
An Approach to Injecting faults into Hardened
Software

Dave Edwards, Lori Matassa
Intel Corporation

Abstract

There are many efforts within the Linux* com-
munity to produce a distribution of Linux* that
meets industry standards for quality and reli-
ability. There has been acknowledgment for
the need to introduce faults into various soft-
ware layers of the Linux* OS to achieve this.
This paper focuses on the results of our de-
velopment of a prototype fault injection har-
ness. The prototype focused on a black box ap-
proach for injecting faults into device drivers.
The technology proved in this prototype can be
applied to any software layer in the operating
system. This presentation proposes and proves
the feasibility of a method for injecting faults
called, “state analysis.” This method is the key
to our black box approach for driver harden-
ing. It does not require a test writer to have
intimate knowledge of the implementation for
the driver. It also provides a solid founda-
tion for driver developers to augment the fault
injection harness to meet whatever the Linux
community presents to the world in the way
of driver hardening criteria. The target audi-
ence includes developers focusing on Linux*
hardening (Drivers and Kernel), test engineers
looking for a starting point to fault injection,
and anyone looking for input into the kinds of
capabilities that can be provided by the use of
fault injection.

THIS DOCUMENT IS PROVIDED "AS IS"
WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT,
FITNESS FOR ANY PARTICULAR PURPOSE,

OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Intel disclaims all liability,
including liability for infringement of any
proprietary rights, relating to use of information in
this specification. No license, express or implied
by estoppel or otherwise, to any intellectual
property rights is granted herein, except that a
license is hereby granted to copy and reproduce
this document for internal use only.

Intel(R) software products are copyrighted by and
shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to
restrictions stated in Intel’s Software License
Agreement, or in the case of software delivered to
the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.

Copyright (c) 2001-2002, Intel Corporation. All
rights reserved.

Intel and the Intel logo are registered trademarks of
Intel Corporation.

*Other names and brands may be claimed as the
property of others.

1 Introduction

A hardware device has a finite set of functions
to perform and a rigid programmatic method
for utilizing its functions. A device driver con-
tains many code paths that exercise the func-
tionality of a hardware device. This paper dis-
cusses the learning obtained from a prototype
fault injection test harness in which hardware

Ottawa Linux Symposium 2002 147

faults are emulated and injected into Linux*
device drivers.

1.1 Purpose and Scope

The purpose of this paper is to provide insight
into fault injection through the discussion of
a prototype fault injection harness implemen-
tation. This paper and will provide its audi-
ence with one proposed method for ensuring
the hardening level of a device driver.

Actual design details of the entire prototyped
implementation are not included in this docu-
ment.

1.2 Intended Audience

This paper is intended for development and test
engineers and anyone interested in designing,
implementing or utilizing fault injection capa-
bilities that are reproducible, portable across
software revisions and flexible.

1.3 Recommended Reading

The appendix of this paper contains back-
ground and reference information. This infor-
mation is provided to assist in clarifying con-
cepts that are touched upon in this document. It
is recommended that these be looked at closely
once the basic concepts are understood. It is
expected that these sections will provide suf-
ficient detail to explain anything that has not
been directly addressed in the main portion of
this paper.

The overview sections contain information
about the purpose behind fault injection and
how each of the software components are re-
lated with regards to their interfaces.

The section titled, “Fault Injection (FI) Pro-
toype” describes each major component of the
prototype in a little more detail. The purpose of

which is to describe the intent and major func-
tion of each sub-component.

Definition of Terms

State: A deterministic path from one starting
point to another. A state refers to the var-
ious states of the hardware as it is pro-
grammed (by a driver) for its particular
function.

State Analysis: The process of tracking the
state of hardware and making decisions
about what to do as various hardware
states are encountered.

State Machine: The mechanism that can
track and respond to changes in hardware
state. The machine itself consists of a
collection of code segments.

Code Segment:A simple code fragment that
provides the functionality of the state ma-
chine.

State Machine Test: This is the input file
used by the State Machine Compiler to
create a binary state table that can be dy-
namically loaded.

FI Engine: Fault Injection Engine. The con-
cept of an engine refers to the central con-
trol component for monitoring state and
injecting faults into a device driver.

2 Driver Hardening Overview

Device drivers can be a source of operating
system instability and are often contributors
to system degradation and/or unscheduled out-
ages. Therefore, device drivers must be robust.
A hardened device driver is a robust device
driver. Hardened device drivers are designed
and developed with the focus of minimizing
the instability and downtime of the system.

Ottawa Linux Symposium 2002 148

Measuring the hardness of a driver is difficult
and unclear. A concept known as driver hard-
ening levels is documented in a white paper ti-
tled, “Device Driver Hardening and Manage-
ability.” The white paper can be found at the
http://developer.intel.com web-site. These
levels are used to define fundamental hardened
driver guidelines, measure the hardness of the
driver and create a better understanding as to
how robust a driver is. These guidelines are
used by device driver writers who wish to sup-
port higher levels of availability through the
use of some or all of the hardening techniques
described in each level. The levels include:

Level 1 - Stability and Reliability Includes
good coding practices and requires fault
injection testing.

Level 2 - Manageability Provides infor-
mation that can be used by driver
management applications to understand
the status of the system and to identify
potential problems that might be growing.
This information includes driver statistics,
event logging and driver diagnostics. All
of this information is essential in proac-
tively recognizing potential problems.
Together, this information can identify a
problem and report it immediately so that
downtime can be prevented or at least
minimized. Therefore, handling the fault
gracefully.

Level 3 - High Availability This is the high-
est level of a hardened driver. High avail-
ability systems minimize system down-
time. Guidelines in this level support high
availability features which enable a driver
to repair or reconfigure devices without
needing to power down or reboot the sys-
tem. These guidelines also include fault
recovery to the extent that when a fault
is identified, the driver repairs the fault if
it can keep the device in service and, at

a minimum, isolates the operating system
from being affected.

Fault injection can be applied to any level of
driver hardening. for illustration purposes, this
paper focuses on level 1 where a developer
is ensuring the integrity of the source code
through fault injection, before introducing the
work effort to validation.

For purposes of this paper, this paper concen-
trates on Level 1 Hardening. Level 1 Hard-
ening guidelines specify that hardened drivers
must be fault injected tested.

Good coding practices alone cannot ensure the
stability and reliability of a system. Device
drivers typically are written and tested with
emphasis on the normal operation of the hard-
ware. Details as to how a driver identifies and
recovers from faulty hardware or system con-
ditions are often minimal.

Hardened device drivers are designed to be
more robust because they are coded to expect
anomalies and process them in a way that min-
imizes the impact to the overall system, thus
preventing unplanned downtime of the system.
The implementation of the code should test for
such things as: values that are illegal, states
that should never occur and expect that the de-
vice should complete a command within a de-
fined amount of time.

The only way to test a driver’s robustness is to
include tests that purposefully inject conditions
that simulate hardware and system faults. This
is known as Fault Injection Testing.

There are several ways to inject faults into a
system. The most common method involves
altering the branch paths to purposefully mod-
ify good data into bad data. This can be ac-
complished with many tools. For instance, the
use of in-circuit emulators (ICE’s) or in-target
probes (ITP’s) can change the execution path

Ottawa Linux Symposium 2002 149

and data values at run-time. Other methods
include the use of debuggers or special code
additions with the specific purpose of causing
error paths to be exercised. This is known as
“white box” testing where the goal is to maxi-
mize code coverage.

