
Linux Kernel SCTP : The Third Transport

La Monte H.P. Yarroll
Motorola GTSS

piggy@acm.org

Karl Knutson
Motorola GTSS

karl@athena.chicago.il.us

Abstract

The Stream Control Transmission Protocol (SCTP)
is a reliable message-oriented protocol with trans-
parent support for multihoming. It allows multiple
independent complex exchanges which all share a
single connection and congestion context.

We provide an overview of the protocol, the UDP-
style API and the details of the Linux kernel refer-
ence implementation. The brief API discussion is
intended for developers wishing to use SCTP. The
detailed implementation discussion is for developers
interested in contributing to the kernel development
effort.

1 Introduction

The developers at the Linux 2.5 Kernel Summit in
San Jose achieved a rough consensus that 2.5 should
probably support SCTP, a new transport protocol
from the IETF. This paper introduces the ongoing
work on such an implementation, providing some
details for both the application developer and the
kernel developer.

The Stream Control Transmission Protocol (SCTP)
is a reliable message-oriented protocol with trans-
parent support for multihoming. It allows multiple
independent complex exchanges which all share a
single connection and congestion context.

1.1 History of SCTP

The SIGTRAN (Signalling Transport) Working
Group of the IETF is concerned with the transport
of telephony signalling data over IP. Upon review-
ing the available standard transport protocols, they

concluded that none of them met the transport re-
quirements of signalling data.

SIGTRAN concluded that they needed a new trans-
port protocol which could provide reliable message
delivery, tolerate network failures, and avoid the
head-of-line-blocking problem. We will discuss this
problem later.

The WG selected a proposal from Randall Stew-
art and Qiaobing Xie of Motorola as a starting
point. Stewart and Xie had developed a Distributed
Processing Environment, Quantix, aimed at tele-
phony applications. This DPE had been success-
fully demonstrated at Geneva Telecom in 1999.

The Working Group took great care in construct-
ing the new protocol, SCTP, incorporating many
lessons learned from TCP, such as congestion con-
trol, selective ACK, message fragmentation and
bundling.

The core transport protocol from Quantix brought
support for multihoming, message framing, and
streams. We discuss all of these features at length
later.

The IESG decided that the resulting protocol was
robust enough to be elevated from a specialised
transport for telephony signalling to a new general
purpose transport to stand beside UDP and TCP.
To this end, they moved the work from SIGTRAN
to TSVWG, the general transport group.

As of this writing, the core specification, [RFC2960],
is at Proposed Standard. There have been three
successful bakeoffs covering over 25 separate imple-
mentations. Lessons learned from the most recent
bakeoff are being written up in an “Implementor’s
Guide”, [SCTPIMPL].



1.2 SCTP in the Linux kernel

Shortly before the first bakeoff, the IESG asked SIG-
TRAN to move SCTP from riding on UDP to riding
directly on top of IP. The long term goal was clearly
was to move SCTP from user space into the kernel.

Aside from the obvious performance gains, this has
the effect of reducing the number of implementa-
tions to roughly one per operating system. This
makes it easier to verify the stability of most of the
implementations which appear on the Internet.

Randall Stewart saw the importance of this and
started one of the authors of this paper working
on a port of the user space implementation to the
Linux kernel. This port was intended as a reference
for developers of implementations for other kernels
to examine. The Linux kernel implementation has
since diverged significantly from the user space ref-
erence, but maintains the standards of a reference
implementation (see Coding Standards, below).

1.3 SCTP examples

SCTP is a reliable message-oriented protocol with
transparent support for multihoming. It allows mul-
tiple independent complex exchanges which all share
a single connection and congestion context.

Many network applications operate by exchanging
simultaneously, short, similar sequences of data con-
tinuously. The traffic produced by these operations
can be characterised as MICE (Multiple Indepen-
dent Complex Exchanges). It is also true that many
applications which use MICE also have high network
reliability requirements.

1.3.1 A database app

One example is a client/server database applica-
tion. Each request and each response is a mes-
sage. Each transaction is a sequence of dependent
request/response pairs.

Implemented over TCP, this application would have
to provide its own message boundaries, since TCP
sends bytes, not messages. How do we implement
MICE with TCP? We have two ways of doing this:

multiple connections, or a single multiplexed and
reused connection.

