
OSCAR: Open Source Cluster Application Resources

Michael J. Brim (brimm@ornl.gov)
Timothy G. Mattson (timothy.g.mattson@intel.com)

Stephen L. Scott (scottsl@ornl.gov)

Abstract

Open Source Cluster Application Resources (OS-
CAR) is the packaging of current ”best known prac-
tices” for Beowulf cluster computing into a fully
integrated, easy to install software suite. Every-
thing needed to install, build, maintain, and use
a modest sized Linux cluster is included in the
package. Thus, it is unnecessary to search for,
download, or even install individual cluster com-
ponents. OSCAR consists of RPM’s, Perl scripts,
libraries, and various cluster tools. OSCAR, and
every component included in OSCAR, is available
under one of the well known open source licenses or
is freely redistributable. OSCAR may be found at
http://www.csm.ornl.gov/oscar.

1 Introduction

In recent years, cluster computing has emerged as a
highly available means for obtaining additional com-
putational power in the scientific, commercial, and
educational communities. As a result, much soft-
ware has been developed or modified to utilize clus-
ters, further promoting their attractiveness. Un-
til lately, however, the total cost of ownership for
clusters, although lower than traditional high per-
formance computers, has been held relatively high
when considering the time and expertise needed for
their installation and maintenance. Previously, peo-
ple were forced to do extensive research just to find
out what components were needed to build a cluster.
After obtaining this knowledge, they had to obtain
each component, and then manually install and con-
figure the software. Even after successfully building
a cluster, they were still faced with the daunting
task of ongoing maintenance and administration.
The goal in providing OSCAR is to eliminate the
need for such hardships by providing a complete
clustering solution in a single package that greatly

reduces the learning curve in building, using, and
maintaining a cluster.

The rest of the paper is organized as follows. In the
next section, the components of OSCAR are dis-
cussed. Section III provides a detailed overview of
the cluster installation process using OSCAR. Fi-
nally, conclusions and future work are discussed in
Section IV.

2 OSCAR Composition

As OSCAR is being developed as a complete clus-
tering solution, there are many functional areas that
must be covered by the included software compo-
nents. These areas include installation, parallel pro-
cessing environment, workload management, secu-
rity, and general administration and maintenance.
To satisfy the requirements in each area, the soft-
ware components included with OSCAR were se-
lected by investigating the practices of several in-
dependent cluster-computing sites. The result was
a collection of software that is representative of
the ”best known practices” for creating a success-
ful cluster environment. The software included for
each area is discussed in the following paragraphs.

2.1 Installation

Probably the most difficult part of creating a suc-
cessful cluster environment is the initial installa-
tion of the software responsible for making inde-
pendent machines work together as a single com-
puting resource. The software included with OS-
CAR to simplify the process is the ’Linux Utility for
cluster Install’ (LUI) [1], which is one of the many
open source projects currently being developed at
the IBM Linux Technology Center. The main rea-
son LUI was chosen as the installation mechanism



was that it does not require that client nodes al-
ready have Linux installed. Nor does it require a
disk image of a client node, which is the case for
other installation techniques. LUI also has many
other distinguishing features that make it the mech-
anism of choice. The most highly used quality of
LUI in the OSCAR install is the cluster information
database that it maintains. The database contains
all the information on each node needed to both in-
stall and configure the cluster. A second desirable
quality is that LUI makes use of the Red Hat Pack-
age Manager (RPM) standard for software installa-
tion, which simplifies software installation tremen-
dously. Another quality, which up to this point has
not been taken advantage of in OSCAR, is the het-
erogeneous nature of LUI, allowing clients to con-
tain not only heterogeneous hardware, but hetero-
geneous software as well. An obvious application of
the future use of this quality is in the installation
of heterogeneous clusters, allowing certain clients to
be used for specialized purposes.

2.2 Parallel Processing Environment

For parallel processing, OSCAR supports the
message-passing paradigm and provides the two
most common implementations, the ’Message Pass-
ing Interface’ (MPI) [2] and the ’Parallel Virtual
Machine’ (PVM) [3]. Both MPI and PVM have
substantial user bases throughout the world, which
is why both are provided in OSCAR. As there are
many versions of MPI available, the developer’s de-
cided to use MPICH from Argonne National Lab-
oratory since it seems to be the most abundantly
used.