White box tests pinpoint exact areas and val-
ues within the software that are changed. This
means that the test is implemented knowing ex-
actly where and what will occur. There are a
few issues with white box testing. First, the
setup for the test is very labor intensive and
in some cases, requires complete manual inter-
vention to control and execute tests, thus mak-
ing it nearly impossible to repeat test results
consistently. Second, there is the possibility
that the object code under test is not the same
object code that is shipped as the final product.
This is not acceptable to most suppliers of high
availability and hardened systems.

There is a method of implementing fault in-
jection tests that is fully automated, can pro-
vide reproducibility in test results and uses the
same version of object code for fault injection
testing as the shipped product. This method,
known as “black box” testing. Black box test-
ing uses carefully designed tests that emulate
faults at software layers below the component
under test. In the case of the prototype fault in-
jection effort, faults are emulated in the hard-
ware layer and the component under test is a
hardened device driver.

This method for injecting faults that can be au-
tomated, provides reproducible test results, is
portable across driver revisions, and is sim-
ple to augment as software capabilities and
test requirements change. This concludes the
overview of driver hardening, why fault in-
jection testing is required and different ap-
proaches testing. The remainder of this docu-
ment will describe the key concepts and critical
design details for a prototype implementation.

3 Software Overview

There are three main components to the proto-
type, the System Driver, the Fault Injection En-
gine and the Common Driver Interface (hooks).
The system driver is the component under test
that utilizes a Common Driver Interface (CDI)
that contains software hooks to interface with
the FI Engine component transparently. The FI
Engine is the core software component, provid-
ing all of the services necessary to inject faults
into a device driver.

Device drivers execute in kernel space. As
such, the FI Engine is a driver with inter-
faces designed to allow connections to occur
between a system driver and itself. The CDI
(used by the system driver) contains special
software hooks that allow it to connect to the
FI Engine during the driver initialization se-
quence. Once the connection is made there is
a method to make a direct call to the FI Engine
from the connected system driver. For the pro-
totype, the CDI consisted of macros that were
created to represent an abstraction on the ex-
isting Linux* macro set for programmed IO,
DMA and PCI configuration.

Application Space

Kernel Space

Operating System
 Tools

System Driver

CDI (hooks)

F
I E

n
g

in
e

D2D IOCTL

IO
C

T
L

In
tf

Application Interface

Figure 1: Major Software Components

Ottawa Linux Symposium 2002 150

State analysis is the process of tracking I/O
transactions for the purpose of 1) detecting
hardening violations 2) injecting faults at spe-
cific points in the usage model for that hard-
ware and 3) to emulate the appropriate hard-
ware behavior from the time a fault is injected
to the time the hardware is expected to be exe-
cuting normally.

Hardening violations are categorized by warn-
ings, and rule violations. A warning is some
indication that a driver inappropriately ac-
cessed registers given the current state of the
hardware. This can be useful for detecting
known hardware problems that have potential
for causing failures under adverse conditions,
but aren’t guaranteed to do so every time. This
is a way for a test engineer to create warning
flags for special events. A hardening violation
is one in which a driver responds to a failure in
such a way that it is known to be inappropriate.
For example, a driver may not clear interrupts
within a control register after a given fault. In
these situations, it is thought that the driver will
cause a system failure either immediately, or
shortly thereafter.

The process of writing a test begins by using
data sheets and any other hardware documen-
tation that specifies where the hardware can
fail. Once hardware failures are understood, a
test writer can create fault scenarios in which
the hardware could fail during its normal op-
eration. These scenarios are then translated
to state machine form in which the state of
the hardware is tracked, and at various points
a decision can be made to inject a fault be-
tween state transitions. Once failure scenarios
are translated to a state machine form the test
writer can, compile the test and load the test
into the FI engine before the system driver is
loaded.

Figure 2: “State Machine Capabilities” illus-
trates the services that a state machine engine

provides and the types of information that a
test writer must have to track the state of hard-
ware, inject faults, and emulate hardware fault
behavior.

HW

Specs

Fault

Scenarios

State Machine

I/O Data

Manipulation

Fault

Injection

Transition

Logic

Common Driver Interface

(CDI)

Where & When based on

Code Segment results

What and When to

Inject a Fault

Figure 2: State Machine Capabilities

Figure 2 also illustrates the three main compo-
nents of the state machine, I/O Data Manipu-
lation, Transition Logic and Fault Injection ca-
pabilities. I/O Data Manipulation consists of
passing the CDI input parameters to the FI en-
gine and allowing the engine to use the val-
ues to determine state and to manipulate the
values, i.e. the hooks. Transition Logic con-
sists of a method for executing code associated
with a state and being able to specify which
state to transition to. This could also be con-
sidered execution flow control. The Fault In-
jection piece defines the method in which the
test writer specifies exactly when I/O Data is
to be manipulated and how the FI engine will
respond for subsequent calls to the CDI.

When all of these things are used properly, a
software engineer can track the state of a hard-
ware device. This allows them to specify ex-
actly when to inject a fault and how to behave
once the fault is injected.

Ottawa Linux Symposium 2002 151

4 Fault Injection (FI) Prototype

The prototype consists of a system driver, state
machine compiler, and an FI engine driver.
The core technology described in this paper
is the state analysis component of the FI en-
gine. It is responsible for the state tracking and
fault injection capabilities. Figure 1: “Major
Software Components” outlines the relation-
ship between all of these components which
are described in the following sections.

4.1 System Driver

The System Driver (illustrated in Figure 3)
is built using the CDI to access hardware re-
sources. The main advantage is that this
method gives the engine access to all the pos-
sible input and output parameters of the trans-
action. As such, a test engineer can make de-
cisions and modify any of the data that gets
transmitted between the CDI and hardware. In
general, execution control is passed to the en-
gine after a read transaction and before a write
transaction such that the FIE can decide what
to do with the data that will be returned to the
driver or written to hardware.

System Driver

Device Driver

CDI Macros

Operating System

Driver Interface

FIE Specific

Data

Driver

Instance Data

FI Engine

Connect /

Disconnect

I/O Transactions

CDI IOCTL Extensions

Inter-driver Communications

Direct Call

Interface

Figure 3: System Driver Block Diagram

The process for initiating fault injection test-
ing involves a dynamic connection sequence.
When a system driver is loaded the driver ini-
tiates a connection sequence by calling kernel
routines that return a handle to the FI Engine
driver. Once the handle is known, the sys-
tem driver initiates driver to driver IOCTL calls
through the kernel to the FI Engine. The first
call to the FI Engine sends a request to con-
nect. The FI Engine grants this request and re-
turns a handle to a data structure representing
instance data for that connection. The instance
handle contains the address of the FI Engine
entry point function. The CDI uses the entry
point address to call directly into the FI Engine.

When a system driver is unloaded, a disconnect
sequence is initiated through the same driver
to driver IOCTL interface. At which time the
FI Engine will perform cleanup on any state
machine configuration data associated with the
connection.

