
Pango: internationalized text handling

Owen Taylor
Red Hat, Inc.

otaylor@redhat.com, http://people.redhat.com/otaylor

Abstract

Pango is a library for laying out and displaying
internationalized text. It handles almost every
writing system in the world, and can work on top
of multiple different display systems - including
traditional X fonts, or client-side OpenType fonts.
Pango is used for all text handling in the soon-
to-be-released version 2.0 of the commonly used
GTK+ widget toolkit.

1 Introduction

Although technically inclined users have histor-
ically been willing to learn English in order to
free software, in order for free software to gain
an acceptance in the wider community of users,
it must able to both display a user interface in
the user’s native language and allow the user to
manipulate text in their native language.

A number of separate areas must be addressed
when making a program suitable for handling
text in multiple languages (a process known as
internationalization. First, the user must be able
to input text in their native language — this
may simply be a matter of changing the keyboard
mapping, but it may also be a more complicated
process involving dictionary lookup by separate
programs known as input methods. Then, the
program must preserve the structure of the text
during any manipulation it does of the text. Some
common assumptions, such as assuming each
character is one byte may mangle a stream of in-
ternationalized characters. The program must pick
appropriate translations of any messages it displays
to the user, and finally, it must be able to render
strings in the user’s native language correctly. This

he said: GO TO 123 MAPLE STREET

he said: TEERTS ELPAM 123 OT OG

Text in memory

Text as displayed

2: right-to-left
1: left-to-right

3: left-to-right

Figure 1: Transformations while displaying
complex-text languages

paper will concentrate on the last aspect, rendering.

Rendering internationalized text is often assumed
to be simply a matter of fonts. All languages are
thought to be like English where it is simply a
matter of picking the right symbols from the font
and displaying them in the order they occur in the
memory representation. In this view, international-
ized rendering is a simple matter. All you need is a
character set that includes all the characters in the
world’s languages (Unicode [Unicode] fits this role)
and a font for that character set. Of course, things
are not that simple.

First, a number of languages, notable Arabic and
Hebrew are written from right-to-left, instead of
from left-to-right, so the rendering process needs to
be able to deal with that ordering. In fact, text in
these languages usually consists of a mix of right-
to-left text and left-to-right text (numbers, foreign
words.) So, a complicated reordering process is
needed between the in-memory representation
and the actual drawing process. Figure 3 shows
a schematic representation of the reordering process.

Arabic also introduces some other complications.
The shape of each character is different depending
on whether it occurs at the beginning of a word,
in the middle of a word, at the end of a word, or
by itself. So the right glyph needs to be selected in
each context.

T RA I++ I+TRA TRI

Cluster Formation Reordering

Figure 2: Transformations while displaying
complex-text languages

Another group of languages that needs special
attention are the languages of South Asia, often
known as complex text languages. In these lan-
guages, the characters making up a syllable interact
in complex ways to produce the final rendered
form. This can involve reordering, combining
characters to make ligatures that appear very
different from the original character, and stacking
multiple glyphs on top of each other vertically.
A group of interacting characters in one of these
languages is known as a cluster. (See Figure 2.)

Algorithms such as line-breaking also need detailed
knowledge of a language. Although for western
languages, a simple job of line-breaking can be
done by breaking on white space, other languages,
such as the languages of East Asia or Thai, are
written without any white space at all, so linguistic
information is needed. For Thai, correct line
breaking actually needs to be done by first splitting
the text into words using a dictionary.

So, we see that to properly render many of the
world’s languages, we have to be able to deal with a
rendering process which is considerably more com-
plex than just slapping down glyphs in the order
that characters appear in memory. It is interesting
also to note that many of the same issues that
appear above, such as ligatures, alternate glyph
selection, and repositioning of characters (kerning)
are also important when doing a high-quality job of
displaying English or Western-European languages.
So, if we can properly handle these issues for
internationalization, we gain, as a side benefit, a
much higher level of typographic sophistication.

Clearly, you don’t want to be handling all of these
details in your application. So, to be able to have a

Xlib

X Server Printer

Application

Toolkit

Pango Pango Core

PS rendering backend X rendering backendLanguage Module

Arabic X Shaper PS X Shaper

Figure 3: Architecture of Pango

system where all these details, and many more are
properly handled for each language, what we need
to do is move to a higher level of abstraction. We
need a system where the application programmer
simply presents the system with a chunk of text,
and all the details of wrapping lines, laying out the
text, choosing glyphs and rendering is handled for
the programmer. The Pango library has designed
for this purpose; it encapsulates all the necessary
knowledge about various languages and scripts and
presents the application programmer with generic
model of lines and paragraphs.