2.3 Workload Management

Typically, clusters are used as a computing resource
by multiple users, providing the necessity of work-
load management software. Such software is respon-
sible for maximizing the utilization of the cluster
resources based upon the application requirements
specified by users. The software provided with OS-
CAR to manage workloads is the open source ver-
sion of the ’Portable Batch System’ (PBS) [4] from
Veridian. PBS is responsible for accepting job re-
quests from users, monitoring the state of the clus-
ter and its resources, and running jobs when the
resources required become available. Currently, OS-
CAR uses the default FIFO scheduler included with

PBS, but work has already begun to substitute
that scheduler with the Maui scheduler [5], which
is known to outperform the default scheduler.

2.4 Security

Due to the wide variety of environments in which
clusters are used, the developers of OSCAR felt it
necessary to include secure methods for communi-
cating to and inside of a cluster. As most clusters
are attached to an external network through a gate-
way node, it is necessary to provide a secure lo-
gin mechanism to prevent other users on the net-
work from being able to access the cluster. In ad-
dition, user applications and data need to be kept
private within the cluster. The software included
in OSCAR to provide this security is OpenSSL [6]
and OpenSSH [7]. OpenSSL is an open source im-
plementation of the Secure Sockets Layer protocol,
which provides secure communications over the In-
ternet. OpenSSH is an open source implementa-
tion of the Secure Shell protocol, which provides
secure login, file transfer, and connections forward-
ing. OpenSSH requires the use of external libraries
provided by OpenSSL.

2.5 Administration and Maintenance

The software provided for cluster administration
and maintenance is the ’Cluster Command & Con-
trol’ (C3) [8] tool suite from Oak Ridge National
Laboratory. The C3 tools are command-line scripts
which provide the functionality necessary to effi-
ciently manage clusters where each node contains its
own copy of the operating system and software. The
functionalities provided include cluster-wide com-
mand execution, file distribution and gathering, re-
mote shutdown and restart, process status and ter-
mination, and system image update. The tools sup-
port operations on the entire cluster and subsets of
cluster nodes.

3 Cluster Installation

Before diving into the cluster installation procedure,
it is beneficial to give a description of the general
layout for OSCAR clusters. Each individual ma-
chine of a cluster is referred to as a node. Within



the OSCAR cluster to be installed, there are two
types of nodes, server and client. A server node is
responsible for servicing the requests of client nodes.
A client node is dedicated to computation. The
OSCAR cluster to be installed will consist of one
server node and a number of client nodes, where
all the clients contain homogeneous hardware. The
server node, along with serving as the gateway to
the external network, contains the home directories
of all users and runs the PBS server and scheduler.
The clients each have a local copy of the operating
system and other software, with the exception of
NFS mounting the users’ home directories from the
server. All the nodes are connected by an internal
Ethernet network, preferably through a dedicated
switch.

3.1 LUI Concepts

In order to understand some of the steps in the in-
stallation procedure, it is essential to have a knowl-
edge of the main concepts used within LUI. The first
concept is that of a machine object. In LUI, a ma-
chine object is defined for each of your cluster nodes.
There are two types of machine objects, server and
client, corresponding to the two cluster node types.
The server machine is responsible for creating the
cluster information database and for servicing client
installation requests. There are three pieces of infor-
mation that are kept for the server machine: name,
IP address, and corresponding subnet mask. Note
that the IP and netmask are for the internal cluster
subnet, not the server machine’s external network.
The client machines are the ones to be installed.
In addition to the information that is kept for the
server, the following information is kept for each
client: long hostname, MAC address, default route,
default gateway, number of processors, and a PBS
string. The second concept is that of a resource ob-
ject. Resource objects are used to characterize the
essential things that define a client machine, and
are the key component to support for heterogeneous
machines in LUI. There are several types of resource
objects, including disk, file, kernel, map, ramdisk,
rpm, source, and exit. A description of each type
follows:

disk - a disk table used for partitioning the client
hard drive and specifying network mounted file sys-
tems

file - a file system, such as /home or /usr

kernel - a custom kernel

map - a system map file to be used with a custom
kernel

ramdisk - an initial ramdisk, used for configur-
ing special hardware not supported by the kernel
at boot

rpm - a list of RPMs to install on the client

source - a file to be copied from the server to the
client after installing the RPMs

postinstall - a user script that is run after client
installation but before the machine is rebooted

exit - a user exit script that is run on the first boot
after client installation

By allocating these resources to client machines,
LUI enables custom clients to be built. Within LUI,
there is also the ability to create groups of clients
and groups of resources. With such a facility, users
are able to assign a group of resources to a group of
clients in one swift action. For a homogenous clus-
ter such as the OSCAR cluster to be installed, this
is a very useful mechanism.