4.2 Fault Injection Engine

Operating System

IOCTL Interface

Configuration

Interface

Inter-Driver

Communications

FI Engine

Direct Calling Interface

I/O Transactions

Common Driver

Interface (CDI)

System

Driver

Configuration Data

State

Table(s)

State

Table(s)

State

Table(s)

Connection

Data

State

Analysis

FI

F
I E

ntry P
oint

Figure 4: Fault Injection Engine Block Dia-
gram

The FI Engine is illustrated in Figure 4: “Fault
Injection Engine Block Diagram.” The various
blocks within the diagram represent key inter-
nal components. Lines are drawn to show the
component’s inter-relationships. Arrows have

Ottawa Linux Symposium 2002 152

also been added to hint at data flow. The sys-
tem driver connects through special macros of
the CDI and is intercepted by the Inter-Driver
Communications (IDC) component. The IDC
creates data structures and initializes internal
subsystems. The Configuration Interface pro-
vides an application with the ability to load
a state machine table dynamically. The state
analysis component is called directly by the
CDI once the connection sequence completes.

NOTE: the actual I/O access will occur in the
system driver, not the engine. The engine only
modifies the data before or after the actual I/O.

Figure 5: “CDI Hooks to FI Engine Flow Di-
agram” illustrates the flow of execution with
respect to the CDI hooks and the FI Engine. It
starts with a driver making use of a CDI Macro.
Typically an I/O transaction involves either a
read or a write. Thus the concept is fairly sim-
ple. You inject a fault into a driver by modify-
ing values returned by the read transaction to
trick the driver into thinking that a status regis-
ter contains an error value. You can also inject
a fault into a driver by modifying data from a
write transaction before the data is transmitted
through the I/O interface.

Once the FI Engine receives execution con-
trol, it begins traversing the state table, execut-
ing code segments that are related to the cur-
rent state of the hardware. On entry to the en-
gine, the state machine determines where it left
off the last time the engine was called. When
a driver first connects, the starting state will
be the very first state of the state table. The
state machine parses the state table entry for
the code segment and then executes code as-
sociated with that code segment. The return
value of the code segment is then used to deter-
mine which state should be traversed to. This
will continue until the ExitStateMachine code
segment is executed. This is a special piece of
code that allows a test writer to specify where

Read

Transaction

CDI Macro

Write

Transaction

Perform

I/O Read

Perform

I/O Write

Call FI

Engine

Call FI

Engine

FI

Enabled

FI

Enabled

Return

no

yes

no

yes

A

A

Figure 5: CDI Hooks to FI Engine Flow Dia-
gram

FI Engine

Re-enter

State Tbl

Execute

Code Segment

Exit State

Macine

� �
Return

State

Return

while loop

consumed

produced

A

Figure 6: FI Engine Flow Diagram

Ottawa Linux Symposium 2002 153

the state machine will continue the next time it
is called and exits the FI Engine to allow the
driver to continue running.

4.3 FI Compiler

The compiler (Figure 7: FI Compiler Com-
ponent Diagram) produces a binary output file
that is loaded into the engine with a command
line tool. The compiled file is translated to a
state table and stored for retrieval when the de-
vice driver makes a connection to the FI En-
gine.

Operating System

IOCTL Interface

Configuration

Interface

IDC

FI Engine

Configuration Data

State

Table(s)

State

Table(s)

State

Table(s)

Connection

Data

SM

State Machine

Test

Code Segment

Definition

State Machine

Compiler

output.bin

State Machine Compiler

Figure 7: FI Compiler Component Diagram

Input for the compiler consists of a state ma-
chine test file and a code segment defini-
tion file. The state machine test file contains
“source” text that is translated to binary form
by the state machine compiler. The code seg-
ment definition file is created from the code
segment definition data structure mentioned in
the next section. The code segment defini-
tion file is created as part of the build process.
When a test is compiled the code segment def-
inition file is used to validate the input param-
eters in the test being compiled.

4.4 State Machine

The overview section of this paper made claims
that this prototype proves the feasibility of

creating reproducible test results, portability
across driver revisions, and simple augmenta-
tion of the state machine. The first portion of
this section is dedicated to explaining why it
can do these things and the remainder gives in-
sight into how it can do them.

The state machine is central to the repro-
ducibility of test results consistently across
software revisions. It does this by allowing a
test developer to track the state of the hardware
and specify the exact moments in which a fault
will be injected. By tracking hardware state,
the test developer does not have to tie the test to
the implementation of the driver, only the im-
plementation of the hardware. Thus, as long as
the hardware fault scenarios don’t change, nei-
ther does the test, for any revision of the driver.

The state machine is designed to be augmented
as test requirements and driver design dictate
the need for change. There are three support-
ing components to the state machine, the state
machine switch statement, the state table, and
the code segment definition structure. These
will be described a bit more, shortly. A change
to the machine is a change only to each of these
three items.

The state analysis component of the FI Engine
(Figure 4) contains the state machine. The state
machine is responsible for traversing a list of
states within a state table. At each state transi-
tion, a code segment is executed, which can be
considered analogous to a CPU executing an
instruction. Code segments are simple, small
code fragments that do not depend on one an-
other to complete execution. However, they do
have a mechanism for passing data to between
states. For the prototype, this was done through
a special Reverse Polish Notation (RPN) based
stack.

The state machine is a while(1) loop with a big
switch statement inside. Code segments are the
case statements with the associated code to be

Ottawa Linux Symposium 2002 154

executed on a transition into the state. Each
state table entry contains a list of states to tran-
sition to, based on the return value from the
code segment. As illustrated in the Figure 8:
“Sample State Table Linkage,” the next state
list is an array where the next state is deter-
mined by using the return value as the index to
the array. The next state is pointed to by the
contents of the value indexed in the array. The
code sample at the end of this section illustrates
this process. The end result is very low over-
head between executing code segments.

State Entry

State Entry

State Entry

State Entry

State Entry

Next

State

Input

Data

Next

State

IsPioR

#1

Next

State

Input

Data

Next

State

ExitSM

#4

Next

State

Input

Data

Next

State

OrDta

#2

Next

State

Input

Data

Next

State

ExitSM

#5

Next

State

Input

Data

Next

State

LogW

#3

Figure 8: Sample State Table Linkage

Figure 8 also shows a sample diagram repre-
senting the contents of a state table and how
the flow is controlled. The first field is the
code segment tag; in this case there are four
code segments, IsPioRead, OrData, LogWarn-
ing and ExitStateMachine. These would be
used by the test engineer to create a state ma-
chine test.

In order to extend the state machine, a data
structure that defines the code segments is cre-
ated. Each table entry contains the following
information:

String: The reserved word for the code seg-
ment.

Number of Inputs: Number of data parame-
ters required for input.

Number of Returns: Number of possible re-
turn values.

This structure is shared between the state ma-
chine and the compiler. The compiler uses
it in the form of a file (saved to disk by the
build process) called the code segment defi-
nition. The compiler can load the structure
to validate the syntax of the test source code,
created by the test developer. The state ma-
chine engine uses the code segment definition
structure to traverse the state table and access
data input parameters. A typical code seg-
ment definition would look like the following:
Reserved Word Inputs Returns
"PioRead", 0 2
"OrData", 1 1
"LogWarning", 0 1
"ExitMachine", 1 1

The following is an example of the state ma-
chine implementation referenced in Figure 8,
and its associated code segments. See Ap-
pendix B for a complete, functional state ma-
chine example.

