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Abstract

Efficient storage and fast retrieval of data has always
been of utmost importance. The BtrFs file system is
a copy-on-write (COW) based B-tree file system that
has an built-in support for snapshots and is considered
a potential replacement for the EXT4 file system. It
is designed specifically to address the need to scale,
manage and administer large storage configurations of
Linux systems. Snapshots are useful to have local on-
line “copies” of the file system that can be referred back
to, or to implement a form of deduplication, or for taking
a full backup of the file system. The ability to compare
these snapshots becomes crucial for system administra-
tors as well as end users.

The existing snapshot management tools perform direc-
tory based comparison on block level in user space. This
approach is generic and is not suitable for B-tree based
file systems that are designed to cater to large storage.
Simply traversing the directory structure is slow and
only gets slower as the file system grows. With the
BtrFs send/receive mechanism, the filesystem can be in-
structed to calculate the set of changes made between
the two snapshots and serialize them to a file.

Our objective is to leverage the send part in the kernel
to implement a new mechanism to list all the files that
have been added, removed, changed or had their meta-
data changed in some way. The proposed solution takes
advantage of the BtrFs B-tree structure and its power-
ful snapshot capabilities to speed up the tree traversal
and detect changes in snapshots based on inode values.
In addition, our tool can also detect changes between a
snapshot and an explicitly mentioned parent. This lends
itself for daily incremental backups of the file system,
and can very easily be integrated with existing snapshot
management tools.

1 Introduction

In current times, where data is critical to every organi-
zation, its appropriate storage and management is what
brings in value. Our approach aims at taking advantage
of the BtrFs architectural features that are made avail-
able by design. This facilitates speedy tree traversal to
detect changes in snapshots. The send ioctl runs the tree
comparison algorithm in kernel space using the on-disk
metadata format (rather than the abstract stat format
exported to the user space), which includes the ability to
recognize when entire sub-trees can be skipped for com-
parison. Since the whole comparison algorithm runs in
kernel space, the algorithm is clearly superior over exist-
ing user space snapshot management tools such as Snap-
per1.

Snapper uses diff algorithm with a few more optimiza-
tions to avoid comparing files that have not changed.
This approach requires all of the metadata for the two
trees being compared to be read. The most I/O inten-
sive part is not comparing the files but generating the
list of changed files. It needs to list all the files in the
tree and stat them to see if they have changed between
the snapshots. The performance of such an algorithm
degrades drastically as changes to the file system grow.
This is mainly caused because Snapper deploys an al-
gorithm that is not specifically designed to run on COW
based file systems.

The rest of the paper is organized as follows: Section 2
explains the BtrFs internal architecture, associated data
structures, and features. Working of the send-receive
code and the diff commands used, are discussed in

1The description takes into consideration, the older version of
Snapper. The newer version, however, does use the send-receive
code for diff generation
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Figure 1: The Terminal Node Structure (src: BtrFs De-
sign Wiki)

Section 3. Section 4 covers the design of the pro-
posed solution, the algorithm used and its implementa-
tion. This is followed by benchmarking and its analysis
in Section 5. Section 6 states applications of the send-
receive code and diff generation. Section 7 lists the
possible feature additions to Btr-diff. Finally, Section 8
summarizes the conclusions of the paper and is followed
by references.

2 BtrFs File System

The Btrfs file system is scalable to a maximum file/file
system size up to 16 exabytes. Although it exposes a
plethora of features w.r.t. scalability, data integrity, data
compression, SSD optimizations etc, this paper focuses
only on the ones relevant to snapshot storage: compari-
son and retrieval.

The file system uses the ‘copy-on-write’ B-tree as its
generic data structure. B-trees are used as they pro-
vide logarithmic time for common operations like inser-
tion, deletion, sequential access and search. This COW-
friendly B-tree in which the leaf node linkages are ab-
sent was originally proposed by Ohad Rodeh. In such
trees, writes are never made in-place, instead, the modi-
fied data is written to a different location, and the corre-
sponding metadata is updated. BtrFs, thus, has built-in
support for snapshots, which are point-in-time copies of
entire subvolumes, and rollbacks.

2.1 Data Structures

As seen in Figure 1, the BtrFs architecture consists of
three data structures internally; namely blockheader,
key and item. The blockheader contains checksums,
file system specific uuid, the level at which the block

Figure 2: BtrFs Data Structures (src: BtrFs Design
Wiki)

is present in the tree etc. The key, which defines the
order in the tree, has the fields: objectid, type and
offset. Each subvolume has its own set of object ids.
The type field contains the kind of item it is, of which,
the prominent ones are inode_item, inode_ref, xattr_
item, orphan_item, dir_log_item, dir_item, dir_
index, extent_data, root_item, root_ref, extent_
item, extent_data_ref, dev_item, chunk_item etc.
The offset field is dependent on the kind of item.

A typical leaf node consists of several items. offset and
size tell us where to find the item in the leaf (relative to
the start of the data area). The internal nodes contain
[key,blockpointer] pairs whereas the leaf nodes con-
tain a block header, array of fix sized items and the data
field. Items and data grow towards each other. Typical
data structures are shown in Figure 2.

2.2 Subvolumes and Snapshots

The BtrFs subvolume is a named B-tree that holds files
and directories and is the smallest unit that can be snap-
shotted. A point-in-time copy of such a subvolume is
called a snapshot. A reference count is associated with
every subvolume which is incremented on snapshot cre-
ation. A snapshot stores the state of a subvolume and
can be created almost instantly using the following com-
mand,

btrfs subvolume snapshot [-r] <source> [<dest>/]<name>

Such a snapshot occupies no disk space at creation.
Snapshots can be used to backup subvolumes that can
be used later for restore or recovery operations.
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3 Send-Receive Code

Snapshots are primarily used for data backup and recov-
ery. Considering the size of file system wide snapshots,
detecting how the file system has changed between two
given snapshots, manually, is a tedious task. Thus devel-
oping a clean mechanism to showcase differences be-
tween two snapshots becomes extremely important in
snapshot management.

The diff command is used for differentiating any
two files, but it uses text based2 search which is time
and computation intensive. Also, since it works on
individual files, it does not give a list of files were
modified/created/deleted on snapshot level. With the
send/receive code, BtrFs can be instructed to calculate
changes between the given snapshots and serialize them
to a file. This file can later be replayed (on a BtrFs sys-
tem) to regenerate one snapshot from another based on
the instructions logged in the file.

As the name suggests, the send-receive code has a send
side, that runs in kernel space and a receive side,
which runs in user space. To calculate the difference
between the two snapshots, the user simply gives a com-
mand line input given as follows:

btrfs send [-v] [-i <subvol>] [-p <parent>] <subvol>

-v : Enable verbose debug output. Each occurrence of
this option increases the verbose level more.

-i<subvol> : Informs btrfs send that this subvolume,
can be taken as ‘clone source’. This can be used for
incremental sends.

-p<subvol> : Disable automatic snaphot parent deter-
mination and use <subvol> as parent. This subvolume
is also added to the list of ‘clone sources’

-f<outfile> : Output is normally written to stdout. To
write to a file, use this option. An alternative would be
to use pipes.

Internally, this mechanism is implemented with the
BTRFS_IOC_SEND ioctl() which compares two trees rep-
resenting individual snapshots. This operation accepts
a file descriptor representing a mounted volume and the

2diff does a line by line comparison of the given files, finds
the groups of lines that vary, and reports each group of differing
lines. It can report the differing lines in several formats, which serve
different purposes.

subvolume ID corresponding to the snapshot of inter-
est. It then calculates changes between the two given
snapshots. The command sends the subvolume speci-
fied by <subvol> to stdout. By default, this will send
the whole subvolume. The following are some more op-
tions for output generation:

• The operation can take a list of snapshot / subvol-
ume IDs and generate a combined file for all of
them. The parent snapshot can be specified explic-
itly. Thus, differences can be calculated with re-
spect to a grandparent snapshot instead of a direct
parent.

• The command also accepts ‘clone sources’ which
are subvolumes that are expected to already exist
on the receive side. Thus logging instructions for
those subvolumes can be avoided and instead, only
a ‘clone’ instruction can be sent. This reduces the
size of the difference file.

The comparison works on the basis of meta-data. On
detecting a metadata change, the respective trace is car-
ried out and the corresponding instruction stream is
generated. The output of the send code is an instruc-
tion stream consisting of create/rename/link/write/
clone/chmod/mkdir instructions. For instance, consider
that a new directory has been added to a file system
whose snapshot has already been taken. If a new snap-
shot is then taken, the send-receive code will gen-
erate an instruction stream consisting of the instruction
mkdir. The send receive code is thus more efficient as
comparison is done only for changed files and not for
the entire snapshots.

Taking into consideration the obvious advantages of us-
ing the send-receive code, the proposed solution uses
it as a base for generating a diff between file system
snapshots. To make the output of send code readable,
we extract the data/stream sent from the send code and
decode the stream of instructions into suitable format.

4 Design and Implementation

The proposed solution makes use of the BtrFs send ioctl
BTRFS_IOC_SEND for diff generation. We have utilized
the send-side of the send-receive code and extended the
receive-side to give a view of the changes incurred to
the file system between any two snapshots. This view
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Strategy: Go to the first items of both trees. Then do

If both trees are at level 0
Compare keys of current items
If left < right treat left item as new, advance left tree
and repeat

If left > right treat right item as deleted, advance right tree
and repeat

If left == right do deep compare of items, treat as changed if
needed, advance both trees and repeat

If both trees are at the same level but not at level 0
Compare keys of current nodes/leafs
If left < right advance left tree and repeat
If left > right advance right tree and repeat
If left == right compare blockptrs of the next nodes/leafs
If they match advance both trees but stay at the same level
and repeat

If they don’t match advance both trees while allowing to go
deeper and repeat

If tree levels are different
Advance the tree that needs it and repeat

Advancing a tree means:
If we are at level 0, try to go to the next slot. If
that is not possible, go one level up and repeat. Stop when we found a level
where we could go to the next slot. We may at this point be on a node or a
leaf.

If we are not at level 0 and not on shared tree blocks, go one level deeper.

If we are not at level 0 and on shared tree blocks, go one slot to the right
if possible or go up and right.

Figure 3: Tree Traversal Algorithm (src: BtrFs Send-Receive Code)

includes a list of the files and directories that underwent
changes and also the file contents that changed between
the two specified snapshots. Thus, a user would be able
to view a file over a series of successive modifications.

The traversal algorithm is as given in Figure 3.

The BtrFs trees are ordered according to btrfs_key
which contains the fields: objectid, type and offset.
As seen in Figure 3, the comparison is based on this
key. The ‘right’ tree is the old tree (before modifica-
tion) and the ‘left’ tree is the new one (after modifica-
tion). The comparison between left and right is actu-
ally a key comparison to check the ordering. When only
one of the trees is advanced, the algorithm steps through

to the next item and eventually one tree ends up at a
later index than the other. The tree that reaches the end
quicker, evidently, has missing entries which indicates a
file deletion on this ‘faster’ side or a file creation on the
‘slower’. The tree is advanced accordingly so that both
the trees maintain almost the same level. The changes
detected include changes in inodes, that is, addition and
deletion of inodes, change in references to a file, change
in extents and change in transaction ids that last touched
a particular inode. Recording transaction IDs helps in
maintaining file system consistency.

To represent the instruction stream in a clean way, we
define the BtrFs subvolume diff command, as shown
in Figure 4. This lists the files changed (added, modi-
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btrfs subvolume diff [-p <snapshot1>] <snapshot2>

Output consists of:

I] A list of the files created, deleted
and modified (with corresponding number
of insertions and deletions).

II] Newly created files along with their
corresponding contents.

III] Files that have undergone write
modifications, with the corresponding
modified content in terms of blocks.

Figure 4: Btr-Diff and its output

fied, removed) between snapshot1 and snapshot2 where
snapshot1 is optional. If snapshot1 is not specified, a
diff between snapshot2 and its parent will be gener-
ated. The output generated by interpreting the data and
executing the command above will be represented as
given in Figure 4.

5 Performance and Optimization Achieved

Performance of Btr-diff was evaluated by varying the
size of modifications done to a subvolume. Modifica-
tions of 1 GB to 4 GB were made and snapshots were
taken at each stage. Btr-diff was then executed to gen-
erate a diff between these snapshots i.e. from 1–2 GB,
1–3 GB and so on. Benchmarking was done using the
time command. The time command calculates the
real, sys and user time of execution. The significance
of each is as follows:

real: The elapsed real time between invocation and
termination of the program. This is affected by the
other processes and can be inconsistent.

sys: The system CPU time, i.e. the time taken by the
program in the kernel mode.

user: The user CPU time, i.e. the time taken by the
program in the user mode.

A combination of sys and user time is a good indicator
of the tool’s performance.

Figure 5: Time usage

The graphs in Figure 5 showcases the sys and user time
performance of Btr-diff for different values of ‘size dif-
ferences’ between the two given snapshots. The up-
per figure shows the time spent in kernel space by Btr-
diff, while the lower figure shows the time spent in
user space. The graphs clearly depict that the proposed
method generates a diff in almost constant time. For
changes of 1 GB, Btr-diff spends one second in the ker-
nel and one second in user space. When these changes
grow to 4 GB, Btr-diff maintains almost constant time
and spends 8 seconds in the kernel and only 4 seconds
in user space. Since the traversal is executed in kernel
space, the switching between kernel and user space is
reduced to a great extent. This has a direct implication
on the performance.

There are various techniques/approaches that can be
used for snapshot management. Using the send-receive
based technique for BtrFs provides a lot of advantages
over other generic comparison algorithms/techniques.
Send/receive code is more efficient as its comparison is
meant only for changed structure/files and not for entire
snapshots. This reduces redundant comparisons.
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6 Applications

Snapshot diff generation has several applications:

• Backups in various forms. Only the instruction
stream can be stored and replayed at a later instant
to regenerate subvolumes at the receiving side.

• File system monitoring. Changes made to the file
system over a period of time can easily be viewed.

• A cron job could easily send a snapshot to a remote
server on a regular basis, maintaining a mirror of a
filesystem there.

7 Road Ahead

The possible optimizations/feature additions to Btr-diff
could be as follows:

• Traversing snapshots and generating diff for a
particular subvolume only.

• Btr-diff currently displays contents of modified
files in terms of blocks. This output could be pro-
cessed further and a git-diff like output can be
generated which is more readable.

8 Conclusion

The lack of file system specific snapshot comparison
tools for BtrFs have deterred the usage of its pow-
erful snapshot capabilities to their full potential. By
leveraging the in-kernel snapshot comparison algorithm
(send/receive), a considerable reduction in the time
taken for snapshot comparison is achieved. This is cou-
pled with lower computation as well. The existing meth-
ods are generic and thus take longer than required to
compute the diff. Our solution thus addresses this im-
pending need for a tool that uses the BtrFs features to its
advantage and gives optimum results.
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Abstract

In this work, we describe an approach that improves
collaboration between applications, the Linux kernel,
and hardware memory subsystem (controllers and the
DIMMs) in order to balance power and performance
objectives, and we present details of its implementa-
tion using the Linux 2.6.32 kernel (x64) as base. The
implementation employs ACPI memory power state ta-
ble (MPST) to organize system memory into power do-
mains according to rank information. An application
programming interface (API) in our implementation al-
lows applications to efficiently communicate various
provisioning goals concerning groups of virtual ranges
to the kernel. The kernel biases allocation and reclama-
tion algorithms in line with the provisioning goals. The
goals may vary over time; thus at one time, the applica-
tions may request high power efficiency; and at another
time, they may ask for bandwidth or capacity reserva-
tions, and so on. This paper describes the framework,
the changes for incorporating MPST information, policy
modifications, and examples and use cases for invoking
the new capabilities.

1 Introduction

Recent computing trends necessitate an increased fo-
cus on power and energy consumption and support for
multi-tenant use cases. There is therefore a need to mul-
tiplex hardware efficiently and without performance in-
terference. Advances in allocating CPU, storage and
network resources have made it possible to meet com-
peting service quality objectives while reducing power
or energy demands[9, 8, 3]. In comparison to other re-
sources, however, it is very challenging to obtain pre-

cise control over distribution of memory capacity, band-
width, or power, when virtualizing and multiplexing
system memory. Precisely controlling memory power
and performance is difficult because these effects inti-
mately depend upon the results of activities across mul-
tiple layers of the vertical execution stack, which are of-
ten not available at any single layer or component.

In an effort to simplify resource management within
each layer, current systems often separate and abstract
away information necessary to coordinate cross-layer
activity. For example, the Linux kernel views physical
memory as a single, large, contiguous array of physical
addresses. The physical arrangement of memory mod-
ules, and that of the channels connecting them to pro-
cessors, together with the power control domains are
all opaque to the operating system’s memory manage-
ment routines. Without exposing this information to
the upper-level software, it is very difficult to design
schemes that coordinate application demands with the
layout and architecture of the memory hardware.

The selection of physical pages to bind to application
virtual addresses also has a significant impact on mem-
ory power and performance. Operating systems use
heuristics that reclaim either the oldest, or the least re-
cently touched, or least frequently used physical pages
in order to fill demands. Over time, after repeated al-
locations and reclaims, there is no guarantee that a col-
lection of intensely accessed physical pages would re-
main confined to a small number of memory modules
(or DIMMs). Even if an application reduces its dy-
namic memory footprint, its memory accesses can re-
main spread out across sufficiently many memory ranks
to keep any ranks from transitioning into a low-power
state to save power. The layout and distribution of each

• 13 •
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application’s hot pages not only affects the ability of
memory modules to transition to lower power states dur-
ing intervals of low activity, but also impacts the extent
of interference caused by a program’s activity in mem-
ory and the responsiveness experienced by other active
programs. Thus a more discriminating approach than is
available in current systems for multiplexing of physical
memory is highly desirable.

Furthermore, data-intensive computing continues to
raise demands on memory. Recent studies have shown
that memory consumes up to 40% of total system power
in enterprise servers [7] making memory power a dom-
inant factor in overall power consumption. If an appli-
cations high-intensity accesses are concentrated among
a small fraction of its total address space, then it is
possible to achieve power-efficient performance by co-
locating the active pages among a small fraction of
DRAM banks. At the same time, an application that
is very intensive in its memory accesses may prefer that
pages in its virtual address span are distributed as widely
as possible among independent memory channels to
maximize performance. Thus, adaptive approaches are
needed for improving power efficiency and performance
isolation in the scheduling of memory.

We have designed and implemented a Linux kernel-
based framework that improves collaboration between
the applications, Linux kernel, and memory hardware
in order to provide increased control over the distribu-
tion of memory capacity, bandwidth, and power. The
approach employs the ACPI memory power state table
(MPST)[1], which specifies the configuration’s mem-
ory power domains and their associated physical ad-
dresses. Our modified Linux kernel leverages this infor-
mation to organize physical memory pages into software
structures (an abstraction called “trays”) that capture the
physically independent power domains. The modified
kernel’s page management routines perform all alloca-
tion and recycling over our software trays.

Our framework includes an application programming
interface (API) that allows applications to efficiently
communicate provisioning goals to the kernel by apply-
ing colors to portions of their virtual address space. A
color is simply a hint applied to a virtual address range
that indicates to the operating system that some com-
mon behavior or intention spans pages, even if the pages
are not virtually contiguous. Applications can also as-
sociate attributes (or combinations of attributes) with
each color. Attributes provide information (typically

some intent or provisioning goal) to the operating sys-
tem about how to manage the colored range. Colors and
their associated attributes can be applied and changed
at any time, and our modified Linux kernel attempts to
interpret and take them into account while performing
allocation, recycling, or page migration decisions.

We re-architect the memory management of a recent
Linux kernel (x64, version 2.6.32) to implement our ap-
proach. Our recently published work, A Framework for
Application Guidance in Virtual Memory Systems [6],
describes the high-level design and intuition behind our
approach and presents several experiments showing how
it can be used to achieve various objectives, such as
power savings and capacity provisioning. In this work,
we provide further design and implementation details,
including major kernel modifications and specific func-
tions and tools provided by our coloring API.

The next section describes how our custom kernel lever-
ages MPST information to construct trays and provides
details of the structural and procedural modifications
necessary to perform allocation and recycling over trays.
In Section 3, we present our application programming
interface to efficiently communicate application intents
to our Linux kernel using colors, and we provide details
of the kernel modifications that are necessary to receive
and interpret this communication. In Section 4 we dis-
cuss our plans for future work, and Section 5 concludes
the paper.

2 Leveraging MPST in the Linux Kernel

Our custom kernel organizes physical memory pages
into the power-manageable tray abstraction by leverag-
ing information provided by the ACPI memory power
state table. Our implementation enables tray-based
memory allocation and reclaim policies, which we de-
scribe in the following section.

2.1 Tray Design

Modern server systems employ a Non-Uniform Mem-
ory Access (NUMA) architecture which divides mem-
ory into separate regions (nodes) for each processor or
set of processors. Within each NUMA node, mem-
ory is spatially organized into channels. Each channel
employs its own memory controller and contains one
or more DIMMs, which, in turn, each contain two or
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Figure 1: Organization of tray structures in relation to memory hardware

more ranks. Ranks comprise the actual memory stor-
age and typically range from 2GB to 8GB in capacity.
The memory hardware performs aggressive power man-
agement to transition from high power to low power
states when either all or some portion of the memory is
not active. Ranks are the smallest power manageable
unit, which implies that transitioning between power
states is performed at the rank level. Thus, different
memory allocation strategies must consider an impor-
tant power-performance tradeoff: distributing memory
evenly across the ranks improves bandwidth which leads
to better performance, while minimizing the number of
active ranks consume less power.

The Linux kernel maintains a hierarchy of structures to
represent and manage physical memory. Nodes in the
Linux kernel correspond to the physical NUMA nodes
in the hardware. Each node is divided into a number
of blocks called zones, which represent distinct physical
address ranges. At boot time, the OS creates physical
page frames (or simply, pages) from the address range
covered by each zone. Each page typically addresses
4KB of space. The kernel’s physical memory manage-
ment (allocation and recycling) operates on these pages,
which are stored and tracked using various lists in each
zone. For example, a set of lists of pages in each zone
called the free lists describes all of the physical memory
available for allocation.

To implement our approach, we create a new division

in this hierarchy called trays. A tray is a software struc-
ture which contains sets of pages that reside on the same
power-manageable memory unit. Each zone contains a
set of trays and all the lists used to manage pages on the
zone are replaced with corresponding lists in each tray.
Figure 1 shows how our custom kernel organizes its rep-
resentation of physical memory with trays in relation to
the actual memory hardware.

One potential issue with the tray approach is that power-
manageable domains that cross existing zone bound-
aries are represented as separate trays in different zones.
Tray 1 in Figure 1 illustrates this situation. Another
approach, proposed by A. Garg [5], introduces a mem-
ory region structure between the node and zone level to
capture power-manageable domains. Although this ap-
proach is able to represent power-manageable domains
that cross existing zone boundaries in a single structure,
it requires a duplicate set of zone structures for each
memory region. There are a number of important mem-
ory management operations that occur at the zone level
and maintaining duplicate zone structures significantly
complicates these operations. Our tray-based approach
avoids zone duplication, and thus, avoids such compli-
cations. A more recent version of the memory region
approach, proposed by S. Bhat [4], removes memory
regions from the node-zone hierarchy entirely, and cap-
tures power-manageable domains in a data structure par-
allel to zones.
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Flags (decoded below) : 03
Node Enabled : 1
Power Managed : 1
Hot Plug Capable : 0
Reserved : 00
Node ID : 0000
Length : 00000026
Range Address : 0000000700000000
Range Length : 000000013FFFFFFF
Num Power States : 02
Num Physical Components : 03
Reserved : 0000
...

Figure 2: Example MPST entry

2.2 Mapping Pages to Trays Using MPST

Assigning pages to the appropriate tray requires a map-
ping from physical addresses to the power-manageable
units in hardware. We employ the ACPI defined mem-
ory power state table (MPST), which provides this map-
ping. Each entry in the MPST specifies a memory
power node with its associated physical address ranges
and supported memory power states. Some nodes may
have multiple entries to support nodes mapped to non-
contiguous address ranges.

The BIOS presents this information to the kernel at boot
time in the form of an ACPI Data Table with statically
packed binary data. Unfortunately, our kernel version
does not include any facilities to parse the MPST into
structured data. Therefore, we parse the table into text
using utilities provided by the ACPI Component Archi-
tecture (ACPICA) project [2]. Figure 2 shows an ex-
ample MPST entry as text. The most important fields
in this table for defining power-manageable domains
are Range Address and Range Length, which spec-
ify the physical address range of each memory power
node. Thus, by either building this information into the
kernel image or by copying it from user space during
runtime, we are able to construct a global list of mem-
ory power nodes and their associated physical address
ranges for use during memory management.

Pages can now be assigned to the appropriate tray by
searching the global list of memory power nodes to find
which node contains each page of memory. For most
system configurations, this list is relatively short and
searching it does not require significant overhead. Thus,

to simplify our implementation effort, our custom kernel
performs this search every time an operation needs to
determine which tray should contain a particular page.
An efficient implementation could perform this search
once for each page and store information identifying the
page’s tray in the page flags field, similar to how the
zone and node information for each page are currently
stored.

It is important to note that our framework assumes
that all of the physical addresses on each page corre-
spond to memory on the same power-manageable unit
in hardware. Some configurations interleave physical
addresses within each page across power-manageable
units in the hardware. For example, in an effort to ex-
ploit spatial locality, some systems interleave physical
addresses across channels at the cache line boundary
(typically 64 bytes). Supposing such a system has two
DIMMs, each connected to its own channel, the first
cache line within a page will use DIMM 0, the next will
use DIMM 1, the next will use DIMM 0, and so on. In
this case, our framework cannot control access to each
individual DIMM, but may be able to control access to
which ranks are used within the DIMMs.

2.3 Memory Management Over Trays

To enable memory management over trays, we modi-
fied our kernel’s page management routines, which op-
erate on lists of pages at the zone level, to operate over
the same lists, but at a subsidiary level of trays. That
is, zones are subdivided into trays, and page allocation,
scanning, recycling are all performed at the tray level.
For example, during page allocation, once a zone that
is sufficient for a particular allocation has been found,
the allocator calls buffered_rmqueue to find a page
and remove it from the zone’s free lists. In our cus-
tom kernel, buffered_rmqueue is modified to take an
additional argument describing which tray’s free lists
should be searched, and each call site is modified to
call buffered_rmqueue repeatedly, with each tray, un-
til a suitable page is found. Most of the other required
changes are similarly straightforward.

One notable complication has to do with the low-level
page allocator in Linux, known as the buddy alloca-
tor. In order to quickly fulfill requests for contiguous
ranges of pages, the Linux buddy allocator automati-
cally groups contiguous blocks of pages. The order
of a block of pages refers to the number of contiguous
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struct tray {
...
/*
* free lists of pages of different orders
*/
struct free_area free_area[MAX_ORDER];
...

};
struct free_area {
struct list_head free_list[MIGRATE_TYPE];
unsigned long nr_free;

};

Figure 3: Definition of free lists in the buddy system

pages in that block, where an order-n block contains 2n

contiguous pages. Block orders range from 0 (individ-
ual pages) to some pre-defined maximum order (11 on
our Linux 2.6.32 x64 system). Blocks of free pages are
stored in a set of lists, where each list contains blocks of
pages of the same order. In our implementation, the lists
are defined at the tray-level as shown in Figure 3. When
two contiguous order-n blocks of pages are both free,
the buddy allocator removes these two blocks from the
order-n free list and creates a new block to store on the
order-n+1 free list. However, if two contiguous order-
n blocks reside in different trays, their combined order-
n+1 block cannot be placed on either tray (as it would
contain pages belonging to the other tray). For this rea-
son, we maintain a separate set of free lists, defined at
the zone level, to hold higher order blocks that contain
pages from separate trays. With this structure, our cus-
tom kernel is able to fulfill requests for low-order al-
locations from a particular power-manageable domain,
while, at the same time, it is also able to handle requests
for large blocks of contiguous pages, which may or may
not reside on the same power-manageable unit.

3 Application Guidance under Linux

The goal of our framework is to provide control over
memory resources such as power, bandwidth, and ca-
pacity in a way that allows the system to flexibly adapt to
shifting power and performance objectives. By organiz-
ing physical memory into power-manageable domains,
our kernel patch provides crucial infrastructure for en-
abling fine-grained resource management in software.
However, memory power and performance depend not
only on how physical pages are distributed across the

memory hardware, but also on how the operating sys-
tem binds virtual pages to physical pages, and on the
demands and usage patterns of the upper-level applica-
tions. Thus, naïve attempts to manage these effects are
likely to fail.

Our approach is to increase collaboration between the
applications and operating system by allowing applica-
tions to communicate how they intend to use memory
resources. The operating system interprets the applica-
tion’s intents and uses this information to guide mem-
ory management decisions. In this section, we describe
our memory coloring interface that allows applications
to communicate their intents to the OS, and the kernel
modifications necessary to receive, interpret, and imple-
ment application intents.

3.1 Memory Coloring Overview

A color is an abstraction which allows the application
to communicate to the OS hints about how it is going
to use memory resources. Colors are sufficiently gen-
eral as to allow the application to provide different types
of performance or power related usage hints. In us-
ing colors, application software can be entirely agnostic
about how virtual addresses map to physical addresses
and how those physical addresses are distributed among
memory modules. By coloring any N different virtual
pages with the same color, an application communicates
to the OS that those N virtual pages are alike in some
significant respect, and by associating one or more at-
tributes with that color, the application invites the OS to
apply any discretion it may have in selecting the physi-
cal page frames for those N virtual pages.

By specifying coloring hints, an application provides
a usage map to the OS, and the OS consults this us-
age map in selecting an appropriate physical memory
scheduling strategy for those virtual pages. An applica-
tion that uses no colors and therefore provides no guid-
ance is treated normally – that is, the OS applies some
default strategy. However, when an application provides
guidance through coloring, depending on the particular
version of the operating system, the machine configura-
tion (such as how much memory and how finely inter-
leaved it is), and other prevailing run time conditions in
the machine, the OS may choose to veer a little or a lot
from the default strategy.
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System Call Arguments Description
mcolor addr, size, color Applies color to a virtual address range of length size starting

at addr
get_addr_mcolor addr,*color Returns the current color of the virtual address addr
set_task_mcolor color Applies color to the entire address space of the calling process
get_task_mcolor *color Returns the current color of the calling process’ address space
set_mcolor_attr color, *attr Associates the attribute attr with color
get_mcolor_attr color, *attr Returns the attribute currently associated with color

Table 1: System calls provided by the memory coloring API

3.2 Memory Coloring Example

The application interface for communicating colors and
intents to the operating system uses a combination of
configuration files, library software, and system calls.
Let us illustrate the use of our memory coloring API
with a simple example.

Suppose we have an application that has one or more
address space extents in which memory references are
expected to be relatively infrequent (or uniformly dis-
tributed, with low aggregate probability of reference).
The application uses a color, say blue to color these ex-
tents. At the same time, suppose the application has
a particular small collection of pages in which it hosts
some frequently accessed data structures, and the appli-
cation colors this collection red. The coloring intent is to
allow the operating system to manage these sets of pages
more efficiently – perhaps it can do so by co-locating
the blue pages on separately power-managed units from
those where red pages are located, or, co-locating red
pages separately on their own power-managed units, or
both. A possible second intent is to let the operating
system page the blue ranges more aggressively, while
allowing pages in the red ranges an extended residency
time. By locating blue and red pages among a com-
pact group of memory ranks, an operating system can
increase the likelihood that memory ranks holding the
blue pages can transition more quickly into self-refresh,
and that the activity in red pages does not spill over
into those ranks. Since many usage scenarios can be
identified to the operating system, we define “intents”
and specify them using configuration files. A con-
figuration file for this example is shown in Figure 4.
In this file, the intents labeled MEM-INTENSITY and
MEM-CAPACITY can capture two intentions: (a) that red
pages are hot and blue pages are cold, and (b) that about
5% of application’s dynamic resident set size (RSS)
should fall into red pages, while, even though there are

# Specification for frequency of reference:
INTENT MEM-INTENSITY

# Specification for containing total spread:
INTENT MEM-CAPACITY

# Mapping to a set of colors:
MEM-INTENSITY RED 0 //hot pages
MEM-CAPACITY RED 5 //hint - 5% of RSS

MEM-INTENSITY BLUE 1 //cold pages
MEM-CAPACITY BLUE 3 //hint - 3% of RSS

Figure 4: Example config file for colors and intents

many blue pages, their low probability of access is indi-
cated by their 3% share of the RSS. Next, let us examine
exactly how these colors and intents are actually com-
municated to the operating system using system calls.

3.3 System Calls in the Memory Coloring API

The basic capabilities of actually applying colors to vir-
tual address ranges and binding attributes to colors are
provided to applications as system calls. Applications
typically specify colors and intents using configuration
files as shown in the example above, and then use a li-
brary routine to convert the colors and intents into sys-
tem call arguments at runtime.

Table 1 lists and describes the set of system calls pro-
vided by our memory coloring API. To attach colors
to virtual addresses, applications use either mcolor (to
color a range of addresses), or set_task_mcolor (to
color their entire address space). Colors are represented
as unique integers, and can be overlapped. Thus, we
use an integer bit field to indicate the set of colors that
have been applied to each address range. To implement
mcolor, we add a color field to the vm_area_struct
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struct mcolor_attr {
unsigned int intent[MAX_INTENTS];
unsigned int mem_intensity;
float mem_capacity;

};

Figure 5: Example attribute structure definition

kernel structure. In the Linux kernel, each process’ ad-
dress space is populated by a number of regions with
distinct properties. These regions are each described
by an instance of vm_area_struct. When an appli-
cation calls mcolor, the operating system updates the
vm_area_struct that corresponds to the given address
range (possibly splitting an existing vm_area_struct
and/or creating a new vm_area_struct, if neces-
sary) to indicate that the region is colored. The
set_task_mcolor implementation is similar: the
task_struct kernel structure is modified to include a
color field, and set_task_mcolor updates this field. In
the case that the vm_area_struct and task_struct
color fields differ, the operating system may attempt to
resolve any conflicts. In our default implementation, we
simply choose the color field on the vm_area_struct
if it has been set.

Colors are associated with attributes using the
set_mcolor_attr system call. To represent attributes,
we use a custom structure called mcolor_attr. For
each color, this structure packages all of the data nec-
essary to describe the color’s associated intents. Fig-
ure 5 shows the mcolor_attr definition that is used
for the example in Section 3.2. The intent field indi-
cates whether a particular type of intent has been spec-
ified, and the remaining fields specify data associated
with each intent. The kernel maintains a global table of
colors and their associated attributes. When the applica-
tion calls set_mcolor_attr, the kernel links the given
attribute to the color’s position in the global table. Note
that in this implementation, there is only one attribute
structure associated with each color. We bind multiple
intents to one color by packaging the intents together
into a single attribute structure.

