Monikers in the Bonobo Component System

Miguel de Icaza

miguel@ximian.com

1 Introduction

We recently reimplemented and fully revamped the
the moniker support in Bonobo. This work has
opened a wide range of possibilities: from unifying
the object naming space, to provide better integra-
tion in the system.

Note: on this document I have omitted exception
environments handling for the sake of explaining the
technology.

2 Monikers - a user perspective

Monikers are used to name objects, they effectively
implement an object naming space. You can obtain
monikers either because you created the moniker
manually, or from a stringified representation of a
moniker.

Here is a list of stringified monikers, and an inter-
pretation of it:

file:quake-scores.gnumeric
This would be a moniker that represents the file
quake-scores.gnumeric

oafid:GNOME:Gnumeric:WorkbookFactory:1.0
This moniker represents the Gnumeric Workbook
factory object.

oafid:GNOME:Gnumeric:WorkbookFactory:1.0:new:

This moniker represents a Gnumeric Workbook
instance. Notice that we are using the exact same
OAFID as the example before, but there is a "new:”
suffix at the end.

file:/tmp/a.gz
This represents the file in /tmp/a.gz

file:/tmp/a.gz#gunzip

This represents the decompressed stream of data
from a.gz

file:/tmp/a.gz#gunzip:streamcache

This provides a cache on top of the decompressed
stream of data for a.gz (the streamcache moniker is
an in-proc component).

http://www.gnome.org
This one represents the GNOME web site.

evolution:Mail/Inbox
This represents the Evolution Mail /Inbox folder

file:quake-scores.gnumeric!January
This represents the January Sheet in the quake-
scores.gnumeric workbook.

file:quake-scores.gnumeric!January!Winner
This represents the cell whose name is ”Winner”
in the January sheet in the quake-scores.gnumeric
workbook.

file:quake-scores.gnumeric!January!Winner!Style!Font
This represents the Font interface of the Style at-
tached to the Winner cell.

file:quake-scores.gnumeric!January!Winner!Style!BackgroundColor

This represents the background color for the cell.

http://www.gnome.org/index.html!title
This represents the title element in the HTML web
page at www.gnome.org

file:toyota.xml!cars/car/model/
The ”cars/car/model” is an XPath expression that
for locating a specific node in the toyota.xml file.

config:*/Session/Calendar

This represents a PropertyBag for the GNOME Cal-
endar using the Local configuration system and us-
ing the settings stored in the Session domain.

oafid:Helix:Evolution:Wombat:1.0
This represents the Evolution model server that

stores all the per-user information.

queue:oafid:Helix:Evolution:Wombat

This represents an interface that queues CORBA
requests to the Evoution Wombat: Any calls issued
will be queued: if the Wombat is busy or not accept-
ing connection, all the CORBA method invocations
will be queued without stopping the execution of
the client code.

http://www.gnome.org/index.html.gz#gunzip#html:title
This will reutrn the title element of the compressed
HTML file at http://www.gnome.org/index.html.gz

ftp://ftp.gnome.org/gnome-core-1.0. tar . gz#utar/gnome-core-1.0/ChangeLog

A reference to the ChangeLog file contained in
the compressed gnome-core-1.0.tar.gz tar file at
ftp://ftp.gnome.org

desktop:Backgound
The background object for the user’s desktop.

trashcan:
The system trashcan.

file:logo.png
This represents the logo.png file.

oafid:0AFIID:eog viewer_factory:file:logo.png

This specifies a specific image viewer to be used to
display the file "logo.png”, in this case the "EOG”
program.

file:logo.png!Zoom=2.0
This represents the logo.png file in EOG at zoom
level 2.0

file:logo.png!Zoom=2.0,dither=max,notransparency

The image logo.png is configured to be zoomed at
2.0 factor, to do maximum dithering and not use
any transparency

Now, what you saw above are some examples of
stringified representations of monikers. This means
that they are not really monikers, it is the way a
Moniker is represented in string form.

