one authorization, the error
in the fcntl case above was in the lack of a
second authorization to check the permission
to set the owner.

5 LSM Community Analysis Ap-
proach

As might be gathered by the previous section,
we find that the two analysis approaches are
quite complementary. In this section, we out-
line the approach intended for use by LSM ver-
ification experts to verify LSM authorization
hook placement using our analysis tools. We
discuss how the kernel development commu-
nity might use the analysis tools to maintain
LSM correctness in the following section.

Verification of LSM authorization hook place-
ment involves the following steps:

1. Checked/Unchecked Static Analysis:
We first apply our static analysis approach
to find variables for which no authoriza-

Ottawa Linux Symposium 2002 232

/* from fs/fcntl.c */
static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){

...
case F_SETOWN:

/* set fowner is authorized
for filp */

err = LSM->file_ops->set_fowner(
filp);

...
filp->f_owner.pid = arg;
...

case F_SETLEASE:
err = fcntl_setlease(fd, filp,

arg);
...

}
...

}
/* from fs/locks.c */
fcntl_setlease(unsigned int fd,

struct file *filp,
long arg) {

struct file_lock *my_before;
...
if (my_before != NULL) {

error = lease_modify(my_before,
arg, fd, filp);

...
}
lease_modify(struct file_lock

**before,
int arg, int fd,
struct file *filp) {

...
if (arg == F_UNLCK) {

/* ERROR: could set active
fowner to 0 */

filp->f_owner.pid = 0;
...

}
...
}

Figure 5: Code path from Linux 2.4.16 con-
taining an exploitable error for the system call
fcntl(fd, F_SETLEASE, F_UNLCK)
whereby thepid of an active lock can be set to 0.

tions are performed. Since there are a
significant number (̃30 for the VFS layer
alone for2̃50 controlled variables) of type
errors, these must be further classified to
eliminate all those that are known not to
be a real error.

2. Runtime Analysis for Authorization
Requirements: Using benchmarks that
cover as much of the kernel source as pos-
sible plus potential exploits derived for
testing the remaining static analysis type
errors, perform the runtime analysis to
derive the kernel authorization require-
ments.

3. Static Analysis Using the Authorization
Requirements: More complete coverage
of the kernel is possible using static anal-
ysis, so repeat the static analysis using the
authorization requirements.

4. Runtime Verification Using All Ex-
ploits: Repeat the runtime analysis using
any newly derived exploits from the sec-
ond static analysis.

5.1 Checked/Unchecked Analysis

In the first step, the static analysis is applied to
the kernel source, and some number of type er-
rors are identified by CQUAL. We have fully
automated this process, but the problem of ex-
amining type errors and determining whether
they are exploitable must ultimately be done by
an expert. The type error rate (type errors per
variable of a controlled data type) varies from
subsystem to subsystem, but it is 12% for the
VFS layer (higher than usual) in Linux 2.4.9.
Therefore, we have 30 variables in the VFS
layer that are not explicitly authorized before
they are used in a controlled operation.

Many of these type errors are not exploitable
errors, however. In the VFS layer, these type

Ottawa Linux Symposium 2002 233

errors come in three kinds: (1) use in initial-
ization or other “safe” functions; (2) extraction
of inodes from checked dentries; and (3) un-
known type errors. The first two kinds of er-
rors are not exploitable errors, so we need to
change our analysis to prevent them from be-
ing generated. In the first case, we can rela-
bel these functions, so they no longer require a
checked variable. Since some functions are
not obviously “safe,” so there is some possibil-
ity for error here. When these functions are
modified, some re-evaluation is necessary to
maintain is status. In the second case, we need
to change CQUAL to infer achecked vari-
able if it comes from achecked field, and no
user process can modify this relationship. For
example, if we check a dentry then later extract
the inode from this dentry, the LSM hooks be-
lieve that the inode is authorized also. This is
because the dentry inode relationship is fixed
(i.e., not modifiable by user processes). For sit-
uations of this type, we can infer the variable
is checked . CQUAL does not support this
kind of reasoning, but we are working with the
CQUAL community to do this.

