
Globally Distributed Content
(Using BGP to Take Over the World)

Horms (Simon Horman)
Senior Software Engineer

VA Linux Systems
horms@valinux.com, http://supersparrow.org/

I love a sunburnt country,
A land of sweeping plains,
Of ragged mountain ranges,
Of droughts and flooding rains.
I love her far horizons,
I love her jewel-sea,
Her beauty and her terror-
The wide brown land for me!

Dorothea McKellar — My Country

Abstract

Electronic content made available over the Inter-
net is becoming increasingly important for providers
and users alike. To provide the best possible service
to end users it is desirable for content to be network-
wise as close to client hosts as possible.

Static mirrors of sites are one means of distributing
traffic between sites and giving users the opportu-
nity to connect to a site that will give them a fast
response. However, manually selecting sites, which
may or may not be available, from a list of mirrors
is a tedious process. The sites at the top of the list
are a tempting choice — economy of choice in lieu
of the possibility of faster access.

Instead of expecting users to manually select a mir-
ror, it makes sense for the service provider to auto-
matically direct clients to a site that will offer them
good performance, that is to have a global load bal-
ancing algorithm in place. One such algorithm is
to use BGP to select which site has the least cost
path to a given client. This paper will examine the
implementation of such an load balancing scheme.

1 Introduction

Electronic content made available over the Inter-
net is becoming increasingly important for providers
and users alike. To provide the best possible service
to end users it is desirable for content to be network-
wise as close to client hosts as possible.

Static mirrors of sites are one means of distributing
traffic between sites and giving users the opportu-
nity to connect to a site that will give them a fast
response. However, manually selecting sites, which
may or may not be available, from a list of mirrors
is a tedious process. The sites at the top of the list
are a tempting choice — economy of choice in lieu
of the possibility of faster access.

Instead of expecting users to manually select a mir-
ror, it makes sense for the service provider to auto-
matically direct clients to a site that will offer them
good performance, that is to have a global load bal-
ancing algorithm in place.

There are a number of factors that may be taken
into account when developing such a load balanc-
ing algorithm. Load and number of connections are
common choices when designing an algorithm to run
on a Local Areal Network. When examining global
load balancing, other factors, such as the relative
speed and bandwith between the client and differ-
ent possible servers come into play. The emphasis
of the discussion in this paper will be on enabling
clients to connect to servers that minimise network
delays. The assumption is that servers are locally
load balanced as required to cope with traffic.

Given that the path that traffic takes on the Internet
is governed by the BGP, it would seem that this
may provide an interesting basis for a global load
balanacing algorithm. BGP has information on the



best path to any point on the Internet from where
the BGP-speaker is connected. As this information
is memory-resident in the BGP-speaker any queries
should be fast. As it turns out BGP also provides
for failure recovery as the protocol is designed to
adapt to changing networks. These factors make
BGP an attractive choice as the basis for a global
load balancing algorithm.

An algorithm which intelligently selects the server a
client should connect to is only useful if this informa-
tion can be made transparently available to clients.
For a load balancer to be useful in the context of
the Internet it must work seemlessly with existing
protocols. The mechanism to communicate infor-
mation to clients should, ideally, be independent of
any particular host, a globally redundant system is
most desirable. DNS is a well established protocol
that is used by clients on the Internet. DNS also
has a measure of redundancy built in, as a domain
may have multiple name servers and clients will at-
tempt to find an active name server for a domain
before returning an error. These two charactaristics
make communicating global load balancing informa-
tion over DNS an attractive option.

It is also possible to convey load balancing infor-
mation using HTTP redirects. While using HTTP
redirects is only useful in the context of HTTP it is
of note that web sites are an application that bene-
fit well from global load balancing. The advantage
of using HTTP redirects is that a much finer granu-
larlity may be achieved, per URL as opposed to per
host as for DNS.

This paper will examine designing and implement-
ing a global load balancer using BGP as the ba-
sis for the underlying algorithm. Results may be
communicated by DNS or HTTP redirects and the
implemenation has the flexibility to allow other ap-
plications to tie into the load balancer.