Monikers typically are created either by using a
Bonobo API call that transforms the stringified
representation into an object (which exports the
IDL:Bonobo/Moniker:1.0 interface), like this:

moniker = bonobo_moniker_client_new_from_name
(moniker_string) ;

Now, a moniker is only interesting because it can
yield other objects when resolved. During the res-
olution process, you specify which interface you are
intersted on the moniker to return. This is achieved
by invoking the ::resolve method on the moniker and
passing the repoid of the interface you desire, like
this:

Bonobo: :Unknown control;

control = moniker->resolve ("Bonobo/Control")

This would request the moniker to return an object
that implements the IDL:Bonobo/Control:1.0 inter-
face. This means that the object could be embedded
as a regular Bonobo control in applications.

Maybe you do not want to get a control, but rather
to resolve the moniker against a different interface,
for instance a Bonobo::PropertyBag interface:

properties = moniker->resolve ("Bonobo/PropertyBag");

The resolution process might yield completely dif-
ferent objects.

The parsing and resolution process is all encapsu-
lated into a single API call for your convenience:
the bonobo_get_object function:

Bonobo: :Unknown foo = bonobo_object_get
(char *moniker_string,
char *interface);

Now, as I said, the resolution process might yield
very different objects depending on the interface be-
ing requested, for example:

x = bonobo_object_get ("http://www.gnome.org",
"Bonobo/Control")
y = bonobo_object_get ("http://www.gnome.org",

"Bonobo/Stream")

The ”x” object might launch Mozilla which would in
turn load www.gnome.org, and the returned object
can be used as a Bonobo Control, and used in your
application as a widget.

The ”y” object on the other hand does not need
all the power of Mozilla, we are only requesting the
very simple Stream interface, so we might be able

to implement this with a lightweight HTTP imple-
mentation: maybe a wget-based bonobo server, or
a libghttp server.

Note that even if the stringified ver-
sions of the monikers were the same (i.e.,
http://www.gnome.org) the resulting objects

might differ wildely depending on the interface
being requested.

3 The moniker parsing system

During parsing the moniker stringified, Bonobo
will use the colon-terminated prefix as the toplevel
moniker to be invoked for the resolution process.

For the prefix file: the file moniker will be used;
For the prefix oafid:, the oafid moniker will be
used; For the queue: prefix, the queue moniker will
be used.

Once the moniker that handles a specific prefix has
been activated, the moniker will be requested to
parse the remaining of the string specification and
return a valid moniker.

Each moniker typically will consume a number of
bytes up to the point where its domain stops, will
figure out what is the next moniker afterwards.
Then it will activate the next moniker and pass the
remaining of the moniker stringified version until
the parsing is finished.

Each moniker is free to define its own mechanism for
parsing, its special characters that are used to indi-
cate the end of a moniker space, and the beginning
of a new one (like the ”#” and the ”!” characters in
some of the examples above). This flexibility is pos-
sible because each moniker gets to define its rules
(and this is important, as we want to integrate with
standards like http and file).

4 Monikers as an object naming
scheme

As you can see, monikers are used to implement
a naming system that can be used to reference
and manipulate objects. As you might have no-

ticed, the ::resolve method on the moniker in-
terface returns a Bonobo: :Unknown interface. And
by definition, the bonobo_get_object also returns a
Bonobo: :Unknown.

This means that the resulting object from the
moniker resolution will always support ref, unref
and query_interface methods.

The moniker object naming scheme is:

Extensible. A new entry point into the object nam-
ing space can be created and installed into
the system. This is achieved by installing
a new component.

Hierarchial

4.1 Creating monikers

Monikers are created typically by API calls into the
Bonobo runtime or by your own classes that imple-
ment monikers.

4.2 Comparing the moniker name space
with the Unix name space

Lets start simple. A moniker is a reference to an
object. To actually use the object, you have to "re-
solve” the moniker. The term used in the literature
is ”binding the object”.

The result of resolving the moniker is a
Bonobo::Unknown object.

Think of a moniker as a pathname. And think of
the binding process as the ”open” system call on
Unix.

