Hotpluggable devices and the Linux kernel

Greg Kroah-Hartman
greg@kroah.com

Abstract

Hotpluggable devices are becoming more common
for portable computers, desktop computers, and em-
bedded systems. Linux has had support for PCM-
CIA devices for quite a while, but with the advent
of USB and Firewire devices today, and the needed
support for hot plug PCI in the future, the Linux
kernel has had to change to handle these new re-
quirements. In older kernels, devices were deter-
mined at boot time, or module load time, but now
the kernel has to handle devices coming and going at
any moment. It also needs to have a mechanism for
loading and unloading the drivers for those devices
automatically.

1 Introduction

Hotpluggable devices have been created to solve a
number of user needs. On laptop computers, PCM-
CIA devices were designed to allow the user to swap
cards while the computer was still running. This al-
lowed people to change network adaptors, memory
cards, and even disc drives without shutting down
the machine.

The success of this led to the creation of the USB
and IEEE-1394 (Firewire) buses. These designs al-
low for peripherals to be attached and removed at
any point. They were also created to try to move
systems away from the ISA bus, and to a fully ” Plug
and Play” type system.

From the operating system’s point of view, there
are many problems with hotplugging devices. In
the past, the operating system has to only search
for the various devices connected to it on power up,
and once seen the device never goes away. From the
view of the device driver, it never expects to have
the hardware that it is trying to control disappear.
But with hotpluggable devices, all of this changes.

Now the operating system has to have a mechanism
to constantly detect if a new device appears. This is
usually done by a bus specific manager. This man-
ager handles the scanning for new devices, and rec-
ognizes when a device has disappeared. It must be
able to create system resources for the new device,
and pass control off to a specific driver. The de-
vice driver for a hotpluggable device has to be able
to gracefully recover when the hardware is removed
and be able to bind itself to new hardware at any
moment.

This paper describes the new framework in the
Linux kernel for supporting USB and other hot-
pluggable devices. It will cover how the past imple-
mentation of PCMCIA loaded its drivers, and the
problems of that system. It will present the current
method of loading USB and PCI drivers, and how
it handles the user configuration issues better than
PCMCIA.

2 The Past

Linux has had support for PCMCIA since 1995.
In order for the PCMCIA core to be able to load
drivers when a new device was inserted, it had a
userspace program called cardmgr. The cardmgr
program would receive notification from the kernel’s
PCMCIA core when a device had been inserted or
removed and use that information to load or un-
load the proper driver for that card. It used a
configuration file located at /etc/pcmcia/config
to determine which driver should be used for which
card. This configuration file needed to be kept up
to date with the what driver supported which card,
or ranges of cards, and has grown to be over 1500
lines long. Whenever a driver author added support
for a new device, they have to modify two different
files to enable the device to work properly.

As the USB core code became mature, the group
realized that it too needed something like the PCM-

CIA system to be able to dynamically load and
unload drivers when devices were inserted and re-
moved. The group also noted that since USB and
PCMCIA both needed this system, and that other
kernel hotplug subsystems also would use such a sys-
tem, a generic hotplug core would be useful. David
Brownell posted an initial patch to the kernel[2], en-
abling it to call out to a userspace program called
/sbin/hotplug. This patch was eventually ac-
cepted, and other subsystems were modified to take
advantage of it. Then, as the maintaining of an
external configuration file describing which drivers
worked for which devices started to become bur-
densome, a method of automatically creating the
configuration data from the drivers themselves was
implemented.

3 /sbin/hotplug

The kernel hotplug core provides a method for the
kernel to notify userspace that something has hap-
pened. It does that by calling the executable listed
in the global variable hotplug_path. When the ker-
nel starts, hotplug_path is set to /sbin/hotplug
but this can be changed by the user by mod-
ifying the value at /proc/sys/kernel/hotplug.
/sbin/hotplug is executed by the kernel function
call_usermodehelper][3].