3.4 Interpreting Colors and Intents During Mem-
ory Management

Lastly, we examine exactly how our modified Linux ker-
nel steers its physical memory management decisions
in accordance with memory coloring guidance. To de-
scribe this process, let us again consider the example in
Section 3.2. Before the example application applies any
colors, the system employs its default memory manage-
ment strategy for all of the application’s virtual pages.
After applying the red and blue colors and binding these
to their associated intents, the system will eventually
fault on a colored page. Early during the page fault
handling, the system determines the color of the fault-
ing page (by examining the color field on the page’s
vm_area_struct) and looks up the color’s associated
attribute structure in the global attribute table. Now,
the OS can use the color and attribute information to
guide its strategy when selecting which physical page to
choose to satisfy the fault.

For example, in order to prevent proliferation of fre-
quently accessed pages across many power-manageable
units, the operating system might designate one or a
small set of the power-manageable domains (i.e. tray
software structures) as the only domains that may be
used to back red pages. Then, when the system faults
on a page colored red, the OS will only consider physi-
cal pages from the designated set of domains to satisfy
the fault. As another example, let us consider how the
system might handle the MEM-CAPACITY intent. When
the OS determines that pages of a certain color make up
more than some percentage of the application’s current
RSS, then the system could choose to recycle frames
containing pages of that color in order to fill demands.
In this way, the system is able to fill demands without in-
creasing the percentage of colored pages in the resident
set.

Note that the specializations that an OS may support
need not be confined just to selection of physical pages
to be allocated or removed from the application’s resi-
dent set. The API is general enough to allow other op-
tions such as whether or not to fault-ahead or to per-
form read-aheads or flushing writes, or whether or not
to undertake migration of active pages from one set of
memory banks to another in order to squeeze the ac-
tive footprint into fewest physical memory modules. In
this way, an OS can achieve performance, power, I/O, or
capacity efficiencies based on guidance that application
tier furnishes through coloring.
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4 Future Work

While our custom kernel and API enable systems to
design and achieve flexible, application-guided, power-
aware management of memory, we do not yet have an
understanding of what sets of application guidance and
memory power management strategies will be most use-
ful for existing workloads. Furthermore, our current
API requires that all coloring hints be manually inserted
into source code and does not provide any way to auto-
matically apply beneficial application guidance. Thus,
we plan to develop a set of tools to profile, analyze, and
automatically control memory usage for applications.
Some of the capabilities we are exploring include: (a)
a set of tools and library software for applications to
query detailed memory usage statistics for colored re-
gions, (b) on-line techniques that adapt memory usage
guidance based on feedback from the OS, and (c) inte-
gration with compiler and runtime systems to automati-
cally partition and color the application’s address space
based on profiles of memory usage activity.

Simultaneously, we plan to implement color awareness
in selected open source database, web server, and J2EE
software packages, so that we can exercise complex,
multi-tier workloads at the realistic scale of server sys-
tems with memory outlays reaching into hundreds of
gigabytes. In these systems, memory power can reach
nearly half of the total machine power draw, and there-
fore they provide an opportunity to explore dramatic
power and energy savings from application-engaged
containment of memory activities. We also plan to ex-
plore memory management algorithms that maximize
performance by biasing placement of high value data so
that pages in which performance critical data resides are
distributed widely across memory channels. We envi-
sion that as we bring our studies to large scale software
such as a complex database, we will inevitably find new
usage cases in which applications can guide the operat-
ing system with greater nuance about how certain pages
should be treated differently from others.

5 Conclusions

There is an urgent need for computing systems that are
able to multiplex memory resources efficiently while
also balancing power and performance tradeoffs. We
have presented the design and implementation of a
Linux-based approach that improves collaboration be-
tween the application, operating system, and hardware

layers in order to provide a fine-grained, flexible, power-
aware provisioning of memory. The implementation
leverages the ACPI memory power state table to orga-
nize the operating system’s physical memory pages into
power-manageable domains. Additionally, our frame-
work provides an API that enables applications to ex-
press a wide range of provisioning goals concerning
groups of virtual ranges to the kernel. We have de-
scribed the kernel modifications to organize and man-
age physical memory in software structures that corre-
spond to power-manageable units in hardware. Finally,
we have provided a detailed description of our API for
communicating provisioning goals to the OS, and we
have presented multiple use cases of our approach in the
context of a realistic example.

References

[1] Advanced configuration and power interface
specification, 2011.
http://www.acpi.info/spec.htm.

[2] Acpi component architecture (acpica), 2013.
http://www.acpi.info/spec.htm.

[3] Vlasia Anagnostopoulou, Martin Dimitrov, and
Kshitij A. Doshi. Sla-guided energy savings for
enterprise servers. In IEEE International
Symposium on Performance Analysis of Systems
and Software, pages 120–121, 2012.

[4] Srivatsa S. Bhat. mm: Memory power
management, 2013.
http://lwn.net/Articles/546696/.

[5] Ankita Garg. mm: Linux vm infrastructure to
support memory power management, 2011.
http://lwn.net/Articles/445045/.

[6] Michael R. Jantz, Carl Strickland, Karthik Kumar,
Martin Dimitrov, and Kshitij A. Doshi. A
framework for application guidance in virtual
memory systems. In VEE ’13: Proceedings of the
9th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments,
March 2013.

[7] Charles Lefurgy, Karthick Rajamani, Freeman
Rawson, Wes Felter, Michael Kistler, and Tom W.
Keller. Energy management for commercial
servers. Computer, 36(12):39–48, December 2003.

http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://lwn.net/Articles/546696/
http://lwn.net/Articles/445045/


2014 Linux Symposium • 21

[8] Lanyue Lu, P.J. Varman, and K. Doshi.
Decomposing workload bursts for efficient storage
resource management. IEEE Transactions on
Parallel and Distributed Systems, 22(5):860 –873,
may 2011.

[9] H. Wang, K. Doshi, and P. Varman. Nested qos:
Adaptive burst decomposition for slo guarantees in
virtualized servers. Intel Technology Journal, June,
16:2 2012.



22 • Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals



CPU Time Jitter Based Non-Physical True Random Number Generator

Stephan Müller
atsec information security
Stephan.Mueller@atsec.com

Abstract

Today’s operating systems provide non-physical true
random number generators which are based on hardware
events. With the advent of virtualization and the ever
growing need of more high-quality entropy, these ran-
dom number generators reach their limits. Additional
sources of entropy must be opened up. This document
introduces an entropy source based on CPU execution
time jitter. The design and implementation of a non-
physical true random number generator, the CPU Jitter
random number generator, its statistical properties and
the maintenance and behavior of entropy is discussed in
this document.

The complete version of the analysis together with large
amounts of test results is provided at www.chronox.de.

1 Introduction

Each modern general purpose operating system offers a
non-physical true random number generator. In Unix
derivatives, the device file /dev/random allows user
space applications to access such a random number gen-
erator. Most of these random number generators obtain
their entropy from time variances of hardware events,
such as block device accesses, interrupts triggered by
devices, operations on human interface devices (HID)
like keyboards and mice, and other devices.

Limitations of these entropy sources are visible. These
include:

• Hardware events do not occur fast enough.

• Virtualized environments remove an operating sys-
tem from direct hardware access.

• Depending on the usage environment of the operat-
ing system, entire classes of hardware devices may
be missing and can therefore not be used as entropy
source.

• The more and more often used Solid State Disks
(SSDs) advertise themselves as block devices to
the operating system but yet lack the physical phe-
nomenon that is expected to deliver entropy.

• On Linux, the majority of the entropy for the
input_pool behind /dev/random is gathered
from the get_cycles time stamp. However, that
time stamp function returns 0 hard coded on sev-
eral architectures, such as MIPS. Thus, there is not
much entropy that is present in the entropy pool
behind /dev/random or /dev/urandom.

• Current cache-based attacks allow unprivileged ap-
plications to observe the operation of other pro-
cesses, privileged code as well as the kernel. Thus,
it is desirable to have fast moving keys. This ap-
plies also to the seed keys used for deterministic
random number generators.

How can these challenges be met? A new source of en-
tropy must be developed that is not affected by the men-
tioned problems.

This document introduces a non-physical true random
number generator, called CPU Jitter random number
generator, which is developed to meet the following
goals:

1. The random number generator shall only operate
on demand. Other random number generators con-
stantly operate in its lifetime, regardless whether
the operation is needed or not, binding computing
resources.

2. The random number generator shall always return
entropy with a speed that satisfies today’s require-
ment for entropy. The random number generator
shall be able to be used synchronously with the en-
tropy consuming application, such as the seeding
of a deterministic random number generator.
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3. The random number generator shall not block the
request for user noticeable time spans.

4. The random number generator shall deliver high-
quality entropy when used in virtualized environ-
ments.

5. The random number generator shall not require a
seeding with data from previous instances of the
random number generator.

6. The random number generator shall work equally
well in kernel space and user space.

7. The random number generator implementation
shall be small, and easily understood.

8. The random number generator shall provide a de-
centralized source of entropy. Every user that
needs entropy executes its own instance of the CPU
Jitter random number generator. Any denial of ser-
vice attacks or other attacks against a central en-
tropy source with the goal to decrease the level of
entropy maintained by the central entropy source
is eliminated. The goal is that there is no need of a
central /dev/random or /dev/urandom device.

9. The random number generator shall provide per-
fect forward and backward secrecy, even when the
internal state becomes known.

Apart from these implementation goals, the random
number generator must comply with the general quality
requirements placed on any (non-)physical true random
number generator:

Entropy The random numbers delivered by the gener-
ator must contain true information theoretical en-
tropy. The information theoretical entropy is based
on the definition given by Shannon.

Statistical Properties The random number bit stream
generated by the generator must not follow any sta-
tistical significant patterns. The output of the pro-
posed random number generator must pass all stan-
dard statistical tools analyzing the quality of a ran-
dom data stream.

These two basic principles will be the guiding central
theme in assessing the quality of the presented CPU Jit-
ter random number generator.

The document contains the following parts:

• Discussion of the noise source in Section 2

• Presentation of CPU Jitter random number genera-
tor design in Section 3

• Discussion of the statistical properties of the ran-
dom number generator output in Section 4

• Assessment of the entropy behavior in the random
number generator in Section 5

But now away with the theoretical blabber: show me the
facts! What is the central source of entropy that is the
basis for the presented random number generator?

2 CPU Execution Time Jitter

We do have deterministically operating CPUs, right?
Our operating systems behave fully deterministically,
right? If that would not be the case, how could we ever
have operating systems using CPUs that deliver a deter-
ministic functionality.

Current hardware supports the efficient execution of the
operating system by providing hardware facilities, in-
cluding:

• CPU instruction pipelines. Their fill level have an
impact on the execution time of one instruction.
These pipelines therefore add to the CPU execu-
tion timing jitter.

• The timer tick and its processing which alters the
caches.

• Cache coherency strategies of the CPU with its
cores add variances to instruction execution time as
the cache controlling logic must check other caches
for their information before an instruction or mem-
ory access is fetched from the local cache.

• The CPU clock cycle is different than the memory
bus clock speed. Therefore, the CPU has to en-
ter wait states for the synchronization of any mem-
ory access where the time delay added for the wait
states adds to time variances.

• The CPU frequency scaling which alters the pro-
cessing speed of instructions.

• The CPU power management which may disable
CPU features that have an impact on the execution
speed of sets of instructions.
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In addition to the hardware nondeterminism, the follow-
ing operating system caused system usage adds to the
non-deterministic execution time of sets of instructions:

• Instruction and data caches with their varying in-
formation – tests showed that before the caches are
filled with the test code and the CPU Jitter random
number generator code, the time deltas are bigger
by a factor of two to three;

• CPU topology and caches used jointly by multiple
CPUs;

• CPU frequency scaling depending on the work
load;

• Branch prediction units;

• TLB caches;

• Moving of the execution of processes from one
CPU to another by the scheduler;

• Hardware interrupts that are required to be handled
by the operating system immediately after the de-
livery by the CPU regardless what the operating
system was doing in the mean time;

• Large memory segments whose access times may
vary due to the physical distance from the CPU.

2.1 Assumptions

The CPU Jitter random number generator is based on a
number of assumptions. Only when these assumptions
are upheld, the data generated can be believed to con-
tain the requested entropy. The following assumptions
apply:

• Attacker having hardware level privileges are as-
sumed to be not present. With hardware level priv-
ilege, on some CPU it may be possible to change
the state of the CPU such as that caches are dis-
abled. In addition, millicode may be changed such
that operations of the CPU are altered such that op-
erations are not executed any more. The assump-
tion is considered to be unproblematic, because if
an attacker has hardware level privilege, the col-
lection of entropy is the least of our worries as the
attacker may simply bypass the entropy collection
and furnish a preset key to the entropy-seeking ap-
plication.

• Attacker with physical access to the CPU interior
is assumed to be not present. In some CPUs, phys-
ical access may allow enabling debug states or the
readout of the entire CPU state at one particular
time. With the CPU state, it may be possible to
deduct upcoming variations when the CPU Jitter
random number generator is executed immediately
after taking a CPU state snapshot. An attacker
with this capability, however, is also able to read
out the entire memory. Therefore, when launching
the attack shortly after the entropy is collected, the
attacker could read out the key or seed material,
bypassing the the entropy collection. Again, with
such an attacker, the entropy collection is the least
of our worries in this case.

• The CPU Jitter random number generator is always
executed on CPUs connected to peripherals. When
the CPU has no peripherals, including no access to
RAM or any busses, special software can be ex-
pected to execute on the CPU fully deterministi-
cally. However, as this scenario requires a highly
specialized environment that does not allow gen-
eral purpose computing, this scenario is not appli-
cable.

2.2 Jitter Depicted

With the high complexity of modern operating systems
and their big monolithic kernels, all the mentioned hard-
ware components are extensively used. However, due to
the complexity, nobody is able to determine which is the
fill level of the caches or branch prediction units, or the
precise location of data in memory at one given time.

This implies that the execution of instruction may have
miniscule variations in execution time. In addition,
modern CPUs have a high-resolution timer or instruc-
tion counter that is so precise that they are impacted by
these tiny variations. For example, modern x86 CPUs
have a TSC clock whose resolution is in the nanosecond
range.

These variations in the execution time of an identical set
of CPU instructions can be visualized. For the sample
code sequence given in Figure 1, the variation in time is
shown in Figure 2.

The contents of the variable delta is not identical be-
tween the individual loop iterations. When running the
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static inline void jent_get_nstime(uint64_t ∗out)
{

...

if (clock_gettime(CLOCK_REALTIME, &time) == 0)

...

}

void main(void)

{

...

jent_get_nstime(&time);

jent_get_nstime(&time2);

delta = time2 − time;
...

}

Figure 1: Sample code for time variance observation

code with a loop count of 1,000,000 on an otherwise
quiet system to avoid additional time variance from the
noise of other processes, we get data as illustrated in
Figure 2.

Please note that the actual results of the aforementioned
code contains a few exceptionally large deltas as an op-
erating system can never be fully quiesced. Thus, the
test results were processed to cut off all time deltas
above 64. The limitation of the graph to all variations
up to 64 can be considered as a “magnification” of the
data set to the interesting values.

Figure 2 contains the following information of interest
to us:

• The bar diagram shows the relative frequency of
the different delta values measured by the code.
For example, the delta value of 22 (nanoseconds
– note the used timer returns data with nanosec-
ond precision) was measured at 25% of all deltas.
The value 23 (nanoseconds) was measured at about
25% of all time deltas.

• The red and blue vertical lines indicate the mean
and median values. The mean and median is
printed in the legend below the diagram. Note, they
may overlap each other if they are too close. Use
the legend beneath the diagram as a guidance in
this case.

• The two green vertical lines indicate the first and

Figure 2: Distribution of time variances in user space
over 1.000.000 loops

third quartile of the distribution. Again, the values
of the quartiles are listed in the legend.

• The red dotted line indicates a normal distribu-
tion defined by the measured mean and the mea-
sured standard derivation. The value of the stan-
dard derivation is given again in the legend.

• Finally, the legend contains the value for the Shan-
non Entropy that the measured test sample con-
tains. The Shannon Entropy is calculated with the
formula specified in Section 5.2 using the observa-
tions after cutting off the outliers above the thresh-
old mentioned above.

The graph together with the code now illustrates the
variation in execution time of the very same set of op-
erations – it illustrates the CPU execution time jitter for
a very tight loop. As these variations are based on the
aforementioned complexity of the operating system and
its use of hardware mechanisms, no observer can de-
duce the next variation with full certainty even though
the observer is able to fully monitor the operation of the
system. And these non-deterministic variations are the
foundation of the proposed CPU Jitter random number
generator.

As the CPU Jitter random number generator is intended
to work in kernel space as well, the same analysis is per-
formed for the kernel. For an initial test, the time stamp
variance collection is invoked 30.000.000 times. The
generation of the given number of time deltas is very
fast, typically less than 10 seconds. When re-performing
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the test, the distribution varies greatly, including the
Shannon Entropy. The lowest observed value was in the
1.3 range and the highest was about 3. The reason for
not obtaining a longer sample is simply resources: cal-
culating the graph would take more than 8 GB of RAM.

Now that we have established the basic source of en-
tropy, the subsequent design description of the random
number generator must explain the following two as-
pects which are the basic quality requirements discussed
in Section 1 applied to our entropy phenomenon:

1. The random number generator design must be ca-
pable of preserving and collecting the entropy from
the discussed phenomenon. Thus, the random
number generator must be able to “magnify” the
entropy phenomenon.

2. The random number generator must use the ob-
served CPU execution time jitter to generate an
output bit string that delivers the entropy to a caller.
That output string must not show any statistical
anomalies that allow an observer to deduce any
random numbers or increase the probability when
guessing random numbers and thus reducing its en-
tropy.

The following section presents the design of the random
number generator. Both requirements will be discussed.

3 Random Number Generator Design

The CPU Jitter random number generator uses the above
illustrated operation to read the high-resolution timer for
obtaining time stamps. At the same time it performs
operations that are subject to the CPU execution time
jitter which also impact the time stamp readings.

3.1 Maintenance of Entropy

The heart of the random number generator is illustrated
in Figure 3.

The random number generator maintains a 64 bit un-
signed integer variable, the entropy pool, that is indi-
cated with the gray shaded boxes in Figure 3 which
identify the entropy pool at two different times in the
processing.

In a big picture, the random number generator imple-
ments an entropy collection loop that
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Figure 3: Entropy Collection Operation

1. fetches a time stamp to calculate a delta to the time
stamp of the previous loop iteration,

2. folds the time delta value into one bit,

3. processes this value with a Von-Neumann unbias
operation,

4. adds this value to the entropy pool using XOR,

5. rotates the pool to fill the next bit value of the pool.

The loop is executed exactly 64 times as each loop iter-
ation generates one bit to fill all 64 bits of the entropy
pool. After the loop finishes, the contents of the entropy
pool is given to the caller as a 64 bit random number1.
The following subsection discuss every step in detail.

When considering that the time delta is always com-
puted from the delta to the previous loop iteration, and
the fact that the majority of the execution time is spent
in the folding loop, the central idea of the CPU Jitter
Random Number Generator is to measure the execution
time jitter over the execution of the folding loop.

3.1.1 Obtaining Time Delta

The time delta is obtained by:

1. Reading a time stamp,

2. Subtracting that time stamp from the time stamp
calculated in the previous loop iteration,

1If the caller provides an oversampling rate of greater than 1 dur-
ing the allocation of the entropy collector, the loop iteration count
of 64 is multiplied by this oversampling rate value. For example, an
oversample rate of 3 implies that the 64 loop iterations are executed
three times – i.e. 192 times.
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3. Storing the current time stamp for use in the next
loop iteration to calculate the next delta.

For every new request to generate a new random num-
ber, the first iteration of the loop is used to “prime” the
delta calculation. In essence, all steps of the entropy col-
lection loop are performed, except of mixing the delta
into the pool and rotating the pool. This first iteration of
the entropy collection loop does not impact the number
of iterations used for entropy collection. This is imple-
mented by executing one more loop iteration than spec-
ified for the generation of the current random number.

When a new random number is to be calculated, i.e. the
entropy collection loop is triggered anew, the previous
contents of the entropy pool, which is used as a random
number in the previous round is reused. The reusing
shall just mix the data in the entropy pool even more.
But the implementation does not rely on any properties
of that data. The mixing of new time stamps into the en-
tropy pool using XOR ensures that any entropy which
may have been left over from the previous entropy col-
lection loop run is still preserved. If no entropy is left,
which is the base case in the entropy assessment, the al-
ready arbitrary bit pattern in the entropy pool does not
negatively affect the addition of new entropy in the cur-
rent round.

3.1.2 Folding Operation of Time Delta

The folding operation is depicted by the left side of Fig-
ure 3. That folding operation is implemented by a loop
where the loop counter is not fixed.

To calculate the new fold loop counter a new time stamp
is obtained. All bits above the value MAX_FOLD_LOOP_
BITS – which is set to 4 – are zeroed. The idea is that
the fast moving bits of the time stamp value determine
the size of the collection loop counter. Why is it set to 4?
The 4 low bits define a value between 0 and 16. This un-
certainty is used to quickly stabilize the distribution of
the output of that folding operation to an equidistribu-
tion of 0 and 1, i.e. about 50% of all output is 0 and also
about 50% is 1. See Section 5.2.1 for a quantitative anal-
ysis of that distribution. To ensure that the collection
loop counter has a minimum value, the value 1 is added
– that value is controlled with MIN_FOLD_LOOP_BIT.
Thus, the range of the folding counter value is from 1
to (16 + 1 - 1). Now, this newly determined collection
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Figure 4: Folding of the time delta and mixing it into the
entropy pool

loop counter is used to perform a new fold loop as dis-
cussed in the following.

Figure 4 shows the concept of the folding operation of
one time delta value.

The upper 64 bit value illustrated in Figure 4 is the
time delta obtained at the beginning of the current en-
tropy collection loop iteration. Now, the time delta is
partitioned into chunks of 1 bit starting at the lowest
bit. The different shades of gray indicate the different
1 bit chunks. The 64 1 bit chunks of the time value
are XORed with each other to form a 1 bit value. With
the XORing of all 1 bit chunks with each other, any in-
formation theoretical entropy that is present in the time
stamp will be preserved when folding the value into the
1 bit. But as we fold it into 1 bit, the maximum entropy
the time stamp can ever add to the entropy pool is, well,
1 bit. The folding operation is done as often as specified
in the loop count.

3.1.3 Von-Neumann Unbias Operation

According to RFC 1750 section 5.2.2, a Von-Neumann
unbias operation can be considered to remove any po-
tential skews that may be present in the bit stream of the
noise source. The operation is used to ensure that in case
skews are present, they are eliminated. The unbias op-
eration is only applicable if the individual consecutive
bits are considered independent. Chapter 5 indicates the
independence of these individual bits.

To perform the Von-Neumann unbias operation, two in-
dependently generated folded bits are processed.

http://www.ietf.org/rfc/rfc1750.txt
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3.1.4 Adding Unbiased Folded Time Delta To En-
tropy Pool

After obtaining the 1 bit folded and unbiased time
stamp, how is it mixed into the entropy pool? The lower
64 bit value in Figure 4 indicates the entropy pool. The
1 bit folded value is XORed with 1 bit from the entropy
pool.

But which bit is used? The rotation to the left by 1 bit
that concludes the entropy collection loop provides the
answer. When the entropy collection loop perform the
very first iteration, the 1 bit is XORed into bit 0 of the
entropy pool. Now, that pool is rotated left by 1 bit.
That means that bit 63 before the rotation becomes bit
0 after the rotation. Thus, the next round of the entropy
collection loop XORes the 1 bit folded time stamp again
into bit 0 which used to be bit 63 in the last entropy
collection loop iteration2.

The reason why the rotation is done with the value 1 is
due to the fact that we have 1 bit we want to add to the
pool. The way how the folded bit values are added to the
entropy pool can be viewed differently from a mathe-
matical standpoint when considering 64 1 bit values: in-
stead of saying that each of the 64 1 bit value is XORed
independently into the entropy pool and the pool value
is then rotated, it is equivalent to state that 64 1 bit val-
ues are concatenated and then the concatenated value is
XORed into the entropy pool. The reader shall keep that
analogy in mind as we will need it again in Section 5.

3.2 Generation of Random Number Bit Stream

We now know how one 64 bit random number value
is generated. The interface to the CPU Jitter random
number generator allows the caller to provide a pointer
to memory and a size variable of arbitrary length. The
random number generator is herewith requested to gen-
erate a bit stream of random numbers of the requested
size that is to be stored in the memory pointed to by the
caller.

2Note, Figure 4 illustrates that the the folded bit of the time delta
is moved over the 64 bit entropy pool as indicated with the bold
black box (a.k.a the “slider”). Technically, the slider stays at bit 0
and the entropy pool value rotates left. The end result of the mixing
of the folded bit into the entropy pool, however, is identical, regard-
less whether you rotate the entropy pool left or move the slider to
the right. To keep the figure illustrative, it indicates the movement
of the slider.

The random number generator performs the following
sequence of steps to fulfill the request:

1. Check whether the requested size is smaller than
64 bits. If yes, generate one 64 bit random num-
ber, copy the requested amount of bits to the target
memory and stop processing the request. The un-
used bits of the random number are not used fur-
ther. If a new request arrives, a fresh 64 bit random
number is generated.

2. If the requested size is larger than 64 bits, gener-
ate one random number, copy it to the target. Re-
duce the requested size by 64 bits and decide now
whether the remaining requested bits are larger or
smaller than 64 bits and based on the determina-
tion, follow either step 1 or step 2.

Mathematically step 2 implements a concatenation of
multiple random numbers generated by the random
number generator.

3.3 Initialization

The CPU Jitter random number generator is initialized
in two main parts. At first, a consuming application
must call the jent_entropy_init(3) function which
validates some basic properties of the time stamp. Only
if this validation succeeds, the CPU Jitter random num-
ber generator can be used.

The second part can be invoked multiple times. Each
invocation results in the instantiation of an indepen-
dent copy of the CPU Jitter random number generator.
This allows a consumer to maintain multiple instances
for different purposes. That second part is triggered
with the invocation of jent_entropy_collector_
alloc(3) and implements the following steps:

1. Allocation and zeroing of memory used for the
entropy pool and helper variables – struct
rand_data defines the entropy collector which
holds the entropy pool and its auxiliary values.

2. Invoking the entropy collection loop once – this
fills the entropy pool with the first random value
which is not returned to any caller. The idea is
that the entropy pool is initialized with some val-
ues other than zero. In addition, this invocation
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of the entropy collection loop implies that the en-
tropy collection loop counter value is set to a ran-
dom value in the allowed range.

3. If FIPS 140-2 is enabled by the calling application,
the FIPS 140-2 continuous test is primed by copy-
ing the random number generated in step 3 into the
comparing value and again triggering the entropy
collection loop for a fresh random number.

3.4 Memory Protection

The CPU Jitter random number generator is intended for
any consuming application without placing any require-
ments. As a standard behavior, after completing the
caller’s request for a random number, i.e. generating the
bit stream of arbitrary length, another round of the en-
tropy collection loop is triggered. That invocation shall
ensure that the entropy pool is overwritten with a new
random value. This prevents a random value returned to
the caller and potentially used for sensitive purposes lin-
gering in memory for long time. In case paging starts,
the consuming application crashes and dumps core or
simply a hacker cracks the application, no traces of even
parts of a generated random number will be found in the
memory the CPU Jitter random number generator is in
charge of.

In case a consumer is deemed to implement a
type of memory protection, the flag CRYPTO_CPU_
JITTERENTROPY_SECURE_MEMORY can be set at com-
pile time. This flag prevents the above mentioned func-
tionality.

Example consumers with memory protection are the
kernel, and libgcrypt with its secure memory.

3.5 Locking

The core of the CPU Jitter random number generator im-
plementation does not use any locking. If a user intends
to employ the random number generator in an environ-
ment with potentially concurrent accesses to the same
instance, locking must be implemented. A lock should
be taken before any request to the CPU Jitter random
number generator is made via its API functions.

Examples for the use of the CPU Jitter random number
generator with locks are given in the reference imple-
mentations outlined in the appendices.

3.6 FIPS 140-2 Continuous Self Test

If the consuming application enables a FIPS 140-2 com-
pliant mode – which is observable by the CPU Jit-
ter random number generator callback of jent_fips_
enabled – the FIPS 140-2 mode is enabled.

This mode ensures that the continuous self test is en-
forced as defined by FIPS 140-2.

3.7 Intended Method of Use

The CPU Jitter random number generator must be com-
piled without optimizations. The discussion in Sec-
tion 5.1 supported by Appendix F explains the reason.

The interface discussed in Section 3.2 is implemented
such that a caller requesting an arbitrary number of bytes
is satisfied. The output can be fed through a whitening
function, such as a deterministic random number gener-
ator or a hash based cryptographically secure whitening
function. The appendix provides various implementa-
tions of linking the CPU Jitter random number generator
with deterministic random number generators.

However, the output can also be used directly, consid-
ering the statistical properties and the entropy behavior
assessed in the following chapters. The question, how-
ever, is whether this is a wise course of action. Whiten-
ing shall help to protect the entropy that is in the pool
against observers. This especially a concern if you have
a central entropy source that is accessed by multiple
users – where a user does not necessarily mean human
user or application, since a user or an application may
serve multiple purposes and each purpose is one “user”.
The CPU Jitter random number generator is designed
to be instantiated multiple times without degrading the
different instances. If a user employs its own private
instance of the CPU Jitter random number generator,
it may be questionable whether a whitening function
would be necessary.

But bottom line: it is a decision that the reader or de-
veloper employing the random number generator finally
has to make. The implementations offered in the appen-
dices offer the connections to whitening functions. Still,
a direct use of the CPU Jitter random number generator
is offered as well.
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3.8 Programming Dependencies on Operating Sys-
tem

The implementation of the CPU Jitter random number
generator only uses the following interfaces from the
underlying operating systems. All of them are imple-
mented with wrappers in jitterentropy-base-{*}.h.
When the used operating system offers these interfaces
or a developer replaces them with accordingly, the CPU
Jitter random number generator can be compiled on a
different operating system or for user and kernel space:

• Time stamp gathering: jent_get_nstime must
deliver the high resolution time stamp. This func-
tion is an architecture dependent function with the
following implementations:

– User space:

∗ On Mach systems like MacOS, the func-
tion mach_absolute_time is used for a
high-resolution timer.

∗ On AIX, the function read_real_time
is used for a righ resolution timer.

∗ On other POSIX systems, the clock_
gettime function is available for this
operation.

– Linux kernel space: In the Linux kernel,
the get_cycles function obtains this infor-
mation. The directory arch/ contains vari-
ous assembler implementations for different
CPUs to avoid using an operating system ser-
vice. If get_cycles returns 0, which is pos-
sible on several architectures, such as MIPS,
the kernel-internal call __getnstimeofday
is invoked which uses the best available
clocksource implementation. The goal with
the invocation of __getnstimeofday is to
have a fallback for get_cycles returning
zero. Note, if that clocksource clock also is a
low resolution timer like the Jiffies timer, the
initialization function of the CPU Jitter Ran-
dom Number Generator is expected to catch
this issue.

• jent_malloc is a wrapper for the malloc func-
tion call to obtain memory.

• jent_free is a wrapper for calling the free func-
tion to release the memory.

Loop count 0 1 2 3 4 Bit sum Figure
1 0 1 1 0 0 N/A N/A
2 0 0 0 1 0 N/A N/A
3 1 1 0 0 1 4 5

Result 1 1 2 1 1 1 6 7
Result 2 1 2 1 2 1 7 9

Table 1: Example description of tests

• __u64 must be a variable type of a 64 bit unsigned
integer – either unsigned long on a 64 bit system or
unsigned long long on a 32 bit system.

The following additional functions provided by an op-
erating system are used without a wrapper as they are
assumed to be present in every operating environment:

• memcpy

• memset

4 Random Generator Statistical Assessment

After the discussion of the design of the entropy collec-
tion, we need to perform assessments of the quality of
the random number generator. As indicated in Section 1,
the assessment is split into two parts.

This chapter contains the assessment of the statistical
properties of the data in the entropy pool and the output
data stream.

When compiling the code of the CPU Jitter ran-
dom number generator with the flag CRYPTO_CPU_
JITTERENTROPY_STAT, instrumentations are added to
the code that obtain the data for the following graphs
and distributions. The tests can be automatically re-
performed by invoking the tests_[userspace|kernel]
/getstat.sh shell script which also generates the
graphs using the R-Project language toolkit.

4.1 Statistical Properties of Entropy Pool

During a testing phase that generated 1,000,000 random
numbers, the entropy pool is observed. The observa-
tion generated statistical analyses for different aspects
illustrated in Table 1. Each line in the table is one ob-
servation of the entropy pool value of one round of the
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entropy collection loop. To read the table, assume that
the entropy pool is only 10 bits in size. Further, assume
that our entropy collection loop count is 3 to generate a
random number.

The left column contains the entropy collection loop
count and the indication for the result rows. The mid-
dle columns are the 5 bits of the entropy pool. The Bit
sum column sums the set bits in the respective row. The
Figure column references the figures that illustrate the
obtained test data results.

The “Result 1” row holds the number of bits set for each
loop count per bit position. In the example above, bit 0
has a bit set only once in all three loops. Bit 1 is set
twice. And so on.

The “Result 2” row holds the number of changes of the
bits for each loop count compared to the previous loop
count per bit position. For example, for bit 0, there is
only one change from 0 to 1 between loop count 2 and
3. For bit 7, we have two changes: from 0 to 1 and from
1 to 0.

The graphs contains the same information as explained
for Figure 2.

The bit sum of loop count 3 is simply the sum of the set
bits holds the number of set bits at the last iteration count
to generate one random number. It is expected that this
distribution follows a normal distribution closely, be-
cause only such a normal distribution is supports implies
a rectangular distribution of the probability that each bit
is equally likely to be picked when generating a random
number output bit stream. Figure 5 contains the distri-
bution of the bit sum for the generated random numbers
in user space.