2 Architecture

There are several principles that underly the design
of Pango. The first one is that Unicode is used as
a common character set throughout the system.
Although, as mentioned above, supporting Unicode
is not enough to handle internationalized rendering,
by standardizing on Unicode, and on UTF-8 as
the encoding of Unicode, there is no need for
the application, the toolkit, Pango, and Pango’s
language-specific modules to negotiate the encoding
to be used.

The second principle of Pango is modularity. The
code specific to each language is contained in a
separate, dynamically loaded module. This has
several benefits. First, it reduces the amount of
code that is contained in the main library. Second,
it allows modules for specific languages to be

developed and distributed by teams familiar with
those languages, instead of tying the development
of support for a particular language to the release
cycle of the core system.

The third principle of Pango is rendering sys-
tem independence. The same tasks need to be
performed whether using X fonts to draw to the
screen, drawing into a off-screen buffer in some
other fashion, or printing to paper. Pango provides
an API that can be used for all purposes to
format the text. Only in the final rendering step
do rendering-system-dependent calls need to be
used. Because some of the intermediate steps (for
instance, positioning glyphs with respect to each
other) do depend knowledge from the rendering
system, these portions need to be rendering system
dependent. So each language module is split into
pieces: a rendering system-independent module
(that knows how to do such tasks as find the
permissible breaks within a line) — the language
module and a rendering-system-dependent module
for each supported rendering system — the shaper
module.

At the lowest level, the process of rendering text
consists of a number of steps:

• Itemization. In this step, the input text is di-
vided a input Unicode string is analyzed and
broken into items that each handled by a sin-
gle language module and have a single direction
(left-to-right or right-to-left). If the application
has applied additional markup on the string to
control things like style or font size, it may fur-
ther subdivide each item into pieces that have
the same font.

• Boundary Resolution. Textual boundaries such
as word boundaries and line breaks are de-
termined for each item. In most cases, a
generic algorithm suffices for this process, but
in some cases, a language module will override
the generic algorithm with a more specific one.
The pango break() call handles boundary res-
olution.

• Shaping. The next step is to take the char-
acters within each item and convert them into
glyphs. There may potentially be either more
glyphs or less glyphs in the final string then
there were characters. The pango shape() is

used to convert characters to glyphs. Until we
have done this conversion, we cannot compute
the size on the screen of the text we need to
draw for use in a line-breaking algorithm.

• Line Breaking. The results of shaping and
boundary resolution are used to choose where
to break lines that need to be wrapped. If
breaking lines involves dividing items, then
we’ll need to call pango shape() again to do fi-
nal glyph selection and positioning, since break-
ing words may require different glyphs to be se-
lected. (The line breaking algorithm described
here is a simple one that works for most uses.
High quality text display, as for publishing may
require a more sophisticated algorithm that
globally optimizes for the best line break posi-
tions taking into account changes in the glyphs
that occur during shaping.)

• Rendering. The result of the shaping and line
breaking process is a set of glyph strings, which
is a list of glyphs from the font, along with
positioning information for each glyph. Since
rendering is specific to the type of fonts be-
ing used and how they are being rendered,
the core Pango library doesn’t handle render-
ing; the rendering system specific libraries in-
cluded with Pango, such as libpangox for X
fonts and libpangoft2 for using TrueType and
Postscript fonts via the FreeType library, in-
clude basic rendering routines, or applications
can do their own rendering.

Since we claim rendering-system independence,
we should quickly mention how we handle font
information. Pango has an abstract class Pango-
Font which represents a font in some rendering
system. The PangoFont class includes operations
such as determining the overall metrics of a font,
determining the metrics for an individual glyph,
and determining which Unicode characters a font
covers. It doesn’t include, however, any operations
for actually rendering the font, or finding out how
glyph indicies correspond to Unicode. To use Pango
with a particular rendering system, a subclass of
PangoFont is created that handles a particular type
of font. For instance, PangoXFont is the subclass
of Pango font for handling X fonts.

While dealing with these steps may be easier than
having to deal with the particular details of how to
render Arabic or Hindi, it still is pretty complicated.

demonstrate PangoLayout’s

features.

should wrap suitably to
spacing

Here is some text that

features.

Here is some text that

width width

indentindent

Right AlignedLeft Aligned

should wrap suitably to

demonstrate PangoLayout’s

Figure 4: Parameters that can be set on a Pango-
Layout object

Most applications writers would certainly not want
to deal with this level of complexity, and even peo-
ple writing new widgets for a GUI toolkit might be
scared off. So Pango provides a higher level abstrac-
tion, the PangoLayout object.

A PangoLayout object is initialized with two things
- a block of Unicode text and a list of attributes to
apply to runs of characters within the text. These
attributes include, among other things, font family,
font style, font size, color, and language tags (is the
text in English or in German — important for such
things as hyphenation.) Various properties, such as
the line width, line spacing, and indentation, can
also be set on the entire layout. (See Figure 4.)
At this point, PangoLayout internally handles all of
the steps of boundary resolution, itemization, shap-
ing and line breaking, and the final glyphs can be
immediately extracted.