For other type errors, we need to find other
means to distinguish whether they are real er-
rors or not. For many of these cases, we de-
velop exploit programs to try to find vulnera-
bilities with respect to the LSM authorizations.
At present, this is a manual process, but we
would like to automate some aspects of this
process based on the nature of the type error.
Ultimately, some degree of manual effort will
always be required in processing type errors.

5.2 Authorization Requirements Generation

Second, we then perform the runtime analysis
given the benchmark and exploit programs to
discover vulnerabilities, identify anomalies in
authorizations, and determine the authorization
requirements of the controlled operations. The
exploit programs identify vulnerabilities auto-

matically, so we do not detail them further here
(see the detailed static analysis paper [20] for
the program that exploits the vulnerability in
Figure 3). We discuss anomaly identification
and the determination of authorization require-
ments here.

The Vali runtime analysis identifies the autho-
rizations that are made on each object in a ker-
nel event (i.e., system call with the same ex-
pected authorizations). Any variations in the
authorizations signal either a miss definition
a kernel event (i.e., the authorizations really
change when we did not expect) or an anomaly
in authorization. Recall that kernel events are
defined by filter rules. Since writing these rules
depends on deep knowledge of the kernel and
LSM authorization, we expect that the LSM
verification experts will write such filter rules
to correctly generate anomalies. For example,
we defined rules for open read-only and read-
write cases in Figure 4.

An authorization anomaly is a case where
an authorization only occurs in some of the
cases of the kernel event. In Figure 5, the
set_owner authorization was missing even
though the inode fieldf_owner was accessed
in a fcntl system call. While different flags
to fcntl may result in different authoriza-
tions, we found that because the same fields
were accessed with different authorizations,
there could be a potential problem. Thus, this
error was found in trying to write an appropri-
ate filter for the different variants offcntl in-
vocations. A complete discussion of the differ-
ent types of anomalies and their use in the clas-
sification of kernel events is provided in our
runtime analysis paper [6].

Once the filters are written, they can be used by
the Vali analysis tool to generate the object au-
thorizations and any anomalous authorizations.
In general, an object’s authorizations may vary
depending on the operations performed (i.e.,

Ottawa Linux Symposium 2002 234

DFN d 0 0 384 -1
DFN d 0 0 384 1
DFN d 0 0 400 -1
...
SFN(ALWAYS) d 0 0xc

Figure 6: Vali analysis output aggregating all
inode and file operations with the same autho-
rization. The DFN fields indicate: (1) “d” is
datatype-insensitive, meaning all operations on
the datatype have the same requirements; (2)
first 0 is aggregate id; (3) second 0 is the class
id for “inode”; (4) next number is the member
id accessed; (5) last is the access type code.

field and access type) and the functions in
which the operations are performed. The Vali
analysis tool aggregates the common autho-
rizations first by operation type, if their autho-
rizations are always the same, then by func-
tion. That is, we hope that all operations in an
event have the same authorizations. If not, then
other operation attributes are used to aggregate
when the authorizations are the same for op-
erations with the same attribute value. We use
operation datatype, object, member access, and
access+function as the aggregation attributes.
Figure 6 shows a datatype aggregation for in-
odes in theread system call (files are also ag-
gregated). Figure 7 shows that authorizations
may vary depending on the member access or
the function in which the access is performed .
The aggregation attributes are totally-ordered,
so we try to aggregate at the attribute that yields
the largest aggregate.

Maximizing aggregation also has the positive
outcome that it reduces the number of regres-
sion differences. For example, if a controlled
operation has the same authorization require-
ments regardless of the function in which it is
run, then moving or adding the operation to a
new function does not signal a regression dif-
ference.

DFN f 0 0 320 -1
SFN(ALWAYS) f 0 0x37

DFN f 1 0 1152 1
SFN(ALWAYS) f 1 0x13

DFN i 0 0 1216 1 ext2_lookup
...
SFN(ALWAYS) i 0 0x1a

DFN i 1 0 1216 -1 find_inode
SFN(ALWAYS) i 1 0x37

Figure 7: Vali analysis output showing
four groups offunction-insensitive(“f”) and
function-internals-sensitive(“i”) operations
for stat64. Function-insensitive accesses have
the same authorizations regardless of the func-
tion in which the dangerous operation appears.
Function-internals-insensitive operations have
different authorizations as accesses to member
1216 in the two functionsext2_lookup and
find_inode identify.