As of kernel 2.4.4, this /sbin/hotplug method is
being used by the PCI, USB and Network core sub-
systems. As time goes on, more subsystems will be
converted to use it (patches are already available for

SCSL)

The PCI, USB, and Networking subsystems all
call /sbin/hotplug with different environment vari-
ables set, depending on what action has just oc-
curred.

3.1 PCI

PCI devices call /sbin/hotplug with the following
arguments:

argv [0] = hotplug_path
argv [1] = "pci"
argv [2] =0

And the environment is set to the following:

HOME=/

PATH=/sbin:/bin:/usr/sbin:/usr/bin
PCI_CLASS=class_code

PCI_ID=vendor:device
PCI_SUBSYS_ID=subsystem_vendor:subsystem_device
PCI_SLOT_NAME=slot_name

ACTION=action

Where action is "add” or "remove” depending on if
the device is being inserted or removed from the sys-
tem, and class_code, vendor, subsystem_vendor,
subsystem_device, and slot_name represent the
numerical values for the PCI device’s information.

3.2 USB

USB devices call /sbin/hotplug with the following
arguments:

argv [0] = hotplug_path
argv [1] "usb"
argv [2] =0

And the environment is set to the following:

HOME=/

PATH=/sbin:/bin:/usr/sbin:/usr/bin

ACTION=action
PRODUCT=idVendor/idProduct/bcdDevice
TYPE=device_class/device_subclass/device_protocol

Where action is "add” or "remove” depend-
ing on if the device is being inserted or re-
moved from the system, and idVendor, idProduct,
bcdDevice, device_class, device_subclass and
device_protocol are filled in with the information
from the USB device’s descriptors.

If the USB device’s deviceClass is 0 then the envi-
ronment variable INTERFACE is set to:

INTERFACE=class/subclass/protocol

If the USB subsystem is compiled with the
usbdevfs filesystem enabled, the following environ-
ment variables are also set:

DEVFS=/proc/bus/usb
DEVICE=/proc/bus/usb/bus_number/device_number

Where bus_number and device_number are set to
the bus number and device number that this specific
USB device is assigned.

3.3 Network

The network core code also calls /sbin/hotplug
whenever a network device is registered or
unregistered with the network subsystem[6].
/sbin/hotplug is called with the following
arguments when called from the network core:

argv [0] = hotplug_path
argv [1] = "net"
argv [2] =0

And the environment is set to the following:

HOME=/
PATH=/sbin:/bin:/usr/sbin:/usr/bin
INTERFACE=interface

ACTION=action

Where action is "register” or "unregister” de-
pending on what happened in the network core, and
interface is the name of the interface that just had
the action applied to itself.

3.4 simple example

/sbin/hotplug can be a very simple script if you
only want it to control a small number of devices.
For example, if you have a HandSpring Visor that
you do not want to compile the module into the
kernel to save memory, yet you would like the mod-
ule to be automatically loaded whenever the device
is plugged in and unloaded whenever the device is
removed, the following script would be sufficient:

#!/bin/sh
if ["$1" = "usb"]; then
if ["$PRODUCT" = "82d/100/0"]1; then
if ["$ACTION" = "add"]; then
/sbin/modprobe visor
else

/sbin/rmmod visor

fi
fi
fi

If you want to add support for a USB Bluetooth
device the script could be modified to look like:

#!/bin/sh
if ["$1" = "usb"]; then
if ["$ACTION" = "add"]; then
PROGRAM="/sbin/modprobe"
else
PROGRAM="/sbin/rmmod"
fi
if ["$PRODUCT" = "82d/100/0"]; then
$PROGRAM visor
exit O;
fi
if ["$INTERFACE" = "e0/01/01"]; then
$PROGRAM bluetooth
exit O;
fi
fi

4 Need for automation

The previous small example shows the limitations
of being forced to manually enter in all of the dif-
ferent device ids, product ids, and such in order to
keep a /sbin/hotplug script up to date with all of
the different devices that the kernel knows about.
Instead, it would be better for the kernel itself to
specify the different types of devices that it supports
in such a way that any userspace tools could read
them. Thus was born a series of complex macros
that are used by all USB and PCI drivers. These
macros describe which devices each specific driver
can support. At compilation time, the build pro-
cess extracts this information out of the driver, and
builds a table. The table is called modules.pcimap
and modules.usbmap for all PCI and USB devices
respectively. How to use these table’s data will be
described in section 5.