With each transaction over a separate TCP connec-
tion, we gain the independence of transactions, but
at a cost in performance. Since TCP (as a general
purpose transport protocol) uses congestion control,
each of the connections would have to go through
slow-start and if most transactions were short, they
would never get out of slow-start.

With all transactions over a single TCP connection,
we make efficient use of the network bandwidth, but
open ourselves up to the head-of-line blocking prob-
lem. This means that if one segment in one trans-
action is lost, this blocks all transactions, not just
the one with the lost segment.

If we use SCTP for the same application we gain
the benefits of using TCP, as well as advantages
peculiar to SCTP. SCTP directly supports mes-
sages and guarantees TCP-like levels of bandwidth
efficiency via bundling and fragmentation. Each
database transaction can be represented as an or-
dered stream of messages, which are independent in
SCTP for retransmission purposes. This means that
while SCTP has the same congestion control mecha-
nisms as TCP, it does not have to resort to multiple
connections nor is it vulnerable to the head-of-line
blocking problem.

1.3.2 A free clinic

Another example of SCTP use is for a free∗ clinic
which needs a reliable way to use its IP-networked
patient monitoring software.

This has many similarities to the example above
in that different monitoring devices would need to
send simultaneous information—multiple indepen-
dent complex exchanges. The main difference is in
the higher network reliability requirements.

A reasonable way to improve the network reliability
is to set up a parallel network and use multihom-
ing for the client and server applications. However,
if the application is TCP-based, the multihoming
needs to be added to the application. With SCTP,
the multihoming ability is built into the protocol.
All that is necessary is to make the appropriate
socket calls and SCTP will take advantage of the
∗Free as in “free beer”.



addresses available in the existing network. This
also applies if one side of the connection has more
addresses than the other.

2 The UDP-style API

Any new protocol needs an API. In particular for
an Internet protocol, it’s important to have the API
match the API normally used for IP networks. This
is the Berkeley sockets model—the SCTP version
is defined in the Internet Draft “Sockets API Ex-
tensions for SCTP”[SCTPAPI]. The API draft de-
fines two complementary interfaces to SCTP–one for
compatibility with older TCP-based applications,
and another for new applications designed expressly
to use SCTP. The Linux Kernel SCTP stack does
not yet implement the former, so we discuss only
the UDP-style interface.

The conceptual model of the UDP-style API is (nat-
urally) that of plain UDP. To send a message in
UDP, you create a socket, bind an address to it and
send your message using sendmsg(). To receive a
message in UDP, you create a socket, bind an ad-
dress to it and use recvmsg(). It’s much the same
with the UDP-style API for SCTP. To send a mes-
sage, you create a socket, bind addresses to it and
use sendmsg(). The SCTP stack underlying the
API handles association startup and shutdown au-
tomatically. The same goes for message reception.
To receive a message in UDP-style, you create a
socket, bind addresses to it and use recvmsg().

The important API differences between UDP and
UDP-style SCTP are: multihoming; ancillary data;
and the option of notifications from the SCTP stack.

2.1 Multihoming and bindx()

There are three ways to work with multihom-
ing with SCTP. One is to ignore multihoming
and use one address. Another way is to bind
all your addresses through the use of INADDR ANY
or IN6ADDR ANY. This will “associate the endpoint
with the optimal subset of available local inter-
faces.”(Section 3.1.2, [SCTPAPI]) The most flexible
way is through the use of sctp bindx(), which al-
lows additional addresses to be added to a socket
after the first one is bound with bind(), but be-

fore the socket is used to transfer or receive data.
The function sctp bindx() is further described in
section 8.1 of [SCTPAPI].

2.2 Ancillary data

To use streams with the UDP-style API, you use
ancillary data in the struct cmsghdr part of the
struct msghdr argument to both sendmsg() and
recvmsg(). Ancillary data is used for initialisation
data (struct sctp initmsg and for header data
(struct sctp sndrcvinfo).