2 Selecting Servers

An important component of global load balancing
traffic is to determine which POP1 should handle an
incoming connection. There are many criteria that
can be taken into account including: Relative Ca-
pacity of different POPs; Relative Load of different

1POP: Point Of Presance: A host or group of hosts con-
nected to the Internet, usually in a single physical location.

POPs; Latency between POPs and client; Network
distance between POPs and client.

It is important that when a new connection is re-
ceived, allocating the connection to the apropiate
POP is done quickly. A long and involved process
to determine which POP to allocate a connection
to will, at best, cause the connection establishment
time for the client to be slow. At worst the client
may time-out.

2.1 Load and Capacity

Information on the relative capacity and load of dif-
ferent POPs may be collected and stored locally and
used to quickly determine the best site for an incom-
ing connection based on these criteria. However,
the internal load of a POP doesn’t necessarily cor-
relate to its apropriateness. An underloaded POP,
23 hops away may well provide inferior service to a
more loaded POP, 2 hops away. It is certainly not
accurate to say that communicating to all POPs is
of equal cost for a given client. This is in contrast
to load balancing over a LAN where communication
to all servers can — reasonably be expected to be
equal.

2.2 Network Latency

It would seem that information about the state of
the network may provide a valuable means for de-
termining the best POP to handle a client’s con-
nection. A readily available network metric is ping-
time, a meausre of the round trip time for a packet
from one host to another and back again. Unfor-
tunately, ping-times are not a good measure of net-
work performance. It is quite possible for a high
latency link to be a high bandwidth link. Satellite
and DSL are good examples of this. It is of note
that much Internet traffic, including HTTP, SMTP,
FTP and streaming media are bandwidth, rather
than latency sensitive. The usefulness of ping-times
is further compromised if asymetric routing is being
used, as the ping-time will not provide information
on any differences in the forward and return trip
times.

The collection of ping-times is also problematic as
having POPs ping a client is inherently slow. It is
possible to cache the results but avoiding a delay



when a client first connects is difficult. A ping may
also be blocked by a packet filter for some reason.
If ping packets are being blocked, at best the ping-
time data will be unavailable and at worst the ping
may time-out, adding to the delay in establishing a
connection for the client.

2.3 Network Address Allocations

APNIC2, ARIN3 and RIPE4 are responsible for,
amongst other things, allocating IP addresses to
network providers and the like. If assumptions are
made about the location of different providers then
it is possible to construct a loose map of the Inter-
net with some creative use of the whois command
and trawling of online documents provided by these
organisations. This map may be used as a heuristic
to determine which POP is closest to a given client.

While simple, this method has many drawbacks.
Constucting such a map is only pratcical if POPs are
on very distinct networks. Another problem is that
static maps are not adaptive to network changes
and failures. It is also true to say that such a map
may not accurately reflect network topology — ge-
ographic locality is no gaurantee of netowrk-wise
closeness. Furthermore, to reduce the complexity
and size of the map it may be neccessary to make
generalisations about networks by aggregating small
allocations into one larger allocation — this may re-
duce the accuracy of the map.

It may be possible to suplement the map by inspect-
ing the hostname. For instance, while a .com may
be located anywhere, it is reasonable to assume that
a .au is located in Australia. However, doing a
reverse lookup on the IP addresses of connecting
clients may create a significant performance prob-
lem.

Though the approach of manually mapping the In-
ternet is somewhat cumbersome it is simple once set
up. No special information or services are required
from upstream providers. And the map is static, so
lookups should be fast. The map aproach certainly
has its merits, but a more dynamic and automated
mechanism would be a significant improvement.