PangoLayout also contains extensive support for in-
teractive editing. For example, it contains functions
for mapping between locations on the screen and
locations within the text and for handling properly
internationalized cursor movement with arrow keys.
Because there isn’t a one-to-one correspondance
between characters in the text and the displayed
glyphs, and because the text can be reordered in
the output process, these operations are consider-
ably more complex than they would be without in-
ternationalization.

The architecture of Pango is inspired by a number
of existing systems. The basic layout pipeline fol-
lows Microsoft’s Uniscribe system [Uniscribe] fairly
closely, although it has been somewhat simplified to
combine excess steps, and provide a nicer interface
to the user. However, the high level PangoLayout
object has no equivalent in Microsoft’s API. Sim-
ilar high level text objects can be found in other
systems, such as the Java2D [Java2D] text API.
Of course, a fundamental difference between Pango

and all existing proprietary systems is that the code
is completely open for inspection and modification.
Anybody can extend Pango to work with new lan-
guages and new rendering systems.

3 Implementation and Status

Pango is written in C using the GObject sys-
tem. This object is based on the GtkObject sys-
tem found in older versions of the GTK+ widget
toolkit. As part of the major revision of GTK+
between GTK+-1.2 and GTK+-2.0 (which includes
moving to Pango for text rendering), this facility
was split out into a separate library, allowing its use
from libraries not tied specifically to GTK+, such
as Pango. The use of the GObject system provides
several benefits: it provides a framework for writ-
ing object oriented code in C, making it convenient
to use such techniques as inheritance and polymor-
phism, and it provides a standard type system and
method of memory management making it easy to
writing bindings between Pango and different inter-
preted and compiled languages.

The GObject library is distributed as part of the
GLib package. Pango also takes extensive advan-
tage of other facilities in GLib: data structures such
as lists and hash tables, unicode manipulation and
code conversion, the xml-like GMarkup parser, and
the GModule library for loading dynamic modules
in a portable fashion.

At the time of writing, Pango is nearing version 1.0
and is extensively used in the current version of the
GTK+ toolkit. While future extensions of the API
are planned to support high-end features for appli-
cations such as desktop publishing, the current API
is completely sufficient for use in a widget toolkit,
for editing and screen display.

Support has been written for a number of differ-
ent rendering systems: for traditional X fonts, for
client-side fonts using the Xft library and Xren-
der extension [Packard], for fonts rendered locally
using the FreeType library, and for fonts in the
Win32 API. The rendering systems that are cur-
rently present correspond more-or-less to the ports
of GTK+ that are underway: the X and Xft back-
ends for the X11 port, the FreeType backend for the
Linux-framebuffer port, and the Win32 backend for
the Win32 port of GTK+.

The available set of shaper modules for different
languages is equally broad: since shaper modules
are specific to both language and rendering sys-
tem, the exact set varies for the different rendering
systems. The X font backend has the largest set,
including modules for Arabic, Hebrew, Thai, Ko-
rean and 7 different Indic languages, in addition to
the “basic” module, which handles rendering for all
languages that don’t require special shaping algo-
rithms. The languages handled by the basic module
include, among other things: languages written in
the Roman, Greek, and Cyrillic alphabets, and the
ideographic scripts of East Asia, used for Chinese
and Japanese.

4 Pango and GTK+

While it should be emphasized that Pango is not
GTK+ specific: it can be used for both applica-
tions other than widget toolkits, such as printing,
and with widget toolkits other than GTK+, the pri-
mary use of Pango to this point has been within
the development version of GTK+, and this influ-
enced what parts of Pango development are most
advanced.

In the development version of GTK+, Pango is used
for all text handling, with the exception of a few
deprecated widgets left for compatiblity purposes.
This includes, in particular, the GtkLabel widget for
static text display, GtkEntry single line text editing
widget, and the GtkTextView multi-line text widget.
This means that everywhere text is found within
GTK+, the full capabilities of Pango are supported.

In all cases, GTK+ uses the high-level PangoLay-
out interface to Pango, rather than going directly
to the lowlevel layout functions. This gives an in-
dication that PangoLayout is powerful enough for a
wide range of uses, and only the most specialized
applications would need to go to the low-level in-
terfaces. The GtkLabel and GtkEntry widgets each
contain a single PangoLayout structure. The Gtk-
TextView widget, which is designed to handle much
larger amounts of text, takes a different route. It
uses a PangoLayout for each paragraph, but instead
of keeping these layouts around, it creates them as
necessary, then destroys them again when no longer
needed.

