
The Linux Device File-System

Richard Gooch
EMC Corporation

rgooch@atnf.csiro.au

Abstract

The Device File-System (devfs) provides a power-
ful new device management mechanism for Linux.
Unlike other existing and proposed device manage-
ment schemes, it is powerful, flexible, scalable and
efficient.

It is an alternative to conventional disc-based char-
acter and block special devices. Kernel device
drivers can register devices by name rather than de-
vice numbers, and these device entries will appear
in the file-system automatically.

Devfs provides an immediate benefit to system ad-
ministrators, as it implements a device naming
scheme which is more convenient for large systems
(providing a topology-based name-space) and small
systems (via a device-class based name-space) alike.

Device driver authors can benefit from devfs by
avoiding the need to obtain an official device number
or numbers, which are a diminishing resource, prior
to releasing their product. Furthermore, they have
complete autonomy in their assigned sub name-
space, facilitating rapid product changes where nec-
essary.

The full power of devfs is released when combined
with devfsd, the devfs daemon. This combination
allows administrators and developers to manage de-
vices in new ways, from creating custom and virtual
device name-spaces, to managing hot-plug devices
(i.e. USB, PCMCIA and FireWire). Devfsd pro-
vides a lightweight, uniform mechanism for manag-
ing diverse device types.

1 Introduction

All Unix systems provide access to hardware via de-
vice drivers. These drivers need to provide entry
points for user-space applications and system tools
to access the hardware. Following the “everything is
a file” philosophy of Unix, these entry points are ex-
posed in the file name-space, and are called “device
special files” or “device nodes”.

This paper discusses how these device nodes are cre-
ated and managed in conventional Unix systems and
the limitations this scheme imposes. An alternative
mechanism is then presented.

1.1 Device numbers

Conventional Unix systems have the concept of a
“device number”. Each instance of a driver and
hardware component is assigned a unique device
number. Within the kernel, this device number is
used to refer to the hardware and driver instance.
The device number is encoded in the appropriate de-
vice node, and the device nodes are stored on normal
disc-based file-systems.

To aid management of device numbers, they are
split into two components. These are called “ma-
jor” and “minor” numbers. Each driver is assigned
a major number. The minor number is used by the
driver to determine which particular hardware in-
stance is being accessed.

Prior to accessing a piece of hardware (for example,
a disc drive), the appropriate device node(s) must
be created. By convention, these are stored in the
/dev directory.



1.1.1 Linux Implementation

In the Linux kernel, device numbers are currently
stored in 16 bit integers. The major number com-
ponent is allocated 8 bits, and the remaining 8 bits
are used for the minor number. Each driver is thus
allocated one of the 256 possible major numbers.

Each driver must register the major number it
wishes to use, and the “driver operation methods”
which must be called when file operations for that
driver must be performed. These operations include
opening, closing, reading, writing and others. The
driver methods are stored in a table, indexed by
major number, for later use. This table is called the
“major table”.

When a device node is opened (i.e. when a pro-
cess executes the open(2) system call on that node),
the major number is extracted and is used to index
into the major table and determine the driver meth-
ods. These methods are then recorded into the “file
structure”, which is the in-kernel representation of
the new file descriptor handle given to the process.

Subsequent operations on the file descriptor (such as
reading and writing) will result in the driver meth-
ods being called, and thus control is transferred to
the driver. The driver will then use the minor num-
ber to determine which hardware instance must be
manipulated.

1.2 Limitations

Device numbers, traditional device nodes and the
Linux implementation, have several limitations, dis-
cussed below.

1.2.1 Major and Minor size

Existing major and minor numbers are limited to 8
bits each. This is now a limiting factor for some
drivers, particularly the SCSI disc driver, which
originally consumed a single major number. Since 4
bits were assigned to the partition index (support-
ing 15 partitions per disc), this left 4 bits for the
disc index. Thus, only 16 discs were supported.

