
DirectX and Wine

Andrew Lewycky andrew@transgaming.com
and Gavriel State gav@transgaming.com

July 16, 2001

Abstract

The Wine project is an ambitious attempt to cre-
ate an open implementation of the Win32 API and
runtime environment for Linux and other Unix-like
systems. This paper covers the issues surrounding
the implementation of the DirectX family of multi-
media APIs within Wine, with an emphasis on the
implementation of Direct3D via OpenGL and recent
GL extensions supported by current Linux drivers.

We also provide a background introduction to some
of the underlying Wine features that make our work
possible. These include the Portable Executable
loader, Wine’s implementation of COM, and Wine’s
modular graphics driver architecture.

1 Introduction to Wine

Wine allows Unix systems to run Windows pro-
grams. It supports two execution models: the bi-
nary loader and the compatibility library.

The binary loader allows the user to run Windows
binaries directly. It is capable of loading Portable
Executable (PE) formatted EXE and DLL files.

The compatibility library model can be used to com-
pile Windows programs from source to create new
native Unix programs. A replica of the Windows
SDK is provided for developers.

Both models supply an implementation of the Win-
dows API as a set of ELF format shared libraries,
with a mapping from Windows DLLs to shared li-
brary.

2 Binary Loader

2.1 Portable Executables (PE)

32-bit Windows executables (including DLLs) are
stored in the Portable Executable format, a deriva-
tive of COFF. PE has features roughly equivalent
to the widely used ELF format.

For more on the PE object file format, see
http://msdn.microsoft.com/library/specs/
msdn_pecoff.htm or http://msdn.microsoft.
com/library/techart/msdn_peeringpe.htm. For
more on COFF see http://www.delorie.com/
djgpp/doc/coff/.

2.1.1 Relocation and PIC

While Windows guarantees that all EXEs are always
loaded at the same virtual address it cannot do the
same for DLLs. 1 Instead each DLL has a base ad-
dress, indicating the address that it can be loaded
at most efficiently. If it is loaded at another address,
it will need to be relocated.

PE DLLs don’t use position independent code. In-
stead they have a fixup table listing all locations
in the DLL image that depend on the load address.
(For example, addresses of global variables.) The
PE loader computes the difference between the the
DLL base address and actual load address, and ap-
propriately modifies the executable image at run-
time.

Because there isn’t a dedicated PIC register, this
scheme avoids any run-time penalty. However, there
can be a large load-time penalty if the DLL is not
loaded at its base address. The usual cause for this

1ELF is the same in this regard.
1

is that all DLLs have the the same default base ad-
dress. Microsoft provides a tool for “rebasing” a DLL
and it is widely used.

In Windows the fixup modifications take place when
the kernel loads executable pages from disk. In
Wine, the modifications take place globally when
an image is loaded, making it impossible to use
mmap to load images that need relocation. A wine-
server kernel module is under development that
can perform the fixups when a page is faulted in,
amongst other features. See http://cvs.winehq.
com/cvsweb/kernel-win32/.

2.1.2 Dynamic Linking

In PE, symbols are considered as (DLL, name) pairs,
so different DLLs can define distinct symbols with
the same name. Names that are not explicitly ex-
ported or imported from a DLL are considered local
and are only resolved from within that DLL.

PE also provides a rarely-used feature for importing
symbols by “ordinal” (a numeric index) instead of
by name.

Once the imported symbols have been found, their
addresses are written into the Import Address Ta-
ble. The code and data sections are not modified
during dynamic linking. Thus it’s impossible to
statically initialize pointers with the addresses of
imported data. For function pointers, the address
of a thunk is used instead.

2.2 ELF

2.2.1 ELF binaries

When a Windows program is compiled against the
Wine SDK, it is linked by gcc into an ELF shared
library, but dynamically loaded by the same ELF
executable that contains the PE binary loader. The
DLLs created by Wine are similarly compiled into
ELF shared libraries.