Ottawa Linux Symposium 2002 155

FIE_EntryPoint(InstanceHandle *handle) {
StateTableEntry *this_state = handle->CurrentStTblEntry;
CdiParameters *cdi_param = handle->CdiParam;
BOOL exit_flag = FALSE;

while (exit_flag == FALSE) {
switch(this_state->CodeSegment) {

case CODE_SEG_IsPioRead:
cs_return = 0; /* FALSE */
if (cdi_param->Transaction == CDI_PIO_READ) {

cs_return = 1; /* TRUE */
}

break;
case CODE_SEG_AndData:

cs_return = 0; /* only 1 return */
cdi_param &= this_state->StateData;

break;
case CODE_SEG_LogWarning:

cs_return = 0; /* only 1 return */
WriteLog("Warning Violation...");

break;

case CODE_SEG_LogViolation:
cs_return = 0; /* only 1 return */
WriteLog("Hardening Violation...");

break;

case CODE_SEG_ExitStateMachine:
cs_return = 0; /* only 1 return */
/* This code segment’s data item contains a pointer

* to the state to execute on the next entry to the
* state machine.
*/

handle->CurrentStTblEntry = this_state->StateData;
exit_flag = TRUE;

break;
default: { /* invalid code segment */ };

}
/* Set the next code segment to be executed based on the

* return value of the current code segment. This is just
* an array of pointers to state table entries.

this_state->CodeSegment = this_state->NextState[cs_return];
} /* end while */

}

Ottawa Linux Symposium 2002 156

5 Summary

The prototype fault injection harness proved
that it is possible to create a state machine
language and that it is possible to track the
state of hardware from initialization all the way
through the normal execution cycles of a driver.

Tracking the state of hardware is critical to
making decisions about when to inject a fault.
It is also what allows test results to be repeat-
able and allows a test to be portable across
driver revisions.

Keep in mind that even though this paper fo-
cuses on drivers, any software component can
make use of the principles.

6 Acknowledgments

Special thanks to my fellow co-workers for
their contribution to this effort: Donald Long,
Daniel Vanhoozier, Kimberly Davis, Ryan
Kummet, Susan Foster, Victoria Genovker,
Grace Hawley, and Lori Matassa.

References

[Intel] Lori MatassaDevice Driver
Hardening and ManageabilityIntel
Corporation.
http://developer.intel.com/

(2001)

7 Appendix A - Sample Test

This is a sample state machine test file. The
text below describes three major aspects of
the system driver under test, normal execution
flow, a special IOCTL interface and controlled
hardening violations.

A sample driver was designed to illustrate con-
cepts and prove the feasibility of a state ma-
chine language. The LCD device is a simple
serial port device that plugs into COM1. The
sample driver was written to interface to the
LCD device. Any programming of the hard-
ware occurs with the serial controller.

The compiled state machine test is loaded into
the FI engine prior to loading the LCD driver.
When the LCD driver is loaded it makes a con-
nection to the FI Engine. From the moment the
driver successfully connects, the state machine
is monitoring programmed I/O.

Once initialization completes (successfully)
the normal operation of the driver can be-
gin. An application running in the background
sends constant messages to the driver through
the read/write operating system interface as a
character mode driver. The state machine test
is designed to inject a fault into the write status
register every 1000 character writes to the dis-
play. When the driver detects a failure it flashes
an error message to the display, re-initializes
the device and continues to accept character
messages from the background application.

There are some special flags that can be set to
demonstrate different aspects of fault injection.
The LCD driver has a custom IOCTL interface
to allow an application to do three things, re-
initialize the driver, set the Warning Violation
code path and set the Hardening Violation code
path. The background application has the abil-
ity to utilize these features on demand.

Figure 9: “Flow Diagram for the Sample
(LCD) Driver” illustrates the various code
paths that can be exercised depending on the
run-time switches controlled by the driver’s
custom IOCTL interface. There are three
demonstrations from this, fault injection during
driver initialization, hardening warnings, and
hardening violations.

Ottawa Linux Symposium 2002 157

Initialize

Driver

Idle (wait

for write)

inject Fault #1:

Fail init every other

time.

Write Data

(wait when idle)

Hardening Warning:

(out of sequence

register access)

Config

Registers

Read

Status

Recover

On Error

inject Fault #2:

Fault every 1000

writes to the display

Hardening Violation:

(improper register

access)

Figure 9: Flow Diagram for the Sample (LCD)
Driver

There is a run-time switch within the initializa-
tion sequence that forces the driver to execute a
warning violation when initialization sequence
is repeated. The state machine will detect an
out of sequence register violation and write a
string to the log file. To demonstrate the abil-
ity to inject faults during initialization, the state
machine is also designed to inject a fault ev-
ery other time the background application re-
initializes the LCD driver.

The final demonstration is to inject a fault dur-
ing the character write process and force the
driver to inappropriately recover from the fail-
ure; this is documented as a hardening viola-
tion. The driver simply fails to clear the display
after detecting a failure and the state machine
can detect the absence of that action.

The state machine definition (below) file is
fairly complicated to read, but the fact that it
can do what it’s supposed to, is a major mile-
stone to prove the capabilities of this method of
injecting faults and detecting violations. The
code segment definitions for the sample ma-

chine below, are not defined in this document.
The intent is to provide a reference to a work-
ing state table and the driver model specified in
previous pages.

Ottawa Linux Symposium 2002 158

Comments are permitted in a state definition file if they are
preceded by a ’\#’.
#
The syntax of this state machine test file is as follows
(in BNF notation):
#
<state> := STATE <state_name> <cs_name> [<data>...] [<result>...];
<cs_name> := <alpha_num>
<state_name> := <alpha_num>
<result> := <state_name>
<data> := <integer>

##
#---
Initialization
#---
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetTraceLevel SetTrace 0
stPushFmFiCnt; STATE stPushFmFiCnt StkPush 0
stInitFmFiCnt; STATE stInitFmFiCnt StkPopStore 1
stPushLcFiCnt;

STATE stPushLcFiCnt StkPush 0 stInitLcFiCnt;
STATE stInitLcFiCnt StkPopStore 2 stDlabSPend;

#---
Wait for the DLAB bit to be set
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stDlabSPend CheckTransaction 1 stDlabSNot

stChkDlabSAddr;
STATE stDlabSNot ExitStateMachine 0 stDlabSPend;
STATE stChkDlabSAddr CheckAddress 0x3FB stDlabSNot

stChkDlabSBit;
STATE stChkDlabSBit PushTransData 0 stPushDlabSMask;
STATE stPushDlabSMask StkPush 0x80 stDlabSAnd;
STATE stDlabSAnd DataAnd 0 stDlabSPushCmp;
STATE stDlabSPushCmp StkPush 0x80 stDlabSCompare;
STATE stDlabSCompare CompareEq 0 stDlabSNot

stGotoDLsbPend1;
STATE stGotoDLsbPend1 ExitStateMachine 0 stSetDLsbPend1;