A subsequent change reserved another 7 major num-
bers for SCSI discs, which has increased the num-

ber of supported discs to 128. While sufficient for
medium enterprises, it is insufficient for large sys-
tems.

Large storage arrays can currently present thou-
sands of logical volumes (one vendor can present
4096, and will soon double that figure). To support
this under Linux would require the reservation of
thousands of device numbers. This would rapidly
erode the remaining device numbers, by consuming
16 or 32 major numbers for a single device driver.
Combined with pressure from other device drivers,
the device number space will soon be exhausted.

The limitation imposed by a 16 bit device number
must be resolved if Linux is to grow in the enterprise
market.

1.2.2 Device Number and Name Allocation

The conventional scheme requires the allocation of
major and minor device numbers for each and ev-
ery device. This means that a central co-ordinating
authority is required to issue these device numbers
(unless you’re developing a “private” device driver),
in order to preserve uniqueness.

In addition, the name of each device node must be
co-ordinated by this central authority, so that ap-
plications will look for the same device names, and
system administrators and distributors create the
approved device nodes.

This system is not well suited to delegation of this
responsibility. Thus, a bottleneck is introduced,
which can delay the development and release of new
devices and their drivers.

1.2.3 Information Duplication

Since device nodes are stored on a disc media, these
must be created by the system administrator. For
standard devices one can usually find a MAKEDEV
programme which creates the thousands of device
nodes in common use. Thus, for a change in any
one of the hundreds of device drivers which re-
quires a device name or number change, a corre-
sponding change is required in the MAKEDEV pro-
gramme, or else the system administrator creates
device nodes by hand.



The fundamental problem is that there are multiple,
separate databases of major and minor numbers and
device names. Device numbers are stored in the
following databases:

• inside the kernel and driver source code

• in the MAKEDEV programme

• in the /dev directory on many millions of com-
puters

and device names are stored in the following
databases:

• in the MAKEDEV programme

• in the /dev directory on many millions of com-
puters

• in the source code of thousands of applications
which access device nodes.

This is a classic case of information duplication,
which results in “version skew”, where one database
is updated while another is not. This results in ap-
plications not finding or using the correct device
nodes. There is no central database which, when
changed, automatically changes all other databases.

1.2.4 /dev growth

A typical /dev has over 1200 nodes. Most of these
devices simply don’t exist because the hardware is
not available on any one system. The reason for the
large number of installed device nodes is to cater for
the possibility of hardware that may be installed. A
huge /dev increases the time to access devices, as
directory and inode lookup operations will need to
read more data from disc.

An example of how big /dev can grow is if we con-
sider SCSI devices:

host 6 bits
channel 4 bits
id 4 bits
lun 3 bits
partition 6 bits
TOTAL 23 bits

This would require 8 Mega (1024*1024) inodes if all
possible device nodes were stored. This would result
in an impractically large /dev directory.

1.2.5 Node to driver methods translation

As discussed in section 1.1.1, each driver must store
its driver methods in the major table. This table
is 256 entries long, and is indexed upon each de-
vice open. If the size of device numbers were to be
increased (in response the limitations discussed in
section 1.2.1), then the major table would need to
be converted to a list, since it would be impractical
to store a table with a very large number of entries.

If the major table is converted to a list, this would
require a list traversal for each device open. This
is undesirable, as it would slow down device open
operations. The effect could be reduced by using a
hash function, but not eliminated.

1.2.6 /dev as a system administration tool

Because /dev must contain device nodes for all con-
ceivable devices, it does not reflect the installed
hardware on the system. Thus, it cannot serve as a
system administration tool. There is no mechanism
to determine all the installed hardware on a system.

It is possible to determine the presence of some
hardware, as some device drivers report hardware
through kernel messages or create informational files
in /proc, but there is no uniform format, nor is it
complete.

