
Linux Advanced Routing & Traffic Control

Bert Hubert
PowerDNS.COM, bv

bert@powerdns.com, http://ds9a.nl/

Abstract

Linux contains a wildly powerful system for
shaping traffic and distributing it according to
elaborate rules. This paper serves a dual pur-
pose: to explain how to do this as a user and
how to write a scheduler in the kernel.

1 Introduction

In the absence of infinite bandwidth there will
always be a need to hand out capacity accord-
ing to rules. Traditionally this has been a main
reason to add non-IP technology to a network,
like ATM or frame relay. Since IP is steadily
taking over the world, Linux is well placed to
play a role in enabling IP to take over traffic
controlling functions from other technologies.

Traditionally, traffic control has been very dif-
ficult to configure and Linux is no different in
this respect. In addition to this most of the im-
portant bits have not been documented.

About two years ago, the ‘2.4 Advanced Rout-
ing’ HOWTO was started, well before the ad-
vent of Linux 2.4 in order to rectify this situa-
tion. Not hampered by any understanding a lot
was written which was already helpful in con-
figuring traffic control under linux.

By now a set of manpages has been written and
the HOWTO properly explains most things.

2 Theory

As explained, traffic control is not an easy sub-
ject. Its difficulty can be compared to that of
a postal service deciding to offer two kinds of
service—‘fast’ and ‘slow’ where there previ-
ously was only ‘reasonably fast.’ Some kind
of system must be devised to prioritize some
kinds of traffic, but actively slow down others.

Now, the naive view of traffic shaping (“Hey,
just slow the packets down!”) corresponds to
ordering all mail vehicles to lower speed—
which clearly does not solve our problem.

We must be far smarter than that and not re-
sort to wasteful solutions like slowing every-
thing down.

The first thing to realise is that we can only re-
alistically do complicated things withoutgoing
traffic. We have zero control over the rate at
which people send us data. Again, this is like
receiving (physical) mail. People send it to us
and we can only decide not to read it—there is
no way to make it come in any slower.

Furthermore even for outgoing traffic we can
only treat packets that arein a computer we
maintain. A prime example which many peo-
ple encounter is trying to shape traffic going
out to a cable modem which is connected via a
10 megabit ethernet. As this 10 megabit con-
nection is lots faster than the cable modem, the
Linux machine does not own the queue and
hence powerless to prioritize traffic, unless fur-

Ottawa Linux Symposium 2002 214

ther work is undertaken.

So—the theory is like this. Make sure that if
there is a need to prioritize traffic, there is a
queue which can be processed. Because there
is normally only an outgoing queue configure
your traffic control such that the data that needs
to be prioritized is outgoing.

3 Verbiage

As with any complicated subject it is impor-
tant to get the terminology right. I’m much
indebted to Jamal who keeps pointing this out
to me—his persistence is formidable and my
stubbornness only just matches it.

• Queueing Discipline An algorithm that
manages the queue of a device, either in-
coming (ingress) or outgoing (egress).

• Classless qdisc A qdisc with no config-
urable internal subdivisions.

• Classful qdisc A classful qdisc contains
multiple classes. Each of these classes
contains a further qdisc, which may again
be classful, but need not be. Accord-
ing to the strict definition, pfifo_fast *is*
classful, because it contains three bands
which are, in fact, classes. However, from
the user’s configuration perspective, it is
classless as the classes can’t be touched
with the tc tool.

• Classes A classful qdisc may have many
classes, which each are internal to the
qdisc. Each of these classes may contain
a real qdisc.

• Classifier Each classful qdisc needs to de-
termine to which class it needs to send a
packet. This is done using the classifier.

• Filter Classification can be performed us-
ing filters. A filter contains a number of

conditions which if matched, make the fil-
ter match.

• Scheduling A qdisc may, with the help of
a classifier, decide that some packets need
to go out earlier than others. This process
is called Scheduling, and is performed for
example by the pfifo_fast qdisc mentioned
earlier. Scheduling is also called ‘reorder-
ing,’ but this is confusing.

• Shaping The process of delaying packets
before they go out to make traffic confirm
to a configured maximum rate. Shaping is
performed on egress. Colloquially, drop-
ping packets to slow traffic down is also
often called Shaping.

• Policing Delaying or dropping packets in
order to make traffic stay below a config-
ured bandwidth. In Linux, policing can
only drop a packet and not delay it—there
is no ‘ingress queue.’

• Work-Conserving A work-conserving
qdisc always delivers a packet if one is
available. In other words, it never delays
a packet if the network adaptor is ready to
send one (in the case of an egress qdisc).