The following is a list of Unix/moniker “mappings.”

Object naming;:
path name < moniker string representa-
tion.

Binding function:
open(2) < bonobo_get_object

Return value:
kernel file descriptor <+ Bonobo::Unknown
CORBA reference

Binder:
Kernel VFS + each FS —
bonobo_get_object + Bonobo::Moniker
Persisting:

none < Moniker::QI(Persist)

In the case of the file system, the kernel does the
"resolution” of each path element by parsing one el-
ement of the file system, and the Virtual File System
switch uses the current file system + mount points
to resolve the ultimate file name.

4.3 File linking

Monikers were originally implemented as part of the
Microsoft OLE2 compound document system. They
can be used effectively by applications during drag
and drop and cut and paste operations to pass ob-
jects that must be linked by other applications.

The source application would create a moniker for
a given object that would fully identify it, and pass
it trough a drag and drop operation or a cut and
paste operation to the recipient application.

The recipient application then can resolve
the moniker against the interface required
(in the Bonobo case, Bonobo/Embeddable, or
Bonobo/Control would be a common choice).

Applications do not need to store the entire contents
of linked information, they can just store a stringi-
fied representation of the moniker, and resolve it
again at load time.

4.4 Instance initialization

Monikers can be used to initialize objects, as a way
of passing arguments to your object. This is coupled
with the Bonobo/ItemContainer interface and the
Item Moniker.

The Item Moniker is covered later.

4.5 Resolution of a moniker against an
interface

A moniker can be resolved against different inter-
faces. The resulting object might be different de-
pending on the interface that is being resolved. To
illustrate this, here is an example, lets say we have
the http://www.helixcode.com string representa-
tion of a moniker.

The string representation of the moniker can be re-
solved against the Bonobo/Control interface:

bonobo_get_object ("http://www.helixcode.com",
"Bonobo/Control") ;

This could return an embeddable Mozilla compo-
nent that is suitable to be embedded into your ap-
plication as a widget (because we are requesting the
moniker to return a Bonobo/Control interface). If
the interface is resolved against the Bonobo/Stream
interface, maybe Mozilla is not required, and the
process could use a smaller process that just pro-
vides Bonobo/Streams, say a CORBA-ified wget.

The logic for this lives on the http: moniker han-
dler.

5 Core monikers

Bonobo ships with a number of moniker handlers:
the file moniker, the item moniker, the oafid moniker
and the new moniker.

5.1 The file moniker

The file moniker is used to reference files. For in-
stance:

file:sales.gnumeric

The file moniker will scan its argument until it
reaches the special characters ‘4’ or ‘!” which in-
dicate the end of the filename.

The file moniker will use the mime type associated
with the file to find a component that will handle the

file. Once the object handler has been invoked, the
Moniker will try to feed the file to the component
first through quering the PersistFile interface, and
if this is not supported, through the PersistStream
interface.

5.2 The item moniker

R '77

The item moniker is typically triggered by the
string in the middle. The item moniker can be used
to implement custom object naming, or argument
handling.

The item moniker parses the text following ’!” until
the next ’!" character, this is called the argument
of the item moniker. During the resolution process,
the item moniker will request from its parent the
Bonobo/ItemContainer interface and will invoke the
getObject on this interface with the argument.

For example, in a Gnumeric spreadsheet this al-
lows programmers to reference sub-objects by name.
For instance, Workbooks can locate Sheet objects;
Sheets can locate range names, cell names, or cell
references. This moniker would reference the sheet
named ‘Sales’ in the workbook contained in the
sales.gnumeric spreadsheet:

sheet = bonobo_get_object ("sales.gnumeric!Sales",

"Gnumeric/Sheet") ;

This other would reference the cell that has been
named ‘Total’ inside the Sheet ”Sales”:

cell = bonobo_get_object
("sales.gnumeric!Sales!Total",
"Gnumeric/Cell")

The way this works from the container perspective,
is that the container will implement the getObject
(string) method, and would respond to the getOb-
ject request.