1.2.7 PTY security

Current pseudo-tty (pty) devices are owned by root
and read-writable by everyone. The user of a pty-
pair cannot change ownership/protections without
having root privileges. Thus, programmes which al-
locate pseudo-tty devices and wish to set permis-
sions on them must be privileged. This problem is
caused by the storing of permissions on disc. Privi-
leged programmes are a potential security risk, and
should be avoided where possible.

This could be solved with a secure user-space dae-
mon which runs as root and does the actual creation



of pty-pairs. Such a daemon would require modifi-
cation to every programme that wants to use this
new mechanism. It also slows down creation of pty-
pairs.

2 The Alternative

The solution to these and other problems is to al-
low device drivers to create and manage their device
nodes directly. To support this, a special device file-
system (devfs) is implemented, and is mounted onto
/dev. This file-system allows drivers to create, mod-
ify and remove entries.

This is not a new idea. Similar schemes have been
implemented for FreeBSD, Solaris, BeOS, Plan 9,
QNX and IRIX. The Linux implementation is more
advanced, and includes a powerful device manage-
ment daemon discussed in section 3.

2.1 Linux Implementation

The Linux implementation of devfs was initiated
and developed by the author in January 1998, and
was accepted for inclusion in the official kernel in
February 2000. As well as implementing the core
file-system itself, a large number of device drivers
were modified to take advantage of this new file-
system.

The Linux devfs provides an interface which allows
device drivers to create, modify and destroy device
nodes. When “registering” (creating) device nodes,
the driver operation methods are provided by the
driver, and these are recorded in the newly created
entry. A generic pointer may also be provided by the
driver, which may be subsequently used to identify
a specific device instance.

Events in the file-system (initiated by drivers regis-
tering or unregistering entries, or user-space appli-
cations searching for or changing entries) may be se-
lectively passed to a user-space device management
daemon, discussed in section 3.

2.1.1 Naming Scheme

Each device driver, or class of device drivers, has
been assigned a portion of the device name-space.
In most cases, the names are different from the pre-
vious convention. The previous convention used a
flat hierarchy, where all device nodes were kept di-
rectly in the /dev directory, rather than using sub-
directories.

Devfs implements a hierarchical name-space which
is designed to reflect the topology of the hardware
as seen by the device drivers. This new naming
scheme reduces the number of entries in the top-
level /dev directory, which aids the administrator
in navigating the available hardware.

Further, this scheme is better suited to automated
tools which need to manipulate different types of de-
vices, since all devices of the same type are found in
a specific portion of the name-space, which does not
contain device nodes for other device types. Thus,
automated tools only need to know the name of the
directory to process, rather than the names of all
devices in that class.

2.2 Problems Solved

The limitations discussed in section 1.2 are revisited
below, showing how devfs solves these problems.

2.2.1 Major and Minor size

Because the driver methods are stored in the device
node itself, there is no need use device numbers to
identify the driver and device instance. Thus, the
limitations imposed by a 16 bit device number are
completely avoided. An unlimited number of de-
vices may be supported using this scheme.

2.2.2 Device Number and Name Allocation

By eliminating device numbers, there is no need for
a central co-ordinating authority to allocate device
numbers. There is still need for a central co-ordinate
authority to allocate device names, but with the
elimination of device numbers, this can be easily
delegated. Each device driver can be allocated a



directory in the device name-space, by the central
authority. The driver may then create device nodes
under this directory, without fear of conflict with
other drivers.

After allocation of the directory, the driver author
is free to assign entries in that directory, without
any reference to a central authority. If the driver
author is also responsible for distributing the appli-
cation(s) that must access these device nodes, then
these applications can be changed at the same time
as the driver is changed. Distributing the changed
driver and application(s) at the same time, design-
ers are free to re-engineer without fear of breaking
installed systems.

2.2.3 Information Duplication

Since drivers now create their own device nodes,
there is no need to maintain a MAKEDEV pro-
gramme, nor is there a need to administer a /dev
directory. This removes most cases of duplicated
information. Device drivers are now the primary
“database” of device information.