When all anomalies have been resolved, then
the output defines the authorization require-
ments for the controlled operations in the ker-
nel events in which they are run. Of course,
some authorizations could be missing entirely
for all runs, but we expect that the aggregated
requirements will make it possible to verify
this with reasonable effort.

5.3 Static Analysis Using Requirements

The authorization requirements found using
the Vali runtime analysis can be used as input
to the CQUAL static analysis. Three changes
must be made to use the authorization require-
ments:

1. Authorizations must result in variables of
a qualified type of the authorization made.

2. Functions annotations must be changed to

Ottawa Linux Symposium 2002 235

expect parameters of qualified types de-
pending on the authorizations expected.

3. A type qualifier lattice must be built that
represents the legal relationships between
type qualifiers.

In the first case, we must now change
unchecked variables to a qualified type
commensurate with the authorization (e.g.,
read_authorized). Given that a variable
can have multiple authorizations that depends
on the kernel’s control flow, such annotation it-
self is a subject of static analysis. CQUAL does
not help with annotation (i.e., it is an input to
CQUAL), so we must devise another technique
for proper annotation. Fortunately, objects al-
most always have only one check, and no more
than three, so this problem is handled manually
at present.

The Vali authorization requirements for con-
trolled operations generated from the Vali run-
time analysis are used to identify the type qual-
ifier requirements of functions. Figure 8 dis-
plays the output data from Vali used as input
to this process. Variables are identified by their
line number, data type, member access, and ac-
cess type. While this is not completely unam-
biguous, it is sufficient for the kernel currently
and we can identify ambiguities that cannot be
resolved automatically. The SFNs identified
as ALWAYS indicate the authorization require-
ments to be enforced on this variable.

Since multiple kernel events may use the same
functions, the type qualifiers are, in general,
the OR of these cases. This is represented us-
ing CQUAL’s type qualifier lattice [8]. Since
CQUAL’s granularity is a function, code within
a function that is called only when different au-
thorization requirements are expected will not
necessarily be handled properly by CQUAL.
An example of this islease_modify in Fig-
ure 5 where the authorization forset_owner

DFN(namei.c, 207)(OT_INODE, 1152, -1)
SFN(ALWAYS): SCN_INODE_PERMISSION_EXEC
SFN(ALWAYS): SCN_INODE_PERMISSION_WRITE
SFN(ALWAYS): SCN_INODE_UNLINK_DIR
SFN(NEVER): SCN_INODE_UNLINK_FILE
SFN(NEVER): SCN_INODE_DELETE

Figure 8: Vali runtime output for the authoriza-
tion requirements for a controlled operation in
the unlink system call. The DFN indicates
the line number, variable type, operation, and
access which can be used to identify the vari-
able in most cases. The ALWAYS SFNs indi-
cate the authorization requirements.

is only necessary if(arg == F_UNLCK) .
Where a combination of authorizations to a
function are of the formA ∨ (A ∧ B) where
A andB are authorization types, then we may
need to manually annotate the code whereA ∧
B is required. We can do this by creating a
dummy function call that requiresA ∧ B. Ul-
timately, better intra-procedural analysis is re-
quired to find blocks of code within functions
that require different authorizations, however,
because such manual annotation limits regres-
sion testing (see Section 6.1).

5.4 Further Exploit Verification

Any exploit programs derived from the second
static analysis are added to the Vali runtime
analysis benchmarks, and runtime analysis is
rerun. Since these programs are mainly look-
ing for vulnerabilities, rather than anomalies,
the output will be largely unchanged from step
2.

6 Kernel Community Approach

As the kernel evolves, the placement of the
LSM authorization hooks may be invalidated.
Since the kernel development community at
large will modify the kernel, we need an ap-

Ottawa Linux Symposium 2002 236

proach in which the kernel modifications can
proceed while maintaining the verification sta-
tus of the LSM authorization hooks. Clearly,
the kernel development community will not be
inclined to perform the verification process of
the LSM community as described above. How-
ever, it is possible for the kernel development
community to leverage this work to maintain
LSM verification.