#---
Wait for the Divisor LSB to be set first
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDLsbPend1 CheckTransaction 1 stGotoDLsbPend1

stChkDivLsbAddr1;
STATE stChkDivLsbAddr1 CheckAddress 0x3F8 stChkDivMsbAddr2

stGotoDMsbPend1;
STATE stGotoDMsbPend1 ExitStateMachine 0 stSetDMsbPend1;

Ottawa Linux Symposium 2002 159

#---
Wait for the Divisor MSB to be set second
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDMsbPend1 CheckTransaction 1 stGotoDMsbPend1

stChkDivMsbAddr1;
STATE stChkDivMsbAddr1 CheckAddress 0x3F9 stGotoDMsbPend1

stGotoDlabUPend;
STATE stGotoDlabUPend ExitStateMachine 0 stDlabUPend;

#---
Wait for the Divisor MSB to be set first
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkDivMsbAddr2 CheckAddress 0x3F9 stGotoDLsbPend1

stPrtDivSetWarn;
STATE stPrtDivSetWarn LogWarning 0 stGotoDLsbPend2;
STATE stGotoDLsbPend2 ExitStateMachine 0 stSetDivLsbPend2;

#---
Wait for the Divisor LSB to be set second
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stSetDivLsbPend2 CheckTransaction 1 stGotoDLsbPend2

stChkDivLsbAddr2;
STATE stChkDivLsbAddr2 CheckAddress 0x3F8 stGotoDLsbPend2

stGotoDlabUPend;

#---
Wait for the DLAB bit to be unset
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stDlabUPend CheckTransaction 1 stDlabUNot

stChkDlabUAddr;
STATE stDlabUNot ExitStateMachine 0 stDlabUPend;
STATE stChkDlabUAddr CheckAddress 0x3FB stDlabUNot

stChkDlabUBit;
STATE stChkDlabUBit PushTransData 0 stPushDlabUMask;
STATE stPushDlabUMask StkPush 0x80 stDlabUAnd;
STATE stDlabUAnd DataAnd 0 stPushDlabUCmp;
STATE stPushDlabUCmp StkPush 0 stDlabUCompare;
STATE stDlabUCompare CompareEq 0 stDlabUNot

stGotoSetLcPend;
STATE stGotoSetLcPend ExitStateMachine 0 stSetLcPend;

#---
Wait for set of the line control data
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States

Ottawa Linux Symposium 2002 160

#---------------------#-------------------#---------#-------------------
STATE stSetLcPend CheckTransaction 1 stNotSetLc

stChkLcAddr;
STATE stNotSetLc ExitStateMachine 0 stSetLcPend;
STATE stChkLcAddr CheckAddress 0x3FB stNotSetLc

stChkLcFip;

#---
Fault injection point. Inject a line control data fault at every ’X’
interval.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkLcFip IncStore 2 stPushLcFiReg;
STATE stPushLcFiReg StkPushStore 2 stPushLcFiCmp;
STATE stPushLcFiCmp StkPush 2 stCompLcFi;
STATE stCompLcFi CompareEq 2 stGotoWritePend

stSetLcError;
STATE stSetLcError PushTransData 0 stPushLcErrData;
STATE stPushLcErrData StkPush 0xFC stGetLcTransData;
STATE stGetLcTransData DataAnd 0 stSetLcTransData;
STATE stSetLcTransData PopTransData 0 stPushLcFi0Cnt;
STATE stPushLcFi0Cnt StkPush 0 stResetLcFiCnt;
STATE stResetLcFiCnt StkPopStore 2 stGotoWritePend;

#--
Wait for the write. If the write is text goto the "wait for write
completion section. If the write is the DLAB then go back to the
initalization section.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stWritePend CheckTransaction 1 stNotWrite

stChkWriteAddr;
STATE stNotWrite ExitStateMachine 0 stWritePend;
STATE stChkWriteAddr CheckAddress 0x3F8 stChkWrtLcAddr

stGotoWrtVerify;
STATE stChkWrtLcAddr CheckAddress 0x3FB stNotWrite

stWrtChkDlabSBit;
STATE stWrtChkDlabSBit PushTransData 0 stWrtPshDlabSMask;
STATE stWrtPshDlabSMask StkPush 0x80 stWrtDlabSAnd;
STATE stWrtDlabSAnd DataAnd 0 stWrtDlabSPushCmp;
STATE stWrtDlabSPushCmp StkPush 0x80 stWrtDlabSCompare;
STATE stWrtDlabSCompare CompareEq 0 stNotWrite

stGotoDLsbPend1;
STATE stGotoWrtVerify ExitStateMachine 0 stWrtVerify;

#---
Wait for the write to complete
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stWrtVerify CheckTransaction 0 stNotWrtVerify

stChkWrtVfyAddr;

Ottawa Linux Symposium 2002 161

STATE stNotWrtVerify ExitStateMachine 0 stWrtVerify;
STATE stChkWrtVfyAddr CheckAddress 0x3FD stNotWrtVerify

stPushLsr;

STATE stPushLsr PushTransData 0 stPushXmitMask;
STATE stPushXmitMask StkPush 0x20 stAndXmitStat;
STATE stAndXmitStat DataAnd 0 stPushXmitCmp;
STATE stPushXmitCmp StkPush 0x20 stChkXmitStat;
STATE stChkXmitStat CompareEq 0 stNotWrtVerify

stChkFmFip;

#---
Fault injection point. Inject framing errors at every ’X’ interval.
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkFmFip IncStore 1 stPushFmFiReg;
STATE stPushFmFiReg StkPushStore 1 stPushFmFiCmp;
STATE stPushFmFiCmp StkPush 1000 stCompFmFi;
STATE stCompFmFi CompareEq 1000 stChkWrtError

stSetFmError;
STATE stSetFmError PushTransData 0 stPushFmErrData;
STATE stPushFmErrData StkPush 0x08 stGetFmTransData;
STATE stGetFmTransData DataOr 0 stSetFmTransData;
STATE stSetFmTransData PopTransData 0 stPushFmFi0Cnt;
STATE stPushFmFi0Cnt StkPush 0 stResetFmFiCnt;
STATE stResetFmFiCnt StkPopStore 1 stGotoResetPend;

#---
Check for errors on the write
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stChkWrtError PushTransData 0 stPushWrtFmMask;
STATE stPushWrtFmMask StkPush 0x08 stWrtStatFmAnd;
STATE stWrtStatFmAnd DataAnd 0 stPushCmpFm;
STATE stPushCmpFm StkPush 0x08 stCmpFmError;
STATE stCmpFmError CompareEq 0 stGotoWritePend

stGotoResetPend;
STATE stGotoWritePend ExitStateMachine 0 stWritePend;
STATE stGotoResetPend ExitStateMachine 0 stResetPend;

#---
Wait for the reset
#---------------------#-------------------#---------#-------------------
State # Code Segment # Data # Trans States
#---------------------#-------------------#---------#-------------------
STATE stResetPend CheckTransaction 1 stNotResetWrite

stChkResetAddr;
STATE stNotResetWrite ExitStateMachine 0 stResetPend;
STATE stChkResetAddr CheckAddress 0x3FD stLogResetErr

stGotoWritePend;
Check what is set?
STATE stLogResetErr LogViolation 0 stChkWriteAddr;