It should be noted that there is no significant per-
formance benefit to loading ELF binaries instead of
PE binaries. The most significant advantages of us-
ing ELF are portability to non-x86 CPUs, and the
ease of debugging ELF binaries with gdb.

2.2.2 .spec files and name resolution

In order to simulate PE DLLs using ELF shared li-
braries, we need to work around the difference in
how names are resolved. Unlike PE, ELF assumes
that there is only a single instance of each symbol
name across all loaded libraries. If multiple libraries
define the same symbol then the first version loaded
overrides the others.

Hence the ELF dynamic linker cannot be used to
resolve imported symbols. Instead Wine ELF DLLs
are created through a complicated linking process
that essentially disables the ELF dynamic linker and
stores enough information in the ELF shared library
that Wine can perform PE-style dynamic linking
when it is loaded. This also allows Wine to mix and
match its own “built-in” ELF format DLLs with
“native” Windows DLLs

Each project needs a .spec file that contains a list
of DLLs that symbols can be imported from. The
winebuild tool scans the .o files to determine what
symbols will need to be imported. It then scans the
DLLs to determine which DLL provides that symbol.

Based on this information, winebuild generates a
.spec.c file that is compiled and included in the
final link. For each imported symbol, the .spec.c
file has the name of the DLL from which it is taken,
an element in the Import Address Table that will be
filled in with the symbol’s address at run-time, and
a call thunk that redirects the call to the address in
the import address table.

The program is then linked with the -Bsymbolic
flag. This tells the ELF dynamic linker to prefer
symbols within the that shared object to those pro-
vided by other shared objects, causing any refer-
ences to an imported symbol to be linked to the call
stub.

Finally at runtime, Wine fills in the imported ad-
dress table, so that the call stubs will use the correct
addresses.

3 COM for Wine

3.1 COM Introduction

COM is Microsoft’s Component Object Model. It
provides a mechanism for making method calls on
objects that is independent of language or platform.

Object are accessed through interfaces that are de-
fined in an “Interface Definition Language” that is
roughly programming-language independent. COM
defines a binary interface (i.e. the vtable layout and
calling convention) that is used when the object is in
the same address space as its caller, and a network
protocol that is defined in terms of DCE for when
the the caller and object are in different processes
or on different computers.

COM requires that all objects support some basic
object lifecycle capabilities. All COM objects can be
instantiated by calling CoCreateInstance and they
must support the IUnknown interface. IUnknown
provides methods that are used to maintain a refer-
ence count for the object. Once the reference count
reaches 0, the object destroys itself. The other key
IUnknown feature is IUnknown::QueryInterface,
which can be used to access other interfaces sup-
ported by the object.

Many new APIs developed by Microsoft are defined
in terms of COM objects. Major examples are the
shell interfaces, ADO and DirectX.

3.2 Wine COM capabilities

Wine support for COM is currently quite limited.
Wine supports only the most basic COM functional-
ity: the implementation of interfaces that are binary
compatible with the COM vtable standard, and the
CoCreateInstance object instantiation mechanisms.
CoCreateInstance makes use of the Windows reg-
istry to match a unique interface identifier known
as a GUID, or Globally Unique Identifier to the DLL
that contains the interface implementation.

Wine only supported so called “in-process” COM.
In other words, creating and using objects only
within the address space and other context of a
single process. Wine does not implement the mar-
shalling of data for method calls to objects in other

processes, or across a network. This is a signifi-
cant issue for Wine because certain popular Win-
dows installers make use of “out-of-process” COM
to separate the underlying installer engine from in-
dividual installers. Thus, until Wine implements
marshalling, there will be significant issues for users
wishing to install certain off-the-shelf applications
in Wine.

3.3 COM implementation

The most critical issue for implementing COM in-
terfaces in Wine is the need to have an exact match
with the COM vtable format. For a wide variety
of reasons, Wine is implemented entirely in C, and
does not use C++ at all. As such, Wine mimics
the COM vtable format using simple arrays of func-
tion pointers. A complex macro system is used in
the Wine headers to allow access to COM interfaces
from both C code and C++ code.