Ancillary data are manipulated with the macros
CMSG FIRSTHDR, CMSG NEXTHDR, CMSG DATA,
CMSG SPACE, and CMSG LEN. These are all defined
in [?]. [SCTPAPI] provides a nice example in
section 5.4.2.

struct sctp_initmsg {

uint16_t sinit_num_ostreams;

uint16_t sinit_max_instreams;

uint16_t sinit_max_attempts;

uint16_t sinit_max_init_timeo;

};

The initialisation ancillary data sets information for
starting new associations.

struct sctp_sndrcvinfo {

uint16_t sinfo_stream;

uint16_t sinfo_ssn;

uint16_t sinfo_flags;

uint32_t sinfo_ppid;

uint32_t sinfo_context;

uint8_t sinfo_dscp;

sctp_assoc_t sinfo_assoc_id;

};

The header ancillary data reports information
gleaned from the SCTP headers. If requested with
the SCTP RECVDATAIOEVNT socket option, this ancil-
lary data is provided with every inbound data mes-
sage. There is a handy key (sinfo assoc id) which
identifies the association for this particular message.
It also provides the flags needed to implement par-
tial delivery of very large messages.

Outbound messages should include an
sctp sndrcvinfo ancillary data structure to



tell SCTP which SCTP stream to put this data-
gram into. It is also possible to set a default stream
so that this ancillary data may be omitted.

2.3 Notifications

SCTP provides for the concept of optional notifica-
tions. These are messages delivered in-band about
events inside the SCTP stack, such as a destina-
tion transport address failure or a new association
coming up. The notifications are marked with the
MSG NOTIFICATION flag in the msg flags field of the
sctp sendrcvinfo ancillary data. The notification
is delivered as the body of the message returned by
recvmsg().

In ?? we find a table of notifications. Each notifi-
cation delivers its own data structure which shares
the same name (lower case, naturally) as the notifi-
cation type itself. The first field of every notification
is a uint16 t which caries the notification type.

3 The lksctp Project

A critical factor in the success of any new IETF
protocol is of course a Linux implementation. For-
tunately, key personnel at Motorola recognised this
and encouraged us to tackle such a project. Months
later, we have a core implementation with an ever-
expanding feature set. We now have significant par-
ticipation from developers at IBM and Intel and the
pace is picking up.

3.1 Coding standards

In addition to the usual requirements of kernel code,
our code seeks to be a useful reference for people
making their own kernel implementations of SCTP.
If a reader has some question about how to imple-
ment a particular section of the RFC, they need only
grep for the relevant text in our code and they can
find an example. As much as practical, we draw
names directly from the RFC. We made the state
machine into an explicit table (see 2 for an excerpt)
with names that refer directly back to the relevant
section numbers. Clarity is a compelling require-
ment for our code.

3.2 Extreme Programming

As the project grew and we added developers, we
clearly needed some way of coordinating our work.
We decided to experiment with Extreme Program-
ming, [XP].

XP is a collection of practices aimed at controlling
risk in a small to medium-sized software develop-
ment project. One important principle is that you
should do the simplest thing that could possibly
work. A second important principle is to take ad-
vantage of the fact that programmers like to code.

We use a range of XP practices, but the practices
which are most visible to anybody who reads or
works on lksctp are the tests and the metaphors.

4 The Tests

One of the XP practices we use is code-to-the-test.
XP asks, “If testing is good, why don’t we do it
all the time?” Instead of writing tests for working
code, write tests first, and then write code to pass
the tests. This practice leads to a large automated
test suite which runs several times per day.

We use three kinds of test, unit tests, test frame
functional tests, and live kernel functional tests.

The most basic form of test is the unit test. Unit
tests exercise all the interfaces of a particular object
and confirm that it behaves correctly. They also
encode regression checks for fixed bugs. These tests
all have names beginning with test .

The second form of test is the test frame functional
tests. These are the tests with names beginning
with ft frame . These tests check for external be-
haviours of the system, but with a simulated kernel.
The simulated kernel is very light weight and gives
us very fine control over things like timing and net-
work properties.

Ideally, functional tests should be written by the
customer for a system—they encode the behaviours
that the customer expects. In our case, we play
the role of customer on behalf of the RFC. We also
use test frame functional tests to define work items
for off-site development groups. The off-site group



Type Socket Option Description
SCTP ASSOC CHANGE SCTP RECVASSOCEVNT Change of association
SCTP PEER ADDR CHANGE SCTP RECVADDREVNT Change in status of a given address
SCTP REMOTE ERROR SCTP RECVPEERERR An error received from a peer
SCTP SEND FAILED SCTP RECVSENDFAILEVNT A failure to send
SCTP SHUTDOWN EVENT SCTP RECVDOWNEVNT The reception of a SHUTDOWN chunk

Figure 1: Useful notifications for an SCTP socket

writes tests which describe the feature they intend
to implement and submits those tests as a proposal.
This has proven an excellent medium for describing
work.