Basically, we envision that kernel developer’s
task in maintaining the LSM authorization
hook verification will involve regression test-
ing on the static and runtime analyses. As part
of an extended kernel build, the static analysis
process can be run as in step 3 of the LSM com-
munity process above. The type errors gen-
erated above can be compared to the existing
classifications to verify that no new type errors
or type error paths are created.

Since some unresolved type errors are likely to
remain for a while, it is ultimately necessary to
perform runtime regression testing. While this
task requires more work because the new ker-
nel must be run, much, if not all, of this task
can also be automated. In this case, the goal of
the kernel development community is to iden-
tify any new anomalies or new authorization
requirements (e.g., if a new object is added)
to the LSM community. As described below,
the Vali runtime analysis tool can identify such
differences automatically.

6.1 Static Regression Testing

Since the GCC annotation process, CQUAL
analysis, and output classification can be per-
formed automatically, static LSM regression
testing can be integrated as an extension to the
automated build process. We first describe the
tasks that are necessary to automate static anal-
ysis as part of the build process. While the
analysis will generate the output automatically,
some situations arise in manual analysis is cur-

rently required. We list these cases and exam-
ine their implications.

The build process for static analysis consists of
the following steps:

• GCC analysis: Our extended GCC com-
piler must be used to build the kernel. The
compiler creates a log of controlled op-
erations, controlled variable declarations,
and LSM authorization hooks. The fol-
lowing Makefile modifications are neces-
sary:

CC = $(CROSS_COMPILE)/\
$(VALI_GCC)/gcc \

--param ae-analyses=8243

The parameterae-analyses indicates
the types of information that our extended
GCC compiler gathers.

• Perl annotation: Perl scripts have been
written to pre-process the GCC analysis
output into a form that is then used by
a second set of Perl scripts to automati-
cally annotate the Linux source code with
CQUAL type qualifiers.

The GCC analysis generates output for
each controlled operation, such as seen in
Figure 9.

The first set of Perl scripts processes such
output into the form:

/usr/src/linux-2.4.9-\
.../fs/attr.c:61 \
inode_setattr *inode

• CQUAL Linux build : CQUAL requires
some pre-processing of the Linux source
code before it can perform the analysis
(e.g., removal of blanks and comments).
The standard GCC compiler can be used
for this step.

Ottawa Linux Symposium 2002 237

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 66
access_type = write
name = (*inode)
member = i_uid (384)
is_parameter = 1.

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 68
access_type = write
name = (*inode)
member = i_gid (416)
is_parameter = 1.

Figure 9: The GCC analysis output.

$(CC) $(CFLAGS) -E $< | \
$(CQUALBINDIR)/remblanks >$*.ii

• CQUAL analysis: CQUAL can then be
used to perform the static analysis. The
first step runs the CQUAL analysis. The
second step generates the type error path
information. See Figure 10.

• Authorization requirement annotation :
Vali runtime analysis generates authoriza-
tion requirements per controlled operation
as shown in Figure 8. We are in the pro-
cess of writing Perl scripts to apply these
requirements to the annotation of autho-
rizations specific to the requirements de-
scribed above. We hope to be able to re-
port on this at the symposium.

While we have not done detailed time measure-
ments, we have found that the entire analysis
adds about 10 minutes to the build time. GCC
analysis adds little overhead to the kernel build.
Perl processing takes about 5 minutes for the

kernel. CQUAL analysis takes approximately
another 5 minutes for the kernel.

The current static analysis process verifies that
the LSM authorization hook placement is cor-
rect, but some situations need further, manual
examination. These cases are listed below:

1. Changes to “safe” functions: The GCC
analysis identifies the addition of a new
controlled operation to a function for-
merly classified as “safe,” see Section 5.1.

2. Changes to manually annotated func-
tions: A source comparison detects a
change to a function with any manual
annotation (e.g., the addition of dummy
functions for ORed authorization require-
ments, see Section 5.3).

3. New type error variables: The CQUAL
analysis identifies any new variables that
have type errors.

4. New shortest type error paths: The

Ottawa Linux Symposium 2002 238

$(CQUALBINDIR)/cqual -prelude \
$(CQUALDIR)/config/prelude.i.security -config

$(CQUALDIR)/config/lattice.security attr.ii 2>attr.path

Figure 10: Performing static analysis with CQUAL.