2APNIC: Asia Pacific Network Information Centre:
http://www.apnic.net/

3ARIN: American Registry for Internet Numbers:
http://www.arin.net/

4RIPE: Réseaux IP Européens: http://www.ripe.net/

2.4 Routing Information

Routing information determines the path that pack-
ets will take. This information changes as network
topology changes. It would seem that this may pro-
vide useful information in determining the best POP
for a client. BGP is the protocol that is used to
determine routes on the Internet. The following
section discusses how BGP works and how it may
be used to find the network-wise closest POP for a
given client.

3 BGP

The Border Gateway Protocol version 4 (BGP)[9]
is a routing protocol, as defined in RFC 1773[20].
BGP is used to communicate routing information
between different providers on the Internet and for
this reason reflects the path that traffic will take
from a given point on the Internet.

3.1 Routing Protocols

A route is a a set of addresses and the next hop used
to send traffic to the addresses. A router is nomi-
nally a host that has more than one network inter-
face and makes decisions about to which interface
a given packet should be sent. As network topolo-
gies become more complex, the number of differ-
ent routes increases, as does the frequency of routes
changing. For this reason it is useful for routers
to have a method for dynamically updating routes
as the network topology changes, that is, as other
routers come and go from the network either be-
cause of administrative changes or failures of routers
or links between routers.

Routing protocols are a mechanism for routers to
communicate routes with each other. Routers that
communicate routes with each other are referred to
as peers. When routes are sent between routers they
contain information in addition to the addresses
that the route covers and the next hop for this traf-
fic. The additional information may be used to ex-
pire the route and to determine the cost of the route
relative to other routes. When a router sends such
a route it is said to be advertising. A route adver-
tisement can be seen as a promise to deliver traffic



for a given set of addresses. Advertising routes that
cannot be satisfied leads to either routing loops or
black-holing. A routing loop refers to traffic bounc-
ing between routers until the maximum hop count
is reached. Black-Holing refers to receiving traffic
and then discarding it. In either case the addresses
covered by the route is effectively removed from the
network.

A prefix is a set of network addresses that a given
route covers. In routing protocols this is given as
either a classful network or in the case of more re-
cently developed routing protocols a CIDR network.
Classless Inter-Domain Routing (CIDR) is defined
in RFC 1519 [10]. CIDR networks allow networks to
be defined as a network address and a netmask, en-
abling more flexible division of networks than class-
ful routing.

When peers are configured to communicate routes
with each other they are said to have a session run-
ning. When the session is established the routers
advertise routes to each other and each router uses
this information to determine the best route for each
prefix that has been advertised to it or is advertised
by it. When a session goes down, either administra-
tively or because of a timeout, the prefixes adver-
tised by the peer in question are removed, enabling
the network to adapt to failures.

Routing protocols are divided into two types: In-
terior Gateway Protocol (IGP) and Exterior Gate-
way Protocol (EGP). An IGP is concerned with
managing routes within a single network, ensuring
that each point of the network is able to get to all
other points in the network. An EGP communi-
cates information about which addresses are within
a network or may be accessed through a network.
When BGP is used to communicate routes between
different networks on the Internet, it is being used
as an EGP.

3.2 Autonomous Systems

When networks communicate routes using BGP,
individual networks are identified using an Au-
tonomous System (AS) Number as defined in
RFC 1930[11]. Each route communicated using
BGP contains an AS path, an ordered list of ASes
that the route has been advertised by.

As an example suppose that there are three net-

works, imaginatively named Network A, B and C,
as per figure 1. These Networks have the AS num-
bers 64600, 64601 and 64602 respectively. Networks
A and C are each directly connected to B. A bor-
der router is a router on the edge of a network that
communicates directly with routers on other net-
works. BGP peering sessions are run between bor-
der routers in Networks A and B and Networks B
and C. There is no direct link between Networks
A and C, rather these networks see routes to each
other that transit through Network B. This given,
the AS path on a router in Network A for a prefix ad-
vertised by Network C would be 64601 64602, show-
ing that the route originated from AS64602 and was
transited through AS64601. In other words, traffic
will travel through Network B to get to its ultimate
destination, Network C.