Use of COM interfaces as though they were standard
C++ objects is complicated by a serious issue. The
vtable format used by COM interfaces is not the
same format that is used by default in g++. g++
vtables include initial pointers to dynamic typing
information and exception tables that are located
elsewhere in the COM vtable format.

Fortunately, recent versions of g++ have added
compatibility support for the COM vtable format,
through the use of the com_interface attribute in
a class or structure definition. Use of this attribute
allows WineLib applications to have direct use of
COM objects, making it possible for many such
programs to compile in g++ with minimal source
changes.

The various COM interfaces for objects imple-
mented in Wine are often aggregated into a sin-
gle underlying implementation object. For example,
Wine uses one implementation object to implement
four different versions of the IDirectDraw series of
interfaces. The latest interface - IDirectDraw7 -
is implemented directly, and previous versions are
implemented in terms of the latest version of the
interface wherever possible. In addition to the
IDirectDraw interfaces, the same implementation
object also implements the IUnknown interface, as
well as the IDirect3D series of interfaces. C macros
take the place of C++ style static cast operators
within the implementation of the thunks.

4 Wine Graphics and Windowing
Driver Architecture

Two of the most important functions of any GUI
system such as Windows are low-level graphics, and
window management. In Windows these are han-
dled by the GDI and USER subsystems, respec-
tively. Wine provides a flexible back-end driver ar-
chitecture that allows GDI and USER to be imple-
mented on top of the graphical interface system of
choice for the platform. Currently, only the X11
back-end is fully supported, though an experimental
TTY back-end has also been implemented. In the
future, graphics systems such as Apple’s MacOS X
Quartz API could be supported as well.

In the Win32 API both low-level objects used to
represent graphics context and state information,
and high-level objects representing windows, menus,
controls, and such are managed through opaque
“handles”. Applications using the API have no ac-
cess to the underlying structures used to implement
the objects, thus giving the system a certain amount
of object-oriented abstraction. This abstraction has
proven useful to Microsoft, allowing them to have
compatibility across operating systems such as Win-
dows 95 and Windows NT, despite the wide under-
lying differences between them. This abstraction is
similarly useful to Wine.

The most important of these handle-based object
are HWNDs and HDCs, which represent windows
and graphics contexts, respectively. HWND ob-
jects are handled by the window driver, through
the USER subsystem, while HDCs and several as-
sociated objects such as HBITMAPs, HBRUSHes,
and HPENs are handled by one of several back-end
graphics drivers through the GDI subsystem.

¿From the DirectX perspective, both the graphics
and windowing drivers are key - DirectX needs to
know which window to draw into, and must also
make use of key graphics driver-related objects such
as HBITMAPs.

4.1 Window Driver

The window driver is used by USER to actually im-
plement windowing, event handling, the clipboard
and some miscellaneous other functions.

Microsoft’s Windows does not have window drivers.
The only implementation is provided directly within
the USER DLL, making direct use of GDI for render-
ing the outward look and feel of its windows. Since
in the future, Wine may support windowing systems
other than X11, the Wine version of USER imple-
ments an indirection layer to pass requests to the
window driver.

For example, when the USER function
CreateWindowEx is called, the Wine USER
code initializes the high-level structure behind the
opaque HWND object, and then calls the window
driver to perform the low-level duties.

Unlike in many other GUI systems, Windows
HWNDs are used to represent both top-level user-
controllable windows as well as control objects such
as buttons, scroll bars, and menus within a top-
level window. Since Wine windows must co-exist
with the X11 windowing environment, special case
code is required in the X11 window driver to force
top-level windows (children of the Windows “Desk-
top” HWND) to be treated differently. This code
optionally allows the X11 Window Manager to han-
dle functions such as moving, resizing, and drawing
the window border.

Thus, when creating a new window, the X11 win-
dow driver must determine whether the window to
be created is a top-level window. If it is, the XLib
XCreateWindow function is called to create the win-
dow.

Similarly, when X11 events are received, they are
translated into the equivalent Windows messages,
and deposited into the Windows event queue.

