
Porting Linux to x86-64

Andi Kleen
SuSE Labs
ak@suse.de

Abstract

x86-64 is a 64-bit extension for the IA32 architec-
ture, which is supported by the next generation of
AMD CPUs. New features include 64-bit pointers, a
48-bit address space, 16 general purpose 64-bit inte-
ger registers, 16 SSE (Streaming SIMD Extensions)
registers, and a compatibility mode to support old
binaries.

The Linux kernel port to x86-64 is based on the
existing IA32 port with some extensions, including
a new syscall mechanism, 64-bit support and use
of interrupt stacks. It also adds a translation layer
to allow execution of the system calls of old IA32
binaries.

This paper gives a short overview of the x86-64 ar-
chitecture and the new x86-64 ABI and then dis-
cusses internals of the kernel port.

1 Introduction

x86-64 is a new architecture developed by AMD. It
is an extension to the existing IA32 architecture.
The main new features over IA32 are 64-bit point-
ers, a 48-bit address space, 16 64-bit integer regis-
ters, and 16 SSE2 registers. This paper describes
the Linux port to this new architecture. The new
64-bit kernel is based on the existing i386 port. It
is ambitious in that it tries to exploit new features,
not just do a minimum port, and redesigns parts
of the i386 port as necessary. The x86-64 kernel
is developed by AMD and SuSE as a free software
project.

2 Short overview of the x86-64 archi-
tecture

I will start with a short overview of the x86-64 ex-
tensions. This section assumes that the reader has
basic knowledge about IA32, as only changes are
explained. For an introduction to IA32, see [Intel].

x86-64 CPUs support new modes: legacy mode and
long mode. When they are in legacy mode, they
are fully IA32 compatible and should run all exist-
ing IA32 operating systems and application software
unchanged. Optionally, the operating system can
switch on long mode, which enables 64-bit opera-
tion. In the following only long mode is discussed.
The x86-64 linux port runs in long mode only.

Certain unprivileged programs can be run in com-
patibility mode in a special code segment, which
allows existing IA32 programs to be executed un-
changed. Other programs can run in long mode and
exploit all new features. The kernel and all inter-
rupts run in long mode.

A significant new feature is support for 64-bit ad-
dresses, so that more than 4GB of memory can be
addressed directly. All registers and other struc-
tures dealing with addresses have been enlarged to
64-bit. Eight new integer registers added (R8-R16),
so that there is now a total of 16 general purpose
64-bit registers. Without address prefixing, the code
usually defaults to 32-bit accesses to registers and
memory, except for the stack which is always 64-bit
aligned and jumps. 32-bit operations on 64-bit reg-
isters do zero extension. 64-bit immediates are only
supported by the new movabs instruction.

A new addressing mode, RIP-relative, has been
added which allows addressing of memory relative
to the current program counter.

x86-64 supports the SSE2 SIMD extensions. Eight
new SSE2 registers (XMM8-XMM15) have been

added over the existing XMM0-XMM7. The x87
register stack is unchanged.

Some obsolete features of IA32 are gone in long
mode. Some rarely used instructions have been re-
moved to make space for the new 64-bit prefixes.
Segmentation is mostly gone: segment bases and
limits are ignored in long mode. fs and gs can be
still used as kinds of address registers with some lim-
itations and kernel support. vm86 mode and 16-bit
segments are also gone. Automatic task switching
is not supported anymore.

Page size stays at 4KB. Page tables have been ex-
tended to four levels to cover the full 48-bit address
room of the first implementations.

For more information see the x86-64 architecture
manual [AMD2000].

3 ABI

As x86-64 has more registers than IA32, and does
not support direct calling of IA32 code, a new mod-
ern ABI was designed for it. The basic type sizes
are similar to other 64-bit Unix environments: long
and pointers are 64-bit, int stays 32-bit. All data
types are aligned to their natural 1 size.

The ABI uses register arguments extensively. Up to
six integer and nine 64-bit floating point arguments
are passed in registers, in addition to arguments.

Structures are passed in registers where possible.
Non prototyped functions have a slight penalty as
the caller needs to initialize an argument count reg-
ister to allow argument saving for variable argument
support. Most registers are caller saved to save code
space in callees.