In addition, the kernel space distribution is given in Fig-
ure 6 – they are almost identical and thus show the same
behavior of the CPU Jitter random number generator

Please note that the black line in the graphs above is an
approximation of the density of the measurements us-
ing the histogram. When more histogram bars would
be used, the approximation would better fit the theoret-
ical normal distribution curve given with the red dotted
line. Thus, the difference between both lines is due to
the way the graph is drawn and not seen in the actual
numbers. This applies also to the bars of the histogram
since they are left-aligned which means that on the left

Figure 5: Bit sum of last round of entropy collection
loop user space

Figure 6: Bit sum of last round of entropy collection
loop kernel space

Figure 7: Bit sum of set bits per bit position in user space
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Figure 8: Bit sum of set bits per bit position in kernel
space

Figure 9: Bit sum of bit variations per bit position in
user space

Figure 10: Bit sum of bit variations per bit position in
kernel space

side of the diagram they overstep the black line and on
the right side they are within the black line.

The distribution for “Result 1” of the sum of of these set
bits is given in Figure 7.

Again, for the kernel we have an almost identical distri-
bution shown in Figure 8. And again, we conclude that
the behavior of the CPU Jitter random number generator
in both worlds is identical.

Just like above, the plot for the kernel space is given in
Figure 10.

A question about the shape of the distribution should be
raised. One can have no clear expectations about the
distribution other than it must show the following prop-
erties:

• It is a smooth distribution showing no breaks.

• It is a symmetrical distribution whose symmetry
point is the mean.

The distribution for “Result 2” of the sum of of these bit
variations in user space is given in Figure 9.

Just like for the preceding diagrams, no material differ-
ence is obvious between kernel and user space. The
shape of the distributions is similar to the one for the
distribution of set bits. An expected distribution can also
not be given apart from the aforementioned properties.

4.2 Statistical Properties of Random Number Bit
Stream

The discussion of the entropy in Section 5 tries to show
that one bit of random number contains one bit of en-
tropy. That is only possible if we have a rectangular dis-
tribution of the bits per bit position, i.e. each bit in the
output bit stream has an equal probability to be set. The
CPU Jitter random number block size is 64 bit. Thus
when generating a random number, each of the 64 bits
must have an equal chance to be selected by the random
number generator. Therefore, when generating large
amounts of random numbers and sum the bits per bit
position, the resulting distribution must be rectangular.
Figure 11 shows the distribution of the bit sums per bit
position for a bit stream of 10,000,000 random numbers,
i.e 640,000,000 bits.



34 • CPU Time Jitter Based Non-Physical True Random Number Generator

Figure 11: Distribution of bit count per bit position of
RNG output

Figure 12: Box plot of variations in bit count per bit
position of RNG output

Figure 11 looks pretty rectangular. But can the pic-
ture be right with all its 64 vertical lines? We support
the picture by printing the box plot in Figure 12 that
shows the variance when focusing on the upper end of
the columns.

The box plot shows the very narrow fluctuation around
expected mean value of half of the count of random
numbers produced, i.e. 5,000,000 in our case. Each bit
of a random number has the 50% chance to be set in
one random number. When looking at multiple random
numbers, a bit still has the chance of being set in 50%
of all random numbers. The fluctuation is very narrow
considering the sample size visible on the scale of the
ordinate of Figure 11.

Thus, we conclude that the bit distribution of the random
number generator allows the possibility to retain one bit
of entropy per bit of random number.

This conclusion is supported by calculating more thor-
ough statistical properties of the random number bit
stream are assessed with the following tools:

• ent

• dieharder

• BSI Test Procedure A

The ent tool is given a bit stream consisting of
10,000,000 random numbers (i.e. 80,000,000 Bytes)
with the following result where ent calculates the statis-
tics when treating the random data as bit stream as well
as byte stream:

$ dd if=/sys/kernel/debug/jitterentropy/seed of=random.out bs=8 count=10000000

# Byte stream
$ ent random.out
Entropy = 7.999998 bits per byte.

Optimum compression would reduce the size
of this 80000000 byte file by 0 percent.

Chi square distribution for 80000000 samples is 272.04, and randomly
would exceed this value 25.00 percent of the times.

Arithmetic mean value of data bytes is 127.4907 (127.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is 0.000174 (totally uncorrelated = 0.0).

# Bit stream
$ ent -b random.out
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 640000000 bit file by 0 percent.

Chi square distribution for 640000000 samples is 1.48, and randomly
would exceed this value 25.00 percent of the times.

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is -0.000010 (totally uncorrelated = 0.0).

During many re-runs of the ent test, most of the time,
the Chi-Square test showed the test result of 50%, i.e. a
perfect result – but even the shown 25% is absolutely in
line with random bit pattern. Very similar results were
obtained when executing the same test on:

• an Intel Atom Z530 processor;

• a MIPS CPU for an embedded device;

• an Intel Pentium 4 Mobile CPU;

• an AMD Semperon processor;

• KVM guest where the host was based on an Linux
3.8 kernel and with QEMU version 1.4 without any
special configuration of hardware access;

• OpenVZ guest on an AMD Opteron processor.

• Fiasco.OC microkernel;
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In addition, an unlimited bit stream is generated and fed
into dieharder. The test results are given with the
files tests_userspace/dieharder-res.*. The re-
sult files demonstrate that all statistical properties tested
by dieharder are covered appropriately.

The BSI Test Suite A shows no statistical weaknesses.

The test tools indicate that the bit stream complies with
the properties of random numbers.

4.3 Anti-Tests

The statistical analysis given above indicates a good
quality of the random number generator. To support that
argument, an “anti” test is pursued to show that the qual-
ity is not provided by the post-processing of the time
stamp data, but solely by the randomness of the time
deltas. The post-processing therefore is only intended
to transform the time deltas into a bit string with a ran-
dom pattern and magnifying the timer entropy.

The following subsections outline different “anti” tests.

4.3.1 Static Increment of Time Stamp

The test is implemented by changing the function jent_
get_nstime to maintain a simple value that is incre-
mented by 23 every time a time stamp is requested. The
value 23 is chosen as it is a prime. Yet, the increment is
fully predictable and does not add any entropy.

Analyzing the output bit stream shows that the Chi-
Square test of ent in both byte-wise and bit-wise output
will result in the value of 0.01 / 100.00 which indicates
a bit stream that is not random. This is readily clear, be-
cause the time delta calculation always returns the same
value: 23.

Important remark: The mentioned test can only be con-
ducted when the CPU Jitter random number generator
initialization function of jent_entropy_init(3) is not
called. This function implements a number of statistical
tests of the time source. In case the time source would
operate in static increments, the initialization function
would detect this behavior and return an error.

If the CPU Jitter random number generator would be
used with a cryptographic secure whitening function,
the outlined “anti” test would not show any problems

in the output stream. That means that a cryptographic
whitening function would hide potential entropy source
problems!

4.3.2 Pattern-based Increment of Time Stamp

Contrary to the static increment of the time stamp, this
“anti” test describes a pattern-based increment of the
time stamp. The time stamp is created by adding the
sum of 23 and an additional increment between 1 and 4
using the following code:

static unsigned int pad = 0;
static __u64 tmp = 0;
static inline void jent_get_nstime(__u64 *out)
{

tmp += 23;
pad++;
*out = (tmp + (pad & 0x3));

}

The code adds 24 in the first loop, 25 in the second, 26
in the third, 27 in the fourth, again 24 in the fifth, and so
forth.

Using such a pattern would again fail the ent test as
the Chi-Square test is at 100 or 0.01 and the data stream
can be compressed. Thus, such a time stamp increment
would again be visible in the statistical analysis of this
chapter.

In addition to the Chi-Square test, the measurements
of the second derivation of the time stamp, the varia-
tions of time deltas, would present very strange patterns
like, zero, or spikes, but no continuously falling graph
as measured.

4.3.3 Disabling of System Features

The CPU jitter is based on properties of the system, such
as caches. Some of these properties can be disabled in
either user space or kernel space. The effect on such
changes is measured in various tests.

5 Entropy Behavior

As the previous chapter covered the statistical properties
of the CPU Jitter random number generator, this chapter
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provides the assessment of the entropy behavior. With
this chapter, the second vital aspect of random number
generators mentioned in Section 1 is addressed.

The CPU Jitter random number generator does not
maintain any entropy estimator. Nor does the random
number generator tries to determine the entropy of the
individual recorded time deltas that are fed into the en-
tropy pool. There is only one basic rule that the CPU Jit-
ter random number generator follows: upon completion
of the entropy collection loop, the entropy pool contains
64 bit of entropy which are returned to the caller. That
results in the basic conclusion of the random number
bit stream returned from the CPU Jitter random number
generator holding one bit of entropy per bit of random
number.

Now you may say, that is a nice statement, but show me
the numbers. The following sections will demonstrate
the appropriateness of this statement.

Section 5.1 explains the base source of entropy for the
CPU Jitter random number generator. This section ex-
plains how the root cause of entropy is visible in the
CPU Jitter random number generator. With Section 5.2,
the explanation is given how the entropy that is present
in the root cause, the CPU execution time jitter, is har-
vested, maintained through the processing of the ran-
dom number generator and accumulated in the entropy
pool. This section provides the information theoretical
background to back up the statistical analyses given in
Section 4.

Before we start with the entropy discussion, please let
us make one issue perfectly clear: the nature of entropy,
which is an indication of the level of uncertainty present
in a set of information, can per definition not be cal-
culated. All what we can do is try to find arguments
whether the entropy estimation the CPU Jitter random
number generator applies is valid. Measurements are
used to support that assessment. Moreover, the discus-
sion must contain a worst case analysis which gives a
lower boundary of the entropy assumed to be present in
the random number bit stream extracted from the CPU
Jitter random number generator.

5.1 Base Entropy Source

As outlined in Section 3, the variations of the time delta
is the source of entropy. Unlike the graphs outlined in

Section 2 where two time stamps are invoked imme-
diately after each other, the CPU Jitter random num-
ber generator places the folding loop between each time
stamp gathering. That implies that the CPU jitter over
the folding loop is measured and used as a basis for en-
tropy.

Considering the fact that the CPU execution time jitter
over the folding loop is the source of entropy, we can
determine the following:

• The result of the folding loop shall return a one bit
value that has one bit of entropy.

• The delta of two time stamps before and after the
folding loop is given to the folding loop to obtain
the one bit value.

When viewing both findings together, we can conclude
that the CPU jitter of the time deltas each folding loop
shows must exceed 1 bit of entropy. Only this way we
can ensure that the folded time delta value has one bit of
entropy – see Section 5.2.1 for an explanation why the
folding operation retains the entropy present in the time
delta up to one bit.

Tests are implemented that measure the variations of
the time delta over an invocation of the folding loop.
The tests are provided with the tests_userspace/
timing/jitterentropy-foldtime.c test case for
user space, and the stat-fold DebugFS file for test-
ing the kernel space. To ensure that the measurements
are based on the worst-case analysis, the user space test
is compiled with -O2 optimization3. The kernel space
test is compiled with the same optimization as the ker-
nel itself.

The design of the folding loop in Section 3.1.2 explains
that the number of folding loop iterations varies between
20 and 24 iterations. The testing of the entropy of the
folding loop must identify the lower boundary and the
upper boundary. The lower boundary is the minimum
entropy the folding loop at least will have: this mini-
mum entropy is the entropy observable over a fixed fold-
ing loop count. The test uses 20 as the fixed folding loop

3The CPU execution time jitter varies between optimized and
non-optimized binaries. Optimitzed binaries show a smaller jitter
compared to non-optimized binaries. Thus, the test applies a worst
case approach with respect to the optimizations, even though the
design requires the compilation without optimizations.
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count. On the other hand, the upper boundary of the en-
tropy is set by allowing the folding loop count to float
freely within the above mentioned range.

It is expected that the time stamps used to calculate
the folding loop count is independent from each other.
Therefore, the entropy observable with the testing of the
upper boundary is expected to identify the entropy of
the CPU execution time jitter. Nonetheless, if the reader
questions the independence, the reader must conclude
that the real entropy falls within the measured range be-
tween the lower and upper boundary.

Figure 13 presents the lower boundary of the folding
loop executing in user space of the test system. The
graph shows two peaks whereas the higher peak is cen-
tered around the execution time when the code is in the
CPU cache. For the time when the code is not in the
CPU cache – such as during context switches or during
the initial invocations – the average execution time is
larger with the center at the second peak. In addition,
Figure 14 provides the upper boundary of the folding
loop. With the graph of the upper boundary, we see 16
spikes which are the spikes of the lower boundary scat-
tered by the folding loop counter. If the folding loop
counter is 1, the variation of the time delta is centered
around a lower value than the variations of a folding
loop counter of 2 and so on. As the variations of the
delta are smaller than the differences between the means
of the different distributions, we observe the spikes.

The two graphs use the time deltas of 10,000,000 invo-
cations of the folding loop. To eliminate outliers, time
delta values above the number outlined in the graphs are
simply cut off. That means, when using all values of the
time delta variations, the calculated Shannon Entropy
would be higher than listed in the legend of the graphs.
This cutting off therefore is yet again driven by the con-
sideration of determining the worst case.

The lower boundary shows a Shannon Entropy above
2.9 bits and the upper boundary a Shannon Entropy
above 6.7 bits.

In addition to the user space measurements, Figures 15
and 16 present the lower and upper boundary of the fold-
ing loop execution time variations in kernel space on the
same system. Again, the lower boundary is above 2 bits
and the upper above 6 bits of Shannon Entropy.

As this measurement is the basis of all entropy discus-
sion, Appendix F shows the measurements for many

Figure 13: Lower boundary of entropy over folding loop
in user space

Figure 14: Upper boundary of entropy over folding loop
in user space

Figure 15: Lower boundary of entropy over folding loop
in kernel space
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Figure 16: Upper boundary of entropy over folding loop
in kernel space

different CPUs. All of these measurements show that
the lower and upper boundaries are always much higher
than the required one bit of entropy with exceptions. All
tests are executed with optimized code as even a worst
case assessment and sometimes with the non-optimized
compilation to show the difference.

For the other CPUs whose lower entropy is below 1
bit and the jent_entropy_init function allows this
CPU, statistical tests are performed to verify that no cy-
cles are present. This implies that the entropy is closer
to the upper boundary and therefore well above 1 bit.

The reader should also consider that the measured Shan-
non Entropy is a conservative measurement as the test
invokes the folding loop millions of times successively.
This implies that for the entire duration of the test,
caches, branch prediction units and similar are mostly
filled with the test code and thus have hardly any im-
pact on the variations of the time deltas. In addition, the
test systems are kept idle as much as possible to limit the
number of context switches which would have an impact
on the cache hits. In real-life scenarios, the caches are
typically filled with information that have an big impact
on the jitter measurements and thus increase the entropy.

With these measurements, we can conclude that the
CPU execution jitter over the folding loop is always
more than double the entropy in the worst case than re-
quired. Thus, the measured entropy of the CPU execu-
tion time jitter that is the basis of the CPU Jitter random
number generator is much higher than required.

The reader may now object and say that the measured
values for the Shannon Entropy are not appropriate for

the real entropy of the execution time jitter, because the
observed values may present some patterns. Such pat-
terns would imply that the real entropy is significantly
lower than the calculated Shannon Entropy. This argu-
ment can easily be refuted by the statistical tests per-
formed in Section 4. If patterns would occur, some of
the statistical tests would indicate problems. Specifi-
cally the Chi-Square test is very sensitive to any pat-
terns. Moreover, the “anti” tests presented in Section 4.3
explain that patterns are easily identifiable.

5.1.1 Impact of Frequency Scaling and Power
Management on Execution Jitter

When measuring the execution time jitter on a system
with a number of processes active such as a system with
the X11 environment and KDE active, one can iden-
tify that the absolute numbers of the execution time of a
folding loop is higher at the beginning than throughout
the measurement. The behavior of the jitter over time
is therefore an interesting topic. The following graph
plots the first 100,000 measurements4 where all mea-
surements of time deltas above 600 were removed to
make the graph more readable (i.e. the outliers are re-
moved). It is interesting to see that the execution time
has a downward trend that stabilizes after some 60,000
folding loops. The downward trend, however, is not
continuously but occurs in steps. The cause for this
behavior is the frequency scaling (Intel SpeedStep) and
power management of the system. Over time, the CPU
scales up to the maximum processing power. Regardless
of the CPU processing power level, the most important
aspect is that the oscillation within each step has an sim-
ilar “width” of about 5 to 10 cycles. Therefore, regard-
less of the stepping of the execution time, the jitter is
present with an equal amount! Thus, frequency scaling
and power management does not alter the jitter.

When “zooming” in into the graph at different loca-
tions, as done below, the case is clear that the oscillation
within each step remains at a similar level.

The constant variations support the case that the CPU
execution time jitter is agnostic of the with frequency
scaling and power management levels.

4The measurements of the folding loop execution time were re-
performed on the same system that is used for Section 5.1. As
the measurements were re-performed, the absolute numbers vary
slightly to the ones in the previous section.
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Figure 17: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management

Figure 18: Variations of the execution time jitter over
time when performing folding loop jitter measure-
ments with Frequency Scaling / Power Management –
“zoomed in at measurements 1,000 - 3,000”

Figure 19: Variations of the execution time jitter over
time when performing folding loop jitter measure-
ments with Frequency Scaling / Power Management –
“zoomed in at measurements 42,000 - 44,000”

Figure 20: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled

Figure 21: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled
– “zoomed in at measurements 1,000 - 3,000”

To compare the measurements with disabled frequency
scaling and power management on the same system, the
following graphs are prepared. These graphs show the
same testing performed.

5.2 Flow of Entropy

Entropy is a is a phenomenon that is typically character-
ized with the formula for the Shannon Entropy H

H =−
N

∑
i=1

pi · log2(pi)

where N is the number of samples, and pi is the proba-
bility of sample i. As the Shannon Entropy formula uses
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Figure 22: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled
– “zoomed in at measurements 42,000 - 44,000”

the logarithm at base 2, that formula results in a number
of bits of entropy present in an observed sample.

Considering the logarithm in the Shannon Entropy for-
mula one has to be careful on which operations can be
applied to data believed to contain entropy to not lose it.
The following operations are allowed with the following
properties:

• Concatenation of bit strings holding entropy im-
plies that the combined string contains the combi-
nation of both entropies, i.e. the entropy value of
both strings are added. That is only allowed when
both observations are independent from each other.

• A combination of the bit strings of two independent
observations using XOR implies that the resulting
string holds the entropy equaling to larger entropy
of both strings – for example XORing two strings,
one string with 10 bits in size and 5 bits of entropy
and another with 20 bits holding 2 bits results in
a 20 bit string holding 5 bits of entropy. The key
is that even a string with 0 entropy XORed with
a string holding entropy will not diminish the en-
tropy of the latter.

Any other operation, including partial overlapping con-
catenation of strings will diminish the entropy in the
resulting string in ways that are not easily to be deter-
mined. These properties set the limit in which the CPU
Jitter random number generator can process the time
stamps into a random bit stream.

Figure 23: Measurement of time folding operation

The graphs about the distribution of time deltas and their
variations in Section 5.1 include an indication of the
Shannon Entropy which is based on the observed sam-
ples using the mentioned formula for the Shannon En-
tropy. In each case, the Shannon Entropy is way above
1 bit – a value which is fundamental to the following
discussion.

5.2.1 First Operation: Folding of Time Delta

According to the implementation illustrated with Fig-
ure 3, the first operation after the CPU Jitter random
number generator obtains a time delta is the folding op-
eration. The list of allowed operations include the XOR
operation. The folding is an XOR operation of the 64 1
bit slices of the 64 bit time stamp. The XOR operation
does not diminish the entropy of the overall time stamp
when considered as slices. The overall time delta is ex-
pected to have more than 1 bit of entropy according to
figures in Section 5.1. The string size after the folding
is 1 bit and can thus not hold more than 1 bit of entropy.

To measure that entropy, the folding operation is closely
analyzed with the test tests_userspace/timing/
jitterentropy-folding.c. This test performs the
folding operation as illustrated in the left hand side of
Figure 3, i.e. a time delta is created which is folded. The
folded value is recorded and a folding operation is per-
formed. The distribution of the bit value – an integer
ranging from 0 to 1 – resulting from the folding oper-
ation is recorded. Figure 23 shows the distribution of
this test when measuring 10,000,000 invocations of that
time stamp with the folding operation applied.
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The distribution shows that both values have an equal
chance of being selected. That implies that the Shannon
Entropy is 1.0 as recorded in the legend of the diagram.
We conclude that the folding operation will retain 1 bit
of entropy provided that the input, i.e. the timing value
holds 1 or more bits of entropy.

Note, the repetition of the folding loop is of no harm to
the entropy as the same value is calculated during each
folding loop execution.

5.2.2 Second Operation: Von-Neumann Unbias

The Von-Neumann unbias operation does not have an
effect on the entropy of the source. The mathematical
proof is given in the document A proposal for: Func-
tionality classes for random number generators Version
2.0 by Werner Schindler section 5.4.1 issued by the Ger-
man BSI.

The requirement on using the Von-Neumann unbias op-
eration rests on the fact that the input to the unbias op-
eration are two independent bits. The independence is
established by the following facts:

1. The bit value is determined by the delta value
which is affected by the CPU execution jitter. That
jitter is considered independent of the CPU opera-
tion before the time delta measurement,

2. The delta value is calculated to the previous exe-
cution loop iteration. That means that two loop it-
erations generate deltas based on each individual
loop. The delta of the first loop operation is neither
part of the delta of the second loop (e.g. when the
second delta would measure the time delta of both
loop iterations), nor is the delta of the second loop
iteration affected by the first operation based on the
finding in bullet 1.

5.2.3 Third Operation: Entropy Pool Update

What is the next operation? Let us look again at Fig-
ure 3. The next step after folding and unbiasing is the
mixing of the folded value into the entropy pool by
XORing it into the pool and rotating the pool.

The reader now may say, these are two distinct opera-
tions. However, in Section 3.1.2 we already concluded

that the XOR operation using 64 1 bit folded values to-
gether with the rotation by 1 bit of the entropy pool can
mathematically be interpreted as a concatenation of 64
1 bit folded values into a 64 bit string. Thus, both oper-
ations are assessed as a concatenation of the individual
folded bits into a 64 bit string followed by an XOR of
that string into the entropy pool.

Going back to the above mentioned allowed operations
with bit strings holding entropy, the concatenation oper-
ation adds the entropy of the individual bit strings that
are concatenated. Thus, we conclude that the concate-
nation of 64 strings holding 1 bit of entropy will result
in a bit string holding 64 bit of entropy.

When concatenating additional n 1 bit strings into the 64
bit entropy pool will not increase the entropy any more
as the rotation operation rolls around the 64 bit value
and starts at the beginning of that value again. When the
entropy collection loop counter has a value that is not
divisible by 64, the last bit string XORed into the en-
tropy pool is less than 64 bits – for example, the counter
has the value 260, the 4 last folded bits generated by
the loop will form a 4 bit string that is XORed into the
entropy pool. This last bit string naturally contains less
than 64 bits of entropy – the maximum entropy it con-
tains is equal to the number of bits in that string. Consid-
ering the calculation rules for entropy mentioned above,
XORing a string holding less entropy with a string with
more entropy will not diminish the entropy of the latter.
Thus, the XORing of the last bits into the entropy pool
will have no effect on the entropy of the entropy pool.

There is a catch to the calculation: the math only ap-
plies when the individual observations, i.e. the individ-
ual 1 bit folded time delta values, are independent from
each other. The argument supporting the independence
of the individual time deltas comes back to the funda-
mental property of the CPU execution time jitter which
has an unpredictable variation. Supportive is the finding
that one entropy collection loop iteration, which gener-
ates a 1 bit folded value, has a much wider distribution
compared to Figure 2 – the reader may particularly con-
sider the standard deviation. This variation in the ex-
ecution time of the loop iteration therefore breaks any
potentially present dependencies between adjacent loop
counts and their time deltas. Note again, the time deltas
we collect only need 1 bit of entropy. Looking at Fig-
ure 24 which depicts the distribution of the execution
time of one entropy loop iteration, we see that the vari-
ation and its included Shannon Entropy is high enough

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
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Figure 24: Distribution of execution time of one entropy
collection loop iteration

to support the conclusion of an independence between
time deltas of adjacent loop iterations.

Thus, we conclude that our entropy pool holds 64 bit of
entropy after the conclusion of the mixing operation.

5.2.4 Fourth Operation: Generation of Output
String

The fourth and last operation on the bit string holding
entropy is the generation of the string of arbitrary length.

The generation of the output string is performed by con-
catenating random numbers of the size of 64 bit with
each other until the resulting bit string matches the re-
quested size. The individual random numbers are gen-
erated by independent invocations of the entropy collec-
tion loop.

Using concatenation and the conclusion from the pre-
ceding sections5, the entropy in the resulting bit string
is equal to the number of bits in that string.

The CPU Jitter random number generator operates on
64 bit blocks – the length of the entropy pool. When
the requested bit string length is not divisible by 64 bits,
the last chunk concatenated with the output bit stream
is therefore less than 64 bits with the reminding bits
not given to the caller – note, the caller is only able to
specify the output size in bytes and thus in 8-bit chunks.
Why is this operation not considered to diminish the en-
tropy of the last chunk below its number of bits? To

5The entropy pool contains 64 bit of entropy after the completion
of the random number generation.

find the answer, let us go back how the entropy pool
is constructed: one bit of folded timer value known to
have one bit of entropy is added to the pool. When con-
sidering the entropy pool as 64 segments of individual
bits, every individual bit still contains 1 bit of entropy,
because the only operation each single bit is modified
with, is XOR. Thus, every bit in the bit string of the
entropy pool holds one bit of entropy. This ultimately
implies that when taking a subset of the entropy pool,
that subset still has as much entropy as the size of the
subset in bits.

5.3 Reasons for Chosen Values

The reader now may ask why the time delta is folded
into one bit and not into 2 or even 4 bits. Using larger
bit strings would reduce the number of foldings and thus
speed up the entropy collection. Measurements have
shown that the speed of the CPU Jitter random num-
ber generator is cut by about 40% when using 4 bits
versus 2 bits or 2 bits versus 1 bit. However, the en-
tire argumentation for entropy is based on the entropy
observed in the execution time jitter illustrated in Sec-
tion 5.1. The figures in this section support the conclu-
sion that the Shannon Entropy measured in Section 5.1
is the absolute worst case. To be on the save side, the
lower boundary of the measured entropy shall always
be significantly higher than the entropy required for the
value returned by the folding operation.

Another consideration for the size of the folded time
stamp is important: the implications of the last para-
graph in Section 5.2.4. The arguments and conclusions
in that paragraph only apply when using a size of the
folded time stamp that is less or equal 8 bits, i.e. one
byte.

6 Conclusion

For the conclusion, we need to get back to Section 1 and
consider the initial goals we have set out.

First, let us have a look at the general statistical and en-
tropy requirements. Chapter 4 concludes that the statis-
tical properties of the random number bit stream gener-
ated by the CPU Jitter random number generator meets
all expectations. Chapter 5 explains the entropy behav-
ior and concludes that the collected entropy by the CPU
execution time jitter is much larger than the entropy
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pool. In addition, that section determines that the way
data is mixed into the entropy pool does not diminish the
gathered entropy. Therefore, this chapter concludes that
one bit of output of the CPU Jitter random number gen-
erator holds one bit of information theoretical entropy.

In addition to these general goals, Section 1 lists a num-
ber of special goals. These goals are considered to be
covered. A detailed assessment on the coverage of these
goals is given in the original document.

A Availability of Source Code

The source code of the CPU Jitter entropy ran-
dom number generator including the documenta-
tion is available at http://www.chronox.de/jent/
jitterentropy-current.tar.bz2.

The source code for the test cases and R-project files to
generate the graphs is available at the same web site.

B Linux Kernel Implementation

The document describes in Section 1 the goals of the
CPU Jitter random number generator. One of the goals
is to provide individual instances to each consumer of
entropy. One of the consumers are users inside the
Linux kernel.

As described above, the output of the CPU Jitter random
number generator is not intended to be used directly.
Instead, the output shall be used as a seed for either a
whitening function or a deterministic random number
generator. The Linux kernel support provided with the
CPU Jitter random number generator chooses the latter
approach by using the ANSI X9.31 DRNG that is pro-
vided by the Linux kernel crypto API.

Figure 25 illustrates the connection between the entropy
collection and the deterministic random number genera-
tors offered by the Linux kernel support. The interfaces
at the lower part of the illustration indicate the Linux
kernel crypto API names of the respective determinis-
tic random number generators and the file names within
/sys/kernel/debug, respectively.

Every deterministic random number generator instance
is seeded with its own instance of the CPU Jitter random
number generator. This implementation thus uses one of
the design goals outlined in Section 1, namely multiple,
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Figure 25: Using CPU Jitter RNG to seed ANSI X9.31
DRNGs

unrelated instantiations of the CPU Jitter random num-
ber generator.

The offered deterministic random number generators
have the following characteristics:

• The regular deterministic random number gener-
ator is re-seeded with entropy from the CPU Jit-
ter random number generator after obtaining MAX_
BYTES_RESEED bytes since the last re-seed. Cur-
rently that value is set to 1 kilobytes. In ad-
dition, when reaching the limit of MAX_BYTES_
REKEY bytes since the last re-key, the determinis-
tic random number generator is re-keyed using en-
tropy from the CPU Jitter random number genera-
tor. This value is currently set to 1 megabytes.

• The strong deterministic random number genera-
tor is re-seeded and re-keyed after the generator
of MAX_BYTES_STRONG_RESEED bytes and MAX_
BYTES_STRONG_REKEY bytes, respectively. The
re-seeding value is set to 16 bytes, which is equal to
the block size of the deterministic random number
generator. This implies that the information the-
oretical entropy of one block of random number
generated from the deterministic random number
generator is always 16 bytes. The re-key value is
set to 1 kilobytes.

• Direct access to the CPU Jitter random number
generator is provided to the caller when raw en-
tropy is requested.

Currently, the kernel crypto API only implements a full
reset of the deterministic random number generators.

http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html
http://www.chronox.de/jent/jitterentropy-current.tar.bz2
http://www.chronox.de/jent/jitterentropy-current.tar.bz2
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Therefore, the description given above is the plan af-
ter the kernel crypto API has been extended. Cur-
rently, when hitting the re-seed threshold, the determin-
istic random number generator is reset with 48 bytes of
entropy from the CPU Jitter random number generator.
The re-key value is currently not enforced.

B.1 Kernel Crypto API Interface

When compiling the source code with the configuration
option CRYPTO_CPU_JITTERENTROPY_KCAPI, the kernel
crypto API bonding code is compiled. That code reg-
isters the mentioned deterministic random number gen-
erators with the kernel crypto API. The bonding code
provides a very thin wrapper around the management
code for the provided random number generators.

The deterministic random number generators connected
with as well as the direct access to the CPU Jitter ran-
dom number generator are accessible using the follow-
ing kernel crypto API names:

reg(jent_rng) Regular deterministic random number
generator

strong(jent_rng) Strong deterministic random number
generator

raw(jent_rng) Direct access to the CPU Jitter random
number generator which returns unmodified data
from the entropy collection loop.

When invoking a reset operation on one of the deter-
ministic random number generator, the implementation
performs the re-seed and re-key operations mentioned
above on this deterministic random number generator
irrespectively whether the thresholds are hit.

A reset on the raw(jent_rng) instance is a noop.

B.2 Kernel DebugFS Interface

The kernel DebugFS interface offered with the code is
only intended for debugging and testing purposes. Dur-
ing regular operation, that code shall not be compiled as
it allows access to the internals of the random number
generation process.

The DebugFS interface is compiled when enabling the
CRYPTO_CPU_JITTERENTROPY_DBG configuration option.
The interface registers the following files within the di-
rectory of /sys/kernel/debug/jitterentropy:

stat The stat file offers statistical data about the reg-
ular and strong random number generators, in par-
ticular the total number of generated bytes and the
number of re-seeds and re-keys.

stat-timer This file contains the statistical timer data
for one entropy collection loop count: time delta,
delta of time deltas and the entropy collection loop
counter value. This data forms the basis of the
discussion in Section 4. Reading the file will re-
turn an error if the code is not compiled with
CRYPTO_CPU_JITTERENTROPY_STAT.

stat-bits This file contains the three tests of the bit dis-
tribution for the graphs in Section 4. Reading the
file will return an error if the code is not compiled
with CRYPTO_CPU_JITTERENTROPY_STAT.

stat-fold This file provides the information for the en-
tropy tests of the folding loop as outlined in Sec-
tion 5.1. Reading the file will return an error
if the code is not compiled with CRYPTO_CPU_
JITTERENTROPY_STAT.

drng The drng file offers access to the regular deter-
ministic random number generator to pull random
number bit streams of arbitrary length. Multiple
applications calling at the same time are supported
due to locking.

strong-rng The strong-drng file offers access to the
strong deterministic random number generator to
pull random number bit streams of arbitrary length.
Multiple applications calling at the same time are
supported due to locking.

seed The seed file allows direct access to the CPU Jit-
ter random number generator to pull random num-
ber bit streams of arbitrary lengths. Multiple appli-
cations calling at the same time are supported due
to locking.

timer The timer file provides access to the time stamp
kernel code discussed in Section 2. Be careful
when obtaining data for analysis out of this file:
redirecting the output immediately into a file (even
a file on a TmpFS) significantly enlarges the mea-
surement and thus make it look having more en-
tropy than it has.

collection_loop_count This file allows access to the
entropy collection loop counter. As this counter
value is considered to be a sensitive parameter, this
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file will return -1 unless the entire code is com-
piled with the CRYPTO_CPU_JITTERENTROPY_
STAT flag. This flag is considered to be dangerous
for normal operations as it allows access to sensi-
tive data of the entropy pool that shall not be acces-
sible in regular operation – if an observer can ac-
cess that data, the CPU Jitter random number gen-
erator must be considered to deliver much dimin-
ished entropy. Nonetheless, this flag is needed to
obtain the data that forms the basis of some graphs
given above.

B.3 Integration with random.c

The CPU Jitter random number generator can also be
integrated with the Linux /dev/random and /dev/
urandom code base to serve as a new entropy source.
The provided patch instantiates an independent copy of
an entropy collector for each entropy pool. Entropy
from the CPU Jitter random number generator is only
obtained if the entropy estimator indicates that there is
no entropy left in the entropy pool.

This implies that the currently available entropy sources
have precedence. But in an environment with limited
entropy from the default entropy sources, the CPU Jit-
ter random number generator provides entropy that may
prevent /dev/random from blocking.

The CPU Jitter random number generator is only acti-
vated, if jent_entropy_init passes.

B.4 Test Cases

The directory tests_kernel/kcapi-testmod/ con-
tains a kernel module that tests whether the Linux Ker-
nel crypto API integration works. It logs its information
at the kernel log.