For example, the following code snippet from
drivers/usb/uhci.c[8]:

static const struct pci_device_id
__devinitdata uhci_pci_ids[] = { {

/* handle any USB UHCI controller */

class: ((PCI_CLASS_SERIAL_USB << 8)

| 0x00),

class_mask: -0,

/* no matter who makes it */

vendor: PCI_ANY_ID,
device: PCI_ANY_ID,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,

}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE (pci, uhci_pci_ids);

causes this line to be added to the modules.pcimap
file:

uhci Oxffffffff Oxffffffff Oxffffffff Oxffffffff 0x000c0300 Oxffffffff 0x00000000

As the example shows, a PCI device can be specified
by any of the same paramaters that is passed to the
/sbin/hotplug program.

A USB device can specify that it can accept
only specific devices such as this example from
drivers/usb/serial/whiteheat.c[9]:

static __devinitdata struct
usb_device_id id_table_combined [] = {
{ USB_DEVICE (CONNECT_TECH_VENDOR_ID,
CONNECT_TECH_WHITE_HEAT_ID) },
{ USB_DEVICE(CONNECT_TECH_VENDOR_ID,

CONNECT_TECH_FAKE_WHITE_HEAT_ID)

{ } /* Terminating entry */
};

MODULE_DEVICE_TABLE (usb, id_table_combined);

which causes the following lines to be added to the
modules.usbmap file:

whiteheat 0x0003 0x0710 0x8001 0x0000 0x0000 0x00 0x00 0x00 0x00 0x00 0x00 0x00000000
whiteheat 0x0003 0x0710 0x0001 0x0000 0x0000 0x00 0x00 0x00 0x00 0x00 0x00 0x00000000

or it can specify that it accepts any device that
matches a specific USB class code, as in this ex-
ample from drivers/usb/bluetooth.c[l]:

static struct usb_device_id
usb_bluetooth_ids [] = {
{ USB_DEVICE_INFO(WIRELESS_CLASS_CODE,
RF_SUBCLASS_CODE,
BT_PROTOCOL_CODE) 3,
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, usb_bluetooth_ids);

which causes the following line to be added to the
modules.usbmap file:

bluetooth 0x0070 0x0000 0x0000 0x0000 0x0000 Oxe0 0x01 0x01 0x00 0x00 0x00 0x00000000

Again these USB examples show that the informa-
tion in the modules.usbmap file matches the infor-
mation provided to /sbin/hotplug by the kernel,
enabling /sbin/hotplug to determine which driver
to load without relying on a hand generated table,
like PCMCIA relies apon.

5 How automation works

The macro MODULE_DEVICE_TABLE[5] automatically
creates two variables. For the example:

MODULE_DEVICE_TABLE (usb, usb_bluetooth_ids);

the wvariables __module_usb_device_size and

_module_usb_device_table are created.
_module_usb_device_size contains the value
of the size of the struct usb_id structure,

and _module_usb_device_table points to the
usb_bluetooth_ids structure.

}The usb_bluetooth_ids variable is an array of

usb_id structures, with a terminating NULL struc-
ture at the end of the list. The individual structure
is filled with one of the following macros:

USB_DEVICE(vendor_id, product_id)
USB_DEVICE_VER(vendor_id,product_id, low, high)
USB_DEVICE_INFO(class, subclass, protocol)
USB_INTERFACE_INFO(class, subclass, protocol)

which fills up the usb_id with the proper device,
class, or interface class information, depending on
what the driver supports.