3.3 Finding The Peer Closest to a
Client

Now suppose that a provider has two POPs, one
on each of Network A and C, called POP X and Y
respectively. This is shown in figure 2. By obtaining
BGP information from upstream networks and the
other POP it is possible for a POP to determine
which POP is closest to a given IP address. That
IP address could be that of a client wanting to access
a service available on both POPs. The result could
be used to determine which POP the client should
connect to.

To do this each POP has an AS Number, this may
be from the range 64512 to 65535, which is reserved
for private use by the Internet Assigned Num-
bers Authority (IANA) as described in RFC 1930.
All ASes used in theses examples are from this
range. All IP addresses used in examples are from
ranges reserved for private use as per RFC 1918[21].

Each POP sets up a BGP session with its upstream
network or networks. In this example POP X will
have a BGP session with a router in Network A.
Similarly for POP Y and Network C. As the POPs
will not be originating any valid routes it is impor-
tant that the POPs are configured not to send any
routes to the upstreams and the upstreams are con-
figured not to accept any routes from the POPs.
This is referred to as filtering. Once these BGP ses-
sions are established each POP has a view of all
the routes that its respective upstream has. This
is extendible to POPs with multiple upstreams by



Network B
AS64601

Network A
AS64600

Network C
AS64602

Link and
BGP Session

Figure 1: Network Diagram – Transit

Network B
AS64601

Network A
AS64600

Network C
AS64602

POP X
AS64700

POP Y
AS64702

Multi-Hop
BGP Session

Link and
BGP Session

Figure 2: Network Diagram – Points of Presence



the POP in question establishing BGP sessions with
each of its upstreams. By establishing a multi-
hop BGP Session between POPs X and Y it is pos-
sible for each POP to see the view of the network
that POP has, and in turn the view that POP’s
upstream has.

If the router running the BGP sessions to Network A
from POP X is queried for the prefix used to route
traffic to an address in Network C then there are
two probable answers; A prefix with the AS path
64600 64601 64602 as learned through the BGP
session with Network A, or a prefix with AS path
64702 64602 as learned through the multi-hop BGP
session with POP Y. The latter prefix should be
preferred as it has a shorter AS path, though it is
possible to change this using weights. As the pre-
ferred path contains the AS number of POP Y, this
must be closer to the the queried address in terms of
the BGP routing topology. This means that if the
AS number for one of the POPs appears in the AS
path for a preferred prefix then the corresponding
POP must be closer to the addresses covered by the
prefix that the POP making the request. If the AS
numbers of multiple POPs appear in the AS path
then the last POP in the AS path must be closest,
as AS numbers at the end of the AS path are closer
to the origin than those at the beginning.

4 Directing Traffic

While it is important to devise a workable algorithm
to load balance traffic, it is also important to make
this information transparently available to users.

Technologies such as The Linux Virtual Server[6]
that implement Layer 4 Switching5 while very effec-
tive for load balancing traffic on a Local Area Net-
work (LAN), do not extend well to load balancing
over a Wide Area Network (WAN) such as the Inter-
net. These technologies rely on all in-bound packets
and, often, all return packets passing through a sin-
gle point. While this is acceptable on a LAN where
all packets must pass through a limited number of
switches and routers, the fundamental problem with

5Layer 4 Switching: Determining the path of packets
based on information available at layer 4 of the OSI 7 layer
protocol stack. In the context of the Internet, this implies
that the IP address and port are available as is the underly-
ing protocol, TCP/IP or UDP/IP. This is used to effect load
balancing by keeping an affinity for a client to a particular
server for the duration of a connection.

using this in the context of a WAN is that having
all traffic pass through one site, only to be sent to
another, has the potential to significantly increase
latency. This also has the potential to reduce re-
liability as packets are traversing more hops across
potentially uncontrolled networks.

A step forward would be to provide a mechanism
for connections to be redirected to another site, such
that once the redirection has been made clients com-
municate directly to the site they have been redi-
rected to. It also makes sense to allow any partic-
ipating site to make this redirection. Thus, no site
would be a single point of failure for establishing or
maintaining connections for the network presence as
a whole. Two ways of achieving this are by using
DNS and HTTP redirects.