• non-Work-Conserving Some queues, like
for example the Token Bucket Filter, may
need to hold on to a packet for a certain
time in order to limit the bandwidth. This
means that they sometimes refuse to give
up a packet, even though they have one
available.

Now that we have our terminology straight,
let’s see where all these things are. Figure 1
shows us.

4 Configuration example

This example is short but useful with actual
physical phone modems:

Ottawa Linux Symposium 2002 215

Figure 1: This schematic is due to Jamal as well.

Userspace programs
^
|

+---------------+---+
| Y |
| -------> IP Stack |
	Y	
	Y	
^		
	/ ----------> Forwarding ->	
^ /		
	/ Y	
^ Y /-qdisc1-\		
	Egress /--qdisc2--\	

--->->Ingress Classifier ---qdisc3---- | ->
| Qdisc __qdisc4__/ |
| \-qdiscN_/ |
| |
+---+

tc qdisc add dev ppp0 root \
sfq perturb 10

Ok—what does this do? We’ve configured
ppp0 to have a root queueing discipline called
SFQ, which stands for Stochastic Fairness
Queue. What this means is that the kernel now
assigns each outgoing packet to a ‘bucket’ and
dequeues a packet from each bucket in turn.

This is good for making sure that an outgoing
upload does not interfere with, say, ssh traffic.

To inspect the configuration:

tc -s -d qdisc ls dev ppp0
qdisc sfq 800c: dev ppp0 quantum

1514b limit 128p flows
128/1024 perturb 10sec
Sent 4812 bytes 62 pkts

(dropped 0, overlimits 0)

The number 800c: is the automatically as-
signed handle number, limit means that 128

packets can wait in this queue. There are 1024
hashbuckets available for accounting, of which
128 can be active at a time (no more packets
fit in the queue!) Once every 10 seconds, the
hashes are reconfigured.

5 Available Queueing Disciplines

The Linux kernel comes with many Queueing
Disciplines or qdiscs. Some of there are non-
functional or so underdocumented that they are
not in use. There are also qdiscs that have not
been merged yet.

• pfifo_fast This queue is, as the name
says, First In, First Out, which means that
no packet receives special treatment. At
least, not quite. This queue has 3 so called
‘bands.’ Within each band, FIFO rules ap-
ply. However, as long as there are packets
waiting in band 0, band 1 won’t be pro-
cessed. Same goes for band 1 and band 2.

Ottawa Linux Symposium 2002 216

The kernel honors the so called Type of
Service flag of packets, and takes care to
insert ‘minimum delay’ packets in band 0.

Do not confuse this classless simple qdisc
with the classful PRIO one! Although
they behave similarly, pfifo_fast is class-
less and you cannot add other qdiscs to it
with the tc command.

• Token Bucket Filter

The Token Bucket Filter (TBF) is a simple
qdisc that only passes packets arriving at a
rate which is not exceeding some admin-
istratively set rate, but with the possibility
to allow short bursts in excess of this rate.

TBF is very precise, network- and
processor-friendly. It should be your first
choice if you simply want to slow an in-
terface down!

The TBF implementation consists of a
buffer (bucket), constantly filled by some
virtual pieces of information called to-
kens, at a specific rate (token rate). The
most important parameter of the bucket is
its size, that is the number of tokens it can
store.

Each arriving token collects one incom-
ing data packet from the data queue and
is then deleted from the bucket.

• Stochastic Fairness Queueing

Stochastic Fairness Queueing (SFQ) is a
simple implementation of the fair queue-
ing algorithms family. It’s less accurate
than others, but it also requires less calcu-
lations while being almost perfectly fair.

The key word in SFQ is conversation (or
flow), which mostly corresponds to a TCP
session or a UDP stream. Traffic is di-
vided into a pretty large number of FIFO
queues, one for each conversation. Traffic
is then sent in a round robin fashion, giv-

ing each session the chance to send data
in turn.

This leads to very fair behaviour and
disallows any single conversation from
drowning out the rest. SFQ is called
“Stochastic” because it doesn’t really al-
locate a queue for each session, it has an
algorithm which divides traffic over a lim-
ited number of queues using a hashing al-
gorithm.

Because of the hash, multiple sessions
might end up in the same bucket, which
would halve each session’s chance of
sending a packet, thus halving the effec-
tive speed available. To prevent this sit-
uation from becoming noticeable, SFQ
changes its hashing algorithm quite of-
ten so that any two colliding sessions will
only do so for a small number of seconds.

• Prio The PRIO qdisc doesn’t actually
shape, it only subdivides traffic based on
how you configured your filters. You
can consider the PRIO qdisc a kind of
pfifo_fast on stereoids, whereby each
band is a separate class instead of a simple
FIFO.