The testing of the interfaces exported by DebugFS can
be performed manually on the command line by using
the tool dd with the files seed, drng, strong-drng,
and timer as dd allows you to set the block size pre-
cisely (unlike cat). The other files can be read using
cat.

C Libgcrypt Implementation

Support to plug the CPU Jitter random number gener-
ator into libgcrypt is provided. The approach is to add
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/dev/random
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GCRYCTL_SET_CPU_
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Figure 26: Use of CPU Jitter RNG by libgcrypt

the callback to the CPU Jitter random number genera-
tor into _gcry_rndlinux_gather_random. Thus, the
CPU Jitter random number generator has the ability to
run every time entropy is requested. Figure 26 illustrates
how the CPU Jitter random number generator hooks into
the libgcrypt seeding framework.

The wrapper code around the CPU Jitter random num-
ber generator provided for libgcrypt holds the following
instances of the random number generator. Note, the
operation of the CPU Jitter random number generator
is unchanged for each type. The goal of that approach
shall ensure that each type of seed request is handled by
a separate and independent instance of the CPU Jitter
random number generator.

weak_entropy_collector Used when GCRY_WEAK_
RANDOM random data is requested.

strong_entropy_collector Used when GCRY_STRONG_
RANDOM random data is requested.

very_strong_entropy_collector Used when
GCRY_VERY_STRONG_RANDOM random data is
requested.

The CPU Jitter random number generator with its above
mentioned instances is initialized when the caller uses
GCRYCTL_SET_CPU_JITTER_ENTROPY with the flag 1.
At this point, memory is allocated.

Only if the above mentioned instances are allocated,
the wrapper code uses them! That means the callback
from _gcry_rndlinux_gather_random to the CPU
Jitter random number generator only returns random
bytes when these instances are allocated. In turn, if
they are not allocated, the normal processing of _gcry_
rndlinux_gather_random is continued.
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If the user wants to disable the use of the CPU Jitter ran-
dom number generator, a call to GCRYCTL_SET_CPU_
JITTER_ENTROPY with the flag 0 must be made. That
call deallocates the random number generator instances.

The code is tested with the test application tests_
userspace/libgcrypt/jent_test.c. When using
strace on this application, one can see that after dis-
abling the CPU Jitter random number generator, /dev/
random is opened and data is read. That implies that the
standard code for seeding is invoked.

See patches/README for details on how to apply the
code to libgcrypt.

D OpenSSL Implementation

Code to link the CPU Jitter random number generator
with OpenSSL is provided.

An implementation of the CPU Jitter random number
generator encapsulated into different OpenSSL Engines
is provided. The relationship of the different engines to
the OpenSSL default random number generator is de-
picted in Figure 27.

The following OpenSSL Engines are implemented:

jitterentropy-raw The jitterentropy-raw engine
provides direct access to the CPU Jitter random
number generator.

jitterentropy-drng The jitterentropy-drng en-
gine generates random numbers out of the
OpenSSL default deterministic random number
generator. This DRNG is seeded with 16 bytes out

OpenSSL RNGOpenSSL RNG

/dev/urandom
/dev/random
/dev/urandom
/dev/random

CPU Jitter
RNG

CPU Jitter
RNG

RAND_pollRAND_poll

Figure 28: Linking OpenSSL with CPU Jitter RNG

of CPU Jitter random number generator every 1024
bytes. After 1,048,576 bytes, the DRNG is seeded
and re-keyed, if applicable, with 48 bytes after a
full reset of the DRNG. When the Note, the in-
tention of this engine implementation is that it is
registered as the default OpenSSL random number
generator using ENGINE_set_default_RAND(3).

jitterentropy-strong The jitterentropy-strong
engine is very similar to jitterentropy-drng
except that the reseeding values are 16 bytes and
1024 bytes, respectively. The goal of the reseeding
is that always information theoretical entropy is
present in the DRNG6.

The different makefiles compile the different engine
shared library. The test case tests_userspace/
openssl/jitterentropy-eng-test.c shows the
proper working of the respective CPU Jitter random
number generator OpenSSL Engines.

In addition, a patch independent from the OpenSSL En-
gine support is provided that modifies the RAND_poll
API call to seed the OpenSSL deterministic random
number generator. The RAND_poll first tries to obtain
entropy from the CPU Jitter random number generator.
If that fails, e.g. the initialization call fails due to miss-
ing high-resolution timer support, the standard call pro-
cedure to open /dev/urandom or /dev/random or the
EGD is performed.

Figure 28 illustrates the operation.

The code is tested with the test application tests_
userspace/openssl/jent_test.c. When using
strace on this application, one can see that after patch-
ing OpenSSL, /dev/urandom is not opened and thus

6For the FIPS 140-2 ANSI X9.31 DRNG, this equals to one AES
block. For the default SHA-1 based DRNG with a block size of 160
bits, the reseeding occurs a bit more frequent than necessary, though.
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not used. That implies that the CPU Jitter random num-
ber generator code for seeding is invoked.

See patches/README for details on how to apply the
code to OpenSSL.

E Shared Library And Stand-Alone Daemon

The CPU Jitter random number generator can be
compiled as a stand-alone shared library using the
Makefile.shared makefile. The shared library ex-
ports the interfaces outlined in jitterentropy(3).
After compilation, link with the shared library using the
linker option -ljitterentropy.

To update the entropy in the input_pool behind the
Linux /dev/random and /dev/urandom devices, the
daemon jitterentropy-rngd is implemented. It
polls on /dev/random. The kernel wakes up polling
processes when the entropy counter falls below a thresh-
old. In this case, the jitterentropy-rngd gathers
256 bytes of entropy and injects it into the input_pool.
In addition, /proc/sys/kernel/random/entropy_
avail is read in 5 second steps. If the value falls be-
low 1024, jitterentropy-rngd gathers 256 bytes of
entropy and injects it into the input_pool. The reason
for polling entropy_avail is the fact that when ran-
dom numbers are extracted from /dev/urandom, the
poll on /dev/random is not triggered when the entropy
estimator falls.

F Folding Loop Entropy Measurements

Measurements as explained in Section 5.1 for different
CPUs are executed on a large number of tests on dif-
ferent CPUs with different operating systems were exe-
cuted. The test results demonstrate that the CPU Jitter
random number generator delivers high-quality entropy
on:

• a large range of CPUs ranging from embedded sys-
tems of MIPS and ARM CPUs, covering desktop
systems with AMD and Intel x86 32 bit and 64 bit
CPUs up to server CPUs of Intel Itanium, Sparc,
POWER and IBM System Z;

• a large range of operating systems: Linux,
OpenBSD, FreeBSD, NetBSD, AIX, OpenIndiana
(OpenSolaris), AIX, z/OS, and microkernel based
operating systems (Genode with microkernels of
NOVA, Fiasco.OC, Pistachio);

• a range of different compilers: GCC, Clang and the
z/OS C compiler.

The listing of the test results is provided at the web site
offering the source code as well.

G License

The implementation of the CPU Jitter random number
generator, all support mechanisms, the test cases and the
documentation are subject to the following license.

Copyright Stephan Müller <smueller@chronox.de>,
2013.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the follow-
ing conditions are met:

1. Redistributions of source code must retain the above
copyright notice, and the entire permission notice in its
entirety, including the disclaimer of warranties.

2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse
or promote products derived from this software without
specific prior written permission.

ALTERNATIVELY, this product may be distributed under the
terms of the GNU General Public License, in which case the
provisions of the GPL are required INSTEAD OF the above
restrictions. (This clause is necessary due to a potential bad
interaction between the GPL and the restrictions contained in
a BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DIS-

CLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-

RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-

ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH DAM-

AGE.

http://genode-labs.com
https://www.chronox.de/
https://www.chronox.de/
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Abstract

Background application management by low memory
killer (LMK) is one of the outstanding features of Linux-
based platforms such as Android or Tizen. However,
LMK has been debated in the Linux community because
victim selection mechanism with a specific policy is not
suitable for the Linux kernel and a flexible way to apply
new policies has been required. Thus, several develop-
ers have tried implementing a userspace LMK like the
ulmkd (userspace low memory killer daemon). How-
ever, not much work has been done regarding applying
new polices.

In this paper, we present a policy-extendable LMK filter
framework similar to the out-of-memory killer filter dis-
cussed at the 2013 LSF/MM Summit. The framework
is integrated into the native LMK. When the LMK is
triggered, each LMK filter module manages processes
in the background like packet filters in the network
stack. While the native LMK keeps background applica-
tions based on a specific policy, the framework can en-
hance background application management policy. We
describe several benefits of the enhanced policies, in-
cluding managing undesirable power-consuming back-
ground applications and memory-leaking background
applications. We also present a new LMK filter module
to improve the accuracy of victim selection. The mod-
ule keeps the applications which could be used in the
near future by predicting which applications are likely
to be used next from the latest used application based

on a Markov model.

We implemented the framework and the module on
Galaxy S4 and Odroid-XU device using the Linux 3.4.5
kernel and acquired a preliminary result. The result
shows that the number of application terminations was
reduced by 14%. Although we implemented it in the
kernel, it can be implemented as a userspace daemon
by using ulmkd. We expect that the policy-extendable
LMK filter framework and LMK filter will improve user
experience.

1 Introduction

Modern S/W platforms for embedded devices support a
background application management. The applications
stacked in the background are alive until the operating
system meets a specific condition such as memory pres-
sure, if a user does not kill the applications intention-
ally. The background application management permits
fast reactivation of the applications for later access [2],
battery lifetime can be longer because energy consumed
by applications re-loading can be reduced. [13]

However, applications cannot be stacked infinitely in the
background because memory capacity is limited. In-
stead, the operating system needs to effectively manage
the background applications in low memory situation.
To handle such a situation, the operating system pro-
vides out-of-memory handler. Unfortunately, it causes
significant performance degradation to user interactive
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applications by excessive demand paging because the
operating system triggers the OOM killer under desper-
ately low memory conditions.

To avoid excessive demand paging, it was necessary for
the operating system to trigger a low memory handler
before falling into desperately low memory conditions.
Several approaches have been introduced [10, 12, 6, 15,
16, 11]. The approaches can be categorized into two
types from a structural perspective. Figure 1 shows the
operation flow according to the types of low memory
handler. The type-A approach, which is shown in Fig-
ure 1-(a), is to kill a process with the lowest priority
in the kernel, according to the process priority config-
ured in the user-space when a low memory handler is
triggered. The type-B approach, which is shown in Fig-
ure 1-(b), is to kill a process after prioritizing processes
in the user-space when a low memory handler is trig-
gered. The type-A approach is hard to change the pri-
ority of a process in a low memory situation, and the
type-B approach suffers from issues like latency until a
process is killed after a low memory handler is triggered.

The Android low memory killer (LMK) is one of the
type-A approaches, and it has been used for a long
time in several embedded devices based on the An-
droid platform. However, to apply a new victim se-
lection policy, the user-space background application
management must be modified, and it is impossible to
re-prioritize the priority of processes in a low memory

situation. Therefore, type-B approaches like userland
low-memory killer daemon (ulmkd), have received at-
tention again because the kernel layer provides simple
notification functionality, and the approach can give the
user-space an opportunity to dynamically change a vic-
tim selection policy. However, the user-space LMK is
unlikely to handle a low memory situation in a timely
way for a case of exhausted memory usage. Although
related developers have made several attempts, the user-
space LMK still has unresolved issues. [11] Thus, it is
still too early to use the user-space LMK to dynamically
apply a new victim selection policy.

While the type-B approach has been actively discussed
and developed, applying new victim selection polices
has not progressed, even though an advanced LMK vic-
tim selection policy would improve user experience and
system performance. In the case of smartphones, most
S/W platforms adopt the least recently used (LRU) vic-
tim selection algorithm to select a victim application in a
low memory situation. However, the LRU victim selec-
tion algorithm sometimes selects applications to be used
in the near future because the applications is likely to de-
pend on the last-used application, hour of day, and loca-
tion. [9] Likewise, the LRU victim selection algorithm
does not preferentially select undesirable applications,
such as memory-leaking applications, in a low memory
situation. [13] Thus, if a system provides a mechanism
to easily apply a new victim selection policy, it would
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improve the user experience and system performance.

In this paper, we propose an LMK filter framework to
provide such a policy extension. To do that, we sug-
gest a new architecture, modifying the type-A approach,
because the type-B approach is still difficult to apply
in a commercial device. We re-factored Android LMK
to solve the limitation of the type-A approach. Based
on the re-factored Android LMK, we created an LMK
filter framework to provide real-time policy extension.
The LMK filter framework provides the interfaces for
managing policy modules with a policy extension, and
the engine for applying the new policy of the policy
modules. In addition, we present a task-prediction fil-
ter module to improve the accuracy of victim selection.
With the results provided, we expect that the LMK filter
framework and the module will improve user’s experi-
ence.

The rest of this paper is organized as follows. Section 2
briefly describes previous approaches to memory over-
load management in the Linux kernel. Section 3 de-
scribes previous studies for applying a new victim selec-
tion policy. Section 4 provides the LMK filter frame-
work and detailed implementation. Section 5 provides
the task-prediction filter module to enhance the accu-
racy of victim selection. Section 6 shows a preliminary
result for the suggested LMK filter framework and the
module. The remaining sections offer discussion and
conclusions.

2 Previous Approaches for Memory Overload
Management in Linux

There have been several approaches to handling mem-
ory overload in swap-less devices. As described in Sec-
tion 1, the approaches can be categorized into two types.
The type-A approach is to give hints with oom_score_
adj 1 to the kernel and kill a process in the kernel with
the hints. The type-B approach is to kill a process in the
user-space after receiving low memory notification from
the kernel. In this section, we briefly describe these ap-
proaches.

1oom_score_adj is used as the adjustment of each process’s at-
tractiveness to the OOM killer. The variable is also used as hints in
LMK

Category Status

System/Persistent
Process is system or persistent pro-
cess

Foreground
Process is in the foreground or re-
lated to the foreground application.

Visible
Process is visible or related to visi-
ble applications.

Perceptible
Process is not interacting with user
but it can be perceptible to user.

Heavy
Process has cantSaveState flag in its
manifest file.

Backup
Process has backup agent currently
work on.

Service A/B Process hosts service.

Home
Process is home application (like
Android launcher)

Previous
Process was foreground application
at previous.

Hidden
Process is in the background with
no above condition.

Empty
Process has no activity and no ser-
vice.

Table 1: Process Categorization of Android v4.3

2.1 Type-A Approach - Android Low Memory
Killer

Android LMK is one of the type-A approaches. The
Android platform gives hints to the Android LMK with
oom_score_adj, and Android LMK selects a victim
based on the given oom_score_adj. When the oper-
ating system triggers the Android LMK, Android LMK
determines the minimum oom_score_adj of a process
to be killed according to six-level memory thresholds
and six-level oom_score_adj thresholds defined by the
Android platform. Android LMK selects processes as
victim candidates when they have an oom_score_adj
higher than the minimum oom_score_adj, and it kills
the process with the highest oom_score_adj. If there
are several processes with the highest oom_score_adj,
it selects the process with the largest memory as the final
victim.

To give hints to the Android LMK, the Android platform
categorizes processes according to the status of process
components. Table 2.1 shows the process categorization
of Android V4.3. Based on the categorization, the An-
droid activity manager assigns the proper value to the
oom_score_adj of each process. Thus, six thresholds
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of the Android LMK are closely related to the Android
process categorization, because the Android LMK tries
to kill an application in a specific categorization at a spe-
cific memory threshold.

Hidden or empty process categories in the low priority
group must be prioritized. Android internally manages
a processes list based on LRU according to the launched
or resumed time of applications. For the hidden or
empty process category, Android assigns process prior-
ity based on the LRU. That is, if a process has been more
recently used, Android assigns a high priority value to
that process. As a result, Android LMK is likely to kill
the least recently used process in the hidden or empty
process category.

Android LMK has been used for a long time in several
embedded devices. However, it is not easy to apply a
new victim selection policy because the activity man-
ager of the Android or Android LMK must be modified.

2.2 Type-B Approach - Memory Pressure Notifica-
tion

Several developers have tried to notify the user-space of
memory pressure. The Nokia out-of-memory notifier is
one of the early attempts. It attaches to the Linux se-
curity module (LSM). [10] Whenever the kernel checks
that a process has enough memory to allocate a new vir-
tual mapping, the kernel triggers the low memory han-
dler. At that time, the module decides to send a notifica-
tion to the user-space through the uevent if the number
of available pages is lower than a user-defined threshold.
The module sends a level1 notification or a level2 noti-
fication based on the user-defined thresholds. However,
this method has been hard to use as a generic notifica-
tion layer for a type-B approach because it only consider
a user-space allocation request.

The mem_notify_patch is one of the generic mem-
ory pressure notifications. [6] The mem_notify patch
sends a low memory notification to applications like the
SIGDANGER signal of AIX. Internally, it was integrated
into the page reclaim routine of the Linux kernel. It
triggers a low memory notification when an anonymous
page tries to move to the inactive list. If an application
polls the "/dev/mem_notify" device node, the applica-
tion can get the notification signal. The concept of the
approach has led to other approaches like the Linux VM
pressure notifications [12] and the mem-pressure control

group [15]. Such approaches have improved the mem-
ory pressure notification.

In type-B approach, user-space programs have the re-
sponsibility of handling low memory notification with
a policy because the memory pressure notification is
the backend of the type-B approach. Thus, the type-
B approach expects that the user-space programs re-
lease their cache immediately or kill themselves. How-
ever, the expectation is somewhat optimistic because
all user-space programs may ignore the notification, or
user-space programs may handle the notification belat-
edly. As a result, the system is likely to fall into out-
of-memory in such situations. Thus, kernel/user-space
mixed solutions, as shown Figure 1-(c), have been de-
veloped to improve the limitation of the type-B ap-
proach. The Tizen lowmem notifier is one of those
hybrid approaches. [16] The Tizen lowmem notifier
provides the low memory notification mechanism, and
the safeguard killer kills an application based on the
oom_score_adj given by a user-space daemon when
the available memory of the system is very low. Thus,
the safeguard killer prevents a system from falling into
out-of-memory even when the user-space programs ne-
glect to handle a low memory notification. However,
the structure of the low memory handler is quite com-
plicated.

2.3 Type-B Approach - Userland Low Memory
Killer Daemon (ulmkd)

Ulmkd is one of frontend solutions of the type-B ap-
proach using generic memory pressure notification. The
default notification backend of ulmkd is a low mem-
ory notification layer on top of cgroups. After receiving
a memory notification from the kernel, ulmkd behaves
the same way as the Android LMK driver by reading
the oom_score_adj of each process from the proc file
system. Thus, ulmkd needs to read the memory usage
information of the system/process from the kernel. As
a result, ulmkd can cause a lot of unnecessary system
call in a low memory situation. In addition, the pro-
cess page of ulmkd should not be reclaimed, to prevent
unintended memory allocation by page remapping. Al-
though the author of ulmkd tries to solve the issues by
using approaches like locking of the process page, and
using task-list management of specific user-space plat-
form components, ulmkd still has issues to resolve. [11]

Although it requires lots of stability testing before ap-
plying to commercial devices, due to radical issues of
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user-space LMK, it is quite attractive because it make
it easier to change the victim selection policy than the
type-A approach. However, ulmkd does not provide a
framework to apply the new victim selection policy dy-
namically or to apply multiple victim selection policies.

To the best of our knowledge, there are no existing so-
lutions for extending the victim selection policy. A sim-
ilar issue for the OOM killer was discussed at the 2013
LSF/MM summit and an idea to apply a new victim se-
lection policy was suggested [3]. The idea is to create a
framework similar to packet filters in the network stack.
In this paper, we will present such a framework for dy-
namically extending victim selection policy.

3 Previous Studies for Enhancing Victim Se-
lection Policy

Although mechanisms for handling the low memory sit-
uation is major topic in the industry, not much work has
been done for enhancing victim selection policy. How-
ever, there are several benefits to enhancing the victim
selection policy. In this section, we introduce such stud-
ies and benefits.

3.1 Considering Expected Delay

Yi-Fan Chung et al. utilized the concept of expected de-
lay penalty to enhance victim selection [2]. Expected
delay penalty was calculated by multiplying application
launch probability by application launching time. If an
application has a high expected delay penalty, the appli-
cation is kept in the background. As a result, frequently
used applications with long launch times are kept in the
background instead of being killed.

3.2 Considering Undesirable Applications

Yi-Fan Chung et al. also utilized the concept of expected
power saving to enhance victim selection. [2] After
they calculated the power consumption of a background
application, they calculated expected power saving by
multiplying the application launch probability by the
background power consumption of each background ap-
plication. If an application has low expected power sav-
ing, it is kept in the background. Thus, less frequently
used applications with high power consumption in the
background are selected as victims.

Mingyuan Xia et al. studied how memory-leaking appli-
cations can easily cripple background application man-
agement with victim selection based on LRU. [13] They
noted that normal applications lost the opportunity to be
cached in the background when memory-leaking appli-
cations were kept in the background. They implemented
a light weight memory-leak detector and they modified
the Android process prioritization policy. If the detec-
tor detects a suspected memory-leaking application, the
process is set to the lowest priority. Thus, Android LMK
kills the suspected memory-leaking application.

3.3 Considering Personalized Factors

Tingxin Yan et al. predicted applications to be pre-
launched by investigating application usage behaviour.
[14] They investigated three application usage patterns:
"follow-trigger", "location clustering", and "temporal
burst". The application usage behaviours were used to
predict which applications were likely to be used in the
near futures, and the system assigned high priority to
such applications. If applications with high priority did
not exist in the background, the applications were pre-
launched. Likewise, if applications with low priority ex-
isted in the background, the applications were selected
as victims.

Predicting applications to be used in the near future can
enhance victim selection policy. There have been sev-
eral studies focused on predicting applications that will
be used in the near future. Choonsung Shin et al. found
that it was effective to predict applications from the last
application used, and Cell ID and time of day. [9]. Xun
Zou et al. showed a solution for predicting applications
from the latest application used based on the Markov
model. [17]

If a system provides a mechanism to easily apply the de-
scribed victim selection policies, it would improve the
user experience and system performance. In this paper,
we present the LMK filter framework to apply such vic-
tim selection policies, and we show the system improve-
ment by applying a new victim selection policy based on
a prediction mechanism.

4 The Policy-extendable LMK Filter Frame-
work

In this section, we present a policy-extendable LMK
filter framework to extend new policies to an existing
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Figure 2: Architecture of LMK filter framework

LMK for a specific purpose or for general improvement.
With the LMK filter framework, a module with a new
victim selection policy can be applied at any time with-
out modification. The purpose of the LMK filter frame-
work is to provide following functionality.

• Adjust the victim selection policy of the LMK
engine by adding/removing/changing policy mod-
ules;

• Support multiple policy modules effectively.

To adjust the policy of LMK in runtime, a policy is
consisted of an independent device module. The pol-
icy of LMK is adjusted by managing the device module
with a policy. To support multiple policy modules, the
LMK filter framework implements a first-match resolu-
tion mechanism based on the order of policies. With the
first-match resolution, the LMK filter framework mini-
mizes a policy conflict and a policy redundancy by the
installed several policies. In our implementation, we
have termed a policy module and a first-match resolu-
tion engine to a filter module and a filter engine.

Figure 2 shows the architecture of the low memory han-
dler with the LMK filter framework. The LMK filter
framework and filters replace the LMK driver of the

type-A approach. To create a policy-extendable LMK
filter framework, we modified the Android LMK be-
cause the Android LMK has been used popularly. The
type-B approach is more suitable for the LMK filter
framework due to its flexibility. However, we chose the
type-A approach because the type-B approach has still
issues to solve. Although we implemented the LMK fil-
ter framework to the type-A approach, it is not difficult
to apply to the type-B approach.

4.1 Re-factoring Android LMK

To create a generic LMK filter framework without
changing the behaviour of the Android LMK, we ana-
lyzed the flow of the Android LMK. Figure 3-(a) shows
the detail flow of Android LMK. Android LMK has a
generic part for checking available memory, and for se-
lecting an application as victim based on oom_score_
adj. In addition, Android LMK has a specific part for
filtering applications based on the six-level thresholds.
Thus, we replaced the specific part with the filter en-
gine routines of the LMK filter framework. Figure 3-(b)
shows the re-factored Android LMK.

We replaced the "determine minimum oom_score_adj
based on six-level thresholds" stage with a generic pre-
processing stage for each filter module, and we re-
placed the "filter out processes based on minimum
oom_score_adj" stage with a generic filtering stage for
each filter module. Finally, we placed a generic post-
processing stage for each filter module after iterating
processes. Thus, the sequence of the modified Android
LMK is the following. The modified LMK checks the
available memory including reclaimable memory, and
checks the minimal memory threshold to fall routines
for killing a process. After that, the LMK calls pre-
processing routines for each filter module to prepare
each filter module. After the filtering out processes per-
formed by the filtering routines of each filter module, a
process with the highest oom_score_adj or a process
decided by a filter module is selected as victim, Finally,
the LMK kills the victim after calling post-processing
routines for each filter module. If the LMK filter frame-
work does not have any filters, the LMK kills the process
with the highest oom_score_adj. That is, the default
behaviour of the LMK filter framework is to kill a pro-
cess by generic decision based on oom_score_adj. We
discuss the default behaviour further in Section 7
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4.2 The LMK filter framework

The LMK filter framework consists of two parts: the fil-
ter chain manager and the filter engine. The filter chain
manager manages the list of filter modules and the life-
cycle of filter modules. The manager supports to add a
new filter module to the LMK filter engine, and to re-
move an existing filter module from the LMK filter en-
gine. In addition, the manager supports to change the
order of filter modules for the first-match resolution.

The filter engine is the core of the LMK filter frame-
work. The filter engine operates the first-match resolu-
tion in the low memory situation and exposes filtering
interfaces for filter modules. Figure 4 shows the first-
match resolution flow for a process. If a filter module

decides that a process should be preserved in the back-
ground in the filtering stage, that process is not killed
and the traversing filter chain for the process is termi-
nated. Likewise, if a filter module decides that a process
should be killed, the filter engine sets the process as a
victim and the traversing filter chain of the process is
terminated. If a filter module does not make any de-
cision for a process, the filter engine calls the filtering
routine of the next filter module in the filter chain. This
means that filter modules have a priority based on their
position in the filter chain.

The filter engine provides an interface for a filter mod-
ule. With the interface, each filter module is required to
register three routines: a pre-processing routine, post-
processing routine, and filtering routine. As shown in
Figure 3-(b), the pre-processing and post-process rou-
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tines are called once in a low memory handling flow, and
the filtering routine is called for every process, whenever
the filter engine iterates processes.

In a pre-processing routine, a filter module must run
preparation to filter a process like setting a filter-owned
threshold. A module should return PREPARE_DONE or
PREPARE_ERROR in the routine. If a module returns
PREPARE_ERROR for any reason, the filter engine ex-
cludes the filter module in the low memory handling
flow. In a filtering routine, a filter module can filter
a process based on the filter module’s specific victim
selection policy. In a filtering routine, a filter mod-
ule can return one of three decisions for each process:
IGNORE, SHOULD_BE_VICTIM, SHOULD_BE_KEPT. If a
filter module returns SHOULD_BE_VICTIM for a process,
the process is set as a victim. If a filter module re-
turns SHOULD_BE_KEPT, the process is kept in the back-
ground. When a filter module does not make any deci-
sion for a process, the filter module can return IGNORE.

4.3 Android Specific Filter Module

To execute the same operation with a native Android
LMK, we implemented a filter module for the Android.
The module implements the a specific part of Android
LMK.

In the pre-processing routine, the module finds the min-
imum oom_score_adj from the six-level oom_score_
adj thresholds defined by a user-space platform af-
ter comparing the six-level memory thresholds defined
by a user-space platform with the calculated available
memory pages. If the module finds the minimum
oom_score_adj, the module returns a PREPARE_DONE
value. In the filtering routine, the module compares
the oom_score_adj of a process to the minimum oom_

score_adj decided in the preparation stage. If the
oom_score_adj of a process is higher than the min-
imum oom_score_adj, the module returns IGNORE.
Otherwise, the module returns SHOULD_BE_KEPT. Thus,
if the oom_score_adj of processes are lower than the
minimum oom_score_adj, the processes will be kept
in the background. If there are other filters, other fil-
ters modules will decide the termination of the ignored
processes.

5 The Task-Prediction Filter Module

To show a policy-extension with the LMK filter frame-
work, we implemented a new policy module. The vic-
tim selection in Android is decided by application cate-
gorization and LRU. Therefore, the Android LMK may
select an application to be re-used in the near future as
a victim because recently used processes may not be
reused in the near future. The accuracy of victim se-
lection can be improved by carefully predicting appli-
cations what will be reused in the near future. In par-
ticular, the last application provides hints to predict an
application reused in the near future [9]. To extend the
study, we considered the last N-applications. In addi-
tion, we considered the memory used by a process to
give a penalty for a process using large memory. Thus,
we suggest a filter module to keep processes to be reused
in the near future based on the last N-application and
process memory usage.

The main functionality of the filter module consists of
two parts. The first is to maintain an application transi-
tion probability matrix and an application usage history,
and the other is the filter-preparation function and the
filtering function of the LMK filter module provided for
keeping the predicted applications in a low memory sit-
uation.

5.1 Training prediction matrix

To predict which application would be used next from
last N-applications, the transition probability between
applications was observed during a training phase.
The trained transition probability matrix was used as
a Markov chain matrix to predict applications which
could be used in the next step. To determine the tran-
sition probability between applications, we tracked the
foreground application of the Android. To track the
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foreground application, we modified the write opera-
tion of proc_oom_adjust_operations in the Linux
kernel. Whenever the oom_score_adj of a process
is changed, the oom_score_adj hook function of our
filter module is called. The hook function logs the
foreground application, which has the foreground oom_
score_adj of the Android platform. When the hook
function recognizes a foreground application, the mod-
ule inserts the information of the application into a
queue which has finite-length to maintain the applica-
tion usages history, and the module updates the informa-
tion of a transition probability matrix by relationship.

5.2 Implementation of the filter module

To predict applications to be reused in the near future,
we utilized the Markov chain models for link prediction
of Ramesh R. Sarukkai.[7] From the model, a proba-
bility of the next transition from n-past information can
be acquired. Thus, the probability of next application’s
transition from last N-applications is acquired with the
model.

Let M represent the trained application transition prob-
ability matrix, and let S(t) represent the state of a fore-
ground application at time t. The following formula de-
rives the transition probability using the Markov chain
models for link prediction of Ramesh R. Sarukkai.

s(t +1) = α1s(t)M+α2s(t −1)M2 +α3s(t −2)M3 + ...

In the pre-processing routine, the filter module prepares
the transition probability matrix for the formula. In the
filtering routine, we generate the final transition proba-
bility from the formula.

To filter a process, we considered an additional factor
– the memory usage of a process. Although the tran-
sition probability of a process is higher than others, if
the memory usage of the process is higher than others,
it is possible that keeping the process will cause a de-
crease in the total number of applications kept in the
background. That is, when the prediction is incorrect,
keeping a process with large memory is likely to pro-
duce side-effects. Thus, to reduce such side-effect, the
memory usage of a process was also considered with the
transition probability.

Based on the transition probability derived from the for-
mula and the memory usage of a process, the filter mod-
ule computes a transition score. If an application has
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a high transition probability and low memory usage,
the application has a high transition score. Otherwise,
if an application has a low transition probability and
high memory usage, the application has a low transition
score.

As a result, the filtering function of the filter module
keeps applications with a high transition probability and
low memory usage, after computing the transition score.
If a process has a high transition score, the module re-
turns SHOULD_BE_KEPT for the process. Otherwise, the
module returns IGNORE. Thus, the filter module tries to
keep applications that will be reused in the near future
from recent applications with minimal side effects.

The task-prediction filter module is inserted as the sec-
ond filter module in Android device. Thus, the filter
module enhances the LRU-based victim selection pol-
icy of Android without changing a victim selection pol-
icy by application categorization. Figure 5 shows the
sequence of the LMK decision after inserting the task-
prediction filter module with an Android specific filter
module. The filter module decides the life of a process
when the Android specific filter module does not make
a decision about the life of the process.
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6 Evaluation

In this section, we evaluate the effectiveness of the LMK
filter framework and the task-prediction filter module.
We implemented the LMK filter framework and the fil-
ter module on a Galaxy S4 and Odroid-XU using the
Linux 3.4.5 kernel.

Android platform supports process-limit feature to limit
the number of background applications. Based on the
number of process limitation, Android platform kills an
application in background application cache. Thus, if
a device has enough memory, the LMK is rarely trig-
gered because Android platform is likely to manage
background applications based on process limit before
falling into low memory situation. Unfortunately, two
devices in our experiments equips enough memory for
stacking the default number of process-limit. Thus, the
LMK is rarely happen in the devices. Thus, to evaluate
our algorithm, we adjusted the amount of memory of
the two devices instead of increasing the process limit
of Android. We discuss the process limit further in Sec-
tion 7.

To evaluate our scheme, we created an evaluation frame-
work based on real usage data in a smartphone. With
the evaluation framework, we show that the number of
application terminations is reduced. In a specific appli-
cation usage sequence, the decrease of the number of
application terminations means the increase of the hit
rate for the background application reuse. In addition,
it means the decrease of the data loss probability by the
LMK forced termination.

6.1 Evaluation Framework

We created an evaluation framework to run applications
automatically according to a given input sequence of ap-
plications. The framework launches an application in
order from the given input applications sequence. To
launch an application, the framework executes an activ-
ity manager tool through the shell command of android
debug bridge (adb). The framework reads the input se-
quence of application and launches the next application
every 10 seconds. At the same time it is performing the
application launch, the evaluation framework monitors
the number of application terminations provided by the
LMK filter framework.

We referenced the usage sequence of applications col-
lected from the Rice LiveLab user study to evaluate our

User Length of input seq. Usage duration
A00 162 4 days 10 hours
A01 139 1 day
A03 233 2 days 21 hours
A07 154 6 days 11 hours
A10 218 8 days 8 hours
A11 179 6 days 19 hours
A12 159 3 days 9 hours

Table 2: Extracted input sequences

scheme [8, 4]. We generated the input sequence by find-
ing corresponding Android applications in Google Play
after extracting a part of the original sequence. Table-
2 shows information about the input sequences of each
users.