4.1 DNS

Typically DNS[18][19][16]6 servers are set up to stat-
ically map a given query to a reply or list of replies.
In the case of a hostname lookup, an IP address or
list of IP addresses will be returned. Generally, the
result changes infrequently if at all. It is, however,
possible to have a DNS server that returns results
based on the output of some algorithm. This allows
results to be determined dynamically. In this way
the results of DNS lookups may be used the com-
municate the results of a load balancing algorithm
to clients. DNS is a fair choice for this application
as the DNS protocol is designed with some measure
of redundancy. A domain may have multiple DNS
servers and if one fails others may handle requests
without the client being notified of any problems.

As an example, suppose that www.slarken.org.au is
mirrored between POP X and Y and DNS is being
used to distribute traffic between these two POPs
as shown in figure 3.

1. Client Makes DNS Request to local DNS Server
in Network C for
www.slarken.org.au

2. The DNS Server makes a recursive query on be-
half of the Client. In doing so it queries POP X
for the IP address of www.slarken.org.au.
Both POP X and Y are authorative for the
slarken.org.au domain, the Network C DNS

6DNS: Domain Names Service: Maps hostnames to IP
addresses and vice versa on the Internet.



Network A Network C

Network B

POP X POP Y

Network
Link

DNS
Traffic

HTTP
Traffic

Client

Network C
DNS Server

1

2

3

4

5

6

Figure 3: Redirecting Connections Using DNS

Server happens to query POP X this time
around. POP Y would do equally well.

3. The DNS server in POP X is able determine
the best POP for a given connection. Note that
the best POP for the Network C DNS Server
is queried and not the best route to the Client,
as the IP address of the Client is not known to
the DNS server in POP X. This assumes that
Clients use DNS servers that are network-wise
close to them. The IP address of the web server
or farm in POP Y is returned in response to the
DNS query by the Network C DNS Server.

If POP X had been down then the Network C
DNS Server would have queried POP Y and
returned the IP address of the web server or
farm within itself, thus the result would be the
same.

If POP Y was down then the query to the route
server in POP X would have shown that POP
X was the closest POP to the Network C DNS
Server and the IP address of the web server or
farm in POP X would be returned.

If both POPs were down then there would be
no result and the DNS lookup would fail.

4. Network C DNS Server responds to the Client’s
DNS request with the answer obtained from
POP X.

5. The client has the IP address of a server in POP
Y as the IP address of www.slarken.org.au and
makes an HTTP request to this server.

6. The server responds to the Client’s HTTP re-
quest.

4.2 HTTP

As an alternative to using DNS to communicate load
balancing information to clients HTTP[3][7]7 redi-
rects may be used. The advantage of this is that
as the redirection is done by an HTTP server much
finer granularity may be achieved. Whereas DNS
has a granularity of per-hostname, HTTP may have
a per URL8 granularity. For instance all .jpeg,
.jpg and .png URLs may be redirected while all

7HTTP: Hypertext Transfer Protocol. Protocol used to
transfer data on the World Wide Web

8URL: Universal Resource Locator



Network A Network C

Network B

POP X POP Y

Network
Link

HTTP
Traffic

Client

1

2

3

4

Figure 4: Redirecting Connections Using HTTP

other URL may be handled locally. That is, images
are load balanced while HTML pages are handled
by a central server.

The key disadvantage of using HTTP redirection is
that once a client is redirected to a site there may be
no way of directing the client to another site. This
may be a problem if all URLs are directed to another
site and this site fails. Except by than manually
going back or reloading the initial URL, the client
has no way to access an active site.

Suppose once again that www.slarken.org.au is mir-
rored between POP X and Y and that HTTP redi-
rects are being used to distribute traffic between
these two POPs. A sample request may work as
follows:

1. Web servers or farms in POP X and Y are both
listed as IP addresses for www.slarken.org.au.
The client happens to send an HTTP request
to POP X this time around. POP Y would do
equally well.