The final form of test we use is the live kernel func-
tional test. We have many fewer of these than we
would like—they are difficult to run since we must
install and boot a kernel to test. This is much more
work than simply running make unit test. We are
exploring UML as a possible way to automate our
kernel functional tests. These tests have names be-
ginning with ft kern .

Code-to-the-test is a practice which you can intro-
duce at any point in a project. When you first start,
it seems that you are spending more time writing
tests than writing code, but once you begin to have
a critical mass of interacting tests you begin to see
significant payoffs in both code quality and devel-
opment velocity.

We have had several incidents where interactions be-
tween unit tests and functional tests have uncovered
complimentary masking bugs.

Tests are not a substitute for understanding code—
they are a mechanism for encoding that understand-
ing to share with other developers, including future
versions of yourself. You can learn nearly as much
about our code by reading our tests as by reading
the code itself.

Lately, we have begun using functional tests to en-
code major bugs. These are among the best of all
possible bug reports—they describe the failure pre-
cisely and tell exactly when the problem is gone.
After the bugs are fixed the tests serve as part of
the regression suite.

5 The Metaphors

XP projects are built around a unifying metaphor
rather than an elaborate architecture. In our case,
we chose two metaphors which could serve quite well
for nearly any protocol development project.

Our metaphors are the state machine and the smart
pipe. Most readers are probably familiar with the
state machine, but the smart pipe is a twist on a
familiar concept. The idea behind a smart pipe†

is that raw stuff goes in one end and cooked stuff
comes out the other end.

5.1 The State Machine

The state machine in our implementation is quite
literal. We have an explicit state table which
keys to specific state functions which are tied di-
rectly back to parts of the RFC. The core of
the state machine (found in sctp do sm()) is al-
most purely functional—only header conversions
are permitted. Each state function produces a
description of the side effects (in the form of a
struct sctp sm retval) needed to handle the par-
ticular event. A separate side effect processor,
sctp side effects(), converts this structure into
actions.

Events fall into four categories. The RFC is very
explicit about state transitions associated with ar-
riving chunks. The RFC discusses transitions due
to primitive requests from upper layers, but many
of these are implementation dependent. The third
category of events is timeouts. The final category is
a catch-all for odd events like queues emptying.

In order to create an explicit state machine, it was
necessary to first create an explicit state table. The

†An alternate term may be “oven”.



State: CLOSED COOKIE-WAIT COOKIE-ECHOED ESTABLISHED

Chunks
INIT do 5 1B init do 5 2 1 siminit do 5 2 1 siminit do 5 2 2 dupinit
INIT ACK discard(5.2.3) do 5 1C ack discard(5.2.3) discard(5.2.3)
COOKIE ECHO do 5 1D ce do 5 2 4 dupcook do 5 2 4 dupcook do 5 2 4 dupcook
COOKIE ACK discard discard(5.2.5) do 5 1E ca discard(5.2.5)
DATA tabort 8 4 8 discard(6.0) discard(6.0) eat data 6 2
SACK tabort 8 4 8 discard(6.0) eat sack 6 2 1 eat sack 6 2 1
Timeouts
T1-INIT TO bug do 4 2 reinit bug bug
T3-RTX TO bug bug do 6 3 3 retx do 6 3 3 retx
Primitives
PRM ASSOCIATE do PRM ASOC error error error
PRM SEND error do PRM SENDQ6.0 do PRM SENDQ6.0 do PRM SEND

Figure 2: Portion of SCTP state table showing association initialisation

process of creating this table uncovered a few mi-
nor contradictions in one of the drafts of the RFC.
These mostly involved conflicting catch-all cases. In
Figure 1 we have an excerpt which shows the state
functions involved in initialising a new association.