6.2 Estimation

We evaluated our frameworks by using 3-fold cross vali-
dation with each user’s application usage data. One third
of the total sequence was used for training set. We also
conducted online training when a test set is tested. The
task-prediction filter module predicted next applications
from 1-recent applications history to 4-recent applica-
tions history. Each user’s application usage data were
tested five times, and we took the average from the re-
sults. Figure 6 shows the number of application termi-
nations in both native LMK and the LMK filter frame-
work with the task-prediction filter module when the fil-
ter module predicts the next application from 4-recent
applications history. The result was normalized to the
number of application terminations in native LMK.

The LMK filter framework with the task-prediction filter
module was improved by average 14% compared with
the native LMK. In addition, our proposed scheme gave
better results for most users. In case of specific user a10,
the number of application terminations was improved by
26%. Although we did not experiment with all real us-
age data, the preliminary result proves that an enhanced
application replacement algorithm can be created eas-
ily by the LMK filter framework without modifying the
entire process prioritization. In addition, in case of spe-
cific user a11, the number of application terminations
was increased. It shows that a specific policy is not
easy to fit to all users because the most appropriate pol-
icy for each user differ. The LMK filter framework can
solve such problems by applying other policy modules
for each user.
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Routine N-recent applications Overheads
1 31549 ns
2 74020 ns

Pre-Processing 3 109090 ns
4 146699 ns
1 3371 ns
2 3522 ns

Filtering 3 3632 ns
4 3411 ns

Table 3: Average overheads according to n-recent appli-
cations

6.3 Overheads

We observed the overheads of the LMK filter frame-
works and filter modules. The overheads was mea-
sured in the pre-processing stage and the filtering stage.
Table 6.3 shows the overheads. Most overheads was
caused by the task-prediction filter module. In the pre-
processing stage, the task-prediction filter module mul-
tiplies the transition matrix by n times according to n-
recent applications history. Thus, the overheads were
increased according to n. In the filtering stage, the
filter module computes transition scores. The table
shows computation the overheads of computing transi-
tion score about a process. Thus, the total overheads
can be obtained by multiplying the number of iterated
processes in the LMK filter framework. In our experi-
ments, it was not significant overheads because the av-
erage number of iterated processes was about 10.
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Figure 7: Average number of application terminations
and overheads according to n-recent applications

6.4 Accuracy of the Task-Prediction Filter Module

The task-prediction filter module enhances the accuracy
of victim selection by predicting the next application
from the n-recent applications history. If many n-recent
applications are used, application prediction is more ac-
curate. However, the computation overhead is also in-
creased significantly by matrix multiplications. Figure 7
shows the number of application terminations and over-
heads according to n-recent applications history. As
the number of recent applications used for prediction
increased, the number of application terminations was
slightly reduced. However, the performance overhead
is also increased by matrix multiplication. Thus, the n
value should be applied properly according to the degree
of urgency when handling a low memory situation.

7 Discussion

7.1 The default behaviour of the LMK Filter
Framework

The default behavior of LMK filter framework is to kill
a process with the highest oom_score_adj, and to kill a
process with the largest memory when there are several
processes with the highest oom_score_adj. However,
such behavior may cause a reduction in the total number
of applications kept in the background. If many appli-
cations with large memory are kept in the background,
the total number of applications kept in the background
is reduced because the memory capacity of the device
is limited. Thus, the OOM killer of the kernel decides
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the badness of a process based on the percentage of pro-
cess memory in total memory. The oom_score_adj of
a process is used to adjust it. As a result, the behavior
of the OOM killer is likely to keep more applications in
the background.

For embedded devices, we believe that the oom_score_
adj of applications given by a specific rules of user-
space, such as application categorization of Android, is
more important than the percentage of process memory
in total memory because such hints include user expe-
rience related factors, such as visibility to user. How-
ever, this should be decided carefully after further exper-
iments in several embedded devices with several users.
To do that, the default behavior of the LMK filter frame-
work also should be changeable. The works are left as
our future work.

7.2 The first-match resolution mechanism

The LMK filter framework implements a first-match
resolution mechanism. The mechanism is effective to
minimize policy conflicts and to reduce redundant op-
erations by policy redundancy. However, to integrate
several policies, the order of policy modules should be
decided carefully. For example, suppose that there are
three policy modules: a memory-leak based policy mod-
ule, the task-prediction module, the Android specific
module. The memory-leak based policy module selects
a memory-leak suspected application as victim, as de-
scribed Section-3. If the order of the policy module
is "the Android specific module – the task-prediction
module – the memory-leak based policy module", a
memory-leak suspected application can be kept in the
background by previous two policy modules. Thus, the
order of policy module should considered carefully for
desirable integration of several policy modules.

7.3 Other Benefits of the LMK Filter Framework

The specific victim selection policies described in
Section-3 were applied by individually modifying the
process prioritization routine of the Android platform.
However, the policies can be applied by using the LMK
filter framework without platform modification. In ad-
dition, the policies can be activated at the same time by
the LMK filter framework.

Instead of applying a new victim selection policy, a new
memory management policy for processes can be ap-
plied with the LMK filter framework. For example, per-
process page reclamation can be implemented as a fil-
ter module. A filter module can reclaim a process’s
page in the filtering routine after checking a process’s
reclaimable memory. After per-process reclamation, if
the filter module returns SHOULD_BE_KEPT for the pro-
cess, the process will be kept in the background. With-
out such a mechanism, although per-process page recla-
mation is provided to the user-space [5], the process is
likely to be killed by LMK in a low memory situation.

7.4 User-space LMK filter framework

Implementing policies in the user-space might allow po-
lices to be applied gracefully because user-space’s infor-
mation can be utilized easily. Meanwhile, the user-space
program is unlikely to acquire OS-dependent informa-
tion like the page-mapping information of the process.
Above all, the user-space low memory killer is hard to
handle quickly for urgently handling a low memory sit-
uation.

Thus, there are advantages and disadvantages with the
in-kernel LMK filter framework. We expect that the in-
kernel LMK filter framework will be able to apply new
polices gracefully if the operating system manages con-
text information, such as the context-aware OS service,
to enhance the operating system’s behaviour [1]. How-
ever, we also believe that the LMK filter framework can
be easily applied to the user-space LMK, and the user-
space LMK filter framework can apply various victim
selection policies dependent on specific applications.

7.5 Victim Selection by Process Limit

A S/W platform for embedded device, such as Android,
manages background applications based on the number
of process limit. If the number of background processes
exceeds a pre-defined number of process limitation, the
S/W platform kills an application. Unfortunately, in the
type-A approach like Android, the victim selection by
process limit is executed in the user-space, and the vic-
tim selection by LMK is executed in the kernel. Thus,
they try to synchronize the victim selection policy by
hints, such as oom_score_adj of a process. In our im-
plementation, we did not consider the synchronization.
However, the problem can be easily solved by querying
victim selection to LMK filter framework.
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8 Conclusion

We presented a policy-extendable LMK filter frame-
work and a filter module to enhance LMK victim se-
lection, and showed the effectiveness of the customized
LMK and several benefits provided by the LMK filter
framework. Although we implemented it in the kernel,
it can be implemented as a user-space daemon. We ex-
pect that this policy-extendable LMK filter framework
and LMK filter will improve user experience.
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Abstract

There are a variety of tools to measure the performance
of Linux systems and the applications running on them.
However, the resulting performance data is often pre-
sented in plain text format or only with a very basic user
interface. For large systems with many cores and con-
current threads, it is increasingly difficult to present the
data in a clear way for analysis. Moreover, certain per-
formance analysis and debugging tasks require the use
of a high-resolution time-line based approach, again en-
tailing data visualization challenges. Tools in the area
of High Performance Computing (HPC) have long been
able to scale to hundreds or thousands of parallel threads
and are able to help find performance anomalies. We
therefore present a solution to gather performance data
using Linux performance monitoring interfaces. A com-
bination of sampling and careful instrumentation allows
us to obtain detailed performance traces with manage-
able overhead. We then convert the resulting output to
the Open Trace Format (OTF) to bridge the gap between
the recording infrastructure and HPC analysis tools. We
explore ways to visualize the data by using the graphical
tool Vampir. The combination of established Linux and
HPC tools allows us to create an interface for easy nav-
igation through time-ordered performance data grouped
by thread or CPU and to help users find opportunities
for performance optimizations.

1 Introduction and Motivation

GNU/Linux has become one of the most widely used
operating systems, ranging from mobile devices, to
laptop, desktop, and server systems to large high-
performance computing (HPC) installations. Perfor-
mance is a crucial topic on all these platforms, e.g.,

for extending battery life in mobile devices or to en-
sure maximum ROI of servers in production environ-
ments. However, performance tuning is still a complex
task that often requires specialized tools to gain insight
into the behavior of applications. Today there are only
a small number of tools available to developers for un-
derstanding the run-time performance characteristics of
their code, both on the kernel and the user land side.
Moreover, the increasing parallelism of modern multi-
and many-core processors creates an additional chal-
lenge since scalability is usually not a major focus of
standard performance analysis tools. In contrast, scal-
ability of applications and performance analysis tools
have long been topics in the High Performance Com-
puting (HPC) community. Nowadays, 96.4 % of the 500
fastest HPC installations run a Linux OS, as compared
to 39.6 % in 20031. Thus, the HPC community could
benefit from better integration of Linux specific per-
formance monitoring interfaces in their tools, as these
are currently targeting parallel programs and rely on in-
strumenting calls to parallelization libraries such as the
Message Passing Interface (MPI) and OpenMP. On the
other hand, the Linux community could benefit from
more scalable tools. We are therefore convinced that the
topic of performance analysis should be mutually solved
by bringing together the expertise of both communities.

In this paper, we present an approach towards
scalable performance analysis for Linux using the
perf infrastructure, which has been introduced with
Linux 2.6.31 [8] and has undergone intensive devel-
opment since then. This infrastructure allows users to
access hardware performance counters, kernel-specific
events, and information about the state of running ap-
plications. Additionally, we present a new visualization
method for ftrace-based kernel instrumentation.

1Based on November 2003 and November 2013 statistics on
http://top500.org
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Measurement Type Kernel Interface Common Userspace Tools and Libraries

Instrumentation

ptrace gdb, strace, ltrace
ftrace trace-cmd, kernelshark, ktap

kernel tracepoints LTTng, SystemTap, ktap, perf userspace tools
dynamic probes SystemTap, ktap, perf userspace tools

Sampling
perf events perf userspace tools, PAPI

OProfile (kernel module) OProfile daemon and tools

Table 1: Common Linux Performance Analysis Interfaces and Tools

The remainder of this paper is structured as follows:
Section 2 presents an overview of existing Linux per-
formance analysis tools. Section 3 outlines the process
of acquiring and processing performance data from the
perf and ftrace infrastructures followed by the presenta-
tion of different use-cases in Section 4.

2 Linux Performance Monitoring Interfaces
and Established Tools

Several interfaces are available in the Linux kernel to
enable the monitoring of processes and the kernel itself.
Based on these interfaces, well-established userspace
tools and libraries are available to developers for var-
ious monitoring tasks (see Table 1). The ptrace [15]
interface can be used to attach to processes but is not
suitable for gaining information about the performance
impact of kernel functions. ftrace [7] is a built-in instru-
mentation feature of the Linux kernel that enables ker-
nel function tracing. It uses the -pg option of gcc to call
a special function from every function in a kernel call.
This special function usually executes NOPs. An API,
which is located in the Debugfs, can be used to replace
the NOPs with a tracing function. trace-cmd [25] is
a command line tool that provides comfortable access
to the ftrace functionality. KernelShark [26] is a GUI
for trace-cmd, which is able to display trace infor-
mation about calls within the Linux kernel based on
ftrace events. This allows users to understand the sys-
tem behavior, e.g., which processes trigger kernel func-
tions and how tasks are scheduled. However, the Ker-
nelShark GUI is not scalable to large numbers of CPU
cores and does not provide integration of sampling data,
e.g., to present context information about application
call-paths. Nevertheless, support for ftrace is currently
being merged into the perf userspace tools [16]. Ker-
nel tracepoints [3] are instrumentation points in differ-
ent kernel modules that provide event-specific informa-
tion, e.g., which process is scheduled to which CPU for

a scheduling event or what hints have been used when
allocating pages. kprobes are dynamic tracepoints that
can be added to the kernel at run-time [12] by using
the perf probe command. Such probes can also be
inserted in userspace programs and libraries (uprobes).
The perf_event infrastructure can handle kprobes and
uprobes as well as tracepoint events. This allows the
perf userspace tools to record the occurrences of these
events and to integrate them into traces. The Linux Trace
Toolkit next generation (LTTng) [10,11] is a tracing tool
that allows users to measure and analyze user space and
kernel space and is scalable to large core counts. It
writes traces in the Common Trace Format which is sup-
ported by several analysis tools. However, these tools
do not scale well to traces with large event counts. Sys-
temTap [28] provides a scripting interface to access and
react on kernel probes and ftrace points. Even though it
is possible to write a generic (kernel) tracing tool with
stap scripts, it is not intended for such a purpose. ktap
is similar to SystemTap with the focus on kernel trac-
ing. It supports tracepoints, dynamic probes, ftrace, and
others.

In addition to the instrumentation infrastructure support
in the kernel, measurement points can also be triggered
by sampling. The perf_event infrastructure provides ac-
cess to hardware-based sampling that is implemented
on x86 processors with performance monitoring units
(PMUs) that trigger APIC interrupts [5,14]. On such an
interrupt, the call-graph can be captured and written to
a trace, which is usually done with the perf record
command-line tool but can also be achieved with low-
level access to a memory-mapped buffer that is shared
with the kernel. In a post-mortem step, tools like perf
script and perf report use debugging symbols to
map the resulting events in a trace file recorded by perf
record to function names. PAPI [6, 23] is the de facto
standard library for reading performance counter infor-
mation and is supported by most HPC tools. On current
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Linux systems, PAPI uses the perf_event interface via
the libpfm4 library. In addition to performance counter
access, PAPI is also able to use this interface for sam-
pling purposes. The OProfile kernel module [19] is up-
dated regularly to support new processor architectures.
It provides access to hardware PMUs that can be used
for sampling, e.g., by the OProfile daemon [20].

However, none of the Linux performance analysis tools
are capable of processing very large amounts of trace
data, and none feature scalable visualization interfaces.
Scalable HPC performance analysis tools such as Vam-
pir [24], Score-P [18], HPCToolkit [1], and TAU [27],
on the other hand, usually lack the close integration
with the Linux kernel’s performance and debugging in-
terfaces.

3 Performance Data Acquisition and Conver-
sion

In this section, we discuss our approach to obtaining
performance data using standard tools and interfaces
and how we further process the data to make it available
to scalable analysis tools.

3.1 Data Acquisition with perf and ftrace

We use perf record to capture hardware-counter-
based samples and selected tracepoints. In more detail,
we use the following event sources:

cpu-cycles
This event is used as a sampling timer. Unlike typi-
cal alerts or timers, the cpu-cycles counter does not
increase when the CPU is idle. Information about
idling CPUs or tasks is not crucial for performance
analysis and a lower interrupt rate in such scenarios
minimizes the sampling overhead.

sched_process_{fork|exec|exit}
These tracepoint events are used to track the cre-
ation and termination of processes.

sched_switch
This tracepoint event is used to track processes
on the CPUs. It provides knowledge about when
which task was scheduled onto which CPU. The
state of the task that is scheduled away is associated
to the event in order to distinguish between volun-
tary sleep (state S), un-interruptible sleep (state D,
usually I/O), or preemption (state R)2.

2cf. man top

instructions|cache-misses|...
Other performance counters can be included in the
timeline to get a better understanding of the effi-
ciency of the running code. For example, the in-
struction counter allows us to determine the in-
struction per cycle (IPC) value for tasks and CPUs
and adding cache-misses provides insights into the
memory usage.

As an alternative to sampling, instrumentation can pro-
vide fine-grained information regarding the order and
context of function calls. For debugging purposes, sam-
pling is not a viable option. Thus, we use the kernel
tracing infrastructure ftrace to analyze kernel internal
behavior. One alternative would be a combination of
trace-cmd and KernelShark. However, KernelShark is
limited in terms of scalability and visualization of im-
portant information. Instead of trace-cmd we use a
shell script to start and stop the kernel monitoring infra-
structure ftrace. The script allows us to specify the size
of the internal buffer for events and filters that can be
passed to ftrace in the respective debug fs files. To
create the trace, we enable the function_graph tracer
and set the options to display overruns, the CPU, the
process, the duration, and the absolute time. The script
then starts the recording by enabling ftrace and stops it
when the recording time expires.

3.2 Conversion to Scalable Data Formats

The perf record tool and its underlying file format
are designed to induce only minimal overhead during
measurement. It therefore simply dumps data from the
kernel buffer directly into a single file without any dis-
tinction between process IDs or CPUs. This file can
be used in a follow-up step to create a profile based
on the recorded trace data using perf report. Exter-
nal tools can be used with perf script to analyze the
trace data. However, the simple file structure resulting
from the low-overhead recording process has negative
side effects on the scalability of the data format. Par-
allel parsing of a single file is impeded by the variable
length of single trace entries and the mixture of manage-
ment information (e.g., task creation and termination)
with performance event information from sampling.
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Figure 1: Vampir visualization of a trace of the HPC application WRF, including the Master Timeline showing
the parallel process activity (different function calls in different colors, MPI messages as black lines aggregated in
bursts), the Performance Radar depicting performance metrics such as hardware counter readings, and the Process
Timeline with the call-stack of one process. The right side contains the Function Summary that provides a function
profile and a Communication Matrix depicting a profile about the communication between the parallel processes.
The trace is available for download at http://vampir.eu.

3.2.1 Scalable Trace Formats

Scalable performance analysis tools commonly used by
the HPC community make use of scalable formats such
as OTF [17], OTF2 [9], CTF [4], and HPCTRACE [1].
The Open Trace Format (OTF) was designed for use
with VampirTrace [24] and enables parallel reading and
writing of trace files. The format is built around the con-
cept of event streams, which can hold trace information
of one or more parallel execution entities (processes,
threads, GPU streams). Event properties, such as names
of processes and functions as well as grouping informa-
tion, can be defined locally for one stream or globally for
all streams. This separation of different event streams as
well as meta-data is important for efficiently reading and
writing event traces in parallel, which has already been
demonstrated on a massively parallel scale with more
than 200,000 event streams [13]. The data itself is en-
coded in ASCII format and can be compressed transpar-
ently. The successor of this trace format is OTF2 [9].
It has a similar structure but allows for more efficient
(binary) encoding and processing. OTF2 is part of the
Score-P performance measurement environment [18].

We use Vampir for the visualization of the generated
OTF files. Figure 1 shows the visualization of a trace
of a typical MPI application recorded using Vampir-
Trace. Vampir is designed to display the temporal rela-
tion between parallel processes as well as the behavior
of individual processes, to present performance metrics,
e.g., hardware counters, MPI communication and syn-
chronization events. Additionally, Vampir derives pro-
filing information from the trace, including a function
summary, a communication matrix, and I/O statistics.
Starting from an overall view on the trace data, Vam-
pir enables the user to interactively browse through the
trace data to find performance anomalies. By providing
the capability of filtering the trace data, Vampir helps
users to cope with potentially large amounts of trace
data that has been recorded by the measurement infras-
tructure. Moreover, it provides a client-server based in-
frastructure using a parallel analysis server that can run
on multiple nodes to interactively browse through the
large amounts of trace data.

In general, the trace files can be written and read through
an open source library to enable users to analyze the
traces with custom tools. VampirTrace and OTF are

http://vampir.eu
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perf record

Linux kernel

perf record
perf.data

event buffer

perf script

debug symbols

libpython
libotf

OTF converter script
OTF trace

(a) Conversion of perf.data recordings

perf record

ftrace_otf_record

trace-cmd record trace.dat

ftrace

kernelshark

OTF trace
Copy of

ftrace trace ftrace_otf_convert
libotf

python

(b) Conversion of ftrace recordings

Figure 2: Toolchains for recording and converting performance data of Linux performance monitoring tools.

bundled with command-line tools for analyzing and pro-
cessing OTF traces. Since the focus of these tools has
been instrumentation based recording, there is no ded-
icated call-path sample record type in OTF or any of
the other formats supported by Vampir so far. There-
fore, the call-path sample information from perf.data is
mapped to enter- and leave-function events typically ob-
tained through instrumentation. Introducing support for
sampled events into the full tool chain is currently work
in progress.

3.2.2 Conversion of Trace Data

To convert the perf.data information into a scalable file
format, we use the python interface provided by perf
script and the python-bindings of OTF. Additionally,
we patched perf script to pass dynamic symbol object
information to the conversion script3. Based on the PID
and CPU information within every sample, we are able
to create two different traces: a task-centric and a CPU-
centric trace. The conversion process depicted in Fig-
ure 2a is still sequential due to the limitations of the
perf.data file format. For a CPU-centric view, this limi-
tation could be overcome with multiple perf data files –
one per CPU – which would be feasible with the existing
tool infrastructure. However, task migration activities
and their event presentation do pose a major challenge
for a task-centric view since information on individual
tasks would be scattered among multiple data files.

Note that perf.data information that is gathered in a task-
specific context does not provide information about the
CPU that issued a specific event. Thus, we can only

3See https://lkml.org/lkml/2014/2/18/57

create task-centric traces in this case. Information that
is gathered in a CPU-specific context allows us to create
both CPU-centric and task-centric traces.

Processing information provided by ftrace is straight-
forward as the exact enter and exit events are captured.
Thus, we use the OTF python bindings to write events
whenever a function is entered or exited. We concur-
rently generate two traces – a CPU-centric trace and a
process-centric trace. If a function has been filtered out
or the process has been unscheduled in between, enter
events are written to match the current stack depth. One
challenge for the trace generation is the timer resolu-
tion of ftrace events, which is currently in microsec-
onds. This leads to a lower temporal accuracy within
the traces as function call timer resolution is nanosec-
onds. The difference of these timer sources adds un-
certainty. However, the order and context of the calls
stay correct, thereby allowing enthusiasts to understand
causal relations of function calls within the kernel. The
full toolchain overview is depicted in Figure 2b.

4 Examples and Results

4.1 Analyzing Parallel Scientific Applications

This example demonstrates the scalability of our ap-
proach. We use the perf-based tool infrastructure pre-
sented in Section 3 to analyze a hybrid parallel applica-
tion. The target application is bt-mz of the NAS parallel
benchmark suite [2] (Class D, 32 MPI processes with 8
OpenMP threads each).

We run and post-process this workload on a NUMA
shared memory system with a total of 512 cores and

https://lkml.org/lkml/2014/2/18/57
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(a) All processes, two iterations with cache-misses per sec-
ond

(b) Two processes, close-up inside one iteration which in-
structions per second

Figure 3: Trace of a parallel application using OpenMP and MPI. Program execution is colored green/yellow. Thread
synchronization via OpenMP is colored blue. Process synchronization via MPI is colored red.

8 TiB main memory4. To generate the trace, we only
use features that are available for unprivileged users in
standard Linux environments. We utilize perf record
with default settings for the cycles, instructions, and
cache-misses hardware events and enabled call-graph
tracing.

Additional cores are reserved for perf to reduce the per-
turbation of the application due to the measurement.
The recording operates at the limit of the system I/O ca-
pacity, so that a number of chunks are lost. According to
internal measurements of the application, its execution
time increases from 70.4 s to 95.8 s when comparing a
regular and a measured execution. Considering the scale
of the application and three hardware counters with a
relatively high recording frequency, the overhead is ac-
ceptable. The resulting perf.data file contains 166 mil-
lion events in 16 GiB. After the conversion process, the
resulting compressed OTF trace has a size of 2.1 GiB.

4SGI UV2000 with 64 socket Intel Sandy Bridge E5-
4650L @ 2.6 GHz

Figure 3a visualizes an excerpt of approx. 1 second of
the application execution in Vampir. For a more con-
cise visualization, we filter the shepherd threads of the
OpenMP run-time library as well as the mpirun and
helper processes. These tasks monitor the the OpenMP
threads and the MPI environment for failures. They are
recorded along the other tasks but do not show any reg-
ular activity during the execution. The figure contains
three summaries of function activity: the fraction of
time spent in each dso, the time share of functions in the
binary, and the time share of functions in the OpenMP
library. It also contains a timeline with the current func-
tion and a heat-map of cache-misses for all processes
respectively. The visualization contains two iterations
of the application execution. After each iteration, a
global synchronization (red) between all MPI ranks is
performed. The computation threads also synchronize
(light blue) with their respective master threads. At the
very beginning of each iteration, there is a short phase
with a high cache miss rate after which the miss rate
drops. Towards the end of each iteration, the cache miss
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rate also increases and so does the run-time of the re-
peated x/y/z_solve functions. A closer look inside an
iteration is shown in Figure 3b, which is focused on two
processes (16 compute threads total). Within each pro-
cess, the x/y/z_solve and a few other functions are re-
peatedly executed with OpenMP synchronizations in be-
tween. Note that there is some sampling noise of other
function calls within the x/y/z_solve that cannot be
filtered due to imperfect call-path information. The per-
formance radar shows that the functions x/y/z_solve
have different typical instruction rates. Two threads
(82536 and 82504) show regular drops in the instruction
rate and similar drops in the cycles rate (not shown in
the picture). This is likely due to them being preempted
in favor of another task. As a consequence, the synchro-
nization slows down the entire thread groups. Moreover,
there is a regular diagonal pattern of short drops in the
instruction rate. This is likely a result of OS-noise simi-
lar to the effects that we analyze in Section 4.4.

4.2 Analyzing the Behavior of a Web Server

In addition to analyzing one (parallel) application, perf
can also be used for system analyses. To demon-
strate these capabilities, we ran perf as a privileged user
on a virtual machine running a private ownCloud5 in-
stallation using the Apache2 webserver and a MySQL
database. The virtual machine is hosted on a VMware
installation and is provided with 2 cores and 4 GB of
memory. The recording was done using the -a flag to
enable system-wide recording in addition to call-graph
sampling. The visualization of the resulting trace is
shown in Figure 4. The recorded workload consisted of
six WebDAV clients downloading 135 image files with
a total size of 500 MB per client.

The parallel access of the clients is handled through
the Apache2 mpm_prefork module, which maintains a
pool of server processes and distributes requests to these
workers. This is meant to ensure scalable request han-
dling with a high level of separation between the work-
ers and is recommended for PHP applications. The pro-
cess pool can be configured with a minimum and max-
imum number of server processes based on the number
of expected clients. However, the high load from the
clients downloading files in parallel in conjunction with
the small number of available cores leads to an overload
that manifests itself through the parallel server processes

5See http://owncloud.org/

spending much time in the idle(R) state in which pro-
cesses are run-able and represented in the kernel’s task
queue but not actually running, e.g., they are not wait-
ing for I/O operations to complete. These involuntary
context switches are distinctive for overload situations
and are also reflected by the high number of context
switches, as can be seen in the display in the middle
of the figure.

The MySQL database is involved in the processing as it
stores information about the files and directories stored
on the server. Every web-server instance queries the
database multiple times for each client request. Since
the run-times of the database threads between volun-
tary context switches (waiting for requests) are rela-
tively short, the threads are not subject to involuntary
switches.

In addition to the run-time behavior of the processes
and their scheduling, we have also captured informa-
tion about the network communication of the server.
This is depicted in the lower three displays of Figure 4.
To accomplish this, two additional events have been
selected during the recording: net:net_dev_xmit
reflecting the size of the socket buffers handed to
the network device for transmission to clients and
net:netif_receive_skb for received socket buffers.
Note that this information does not necessarily reflect
the exact data rate on the network but can provide a good
estimate of the network load and how it can be attributed
to different processes.

4.3 Analyzing Parallel Make Jobs

In addition to analyzing the performance of server work-
loads, perf can also be used to record the behavior of
desktop machines. As an example, we use the compi-
lation process of the perf project using the GCC 4.8.0
compiler. As in the previous example, perf has been
run as a privileged user in order to capture schedul-
ing and migration events in addition to the cycles and
page-faults counter. Figure 5 shows the compilation
process in four different configurations, from a serial
build to a highly parallel build on a four core desktop
machine (Intel Core i7-2620M). The serial compilation
is depicted in Figure 5a and reveals that one compila-
tion step requires significantly more time to finish than
all other steps. Figure 5b depicts a parallel make to
compensate for the wait time (and to better utilize the

http://owncloud.org/
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Figure 4: Vampir trace visualization of a system running an Apache2 web sever and a MySQL database. Some
processes were filtered. The top display shows the thread-centric view followed by the CPU-centric view and the
number of context switches per core. The lower part of the figure contains the average socket buffer size transmitted
(net_dev_xmit) per time for core 0 and for one of the Apache2 processes as well as the average socket buffer size
received per time by that process. The executed code parts are colored as follows: MySQL in purple, PHP5 in green,
and libc in blue. For the cores, the function native_safe_halt is colored orange and is used on Core 1 when it
is not needed toward the end. The idle(R) state is colored red.
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(a) serial make (b) make -j4

(c) make -j (d) make -j4 (close-up)

Figure 5: System traces of a desktop machine compiling perf (as shipped with Linux 3.8.0) in different configura-
tions: (a) serial make; (b) with four parallel make jobs (using -j4); (c) with unlimited number of make jobs (using
-j); and (d) a close-up view of the trace shown in (b) showing six make jobs. Figures (a) – (c) each show both the
process-centric view (top) and the CPU-centric view (bottom) of the function execution in addition to a display of
the page faults that occurred during execution. Figure (d) also shows a summary of all executed processes during
the depicted time-frame. The colors are as follows: cc1 depicted in purple, idle(R) in blue, as in dark brown,
libc in light brown, and kernel symbols in light gray. All figures only contain the compilation and linking steps,
the preceding (sequential) configuration steps are left out intentionally.
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Figure 6: Time required for building the perf project
using different configurations for parallel make (1, 4,
unlimited).

available four CPU cores). It shows that the compila-
tion proceeds even though the long running compilation
step is not finished yet. Only at the very end, the linking
step has to be deferred until all make jobs are finished.
A subset of the parallel make steps is depicted in Fig-
ure 5d to visualize the process structure (gcc spawns
the processes cc and as and waits for their execution to
finish) and the actual parallel execution. The figure also
shows the executed applications and library functions,
e.g., cc1, gcc, as, and kernel symbols.

Another attempt to speed up the compilation (and to
compensate for possible I/O idle times) is to spawn even
more processes. This can be done using make -j with-
out specifying the number of parallel jobs. In that case,
make launches as many jobs as possible with respect to
compilation dependencies. This can lead to heavy over-
subscription even on multi-core systems, possibly caus-
ing a large number of context switches and other per-
formance problems. The behavior of a highly parallel
make is depicted in Figure 5c, which also shows an in-
creased number of page faults as a consequence of the
high number of context switches. Overall, compiling
the perf project with make -j4 is slightly faster (30.6 s)
compared to using make -j (33.31 s), as shown in Fig-
ure 6.

4.4 Analyzing OS Behaviour with ftrace

Figure 7a shows a trace of an idle dual socket system
running Ubuntu Server 13.10. With eight cores per pro-
cessor and HyperThreading active, 32 logical CPUs are
available. We filtered out the idle functions that use
up to 99.95 % of the total CPU time that is spent in
the kernel. The largest remaining contributors are the
irqbalancer, the RCU scheduler [21, 22], the rsyslog
daemon, some kernel worker tasks, and the NTP dae-
mon. We also see that there are two different kinds of

per CPU threads that issue work periodically: watch-
dog threads and kernel worker threads that are used by
the ondemand governor. Watchdog threads start their
work every 4 s (displayed as vertical lines). The on-
demand frequency governor is activated every 16 s on
most CPUs (transversal lines). kworker-4 is the kernel
worker thread of CPU 0. It uses significantly more time
compared to other kernel workers since it is periodically
activated by ksoftirq, which is running on CPU 0 and
is handling IPMI messages at a regular interval of 1 s.
CPU 22 also executes work every second triggered by
the NTP daemon.

The RCU scheduler is mainly triggered by irqbalance
and the rsyslog daemon. Zooming into the trace, we see
that these tasks use the __call_rcu function. Shortly
afterwards, the RCU scheduler starts and handles the
grace periods of the RCU data. In this example, the
RCU scheduler task runs on different processor cores
but always on the same NUMA node as the process that
issued RCU calls. Figure 7b depicts this behavior for
the rsyslogd activity. After the RCU scheduler is mi-
grated to another CPU, a kernel worker thread is sched-
uled. The kernel worker thread handles the ondemand
frequency governor timer (od_dbs_timer, not depicted).

5 Conclusion and Future Work

This paper presents a new combined workflow for
recording, managing, and visualizing performance data
on Linux systems. We rely on established performance
monitoring infrastructures and tools, making our ap-
proach applicable in a wide range of scenarios. Call-
path sampling works on standard production systems
and does not require root access or special permissions.
Having additional permissions to record special trace-
point events can further increase the level of detail. By
using already available Linux tools that require no re-
compilation or re-linking, the entry barrier for perfor-
mance analysis has been lowered significantly. With
sampling, the overhead can be controlled by selecting
an appropriate event frequency. For a visual analysis,
we leverage the Vampir visualization tool that originates
from the HPC community. This enables a scalable and
flexible visualization of trace data that contains infor-
mation from a large number of processes, running over
a long time, and including a high level of detail.

We have demonstrated the versatility of our approach
with several use cases, including an analysis of scien-
tific applications running on large production systems,
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(a) Overview of kernel activity. Regular patterns: regular vertical lines every 4 seconds are watchdog threads; transversal lines every
16 seconds represent ondemand frequency governor activity.

(b) Zoomed into rsyslogd activity, which triggers RCU scheduler activity. rsyslogd calls to RCU objects are colored red. rsyslogd
runs on CPU 6. The CPU location of the RCU scheduler changes over time across unoccupied cores of one NUMA package. The
same NUMA package is used by rsyslogd and rcuos/6. The light blue activity (not depicted in timeline, but in function statistics)
represents the rcuos/6 task that offloads RCU callbacks for CPU 6.

Figure 7: Kernel activity of an idle dual socket Intel Sandy Bridge node. Idle functions have been filtered out.

the activity on a highly utilized web and database server,
as well as investigating operating system noise. Differ-
ent performance aspects can be covered: Hardware per-
formance counters, call-path samples, process and task
management, library calls, and system calls provide a
holistic view for post-mortem performance analysis, fo-
cusing either on the entire system or on a specific appli-
cation. Given the pervasiveness of Linux, even more use
cases are possible, for instance optimizing energy usage
on mobile systems.