2. The HTTP server in POP X is able to redirect
clients to the network-wise closest POP. Note
that the IP address of the Client is used here,
whereas when using DNS the IP address of the

Client’s DNS server is used. The HTTP server
then sends an HTTP redirect to a URL that
resolves to the IP address of a web server or
farm in POP Y, www.y.slarken.org.au.

If POP X had been down then the client would
most likely have stalled. A reload would prob-
ably have cased an HTTP request to be sent
to the other IP address for www.slarken.org.au
and POP Y would handle the request from
there.

If POP Y was down then the query to the route
server in POP X would have shown that POP X
was the closest POP to the Client and the
Apache server would send an HTTP redirect to
a URL that resolves to the IP address of a web
server or farm in POP X, www.x.slarken.org.au.

If both POPs were down then the connection
would fail, as would a reload.

3. The Client has www.y.slarken.org.au, the URL
of a server in POP Y and makes an HTTP re-
quest to this server.

4. The server responds to the Client’s HTTP re-
quest.



5 Implementation: Super Sparrow

Super Sparrow is an implementation of global load
balancing written in C[15] and released under the
GNU General Public Licence and GNU Lesser Gen-
eral Public Licence[8]. Super Sparrow is available
from http://supersparrow.org/ and is supplied with
source and RPM[2]9 packages with comprehensive
online documentation. Super Sparrow is able to
load balance traffic by using BGP to find the peer
closest to a client.

5.1 Route Servers

To avoid the need for yet another BGP implemen-
tation, Super Sparrow accesses BGP information by
querying route servers. A route server is a router,
or host running a routing daemon, that may be
queried for the preferred prefix for a IP address.
The current implementation supports three differ-
ent route servers: GNU Zebra[14] and GateD[17],
routing daemons that run on a variety of platforms
including Linux10, and Cisco IOS[4], the operating
system that runs on Cisco routers and is synony-
mous with BGP and routing in general.

The current implementation uses telnet access to
route servers to query the preferred prefix for an
IP address. The telnet interface to route servers
is generally intended for manual interaction with
the route server but provides a reasonably fast and
portable way of other programmes accessing the
route server. A sample session with GNU Zebra to
determine the preferred prefix for 192.168.193.15
from a route server running on 192.168.192.13 is
given in figure 5.

The results shown in the figure indicate that there
are two prefixes for the query made and that the
second prefix listed is preferred. The AS path for
the preferred prefix is 64702. It is the AS path of
the preferred prefix that Super Sparrow uses to de-
termine if a point of presence in the Super Sparrow
network is closer to the address begin queried than
the route server being queried as described in sec-
tion 3.3.

9RPM: Red Hat Package Manager
10Linux is a trademark of Linus Torvalds

5.2 libsupersparrow

The core functionality of Super Sparrow, including
the ability to communicate with route servers is en-
capsulated as a library, libsupersparrow. Breaking
this code out into a library allows flexibility to make
the algorithm available to a variety of applications.

The library is able to manage connections to mul-
tiple route servers and multiple connections to a
single route server. In the latter case, connections
are cached such that if multiple connections to a
route server are requested a single connection will
be opened and shared. This avoids the possibility
of exceeding the maximum number of connections a
route server will accept.

Results read from route servers may be cached to in-
crease performance and avoid placing excessive load
on route servers. The implementation of this is quite
simple. Results are stored in a self reordering linked
list. Queries to the cache search through the list se-
quentially and if a result is found it is moved to
the front of the list. The number elements and the
timeout for elements in the cache is configurable.
Though simple, the cache yields a significant per-
formance increase, if successive queries are received
for the same IP address.

The library also manages the relationship between
the AS numbers of POP and their IP addresses or
hostnames. This enables the library to determine if
the prefered prefix for an address, as returned by a
route server, includes the AS number of a peer and
if so the IP addresses or hostnames that should be
returned accordingly.