CQUAL analysis identifies any new short-
est type error path for a variable with an
existing type error.

The first two situations are cases where the
dependencies of the analysis have changed,
such that the analysis may no longer be sound.
While we hope to eliminate such dependencies
through further analysis, we expect the analy-
sis will always be subject to some number of
dependencies. In fact, as the analysis becomes
more elaborate, the complexity of dependen-
cies increases, so the current set may prove to
be the best option.

The second two situations are the identification
of a new type error that may indicate a real
vulnerability. In order to reduce the number
of false positives, secondary analyses are nec-
essary to identify them. These analyses may
have dependencies (e.g., that is the cause of
case 1), so the cost of managing the dependen-
cies must be less than the value of removing
the false positives.

While it is not completely clear where the bal-
ance between manual effort on the part of the
kernel developer and LSM community is in this
process, we anticipate the following. Our goal
is that most notifications of case 1 and 2 can
be handled trivially by the kernel development
community and the LSM community can ver-
ify. Errors of case 3 and 4 may also be han-
dled by the development community in many
cases, but again the LSM community may do
deeper verifications and develop classifiers to
eliminate identifiable false positives.

6.2 Runtime Regression Testing

Since we expect that there will always be some
number of type errors for which exploits can
become possible and some tasks that are more
easily or better done by runtime analysis, we
strongly recommend performing the runtime
regression analysis. However, this analysis is
more time-consuming than the static analysis
in two key ways: (1) the instrumented ker-
nel must be built and (2) the runtime analy-
sis benchmarks must be executed on the instru-
mented kernel.

At present, the build process for a Vali-
instrumented kernel, runtime logging modules,
and analysis tools is completed automated.
However, the execution of the analysis is not
automated at present. The main tasks that are
not automated are: (1) the collection of in-
struction pointer locations for kernel entry/exit
points used to identify the kernel events and (2)
the runtime execution. The first task only in-
volves “grepping” the generated object dump
for a few well-known instruction, so it appears
straightfoward to automate this. We are look-
ing into how to automate the runtime data col-
lection using VMware4.

In order to enable regression testing, the Vali
runtime analysis tool generates output that
does not include line number or instruction
pointer information, so that regression can be
done across minor kernel modifications. Fur-
ther, aggregation of controlled operations that
are not function-sensitive enables regression
across kernel modifications regardless of func-

4VMware is a trademark of VMware, Inc.

Ottawa Linux Symposium 2002 239

tions executed in a kernel event.

Figures 6 and 7 give an idea of how the output
from the Vali runtime tool enables regression.
The output shows the controlled operations
with the same authorization requirements. In
cases where the authorization requirements of
controlled operations are sensitive to the func-
tion in which the operation is run, more in-
formation is displayed. In this case, if the
controlled operation is moved from one func-
tion to another, the regression test identifies the
change.

Given aggregation, the following types of
changes between regression tests are possible:

• New controlled operation in an aggre-
gate: An operation has been added, and it
has been classified with an existing aggre-
gate.

• Remove controlled operation from an
aggregate: An operation has been
deleted, so it no longer appears.

• Move controlled operation to another
aggregate: Either an authorization or an
operation has been moved such that a
different set of authorizations are active
when the operation is performed.

• Create a new aggregate: A new set of
authorizations has been created or a new
sensitivity has been triggered such that a
new aggregate of operations and permis-
sions has been created.

The addition and removal of controlled opera-
tions is not a major change if they adhere to the
existing aggregates. However, it is always wise
to verify that the operations are consistent with
the aggregations assigned to them. The move
of operations to other aggregates or the cre-
ation of new aggregates are significant changes
that warrant review.