4.2 Graphics Drivers

Graphics drivers are used by GDI to implement all
rendering in the system. There are a wide variety
of graphics drivers, for several different purposes -
the X11 driver is used to perform drawing to the
screen and to off-screen bitmap objects. Wine also
supports graphics drivers that output PostScript
for printing, as well as WMF and EMF graphics
metafiles.

These drivers are also present under windows and
have similar responsibilities. In fact, Wine includes
a thunking layer that can actually load and use na-

tive 16-bit Windows printer drivers to drive local
printers.

As an example, consider X11DRV Rectangle which
implements the GDI Rectangle API call in the X11
driver, drawing a rectangle with a border and a
filled interior. The API takes an HDC identifying
the device context that refers to a “pen,” object
which stores line-drawing attributes, and a “brush,”
object which stores area-filling attributes. In X-
Windows, pens and brushes don’t exist, instead the
GC (“graphics context,” a concept very similar to an
HDC) possesses these attributes itself. Thus when the
pen associated with an HDC changes, the GC must be
updated.

X11DRV Rectangle proceeds roughly as follows:

• the rectangle coordinates are converted from
logical coordinates to world coordinates using
the viewport transform.

• the coordinates are checked to ensure they are
in the correct order, i.e. with left less than
right.

• special computations for the PS INSIDEFRAME
pen style are performed. This style is not sup-
ported by X but can easily be emulated by ad-
justing the pen’s geometry.

• if rendering into a DIBSection, the DIBSection
is locked, potentially requiring resynchroniza-
tion. More information on DIBSections can be
found below.

• the HDC’s brush settings are copied into into the
GC.

• XFillRectangle is called to draw the rectan-
gle’s interior.

• the HDC’s pen settings are copied into the GC.

• XDrawRectangle is called to draw the rectan-
gle’s outline.

• if rendering into a DIBSection, the DIBSection
is unlocked, and marked as having been modi-
fied by GDI. More information on DIBSections
can be found below.

4.2.1 HBITMAPS, DIBs and DIBSections

GDI supports two kinds of bitmaps - device depen-
dent bitmaps, and device independent bitmaps. De-

vice dependent bitmaps are handled entirely in the
graphics driver, and are referenced by applications
through opaque HBITMAP handles. HBITMAP
objects are very fast to work with, since a driver can
theoretically store them in video memory. Applica-
tions never have direct access to the bitmap data in
an HBITMAP. And finally, HBITMAP objects can
be selected into special HDCs, allowing applications
to make GDI rendering calls.

By contrast, device independent bitmaps, or DIBs,
are managed directly by application code. Applica-
tions are responsible for allocating and deallocating
memory for them, and for ensuring that bitmap data
is stored in a format consistent with the standards
set out in documentation. There are a variety of
different parameters for DIBs, allowing applications
to specify whether the image data is in top-down or
bottom-up format, color-mapped or true-color, or
even compressed. Only application code can make
modifications to DIB data directly.

While these two kinds of bitmaps have close ana-
logues in X - as XPixmaps and XImages, respec-
tively - GDI also supports a combination of the
two, known as a “DIBSection”. A DIBSection is an
HBITMAP that also allows direct application ac-
cess to image data. While this is similar to a shared
memory XPixmap, the DIB data formats are not
directly interchangeable with the XPixmap formats
supported by most X Servers. This results in some
severe complications for Wine’s X11 graphics driver.

In order to support DIBSections, the X11 driver rep-
resents DIBSections with both an HBITMAP, rep-
resented internally by an XPixmap, and with a DIB
and an associated shared memory XImage. The
DIB data and the XPixmap data are kept in sync
automatically. This synchronization uses memory
protection mechanisms to keep track of when the
DIB data has been modified by application code.
The modified data is copied to the XPixmap be-
fore any GDI rendering calls are made. Similarly, if
the DIBSection has been modified by GDI render-
ing calls, at the next application access to the data,
it is copied from the XPixmap to the DIB.

