
Linux performance tuning using Powertweak

Dave Jones davej@suse.de

1 Abstract

Powertweak is the first multi-purpose performance
tuning program for Linux. Whilst it shares its name
with a similar program for Microsoft Windows, its
code has been written from scratch, and provides
very different levels of functionality.

2 Introduction

This project began early in the 2.2 kernel devel-
opment. There is a feature present in 2.2.x called
”Optimize PCI bridges”. It provided functionality
that enabled bits in hardware registers in PCI host
bridges, allowing for things like enabling PCI burst-
ing, posted writes etc.

Annoyed that this did not support the chipset I had
in my workstation, I started hacking support for it
into the existing code. The code only allowed for
a maximum of 5 pokes per chipset due to a struct
size limitation, and also only supported on/off con-
figuration. Some registers may take several bits to
define a choice of more than two options.

After a comprimise, and picking the ’best’ 5 reg-
isters to poke, the patch was released for critique
on linux-kernel. The patch never got integrated.
The reasoning for this, was that it was suggested
that the whole functionality would be better done
in userspace.

3 Early development

In April of 1999, work began coding a replacement
for this function using PCILIB, the userspace PCI
access library. Things got going quite quickly.

By moving the feature to userspace, additional func-

tionality could be added.

1. The number of pokes per chipset was now dy-
namic. The structs were replaced with parsing
of a file describing the register layouts, and ar-
rays were built at runtime depending on what
PCIset was detected.

2. Support for multi-bit register settings per
tweak

3. Extra control, now individual settings could be
switched on, as opposed to the ’switch on ev-
erything’ approach of the original.

The whole feature became more configurable for end
users. There may have reasons for the pokes being
in the disabled state, for example, to work around
problems with specific hardware.

Towards the end of April, the program was nearing
what I had set out for 1.0 functionality. Discussion
took place to include the program (Then dubbed
’TunePCI’ in pciutils. Then, things changed dra-
matically.

The developer of a Windows shareware program
called ”Powertweak” was looking for someone to
port his program to Linux. Investigating the pro-
gram revealed it only really had two functions.

• Tuning bits in CPU registers.

• Tuning bits in PCI registers.

Paranoia took me at this point. The Windows pro-
gram supported many more PCI chipsets than my
program. Worrying that someone may come along
and do this port, dwarfing my program into obscu-
rity, I contacted the programmer, and made the offer
to do the port. He accepted, and I began work on
the port.

s/TunePCI/Powertweak/

And Powertweak 0.1.0 was born.



4 Early versions

I was not prepared for what happened next. Hun-
dreds of mails requesting features (But very few
sending patches). Over the next few revisions, sup-
port was added for lots of other PCI chipsets, and
tuning of sysctls was added.

Work began on a GTK based GUI for adjusting
the numerous options in the config file. This was
completed quite quickly, but by the fifth revision of
the program, things were starting to show signs of
strain.

Very little design had been done on the program.
What had started as a hack moving the kernel space
function to user space, had been extended as hack
on top of hack. A concerted effort was spent for
another few revisions trying to clean up some of the
design mistakes, which was partly successful, but
eventually it became obvious that things had gone
too far, and a complete rewrite was necessary.

This had happened at the same time that Arjan
van de Ven had proposed a patch allowing the GUI
to create options for sysctl tuning from an XML
config file. Not knowing a lot about XML, and only
hearing bad things about it, I was initially hesistant
about accepting the patch.

After inclusion in one of the last revisions before the
rewrite, it became clear that it would save a lot of
development time.

5 Redesign decisions

5.1 Layered model

The first decision decided upon was that in order to
prevent the program becoming the monolithic mess
the original did, a layered model was drawn up. Spe-
cific functionality would be provided by backends

5.2 Extra usage of XML

After the success of the XML parser for the sysctl
tuner, the idea of file-based tweaks, as opposed to

having definitions in the program was decided to
be a good thing. Much of the XML parsing code
could be reused, allowing implementing additional
backends in a much shorter time than before.

5.3 Client/Server architecture

A choice was made to move the routines involving
actual adjusting of values (Such as PCI hardware
poking, sysctl changing etc) out of the GUIs, into
a daemon started at boot time. The daemon would
also provide additional functionality in a later revi-
sion.

5.4 Modular backends

The multiple standalone backends of Powertweak
are built as shared libraries, loaded at runtime, and
unloaded where not applicable.

Daemon

Profiles

Interface
User

Profiles
System

XML Plug−inPlug−in

Config

Powertweak (Internals)

Figure 1: Powertweak Internals

6 Current available backends

6.1 sysctl

The various tunable kernel settings through
/proc/sys are supported with this backend. Ad-
ditional entries can be quickly added by adding
extra XML entries. XML entries for this backend



typically look like..