3.2 Installation Procedure

The rest of this section will give a detailed overview
of the cluster installation procedure using OSCAR.
For an even more in depth installation tutorial, refer
to [9]. The following steps assume you have already
physically put the cluster together, including the
networking of nodes together.

The first step in creating a cluster using OSCAR
is to install Linux on the machine to be used as
the server. If you already have Linux installed on a
machine that you want to be the server, you may use
it as long as the version of Linux installed supports
the RPM standard.

Once Linux is installed on the server, you will need
to get the OSCAR distribution, which is currently
available as a zipped tarball and can be obtained
from the OSCAR site [10]. Copy the OSCAR tar-
ball to a directory such as /mnt or /tmp on your
server and unpack it. There is no required in-
stallation directory, except that you may not use



/usr/local/oscar, which is reserved for special
use.

The next step is to create the /tftpboot and
/tftpboot/rpm directories if they don’t already ex-
ist. These directories will hold all the information
needed for LUI to install the client nodes. As a
result, the directories need to be placed on a par-
tition that will have sufficient free space. A good
estimate to the amount of space required is 600MB
for the RPMs from your Linux distribution plus
5MB for each client. After creating the directories,
copy the RPMs from your Linux distribution to the
/tftpboot/rpm directory.

At this point, the first phase of server configuration
is run. The first configuration is responsible for in-
stalling and configuring all of the software needed
to perform the rest of the OSCAR cluster installa-
tion. The software installed includes LUI, DHCP,
NFS, TFTP, and Syslinux. If the first phase con-
figuration is successful, the OSCAR install wizard
is started. The wizard is provided to guide users
through the rest of the cluster installation. To use
the wizard, you will complete a series of steps, with
each step being initiated by the pressing of a button
on the wizard.

The first wizard step is definition of your server ma-
chine to LUI. In this step, you will fill in the name
for your server, along with its internal IP address
and cluster subnet mask. After the information is
entered, LUI will create the corresponding server
machine object.

The second step of the wizard is to collect the MAC
addresses of the client nodes. There are two op-
tions for doing so. If you already know the ad-
dresses, you will enter the information in the stan-
dard MAC configuration file /etc/MAC.info. If you
do not know the addresses, you will use the collec-
tion tool supplied with OSCAR. The collection tool
requires that you network boot each client machine
in sequence. The tool collects each address from the
network boot request sent to the server, and makes
the appropriate entry in the MAC configuration file.

Before starting the third step of the wizard, you will
need to define your clients in the /etc/hosts file by
entering their IP address, long hostname, and any
aliases you wish to use. After editing the hosts file,
you can begin the third wizard step, which defines
your client machines to LUI. In this step, you will
define a client group by entering the IP address of

the first client as found in the hosts file, the clus-
ter subnet mask, the number of clients to create,
and a name for your client group. You may option-
ally specify the default route and gateway for your
clients, the number of processors per each client,
and a string used by PBS to distiguish among nodes
when making scheduling decisions. After entering
the information, LUI will create a client machine
object for each client by using the information from
the hosts and MAC configuration files in addition
to the information supplied to the wizard.

In the fourth step of the wizard, you will define the
resources used to install the client machines. There
are a few resources that are required, and others
that are optional. The required resources include
a disk table specifying how to partition the clients’
hard drives, a file resource for each of the partitions
associated with a filesystem in the disk table, and a
list of RPMs to install on the clients. Since these re-
sources are required and generating the appropriate
files may not be intuitive, OSCAR provides samples
that users can modify or use directly. The optional
resources are ones that enable users to create clus-
ters that meet individual needs. For example, users
can create a custom kernel and associated system
map and have them as resources to be installed on
the clients. Similarly, any files that users may want
copied from the server to clients can be defined as
source resources. All of the resources defined can be
included in a resource group by specifying the name
of the group when defining each resource.

The fifth wizard step is to allocate the resources de-
fined to your client machines. If you used a group
when defining resources, this is accomplished by
simply naming the client machine group and the re-
source group. Otherwise, you will need to allocate
each resource to the client group.

The sixth step of the wizard is responsible for per-
forming the second phase of the automated server
configuration. This phase installs the OpenPBS and
C3 software, as well as configures the DHCP server
in preparation for the client machine installations.