The obvious benefit of the move to Pango for users

of GTK+-2.0 is the enhanced internationalization
capabilities. The improvements from Pango enable
and are accompanied by other internationalization
improvements in GTK+-2.0 — a new framework for
text input (input methods), better keyboard layout
handling, and support reversing widget layouts for
right-to-left languages.

But while internationalization is the obvious
benefit, Pango also brings substantial benefits to
users who don’t need specialized internationalized
text handling. Foremost amongs these improve-
ments is a sane font system. Font handling in
GTK+-1.2 was closely tied to the handling of
fonts in the core X protocol. To load a font
required dealing with the obscurity of names like
"-*-times-bold-r-normal--*-140-*-*-*-*-iso8859-1"

in GTK+-2.0, the name for the same font is sim-
ply "Times Bold 14". Moreover, since Pango
abstracts font handling away from the toolkit,
portability to other windowing systems is sim-
plified, and within X11, moving to using client
side scaleable fonts with Xft and Xrender is very
natural, allowing, among other things, support for
anti-aliased fonts.

A simple, but handy feature enabled by Pango is
support for a simple XML-like format for embedding
formatting in labels. Creating a label with colors
and italics can be as simple as:

GtkWidget *label = gtk_label_new (NULL);

gtk_label_set_markup (GTK_LABEL (label),

"Red"

"<big><i>Text</i></big>");

5 Future Plans

Future plans for Pango center on expanding the
range of applications for which it can be used by
adding support for the sort of features that are
needed for high-quality printing. Some of these in-
clude:

• Better hyphenation and line breaking.
Pango currently uses a simple line breaking al-
gorithm, and does not break words by inserting
hyphens at all. Better algorithms are needed
for applications other than screen display.

• Justification. Pango currently only allows
setting paragraphs ragged-left or ragged-right.
Adjusting spacing to create even paragraphs is
needed for This process also requires interna-
tionalization. For examlple,Arabic is notable
for justifying by extending the baselines within
words rather than adding space around words.

• Vertical text. While Chinese and Japanese
are most frequently written left-to-right in rows
for computer work, in printed material such
as books, writing vertically in columns is very
common.

Extending the range of languages that Pango sup-
ports is also a goal, though even today the range of
supported languages covers the vast majority of po-
tential users, especially for X fonts. In the future,
the primary focus for language support for X will
move away from supporting the legacy X font sys-
tem, to rendering client-side fonts via the Xrender
extension.

In particular, the OpenType font format[OT] is
promising as a way of getting the font information
needed to do really good internationalized text ren-
dering. OpenType, developed jointly by Microsoft
and Adobe is essentially an extension to the True-
Type format, with the addition of a number of ex-
tra tables. These tables include information about
selecting different glyphs depending on context, as
is needed for Arabic, information about glyph for
character combinations, as is needed for complex
text languages, and information about positioning
accents and characters. While OpenType is an ex-
tension of TrueType, it allows for either TrueType
outlines or Postscript Type1 outlines. The ability
to have Postscript outlines is attractive for free soft-
ware, since patent problems cause difficulties for free
implementations of the TrueType format.

Current versions of Pango already include basic sup-
port for reading OpenType tables, and an Arabic
shaper that can take advantage of this information.
Substantial future work still needs to be done to ex-
tend this to a wider set of languages and handle fine
details such as accent placement.

Work on Pango is certainly not complete with
Pango-1.0. However, Pango as it currently exists
already provides a broad set of capabilities within a
flexible framework that can be extended to new lan-
guages and to new rendering systems. This allows
toolkits such as GTK+ to provide internationaliza-

tion capabilities for users that go significantly be-
yond existing capabilities in the open source world.

More information about Pango and GTK+ can be
found at:

http://www.pango.org/
http://www.gtk.org/

6 Acknowledgments

The set of contributors to Pango is already too large
to list here, but I’d like to especially thank the peo-
ple who dove in and wrote shaper modules with lit-
tle or no documentation, including, among others,
Changwoo Ryu, Sivaraj Doddannan, Karl Koehler,
and Robert Brady. Also, Havoc Pennington, for
cleaning up various messes I left in PangoLayout.

References

[Java2D] Programmer’s Guide to the
Java 2D API Sun Microsystems.
http://java.sun.com/j2se/1.3/docs/guide/2d/spec/

(1999)

[OT] OpenType Specification
http://www.microsoft.com/typography/otspec/,
(2001).

[Packard] Keith Packard, A New Rendering Model
for X Usenix Technical Conference 2000.

[Unicode] The Unicode Consortium, The Unicode
Standard, version 3.0, Addison Wesley Long-
man (2000).

[Uniscribe] Microsoft Corporation Uniscribe
http://microsoft.com/typography/developers/uniscribe

(2001).