When a packet is enqueued to the PRIO
qdisc, a class is chosen based on the fil-
ter commands you gave. By default, three
classes are created. These classes by de-
fault contain pure FIFO qdiscs with no in-
ternal structure, but you can replace these
by any qdisc you have available.

Whenever a packet needs to be dequeued,
class :1 is tried first. Higher classes are
only used if lower bands all did not give
up a packet.

This qdisc is very useful in case you want
to prioritize certain kinds of traffic with-
out using only TOS-flags but using all the
power of the tc filters. It can also contain
more all qdiscs, whereas pfifo_fast is lim-
ited to simple fifo qdiscs.

Ottawa Linux Symposium 2002 217

Because it doesn’t actually shape, the
same warning as for SFQ holds: either use
it only if your physical link is really full
or wrap it inside a classful qdisc that does
shape. The last holds for almost all cable-
modems and DSL devices.

In formal words, the PRIO qdisc is a
Work-Conserving scheduler.

• CBQ CBQ is the most complex qdisc
available, the most hyped, the least un-
derstood, and probably the trickiest one
to get right. This is not because the au-
thors are evil or incompetent, far from it,
it’s just that the CBQ algorithm isn’t all
that precise and doesn’t really match the
way Linux works.

Besides being classful, CBQ is also a
shaper and it is in that aspect that it really
doesn’t work very well. It should work
like this. If you try to shape a 10mbit/s
connection to 1mbit/s, the link should be
idle 90% of the time. If it isn’t, we need to
throttle so that it IS idle 90% of the time.

This is pretty hard to measure, so CBQ in-
stead derives the idle time from the num-
ber of microseconds that elapse between
requests from the hardware layer for more
data. Combined, this can be used to ap-
proximate how full or empty the link is.

This is rather circumspect and doesn’t al-
ways arrive at proper results. For exam-
ple, what if the actual link speed of an
interface that is not really able to trans-
mit the full 100mbit/s of data, perhaps
because of a badly implemented driver?
A PCMCIA network card will also never
achieve 100mbit/s because of the way the
bus is designed—again, how do we calcu-
late the idle time?

It gets even worse if we consider not-
quite-real network devices like PPP over
Ethernet or PPTP over TCP/IP. The ef-
fective bandwidth in that case is probably

determined by the efficiency of pipes to
userspace—which is huge.

People who have done measurements dis-
cover that CBQ is not always very accu-
rate and sometimes completely misses the
mark.

In many circumstances however it works
well. With the documentation provided
here, you should be able to configure it to
work well in most cases.

• Hierarchical Token Bucket (outside of the
kernel) Martin Devera (<devik>) rightly
realised that CBQ is complex and does
not seem optimized for many typical sit-
uations. His Hierarchial approach is well
suited for setups where you have a fixed
amount of bandwidth which you want to
divide for different purposes, giving each
purpose a guaranteed bandwidth, with the
possibility of specifying how much band-
width can be borrowed.

HTB works just like CBQ but does not
resort to idle time calculations to shape.
Instead, it is a classful Token Bucket
Filter—hence the name. It has only a few
parameters, which are well documented
on his site.

As your HTB configuration gets more
complex, your configuration scales well.
With CBQ it is already complex even in
simple cases! HTB is not yet a part of the
standard kernel, but it should soon be!

If you are in a position to patch your ker-
nel, by all means consider HTB.

• bfifo/pfifo These classless queues are even
simpler than pfifo_fast in that they lack
the internal bands—all traffic is really
equal. They have one important benefit
though, they have some statistics. So even
if you don’t need shaping or prioritizing,
you can use this qdisc to determine the
backlog on your interface.

Ottawa Linux Symposium 2002 218

pfifo has a length measured in packets,
bfifo in bytes.

• Clark-Shenker-Zhang algorithm (CSZ)
This is so theoretical that not even Alexey
(the main CBQ author) claims to under-
stand it. From his source:

“David D. Clark, Scott Shenker and Lixia
Zhang Supporting Real-Time Applica-
tions in an Integrated Services Packet Net-
work: Architecture and Mechanism.”

As I understand it, the main idea is to cre-
ate WFQ flows for each guaranteed ser-
vice and to allocate the rest of bandwith to
dummy flow-0. Flow-0 comprises the pre-
dictive services and the best effort traffic;
it is handled by a priority scheduler with
the highest priority band allocated for pre-
dictive services, and the rest—to the best
effort packets.

• DSMARK Dsmark is a queueing disci-
pline that offers the capabilities needed in
Differentiated Services (also called Diff-
Serv or, simply, DS). DiffServ is one of
two actual QoS architectures (the other
one is called Integrated Services) that is
based on a value carried by packets in the
DS field of the IP header.