Thus, if a user installs a new version of a driver,
there is no need to create a device node. This in
turn means that there is no need for a device driver
author to contact the maintainer of the MAKEDEV
programme to update and release a new version of
MAKEDEV. The user will not be called upon to
down-load a new version of MAKEDEV, or manu-
ally create device nodes if a new version will not be
available.

2.2.4 /dev growth

Since device drivers now register device nodes as
hardware is detected, /dev no longer needs to be
filled with thousands (and potentially millions) of
device nodes that may be needed. Instead, /dev
will only contain a small number of device nodes.

In addition, devfs eliminates all disc storage require-
ments for the /dev directory. An extfs inode con-
sumes 128 bytes of media storage. With over a thou-
sand device nodes, /dev can consume 128 kBytes or
more. Reclaiming this space is of particular bene-
fit to embedded systems, which have limited mem-
ory and storage resources. Installation floppy discs,
with their small capacities, also benefit.

2.2.5 Node to driver methods translation

When drivers register device entries, their driver
methods are recorded in the device node. This is
later used when the device node is opened, elimi-
nating the need to find the driver methods. Thus,
there is a direct link between the driver and the de-
vice node.

This linking is architecturally better, as it eliminates
a level of indirection, and thus improves code clarity
as well as avoiding extra processing cycles.

2.2.6 /dev as a system administration tool

With /dev being managed by device drivers, it now
also becomes an administrative tool. A simple list-
ing of the directory will reveal which devices are cur-
rently available. For the first time, there is a way
to determine the available devices. Furthermore, all
devices are presented in a uniform way, as device
nodes in devfs.

2.2.7 PTY security

Devfs allows a device driver to “tag” certain device
files so that when an unopened device is opened, the
ownerships are changed to the current effective uid
and gid of the opening process, and the protections
are changed to the default registered by the driver.
When the device is closed ownership is set back to
root and protections are set back to read-write for
everybody.

This solves the problem of pseudo-terminal security,
without the need to modify any programmes. The
specialised “devpts” file-system has a similar fea-
ture for Unix98 pseudo-terminals, but this does not
work for the classic Berkeley-style pseudo-terminals.
The devfs implementation works for both pseudo-
terminal variants.

2.3 Further Benefits

Besides overcoming the previously discussed limi-
tations, devfs provides a number of other benefits,
described below.



2.3.1 Read-only root file-system

Device nodes usually must reside on the root file-
system, so that when mounting other file-systems,
the device nodes for the corresponding disc media
are available. Having device nodes on a read-only
root file-system would prevent ownership and pro-
tection changes to these device nodes.

The most common need for changing permissions
of device nodes is for terminal (tty) devices. Thus,
it is impractical to mount a CD-ROM as the root
file-system for a production system, since tty per-
missions will not be changeable. Similarly, the root
file-system cannot reside on a ROM-FS (often used
on embedded systems to save space).

A similar problem exists for systems where the root
file-system is mounted from an NFS server. Multi-
ple systems cannot mount the same NFS root file-
system because there would be a conflict between
the machines as device node permissions need to be
changed.

These problems can be worked around by creating
a RAMDISC at boot time, making an ext2 file-
system in it, mounting it somewhere and copying
the contents of /dev into it, then un-mounting it
and mounting it over /dev.

I would argue that mounting devfs over /dev is a
simpler solution, particularly given the other bene-
fits that devfs provides.

2.3.2 Non-Unix root file-system

Non-Unix file-systems (such as NTFS) can’t be
used for a root file-system because they don’t sup-
port device nodes. Having a separate disc-based or
RAMDISC-based file-system mounted on /dev will
not resolve this problem because device nodes are
needed before these file-systems can be mounted.

Devfs can be mounted without any device nodes
(because it is a virtual file-system), and thus avoids
this problem.