After completing the second server configuration
phase, it is time for the client installations. During
this phase, you will network boot your client nodes
and they will automatically be installed by LUI. The
actual steps taken in the client installation are as fol-
lows. Once each client is network booted, it broad-
casts a BOOTP/DHCP request to obtain the IP ad-
dress associated with its MAC address. The DHCP



server provides the IP, along with the name of a net-
work boot file, which is /tftpboot/pxelinux.bin.
The client downloads and processes the boot file,
from which it obtains the name of the kernel to
boot, which is /tftpboot/bzImage. The kernel is
then downloaded and booted. During boot, the ker-
nel mounts its client file systems from the server.
The file systems for each client are created by LUI
and are stored in /tftpboot/<client IP>. The
clients also mounts /usr from the server, providing
access to the routines of LUI. The last item started
when the clients are processing their system startup
scripts is the LUI clone script. The clone script is
the installation workhorse, and is responsible for do-
ing the following:

1. partitions the disk as specified in the disk re-
source

2. mounts the newly created partitions on /mnt

3. chroots to /mnt and installs the RPMs specified
in the rpm resource

4. copies any source resources from the server to the
client

5. unmounts /mnt

Once clone completes, a client will show its login
prompt, at which time you will reboot the node and
let it do a standard boot from the hard drive.

After all the clients have completed their installa-
tion and have been rebooted from hard drive, the
final step of the wizard should be run. The final
step is responsible for completing the installation of
software and configuration of the cluster. Software
being installed or configured in this step includes
MPI, PVM, OpenSSH, rsh, C3, and PBS.

At this point, users should have a fully function-
ing cluster that is ready to run parallel jobs. To
make sure that everything is working as expected,
OSCAR provides a method to test the functionality
of the cluster once installed. The OSCAR Cluster
Test software can be used to make sure that MPI,
PVM, and PBS are working correctly.

4 Conclusions and Future Work

The developers of OSCAR have big plans for its fu-
ture. There are numerous other components we are
looking into adding to OSCAR, with the Local Area
Machine (LAM) version of MPI [11] and the Maui
scheduler as two requested additions under consid-
eration. We are also exploring options to provide an
easy to use single point configuration and increased
automation. In addition, we are looking to expand
the flexibility of OSCAR to make it easier to devi-
ate from our canonical cluster. For example, a user
should be able to easily omit installation of packages
they don’t plan to use.

In addition to the above specific plans, we are go-
ing to explore ways to extend OSCAR to a broader
range of clusters. For example, it might be nice to
use OSCAR for building high availability clusters.
Another possibility is to extend OSCAR to handle
diskless nodes.

The future goals for the project are quite hefty as
well. We would like to see OSCAR become a start-
ing point that companies will use to build supported
cluster software stacks. We want academia inter-
ested in tools-research to use OSCAR as the core
software upon which they build their software and
tools. Basically, computer scientists spend way too
much time re-inventing the wheel. We hope that
OSCAR can help put an end to this cycle - at least
in terms of the basic components of an open source
cluster.

5 Acknowledgements

OSCAR is the first project by the Open Cluster
Group [12], a collaboration between industry and
government partners aimed at providing a complete
open-source high performance clustering solution.

Members of the group who contributed to the de-
velopment and testing of OSCAR are as follows (or-
ganized by company/institution):

Dell: Yung-Chin Fang, Jenwei Hsieh, Tau Leng

IBM: Michael Chase-Salerno, Richard Ferri

Intel: Timothy Mattson



MSC Software: Joe Griffin, David Lombard

NCSA: Jeremy Enos, Neil Gorsuch, Robert Pen-
nington

ORNL: Michael Brim, Brian Luethke, Stephen
Scott

SGI: John Hesterberg

Veridian: Bhroam Mann

PBS includes software developed by NASA Ames
Research Center, Lawrence Livermore National
Laboratory, and Veridian.

6 References

[1] LUI, http://oss.software.ibm.com/lui

[2] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich

[3] PVM, http://www.csm.ornl.gov/pvm

[4] PBS, http://www.openpbs.org

[5] Maui High-Performance Batch Scheduler,
http://mauischeduler.sourceforge.net

[6] OpenSSL, http://www.openssl.org

[7] OpenSSH, http://www.openssh.com

[8] C3, http://www.csm.ornl.gov/torc/C3

[9] ”How to install an OSCAR cluster” by
The Open Cluster Group. Available at
http://www.csm.ornl.gov/oscar/papers.html.

[10] OSCAR, http://www.csm.ornl.gov/oscar

[11] LAM-MPI, http://www.lam-mpi.org

[12] The Open Cluster Group,
http://www.OpenClusterGroup.org