In the future, it may be possible to improve DIBSec-
tion rendering performance by introducing a graph-
ics driver that can rasterize directly to a DIB, with-
out using any XLib calls at all. This will eliminate
much of the data format conversion overhead that
exists with the current architecture.

DIBSections play a key role in the Wine implemen-
tation of DirectX, as we shall see below.

5 DirectX

DirectX is a blanket name for a number of APIs cov-
ering a wide range of game and multimedia related
functions, including 2D and 3D graphics, sound, in-
put, and networking. Wine implements almost all
of these APIs to one degree or another, though cur-
rently only up to version 7 of DirectX. DirectX 8,
introduced by Microsoft to support the features of
their new X-Box game console, is not yet supported.

Discussing the details of each of the DirectX APIs is
well beyond the scope of this document. Instead, we
shall focus specifically on the 2D and 3D graphics
APIs - DirectDraw and Direct3D - which have re-
cently been extensively rewritten by TransGaming
Technologies.

All the DirectX APIs make extensive use of COM.
Using the APIs generally involves creating COM ob-
jects and requesting a known interface. In this fash-
ion, upgraded versions of the API can be introduced
which expose both newer and older interfaces.

5.1 DirectX Graphics Architecture and
the X11 HAL

Several key COM interfaces make up the bulk of the
DirectX graphics APIs: IDirectDraw, IDirect3D,
IDirectDrawSurface, and IDirect3DDevice.

Each of these interfaces, and the way in which they
are implemented in Wine, are discussed in detail
below.

Underpinning all of the implementations of these
interfaces is the DirectDraw Hardware Abstraction
Layer, or HAL. In Windows, the HAL is effectively a
driver interface, used to provide a way to implement
a common graphics API across a large number of
different hardware devices. Wine too, uses the HAL
architecture, but to provide an abstract interfaces to
lower-level software systems, rather than hardware.
The HAL interface is exposed by the X11 graphics
driver as a dispatch function that the higher-level
DirectDraw code makes use of.

Some examples of the functions that are handled
in the HAL layer are: Device resolution switching,
setting hardware gamma parameters, and glX con-
text management. The HAL architecture allows us
to abstract the use of the X11 DGA extensions to
change device modes - the core DirectDraw code
never needs to know anything about what must be
done to set up DGA. If DGA is not available, the
X11 HAL simply tries to use the XF86VidMode ex-
tension to re-size the viewable portion of the screen.

5.2 IDirectDraw and IDirect3D

The core of the DirectX API system is the Direct-
Draw object. All other objects that are needed for
both 2D and 3D graphics are created through the
use of COM interfaces exposed by the DirectDraw
object. In addition to several different versions
of the IDirectDraw interface, a DirectDraw object
can expose other COM interfaces as well, such as
IDirect3D, which is used to create Direct3DDevice
objects, which in turn provide the key 3D API for
DirectX. The other objects that can be created from
an IDirectDraw interface include DirectDrawSur-
face objects, used to manage 2D surfaces, texture
maps and more, DirectDrawClipper objects, which
can be used to perform clipping during drawing op-
erations such as blitting, and so on.

In addition to methods used to create other ob-
jects, the DirectDraw object is also responsable for
manipulating the display device. It is used to as-
sociate an HWND with the display device, to get
information about available video modes and the
amount of memory remaining on the graphics card,
and of course to set the resolution and color-depth
of the display. For many of these operations, the
Wine DDRAW DLL calls downward to the X11 HAL
driver, to isolate itself from platform dependencies.

A DirectDraw object is created by using the
DirectDrawCreate or DirectDrawCreateEx func-
tions, which are exported from the DDRAW DLL.
These functions take a GUID parameter that speci-
fies which DirectDraw object to create - there can be
several, representing different drivers that the sys-
tem has available, or perhaps different modes for a
single driver. The result will be a COM interface
pointer which can then be queried for further inter-
faces, such as IDirect3D, and used to produce other
objects, such as DirectDrawSurfaces.