An alternative solution is to use initrd to mount a
RAMDISC initial root file-system (which is popu-
lated with a minimal set of device nodes), and then
construct a new /dev in another RAMDISC, and fi-
nally switch to the non-Unix root file-system. This

requires clever boot scripts and a fragile and con-
ceptually complex boot procedure.

The approach of mounting devfs is more robust and
conceptually simpler.

2.3.3 Intelligent device management

By providing a mechanism for device drivers to reg-
ister device nodes, it is possible to send notifica-
tions to user-space when these registrations and un-
registrations occur. This allows more sophisticated
device management schemes and policies to be im-
plemented.

Furthermore, a virtual file-system mounted onto
/dev opens the possibility of capturing file-system
events and notifying user-space. For example, open-
ing a device node, or attempting to access a non-
existent device node, can be used to trigger a specific
action in user-space. This further enhances the level
of sophistication possible in device management.

In section 3, the Linux devfs daemon is presented,
which supports advanced device management.

2.3.4 Speculative Device Scanning

Consider an application (like cdparanoia) that needs
to find all CD-ROM devices on the system (SCSI,
IDE and other types), whether or not their respec-
tive modules are loaded. The application must
speculatively open certain device nodes (such as
/dev/sr0 for the SCSI CD-ROMs) in order to make
sure the module is loaded. If the module is not
loaded, an attempt to open /dev/sr0 will cause the
driver to be automatically loaded.

This requires that all Linux distributions follow the
standard device naming scheme. Some distributions
chose to violate the standard and use other names
(such as /dev/scd0). Devfs solves the naming prob-
lem, as the kernel presents a known set of names
that applications may rely on.

The same application also needs to determine which
devices are actually available on the system. With
the existing system it needs to read the /dev direc-
tory and speculatively open each /dev/sr* device
to determine if the device exists or not. With a
large /dev this is an inefficient operation, especially



if there are many /dev/sr* nodes. In addition, each
open operation may trigger the device to commence
spinning the media, forcing the scanning operation
to wait until the media is spinning at the rated speed
(this can take several seconds per device).

With devfs, the application can open the
/dev/cdroms directory (which triggers module
auto-loading if required), and proceed to read
/dev/cdroms. Since only available devices will have
entries, there are no inefficiencies in directory scan-
ning, and devices do not need to be speculatively
opened to determine their existence. Furthermore,
all types of CD-ROMs are presented in this direc-
tory, so the application does not have to be modified
as new types of CD-ROMs are developed.

3 Advanced Device Management

Devfs implements a simple yet powerful protocol
for communication with a device management dae-
mon (devfsd(8)) which runs in user-space. It is
possible to send a message (either synchronously or
asynchronously) to devfsd(8) on any event, such as
registration/un-registration of device entries, open-
ing and closing devices, looking up inodes, scanning
directories and more. This opens many possibilities
for more advanced device management.

The daemon may be configured to take a variety of
actions for any event type. These actions include
setting permissions, running external programmes,
loading modules, calling functions in shared objects,
copying permissions to/from a database, and creat-
ing “compatibility” device entries. This yields enor-
mous flexibility in the way devices are managed.
Some of the more common ways these features are
used include:

• device entry registration events can be used
to change permissions of newly-created device
nodes. This is one mechanism to control device
permissions

• device entry registration events can be used
to provide automatic mounting of file-systems
when a new block device media is inserted into
the drive

• device entry registration/un-registration events
can be used to run programmes or scripts which

perform further configuration operations on the
devices. This is required for hot-plug devices
which need to make complex policy decisions
which cannot be made in kernel-space

• device entry registration/un-registration events
can be used to create “compatibility” entries, so
that applications which use the old-style device
names will work without modification. This
eases the transition from a non-devfs system
to a devfs-only system

• asynchronous device open and close events can
be used to implement clever permissions man-
agement. For example, the default permissions
on /dev/dsp do not allow everybody to read
from the device. This is sensible, as you don’t
want some remote user recording what you say
at your console. However, the console user is
also prevented from recording. This behaviour
is not desirable. With asynchronous device
open and close events, devfsd(8) can run a
programme or script when console devices are
opened to change the ownerships for other de-
vice nodes (such as /dev/dsp). On closure, a
different script can be run to restore permis-
sions

• synchronous device open events can be used
to perform intelligent device access protec-
tions. Before the device driver open() method
is called, the daemon must first validate the
open attempt, by running an external pro-
gramme or script. This is far more flexible than
access control lists, as access can be determined
on the basis of other system conditions instead
of just the UID and GID.