Two aplications that link against libsupersparrow
have been written: mod supersparrow a driver mod-
ule for Dents to allow Super Sparrow to be tied to
the DNS for a domain, and supersparrow a stan-
dalone utility that may be used for testing and ty-
ing Super Sparrow to aplications that can commu-
nicate over standard I/O. The latter may be used
in conjunction with Apache’s mod rewrite to tie Su-
per Sparrow directly to Apache.

5.3 mod supersparrow (DNS)

Dents[5] is a modular DNS server that is intended
as a drop in replacement for BIND[13].



$ telnet 192.168.192.13 bgpd

Trying 192.168.192.13...

Connected to 192.168.192.13.

Escape character is ’^]’.

Hello, this is zebra (version 0.89.horms.pre.2)

Copyright 1996-2000 Kunihiro Ishiguro

User Access Verification

Password:

jasmine> sho ip bgp 192.168.193.15

BGP routing table entry for 192.168.193.0/24

Paths: (2 available, best #2, table Default-IP-Routing-Table)

64600 64601 64602

192.168.192.12 from 192.168.192.12 (192.168.192.12)

Origin IGP, metric 1, localpref 100, valid, external

Last update: Fri Oct 6 15:47:28 2000

64702

192.168.193.11 from 192.168.193.11 (192.168.193.11)

Origin IGP, metric 1, localpref 100, valid, external, best

Last update: Fri Oct 6 15:44:05 2000

jasmine> exit

Connection closed by foreign host.

Figure 5: Determining The Prefered Prefix Using GNU Zebra



Dents allows zones to be mounted in the name space
much in the same way that UNIX allows partitions
to be mounted in a directory structure. Just as dif-
ferent mounted partitions in a directory structure
may have different file systems controlled by dif-
ferent portions of code in the kernel, Dents allows
different zones types, controlled by driver modules.

Access to a the root name server is analogous to the
root (/) directory in a UNIX directory structure.
Dents allows this zone to be mounted and resolved
using the driver module mod recursive. BIND for
one uses RFC 1035[19] style zone files. This is
supported in Dents by mounting a zone using the
mod stddb driver module.

One advantage of being able to use different driver
modules is that arbitrary modules may be defined.
Driver modules that access zone information stored
in a relational data base or produce standard map-
pings from an IP address to a hostname for dialup
pools are two example applications.

Super Sparrow implements a Dents driver mod-
ule, mod supersparrow, that allows Dents to return
results based on information from BGP speaking
route-servers. In this way the IP address returned
for a hostname lookup may be governed by the
BGP-based global loadbalancing algorithm imple-
mented by Super Sparrow. Details of how client-
server interactions work in such a setup are de-
scribed in section 4.1.

5.4 supersparrow

supersparrow is a stand-alone application that is
linked against libsupersparrow. The primary in-
tention of this application is to act as a debugging
tool during development of libsupersparrow. As it
turns out, supersparrow may be used in conjunc-
tion with applications that are able to commumi-
cate with other programmes using standard I/O a
useful example of which is Apache’s mod rewrite.

5.5 supersparrow with Apache (HTTP)

One of the most apealing aspects of
The Apache HTTP Server[1] is its flexibility
afforded to a large extent by its modular architec-
ture. An excellent example of this is mod rewrite

which is part of the standard Apache distribition.
mod rewrite allows arbitary rewriting of requests
received by Apache to other URLs at run time.
The rewrite is done by a map and one of the map
types supported is running an external programme.

mod rewrite communicates with the external pro-
gramme via standard I/O. The external programme
is run once when apache starts, requests are written
to the programme’s standard in and results are read
from the programme’s starndard out. The super-
sparrow stand-alone application supports a batch
mode, which allows it to be used as a map for
mod rewrite. In this way Apache may be tied di-
rectly to Super Sparrow to achieve the semantics
described in section 4.2.