In order to choose the most appropriate kind
of DirectDraw object to create, an applica-
tion will generally call DirectDrawEnumerate or
DirectDrawEnumerateEx beforehand. These func-
tions are supplied with a callback, and allow the
application to evaluate the suitability of each avail-
able DirectDraw object. DirectX 7 applications
which care about 3D will use the callback to test
the feature-set of 3D devices available through the
DirectDraw object. This is done by creating a tem-
porary DirectDraw object from the GUID passed
to the callback, querying for an IDirect3D7 inter-
face, enumerating the available Direct3DDevice ob-
jects using IDirect3D7::EnumDevices, and evalu-
ating the features of each such device object in a
further callback.

5.3 IDirectDrawSurface

IDirectDrawSurface encapsulates a 2D image and
is used to represent the screen (“primary”) sur-
face, back buffers, overlays, off-screen sprites, tex-
ture maps and depth buffers. It also is used with
two special cases: execute buffers and vertex buffers,
which are not images, but store other data in arrays.

Surfaces can be accessed through the Lock method
for direct access to the surface data using a pointer,
and the GetDC method which allows GDI APIs to
render to the surface. This combination of access
methods is already supported by DIBSections, so in
Wine they are used to provide most of the surface
implementation.

Calls to Lock and GetDC must be balanced with calls
to Unlock and ReleaseDC respectively. This forms
the system by which special surfaces such as primary
surfaces are kept synchronized with the entity they
actually represent. In the case of primary surfaces,
when Unlock is called, the image contents are copied
to the screen - but not immediately.

If the primary surface was copied to the screen im-
mediately, there would be considerable overhead for
programs that frequently lock and unlock the sur-
face. Instead, the surface is simply marked as be-
ing in need of a refresh, and a background thread
copies it to the screen as often as possible. The
main thread thus never has to wait for an unlock
operation to be completed.

Other types of surfaces are also synchronized simi-

larly - for example, while all 3D applications need
a depth-buffer to provide hidden surface removal,
few need to directly read or write to the buffer.
For those that do, the Wine Z-Buffer surface imple-
mentation will automatically synchronize with the
OpenGL depth buffer as needed, though at a poten-
tially significant performance cost.

5.4 IDirect3DDevice

IDirect3DDevice is the key Direct3D interface as
it contains the methods that are used to make
changes to the 3D graphics state, apply transfor-
mations, and ultimately, render polygons. The
IDirectDrawSurface interface is still important be-
cause it is used to access the display surface and
backbuffers that IDirect3DDevice draws into, as
well as the texture data for the polygons being
drawn. In fact, Direct3D programs often deal with
more surfaces than 2D-only programs.

The IDirect3DDevice interfaces are implemented
in Wine through calls to OpenGL. This allows the
Wine implementation of Direct3D to take advantage
of hardware accelleration, if it exists. In many cases,
Wine is able to execute Direct3D code on top of
OpenGL almost as quickly as Windows Direct3D
using native Direct3D drivers.

5.4.1 IDirect3DDevice::DrawPrimitive

There are a variety of different ways in which
to draw using IDirect3DDevice, all of which
are variants of the simplest such mechanism:
IDirect3DDevice::DrawPrimitive. This method
take a pointer to an array of vertices and some in-
formation to tell it how to interpret the vertex data.
The vertex data is stored in a packed format con-
taining all the attributes for each vertex in turn.
A set of flags specifies what attributes are present.
These flags can also have side-effects. For example:
if a vertex normal is present then lighting is enabled,
otherwise the vertex is considered to be pre-lit.

A simple example with an untextured triangle that
will be transformed and lit by Direct3D illustrates
this in listing 1.