• inode lookup events can be used to authenticate
module auto-load requests. Instead of using
kmod directly, the event is sent to devfsd(8),
which can implement arbitrary authentication
before loading the module itself. For example,
if the initiating process is owned by the console
user, the module is loaded, otherwise it is not

• inode lookup events can also be used to con-
struct arbitrary name-spaces, without having
to resort to populating devfs with symlinks to
devices that don’t exist.

In addition to these applications, devfsd(8) may be
used to manage devices in many other novel ways.
This powerful daemon relies on two important fea-
tures that devfs provides:



• a unified mechanism for drivers to publish de-
vice nodes

• a virtual file-system that can capture common
VFS events.

See: http://www.atnf.csiro.au/∼rgooch/linux/
for more details.

4 Other Alternatives

Some of the limitations that devfs addresses have
alternate proposed solutions. These do not solve
all of the problems, but are described here for com-
pleteness, as are their respective limitations.

4.1 Why not just pass device cre-
ate/remove events to a daemon?

Here the suggestion is to develop an API in the
kernel so that devices can register create and re-
move events, and a daemon listens for those events.
The daemon would then populate/de-populate /dev
(which resides on disc).

This has several limitations:

• it only works for modules loaded and unloaded
(or devices inserted and removed) after the ker-
nel has finished booting. Without a database of
events, there is no way the daemon could fully
populate /dev

• if a database is added to this scheme, the ques-
tion is then how to present that database to
user-space. If it is a list of strings with em-
bedded event codes which are passed through
a pipe to the daemon, then this is only of use
to the daemon. I argue that the natural way
to present this data is via a file-system (since
many of the events will be of a hierarchical na-
ture), such as devfs. Presenting the data as
a file-system makes it easy for the user to see
what is available and also makes it easy to write
scripts to scan the “database”

• the tight binding between device nodes and
drivers is no longer possible (requiring the oth-
erwise perfectly avoidable table lookups dis-
cussed in section 1.2.5)

• inode lookup events on /dev cannot be caught
which in turn means that module auto-loading
requires device nodes to be created. This is a
problem, particularly for drivers where only a
few inodes are created from a potentially large
set

• this technique can’t be used when the root FS
is mounted read-only.

4.2 Just implement a better scsidev

This suggestion involves taking the scsidev(8) pro-
gramme and extending it to scan for all devices,
not just SCSI devices. The scsidev(8) programme
works by scanning /proc/scsi.

This proposal has the following problems:

• this programme would need to be run every
time a new module was loaded, which would
slow down module loading and unloading

• the kernel does not currently provide a list of
all devices available. Not all drivers register
entries in /proc or generate kernel messages

• there is no uniform mechanism to register de-
vices other than the devfs API

• implementing such an API is then the same as
the proposal above in section 4.1

4.3 Put /dev on a ramdisc

This suggestion involves creating a ramdisc and
populating it with device nodes and then mounting
it over /dev.