5.2 The Smart Pipes

Each smart pipe has one or more structures which
define its internal data, and a set of functions which
define its external interactions. In this respect these
smart pipes can be considered a type of object, in
the OO sense. All of these definitions can be found
in the include file <net/sctp/sctpStructs.h>.

Most of our smart pipes have push inputs—external
objects explictly put things in by calling methods
directly. A pull input is possible—the smart pipe
would need to have a way to register a callback func-
tion which can fetch more input in response to some
other stimulus.

Some of our pipes use pull outputs. E.g.
SCTP ULPqueue passes data and notifications up the
protocol stack through explicit calls to the socket
functions, usually readmsg(2). Some of our smart
pipes use push outputs. E.g. SCTP outqueue has
a set of callback functions which it invokes when it
needs to send chunks out toward the wire.

There are four smart pipes in lksctp. They
are SCTP inqueue, SCTP ULPqueue, SCTP outqueue,
and SCTP packet. The first two carry information
up the stack from the wire to the user; the second

two carry information back down the stack.

5.2.1 SCTP inqueue

SCTP inqueue accepts packets and provides chunks.
It is responsible for reassembling fragments, un-
bundling, tracking received TSN’s for acknowledge-
ment, and managing rwnd for congestion control.
There is an SCTP inqueue for each endpoint (to han-
dle chunks not related to a specific association) and
one for each association.

The function sctp v4 rcv() (which is the re-
ceiving function for SCTP registered with
IPv4) calls sctp push inqueue() to push
packets into the input queue for the appro-
priate association or endpoint. The func-
tion sctp push inqueue() schedules either
sctp bh rcv asoc() or sctp bh rcv ep() on the
immediate queue to complete delivery. These
functions call sctp pop inqueue() to pull data out
of the SCTP inqueue. This function does most of
the work for this smart pipe.

The functions sctp bh rcv ep() and
sctp bh rcv asoc() run the state machine on
incoming chunks. Among many other side effects,
the state machine can generate events for an
upper-layer-protocol (ULP), and/or chunks to go
back out on the wire.



5.2.2 SCTP ULPqueue

SCTP ULPqueue is the smart pipe which accepts
events (either user data messages or notifications)
from the state machine and delivers them to the
ULP through the sockets layer. It is responsible for
delivering streams of messages in order. There is one
SCTP ULPqueue for every endpoint, but this is likely
to change at some point to one SCTP ULPqueue for
each socket. This smart pipe uses a data structure
distributed between the struct SCTP endpoint
and the struct SCTP association.

The state machine, sctp do sm(), pushes
data into an SCTP ULPqueue by calling
sctp push chunk ULPqueue(). It pushes no-
tifications with sctp push event ULPqueue().
The sockets layer extracts events from an
SCTP ULPqueue with sctp pop ULPqueue().

5.2.3 SCTP outqueue

SCTP outqueue is responsible for bundling logic,
transport selection, outbound congestion control,
fragmentation, and any necessary data queueing.
It knows whether or not data can go out onto the
wire yet. With one exception noted below, every
outbound chunk goes through an SCTP outqueue
attached to an association. The state ma-
chine injects chunks into an SCTP outqueue with
sctp push outqueue(). They automatically push
out the other end through a small set of callbacks
which are normally attached to an SCTP packet.

The state machine is capable of putting a fully-
formed packet directly on the wire. At this point
only ABORT uses this feature. It is likely that we
will refactor INIT ACK generation again to use this
feature.

5.2.4 SCTP packet

An SCTP packet is a lazy packet transmitter as-
sociated with a specific transport. The upper
layer pushes data into the packet, usually with
sctp transmit chunk(). The packet blindly bun-
dles the chunks. If the it fills (hits the PMTU
for its transport), it transmits the packet to make
room for the new chunk. SCTP packet rejects
packets which need fragmenting. It is possible

to force a packet to transmit immediately with
sctp transmit packet(). SCTP packet tracks the
congestion counters, but handles none of the con-
gestion logic.

6 More Data Structures

Not everything is a state table or a smart pipe—
after all, this is the kernel and we ARE program-
ming in C. Here again, we have followed the RFC
very closely. Most of the key concepts in the RFC
manifest themselves as explicit data structures. For
convenience, we refer to these data structures as
“nouns”.

Nearly all of the “noun” structures are designed for
use with the sk buff macros for list manipulation.
These macros provide a doubly-linked list with lock-
ing.