Floating point is by default passed in SSE2 XMM
registers now. This means doubles are always cal-
culated in 64-bit unlike IA32. The x87 stack with
80-bit precision is only used for long double. The
frame pointer has been replaced by an unwind ta-
ble. An area 128 bytes below the stack pointer is
reserved for scratch space to save more space for leaf
functions.

Several code models have been defined: small,
1On IA32 64-bit long long was not aligned to 64-bit

medium, large, kernel. Small is the default; while it
allows full 64-bit access to the heap and the stack,
all code and preinitialized data in the executable is
limited to 4GB, as only RIP relative addressing is
used. It is expected that most programs will run
in small mode. Medium is the same as small, but
allows a full 64-bit range of preinitialized data, but
is slower and generates larger code. Code is limited
to 4GB. Large allows unlimited 2 code and initial-
ized data, but is even slower than medium. kernel
is a special variant of the small model. It uses nega-
tive addresses to run the kernel with 32-bit displace-
ments and the upper end of the address space. It is
used by the kernel only.

So far the goal of the ABI to save code size is suc-
cessful: gcc using it generates code sizes comparable
to 32-bit IA323

For more information on the x86-64 ABI see
[Hubicka2000]

4 Compiler

A basic port of the gcc 3 compiler and binutils to
x86-64 has been done by Jan Hubicka. This includes
implementation of SSE2 support for gcc and full
support for the long mode extensions and the new
64-bit ABI. The compiler and tool chain are stable
enough for kernel compiling and system porting.

5 Kernel

The x86-64 kernel is a new Linux port. It was orig-
inally based on the existing i386 architecture code,
but is now independently maintained. The following
discusses the most important changes over the 32-
bit i386 kernel and some interesting implementation
details.

2Unlimited in the 64-bit, or rather 39-bit address space,
of the first kernel

3Not counting the unwind table sizes.

Linear Address

Page
Directory

Page
Table

4−Kbyte
Page

Frame

CR3

011122063 21

Page Table Page

PDE

PTE

Physical
Address

3038

Page Directory

40

40

Page
Map

PDP

40

Page Map Level

4748

Sign Extend

023453963 40 12

Page Directory

11

RSVDRSVD PWTDCD RSVD

PML4E

40

2939

Page Directory

Page
Pointers

99

99

Figure 1: x86-64 pagetable

6 Memory management

x86 has a four-level page table. The portable Linux
VM code currently only supports three-level page
tables. The uppermost level is therefore kept private
to the architecture specific code; portable code only
sees three levels.

The page table setup currently supports up to 48
bits of address space, the initial Hammer implemen-
tation supports 43-bit (8TB). The current Linux
port uses only three levels of the four-level page ta-
ble. This causes a 511GB limit (39 bits) per user
process.

The 48th bit of the full virtual space is sign ex-
tended, so there is a ‘negative’ part of the address
space. The Linux kernel is mapped in the nega-
tive space which allows the efficient use of negative
sign extended 32-bit addresses in the kernel code.
The compiler has a kernel code model to implement
this feature. This high mapping is invisible to the
portable VM code which only operates on the low
39 bits of the first three-level page table branch.

The basic structure of the page table is similar to
the three-level PAE mode in modern IA32 CPUs,
with all levels being full 4K pages.

Every entry in the page tables is 64-bit wide. This
is similar to the 32-bit PAE mode. To avoid races
with other CPUs while updating page table entries
all operations on them have to be atomic. In the

64-bit kernel this can be conveniently done using
64-bit memory operations, while i386 needs to use
CMPXCHG8.

7 System calls

The kernel entry code was completely rewritten
from the i386 implementation. For system calls it
uses the SYSCALL and SYSRET instructions which
run much faster than the int0x80 software interrupt
used on for Linux/i386 syscalls. Some changes were
required to make use of them which make the code
more complex.

One restriction is that they are not recursive; SYS-
RET always turns on user mode. The kernel occa-
sionally makes system calls (like kernel thread())
and these need to be handled by special entry
points.

SYSCALL has a slight bootstrap problem. It
doesn’t do much setup for the ring0 kernel envi-
ronment and the syscall kernel entry point is en-
tered with an undefined stack pointer. To bootstrap
the kernel stack itself it uses the new SWAPGS in-
struction to initialise the GS segment register with
the PDA of the current CPU. Using the PDA the
user old stack pointer is saved and the kernel stack
pointer of the current process is then initialized.