Our future work will focus on some remaining scalabil-
ity issues. The recording process of perf record – where
only one file is written – should be reconsidered as the
number of CPUs will continue to increase. The con-
version process to OTF should be re-implemented as it

is currently single threaded. We provide kernel patches
that add missing functionality to the existing tools rather
than using the perf_event_open system call directly,
as the latter would result in the re-implementation of
several perf userspace tool features. Additionally, we
submitted bug-fixes, one of which was accepted into
the main-line kernel. Furthermore, we plan to inte-
grate measurements on multiple nodes to generate a sin-
gle sampling-based trace from a distributed application.
This will allow us to study interactions between pro-
cesses on different systems as in client-server scenarios
and massively parallel applications. Moreover, we plan
to switch to OTF2 as the successor of the OTF data for-
mat. OTF2 will include support for a sampling data type
that will reduce the trace size and speed up the conver-
sion process.
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Abstract

Solid State Devices (SSD) use NAND-based Flash
memory for storage of data. They have the potential
to alleviate the ever-existing I/O bottleneck problem in
data-intensive computing environments, due to their ad-
vantages over conventional Hard Disk Drives (HDD).
SSDs differ from traditional mechanical HDDs in vari-
ous respects. The SSDs have no moving parts and are
thus free from rotational latency which dominates the
disk access time of HDDs.

However, on the other hand, due to the long existence
of HDDs as persistent storage devices, conventional I/O
schedulers are largely designed for HDDs. They mit-
igate the high seek and rotational costs in mechanical
disks through elevator-style I/O request ordering and an-
ticipatory I/O. As a consequence, just by replacing con-
ventional HDDs with SSDs in the storage systems with-
out taking into consideration other properties like low
latency, minimal access time and absence of rotary head,
we may not be able to make the best use of SSDs.

We propose Veloces, an I/O scheduler which will lever-
age the inherent properties of SSDs. Since SSDs per-
form read I/O operations faster than write operations,
Veloces is designed to provide preference to reads over
writes. Secondly, Veloces implements optional front-
merging of contiguous I/O requests. Lastly, writing in
the same block of the SSD is faster than writing to dif-
ferent blocks. Therefore, Veloces bundles write requests
belonging to the same block. Above implementation
has shown to enhance the overall performance of SSDs
for various workloads like File-server, Web-server and
Mail-server.

1 Introduction

The SSDs are built upon semiconductors exclusively,
and do not have moving heads and rotating platters like
HDDs. Hence, they are completely free from the ro-
tational latency which is responsible for the high disk
access time of HDDs. This results in SSDs operational
speed being one or two orders of magnitude faster than
HDDs. However, on the other hand, due to the long
existence of HDDs as persistent storage devices, exist-
ing I/O scheduling algorithms have been specifically de-
signed or optimized based on characteristics of HDDs.

Current I/O schedulers in the Linux Kernel are designed
to mitigate the high seek and rotational costs in mechan-
ical disks. SSDs have many operational characteristics
like low latency, minimal access time and absence of
rotary head which need to be taken into account while
designing I/O schedulers.

The rest of this paper is structured as follows. In Section
2, SSD characteristics are elaborated. In Section 3 the
existing schedulers are studied and their characteristics
and features are compared. In Section 4, we elaborate
on the design details of the proposed scheduler, Velo-
ces. Section 5 focuses on results and performance eval-
uation of our scheduler for different workloads. Finally,
in Section 6 we conclude this paper. Section 7 covers
the acknowledgments.

2 SSD Characteristics

2.1 Write Amplification

SSDs have been evolved from EEPROM (Electrically
Erasable Programmable Read-Only Memory) which
gives it distinctive properties. It consists of a number
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Figure 1: SSD Model

of blocks which can be erased independently. A block
consists of pages. Read and write operations are per-
formed at page level whereas erasing is done at block
level. Overwriting is not allowed in SSDs, this makes
the writes expensive. SSDs can only write to empty or
erased pages. If it does not find any empty pages it finds
an unused page and has to erase the entire block contain-
ing the page. Then it has to write the previous as well
as the new page content on the block [10]. This makes
SSDs slower over a period.

2.2 Garbage Collection

SSDs make use of Flash Translation Layer (FTL) to
provide a mapping between the Logical Block Address
(LBA) and the physical media [10]. FTL helps in im-
proving the SSD performance by providing Wear Lev-
eling and Garbage Collection. Wear Leveling helps in
even distribution of data over the SSDs so that all the
flash cells have same level of use. Garbage collection
keeps track of unused or ‘stale’ pages and at an oppor-
tune moment erases the block containing good and stale
pages, rewrites the good pages to another block so that
the block is ready for further writes.

2.3 Faster Reads

Though SSDs provide a substantial improvement in I/O
performance over the conventional HDDs, there is suf-
ficient discrepancy between the read-write speeds. This
is primarily due to the erase-before-write limitation. In
Flash based devices it is necessary to erase a previously
written location before overwriting to the said location.
This problem is further aggravated by erase granularity
which is much larger than the basic read/write granu-
larity. As a result read operations in SSDs tend to be
relatively faster than writes.

As mentioned earlier, SSDs do not possess rotary drive.
Therefore, access times of I/O operations are relatively
less affected by spatial locality of the request as com-
pared to traditional HDDs. However it has been ob-
served that the I/O requests in the same block tend to
be slightly faster than I/O request in different block.

We have considered these features of SSDs while de-
signing our scheduler.

3 Study of Existing Schedulers

In this section, we study the existing I/O schedulers and
their drawbacks in case of SSD in the Linux Kernel 3.7.x
and forward.

3.1 Noop Scheduler

The name Noop (No Operation) defines the working of
this scheduler. It does not perform any kind of sorting
or seek prevention, thus is the default scheduler for flash
based devices where there is no rotary head. It per-
forms minimum operations on the I/O requests before
dispatching it to the underlying physical device [1].

The only chore that a NOOP Scheduler performs is
merging, in which it coalesces the adjacent requests.
Besides this it is truly a No Operation scheduler which
merely maintains a request queue in FIFO order [7].

As a result, it is suitable for SSDs, which can be consid-
ered as random access devices. However this might not
be true for all workloads.

3.2 Completely Fair Queuing Scheduler

CFQ scheduler attempts to provide fair allocation of the
available disk I/O bandwidth for all the processes which
requests an I/O operation.

It maintains per process queue for the processes which
request I/O operation and then allocates time slices for
each of the queues to access the disk [1]. The length of
the time slice and the number of requests per queue de-
pends on the I/O priority of the given process. The asyn-
chronous requests are batched together in fewer queues
and are served separately.

CFQ scheduler creates starvation of requests by assign-
ing priorities. It has been primarily designed for HDD
and does not consider the characteristics of SSDs while
reordering the requests.
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3.3 Deadline Scheduler

Deadline scheduler aims to guarantee a start service
time for a request by imposing a deadline on all I/O op-
erations.

It maintains two FIFO queues for read and write op-
erations and a sorted Red Black Tree (RB Tree). The
queues are checked first and the requests which have ex-
ceeded their deadlines are dispatched. If none of the re-
quests have exceeded their deadline then sorted requests
from RB Tree are dispatched.

The deadline scheduler provides an improved perfor-
mance over Noop scheduler by attempting to minimize
seek time and avoids starvation of the requests by im-
posing an expiry time for each request. It however per-
forms reordering of requests according to their address
which adds an extra overhead.

4 Proposed Scheduler - Veloces

In this section, we will discuss the implementation of
our proposed scheduler - Veloces.

4.1 Read Preference

As mentioned earlier, Flash-based storage devices suf-
fer from erase-before-write limitation. In order to over-
write to a previously known location, the said location
must first be erased completely before writing new data.
The erase granularity is much larger than the basic read
granularity. This leads to a large read-write discrepancy
[5][8]. Thus reads are considerably faster than writes.

For concurrent workloads with mixture of reads and
writes the reads may be blocked by writes with substan-
tial slowdown which leads to overall degradation in per-
formance of the scheduler. Thus in order to address the
problem of excessive reads blocked by writes, reads are
given higher preference.

We have maintained two separate queues, a read queue
and a write queue. The read requests are dispatched as
and when they arrive. Each write request has an expiry
time based on the incoming time of the request. The
write requests are dispatched only when their deadline is
reached or when there are no requests in the read queue.

4.2 Bundling of Write requests

In SSDs, it is observed that writes to the same logical
block are faster than writes to different logical blocks.
A penalty is incurred every time the block boundary
is crossed [2][9]. Therefore, we have implemented
bundling of write requests where write requests belong-
ing to the same logical block are bundled together.

We have implemented this by introducing the buddy
concept. A request X is said to be the buddy of request
Y if the request Y is present in the same logical block
as request X. For the current request, the write queue is
searched for the buddy request. All such buddy requests
are bundled together and dispatched.

Bundling count of these write requests can be adjusted
according to the workloads to further optimize the per-
formance.

4.3 Front Merging

Request A is said to be in front of request B when the
starting sector number of request B is greater than the
ending sector number of request A. Correspondingly, re-
quest A is said to be behind request B when the starting
sector of request A is greater than the ending sector of
request B.

The current I/O schedulers in the Linux Kernel facili-
tate merging of contiguous requests into a larger request
before dispatch because serving a single large request
is much more efficient than serving multiple small re-
quests. However only back merging of I/O requests is
performed in the Noop scheduler.

As SSDs do not possess rotational disks there is no dis-
tinction between backward and forward seeks. So, both
front and back merging of the requests are employed by
our scheduler.

5 Experimental Evaluation

5.1 Environment

We implemented our I/O Scheduler with parameters dis-
played in Table 1.
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Type Specifics
CPU/RAM Intel Core 2 Duo 1.8GHz
SSD Kingston 60GB
OS Linux-Kernel 3.12.4 / Ext4 File System

Benchmark
Filebench Benchmark for Mail Server,
Webserver and File Server workloads

Target
Our Scheduler and existing Linux I/O
Schedulers

Table 1: System Specifications

5.2 Results

We used the FileBench benchmarking tool which gen-
erates workloads such as Mail Server, File Server and
Webserver. The results of the benchmark are shown in
Figure 2.

The graph shows Input/Output Operations performed
per second (IOPS) by the four schedulers Noop, Dead-
line, CFQ and Veloces for the workloads Mail Server,
File Server and Webserver. The Veloces scheduler per-
forms better than the existing schedulers for all the
tested workloads. It shows an improvement of up to 6%
over the existing schedulers in terms of IOPS.

6 Conclusion

In conclusion, Flash-based storage devices are capable
of alleviating I/O bottlenecks in data-intensive applica-
tions. However, the unique performance characteristics
of Flash storage must be taken into account in order to
fully exploit their superior I/O capabilities while offer-
ing fair access to applications.

Based on these motivations, we designed a new Flash
I/O scheduler which contains three essential techniques
to ensure fairness with high efficiency read preference,
selective bundling of write requests and front merging
of the requests.

We implemented the above design principles in our
scheduler and tested it using FileBench as the bench-
marking tool. The performance of our scheduler was
consistent across various workloads like File Server,
Web Server and Mail Server.

Figure 2: Comparison of IOPS
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Abstract

We present Dmdedup, a versatile and practical primary-
storage deduplication platform suitable for both regular
users and researchers. Dmdedup operates at the block
layer, so it is usable with existing file systems and appli-
cations. Since most deduplication research focuses on
metadata management, we designed and implemented
a flexible backend API that lets developers easily build
and evaluate various metadata management policies. We
implemented and evaluated three backends: an in-RAM
table, an on-disk table, and an on-disk COW B-tree. We
have evaluated Dmdedup under a variety of workloads
and report the evaluation results here. Although it was
initially designed for research flexibility, Dmdedup is
fully functional and can be used in production. Under
many real-world workloads, Dmdedup’s throughput ex-
ceeds that of a raw block device by 1.5–6×.

1 Introduction

As storage demands continue to grow [2], even continu-
ing price drops have not reduced total storage costs. Re-
moving duplicate data (deduplication) helps this prob-
lem by decreasing the amount of physically stored infor-
mation. Deduplication has often been applied to backup
datasets because they contain many duplicates and rep-
resent the majority of enterprise data [18, 27]. In recent
years, however, primary datasets have also expanded
substantially [14], and researchers have begun to ex-
plore primary storage deduplication [13, 21].

Primary-storage deduplication poses several challenges
compared to backup datasets: access locality is less

pronounced; latency constraints are stricter; fewer du-
plicates are available (about 2× vs. 10× in backups);
and the deduplication engine must compete with other
processes for CPU and RAM. To facilitate research in
primary-storage deduplication, we developed and here
present a flexible and fully operational primary-storage
deduplication system, Dmdedup, implemented in the
Linux kernel. In addition to its appealing properties
for regular users, it can serve as a basic platform both
for experimenting with deduplication algorithms and
for studying primary-storage datasets and workloads.
In earlier studies, investigators had to implement their
own deduplication engines from scratch or use a closed-
source enterprise implementation [3, 21, 23]. Dmdedup
is publicly available under the GPL and we submitted
the code to the Linux community for initial review. Our
final goal is the inclusion in the mainline distribution.

Deduplication can be implemented at the file system
or block level, among others. Most previous primary-
storage deduplication systems were implemented in the
file system because file-system-specific knowledge was
available. However, block-level deduplication does not
require an elaborate file system overhaul, and allows any
legacy file system (or database) to benefit from dedupli-
cation. Dmdedup is designed as a stackable Linux ker-
nel block device that operates at the same layer as soft-
ware RAID and the Logical Volume Manager (LVM). In
this paper, we present Dmdedup’s design, demonstrate
its flexibility, and evaluate its performance, memory us-
age, and space savings under various workloads.

Most deduplication research focuses on metadata man-
agement. Dmdedup has a modular design that allows
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it to use different metadata backends—data structures
for maintaining hash indexes, mappings, and reference
counters. We designed a simple-to-use yet expressive
API for Dmdedup to interact with the backends. We
implemented three backends with different underlying
data structures: an in-RAM hash table, an on-disk hash
table, and a persistent Copy-on-Write B-tree. In this
paper, we present our experiences and lessons learned
while designing a variety of metadata backends, and in-
clude detailed experimental results. We believe that our
results and open-source deduplication platform can sig-
nificantly advance primary deduplication solutions.

2 Design

In this section, we classify Dmdedup’s design, discuss
the device-mapper framework, and finally present Dmd-
edup’s architecture and its metadata backends.

2.1 Classification

Levels. Deduplication can be implemented at the ap-
plication, file system, or block level. Applications can
use specialized knowledge to optimize deduplication,
but modifying every application is impractical.

Deduplication in the file system benefits many applica-
tions. There are three approaches: (1) modifying an ex-
isting file system such as Ext3 [15] or WAFL [21]; (2)
creating a stackable deduplicating file system either in-
kernel [26] or using FUSE [11,20]; or (3) implementing
a new deduplicating file system from scratch, such as
EMC Data Domain’s file system [27]. Each approach
has drawbacks. The necessary modifications to an ex-
isting file system are substantial and may harm stabil-
ity and reliability. Developing in-kernel stackable file
systems is difficult, and FUSE-based systems perform
poorly [19]. A brand-new file system is attractive but
typically requires massive effort and takes time to reach
the stability that most applications need. Currently, this
niche is primarily filled by proprietary products.

Implementing deduplication at the block level is eas-
ier because the block interface is simple. Unlike many
file-system-specific solutions, block-level deduplication
can be used beneath any block-based file system such
as Ext4, GPFS, BTRFS, GlusterFS, etc., allowing re-
searchers to bypass a file system’s limitations and de-
sign their own block-allocation policies. For that rea-
son, we chose to implement Dmdedup at the block level.

Our design means that Dmdedup can also be used with
databases that require direct block-device access.

The drawbacks of block-level deduplication are three-
fold: (1) it must maintain an extra mapping (beyond the
file system’s map) between logical and physical blocks;
(2) useful file-system and application context is lost;
and (3) variable-length chunking is more difficult at
the block layer. Dmdedup provides several options for
maintaining logical-to-physical mappings. In the future,
we plan to recover some of the lost context using file
system and application hints.

Timeliness. Deduplication can be performed in-line
with incoming requests or off-line via background
scans. In-line deduplication saves bandwidth by avoid-
ing repetitive reads and writes on the storage device and
permits deduplication on a busy system that lacks idle
periods. But it risks negatively impacting the perfor-
mance of primary workloads. Only a few studies have
addressed this issue [21, 24]. Dmdedup performs inline
deduplication; we discuss its performance in Section 4.

2.2 Device Mapper

The Linux Device Mapper (DM) framework, which has
been part of mainline Linux since 2005, supports stack-
able block devices. To create a new device type, one
builds a DM target and registers it with the OS. An
administrator can then create corresponding target in-
stances, which appear as regular block devices to the
upper layers (file systems and applications). Targets rest
above one or more physical devices (including RAM)
or lower targets. Typical examples include software
RAID, the Logical Volume Manager (LVM), and en-
crypting disks. We chose the DM framework for its per-
formance and versatility: standard, familiar tools man-
age DM targets. Unlike user-space deduplication solu-
tions [11, 13, 20] DM operates in the kernel, which im-
proves performance yet does not prohibit communica-
tion with user-space daemons when appropriate [19].

2.3 Dmdedup Components

Figure 1 depicts Dmdedup’s main components and a
typical setup. Dmdedup is a stackable block device
that rests on top of physical devices (e.g., disk drives,
RAIDs, SSDs), or stackable ones (e.g., encryption DM
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Figure 1: Dmdedup high-level design.

target). This approach provides high configurability,
which is useful in both research and production settings.

Dmdedup typically requires two block devices to op-
erate: one each for data and metadata. Data devices
store actual user information; metadata devices track the
deduplication metadata (e.g., a hash index). Dmdedup
can be deployed even if a system has only one storage
device, simply by creating two partitions. Although any
combination of data and metadata devices can be used,
we believe that using an HDD for data and an SSD for
metadata is practical in a modern system. Deduplication
metadata sizes are much smaller than the data size—
often less than 1% of the data—but metadata is critical
enough to require low-latency access. This combination
matches well with today’s SSD size and performance
characteristics, and ties into the growing trend of com-
bining disk drives with a small amount of flash.

To upper layers, Dmdedup provides a conventional
block interface: reads and writes with specific sizes and
offsets. Every write to a Dmdedup instance is checked
against all previous data. If a duplicate is detected, the
corresponding metadata is updated and no data is writ-
ten. Conversely, a write of new content is passed to the
data device and tracked in the metadata.

Dmdedup main components are (Figure 1): (1) dedu-
plication logic that chunks data, computes hashes, and
coordinates other components; (2) a hash index that
tracks the hashes and locations of the chunks; (3) a map-
ping between Logical Block Numbers (LBNs) visible to
upper layers and the Physical Block Numbers (PBNs)
where the data is stored; (4) a space manager that tracks
space on the data device, maintains reference counts, al-
locates new blocks, and reclaims unreferenced data; and
(5) a chunk store that saves user data to the data device.

2.4 Write Request Handling

Figure 2 shows how Dmdedup processes write requests.

Chunking. The deduplication logic first splits all in-
coming requests into aligned, subrequests or chunks
with a configurable power-of-two size. Smaller chunks
allow Dmdedup to detect more duplicates but increase
the amount of metadata [14], which can harm perfor-
mance because of the higher metadata cache-miss rate.
However, larger chunks can also hurt performance be-
cause they can require read-modify-write operations. To
achieve optimal performance, we recommend that Dmd-
edup’s chunk size should match the block size of the file
system above. In our evaluation we used 4KB chunking,
which is common in many modern file systems.

Dmdedup does not currently support Content-Defined
Chunking (CDC) [16] although the feature could be
added in the future. We believe that CDC is less vi-
able for inline primary-storage block-level deduplica-
tion because it produces a mismatch between request
sizes and the underlying block device, forcing a read-
modify-write operation for most write requests.

After chunking, Dmdedup passes subrequests to a pool
of working threads. When all subrequests originating
from an initial request have been processed, Dmdedup
notifies the upper layer of I/O completion. Using sev-
eral threads leverages multiple CPUs and allows I/O
wait times to overlap with CPU processing (e.g., dur-
ing some hash lookups). In addition, maximal SSD and
HDD throughput can only be achieved with multiple re-
quests in the hardware queue.

Hashing. For each subrequest, a worker thread first
computes the hash. Dmdedup supports over 30 hash
functions from the kernel’s crypto library. Some are
implemented using special hardware instructions (e.g.,
SPARC64 crypt and Intel SSE3 extensions). As a
rule, deduplication hash functions should be collision-
resistant and cryptographically strong, to avoid inadver-
tent or malicious data overwrites. Hash sizes must be
chosen carefully: a larger size improves collision resis-
tance but increases metadata size. It is also important
that the chance of a collision is significantly smaller than
the probability of a disk error, which has been empir-
ically shown to be in the range 10−18–10−15 [9]. For
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Figure 2: Dmdedup write path. PBNnew is the PBN
found in the hash index: a new physical location for
incoming data. PBNold is the PBN found in the LBN
mapping: the old location of data, before the write ends.

128-bit hashes, the probability of collision is less than
10−18 as long as the number of unique chunks is less
than 2.6× 1010. For 4KB chunking, this corresponds
to almost 100TB of unique data. Assuming a primary-
storage deduplication ratio of 2× [12], Dmdedup can
support up to 200TB of logical space in such configura-
tion. In our experiments we used 128-bit MD5 hashes.

Hash index and LBN mapping lookups. The main
deduplication logic views both the hash index and the
LBN mapping as abstract key-value stores. The hash in-
dex maps hashes to 64-bit PBNs; the LBN map uses the
LBN as a key to look up a 64-bit PBN. We use PBNnew
to denote the value found in the hash index and PBNold
for the value found in the LBN mapping.

Metadata updates. Several cases must be handled;
these are represented by branches in Figure 2. First,
the hash might be found in the index (left branch), im-
plying that the data already exists on disk. There are

two sub-cases, depending on whether the target LBN
exists in the LBN→PBN mapping. If so, and if the cor-
responding PBNs are equal, the upper layer overwrote
a location (the LBN) with data that was already there;
this is surprisingly common in certain workloads [13].
If the LBN is known but mapped to a different PBN,
then the data on the LBN must have changed; this is
detected because the hash-to-PBN mapping is one-to-
one, so PBNold serves as a proxy for a different hash.
Dmdedup decrements PBNold’s reference count, adds
the LBN→PBNnew mapping, and increments PBNnew’s
reference count. On the other hand, if the hash→PBN
mapping is found but the LBN→PBN one is not (still
on the left side of the flowchart), we have a chunk of
data that has been seen before (i.e., a duplicate) being
written to a previously unknown LBN. In this case we
add a LBN→PBNnew mapping and increment PBNnew’s
reference count.

The flowchart’s right side deals with the case where the
hash is not found: a data chunk hasn’t been seen be-
fore. If the LBN is also new (right branch of the right
side), we proceed directly to allocation. If it is not new,
we are overwriting an existing block with new data, so
we must first dereference the data that used to exist on
that LBN (PBNold). In both cases, we now allocate
and write a PBN to hold the new data, add hash→PBN
and LBN→PBN mappings, and update the reference
counts. We increment the counts by two in these cases
because PBNs are referenced from both hash index and
LBN mapping. For PBNs that are referenced only from
the hash index (e.g., due to LBN overwrite) reference
counts are equal to one. Dmdedup decrements reference
counts to zero during garbage collection.

Garbage collection. During overwrites, Dmdedup
does not reclaim blocks immediately, nor does it remove
the corresponding hashes from the index. This approach
decreases the latency of the critical write path. Also, if
the same data is rewritten after a period of non-existence
(i.e., it is not reachable through the LBN mapping),
it can still be deduplicated; this is common in certain
workloads [17]. However, data-device space must even-
tually be reclaimed. We implemented an offline garbage
collector that periodically iterates over all data blocks
and recycles those that are not referenced.

If a file is removed by an upper-layer file system, the
corresponding blocks are no longer useful. However,
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Dmdedup operates at the block layer and thus is un-
aware of these inaccessible blocks. Some modern file
systems (e.g., Ext4 and NTFS) use the SATA TRIM com-
mand to inform SSDs that specific LBNs are not ref-
erenced anymore. Dmdedup takes advantage of these
TRIMs to reclaim unused file system blocks.

2.5 Read Request Handling

In Dmdedup, reads are much simpler to service than
writes. Every incoming read is split into chunks
and queued for processing by worker threads. The
LBN→PBN map gives the chunk’s physical location on
the data device. The chunks for the LBNs that are not
in the LBN mapping are filled with zeroes; these cor-
respond to reads from an offset that was never written.
When all of a request’s chunks have been processed by
the workers, Dmdedup reports I/O completion.

2.6 Metadata Backends

We designed a flexible API that abstracts metadata man-
agement away from the main deduplication logic. Hav-
ing pluggable metadata backends facilitates easier ex-
ploration and comparison of different metadata man-
agement policies. When constructing a Dmdedup tar-
get instance, the user specifies which backend should
be used for this specific instance and passes the appro-
priate configuration parameters. Our API includes ten
mandatory and two optional methods—including basic
functions for initialization and destruction, block alloca-
tion, lookup, insert, delete, and reference-count manipu-
lation. The optional methods support garbage collection
and synchronous flushing of the metadata.

An unusual aspect of our API is its two types of key-
value stores: linear and sparse. Dmdedup uses a lin-
ear store (from zero to the size of the Dmdedup device)
for LBN mapping and a sparse one for the hash index.
Backend developers should follow the same pattern, us-
ing the sparse store for key spaces where the keys are
uniformly distributed. In both cases the interface pre-
sented to the upper layer after the store has been created
is uniform: kvs_insert, kvs_lookup, and kvs_delete.

When designing the metadata backend API, we tried to
balance flexibility with simplicity. Having more func-
tions would burden the backend developers, while fewer

functions would assume too much about metadata man-
agement and limit Dmdedup’s flexibility. In our experi-
ence, the API we designed strikes the right balance be-
tween complexity and flexibility. During the course of
the project, several junior programmers were asked to
develop experimental backends for Dmdedup; anecdo-
tally, they were able to accomplish their task in a short
time and without changing the API.

We consolidated key-value stores, reference counting,
and block allocation facilities within a single metadata
backend object because they often need to be managed
together and are difficult to decouple. In particular,
when metadata is flushed, all of the metadata (reference
counters, space maps, key-value stores) needs to be writ-
ten to the disk at once. For backends that support trans-
actions this means that proper ordering and atomicity of
all metadata writes are required.

Dmdedup performs 2–8 metadata operations for each
write. But depending on the metadata backend and the
workload properties, every metadata operation can gen-
erate zero to several I/O requests to the metadata device.

Using the above API, we designed and implemented
three backends: INRAM (in RAM only), DTB (disk ta-
ble), and CBT (copy-on-write B-tree). These backends
have significantly different designs and features; we de-
tail each backend below.

2.6.1 INRAM Backend

INRAM is the simplest backend we implemented. It
stores all deduplication metadata in RAM and conse-
quently does not perform any metadata I/O. All data,
however, is still stored on the data device as soon as
the user’s request arrives (assuming it is not a dupli-
cate). INRAM metadata can be written persistently to
a user-specified file at any time (e.g., before shutting the
machine down) and then restored later. This facilitates
experiments that should start with a pre-defined meta-
data state (e.g., for evaluating the impact of LBN space
fragmentation). The INRAM backend allows us to de-
termine the baseline of maximum deduplication perfor-
mance on a system with a given amount of CPU power.
It can also be used to quickly identify a workload’s
deduplication ratio and other characteristics. With the
advent of DRAM backed by capacitors or batteries, this
backend can become a viable option for production.
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INRAM uses a statically allocated hash table for the
sparse key-value store, and an array for the linear store.
The linear mapping array size is based on the Dmdedup
target instance size. The hash table for the sparse store
is allocated (and slightly over-provisioned) based on the
size of the data device, which dictates the maximum
possible number of unique blocks. We resolve colli-
sions with linear probing; according to standard analysis
the default over-provisioning ratio of 10% lets Dmdedup
complete a successful search in an average of six probes
when the data device is full.

We use an integer array to maintain reference counters
and allocate new blocks sequentially using this array.

2.6.2 DTB Backend

The disk table backend (DTB) uses INRAM-like data
structures but keeps them on persistent storage. If
no buffering is used for the metadata device, then ev-
ery lookup, insert, and delete operation causes one ex-
tra I/O, which significantly harms deduplication perfor-
mance. Instead, we use Linux’s dm-bufio subsystem,
which buffers both reads and writes in 4KB units and
has a user-configurable cache size. By default, dm-
bufio flushes all dirty buffers when more than 75% of the
buffers are dirty. If there is no more space in the cache
for new requests, the oldest blocks are evicted one by
one. Dm-bufio also normally runs a background thread
that evicts all buffers older than 60 seconds. We disabled
this thread for deduplication workloads because we pre-
fer to keep hashes and LBN mapping entries in the cache
as long as there is space. The dm-bufio code is simple
(1,100 LOC) and can be easily modified to experiment
with other caching policies and parameters.

The downside of DTB is that it does not scale with the
size of deduplication metadata. Even when only a few
hashes are in the index, the entire on-disk table is ac-
cessed uniformly during hash lookup and insertion. As
a result, hash index blocks cannot be buffered efficiently
even for small datasets.

2.6.3 CBT Backend

Unlike the INRAM and DTB backends, CBT provides
true transactionality. It uses Linux’s on-disk Copy-On-
Write (COW) B-tree implementation [6, 22] to organize

Internal node

Leaf node

Shadowing

Shadowing

Shadowing

Leaf node

Root

Internal node

Superblock

Transaction end

COW Updates
Original Tee

Figure 3: Copy-on-Write (COW) B-trees.

its key-value stores (see Figure 3). All keys and values
are stored in a B+-tree (i.e., values are located only in
leaves). When a new key is added, the corresponding
leaf must be updated. However, the COW B-tree does
not do so in-place; instead, it shadows the block to a
different location and applies the changes there. Next,
the internal nodes of the B-tree are updated to point to
the new leaf, again using shadowing. This procedure
continues up to the root, which is referenced from a pre-
defined location on the metadata device—the Dmdedup
superblock. Multiple changes are applied to the B-tree
in COW fashion but the superblock is not updated until
Dmdedup explicitly ends the transaction. At that point,
the superblock is atomically updated to reference the
new root. As a result, if a system fails in the middle of a
transaction, the user sees old data but not a corrupted de-
vice state. The CBT backend also allocates data blocks
so that data overwrites do not occur within the transac-
tion; this ensures both data and metadata consistency.

Every key lookup, insertion, or deletion requires logb N
I/Os to the metadata device (where b is the branching
factor and N is the number of keys). The base of the
logarithm is large because many key-pointer entries fit
in a single 4KB non-leaf node (approximately 126 for
the hash index and 252 for the LBN mapping). To im-
prove CBT’s performance we use dm-bufio to buffer
I/Os. When a transaction ends, dm-bufio’s cache is
flushed. Users can control the length of a transaction
in terms of the number of writes.

Because CBT needs to maintain intermediate B-tree
nodes, its metadata is larger than DTB’s. Moreover, the
COW update method causes two copies of the updated
blocks to reside in the cache simultaneously. Thus, for a
given cache size, CBT usually performs more I/O than
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DTB. But CBT scales well with the amount of metadata.
For example, when only a few hashes are in the index,
they all reside in one block and can be easily cached.

Statistics. Dmdedup collects statistics on the number
of reads and writes, unique and duplicated writes, over-
writes, storage and I/O deduplication ratios, and hash
index and LBN mapping sizes, among others. These
statistics were indispensable in analyzing our own ex-
periments (Section 4).

Device size. Most file systems are unable to dynam-
ically grow or shrink in response to changing device
size. Thus, users must currently specify the Dmdedup
device’s size at construction time. However, the device’s
logical size depends on the actual deduplication ratio,
which changes dynamically. Some studies offer tech-
niques to predict dataset deduplication ratios [25], and
we provide a set of tools to compute deduplication ra-
tios in an existing dataset. If the deduplication ratio ever
falls below expectations and the free data space nears to
zero, Dmdedup warns the user via the OS’s console or
system log. The user can then remove unnecessary files
from the device and force an immediate garbage collec-
tion, or add more data devices to the pool.

3 Implementation

The latest Dmdedup code has been tested against
Linux 3.14 but we performed experimental evalua-
tion on version 3.10.9. We kept the code base small
to facilitate acceptance to the mainline and to allow
users to investigate new ideas easily. Dmdedup’s core
has only 1,400 lines of code; the INRAM, DTB, and
CBT backends have 500, 1,400, and 600 LOC, re-
spectively. Over the course of two years, fifteen de-
velopers of varying skill levels have worked on the
project. Dmdedup is open-source and was submitted
for initial review to dm-devel@ mailing list. The code
is also available at git://git.fsl.cs.sunysb.edu/
linux-dmdedup.git.

When constructing a Dmdedup instance, the user spec-
ifies the data and metadata devices, metadata backend
type, cache size, hashing algorithm, etc. In the future,
we plan to select or calculate reasonable defaults for

most of these parameters. Dmdedup exports deduplica-
tion statistics and other information via the device map-
per’s STATUS ioctl, and includes a tool to display these
statistics in a human-readable format.

4 Evaluation

In this section, we first evaluate Dmdedup’s perfor-
mance and overheads using different backends and un-
der a variety of workloads. Then we compare Dmd-
edup’s performance to Lessfs [11]—an alternative, pop-
ular deduplication system.

4.1 Experimental Setup

In our experiments we used three identical Dell Pow-
erEdge R710 machines, each equipped with an Intel
Xeon E5540 2.4GHz 4-core CPU and 24GB of RAM.
Using lmbench we verified that the performance of all
machines was within 4% of each other. We used an In-
tel X25-M 160GB SSD as the metadata device and a
Seagate Savvio 15K.2 146GB disk drive for the data.
Although the SSD’s size is 160GB, in all our experi-
ments we used 1.5GB or less for metadata. Both drives
were connected to their hosts using Dell’s PERC 6/i In-
tegrated controller. On all machines, we used CentOS
Linux 6.4 x86_64, upgraded to Linux 3.10.9 kernel. Un-
less otherwise noted, every experiment lasted from 10
minutes (all-duplicates data write) to 9 hours (Mail trace
replay). We ran all experiments at least three times. Us-
ing Student’s t distribution, we computed 95% confi-
dence intervals and report them on all bar graphs; all
half-widths were less than 5% of the mean.