Ottawa Linux Symposium 2002 162

##

8 Appendix B - Sample State Machine Implementation

/*---
* FILE NAME: state_machine.cpp
*
* IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
* By downloading, copying, installing or using the software you agree
* to this license. If you do not agree to this license, do not
* download, install, copy or use the software.
*
* Intel Open Source License
*
* Copyright (c) 2002 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* # Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* # Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* # Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--\

/*---
* DESCRIPTION: This program is and example program of how one could
* implement a finite state machine. This has been written
* as and example to be used in a class. The doucmentation
* in the source is limited. It is also assumed that the
* person being taught has a general understanding of

Ottawa Linux Symposium 2002 163

* what a state machine is.
*
* Agruments: [{TRACE [=] {ON|OFF}|?}]
*
* TRACE is used to turn trace of the statemachine on
* or off. The default is off. This will stay set
* for the complete run of the program. Currenlty no
* method is coded to allow trace to be controlled during
* runtime.
*
* This command is not case sensitive.
*
* AUTHOR: Donald W. Long
*
* HISTORY: 1.0 - First Release
---/

#include <iostream.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

// General defines
#define ProgramVersion "1.0"
#define ProgramVersionDate "10-3-2001"
#define TRUE -1
#define FALSE 0

// These are the code seqment names with the values that they can return
// All sets of code segment return values must start with 0 and go
// up by 1, no holes allowed.
typedef enum {

CS_PrintBanner = 0,
CS_AskForNum1,
CS_AskForNum2,
CS_AskForFunc,
CS_Add,
CS_Sub,
CS_Times,
CS_Divide,
CS_OutPutResults,
CS_Exit,
CS_BadInput

} CodeSeqmentTF;

// Misc Defines
#define CS_PrintBanner_OK 0

#define CS_AskForNum1_OK 0
#define CS_AskForNum1_BAD 1
#define CS_AskForNum1_Exit 2

#define CS_AskForNum2_OK 0
#define CS_AskForNum2_BAD 1

Ottawa Linux Symposium 2002 164

#define CS_AskForNum2_Exit 2

#define CS_AskForFunc_Add 0
#define CS_AskForFunc_Sub 1
#define CS_AskForFunc_Times 2
#define CS_AskForFunc_Divide 3
#define CS_AskForFunc_Exit 4
#define CS_AskForFunc_Unknown 5

#define CS_Add_OK 0

#define CS_Sub_OK 0

#define CS_Times_OK 0

#define CS_Divide_OK 0

#define CS_OutPutResults_OK 0

#define CS_Exit_OK 0

#define CS_BadInput_OK 0

// This table is used to output the text name of the code segement
// and its values if trace is turned on.
// Format: <Num Values> <code segment name> <Names of values,
// occurs for <Num Values>>
// The Value string names are in the order they are defined
// (i.e., 0, 1, 2, ...)
//
// At the end of each code segment value list a -1 must occur.
// At the end of the table another -1 must occur.
//
static char CodeSeqmentNames[] = {

1, ’P’, ’r’, ’i’, ’n’, ’t’, ’B’, ’a’, ’n’, ’n’, ’e’, ’r’, 0,
’P’, ’r’, ’i’, ’n’, ’t’, ’B’, ’a’, ’n’, ’n’, ’e’, ’r’,
’_’, ’O’, ’K’, 0,

-1,
3, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’O’, ’K’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’B’, ’A’, ’D’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’1’,
’_’, ’E’, ’x’, ’i’, ’t’, 0,

-1,
3, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’O’, ’K’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’B’, ’A’, ’D’, 0,

’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’N’, ’u’, ’m’, ’2’,
’_’, ’E’, ’x’, ’i’, ’t’, 0,

-1,

Ottawa Linux Symposium 2002 165

6, ’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’A’, ’d’, ’d’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’S’, ’u’, ’b’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’T’, ’i’, ’m’, ’e’, ’s’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’E’, ’x’, ’i’, ’t’, 0,
’A’, ’s’, ’k’, ’F’, ’o’, ’r’, ’F’, ’u’, ’n’, ’c’,

’_’, ’U’, ’n’, ’k’, ’n’, ’o’, ’w’, ’n’, 0,
-1,
1, ’A’, ’d’, ’d’, 0,

’A’, ’d’, ’d’, ’_’, ’O’, ’K’, 0,
-1,

1, ’S’, ’u’, ’b’, 0,
’S’, ’u’, ’b’, ’_’, ’O’, ’K’, 0,

-1,
1, ’T’, ’i’, ’m’, ’e’, ’s’, 0,

’T’, ’i’, ’m’, ’e’, ’s’, ’_’, ’O’, ’K’, 0,
-1,
1, ’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,

’D’, ’i’, ’v’, ’i’, ’d’, ’e’, ’_’, ’O’, ’K’, 0,
-1,
1, ’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, ’e’, ’s’, ’u’,

’l’, ’t’, ’s’, 0,
’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, ’e’, ’s’, ’u’,

’l’, ’t’, ’s’, ’_’, ’O’, ’K’, 0,
-1,
1, ’E’, ’x’, ’i’, ’t’, 0,

’E’, ’x’, ’i’, ’t’, ’_’, ’O’, ’K’, 0,
-1,
1, ’B’, ’a’, ’d’, ’I’, ’n’, ’p’, ’u’, ’t’, 0,

’B’, ’a’, ’d’, ’I’, ’n’, ’p’, ’u’, ’t’, ’_’, ’O’, ’K’, 0,
-1,
-1

};

// This gives us the names of the states we will be using.
// It should be noted that this order must also be followed
// in the StateTable.
typedef enum {

ST_Start = 0,
ST_GetNum1 = 1,
ST_GetNum2 = 2,
ST_GetFunc = 3,
ST_Add = 4,
ST_Sub = 5,
ST_Times = 6,
ST_Divide = 7,
ST_OutPutR = 8,
ST_Exit = 9,

Ottawa Linux Symposium 2002 166

ST_Num1Bad = 10,
ST_Num2Bad = 11,
ST_FuncBad = 12

} States_TF;

int *StateTablePtr = 0; // This is the location in the state table
// we are at and the state table.

#define StateTableNumElements 8 // If you add the ability to have more
// values you must increase this
// by that number.

// Format: <State> <Code Segment> <state for val1> <state for val2>
// <state for val3> <state for val4>
// <state for val5> <state for val6>
//
// If the value is not used then set to -1.
//
// The order of the states must match the order of the states
// defined in StateTF.
static int StateTable[] = {

ST_Start, CS_PrintBanner, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_GetNum1, CS_AskForNum1, ST_GetNum2, ST_Num1Bad, ST_Exit, -1,
-1, -1,

ST_GetNum2, CS_AskForNum2, ST_GetFunc, ST_Num2Bad, ST_Exit, -1,
-1, -1,

ST_GetFunc, CS_AskForFunc, ST_Add, ST_Sub, ST_Times, ST_Divide,
ST_Exit, ST_FuncBad,

ST_Add, CS_Add, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Sub, CS_Sub, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Times, CS_Times, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_Divide, CS_Divide, ST_OutPutR, -1, -1, -1,
-1, -1,

ST_OutPutR, CS_OutPutResults, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_Exit, CS_Exit, ST_Exit, -1, -1, -1,
-1, -1,