Another problem was that SYSRET receives its ar-
guments in predefined registers, which are always
clobbered. This has the side effect that it is impos-
sible to return or enter programs from signals via
SYSRET, because in this case all registers need to
be restored and the clobbered register would cor-
rupt the user context. A special return path that
uses the slower IRET command for jumping back is
used in this case.

Signal handling is very similar to i386 with minor
modernizations. The C Library is required now to
set a restorer function that calls sigreturn when the
signal handler has finished; stack trampolines have
been removed.

Time related system calls (gettimeofday particu-
larly) are called frequently by many applications
and often show up as hot spots. They can be im-
plemented in user space by using the CPU cycle
counter with the help of some shared variables main-

tained by the kernel. To isolate this code from user
space vsyscalls have been added by Andrea Arcan-
geli. A special code area is mapped into every user
process by the kernel. The functions in there can
be directly called by the user via a special offset ta-
ble at a magic address, avoiding the overhead of a
system call.

Vsyscalls have some problems with signal and ex-
ception handling. The x86-64 ABI requires a dwarf2
unwind table to do a backtrace in case of a crash
and the kernel needs to provide an unwind table for
the user mode vsyscall pages in case a signal or ex-
ception occurs while they run. This is still work in
progress.

8 Processor Data Area

To solve the SYSCALL supervisor stack bootstrap
problem described above, a data structure called the
Per processor Data Area (PDA) is used. A pointer
to the PDA is stored on bootup in a hidden register
of the CPU using the KERNEL GS BASE MSR.
Each time the kernel is entered from user space via
exceptions, system calls or interrupts, the SWAPGS
instruction is executed. It swaps the userland value
of the GS register with the PDA value from the
hidden register. The original contents of the GS
register are restored on exit from the kernel.

The PDA is currently used to store information for
fast syscall entry (such as the kernel stack pointer
of the current task), a pointer to the current task
itself, and the old user stack pointer on a system
call. It also contains the per CPU stack.

It is hoped that future Linux versions will move
more information into a central generic PDA struc-
ture that is used by the architecture independent
kernel. As of Linux 2.4, various subsystems keep
their own private arrays padded to cache lines and
indexed by CPU number. Accessing such arrays is
costly as the CPU number has to be first retrieved,
the index computed, and the required cache line
padded to avoid false sharing of old data. The PDA
offers a faster alternative, at the disadvantage of be-
ing less modular because PDA data structures have
to be maintained in a central include file.

9 Partial stack frame

To speed up interrupts and system calls the ker-
nel entry code only saves registers that are actu-
ally clobbered by the C code in the portable part.
Some system calls and kernel functions need to see
a full register state. These include for example fork,
which has to copy all registers to the child process,
and exec, which has to restore all registers, signal
handling, and needs to present all registers to the
signal handler. Special stubs are used to save the
full register set in this case.

After a fast system call entry through SYSCALL the
kernel stack frame is partially uninitialized. Some
information such as the user program pointer (RIP)
and the user stack pointer (RSP) are saved in the
PDA or in special registers. On other entry points
(like for the i386 syscall emulation), they are on the
normal stack frame on the kernel stack. To shield C
code from these differences, the CPU part of stack
frame is always fixed by a special stub before calling
any function that looks at the kernel stack frame.
After the system call returns to the emulation layer
the PDA state is restored using the stack frame to
handle context switches.

10 Kernel stack

On Linux, every process and kernel thread has its
own kernel stack. This stack is also used for inter-
rupts while the process runs.

Over time, the Linux memory allocator will en-
counter problems allocating more than two consec-
utive pages reliably due to memory fragmentation.
Every process needs a contiguous kernel stack that
should be directly mapped for efficiency. Like the
i386, the x86-64 has a 4K page size. This limits
the kernel stack in practice on i386 and x86-64 to 6-
8K. This also helps to keep the per-thread overhead
of LinuxThreads (the most common threads pack-
age under Linux) low, which uses a separate kernel
stack for each thread.