6.1 struct SCTP proto

The entire lksctp universe is grounded in an in-
stance of struct SCTP proto accessible through
sctp get protocol(). This structure holds
system-wide defaults for things like the maximum
number of permitted retransmissions. It contains a
list of all endpoints on the system.

6.2 struct SCTP endpoint

Each UDP-style SCTP socket has an endpoint, rep-
resented as a struct SCTP endpoint. Once we
implement high-bandwidth sockets and TCP-style
sockets, it will be possible for multiple sockets to
share a single endpoint structure. The endpoint
structure contains a local SCTP socket number and
a list of local IP addresses. These two items define
the endpoint uniquely. In addition to endpoint-wide
default values and statistics, the endpoint maintains
a list of associations.

6.3 struct SCTP association

Each association structure,
struct SCTP association) is defined by a local



endpoint (a pointer to a struct SCTP endpoint),
and a remote endpoint (an SCTP port number and
a list of transport addresses). This is one of the
most complicated structures in the implementation
as it includes a great deal of information mandated
by the RFC. Among many other things, this struc-
ture holds the state of the state machine. The list
of transport addresses for the remote endpoint is
more elaborate than the simple list of IP addresses
in the local endpoint data structure since SCTP
needs to maintain congestion information about
each of the remote transport addresses.

6.4 struct SCTP transport

A struct SCTP transport is defined by a remote
SCTP port number and an IP address. The struc-
ture holds congestion and reachability information
for the given address. This is also where we get the
list of functions to call to manipulate the specific
address family. For TCP you would find this infor-
mation way up in the socket, but this is not possible
for SCTP.

6.5 struct SCTP chunk

Possibly the most fundamental data structure in
lksctp is struct SCTP chunk. This holds SCTP
chunks both inbound and outbound. It is essentially
an extension to struct sk buff. It adds pointers
to the various possible SCTP subheaders and a few
flags needed specifically for SCTP. One strict con-
vention is that chunk->skb->data is the demarca-
tion line between headers in network byte order and
headers in host byte order. All outbound chunks are
ALWAYS in network byte order. The first function
which needs a field from an inbound chunk converts
that full header to host byte order in situ.

7 Acknowledgements

The authors are members of a team at Motorola
dedicated to producing open source implementa-
tions in support of IETF standardisation. We would
like to thank the people who make these efforts pos-
sible, specifically Maureen Govern, Stephen Spear,
Qiaobing Xie, and Irfan Ali. We are of course deeply

indebted to Randall Stewart and Qiaobing Xie for
having created SCTP and for starting the Linux
Kernel SCTP Implementation Project. We wish
to recognizee the ongoing and significant contribu-
tions from developers outside Motorola, especially
Jon Grimm and Daisy Chang of IBM, and Xingang
Guo of Intel.

8 Availability

All the code discussed in this paper is available from
the lksctp project on Source Forge:

http://sourceforge.net/projects/lksctp/

References

[RFC2960] R. Stewart, Q. Xie, K. Morneault,
C. Sharp, H. J. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and, V. Pax-
son, Stream Control Transmission Protocol,
RFC 2960 (Oct 2000).

[SCTPAPI] R. Stewart, Q. Xie, L. H. P. Yarroll,
J. Wood, K. Poon, K. Fujita., Sockets API
Extensions for SCTP, Work In Progress,
draft-ietf-tsvwg-sctpsocket-00.txt
(Jun 2001).

[SCTPIMPL] R. Stewart. et al, SCTP Im-
plementor’s Guide, Work In Progress,
draft-ietf-tsvwg-sctpimpguide-00.txt
(Jun 2001).

[SCTPMIB] J. Pastor, M. Belinchon.
Stream Control Transmission Proto-
col Management Information Base
using SMIv2, Work In Progress,
draft-ietf-sigtran-sctp-mib-03.txt
(Feb 2001).

[XP] K. Beck. Extreme Programming Explained:
Embrace Change, Addison-Wesley Publish-
ers (2000).

[SCTPORG] Randall Stewart’s SCTP site,
http://www.sctp.org, (2001).

[SCTPDE] Tüxen/Jungmeier SCTP site,
http://www.sctp.de, (2001).