When the depmod program is run, as part
of the kernel installation process, it goes
through every module looking for the symbol
_module_usb_device_size to be present in the
compiled module. If it finds it, it copies the
data pointed to by the __module usb_device_table
symbol into a structure, extracts out all of the infor-
mation, and writes it out to the modules.usbmap file
in the module root directory. It does the same thing

while looking for the __module pci_device_size in
creating the modules.pcimap file.

With the kernel module information exported to
these files modules.usbmap and modules.pcimap
our version of /sbin/hotplug can look like the fol-
lowing example:

#!/bin/bash

declare -i usb_idVendor
declare -i usb_idProduct

MAP=/1ib/modules/ ‘uname -r‘/modules.usbmap

usb_map_modules ()

IFS=/

set $PRODUCT °°
usb_idVendor=$1
usb_idProduct=$2
IFS="$DEFAULT_IFS"

usb_map_modules < $MAP

if ["$ACTION" = "add"]; then
PROGRAM="/sbin/modprobe"
else
PROGRAM="/sbin/rmmod"
fi

for MODULE in $DRIVERS
do
$PROGRAM $MODULE
done
fi

The Linux-Hotplug project has created a set of
scripts that covers all of the different subsystems
that can call /sbin/hotplug enabling drivers to
be automatically loaded, and network subsystems
started up and shut down. These scripts are re-
leased under the GPL and available at

http://linux-hotplug.sourceforge.net/

This package is currently being used in the RedHat
and Debian releases.

6 Future

if [0x0002 -eq $(($match_flags & 0x0002))] &&The current /sbin/hotplug subsystem needs to be

{
convert the usb_device_id fields to
integers as we read them
local line module
declare -i match_flags
declare -i idVendor idProduct
look at each usb_device_id entry
collect all matches in $DRIVERS
while read line
do
case "$line" in
\#*) continue ;;
esac
set $line
module=$1
match_flags=$2
idVendor=$3
idProduct=$4
: checkmatch $module
: idVendor $idVendor $usb_idVendor
if [0x0001 -eq $(($match_flags & 0x0001))] &&
[$idVendor -ne $usb_idVendor]; then
continue
fi
: idProduct $idProduct $usb_idProduct
[$idProduct -ne $usb_idProduct]; then
continue
fi
It was a match!
DRIVERS="$module $DRIVERS"
: drivers $DRIVERS
done
}

if ["$1" = "usb"]; then

incorporated into other kernel systems, as they de-
velop hotplug capability. SCSI, PCMCIA, IDE, and
other systems all have hotplug patches available for
kernel support, but need to have script support, ker-
nel macro support, and modutils depmod support
added in order to provide the user with a consistent
experience. Patches for kernel support of hotplug
PCI and cPCI drivers need to take advantage of the
current /sbin/hotplug interface and get integrated
into the main kernel tree.

7 Acknowledgments

I would like to thank David Brownell who wrote the
original /sbin/hotplug kernel patch, and most of
the linux-hotplug scripts. Without his persistence,
Linux would not have this user friendly feature. I
would also like to acknowledge the entire Linux USB
development team, who have provided a solid kernel
subsystem in a relativly short ammount of time.

References

[1] http://lxr.linux.no/source/drivers/usb/bluetooth.c

[2] David Brownell,
Updated ”Kernel USBD” patch,
http://marc.theaimsgroup.com/?1=1linux-usb-devel&m=96334011602320

[3] http://lxr.linux.no/ident?i=call usermodehelper
[4] http://lxr.linux.no/ident?i=hotplug path

[6] http://lxr.linux.no/ident?i=MODULE DEVICE TABLE
[6] http://lxr.linux.no/ident?i=net_run_sbin hotplug
[7] http://lxr.linux.no/ident?i=net_run_sbin hotplug
[8] http://lxr.linux.no/source/drivers/usb/uhci.c

[9] http://lxr.linux.no/source/drivers/usb/serial/whiteheat.c