On i386 ,the 6K stack available is already tight
under heavy interrupt load. 64-bit code needs more
stack space than 32-bit code because the stack is
always 64-bit aligned, and its data structures on the
stack are bigger. To avoid stack overflow for nested

interrupts, the x86-64 port uses a separate per-CPU
interrupt stack.

The x86-64 architecture supports interrupt stacks in
the architecture. Unfortunately, this causes prob-
lems with nested interrupts, which are common in
Linux. Instead of the hardware mechanism, a more
flexible software stack switching scheme using an in-
terrupt counter in the PDA is used.

For double fault and stack fault exceptions, the
hardware interrupt stacks are used to handle invalid
kernel stack pointers with a debugging message in-
stead of silently rebooting the system.

11 Finding yourself

On a machine with multiple CPUs it can be quite
complicated to find the current process. A global
variable cannot be used, as it is CPU local informa-
tion. i386 uses a special trick to solve this problem:
the task structure is always stored at the bottom
of the two aligned kernel stack pages 4 and can be
efficiently accessed using an AND operation on the
current stack pointer.

One disadvantage of this is that the task structures
of all processes end up on the same cache sets for
not-fully-associative CPU and chipset caches, be-
cause the lower 13 bits of their address is always
zero. This can cause cache trashing in the scheduler
for some workloads.

In the 64-bit kernel, accessing the task structure
through the stack pointer doesn’t work as interrupts
running on the special interrupt stack also need to
access it, for example, to maintain the per-process
system and user time statistics

On x86-64 the current process counter is stored into
the PDA which is efficiently accessed using the GS
register. This will also allow the task struct to be
moved to a separate cache coloring slab cache, work-
ing around the cache problems described above, and
giving the 64-bit kernel in user context 8K of stack
space instead of 6K.

This setup is still experimental. If it turns out in
further tests that an 8K stack is not enough for the

4Which is why i386 can use only 6K of the 8K available
from the two kernel stack pages.

64-bit user context kernel code without interrupts,
then the port will have to move to a kernel stack that
is not physically contiguous, which will be slower
due to increased use of TLB resources, but can be
made bigger without stressing the page allocator.
This will also require auditing drivers to ensure they
do not perform DMA from the kernel stack.

12 Context switch

The basic context switch of x86-64 is very similar
to the i386 port except that it also saves and re-
store the extended R8-R15 integer registers. The
extended SSE registers are handled transparently by
the FXSAVE instruction. d drivers still need work.
It is hoped that in future 32/64bit translation will
be a generic feature of a linux driver to avoid a hard
to maintain central translation layer.

This 64-bit conversion is currently done in an
architecture-specific module for the x86-64, but it is
expected to be moved into architecture-independent
code in 2.5, as it is a common problem.

Legacy mode i386 applications see the full 4GB of
virtual space reachable by 32-bit pointers. A 32-bit
i386 kernel only gives them part of the 4GB address
space (usually 3GB), as it also needs some address
space of its own. Therefore, on a 64-bit kernel, even
32-bit applications can use more address space.

13 Status

The kernel, compiler and tool chain work. The ker-
nel boots and works on the simulator, which is used
for the porting of userland code and for running
programs.

14 Availability

All the code discussed in this paper can be down-
loaded from http://www.x86-64.org. The gcc port
will be part of gcc 3.1. The x86-64 toolchain is part
of the standard GNU binutils sources. Gdb and
glibc ports are worked on and they are available in

the public CVS repository at cvs.x86-64.org. The
kernel code is currently maintained in CVS there
also and will be eventually merged into the official
kernel source.

15 Acknowledgements

The author thanks Karsten Keil, James Morris and
Matthew Wilcox for review of this paper. The x86-
64 kernel port was done by the author, Karsten Keil,
Pavel Machek and Andrea Arcangeli. The x86-64
gcc and binutils port was done by Jan Hubicka. The
glibc port was done by Andreas Jaeger.

References

[Hubicka2000] Hubicka Jan, Jaeger Andreas,
Mitchell Mark. System V Application Binary
Interface
x86-64 Architecture Processor Supplement
Living document. http://www.x86-64.org/

[AMD2000] AMD The AMD x86-64 architecture
programmers overview http://www.x86-64.org/

[Intel] Intel Intel architecture software developers
manual http://developer.intel.com