Item monikers can also be used to perform in-
stance initialization. The component that wants
to support instance initialization needs to support
the Bonobo/ItemContainer interface and implement
a getObject method that would return the object
properly initialized.

For example, lets consider an image viewer compo-
nent that can be configured, like this:

image = bonobo_get_object
("file. jpg!convert_to_gray=on",
"Bonobo/Control")

The above example would activate the EOG compo-
nent because of the file.jpg match, and then invoke
EOG’s ItemContainer implementation with the ar-
gument ”convert_to_gray=on”. getObject should
return an object (which would be itself) but it
would modify the instance data to set the ”con-
vert_to_gray” flag to on. Like this:

Bonobo_Unknown
eog_item_container_get_object
(BonoboObject *o, char *name)

{
if (command_is (name, "convert_to_gray", &v))
image_set_convert_to_gray (o, v);
bonobo_object_ref (o);
return bonobo_objet_corba_objref (o);
}

5.3 The oafiid moniker

The oafid moniker handles activation using the Ob-
ject Activation Framework. This allows application
programmers to activate objects by their OAF ID,
like this:

gnumeric = bonobo_object_get
("oafiid:GNOME_Gnumeric_Workbook",
iface)

5.4 The new moniker

The new moniker requests from its parent the
“Bonobo/GenericFactory” interface and invokes the
method create_instance in the interface.

Typically this moniker would be invoked like this:

bonobo_get_object ("oafid:RandomFactory:new:",
iface);

In the example above RandomFactory is the OAFID
for the factory for a certain object. Dur-
ing the resolution process, the new: moniker
would request its parent to resolve against the
IDL:GNOME/ObjectFactory:1.0 interface (which is

the traditional factory interface in GNOME for cre-
ating new object instances) and then invoke the
new_instance method on it.

Historically GNORBA (the old GNOME object ac-
tivation system) and OAF (the new object activa-
tion system) implemented a special “hack” to do
this same processing. Basically, the description files
for the object activation system was overloaded,

there were three types of activation mechanism de-
fined:

1. activate object implementation from an exe-
cutable.

2. activate object implementation from a shared
library.

3. activate object implementation by launching
another object, and querying the launched ob-
ject for the ObjectFactory interface.

The new: moniker basically obviates the need for
the last step in the activation system. With OAF,
using the OAF approach proves to be more use-
ful, as it is possible to query OAF for components
that have certain attributes, and the attributes for
a factory object are not as interesting as the at-
tributes for the instances themselves. Despite this,
the "new:” moniker can be used for performing the
operation of instance initialization in more complex
scenarios that go beyond the scope of activation pro-
vided by OAF.

6 Adding moniker handlers to the
system

6.1 Ideal monikers

There are two moniker handlers that would be in-
teresting to implement: the Configuration Moniker
and the VFS moniker.

They both help the system overall, because the
added simplicity of having a standard way of ac-
tivating services in the system and given that the
API to these services is CORBA-based, any pro-
gramming language with CORBA /Bonobo support
can make use of them without the need of a special
language binding.

I am convinced that this helps make the system
more self consistant internally.

6.2 The configuration coniker

The configuration moniker is invoked by using the
config: prefix. The string afterwards is the con-
figuration locator. The moniker should support
being querried against the “Bonobo/Property” or
“Bonobo/PropertyBag” depending on whether we
are requesting a set of attributes, or a single at-
tribute.

For example, retrieving the configuration informa-
tion for a specific configuration property in Gnu-
meric would work like this:

Bonobo_Property auto_save;
CORBA_Any value;

auto_save = bonobo_get_object
("config:gnumeric/auto-save",
"/Bonobo/Property") ;
value = bonobo_property_get_value (auto_save,
&ev) ;

if (value->tc->kind == CORBA_tk_bool)
printf ("Value: %s\n",
(CORBA_bool)value->_value 7
"true" : "false");
else

printf ("Property is not boolean\n");

In the above example, we first use the
bonobo_get_object routine to locate the con-
figuration object through its moniker. The return
value from the bonobo_get_object is of type
Bonobo_Property which is the standard Bonobo
way of manipulating properties.