<PROCENTRY>
<MENU>Virtual Memory</MENU>
<SUBMENU>bdflush</SUBMENU>
<TAB>bdflush</TAB>
<NAME>Activate bdflush when % dirty</NAME>
<CONFIGNAME>vm/bdflush:1</CONFIGNAME>
<TYPE>Slider</TYPE>
<LOW>20</LOW>
<HIGH>90</HIGH>
<ELEMENT>0</ELEMENT>
<FILE>/proc/sys/vm/bdflush</FILE>
</PROCENTRY>

6.2 PCI

The feature that started the whole project, the
PCI backend is still based upon PCILIB, and now
parses XML configuration for chipsets. On startup,
the PCI bus is scanned for devices, and for each one
found, an XML file with a corresponding ID will be
searched for. If a match is made, the file is parsed.
The PCI XML files contain multiple REGISTER
records.
<REGISTER base="0x50" bit="5">
<FRAME>Cache controller tweaks</FRAME>
<TYPE>Checkbox</TYPE>
<WIDGETTEXT>Linear burst</WIDGETTEXT>
<DESCRIPTION>Enable linear
bursting</DESCRIPTION>
<CONFIGNAME>LINEARBURST</CONFIGNAME>
</REGISTER>
Additionally, multi-bit features may be set using
bitmask entries.

<BITMASK>11000000</BITMASK>
<ONBITS> 10000000</ONBITS>
<OFFBITS>00000000</OFFBITS>

Finally, the PCI backend also allows modifica-
tion of device latencies. Some of the features
provided by the PCI backend are dangerous. Ran-
dom experimentation will likely lead to a crash, or
possibly data corruption. This feature is provided
for power users, and people researching PCI related
issues.

6.3 Block layer elevator

The elevator algorithm used in the block layer re-
orders request queues to minimise disk head seeks.
This backend allows the length of the reorder queue
to be adjusted to improve latency.

6.4 x86 model specific registers.

Pentium class x86 processors typically have model
specific registers (MSRs) which contain additional
bits which may be adjusted to provide performance
features. These may not have been enabled at boot
time by the BIOS if for example, the CPU is newer
than the BIOS. It’s also not uncommon for BIOS
vendors to simply not implement enabling of some
features. Until the 2.4.0 kernel, this feature was
not possible to implement. MSRs must be accessed
using a kernel-space driver.
(*nb*, also backported to 2.2.18)

This is another backend that relies upon XML to
define the register layouts. Each XML file describes
model specific register layout, containing any num-
ber of MSR records, which are defined thus:

<MSR register="0xC0000080" bit="1">
<NAME>Data prefetch enable</NAME>
<CONFIGNAME>MSR AMD K6 3 DPE</CONFIGNAME>
<TYPE>Checkbox</TYPE>
<DESCRIPTION>Enable data prefetching.
Cache misses initiated by a memory
read within a 32 byte cacheline are
conditionally followed by cacheline
fetches of the other line in the 64 byte
sector</DESCRIPTION>
</MSR>

As with the PCI backend, multi-bit features
may be set by using bitmask entries.

7 Other features

7.1 Profiles

The profiles feature of Powertweak allows a collec-
tion of settings to be provided for setting a policy



on how the computer on which it runs will be used.
For example, a webserver profile could be loaded,
which contains optimal settings for all backends.

8 Current developments

8.1 Dynamic bus speed adjustment

This functionality has been implemented in several
CPUs from several different vendors (With all
implementations completely incompatable with
each other)

PowerNOW!
- AMD K6-2+, K6-3+, Mobile Athlon.
Longrun.
- Transmeta Crusoe
Longhaul.
- VIA Cyrix III / C3
Speedstep.
- Intel Mobile CPUs.

*nb* In addition to the x86 implementations, CPU
clock speed scaling is also available on other archi-
tectures such as ARM, and PowerPC.

Programming information has been made available
for all of these implementations except for Intel
Speedstep. For this reason, it is currently unsup-
ported.

By adjusting CPU MSRs, the bus speed can be
dropped dramatically. Powertweak uses a ker-
nel module to create a /proc/sys/cpu/0/frequency
sysctl entry. This can be altered at any time by the
user with a command such as

echo 300 > /proc/sys/cpu/0/frequency

Alternatively, it may be adjusted periodically by
the daemon to values dependant upon user selected
monitoring criteria. For example:

• If load is significantly low for a prolonged pe-
riod of time

• When battery power reaches a critical level in
a laptop.

• When switching from battery to mains power
(or vice versa)

• When temperature reaches user defined levels.

The policy can be changed by switching strategy
modules in the daemon configuration.

Some of these implementations also allow the core
voltage supplied to the CPU to be altered. This is
a complicated area, due to several different VRM
(voltage regulator module) specs in use. To adjust
voltage safely, the version of VRM in use must be
detected, and adjusted for accordingly. By adjust-
ing the voltage and the frequency, even lower power
consumption rates are possible than by dropping
frequency alone.

Some implementations of clock scaling have addi-
tional caveats. For example the AMD PowerNOW!
implementation requires that the PCI bus decoding
be temporarily disabled during the speed change.
Adjusting the speedon ARM SA11x0 also requires
changing the clocks of peripherals clocked off the
CPU clock, such as the SDRAM controller. For
these reasons, the adjusting code moved to a kernel
module.

9 Acknowledgements

The Powertweak Linux project would have been dif-
ficult to make possible without the contributions of
Arjan van de Ven, Philipp Rumpf, Janne Penkele,
Russell King, Erik Mouw, and several other devel-
opers’ contributions.

10 References

http://www.powertweak.org