We evaluated four setups: the raw device, and Dmd-
edup with three backends—INRAM, disk table (DTB),
and COW B-Tree (CBT). In all cases Dmdedup’s logical
size was set to the size of the data device, 146GB, which
allowed us to conduct experiments with unique data
without running out of physical space. 146GB corre-
sponds to 1330MB of metadata: 880MB of hash→PBN
entries (24B each), 300MB of LBN→PBN entries (8B
each), and 150MB of reference counters (4B each). We
used six different metadata cache sizes: 4MB (0.3% of
all metadata), 330MB (25%), 660MB (50%), 990MB
(75%), 1330MB (100%), and 1780MB (135%). A 4MB
cache corresponds to a case when no significant RAM is
available for deduplication metadata; the cache acts as a

git://git.fsl.cs.sunysb.edu/linux-dmdedup.git
git://git.fsl.cs.sunysb.edu/linux-dmdedup.git
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small write buffer to avoid doing I/O with every meta-
data update. As described in Section 2.6.2, by default
Dmdedup flushes dirty blocks after their number ex-
ceeds 75% of the total cache size; we did not change this
parameter in our experiments. When the cache size is
set to 1780MB (135% of all metadata) the 75% thresh-
old equals to 1335MB, which is greater than the total
size of all metadata (1330MB). Thus, even if all meta-
data is dirty, the 75% threshold cannot be reached and
flushing never happens.

4.2 Dmdedup

To users, Dmdedup appears as a regular block device.
Using its basic performance characteristics—sequential
and random read/write behavior—one can estimate the
performance of a complete system built using Dmd-
edup. Thus, we first evaluated Dmdedup’s behavior with
micro-workloads. To evaluate its performance in real
deployments, we then replayed three production traces.

4.2.1 Micro-workloads

Unlike traditional (non-deduplicating) storage, a dedu-
plication system’s performance is sensitive to data con-
tent. For deduplication systems, a key content charac-
teristic is its deduplication ratio, defined as the number
of logical blocks divided by the number of blocks physi-
cally stored by the system [7]. Figures 4, 5, and 6 depict
write throughput for our Unique, All-duplicates, and
Linux-kernels datasets, respectively. Each dataset rep-
resents a different point along the content-redundancy
continuum. Unique contains random data obtained from
Linux’s /dev/urandom device. All-duplicates consists
of a random 4KB block repeated for 146GB. Finally,
Linux-kernels contains the sources of 40 Linux kernels
(more details on the format follow).

We experimented with two types of micro-workloads:
large sequential writes (subfigures (a) in Figures 4–6)
and small random writes (subfigures (b) in Figures 4–
6). I/O sizes were 640KB and 4KB for sequential and
random writes, respectively. We chose these combi-
nations of I/O sizes and access patterns because real
applications tend either to use a large I/O size for se-
quential writes, or to write small objects randomly (e.g.,
databases) [5]. 4KB is the minimal block size for mod-
ern file systems. Dell’s PERC 6/i controller does not

support I/O sizes larger than 320KB, so large requests
are split by the driver; the 640KB size lets us account for
the impact of splitting. We started all experiments with
an empty Dmdedup device and ran them until the device
became full (for the Unique and All-kernels datasets) or
until the dataset was exhausted (for Linux-kernels).

Unique (Figure 4). Unique data produces the lowest
deduplication ratio (1.0, excluding metadata space). In
this case, the system performs at its worst because the
deduplication steps need to be executed as usual (e.g.,
index insert), yet all data is still written to the data de-
vice. For the sequential workload (Figure 4(a)), the IN-
RAM backend performs as well as the raw device—
147MB/sec, matching the disk’s specification. This
demonstrates that the CPU and RAM in our system are
fast enough to do deduplication without any visible per-
formance impact. However, it is important to note that
CPU utilization was as high as 65% in this experiment.

For the DTB backend, the 4MB cache produces
34MB/sec throughput—a 75% decrease compared to
the raw device. Metadata updates are clearly a bottle-
neck here. Larger caches improve DTB’s performance
roughly linearly up to 147MB/sec. Interestingly, the dif-
ference between DTB-75% and DTB-100% is signifi-
cantly more than between other sizes because Dmdedup
with 100% cache does not need to perform any metadata
reads (though metadata writes are still required). With a
135% cache size, even metadata writes are avoided, and
hence DTB achieves INRAM’s performance.

The CBT backend behaves similarly to DTB but its per-
formance is always lower—between 3–95MB/sec de-
pending on the cache and transaction size. The reduced
performance is caused by an increased number of I/O
operations, 40% more than DTB. The transaction size
significantly impacts CBT’s performance; an unlimited
transaction size performs best because metadata flushes
occur only when 75% of the cache is dirty. CBT with a
transaction flush after every write has the worst perfor-
mance (3–6MB/sec) because every write to Dmdedup
causes an average of 14 writes to the metadata device:
4 to update the hash index, 3 to update the LBN map-
ping, 5 to allocate new blocks on the data and metadata
devices, and 1 to commit the superblock. If a transac-
tion is committed only after 1,000 writes, Dmdedup’s
throughput is 13–34MB/sec—between that of unlimited
and single-write transactions. Note that in this case, for
all cache sizes over 25%, performance does not depend
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Figure 4: Sequential and random write throughput for the Unique dataset. Results are for the raw device and for
Dmdedup with different metadata backends and cache sizes. For the CBT backend we varied the transaction size:
unlimited, every I/O, and 1,000 writes.
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Figure 5: Sequential and random write throughput for the All-duplicates dataset. Results are for the raw device
and for Dmdedup with different backends and cache sizes. For the CBT backend, we varied the transaction size:
unlimited, every I/O, and 1,000 writes.
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Figure 6: Sequential and random write throughput for the Linux-kernels dataset. Results are for the raw device and
for Dmdedup with different metadata backends and cache sizes. For the CBT backend, the transaction size was set
to 1,000 writes.

on the cache size but only on the fact that Dmdedup
flushes metadata after every 1,000 writes.

For random-write workloads (Figure 4(b)) the raw de-
vice achieves 420 IOPS. Dmdedup performs signifi-
cantly better than the raw device—between 670 and
11,100 IOPS (in 4KB units)—because it makes random
writes sequential. Sequential allocation of new blocks is
a common strategy in deduplication systems [13,23,27],
an aspect that is often overlooked when discussing dedu-
plication’s performance impact. We believe that write
sequentialization makes primary storage deduplication
significantly more practical than commonly perceived.

All-duplicates (Figure 5). This dataset is on the other
end of the deduplication ratio range: all writes contain
exactly the same data. Thus, after the first write, noth-
ing needs to be written to the data device. As a result,
Dmdedup outperforms the raw device by 1.4–2× for the
sequential workload in all configurations except CBT
with per-write transactions (Figure 5(a)). In the latter
case, Dmdedup’s throughput falls to 12MB/sec due to
the many (ten) metadata writes induced by each user
write. Write amplification is lower for All-duplicates
than for Unique because the hash index is not updated
in the former case. The throughput does not depend on
the cache size here because the hash index contains only
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Trace Duration Written Written unique Written unique Read Dedup Dedup Ranges
(days) (GB) by content (GB) by offset (GB) (GB) ratio block size (B) accessed (GB)

Web 21 42.64 22.45 0.95 11.89 2.33 4,096 19.07
Mail 20 1,483.41 110.39 8.28 188.94 10.29 4,096 278.87
Homes 21 65.27 16.83 4.95 15.46 3.43 512 542.32

Table 1: Summary of FIU trace characteristics

one entry and fits even in the 4MB cache. The LBN
mapping is accessed sequentially, so a single I/O brings
in many cache entries that are immediately reaccessed.

For random workloads (Figure 5(b)), Dmdedup im-
proves performance even further: 2–140× compared to
the raw device. In fact, random writes to a disk drive are
so slow that deduplicating them boosts overall perfor-
mance. But unlike the sequential case, the DTB backend
with a 4MB cache performs poorly for random writes
because LBNs are accessed randomly and 4MB is not
enough to hold the entire LBN mapping. For all other
cache sizes, the LBN mapping fits in RAM and perfor-
mance was thus not impacted by the cache size.

The CBT backend caches two copies of the tree in
RAM: original and modified. This is the reason why
its performance depends on the cache size in the graph.

Linux kernels (Figure 6). This dataset contains the
source code of 40 Linux kernels from version 2.6.0 to
2.6.39, archived in a single tarball. We first used an un-
modified tar, which aligns files on 512B boundaries
(tar-512). In this case, the tarball size was 11GB and
the deduplication ratio was 1.18. We then modified
tar to align files on 4KB boundaries (tar-4096). In
this case, the tarball size was 16GB and the dedupli-
cation ratio was 1.88. Dmdedup uses 4KB chunking,
which is why aligning files on 4KB boundaries increases
the deduplication ratio. One can see that although tar-
4096 produces a larger logical tarball, its physical size
(16GB/1.88 = 8.5GB) is actually smaller than the tar-
ball produced by tar-512 (11GB/1.18 = 9.3GB).

For sequential writes (Figure 6(a)), the INRAM backend
outperforms the raw device by 11% and 45% for tar-512
and tar-4096, respectively. This demonstrates that stor-
ing data in a deduplication-friendly format (tar-4096)
benefits performance in addition to reducing storage re-
quirements. This observation remains true for other
backends. (For CBT we show results for the 1000-write
transaction configuration.) Note that for random writes

(Figure 6(b)), the CBT backend outperforms DTB. Un-
like a hash table, the B-tree scales well with the size of
the dataset. As a result, for both 11GB and 16GB tar-
balls, B-trees fit in RAM, while the on-disk hash table is
accessed randomly and cannot be cached as efficiently.

4.2.2 Trace Replay

To evaluate Dmdedup’s performance under realistic
workloads, we used three production traces from
Florida International University (FIU): Web, Mail, and
Homes [1, 10]. Each trace was collected in a signifi-
cantly different environment. The Web trace originates
from two departments’ Web servers; Homes from a file
server that stores the home directories of a small re-
search group; and Mail from a departmental mail server.
Table 1 presents relevant characteristics of these traces.

FIU’s traces contain data hashes for every request. We
applied a patch from Koller and Rangaswami [10] to
Linux’s btreplay utility so that it generates unique write
content corresponding to the hashes in the traces, and
used that version to drive our experiments. Some of
the reads in the traces access LBNs that were not writ-
ten during the tracing period. When serving such reads,
Dmdedup would normally generate zeroes without per-
forming any I/O; to ensure fairness of comparison to the
raw device we pre-populated those LBNs with appropri-
ate data so that I/Os happen for every read.

The Mail and Homes traces access offsets larger than
our data device’s size (146GB). Because of the indirec-
tion inherent to deduplication, Dmdedup can support a
logical size larger than the physical device, as long as
the deduplication ratio is high enough. But replaying
the trace against a raw device (for comparison) is not
possible. Therefore, we created a small device-mapper
target that maintains an LBN→PBN mapping in RAM
and allocates blocks sequentially, the same as Dmdedup.
We set the sizes of both targets to the maximum offset
accessed in the trace. Sequential allocation favors the
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Figure 7: Raw device and Dmdedup throughput for
FIU’s Web, Mail, and Homes traces. The CBT back-
end was setup with 1000-writes transaction sizes.

raw device, but even with this optimization, Dmdedup
significantly outperforms the raw device.

We replayed all traces with unlimited acceleration. Fig-
ure 7 presents the results. Dmdedup performs 1.6–7.2×
better than a raw device due to the high redundancy in
the traces. Note that write sequentialization can harm
read performance by randomizing the read layout. Even
so, in the FIU traces (as in many real workloads) the
number of writes is higher than the number of reads due
to large file system buffer caches. As a result, Dmd-
edup’s overall performance remains high.

4.2.3 Performance Comparison to Lessfs

Dmdedup is a practical solution for real storage needs.
To our knowledge there are only three other dedupli-
cation systems that are free, open-source, and widely
used: Lessfs [11], SDFS [20], and ZFS [4]. We omit re-
search prototypes from this list because they are usually
unsuitable for production. Both Lessfs and SDFS are
implemented in user space, and their designs have much
in common. SDFS is implemented using Java, which
can add high overhead. Lessfs and Dmdedup are imple-
mented in C, so their performance is more comparable.

Table 2 presents the time needed to extract a tarball of
40 Linux kernels (uncompressed) to a newly created
file system. We experimented with plain Ext4, Dmd-
edup with Ext4 on top, and Lessfs deployed above Ext4.
When setting up Lessfs, we followed the best practices
described in its documentation. We experimented with
BerkleyDB and HamsterDB backends with transactions
on and off, and used 4KB and 128KB chunk sizes.
The deduplication ratio was 2.4–2.7 in these configu-
rations. We set the Lessfs and Dmdedup cache sizes to
150MB, which was calculated for our dataset using the
db_stat tool from Lessfs. We configured Dmdedup to

Ext4 Dm Lessfs
dedup BDB BDB HamsterDB
4KB 4KB 128KB 128KB

TransOFF
Time (sec) 649 521 1,825 1,413 814

Table 2: Time to extract 40 Linux kernels on Ext4,
Dmdedup, and Lessfs with different backends and
chunk sizes. We turned transactions off in HamsterDB
for better performance.

use the CBT backend because it guarantees transaction-
ality, similar to the databases used as Lessfs backends.

Dmdedup improves plain Ext4 performance by 20% be-
cause it eliminates duplicates. Lessfs with the BDB
backend and a 4KB chunk size performs 3.5× slower
than Dmdedup. Increasing the chunk size to 128KB im-
proves Lessfs’s performance, but it is still 2.7× slower
than Dmdedup with 4KB chunks. We achieved the
highest Lessfs performance when using the HamsterDB
backend with 128KB and disabling transactions. How-
ever, in this case we sacrificed both deduplication ra-
tio and transactionality. Even then, Dmdedup performs
1.6× faster than Lessfs while providing transactional-
ity and a high deduplication ratio. The main reason for
poor Lessfs performance is its high CPU utilization—
about 87% during the run. This is caused by FUSE,
which adds significant overhead and causes many con-
text switches [19]. To conclude, Dmdedup performs sig-
nificantly better than other popular, open-source solu-
tions from the same functionality class.

Unlike Dmdedup and Lessfs, ZFS falls into a different
class of products because it does not add deduplication
to existing file systems. In addition, ZFS deduplication
logic was designed to work efficiently when all dedupli-
cation metadata fits in the cache. When we limited the
ZFS cache size to 1GB, it took over two hours for tar to
extract the tarball. However, when we made the cache
size unlimited, ZFS was almost twice as fast as Dmd-
edup+Ext4. Because of its complexity, ZFS is hard to
set up in a way that provides a fair comparison to Dmd-
edup; we plan to explore this in the future.

5 Related Work

Many previous deduplication studies have focused on
backup workloads [18, 27]. Although Dmdedup can be
used for backups, it is intended as a general-purpose
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deduplication system. Thus, in this section we focus on
primary-storage deduplication.

Several studies have incorporated deduplication into ex-
isting file systems [15, 21] and a few have designed
deduplicating file systems from scratch [4]. Although
there are advantages to deduplicating inside a file sys-
tem, doing so is less flexible for users and researchers
because they are limited to that system’s architecture.
Dmdedup does not have this limitation; it can be used
with any file system. FUSE-based deduplication file
systems are another popular design option [11,20]; how-
ever, FUSE’s high overhead makes this approach im-
practical for production environments [19]. To address
performance problem, El-Shimi et al. built an in-kernel
deduplication file system as a filter driver for Win-
dows [8] at the price of extra development complexity.

The systems most similar to ours are Dedupv1 [13] and
DBLK [23], both of which deduplicate at the block
level. Each is implemented as a user-space iSCSI target,
so their performance suffers from additional data copies
and context switches. DBLK is not publicly available.

It is often difficult to experiment with existing research
systems. Many are raw prototypes that are unsuitable
for extended evaluations, and only a few have made
their source code available [4,13]. Others were intended
for specific experiments and lack experimental flexibil-
ity [24]. High-quality production systems have been de-
veloped by industry [3, 21] but it is hard to compare
against unpublished, proprietary industry products. In
contrast, Dmdedup has been designed for experimenta-
tion, including a modular design that makes it easy to
try out different backends.

6 Conclusions and Future Work

Primary-storage deduplication is a rapidly developing
field. To test new ideas, previous researchers had to
either build their own deduplication systems or use
closed-source ones, which hampered progress and made
it difficult to fairly compare deduplication techniques.
We have designed and implemented Dmdedup, a versa-
tile and practical deduplication block device that can be
used by regular users and researchers. We developed an
efficient API between Dmdedup and its metadata back-
ends to allow exploration of different metadata man-
agement policies. We designed and implemented three
backends (INRAM, DTB, and CBT) for this paper and

evaluated their performance and resource use. Extensive
testing demonstrates that Dmdedup is stable and func-
tional, making evaluations using Dmdedup more realis-
tic than experiments with simpler prototypes. Thanks to
reduced I/O loads, Dmdedup improves system through-
put by 1.5–6× under many realistic workloads.

Future work. Dmdedup provides a sound basis for
rapid development of deduplication techniques. By pub-
licly releasing our code we hope to spur further research
in the systems community. We plan to develop further
metadata backends and cross-compare them with each
other. For example, we are considering creating a log-
structured backend.

Compression and variable-length chunking can im-
prove overall space savings but require more complex
data management, which might decrease system perfor-
mance. Therefore, one might explore a combination of
on-line and off-line deduplication.

Aggressive deduplication might reduce reliability in
some circumstances; for example, if all copies of an
FFS-like file system’s super-block were deduplicated
into a single one. We plan to explore techniques to
adapt the level of deduplication based on the data’s im-
portance. We also plan to work on automatic scaling of
the hash index and LBN mapping relative to the size of
metadata and data devices.

Acknowledgments. This work was made possible in
part thanks to NSF awards CNS-1305360, IIS-1251137,
and CNS-1302246, as well as an EMC Faculty award.
We also thank Teo Asinari, Mandar Joshi, Atul Kar-
markar, Gary Lent, Amar Mudrankit, Eric Mueller, Meg
O’Keefe, and Ujwala Tulshigiri for their valuable con-
tributions to this projects. We appreciate Raju Ran-
gaswami’s and Ricardo Koller’s help on understanding
and replaying FIU traces.

References
[1] Storage Networking Industry Association. IOTTA

Trace Repository. http://iotta.snia.org, ac-
cessed in May 2014.

[2] R. E. Bohn and J. E. Short. How Much Informa-
tion? 2009 Report on American Consumers, Decem-
ber 2009. http://hmi.ucsd.edu/pdf/HMI_2009_
ConsumerReport_Dec9_2009.pdf, accessed in May
2014.

http://iotta.snia.org
http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_Dec9_2009.pdf
http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_Dec9_2009.pdf


2014 Linux Symposium • 95

[3] W. Bolosky, S. Corbin, D. Goebel, and J. Douceur. Sin-
gle Instance Storage in Windows 2000. In Proceedings
of the ATC Conference, 2000.

[4] J. Bonwick. ZFS Deduplication, November 2009.
http://blogs.oracle.com/bonwick/entry/zfs_
dedup, accessed in May 2014.

[5] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. De-
sign Implications for Enterprise Storage Systems via
Multi-Dimensional Trace Analysis. In Proceedings of
the SOSP Symposium, 2011.

[6] D. Comer. The Ubiquitous B-Tree. ACM Computing
Surveys, 11(2):121–137, June 1979.

[7] M. Dutch. Understanding Data Deduplication Ra-
tios. Technical report, SNIA Data Management Forum,
2008.

[8] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and
S. Sengupta. Primary Data Deduplication—Large Scale
Study and System Design. In Proceedings of the ATC
Conference, 2012.

[9] J. Gray and C. V. Ingen. Empirical Measurements of
Disk Failure Rates and Error Rates. Technical Re-
port MSR-TR-2005-166, Microsoft Research, Decem-
ber 2005.

[10] R. Koller and R. Rangaswami. I/O Deduplication: Uti-
lizing Content Similarity to Improve I/O Performance.
In Proceedings of the FAST Conference, 2010.

[11] Lessfs, January. www.lessfs.com, accessed in May
2014.

[12] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu.
Insights for Data Reduction in Primary Storage: A Prac-
tical Analysis. In Proceedings of the SYSTOR Confer-
ence, 2012.

[13] D. Meister and A. Brinkmann. dedupv1: Improv-
ing Deduplication Throughput using Solid State Drives
(SSD). In Proceedings of the MSST Conference, 2010.

[14] D. Meyer and W. Bolosky. A Study of Practical Dedu-
plication. In Proceedings of the FAST Conference, 2011.

[15] A. More, Z. Shaikh, and V. Salve. DEXT3: Block Level
Inline Deduplication for EXT3 File System. In Pro-
ceedings of the OLS, 2012.

[16] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. In Proceedings of the
SOSP Symposium, 2001.

[17] P. Nath, M. Kozuch, D. O’Hallaron, J. Harkes,
M. Satyanarayanan, N. Tolia, and M. Toups. Design
Tradeoffs in Applying Content Addressable Storage to
Enterprise-scale Systems Based on Virtual Machines. In
Proceedings of the ATC Conference, 2006.

[18] S. Quinlan and S. Dorward. Venti: a New Approach to
Archival Storage. In Proceedings of the FAST Confer-
ence, 2002.

[19] A. Rajgarhia and A. Gehani. Performance and Exten-
sion of User Space File Systems. In Proceedinsgs of the
Symposium On Applied Computing. ACM, 2010.

[20] Opendedup - SDFS. www.opendedup.org, accessed in
May 2014.

[21] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti.
iDedup: Latency-aware, Inline Data Deduplication for
Primary Storage. In Proceedings of the FAST Confer-
ence, 2012.

[22] J. Thornber. Persistent-data library. https:
//git.kernel.org/cgit/linux/kernel/git/
torvalds/linux.git/tree/Documentation/
device-mapper/persistent-data.txt, accessed
in May 2014.

[23] Y. Tsuchiya and T. Watanabe. DBLK: Deduplication
for Primary Block Storage. In Proceedings of the MSST
Conference, 2011.

[24] A. Wildani, E. Miller, and O. Rodeh. HANDS: A
Heuristically Arranged Non-Backup In-line Deduplica-
tion System. In Proceedings of the ICDE Conference,
2013.

[25] F. Xie, M. Condict, and S. Shete. Estimating Duplica-
tion by Content-based Sampling. In Proceedings of the
ATC Conference, 2013.

[26] E. Zadok. Writing Stackable File Systems. Linux Jour-
nal, 05(109):22–25, May 2003.

[27] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bot-
tleneck in the Data Domain Deduplication File System.
In Proceedings of the FAST Conference, 2008.

http://blogs.oracle.com/bonwick/entry/zfs_dedup
http://blogs.oracle.com/bonwick/entry/zfs_dedup
www.lessfs.com
www.opendedup.org
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/persistent-data.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/persistent-data.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/persistent-data.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/persistent-data.txt


96 • Dmdedup: Device Mapper Target for Data Deduplication



SkyPat: C++ Performance Analysis and Testing Framework

Ping-Hao Chang, Kuan-Hung Kuo, Der-Yu Tsai, Kevin Chen, Luba Tang
Skymizer Software

{peter,ggm,a127a127,kevin,luba}@skymizer.com

Abstract

This paper introduces SkyPat, a C++ performance anal-
ysis toolkit on Linux. SkyPat combines unit tests and
perf_event to give programmers the power of white-
box performance analysis.

Unlike traditional tools that manipulate entire program
as a black-box, SkyPat works on a region of code like a
white-box. It is used as a normal unit test library. It pro-
vides macros and assertions, into which perf_events
are embedded, to ensure correctness and to evaluate per-
formance of a region of code. With perf_events, Sky-
Pat can evaluate running time precisely without inter-
ference to scheduler. Moreover, perf_event also gives
SkyPat accurate cycle counts that are useful for tools
that are sensitive to variance of timing, such as compil-
ers.

We develop SkyPat under the new BSD license, and it is
also the unit-test library of the “bold” project.

1 Introduction

SkyPat is developed by a group of the compiler de-
velopers to satisfy compiler developers’ needs. From
compiler developers’ view, correctness and performance
evaluation are grand challenges for engineering. Com-
piler optimizations have no guarantee of performance
improvement. Sometimes optimizations degrade per-
formance, and sometimes they introduce new faults in
a program. Compiler developers need a tool to verify
correctness and performance of each compiler optimiza-
tions at the same time.

Traditional tools that evaluate the whole program do not
fit our demands. Compilers perform optimization based
on knowledge it has to a region of code, such as loops
or data flows. We need libraries that can evaluate only a
region of code that optimization is interesting in.

For compiler developers, integrating unit-test and per-
formance evaluation libraries for a piece of code is very
rational. SkyPat is such library: by using SkyPat, users
can evaluate correctness and performance by writing
test-cases to evaluate a region of code.

Usually, unit-test tools and performance evaluation tools
are separated tools. For example, GoogleTest [2] is well-
known C++ unit-test framework. GoogleTest can evalu-
ate correctness but cannot evaluate performance. Be-
sides, perf [1] is well-known performance evaluation
toolkit in Linux. perf can evaluate performance of pro-
grams, including its running time, cycles and so on. Al-
though perf can evaluate whole program, using perf to
evaluate a region of code is difficult.

In this paper, we introduce SkyPat, which combines
unit-test and performance evaluation. Programmers
only need to write and execute unit-tests and they can
get correctness and performance. With the help of
perf_event of Linux kernel, SkyPat can provide pre-
cise timer and additional runtime information to mea-
sure a region of code. By integrating unit-test and per-
formance evaluation, SkyPat make evaluation of a re-
gion of code easier.

The organization of this paper is as follows. Related
work is in Section 2. We present SkyPat’s design and
implementation in Section 3 and shows SkyPat testing
and performance framework in Section 4. At last, we
conclude this paper in Section 5.

2 Related Work

Oprofile[3] and perf are two most popular performance
evaluation tools. Oprofile is capable to evaluate not only
the whole system but also a single program. Before
versions 0.9.7 and earlier, it was based on sampling-
based daemon that collects runtime information. Be-
cause sampling-based daemon wasted system resources,
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Linux community creates new interfaces, called “Per-
formance Counter”[4] or “perf_event”. After that,
Oprofile is “perf_event”-based in the later version.

By the success in “Performance Counter”, Linux com-
munity builds another performance evaluation tool,
called perf, based on “Performance Counter”, too. Perf
is a performance evaluation toolkit with no daemon to
collect runtime information. perf gets runtime informa-
tion by kernel directly rather than collecting by daemon,
therefore, perf eliminates lots of overhead to bookkeep
profiling information and becomes faster.

Both OProfile and perf evaluate performance of the en-
tire program, not a region of code. And of course,
it makes some efforts to integrate them with unit-test
frameworks.

Regarding unit-test frameworks, GoogleTest has be-
come popular and has been adapted by many projects
recently. GoogleTest is a xUnit test framework for
C++ programs. By providing ASSERT and EXPECT
macros, GoogleTest helps programmers to verify pro-
gram’s correctness by writing test-cases. While execut-
ing test-cases, a program stops immediately if it meets
a fatal error. If a program meets a non-fatal error, the
program shows the runtime value and expected value on
the screen.

3 Implementation and Design

SkyPat is a C++ performance analyzing and testing
framework on Linux platforms. We refer to the concept
of GoogleTest and extend its scope from testing frame-
work into Performance Analysis Framework. With the
help of SkyPat, programmers who wants to analyze their
program, only need to write test cases, and SkyPat tests
programs’ correctness and performance just like normal
unit-test frameworks.

SkyPat provides ASSERT/EXPECT macros for correct-
ness checking and PERFORM macro for performance
evaluation. ASSERT is assertion for fatal condition test-
ing and EXPECT is non-fatal assertion. That is to say,
if a condition of ASSERT fails, the test fails and stops
immediately. On the other hand, when the condition of
EXPECT fails, it just shows messages on screen to in-
dicate that is a non-fatal failure and the test keeps going
on.

A PERFORM macro is used to arbitrarily wrap an block
of code in a testee function. It invokes perf_events at

the beginning and the end of the block of code to mea-
sure the performance. When a program executes at the
beginning of the region of code, the PERFORM macro
calls a system call to kernel to register a performance
monitor to gather process runtime information, such as
execution time. When program executes in the end of
the region of code, a system call is sent to kernel auto-
matically to disable the monitor. SkyPat calculates the
difference of time between the beginning and the end to
get the period of runtime information of the region of
code.

4 SkyPat Testing and Performance Frame-
work

Here are some examples to show how to use SkyPat to
evaluate correctness and performance.

4.1 Declare Test Cases and Test Functions

To create a test, users use the PAT_F() macro to define
a test function. A test function can be thought as a or-
dinary C function without return value. Several similar
test functions for the same input data can be grouped as
a test case.

Figure 1 shows how to define a test-case and test-
functions.

Every PAT_F macro declares a test, with two param-
eters: test-case and test-function names. In Figure 1,
“AircraftCase” is the name of test-case. “take_off_test”
and “landing_test” are the names of test-function be-
longs to “AircraftCase” test case. Test functions
grouped in the same test-case are meant to be logically
related. Users put ASSERT/EXPECT and PERFORM
macros in a test function to evaluate correctness and per-
formance. These macros is described in the following
section.

PAT_F(AircraftCase , take_off_test)
{
// Test Code

}

PAT_F(AircraftCase , landing_test)
{
// Test Code

}

Figure 1: Example for declaring a test
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PAT_F(MyCase, fibonacci_test)
{
ASSERT_TRUE(0 != fibonacci(10));
EXPECT_EQ(fibonacci(10), 2);
ASSERT_NE(fibonacci(10), 3);

}

PAT_F(MyCase, AP_test)
{
...

Figure 2: Example of assertions

[ RUN ] MyCase.fibonacci_test
[ FAILED ]
main.cpp:53: error: failed to expect
Value of: 2 == fibonacci(10)
Actual: false
Expected: true

[ RUN ] MyCase.AP_test
[ OK ]

Figure 3: Output of Figure 2

4.2 Correctness Checking

We copy the concept from GoogleTest for our correct-
ness evaluation.

There are several variants of ASSERT macros, AS-
SERT_TRUE/FALSE, ASSERT_EQ/NE (equal) and
ASSERT_GT/GE/LT/TE (great/less) series. If the con-
dition of ASSERT fails, the test will stop and exit the test
immediately. EXPECT macros, like ASSERT macros,
there are also some similar variants. If the condition of
EXPECT fails, the test will not stop but keep execute
and display the expected result and real result on screen.

Figure 2 shows how fatal and non-fatal assertions work.
“fibonacci” is a testee for illustration. There are three
assertions: two fatal and one non-fatal.

Figure 3 shows the output of Figure 2. As we mentioned
before, ASSERT assertions stop the execution immedi-
ately and EXPECT assertions try to keep the execution
going on.

4.3 Performance Evaluation

A PERFORM macro measures the performance of a
block of code which it wraps up. Figure 4 shows how to
use PERFORM macro.

PAT_F(MyCase, fibonacci_perf_test)
{
PERFORM {
fibonacci(40);

}
}

Figure 4: Example of PERFORM

[ RUN ] MyCase.fibonacci_test
[CXT SWITCH] 3
[ TIME (ns)] 2363214415

Figure 5: Output of Figure 4

The PERFORM macro registers a performance moni-
tor at the beginning of the code which its wraps up and
detaches the monitor when leaving the block of code.
SkyPat calculates and remembers the performance de-
tails whenever detaching a performance monitor.

The result is shown in Figure 5. SkyPat measures the
execution time and the number of context-switches dur-
ing the region of code. It saves efforts at complicated
interaction between perf and the region of code. Users
just use macros, just works like writing a test program,
and they can easily get the runtime information of the
region of code.

For now, SkyPat measures few information such as the
run-time clock cycles. We will add more features, such
as cache miss and page faults, in the near future.

4.4 Run All Test Cases

To integrate all test-case, user should call Initialize and
RunAll in their program. Initialize(&argc, argv)
initializes outputs. RunAll() runs all the tests you’ve
declared and prints the results on screen. If any test fails,
then RunAll() returns non-zero value.

int main(int argc, char* argv[])
{
pat::Test::Initialize(&argc, argv);
pat::Test::RunAll();

}

Figure 6: Example of Initialize and RunAll
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5 Conclusion and Future Works

By integrating unit-test framework and performance
evaluation tool, user can get correctness and perfor-
mance metrics for a region of code by writing test-cases.
Users can get the performance between the region of
code defined by themselves. For programs which needs
high precise timing information and other runtime infor-
mation of the region of code, such as compiler, SkyPat
can give them more ability to measure the bottleneck of
regions of a program.
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Abstract

This paper proposes a novel approach for scheduling n
performance monitoring events onto m hardware per-
formance counters, where n > m. Whereas existing
scheduling approaches overlook monitored task infor-
mation, the proposed algorithm utilizes the monitored
task’s behavior and schedules the combination of the
most costly events. The proposed algorithm was imple-
mented in Linux Perf Event subsystem in kernel space
(build 3.11.3), which provides finer granularity and less
system perturbation in event monitoring when compared
to existing user space approaches. Benchmark exper-
iments in PARSEC and SPLASH.2x suites compared
the existing round-robin scheme with the proposed rate-
of-change approach. Results demonstrate that the rate-
of-change approach reduces the mean-squared error on
average by 22%, confirming that the proposed method-
ology not only improves the accuracy of performance
measurements read, but also makes scheduling multiple
event measurements feasible with a limited number of
hardware performance counters.

1 Introduction

Modern performance tools (PAPI, Perf Event, Intel
vTune) incorporate hardware performance counters in
systems monitoring by sampling low-level hardware
events, where each performance monitoring counter
(PMC) is programmed to count the number of occur-
rences of a particular event, and its counts are peri-
odically read from these registers. The monitored re-
sults collectively can provide insights into how the task
behaves on a particular architecture. Projecting per-
formance metrics such as instructions-per-cycle (IPC),
branch mispredictions, and cache utilization rates not

only helps analysts identify hotspots, but can lead to
code optimization opportunities and performance tuning
enhancements. Hardware manufacturers provide hun-
dreds of performance events that can be programmed
onto the PMCs for monitoring. For instance, Intel pro-
vides close to 200 events for the current i7 architecture
[6], while AMD provides close to 100 events [12]. Other
architectures that provide event monitoring capabilities
include NVIDIA’s nvprof and Qualcomm’s Adereno
profilers [11, 14]. While manufacturers have provided
an exhaustive list of event types to monitor, the issue is
that microprocessors usually provide two to six perfor-
mance counters for a given architecture, which restricts
the number of events that can be monitored simultane-
ously.

Calculating performance metrics involves n low-level
hardware events, and modern microprocessors provide
m physical counters (two to six), making scheduling
multiple performance events impractical when n > m.
A single counter can monitor only one event at a time,
which means that two or more events assigned to the
same register cannot be counted simultaneously (con-
flicting events) [9].

Monitoring more events than available counters can be
achieved with time interpolation techniques, such as
multiplexing and trace alignment. Multiplexing consists
of scheduling events for a fraction of the execution and
extrapolating the full behavior of each metric from its
samples. Trace alignment, on the other hand, involves
collecting separate traces for each event run and com-
bining the independent runs into a single trace.