This has two main advantages. First, by access-
ing the configuration engine through the moniker
interface we have eliminated the need to define a
C-specific API for the configuration management.
The configuration could have been reached through
any other programming language that supports
CORBA.

The GNOME project has always tried to define
APIs that could be easily wrapped and accessed
from various languages (particularly, we have done
this with the toolkit and recently with the CORBA
bindings).

But even if we have taken special care of doing this,
and there are continous efforts to wrap the latest
and greatest APIs, widgets, and tools, the bindings
typically lag a few weeks to monthsw behind the
actual C API.

By moving towards CORBA, we only need to sup-
port CORBA in the various programming languages
and we get access to any new APIs defined by it.

Second, any tools on the system that can manipu-
late a Bonobo::Property or ::PropertyBag (a GUI in
a visual designer, or a configuration engine that per-
sists/hidrates objects, or a browsing tool) can talk
directly to the configuration engine all of a sudden,
as we are using the same interface method across
every language on the system.

The Bonobo::Property interface is pretty compre-
hensive, and should address most needs, the meth-
ods are as follows:

string get_name ();
TypeCode get_type ();

any get_value Q);
void set_value ();

any get_default ();
string get_doc_string ();
long get_flags ();

Now, this interface as you can see does not specify
an implementation for the actual backend. Given
that this is just an interface, we do not care what
the moniker will connect us to, we only care with
the fact that we will be able to use the Property
and PropertyBag interfaces.

6.2.1 Configuration transactions

Handling of transactional changes to the configura-
tion system can be achieved by the use of the setVal-
ues interface in the PropertyBag. The implementa-
tion of the PropertyBag can either accept the values
set, or it can do consistency checking of the values
being set (for instance, to avoid the configuration
to contradict itself, or store invalid values). If the
values being set are invalid, an exception is thrown.

It would be also possible to hook up an arbitrary
consistency checking component in the middle, by
inserting the consistency checking in the middle of
the stream, like this:

bonobo_get_object
("config:gnumeric/auto-save:gnumeric-consistency-check:",
"Bonobo/Property") ;

Notice the gnumeric-consistency-check:
moniker handler. This could just be a shared
library consistency checking component if it needs
to be.

6.2.2 Listening to changes

One of the requirements for a modern desktop is to
be react globally when changes are made to global
settings. For example, in the GNOME desktop
when a theme is changed, a special protocol inside
Gtk+ is used to notify all the applications that they
should reload their theme configuration.

There are many other examples where applications
need to keep track of the current setting. For ex-
ample, when a preference is changed, we want the
preference to take place right away, without us hav-
ing to restart our running applications.

This is easily achieved by registering a Listener with
the Bonobo/EventSource in the PropertyBag.

6.2.3 What about GConf?

GConf is a configuration management infrastructure
that provides the following features:

1. A schema system for specifying the various con-
figuration options, as well as their documenta-
tion and initial values (default values).

2. A way for the system administrator to override
values in a system-wide fashion (this encom-
passes a network-wise setup if desired).

3. A change notification system: applications
might be notified of changes to various values
they might want to keep track of.

There are two drawbacks to GConf currently:

1. Although GConf provides pretty much every-
thing that is required, but it is a C-based API
that needs to be wrapped for every language
that wants to support GConlf.

2. GConlf is limited in the kind of information that
can be stored on its database. A BonoboProp-
erty stores a CORBA_Any which can contain
any of the simple CORBA types (strings, inte-
gers, floating points, booleans), structures, ar-
rays and unions.

The actual engine and backend for GConf could be-
come the configuration moniker handler, only the
API would be replaced as well as the actual storage
system to support the more complete CORBA_Any,
and the ad-hoc CORBA interface can be replaced
with a more powerful system.

6.2.4 Configuration management: Open Is-
sues

Specifying the location for configuration
The syntax for accessing the configuration has not
been defined, but we can cook this up pretty easily.