ST_Num1Bad, CS_BadInput, ST_GetNum1, -1, -1, -1,
-1, -1,

ST_Num2Bad, CS_BadInput, ST_GetNum2, -1, -1, -1,
-1, -1,

ST_FuncBad, CS_BadInput, ST_GetFunc, -1, -1, -1,
-1, -1

};

// State names, format is <name><null> Order must match the order
// of the state values (see StateTF).
// Last byte is -1 to show end of table.

static char StateNames[] = {
’S’, ’t’, ’a’, ’r’, ’t’, 0,

Ottawa Linux Symposium 2002 167

’G’, ’e’, ’t’, ’N’, ’u’, ’m’, ’1’, 0,
’G’, ’e’, ’t’, ’N’, ’u’, ’m’, ’2’, 0,
’G’, ’e’, ’t’, ’F’, ’u’, ’n’, ’c’, 0,
’A’, ’d’, ’d’, 0,
’S’, ’u’, ’b’, 0,
’T’, ’i’, ’m’, ’e’, ’s’, 0,
’D’, ’i’, ’v’, ’i’, ’d’, ’e’, 0,
’O’, ’u’, ’t’, ’P’, ’u’, ’t’, ’R’, 0,
’E’, ’x’, ’i’, ’t’, 0,
’N’, ’u’, ’m’, ’1’, ’B’, ’a’, ’d’, 0,
’N’, ’u’, ’m’, ’2’, ’B’, ’a’, ’d’, 0,
’F’, ’u’, ’n’, ’c’, ’B’, ’a’, ’d’, 0,
-1

};

// General flags for the program
int Trace = FALSE; // if not 0 then we will trace the statemachine

// Function prototypes
int Init(int argc, char *argv[]);
int PrintTrace(int *StateTableEntry, char *CodeSeqmentNames,

char *StateNames, int CodeSegmentValue);
int ConvertToNum(char *InputData, double *Result);
char *StripSpaces(char *Line);
void ToUpper(char *Data);

/*
** main
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: argc - number of argments passed to the program
* argv - address list of arguments.
*
* DESCRIPTION: main entry point for program
* RETURNS: 0 - Program terminates OK
* 1 - Program had an internal error
* 2 - Invalid argument passed to program
*/

int main(int argc, char* argv[])
{

int CodeSegmentValue=-1; // Code segment value returned from
// switch statement

double Num1=0; // Contains the last value inputed
// for CS_AskForNum1

double Num2=0; // Contains the last value inputed
// for CS_AskForNum2

double FuncResult=0; // Results of the operation requested.
char InputData[100]; // String to store the input data into

// for all cin operations.
char *ptr; // General pointer.

// Init the program
if (!Init(argc, argv)) {

Ottawa Linux Symposium 2002 168

cerr << endl << "**** Invalid arguments passed ****" << endl <<
"SampleStateMachine [{TRACE [=] {ON|OFF}|?}]" << endl << endl;

return(2);
}

// Main loop for program
StateTablePtr=StateTable;
while (TRUE) {

switch (StateTablePtr[1]) {
case CS_PrintBanner:

cout << "Test StateMachine (" << ProgramVersion << "-" <<
ProgramVersionDate << ") ** TRACE = ";

if (Trace==TRUE) {
cout << "ON";

} else {
cout << "OFF";

}
cout << endl << endl;
CodeSegmentValue=CS_PrintBanner_OK;
break;

case CS_AskForNum1:
cout << endl << "Please enter the first number or ’exit’? ";
cin >> InputData;

ptr = StripSpaces(InputData);
ToUpper(ptr);

// Process the line
if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForNum1_Exit;
} else {

if (ConvertToNum(ptr, &Num1)) {
CodeSegmentValue=CS_AskForNum1_OK;

} else {
CodeSegmentValue=CS_AskForNum1_BAD;

}
}
break;

case CS_AskForNum2:
cout << endl << "Please enter the second number or ’exit’? ";
cin >> InputData;

ptr = StripSpaces(InputData);
ToUpper(ptr);

// Process the line
if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForNum2_Exit;
} else {

if (ConvertToNum(ptr, &Num2)) {
CodeSegmentValue=CS_AskForNum2_OK;

} else {
CodeSegmentValue=CS_AskForNum2_BAD;

}
}

Ottawa Linux Symposium 2002 169

break;
case CS_AskForFunc:

cout << endl << "Please enter the function to perform" << endl <<
" Add" << endl <<
" Sub[tract]" << endl <<
" Times" << endl <<
" Div[ide]" << endl <<
" Exit" << endl <<
"? ";

cin >> InputData;
ptr = StripSpaces(InputData);
ToUpper(ptr);
if (!strcmp(ptr, "ADD")) {

CodeSegmentValue=CS_AskForFunc_Add;
} else if (!strcmp(ptr, "SUB") || !strcmp(ptr, "SUBTRACT")) {

CodeSegmentValue=CS_AskForFunc_Sub;
} else if (!strcmp(ptr, "TIMES")) {

CodeSegmentValue=CS_AskForFunc_Times;
} else if (!strcmp(ptr, "DIV") || !strcmp(ptr, "DIVIDE")) {

CodeSegmentValue=CS_AskForFunc_Divide;
} else if (!strcmp(ptr, "EXIT")) {

CodeSegmentValue=CS_AskForFunc_Exit;
} else {

CodeSegmentValue=CS_AskForFunc_Unknown;
}
break;

case CS_Add:
FuncResult=Num1+Num2;
CodeSegmentValue=CS_Add_OK;
break;

case CS_Sub:
FuncResult=Num1-Num2;
CodeSegmentValue=CS_Sub_OK;
break;

case CS_Times:
FuncResult=Num1*Num2;
CodeSegmentValue=CS_Times_OK;
break;

case CS_Divide:
FuncResult=Num1/Num2;
CodeSegmentValue=CS_Divide_OK;
break;

case CS_OutPutResults:
cout << endl << "Your results are " << FuncResult << endl << endl;
CodeSegmentValue=CS_OutPutResults_OK;
break;

case CS_Exit:
CodeSegmentValue=CS_Exit_OK;
return(0);

case CS_BadInput:
CodeSegmentValue=CS_BadInput_OK;
cout << "Input is not valid - " << InputData << endl;
break;

default:

Ottawa Linux Symposium 2002 170

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** The Code Segment Does not exist **" << endl <<
"** Either state table is bad, code segment not added, **" << endl <<
"** or logic error in moving thru state table **" << endl <<
"***" << endl <<
"***" << endl
<< endl;

return(1);
}
if (Trace==TRUE) {

if (!PrintTrace(StateTablePtr, CodeSeqmentNames,
StateNames, CodeSegmentValue)) {
return(1);

}
}
StateTablePtr=&(StateTable[(StateTablePtr[CodeSegmentValue+2])

* StateTableNumElements]);
}

}

/*
** Init
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: argc - number argument passed
* argv - Address array to arguments
*
* DESCRIPTION: This will parse out the program arguments. If
* any errors will exit with a value of 2.
*
* RETURNS: 0 - Agruments invalid
* 1 - Agruments processed
*
*/

int Init(int argc, char *argv[])
{

char *mode;
char *ptr;

if (argc>1) {
if (argc<5 && argc >2) {

if (argc==4) {
mode=argv[3];
ptr=StripSpaces(argv[2]);
if (strcmp(ptr, "=")) {

return(0);
}

} else {
mode=argv[2];