7 Conclusions and Future Work

In this paper, we outline static and runtime
analysis tools that we have developed to ver-
ify the correctness of LSM authorization hook
placement. These tools have been used to find
five, since fixed, errors in LSM hook place-
ments. We believe that such verification should
not be a one-time process, but rather it should
practical for kernel developers to perform re-
gression testing as the kernel is modified. The
problem is to automate the analysis process
as much as possible and only provide test re-
sults that really require examination by the de-
velopment community, as much as possible.
We demonstrate that static analysis process and
most of the runtime analysis process are au-
tomated already. We also identify the types
of analysis results that the tools will report to
the developers. While it is nice to eliminate as
many false positives as possible, we are limited
by the Halting Problem as to how many can be
removed in general and the means for identi-
fying false positives introduces dependencies
that also must be verified. At present, we
do not eliminate most false positives automati-
cally, but expect that the LSM community will
identify them as such and regression over these
will be sufficient (i.e., as long as few, new false
positives are introduced little effort will be re-
quired to handle them). The generated output
is low-level which enables quick comparison,
but still makes is difficult for developers. Inter-
faces for handling this information are a signif-
icant area of future work.

References

[1] A. Berman, V. Bourassa, and E. Selberg.
TRON: Process-specific file protection
for the UNIX operating system. In
Proceedings of the 1995 USENIX Winter
Technical Conference, pages 165–175,
1995.

Ottawa Linux Symposium 2002 240

[2] M. Bishop and M. Dilger. Checking for
race conditions in file accesses.
Computing Systems, 9(2):131–152, 1996.

[3] N. S. Borenstein. Computational mail as
a network infrastructure for
computer-supported cooperative work.
In Proceedings of the Fourth ACM
CSCW Conference, pages 67–74, 1992.

[4] Wirex Corp. Immunix security
technology. Available at
http://www.immunix.com/Immunix

/index.html .

[5] A Edwards. [PATCH] add lock hook to
prevent race, January 2002. Linux
Security Modules mailing list at
http://mail.wirex.com

/pipermail

/linux-security-module

/2002-January/002570.html .

[6] A. Edwards, T. Jaeger, and X. Zhang.
Verifying authorization hook placement
for the Linux Security Modules
framework. Technical Report 22254,
IBM, December 2001.

[7] D. Engler, B. Chelf, A. Chou, and
S. Hallem. Checking system rules using
system-specific, programmer-written
compiler extensions. InProceedings of
the Fourth Symposium on Operation
System Design and Implementation
(OSDI), October 2000.

[8] J. Foster, M. Fahndrich, and A. Aiken. A
theory of type qualifiers. InACM
SIGPLAN Conference on Programming
Language Design and Implementation
(PLDI ’99), pages 192–203, May 1999.

[9] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer. A secure environment for
untrusted helper applications. InThe
Sixth USENIX Security Symposium
Proceedings, pages 1–12, 1996.

[10] T. Jaeger and A. Prakash. Support for the
file system security requirements of
computational e-mail systems. In
Proceedings of the 2nd ACM Conference
on Computer and Communications
Security, pages 1–9, 1994.

[11] D. Larochelle and D. Evans. Statically
detecting likely buffer overflow
vulnerabilities. InProceedings of the
10th USENIX Security Symposium,
pages 177–190, 2001.

[12] S. Minear. Providing policy control over
object operations in a Mach-based
system. InProceedings of the Fifth
USENIX Security Symposium, 1995.

[13] NSA. Security-Enhanced Linux
(SELinux). Available at
http://www.nsa.gov/selinux .

[14] LIDS organization. Linux intrusion
detection system. Available at
http://www.lids.org .

[15] A. Ott. Rule set-based access control
(RSBAC) for Linux. Available at
http://www.rsbac.org .

[16] U. Shankar, K. Talwar, J. S. Foster, and
D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In
Proceedings of the 10th USENIX
Security Symposium, pages 201–216,
2001.

[17] R. Spencer, S. Smalley, P. Loscocco,
M. Hibler, and J. Lepreau. The Flask
security architecture: System support for
diverse policies. InProceedings of the
Eighth USENIX Security Symposium,
August 1999.

[18] Argus Systems. Argus PitBull LX.
Available at
http://www.argus-systems.com .

Ottawa Linux Symposium 2002 241

[19] L. Torvalds and C. Cowan. Greetings,
April 2001. Linux Security Modules
mailing list at
mail.wirex.com/pipermail

/linux-security-module

/2001-April/000005.html .

[20] X. Zhang, A. Edwards, and T. Jaeger.
Using CQUAL for static analysis of
authorization hook placement. In
Proceedings of the 11th USENIX
Security Symposium, 2002. To appear.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