Problems:

• this doesn’t help when mounting the root file-
system, since a device node is still required to
do that

• if this technique is to be used for the root de-
vice node as well, initrd must be used. This
complicates the booting sequence and makes it
significantly harder to administer and config-
ure. The initrd is essentially opaque, robbing
the system administrator of easy configuration



• insufficient information is available to correctly
populate the ramdisc. So we come back to the
proposal in section 4.1 to “solve” this

• a ramdisc-based solution would take more ker-
nel memory, since the backing store would
be (at best) normal VFS inodes and dentries,
which take 284 bytes and 112 bytes, respec-
tively, for each entry. Compare that to 72 bytes
for devfs

4.4 Do nothing: there’s no problem

Some claims have been made that the existing
scheme is fine. These claims ignore the following:

• device number size (8 bits each for major and
minor) is a real limitation, and must be fixed
somehow. Systems with large numbers of SCSI
devices, for example, will continue to con-
sume the remaining unallocated major num-
bers. Hot-plug busses such as USB will also
need to push beyond the 8 bit minor limitation

• simply increasing the device number size is in-
sufficient. Besides breaking many applications
(no libc 5 application can handle larger device
numbers), it doesn’t solve the management is-
sues of a /dev with thousands or more device
nodes

• ignoring the problem of a huge /dev will not
make it go away, and dismisses the legitimacy of
a large number of people who want a dynamic
/dev

• it does not address the problems of managing
hot-plug devices

• the standard response then becomes: “write a
device management daemon”, which brings us
back to the proposal of section 4.1.

5 Future Work

Devfs has been available and widely used since 1998.
It has attracted a user-base numbering in the several
thousands (possibly far greater), and forms a critical
technology in SGI Pro-Pack (a modified version of

Red Hat Linux) which is distributed by SGI for their
Linux server products.

A number of improvements to devfs and to the
generic kernel are needed to complete this work so
that Linux will be suitable to the large enterprise
and “data-centre” portions of the industry. These
are discussed below.

5.1 Mounting via WWN

The current devfs name-space is a significant im-
provement on the old name-space, since the removal
or addition of a SCSI disc does not affect the names
of other SCSI discs. Thus, the system is more ro-
bust.

In larger systems, however, discs are often moved
between different controllers (the interface between
the computer and groups of discs). This is often
done when a system is being reconfigured for the ad-
dition of more storage capacity. If discs are mounted
using their locations, the administrator must manu-
ally update the configuration file which specifies the
locations (usually /etc/fstab). Thus, some means
of addressing the disc, irrespective of where it is lo-
cated, is required.

Ideally, each device would have a unique identifier
to facilitate tracking it. This unique identifier is de-
fined by the SCSI 3 standard, and is term a WWN
(world-wide number). If a disc is mounted by speci-
fying its WWN, then it may be moved to a different
controller without requiring further work by the ad-
ministrator. This is important for a system with a
large number of discs.

The SCSI sub-system in the Linux kernel needs to
be modified to query devices for their WWNs, which
can then be used to register a device entry which in-
cludes the WWN. All WWN entries would be placed
in a single directory (such as /dev/volumes/wwn or
/dev/scsi/wwn).

5.2 Mounting via volume label

For administrative reasons, some devices may be di-
vided into a number of “logical volumes”. This is
often used for very large storage devices where dif-
ferent departments of an organisation are each given



a set of logical volumes for their private use. In this
case, the storage may be presented as a single phys-
ical device, and thus would have a single WWN.

As with physical discs, logical volumes may need
to be re-arranged for administrative reasons. Here,
some mechanism which can address volumes by
their contents is required. By storing a volume label
on each volume, it is possible to address volumes by
content.

Existing and planned logical volume managers need
to be modified to support storing volume labels and
must provide a common programming interface so
that this information may be used in a generic way.
Once these steps have been taken, volume labels
may be exposed in the device name-space in a simi-
lar fashion as WWNs, placing entries in a directory
such as /dev/volumes/labels.

5.3 Mounting via physical path

Prior to mounting via WWN or volume label, the
initial location of a device is required. Once the
device is located, the WWN may be obtained, or a
volume label may be written. In order to initially lo-
cate the device, the physical path to the device must
be used. To support this, device names which rep-
resent the physical location of devices are required.
To support this, two new naming schemes are pro-
posed.