Parameters to DrawPrimitive indicate that each
vertex has position, normal and diffuse colour at-
tributes. The data is stored in a user-defined struc-

stat ic const struct
{

D3DVALUE x , y , z ; // p o s i t i o n
D3DVALUE nx , ny , nz ; / / normal
D3DCOLOR co lour ; // d i f f u s e co l our
} v e r t i c e s [3] =
{
{ { 0 , 5 , 0 } , { 0 , 0 , 1 } ,

RGBA MAKE(2 5 5 , 0 , 0 , 2 5 5) } ,
/ ∗ . . . remaining two v e r t i c e s ∗/

} ;

pd3dDevice−>DrawPrimitive (
D3DPT TRIANGLES,
D3DFVF XYZ | D3DFVF NORMAL |
D3DFVF DIFFUSE,
v e r t i c e s , 3 , 0) ;

Listing 1: Pseudocode to render an un-
transformed, un-lit triangle using Direct3D.

ture, with the order and C type of the attributes
defined by the Direct3D API.

Internally, a “strided” representation is used in
which each attribute is considered to be stored in
a separate array. The array elements are not con-
tiguous, instead they are separated by a constant
distance known as the stride. This representation
can be computed from the flags indicating which
vertex attributes are present.

If the D3DFVF XYZRHW flag is used instead of
D3DFVF XYZ | D3DFVF NORMAL, then the vertices
have already been transformed by the application,
so the transform must be disabled. OpenGL always
performs some transform, so in this case Wine tem-
porarily loads an identity transform.

When vertices including colour data are used, a seri-
ous problem is encountered. OpenGL requires that
the colour components are in red, green, blue, al-
pha order, while Direct3D requires them in blue,
green, red, alpha order. To circumvent this prob-
lem, Wine copies the colour data to a shadow buffer
and switches the components; Wine then passes the
shadow buffer to OpenGL instead of the original
colour data.

The strided representation is then used to set up
the other OpenGL attribute arrays, containing ver-
tex data, texture coordinates, etc. glDrawArrays is
then called to render the vertices.

If the D3DFVF NORMAL flag is used and lighting is

on, then the vertices must be lit by OpenGL. Be-
cause Direct3D allows a more flexible mapping from
vertex colours to material colours, the colour data
for each vertex has to be processed individually,
thus making it impossible for Wine to use the
glDrawArrays call. The other attribute arrays are
still used since OpenGL permits immediate and ar-
ray data to be mixed.

In the future, Wine will check for certain special
cases that can be exploited to allow for the use of
glDrawArrays even with vertices requiring lighting
in the near future. TransGaming Technologies is
also exploring the possibility of creating a simple
OpenGL extension that would make material colors
as flexible as those in Direct3D.

5.4.2 Texture State States and Render
States

Texturing in Direct3D is performed in sequential
stages. Each stage is split into colour and alpha
components. Each component has two inputs, each
chosen from one of: the output of the previous stage,
the pixel’s diffuse colour, the pixel’s specular colour
or a constant colour. The component then applies
a function to its inputs to produce the output from
that stage. The functions and inputs for the colour
and alpha components are independent of one an-
other.

This differs widely from the multitexture support in
OpenGL 1.2, in which each stage must use a texture
as one input and the previous stage’s output as the
other, and the colour and alpha stages are linked.
Fortunately, the GL ARB texture env combine ex-
tension provides for texture stages that are as flex-
ible as Direct3D. Other extensions exist to provide
some missing blend functions.

In some cases, texture settings that are not related
to blend modes require special handling. OpenGL
breaks all texture settings into two classes, tex-
ture “parameters” that are applied to the texture
object and texture “environment” settings that do
not change when the selected texture changes. In
OpenGL, filtering modes are texture parameters,
while in Direct3D all texture settings are similar
to environment settings. Thus Wine must store the
filtering mode for each texture stage so that when it
calls OpenGL to load a new texture, it can set the
filtering mode again. The current implementation

does not track the last parameters for each texture,
so they are sometimes changed unnecessarily.

Finally, Direct3D also has a wide array of render
states that map to nearly identical OpenGL ren-
der states. A good example of this is the Direct3D
fill mode render state - D3DRENDERSTATE FILLMODE
- which controls whether polygons are to be drawn
filled, simply outlined, or with individual vertices
showing only as points. OpenGL has a polygon
mode state with the same settings, set through a
simple call to glPolygonMode.