One of the first solutions in IP designed
to offer some QoS level was the Type
of Service field (TOS byte) in IP header.
By changing that value, we could choose
a high/low level of throughput, delay or
reliability. But this didn’t provide suffi-
cient flexibility to the needs of new ser-
vices (such as real-time applications, in-
teractive applications and others). After
this, new architectures appeared. One of
these was DiffServ which kept TOS bits
and renamed DS field.

• On the ingress All qdiscs discussed so far
are egress qdiscs. Each interface however
can also have an ingress qdisc which is not

used to send packets out to the network
adaptor. Instead, it allows you to apply
tc filters to packets coming in over the in-
terface, regardless of whether they have a
local destination or are to be forwarded.

As the tc filters contain a full Token
Bucket Filter implementation, and are
also able to match on the kernel flow esti-
mator, there is a lot of functionality avail-
able. This effectively allows you to police
incoming traffic, before it even enters the
IP stack.

• Random Early Detection (RED) The nor-
mal behaviour of router queues on the In-
ternet is called tail-drop. Tail-drop works
by queueing up to a certain amount, then
dropping all traffic that ‘spills over.’ This
is very unfair, and also leads to retransmit
synchronisation. When retransmit syn-
chronisation occurs, the sudden burst of
drops from a router that has reached its fill
will cause a delayed burst of retransmits,
which will over fill the congested router
again.

In order to cope with transient conges-
tion on links, backbone routers will often
implement large queues. Unfortunately,
while these queues are good for through-
put, they can substantially increase la-
tency and cause TCP connections to be-
have very bursty during congestion.

These issues with tail-drop are becoming
increasingly troublesome on the Internet
because the use of network unfriendly ap-
plications is increasing. The Linux kernel
offers us RED, short for Random Early
Detect, also called Random Early Drop,
as that is how it works.

RED isn’t a cure-all for this, applica-
tions which inappropriately fail to imple-
ment exponential backoff still get an un-
fair share of the bandwidth, however, with
RED they do not cause as much harm to

Ottawa Linux Symposium 2002 219

the throughput and latency of other con-
nections.

RED statistically drops packets from
flows before it reaches its hard limit. This
causes a congested backbone link to slow
more gracefully, and prevents retransmit
synchronisation. This also helps TCP find
its ‘fair’ speed faster by allowing some
packets to get dropped sooner keeping
queue sizes low and latency under con-
trol. The probability of a packet being
dropped from a particular connection is
proportional to its bandwidth usage rather
than the number of packets it transmits.

RED is a good queue for backbones,
where you can’t afford the complexity of
per-session state tracking needed by fair-
ness queueing.

• Generic Random Early Detection

Not a lot is known about GRED. It looks
like GRED with several internal queues,
whereby the internal queue is chosen
based on the Diffserv tcindex field. Ac-
cording to a slide found here, it contains
the capabilities of Cisco’s ‘Distributed
Weighted RED,’ as well as Dave Clark’s
RIO.

Each virtual queue can have its own Drop
Parameters specified.

“Ask Jamal”

• Weighted Round Robin (WRR) This qdisc
is not included in the standard kernels but
can be downloaded. Currently the qdisc
is only tested with Linux 2.2 kernels, but
it will probably work with 2.4/2.5 kernels
too.

The WRR qdisc distributes bandwidth be-
tween its classes using the weighted round
robin scheme. That is, like the CBQ
qdisc it contains classes into which arbi-
trary qdiscs can be plugged. All classes

which have sufficient demand will get
bandwidth proportional to the weights as-
sociated with the classes. The weights
can be set manually using the tc program.
But they can also be made automatically
decreasing for classes transferring much
data.

The qdisc can be very useful at sites such
as dorms where a lot of unrelated individ-
uals share an Internet connection. A set of
scripts setting up a relevant behavior for
such a site is a central part of the WRR
distribution.

6 Kernel API

Only classless qdiscs are covered here. Writing
a classful qdisc is an advanced topic.

To the kernel, a qdisc looks like Figure 2.

Packets are enqueued by the kernel and imme-
diately after as many packets as possible are
bursted out of the qdisc to the hardware.

• next Pointer in the linked list – leave alone

• cl_ops NULL for a classless qdisc

• id Name of this interface

• priv_size Size of the private data of this
backend

• enqueue Called by the kernel to queue a
new packet for transmission

• dequeue Called to get a packet for the
hardware to send out now

• requeue Called by the kernel to put back a
packet at the head of the queue. The next
call to dequeue will most likely return it.