Forcing the configuration data to be loaded from a
specific location. Although the arguments to the
moniker could be used to encode a specific location,
for example:

config: /file.config'!auto-save

It seems more natural to use the file moniker to
provide this information, for example:

file: /file.config!config:auto-save

The config moniker can test for the presence of a
parent, and if the parent exists, then it would re-
quest one of the Persist interfaces from it to load
the actual configuration file, and provide access to
it.

Transactional setting of values It might make
sense to "batch” a number of changes done under
a prefix to avoid listeners to a range of keys to re-
set themselves multiple times. Consider the case in
which a command line tool makes various changes
to the background properties, say the changes are
done in this order:

background = bonobo_get_object
("config:desktop/background",
"PropertyBag") ;

bonobo_property_bag_set_values (background,

bonobo_property_list_new (

"gradient", "string", "true",
"colorl", "string" ‘'"red",
"color2", "string" "blue",
&ev));

If the real configuration program for handling the
background is running at that point, it will have reg-
istered to be notified of changes to all those values.
The changes might be very expensive. For example
the code migh react to every change and recompute
the whole background image on each change.

An optimization would be to tag the beginning
of the transaction and the end of it in the client
code to allow listeners to get batched notification of
changes:

background = bonobo_get_object
("config:desktop/background",
iface);

bonobo_property_bag_batch_push (background) ;

bonobo_property_set (background, "gradient", "true");
bonobo_property_set (background, "colorl", "red");
bonobo_property_set (background, "color2", "blue");

bonobo_property_bag_batch_pop (background) ;

This would allow the listener code to batch all the
expensive requests into a single pass.

Configuration handlers Consider the example
above, we would like to be able to change proper-
ties on the system and have those properties to take
effect independently of whether a listener is regis-
tered or not.

A property handler might register with the config-
uration moniker to be launched when a property
changes. This could be done in a file installed in a
special location.

6.3 The GNOME VFS becomes depre-
cated

The GNOME VFS provides an asynchronous file-
system interface abstraction that can be used to ac-
cess local files, remote files, files in compressed files
and more.

The problem with the GNOME VFS is that it is
very limited: it can only expose a file system like

interface to its clients (very much like the Unix in-
terface after which it was modeled).

As covered previously, monikers define an object
naming space, and monikers can be defined for any
type of resource that the GNOME VFS supports
(a transitional path might include a set of monikers
implemented on top of the actual GNOME VFS).

A file dialog could request a moniker to be resolved
against a “Graphical File Listing” interface, which
might result in a miniature Nautilus window to be
embedded in the dialog box.

It would be possible to entirely reuse the existing
GNOME VEFS code by providing monikers for the
various access methods that would handle the spe-
cial cases “Stream”, “Storage” and “FileListing”.
Other interfaces will be plugged into the moniker
handler to support the richer content.

For instance, consider the trashcan: moniker. The
trashcan moniker could be resolved against various
interfaces. A file manager would resolve it against a
DirectoryListing interface to display the contents of
it; It could resolve it against a “Control” interface
to get a trahscan custom view (to configure the val-
ues in the trashcan); a PropertyBag interface could
be used to programmatically configure the various
settings in it.

7 Other monikers

There is another family of moniker handlers that are
worth stuyding. The filtering moniker handlers and
the caching moniker handlers.

7.1 The streamcache: moniker

The idea of the streamcache: moniker is to be basi-
cally a shared library moniker handler that provides
a cache for the IDL:Bonobo/Stream:1.0 interface.

This moniker is very simple, during resolution
it requests the IDL:Bonobo/Stream:1.0 interface
from its parent and it can only expose the
IDL:Bonobo/Stream:1.0 interface to clients.

The plus is this: it is a shared library component,

which will run in the address space of the applica-
tion that will use the Stream, and it provides a cache
to the parent Stream (so we can use small granular
method invocations, and the stream cache can do
the traditional buffering).