Ottawa Linux Symposium 2002 171

}
ptr=StripSpaces(argv[1]);
ToUpper(ptr);
if (!strcmp(ptr, "TRACE")) {

mode=StripSpaces(mode);
ToUpper(mode);
if (!strcmp(mode, "ON")) {

Trace=TRUE;
} else if (!strcmp(mode, "OFF")) {

Trace=FALSE;
} else {

return(0);
}

} else {
return(0);

}
} else {

if (argc==2) {
if (!strcmp(argv[1], "?")) {

cout << endl << "SampleStateMachine [{TRACE [=] {ON|OFF}|?}]"
<< endl << endl;

exit(0);
} else {

return(0);
}

} else {
return(0);

}
}

}
return(-1);

}

/*
** PrintTrace
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS:
* StateTableEntry - Pointer to the current state table location
* that is being processed
* CodeSegmentNames - Pointer to the table that contains all the
* code segment names and they code segment values
* StateNames - Pointer to the table that contains the State Names.
* CodeSegmentValue - The value that was returned from the last code
* segment that was executed for the current state.
*
* DESCRIPTION:
* This will take the current state information (after execution) and
* output in text what has occured and the new state that will occur.
*
* The output goes to cerr and is in the following format
* <CurState>(val) - <CodeSegment>(val) - <Codesegment value>(val) ->
* <NewState>(val)<eol>

Ottawa Linux Symposium 2002 172

* RETURNS:
*/

int PrintTrace(int *StateTableEntry, char *CodeSeqmentNames,
char *StateNames, int CodeSegmentValue)

{
int CurState;
int NewState;
int CodeSegment;
char *CurStateName;
char *NewStateName;
char *CodeSegmentName;
char *CodeSegmentValName;
int NumCodeSegments;
int i;
int ii;

// Get the items from the state table entry.
CurState = StateTableEntry[0];
CodeSegment = StateTableEntry[1];
NewState = StateTableEntry[CodeSegmentValue+2];

// Get the current state name.
for (CurStateName=StateNames, i = 0;

i<CurState && CurStateName[0]!=-1; i++) {
for (; *CurStateName!=0; CurStateName++);
CurStateName++;

}
if (*CurStateName==-1) {

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Current State Not In State Name Table **" << endl <<
"** State table is bad or State Name Table **" << endl <<
"***" << endl <<
"***" << endl << endl;

return(0);
}

// Get the new state name.
for (NewStateName=StateNames, i = 0;

i<NewState && NewStateName[0]!=-1; i++) {
for (; *NewStateName!=0; NewStateName++);
NewStateName++;

}
if (*NewStateName==-1) {

cerr << endl <<
"***" << endl <<
"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** New State Not In State Name Table **" << endl <<
"** State table is bad or State Name Table **" << endl <<
"***" << endl <<

Ottawa Linux Symposium 2002 173

"***" << endl << endl;
return(0);

}

// Get the codesegment name.
for (CodeSegmentName=CodeSeqmentNames, i=0;

i<CodeSegment && CodeSegmentName[0]!=-1; i++) {
NumCodeSegments=CodeSegmentName[0];
for (; *CodeSegmentName!=0; CodeSegmentName++);
CodeSegmentName++;

// Skip the codesegment return value names.
for (ii=0; ii<NumCodeSegments && CodeSegmentName[0]!=-1; ii++) {

for (; *CodeSegmentName!=0; CodeSegmentName++);
CodeSegmentName++;

}
if (ii!=NumCodeSegments && CodeSegmentName[0]!=-1) {

cerr << endl <<
"**" << endl <<
"**" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Vak Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"**" << endl <<
"**" << endl << endl;

return(0);
}
CodeSegmentName++; // Skip the -1 at the end of the

// codesegment values.
}
if (*CodeSegmentName==-1) {

cerr << endl <<
"***" << endl <<

"***" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"***" << endl <<
"***" << endl << endl;

return(0);
}

// Setup for getting the codesegment value name.
NumCodeSegments=CodeSegmentName[0];
CodeSegmentName++;
for (CodeSegmentValName=CodeSegmentName; *CodeSegmentValName!=0;

CodeSegmentValName++);
CodeSegmentValName++;

// Get the code segment value name
for (i=0; i<CodeSegmentValue && CodeSegmentValName[0]!=-1; i++) {

for (; *CodeSegmentValName!=0; CodeSegmentValName++);
CodeSegmentValName++;

}

Ottawa Linux Symposium 2002 174

if (CodeSegmentName[0]==-1) {
cerr << endl <<

"**" << endl <<
"**" << endl <<
"** INTERNAL ERROR **" << endl <<
"** Code Segment Vak Not in Code Segment Table **" << endl <<
"** Code Segment is bad or Code Segment Table **" << endl <<
"**" << endl <<
"**" << endl << endl;

return(0);
}

// Output format is <CurState>(val) - <CodeSegment>(val) -
<Codesegment value>(val) -> <NewState>(val)

cerr << CurStateName << "(" << CurState << ") - " <<
CodeSegmentName << "(" << CodeSegment << ") - " <<
CodeSegmentValName << "(" << CodeSegmentValue << ") -> " <<
NewStateName << "(" << NewState << ")" << endl;

return(-1);
}

/*
** ConvertToNum
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: InputData - String that is to be converted to a number
* Result - Address to a double to put the results in
*
* DESCRIPTION: This function will take an ascii string and convert it to
* a double. This function assumes all spaces have been
* removed from the start of the string and the end.
*
* RETURNS: -1 - Converted ok
* 0 - Invalid data in InputData (not a number)
*
*/

int ConvertToNum(char *InputData, double *Result)
{

char *ptr;

// Make sure all charactors are valid.
for (ptr=InputData; *ptr!=0; ptr++) {

if (!isdigit(*ptr)) {
if (*ptr==’.’) { // Floating Point Number.

for (ptr++; *ptr!=0; ptr++) {
if (!isdigit(*ptr)) {

return(0);
}

}
break; // Leave the for loop so we can do the atof function.

} else {
return(0);

Ottawa Linux Symposium 2002 175

}
}

}
*Result=atof(InputData);
return(-1);

}

/*
** StripSpaces
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: Line - The line to remove spaces
*
* DESCRIPTION: This will remove all the spaces at the start and end
* of Line.
*
* RETURNS: Address of first charactor in Line that is not a space
*
*/

char *StripSpaces(char *Line)
{

char *stptr;
char *ptr;

// Strip off all spaces
for (stptr=Line; *stptr == ’ ’ && *stptr != 0; stptr++);
for (ptr=stptr; *ptr != ’ ’ && *ptr != 0; ptr++);
*ptr=0;
return(stptr);

}

/*
** ToUpper
*
* FILENAME: D:\Projects\SampleStateMachine\samplestatemachine.cpp
*
* PARAMETERS: Data - Data to convert to upper case
*
* DESCRIPTION: This function will convert a staring to upper case
*
* RETURNS:
*
*/

void ToUpper(char *Data)
{

char *ptr;

for (ptr=Data; *ptr!=0; ptr++) {
*ptr=toupper(*ptr);

}
}

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