A new /dev/bus hierarchy will be created, which
reflects the logical enumeration of system busses,
and sub-components thereof. For example, a spe-
cific PCI device (function2 in slot1 in PCI bus
0) would be represented by a directory named
/dev/bus/pci0/slot1/function2. If this device
was a SCSI controller, this directory would be the
root of the SCSI host tree for this device. This nam-
ing scheme is a natural reflection of the Linux view
of system busses.

Many larger systems have complicated topologies.
For example, in a cc-NUMA system, I/O devices
may be distributed across many nodes in the net-
work. The detection order of busses may change
if a new node is added, causing the existing identi-
fiers in the /dev/bus heirarchy to change. A naming
scheme is required which reflects the complete hard-
ware topology. This is clearly vendor-specific, as
different systems will have radically different topolo-

gies. Thus, designing a detailed structure to support
different topologies is not feasible.

The solution I propose is to define a /dev/hw heirar-
chy, which is to be completely vendor-specific. This
heirarchy will be created and managed by vendor-
specific code, giving vendors complete flexibilty in
their design. The /dev/hw heirarchy will effec-
tively be a wiring diagram of the system. The only
imposed standard is that the vendor remaps the
generic Linux bus directories into the dev/hw tree.
For example, /dev/bus/pci0 would become a sym-
bolic link to a directory somewhere in the /dev/hw
tree.

The combination of these two naming schemes
should provide sufficient flexibility for a wide variety
of applications. The /dev/bus heirarchy will suf-
fice for uncomplicated systems which do not change
their topology (such as embedded and desktop ma-
chines, which dominate the market). In addition,
/dev/bus provides a convenient place in which to
search for all system busses, which is of use for the
system administrator as well as some system man-
agement programmes. Also, because /dev/bus is
managed by the generic Linux bus management sub-
system, it is always available, even on systems with
complex topologies. A vendor need not implement
a /dev/hw heirarchy if it considers the benefits to be
marginal, or if time does not permit prior to prod-
uct shipment. Implementing a /dev/hw tree will
add value, but is not required for basic operation of
a system.

5.4 Block Device Layer

The Linux block device layer is used to access all
types of random-access storage media (hard discs,
CD-ROMs, DVD-ROMs and so on). This layer has
two limitations. The first is that each block device is
limited to 2 TB on 32 bit machines. This limits the
maximum size storage device that can be attached
to most Linux machines.

The second limitation is that the block device layer
uses device numbers in all it’s internal operations.
These device numbers are used to identify devices
and to lookup partition sizes and other configura-
tion information. This limits the number of devices
that can be attached to a Linux machine. While
devfs allows device drivers to bypass device number
limitations, the drivers must be changed to make



use of this. The block device layer is a critical layer
that must be changed.

The block device layer (as well as the SCSI layer)
needs to be modified to use device descriptor objects
rather than device numbers. This is a significant,
but essential, project. There has been some work
on this already (a new struct block device class
has been defined), but more work is required.

5.5 Use of dcache for devfs internal
database

The current implementation of devfs uses an inter-
nal database (a simple directory tree structure) to
store device node entries. Much of the code used to
manage this directory tree could be removed if the
dcache (directory entry cache) in the VFS was used
instead. This would significantly reduce the code
size and complexity of devfs. The cost would be an
increase in the memory consumption of devfs (from
72 to 112 bytes per device node entry).

When devfs was first implemented, this option was
not available, but since then the VFS has matured,
and this option should now be practical. A further
modest change to the VFS is required (separation
of dcache entries from VFS inodes).

This change is not required for large systems, as the
existing implementation of the core file-system does
not impose limitations. This change will provide a
benefit for very small (embedded) systems, which
have small numbers of devices, and thus the code
savings outweigh the increased memory consump-
tion in device node storage.

This change would also provide a political bene-
fit, because of the code reduction, and would in-
crease acceptance in some quarters. Despite its ac-
ceptance into the official kernel, devfs remains con-
troversial, due its departure from traditional Unix
device nodes.