Think of this difference as the one between an
application using write()/read and the applica-
tion using fwrite/fread/getc/putc: although many
applications can implement their own buffering,
most of the time just using the libc-provided ones
(fwrite/fread/getc/putc) will do it. This is exactly
what the streamcache: moniker will do: By ap-
pending this to a stringified representation of a
moniker, you can get a stream cache for free.

7.2 The #gunzip,
monikers

#utar filtering

The #utar moniker is a moniker that would imple-
ment tar file decoding (the same concept can be
used for other archive formats). This moniker uses
an auxiliary tar component handler. The moniker
connects the tar component handler to the parent
object’s Stream interface and returns the result-
ing object. The result of the #utar moniker can
be either a Bonobo/Stream (for a file reference) or
Bonobo/Storage (for a directory reference).

For example:

file:/home/miguel/mail-backup.tar#utar:2000/may/1001
ftp://ftp.helixcode.com/pub/sources/gnome-1libs-1.2.tar.gz#gunzip#utar: /README

The beauty of this system is that if two applications
use the same moniker, they would be sharing the
same data without having to uncompress two times
the same tar file.

This is all achieved transparently. This would hap-
pen in quite a few instances, for example, if you
are exploring a compressed tar file in a file manager
and you drag the file to another Moniker-aware ap-
plication, say Gnumeric, Gnumeric would be using
the same file that was openened by the file manager
instead of having two uncompressed sets of files in
your system.

The above scenario is particularly useful if you have
little space, or if the process of untaring a file would
take a long time.

7.3 The propertycache: moniker

Accessing individual properties over and over might
take quite some time due to the CORBA round
trips. The propertycache: moniker would be also
a shared library handler that would basically acti-
vate the property moniker, and would set up prop-
erty listeners (which would be notified of changes in
the property data base).

So if your application does a lot of queries to a
property, you might just want to append this to im-
prove performance and not care about doing clus-
tered reads, the cache would do this for you.

This is not implemented, as it requires the property
moniker to be written.

8 The accidental invention

Monikers were invented originally in OLE2 to im-
plement Object Linking. The OLE2 programmers
accidentally invented an object naming system.

This object naming system is not only very power-
ful, but it is extensible and it helps make the system
more consistent.

9 Monikers and the GNOME VFS

Some people ask: monikers look as if they are just
re-implementing the GNOME-VFS, why is that?

For a storage backend you can always use some-
thing like bonobo_storage new (”gnome-v{s”) and
get away with life.

The main difference between the gnome-vfs, and
monikers is that monikers are used to implement
an object-based name space, while the gnome-vfs is
a fine abstraction for naming files and directories.
The moniker space goes well beyond this.

When Ettore, Nat, and I designed the GNOME
VFS in Paris, Ettore had a grander vision than
Nat or I had. Nat and I wanted exactly what the
GNOME VFS is: an asyncronous, pluggable virtual

file system implementation. Ettore wanted some-
thing more general, something that would imple-
ment an object name space. And some of the design
decisions in the core of the gnome-vfs reflect some
of this thinking, but the API and the infrastructure
was limited to handling files.

A few months later, we finally understood com-
pletely the moniker system, and we realized that
monikers were an object naming space, and that
if done correctly monikers would be able to imple-
ment Ettore’s initial vision for having an object-
based naming space.

10 Open Issues

We will need to research the implementation re-
quirements for asyncronous parsing and resolution
of Monikers.

Currently, both the Object Activation Framework
and Bonobo support asyncronous activation. Im-
plementing this for Monikers should not be hard,
but might require a few changes in the Moniker in-
terface.

11 Conclusion

Monikers are very powerful mechanisms that can
unify the name space of objects in the system and
can be used to provide a uniform access method for
a wide variety of tasks:

Component initialization

l

Addressing objects

!

— Addressing sub-objects in a compound docu-
ment.

Implementing Object Linking.

!

l

Implementing nested objects, and nested han-
dlers for file systems.

12 Acknowledgements

The Bonobo moniker implementation was done by
Michael Meeks.

The design for the Bonobo moniker system was done
by Ettore Perazzoli, Michael Meeks and myself.