• drop Called by the kernel to indicate that
a packet should be dropped & freed from
the queue, without returning it

Ottawa Linux Symposium 2002 220

Figure 2: TheQdisc_ops structure
struct Qdisc_ops
{

struct Qdisc_ops *next;
struct Qdisc_class_ops *cl_ops;
char id[IFNAMSIZ];
int priv_size;

int (*enqueue)(struct sk_buff *, struct Qdisc *);
struct sk_buff * (*dequeue)(struct Qdisc *);
int (*requeue)(struct sk_buff *, struct Qdisc *);
int (*drop)(struct Qdisc *);

int (*init)(struct Qdisc *, struct rtattr *arg);
void (*reset)(struct Qdisc *);
void (*destroy)(struct Qdisc *);
int (*change)(struct Qdisc *, struct rtattr *arg);

int (*dump)(struct Qdisc *, struct sk_buff *);
};

• init Called before use

• reset Should purge the queue and reset set-
tings

• destroy Cleanup

• change Accept reconfigured settings over
the Netlink

• dump Report statistics over the Netlink

6.1 How the kernel interacts with the qdisc

enqueue is called from dev_queue_xmit() in
net/core/dev.c:

/* Grab device queue */
spin_lock_bh(&dev->queue_lock);
q = dev->qdisc;
if (q->enqueue) {

int ret = q->enqueue(skb, q);

qdisc_run(dev);

spin_unlock_bh(&dev->queue_lock);
return ret == NET_XMIT_BYPASS ?

NET_XMIT_SUCCESS :
ret;

}

qdisc_run(), which lives in in-
clude/net/pkt_sched.h, is then immediately
called to get the packets out on the wire (or
ether, for that matter):

static inline void
qdisc_run(struct net_device *dev)
{

while (!netif_queue_stopped(dev)
&& qdisc_restart(dev)<0)

/* NOTHING */;
}

Getting nearer to the wire, qdisc_restart() is in
net/sched/sch_generic.c:

int
qdisc_restart(struct net_device *dev)
{

struct Qdisc *q = dev->qdisc;
struct sk_buff *skb;

/* Dequeue packet */
if ((skb = q->dequeue(q)) != NULL)
{

if (spin_trylock(&dev->xmit_lock))
{

Ottawa Linux Symposium 2002 221

/* Remember that the driver
is grabbed by us. */

dev->xmit_lock_owner =
smp_processor_id();

/* And release queue */
spin_unlock(&dev->queue_lock);

if (!netif_queue_stopped(dev))
{

if (netdev_nit)
dev_queue_xmit_nit(skb,

dev);

if (dev->hard_start_xmit(skb,
dev) == 0) {

dev->xmit_lock_owner = -1;
spin_unlock(&dev->xmit_lock);

spin_lock(&dev->queue_lock);
return -1;

}
}
/* code for when the queue

IS stopped */
...

hard_start_xmit(skb,dev) actually moves (or
shakes) the electrons.

6.2 Minimal qdisc

The kernel actually contains a ‘noop’ qdisc
which sees some use in efficiently dropping
packets on the floor. Or as Alexey says it:

/* "NOOP" scheduler:
the best scheduler,
recommended for all
interfaces under all
circumstances. It is
difficult to invent
anything faster or
cheaper. */

However, this is too minimal to serve as an ex-
ample.

We’ll look at the pfifo qdisc which per-
forms simple taildrop aftern packets. Some-
what simplified and commented source of
pfifo_enqueue:

int pfifo_enqueue(struct sk_buff *skb,
struct Qdisc *sch)

{
/* get our private data */
struct fifo_sched_data *q =

(struct
fifo_sched_data *)sch->data;

/* is there room for
another packet */

if (sch->q.qlen <= q->limit) {
/* add it at the tail

end of our q */
__skb_queue_tail(&sch->q, skb);

/* accounting - note that this is
not in the private part */

sch->stats.bytes += skb->len;
sch->stats.packets++;
/* there might be accounting in

q-> too, but not for pfifo */
return 0;

}
/* if we get here, there is no room

and we drop & cleanup */
sch->stats.drops++;

kfree_skb(skb);
/* sorry, no room */
return NET_XMIT_DROP;

}

The dequeue function is simpler:

struct sk_buff
pfifo_dequeue(struct Qdisc sch)

{
return __skb_dequeue(&sch->q);

}

The pfifo queue cannot be configured—it takes
its queuelength from the adapter’s txqueuelen.

Ottawa Linux Symposium 2002 222

References

[LARTC] Linux Advanced Routing &
Traffic Control HOWTO bert hubert.
http://lartc.org/ (2002)

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