6 Conclusion

When implementing Global Load Balancing there is
a need to take into account factors that are not ap-
parent when load balancing traffic on a LAN. In par-
ticular there is a need to be completely independent
of other sites. For this reasons methods such as DNS
and HTTP Redirection are attractive for directing
clients. This is in direct contrast to local load bal-
ancing where methods such as Layer 4 Switching
offer superior control of traffic.

The BGP-based algorithm discussed provides a
powerful mechanism for determining the network-
wise POP for a client. It does not, however, take
into account the relative capacity or load of the
POPs that traffic is being directed to. The assump-
tion made is that each POP has sufficient capacity
to cope with the traffic that it is likely to receive.
For this assumption to hold, local load balancing
may need to be deployed at each POP. The Su-
per Sparrow implementation has been designed with
this in mind and will work with local load balancing
technologies such as layer 4 switching technology.
In particular, Super Sparrow is designed to work
in conjunction with Ultra Monkey[12] which utilises
the Linux Virtual Server to effect layer 4 switching.

It is anticipated that in the future the implementa-
tion of Super Sparrow will be expanded to allow
other, non BGP-based algorithms that may take
into account factors such as POP capacity and load.
Ideally an algorithm that combines capacity and
load information with BGP would provide a very



flexible solution.

6.1 Acknowledgements

I would like to acknowledge my employer
VA Linux Systems, without whose help this
work would not have been possible. Special thanks
goes to Ben Buxton for his valuable assistance.

References

[1] The Apache Group. Apache User’s
Guide, apache 1.3 edition, 1999.
http://www.apache.org.

[2] Edward C. Bailey. Maximum RPM: Tak-
ing the Red Hat Package Manager to the
Limit. Red Hat Software, Inc., Research Tri-
angle Park, NC, USA, 1.1 edition, June 1998.
http://www.redhat.com/.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk.
Rfc 1945: Hypertext transfer protocol –
http/1.0, 1996.

[4] Cisco Systems, Inc. Network Protocols Com-
mand Reference, Part 1, cisco ios 12.0 edition,
2000. http://www.cisco.com/.

[5] Johannes Erdfelt and Todd Lewis. Dents.
http://www.dents.org/, 2000.

[6] Wensong Zhang et al. Linux
virtual server project, 2000.
http://www.linuxvirtualserver.org/.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
and T. Berners-Lee. Rfc 2068: Hypertext
transfer protocol – http/1.1, 1997.

[8] Free Software Foundation. Gnu general public
licence and lesser general public licence, 1991.
http://www.fsf.org/.

[9] Avi Freedman. Bgp routing part
i: Bgp and multi-homing, 1997.
http://www.netaxs.com/∼freedman/bgp/bgp.html.

[10] V. Fuller, T. Li, J. Yu, and K. Varadhan. Rfc
1519: Classless inter-domain routing (cidr): an
address assignment and aggregation strategy,
1993.

[11] J. Hawkinson and T. Bates. Rfc 1930: Guide-
lines for creation, selection, and registration of
an autonomous system (as)., 1996.

[12] Simon Horman. Ulttramonkey, 2000.
http://ultramonkey.org/.

[13] Internet Software Consortium (ISC). BIND
Online Documentation, bind version 8 edition,
1998. http://www.isc.org/.

[14] Kunihiro Ishiguro. GNU Zebra Info,
gnu zebra version 0.88 edition, 2000.
http://www.zebra.org/.

[15] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Languate. Prentice Hall,
2 edition, 1988.

[16] Cricket Liu and Paul Albitz. DNS and BIND.
O’Reilly and Associates, 3 edition, September
1998.

[17] Merit Gated Consortium. Configuring Gated,
1999. http://www.gated.org/.

[18] P. Mockapetris. Rfc 1034: Domain names -
concepts and facilities, 1987.

[19] P. Mockapetris. Rfc 1035: Domain names -
implementation and specification., 1987.

[20] Y. Rekhter and T Li. Rfc 1773: A border gate-
way protocol 4 (bgp-4), 1995.

[21] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J
de Groot, and E. Lear. Rfc 1918: Address al-
location for private internets., 1996.