Current approximation techniques for reconstructing
event traces yield estimation errors, which provides in-
accurate measurements for performance analysts [10].
The estimation error increases with multiplexing be-
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Figure 1: An example of a sequence of sampled values.
The sampling times t1 . . . t4 and counts ct0 = 0, . . .ct4 are
known.

cause each event timeshares the PMC with the other
events, which results in loss of information when the
event is not being monitored at a sampled interval.
Trace alignment may not be feasible in certain situa-
tions, where taking multiple runs of the same appli-
cation for performance monitoring might take days or
weeks to complete. In addition, the authors have shown
that between-runs variability affects the correlation be-
tween the sampled counts for monitored events, due
to hardware interrupts, cache contention, and system
calls [16]. Current implementations schedule monitor-
ing events in a round-robin fashion, ignoring any infor-
mation about the program task. Opportunities for better
event scheduling exist if information about the behavior
of the task is taken into account, an area we address in
this paper.

This paper is organized as follows. Section 2 discusses
previous work. Our multiplexing methodology is pre-
sented in Section 3. Section 4 evaluates the experimen-
tal results. Lastly, Section 5 concludes with future work.

2 Previous Work

To the best of our knowledge, there has not been any
prior work similar to our methodology for multiplexing
n performance events onto m hardware counters. The
next subsections discuss several performance monitor-
ing tools and its respective multiplexing strategy.

2.1 Performance Monitoring Tools

Performance monitoring tools provide access to hard-
ware performance counters either through user space or
kernel space.

Performance Application Programming Interface
(PAPI) is an architecture independent framework that
provides access to generalized high-level hardware
events for modern processors, and low-level native
events for a specific processor [2]. PAPI incorporates
MPX and a high resolution interval timer to perform
counter multiplexing [9]. The TAU Performance
System, which integrates PAPI, is a probed-based
instrumentation framework that profiles applications,
libraries, and system codes, where execution of probes
become part of the normal control flow of the program
[15]. PAPI’s ease of use, and feature-rich capabilities
make the framework a top choice in systems running
UNIX/Linux, ranging from traditional microprocessors
to high-performance heterogeneous architectures.

Perfmon2, a generic kernel-level performance monitor-
ing interface, provides access to the hardware perfor-
mance monitoring unit (PMU) and supports a variety of
architectures, including Cray X2, Intel, and IBM Pow-
erPC [4]. Working at the kernel level provides fine
granularity and less system perturbation when accessing
hardware performance counters, compared to user space
access [17]. Scheduling multiple events in Perfmon2 is
handled via round-robin, where the order of event decla-
ration determines its initial position in the queue. Linux
Perf Event subsystem is a kernel level monitoring plat-
form that also provides multi-architectural support (x86,
PowerPC, ARM, etc.) [13]. Perf has been mainlined in
the Linux kernel, making Perf monitoring tool available
in all Linux distributions. Our proposed methodology
was implemented in Perf Event.

2.2 Perf Event in Linux

Perf Event samples monitoring events asynchronously,
where users set a period (at every ith interval) or a fre-
quency (the number of occurrence of events). Users de-
clare an event to monitor by creating a file descriptor,
which provides access to the performance monitoring
unit (PMU). The PMU state is loaded onto the counter
register with a perf_install_in_context call. Sim-
ilar to Perfmon2, the current criteria for multiplexing
events is round-robin.

A monitoring Perf Event can be affected under the fol-
lowing three scenarios: hrtimer, scheduler tick, and
interrupt context.
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Figure 2: Triangle representing rate-of-change calcula-
tion for the recent three observations A, B, and C.

2.2.1 hrtimer

hrtimer [5] is a high resolution timer that gets triggered
when the PMU is overcommitted [7]. hrtimer invokes
rotate_ctx, which performs the actual multiplexing
of events on the hardware performance counters and is
where our rate-of-change algorithm is implemented.

2.2.2 Scheduler tick

Performance monitoring events and its count values are
removed and reprogrammed on the PMU registers dur-
ing each operating system scheduler tick, usually set at
HZ times per second.

2.2.3 Interrupt context

A non-maskable interrupt (NMI) triggers a PMU in-
terrupt handler during a hardware overflow, usually
when a period declared by the user has been reached.
perf_rotate_context completes the interrupt con-
text by multiplexing the events on the PMC.

Our methodology uses hrtimer to perform time-
division multiplexing. That is, at each hrtimer trig-
gered, Perf Event timeshares the events with the perfor-
mance counters. During the intervals that the events are
not monitored, the events are linearly interpolated to es-
timate the counts [9].

2.3 Linear interpolation

To define linear interpolation for asynchronous event
sampling, we will first define a sample, and then use
a pair of samples to construct a linear interpolation.

A sample si = (ti, cti) is the i-th sample of a PMC count-
ing the occurrences of an arbitrary event. The sample si

occurs at time ti and has a value cti . We define:

ki =cti− cti−1 (1)

ni =ti− ti−1 (2)

as the increments between samples si−1 and si for an
event’s count and time, respectively.

The slope of the linear interpolation between the two
samples is defined as follows:

mi =
ki

ni
(3)

Since all performance counters store non-negative in-
tegers, then 0 ≤ ki,0 ≤ ni,0 ≤ mi, for all i. An event
sample represents a point in an integer lattice. Figure 1
displays sampled values and the variables defined above.

3 Multiplexing Methodology

Time interpolation techniques for performance monitor-
ing events have shown large accuracy errors when re-
constructing event traces [10]. Although increasing the
number of observations correlates with more accurate
event traces, taking too many samples may adversely
affect the quality of the monitored behavior, since each
sample involves perturbing the system. Linear interpo-
lation techniques has demonstrated its effectiveness in
reconstructing unobserved event traces [8, 9].

Our rate-of-change algorithm increases the amount of
monitoring time for events that do not behave linearly.
Our intuition tells us that higher errors will occur for
non-linear behaved events when reconstructing event
traces with linear interpolation techniques. The cur-
rent round-robin scheme does not detect varying behav-
ior since it schedules each event indiscriminately, miss-
ing the opportunity to reduce scheduling time for events
where linear interpolation may have been sufficient for
reconstruction.
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e1 e2 e3

Figure 3: Triangle cost function for events e1, e2, and e3

3.1 Rate-of-Change Definition

To motivate our proposed scheduling algorithm, we de-
fine rate-of-change as follows. Let Ax,y, Bx,y, and Cx,y

be the last three observations for a given event in a cur-
rent program run, where x,y represent the observed time
and count, respectively (Sec. 2.3). A triangle can be
constructed in an integer lattice using the three obser-
vations, where the triangle’s area represents the loss of
information if Bx,y were skipped (Fig. 2). Based on the
principle of locality in software applications [3], we hy-
pothesize that the loss of information due to an unknown
Bx,y is similar to the potential loss of information due to
skipped future observations. In Figure 2, the dashed line
represents an extracted trace from a linear interpolator,
provided that Ax,y and Cx,y are known, and serves as our
scheduling criteria.

3.2 Triangle Cost Function

The triangle cost function is calculated as follows. For
any three observations Ax,y, Bx,y, and Cx,y, we have

Dx = Bx Dy = δy +Ay

D′x = Bx D′y = Ay δy =
Cy−Ay

Cx−Ax
· (Bx−Ax)

D′′x = Bx D′′y =Cy

Definition 1 The rate-of-change in observations Ax,y,
Bx,y, and Cx,y is given by the sum of the areas 4ABD

and4BCD.

4ABD is calculated as follows:

4ABD =
Bx−Ax

2
· (By−Ay−δy) (4)

The scheduling cost, CABD, is determined as follows:

CABD =

∣∣∣∣By−Ay−δy

2

∣∣∣∣ ·δt (5)

Calculations for 4BCD and CBCD are similar to (4) and
(5), respectively:

4BCD =
Cx−Bx

2
· (By−Ay−δy) (6)

CBCD =

∣∣∣∣By−Ay−δy

2

∣∣∣∣ ·δt (7)

3.3 Rate-of-Change as Scheduling Criteria

The rate-of-change algorithm calculates a cost func-
tion based on the recent event observations to determine
whether the monitoring event should be scheduled next.
A smaller triangle area implies less variability, since the
area will be equivalent to a linear slope rate, and is eas-
ier to extrapolate. Conversely, a greater triangle area
reflects sudden changes in the observations, or higher
variability, which means that those events should be pri-
oritized over others.

Figure 3 illustrates how the rate-of-change algorithm
calculates the scheduling cost function for each event
e1, e2, and e3 with respect to the linear interpolator (red
dashed line). The triangle area shaded in green repre-
sents the cost of scheduling a particular ei. Event e2
exhibits nearest linear behavior, which will be placed
in the rear of the scheduling queue. Note that the con-
structed triangle for e3 reflects with the linear interpo-
lator, which is addressed with the absolute value sign
in Equation 5. The objective of our rate-of-change al-
gorithm is to “punish” non-linearly behaved events by
scheduling those events ahead of the queue. After run-
ning our algorithm, the scheduling queue will be ar-
ranged as follows: {e1,e3,e2}.
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Hardware Cache

Event Period Event Period Event Period

instructions 4,000,000 L1-dCache-hits 1,000,000 dTLB-Cache-hits 1,100,000
cache-references 9,500 L1-dCache-misses 7,000 dTLB-Cache-misses 750
cache-misses 150 L1-dCache-prefetch 7,000 iTLB-Cache-hits 4,200,000
branch-instructions 850,000 L1-iCache-hits 1,800,000 iTLB-Cache-misses 500
branch-misses 10,000 L1-iCache-misses 50,000 bpu-Cache-hits 900,000
stalled-cycles (frontend) 15,000 LL-Cache-hits 3,100 bpu-Cache-misses 600,000
stalled-cycles (backend) 1,500,000 LL-Cache-misses 75 node-Cache-hits 70
ref-cpu-cycles 2,000,000 LL-Cache-prefetch 500 node-Cache-misses 70

node-Cache-prefetch 50

Table 1: Generalized Perf Events and its period settings.

Event starvation prevented

Our rate-of-change scheduling criteria prevents event
starvation because the cost of scheduling increases as
time since the last scheduled event (δt) increases; hence,
preventing any events from not being scheduled (Eq. 5).

Computationally efficient

Our rate-of-change algorithm is computationally effi-
cient because for every hrtimer triggered, only two in-
teger multiplications and two integer divisions are tak-
ing place. Below is a snippet of C code for our compu-
tation:

delta_y = ((Cy-Ay)/(Cx-Ax)) * (Bx-Ax);

cost = ((By-Ay-delta_y) / 2) * d_time;

In cases where Cx−Ax = 0, δy is set to 0 which implies
Cx = Ax, or that no changes have occurred since obser-
vation Ax.

4 Experiments and Results

4.1 Experiments

In order to verify our proposed rate-of-change method-
ology, we ran a subset of PARSEC benchmarks [1]
and SPLASH.2X benchmarks [18], listed in Table 2,
while sampling the events from the PMC periodically.
SPLASH.2X is the SPLASH-2 benchmark suite with
bigger inputs drawn from actual production workloads.

Our goal was to make use of hrtimer in our multiplex-
ing methodology, which was released in kernel version
3.11.rc3 [7].

The generalized Perf Events for this experiment, listed
in Table 1, were periodically sampled for each bench-
mark run. Each of the periods was determined by trial-
and-error using the following formula.

samples/msec =
µnr.samples

µt.elapsed
(8)

Ideal samples per milliseconds is 1, where the number
of samples taken for an event is proportional to the time
spent monitoring the event.

To account for between-runs variability, each of the
events listed in Table 1 executed ten times for each
benchmark package with simlarge as input, which ran
on average 15 seconds each. Each execution consisted
of programming one single event in the PMC to disable
multiplexing, which serves as the baseline comparison.
In addition, the events were multiplexed with the perfor-
mance counters in the same run under the current round-
robin scheme and with our rate-of-change methodology.
Each of the ten runs was sorted in ascending order, based
on counts for each scheduling strategy, and the fourth
lowest value was selected as our experimental result for
the single event baseline comparison, and for the two
multiplexing strategies (round-robin, rate-of-change).

Our experiments ran on an Intel i7 Nehalem processor
with four hardware performance counters. Table 3 lists
the machine configuration for this experiment. Note that
CPU frequency scaling, which facilitates the CPU in
power consumption management, was disabled to make
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Platform Package Application Domain Description

PARSEC

blackscholes Financial Analysis Calculates portfolio price using Black-Scholes PDE.
bodytrack Computer Vision Tracks a 3D pose of a markerless human body.
canneal Engineering Minimizes routing costs for synthetic chip design.
vips Media Processing Applies a series of transforms to images.

SPLASH.2x

cholesky HPC Factors sparse matrix into product of lower triangular matrix.
fmm HPC Simulates interaction in 2D using Fast Multipole method
ocean_cp HPC Large scale movements based on eddy and boundary currents.
water_spatial HPC Evaluates forces and potentials in a system of molecules.

Table 2: PARSEC and SPLASH.2x Benchmarks.

Type Events
Architecture Intel Core i7, M640,

2.80 GHz (Nehalem)
Performance counters IA32_PMC0, IA32_PMC1,

IA32_PMC2, IA32_PMC3
Operating system Linux kernel 3.11.3-rc3
CPU frequency scaling Disabled
CPU speed 2.8 GHz

Table 3: Machine configuration.

all CPUs run consistently at the same speed (four CPUs
running at 2.8 GHz, in our case). The rate-of-change
algorithm hooked into rotate_ctx (Sec. 2.2.2) and
the final counts were exported as a .csv file from Perf
Event subsystem.

4.1.1 MSE on final counts

We compared our multiplexing technique with the ex-
isting round-robin approach by applying a statistical es-
timator on the mean µ calculated from the single event
runs. We used mean-squared error (MSE) for compar-
ing each mean µroc and µrr from the multiplexing tech-
nique versus the mean µbase from the non-multiplexed
run. MSE is defined as follows:

MSE = E[(θ̂ −θ)2] = B[θ̂ ]2 + var[θ̂ ] (9)

4.2 Results

Results show significant improvements for all bench-
marks and all events for our rate-of-change approach,
when compared with round-robin. Figure 4 com-
pares accuracy in improvement for the two multiplexing
strategies. For instructions, performance improved with
blackscholes (22.1%) when compared with round-robin

Benchmark Improvement
blackscholes 7.46
bodytrack 5.81
canneal 3.02
vips 1.48
cholesky 4.45
fmm 1.02
ocean_cp 4.67
water_spatial 2.69

Table 4: Improvement (%) per benchmark, averaged
over event types.

(8.5%). cache-misses had the biggest gain, with close
to 95.5% accuracy for both the blackscholes and wa-
ter_spatial benchmarks. ref-cpu-cycles also performed
well with rate-of-change (Fig. 4b). Figure 5 shows ac-
curacy rates for L1-data-cache events, including hits,
misses, and prefetches. For all three events, our rate-
of-change approach outperformed round-robin.

Table 4 shows percentage improvements for each bench-
mark when averaged across event types. The posi-
tive improvement rates indicate that our rate-of-change
methodology has facilitated in profiling these applica-
tions better than the round-robin scheme.

Table 5 shows the improvements for each event type
when averaged across benchmarks. Some of the top per-
formers include instructions, cache-misses, and node-
prefetches. However, there were also some poor per-
formers. For instance, branch-misses had -10.23, while
iL1-misses had -8.99. System perturbation across differ-
ent runs may have skewed these numbers. It is possible
that round-robin may have been sufficient for schedul-
ing those events, and that our algorithm may have had
an effect on those results. These averages only provide
an overview of how certain events might behave on a
particular benchmark.



2014 Linux Symposium • 107

−100

−50

0

50

100

Benchmark

%

event in cr cm bi bm scf scb cyc l1dh lidm lidp l1ih l1im llh llm llp dtlh dtlm itlh itlm bpuh bpum nh nm np

Decrease in Mean Squared Error (All)

Figure 6: Decrease in MSE for all 25 multiplexed events, when comparing rate-of-change over the round-robin
scheduling scheme. Each event set displays improvements for each of the eight benchmarks.

0
5
10
15
20

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.instructions

0

10

20

30

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.ref−cpu−cycles

0

30

60

90

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.cache−misses

Figure 4: Accuracy in multiplexing strategies (round-
robin, rate-of-change) with respect to baseline trace for
select hardware events (more is better).
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instr c.re f c.miss br.in br.mi
10.96 11.35 53.04 7.48 -10.23

iT LB.h iT LB.m st.cyc. f st.cyc.b re f .cyc
-1.11 -0.82 -7.19 -6.44 4.4

dT LB.h dT LB.m LLC.h LLC.m LLC.p
-1.46 -1.59 -8.48 -0.95 -0.95
iL1.h iL1.m dL1.h dL1.m dL1.p
-0.26 -8.99 7.09 7.46 -4.01
bpu.h bpu.m node.h node.m node.p
-1.6 -1.58 2.71 -0.62 47.04

Table 5: Improvement (%) per event type, averaged over
benchmark.

Figure 6 shows the proposed methodology’s improve-
ment as a decrease in mean-squared error for round-
robin versus rate-of-change with respect to the base-
line trace. Each event set shows performance for
each of the eight benchmarks. The red horizon-
tal line indicates that on average, performance gains
of 22% were witnessed when comparing our rate-
of-change approach with round-robin. With the ex-
ception of vips (cycles), cholesky (iL1-misses), and
fmm (dL1-misses), most of the events profiled have
shown substantial improvements. Some notable stand-
outs include cache-misses: blackscholes (96%), vips
(65%), cholesky (32%), fmm (59%); cache-references:
blackscholes (24%), vips (12%), cholesky (7%), fmm
(17%); and node-prefetches: blackscholes (89%), vips
(40%), cholesky (51%), fmm (37%).

5 Future Work and Conclusion

5.1 Future Work

Our scheduling approach has demonstrated that perfor-
mance measurement accuracy can increase when incor-
porating information about the behavior of a program
task. Since architectural events are highly correlated in
the same run (e.g. hardware interrupts, system calls),
one extension to our multiplexing technique would be to
incorporate correlated information into calculating the
scheduling cost. Information about execution phases, in
addition to temporal locality, can facilitate in creating an
even more robust scheduler, which can lead to improved
profiled accuracy rates. In addition, our multiplexing
methodology can serve as an alternative to round-robin
scheduling in other areas that utilize real-time decision-

making, including task scheduling and decision-support
systems.

5.2 Conclusion

Multiplexing multiple performance events is necessary
because event counts of the same runs are more cor-
related to each other than among different runs. In
addition, the limited number of m hardware counters
provided by architecture manufacturers makes schedul-
ing n performance events impractical, where n > m.
Our rate-of-change scheduling algorithm has provided
an increase of accuracy over the existing round-robin
method, improving the precision of the total counts
while allowing multiple events to be monitored.
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Abstract

I propose a daemon process for use on Linux. It gath-
ers entropy from timer calls, distills into a concentrated
form, and sends it to the kernel random(4) device. The
program is small and does not require large resources.
The entropy output is of high quality. The output rate
varies with the parameters chosen; with the defaults it is
about six kilobits per second, which is enough for many
applications.

1 Overview

Random numbers are essential for most cryptographic
applications, and several otherwise quite good crypto-
graphic systems have been broken because they used in-
adequate random number generators. The standard ref-
erence is RFC 4086, Randomness Requirements for Se-
curity [1]. It includes the following text:

At the heart of all cryptographic systems is the
generation of secret, unguessable (i.e., ran-
dom) numbers.

The lack of generally available facilities for
generating such random numbers (that is, the
lack of general availability of truly unpre-
dictable sources) forms an open wound in the
design of cryptographic software. [1]

However, generating good random numbers is often
problematic. The same RFC also says:

Choosing random quantities to foil a resource-
ful and motivated adversary is surprisingly
difficult. This document points out many pit-
falls ... [1]

I will not belabour these points here. I simply take it
as given both that high-quality random numbers are im-
portant and that generating them can be rather a tricky
proposition.

1.1 The Linux random device

Linux provides a random number generator in the ker-
nel; it works by gathering entropy from kernel events,
storing it in a pool, and hashing the pool to produce out-
put. It acts as a device driver supporting two devices:

• /dev/random provides high-grade randomness for
critical applications and will block (make the user
wait) if the pool lacks entropy

• /dev/urandom never blocks (always gives output)
but is only cryptographically strong, and does not
give guaranteed entropy

The main documentation is the manual page, ran-
dom(4); the source code also has extensive comments.
Archives of the Linux kernel mailing list and other lists
have much discussion. A critique [16] of an earlier ver-
sion has been published.

In many situations, the kernel generator works just fine
with no additional inputs. For example, a typical desk-
top system does not do a great deal of crypto, so the
demands on the generator are not heavy. On the other
hand, there are plenty of inputs—at least keyboard and
mouse activity plus disk interrupts.

On other systems, however, the kernel generator may be
starved for entropy. Consider a Kerberos server which
hands out many tickets, or a system with many en-
crypted connections, whether IPsec, SSH/TLS or SSH.
It will need considerable randomness, but such servers
often run headless—no keyboard or mouse—and en-
tropy from disk events may be low. There may be a
good deal of network activity, but some of that may be
monitored by an enemy, so it is not a completely trust-
worthy entropy source.

If the kernel generator runs low on entropy, then a pro-
gram attempting to read /dev/random will block; the de-
vice driver will not respond until it has enough entropy
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so the user program must be made to wait. A program
reading /dev/urandom will not block but it cannot be cer-
tain it is getting all the entropy it expects. The driver is
cryptographically strong and the state is enormous, so
there is good reason to think the outputs will be of high
quality; however, there is no longer a guarantee.

Whichever device they read, programs and users relying
on the kernel generator may encounter difficulties if the
entropy runs low. Ideally, that would never happen.

1.2 Problem statement

The kernel generator provides an interface that allows an
external program to provide it with additional entropy,
to prevent any potential entropy shortage. The problem
we want to solve here is to provide an appropriate pro-
gram. The entropy volume need not be large, but the
quality should be high.

An essential requirement is that the program not overes-
timate the entropy it is feeding in, because sufficiently
large mis-estimates repeated often enough could cause
the kernel generator to misbehave. This would not be
easy to do; that generator has a huge state and is quite
resilient against small errors of this type. However, fre-
quent and substantial errors could compromise it.

Underestimating entropy is much less dangerous than
overestimating it. A low estimate will waste resources,
reducing program efficiency. However, it cannot com-
promise security.

I have written a daemon program which I believe solves
this problem. I wanted a name distinct from the existing
“Timer entropy daemon” [2], developed by Folkert van
Heusden, so I named mine maxwell(8), after Maxwell’s
demon, an imaginary creature discussed by the great
physicist James Clerk Maxwell. Unlike its namesake,
however, my program does not create exceptions to the
laws of thermodynamics.

2 Existing generators

There are several good ways to get randomness to feed
into the kernel generator already. In many—probably
even most—cases, one of these will be the best choice
and my program will not be necessary. Each of them,
however, has disadvantages as well, so I believe there is
still a niche which a new program can fill.

Ideally, the system comes with a built-in hardware RNG
and failing that, there are other good alternatives. I
limit my discussion to three—Turbid, HAVEGE and
Cryptlib—each of which has both Open Source code
and a detailed design discussion document available. As
I see it, those are minimum requirements for a system to
inspire confidence.

Also, the authors of all those generators are affiliated
with respectable research institutions and have PhDs
and publications; this may not be an essential prerequi-
site for trusting their work, but it is definitely reassuring.

2.1 Built-in hardware

Where it is available, an excellent solution is to use a
hardware RNG built into your system. Intel have one
in some of their chipsets, Via build one into some CPU
models, and so on. If one is buying a server that will be
used for crypto, insisting on a hardware RNG as part of
your specification is completely reasonable.

The main difficulty of with this method is that not all
systems are equipped with these devices. You may not
get to choose or specify the system you work on, so the
one you have may lack a hardware RNG even if your
applications really need one.

Even if the device is present, there will not necessarily
be a Linux driver available. In some cases, there might
be deficiencies in the documentation required to write a
driver, or in the design disclosure and analysis required
before the device can be fully trusted.

In short, this is usually the best choice when available,
but it is not universally available.

A true paranoid might worry about an intelligence
agency secretly subverting such a device during the de-
sign process, but this is not a very realistic worry. For
one thing, intelligence agencies no doubt have easier
and more profitable targets to go after.

Also, if the hardware RNG feeds into random(4) then—
as long as there is some other entropy—the large driver
state plus the complex mixing would make it extremely
difficult to compromise that driver even with many of
its inputs known. Adding a second good source of
entropy—maxwell(8), Turbid or HAVEGE—makes an
attack via RNG subversion utterly implausible.
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2.2 Turbid

John Denker’s Turbid—a daemon for extracting entropy
from a sound card or equivalent device, with no micro-
phone attached—is another excellent choice. It can give
thousands of output bytes per second, enough for almost
any requirement.

Turbid is quite widely applicable; many motherboards
include a sound device and on a server, this is often un-
used. Failing that, it may be possible to add a device
either internally if the machine has a free slot or ex-
ternally via a USB port. Turbid can also be used on
a system which uses its sound card for sound. Add a
second sound device; there are command-line options
which will tell Turbid to use that, leaving the other card
free for music, VoIP or whatever.

The unique advantage of Turbid is that it provably de-
livers almost perfectly random numbers. Most other
generators—including mine, random(4), and the others
discussed in this section—estimate the randomness of
their inputs. Sensible ones attempt to measure the en-
tropy, and are very careful that their estimates are suf-
ficiently conservative. They then demonstrate that, pro-
vided that the estimate is good, the output will be ad-
equately random. This is a reasonable approach, but
hardly optimal.

Turbid does something quite different. It measures prop-
erties of the sound device and uses arguments from
physics to derive a lower bound on the Johnson-Nyquist
noise [3] which must exist in the circuit. From that,
and some mild assumptions about properties of the hash
used, it gets a provable lower bound on the output
entropy. Parameters are chosen to make that bound
159.something bits per 160-bit SHA context. The doc-
umentation talks of “smashing it up against the asymp-
tote”.

However, Turbid also has disadvantages. It requires a
sound card or equivalent, a condition that is easily sat-
isfied on most systems but may be impossible on some.
Also, if the sound device is not already known to Turbid,
then a measurement step is required before program pa-
rameters can be correctly set. These are analog measure-
ments, something some users may find inconvenient.

The Turbid web page [4] has links to the code and a
detailed analysis.

2.3 HAVEGE

The HAVEGE (HArdware Volatile Entropy Gathering
and Expansion) RNG gathers entropy from the internal
state of a modern superscalar processor. There is a dae-
mon for Linux, haveged(8), which feeds into random(4).

The great advantages of HAVEGE are that the output
rate can be very high, up to hundreds of megabits sec-
ond, and that it requires no extra hardware—just the
CPU itself. For applications which need such a rate,
it may be the only solution unless the system has a very
fast built-in hardware RNG.

However, HAVEGE is not purely a randomness gath-
erer:

HAVEGE combines entropy/uncertainty gath-
ering from the architecturally invisible states
of a modern superscalar microprocessor with
a pseudo-random number generation [5]

The “and Expansion” part of its name refers to a pseudo-
random generator. Arguably, this makes HAVEGE
less than ideal as source of entropy for pumping into
random(4) because any pseudo-random generator falls
short of true randomness, by definition. In this view
one should either discard the “and Expansion” parts of
HAVEGE and use only the entropy gathering parts, or
use the whole thing but give less than 100% entropy
credit.

There is a plausible argument on the other side. Papers
such as Yarrow [7] argue that a well-designed and well-
seeded PRNG can give output good enough for cryp-
tographic purposes. If the PRNG output is effectively
indistinguishable from random, then it is safe to treat
it as random. The HAVEGE generator’s state includes
internal processor state not knowable by an opponent
and moreover it is continuously updated, so it appears
to meet this criterion.

The haveged(8) daemon therefore gives full entropy
credit for HAVEGE output.

Another difficulty is that HAVEGE seems to be ex-
tremely hardware-specific. It requires a superscalar pro-
cessor and relies on:
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a large number of hardware mechanisms that
aim to improve performance: caches, branch
predictors, ... The state of these components is
not architectural (i.e., the result of an ordinary
application does not depend on it). [6]

This will not work on a processor that is not superscalar,
nor on one to which HAVEGE has not yet been carefully
ported.

Porting HAVEGE to a new CPU looks difficult; it de-
pends critically on “non-architectural” features. These
are exactly the features most likely to be undocumented
because programmers generally need only a reference
to the architectural features, the ones that can affect “the
result of an ordinary application.”

These “non-architectural” aspects of a design are by def-
inition exactly the ones which an engineer is free to
change to get more speed or lower power consumption,
or to save some transistors. Hence, they are the ones
most likely to be different if several manufacturers make
chips for the same architecture, for example Intel, AMD
and Via all building x86 chips or the many companies
making ARM-based chips. They may even change from
model to model within a single manufacturer’s line; for
example Intel’s low power Atom is different internally
from other Intel CPUs.

On the other hand, HAVEGE does run on a number of
different CPUs, so perhaps porting it actually simpler
than it looks.

HAVEGE, then, appears to be a fine solution on some
CPUs, but it may be no solution at all on others.

The HAVEGE web page [6] has links to both code and
several academic papers on the system. The haveged(8)
web page [15] has both rationale and code for that im-
plementation.

2.4 Cryptlib

Peter Gutmann’s Cryptlib includes a software RNG
which gathers entropy by running Unix commands and
hashing their outputs. The commands are things like
ps(1) which, on a reasonably busy system, give chang-
ing output.

The great advantage is that this is a pure software solu-
tion. It should run on more-or-less any system, and has
been tested on many. It needs no special hardware.

One possible problem is that the Cryptlib RNG is a large
complex program, perhaps inappropriate for some sys-
tems. On the version I have (3.4.1), the random direc-
tory has just over 50,000 lines of code (.c .h and .s) in it,
though of course much of that code is machine-specific
and the core of the RNG is no doubt far smaller. Also the
RNG program invokes many other processes so overall
complexity and overheads may be problematic on some
systems

Also, the RNG relies on the changing state of a multi-
user multi-process system. It is not clear how well it will
work on a dedicated system which may have no active
users and very few processes.

The Cryptlib website [8] has the code and one of Gut-
mann’s papers [9] has a detailed rationale.

3 Our niche

Each of the alternatives listed above is a fine choice in
many cases. Between them they provide quite a broad
range of options. What is left for us?

What we want to produce is a program with none of
the limitations listed above. It should not impose any
hardware requirements, such as

• requiring an on-board or external hardware RNG

• requiring a sound card or equivalent device like
Turbid

• requiring certain CPUs as HAVEGE seems to

Nor should it be a large complex program, or invoke
other processes, as the Cryptlib RNG does.

Our goal is the smallest simplest program that gives
good entropy. I do at least get close to this; the com-
piled program is small, resource usage is low, and output
quality is high.

3.1 Choice of generator

In the most conservative view, only a generator whose
inputs are from some inherently random process such
as radioactive decay or Johnson-Nyquist circuit noise
should be trusted—either an on-board hardware RNG
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or Turbid. In this view other generators—random(4),
maxwell(8), HAVEGE, Cryptlib, Yarrow, Fortuna, ... —
are all in effect using system state as a pseudo-random
generator, so they cannot be fully trusted. Taking a
broader view, any well-designed generator can be used
so all those discussed here are usable in some cases; the
problem is to choose among them.

If there is a hardware RNG on your board, or HAVEGE
runs on your CPU, or you have a sound device free for
Turbid—that is the clearly the generator to use. Any of
these can give large amounts of high-grade entropy for
little resource cost. If two of them are available, con-
sider using both.

If none of those is easily available, the choice is more
difficult. It is possible to use maxwell(8) in all cases, but
using the Cryptlib RNG or adding a device for Turbid
should also be considered. In some situations, using an
external hardware RNG is worth considering as well.

3.2 Applications for maxwell(8)

There are several situations where maxwell(8) can be
used:

• where the generators listed above are, for one rea-
son or another, not usable

• when using one of the above generators would be
expensive or inconvenient

• a second generator run in parallel with any of the
above, for safety if the other fails

• when another generator is not fully trusted (“Have
the NSA got to Intel?” asks the paranoid)

• whenever a few kilobits a second is clearly enough

There are three main applications:

Using any generator alone gives a system with a single
point of failure. Using two is a sensible safety precau-
tion in most cases, and maxwell(8) is cheap enough to
be quite suitable as the second, whatever is used as the
first.

With the -f or -g option, maxwell(8) runs faster and stops
after a fixed amount of output. This is suitable for fill-
ing up the entropy pool at boot time, or before some

randomness-intensive action such as generating a large
PGP key.

maxwell(8) can be used even on a very limited
systemi—an embedded controller, a router, a plug com-
puter, a Linux cell phone, ... Some of these may not have
a hardware RNG, or a sound device that can be used for
Turbid, or a CPU that supports HAVEGE. The Cryptlib
RNG is not an attractive choice for a system with lim-
ited resources and perhaps a cut-down version of Linux
that lacks many of the programs that the RNG program
calls. In such cases, maxwell(8) may be the only reason-
able solution.

More than one copy of maxwell(8) can be used. The
computer I am writing this on uses haveged(8) with
maxwell -z (slow but sure) as a second entropy source
and maxwell -g for initialisation. This is overkill on
a desktop system—probably any of the three would be
enough. However, something like that might be exactly
what is needed on a busy server.

4 Design overview

The old joke “Good, fast, cheap — pick any two.” ap-
plies here, with:

good == excellent randomness
fast == high volume output
cheap == a small simple program

I choose good and cheap. We want excellent random-
ness from a small simple program; I argue that not only
is this is achievable but my program actually achieves it.

Choosing good and cheap implies not fast. Some of the
methods mentioned above are extremely fast; we cannot
hope to compete, and do not try.

4.1 Randomness requirements

Extremely large amounts of random material are rarely
necessary. The RFC has:

How much unpredictability is needed? Is it
possible to quantify the requirement in terms
of, say, number of random bits per second?

The answer is that not very much is needed.
... even the highest security system is unlikely
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to require strong keying material of much over
200 bits. If a series of keys is needed, they can
be generated from a strong random seed (start-
ing value) using a cryptographically strong se-
quence ... A few hundred random bits gener-
ated at start-up or once a day is enough if such
techniques are used. ... [1]

There are particular cases where a large burst is needed;
for example, to generate a PGP key, one needs a few K
bits of top-grade randomness. However, in general even
a system doing considerable crypto will not need more
than a few hundred bits per second of new entropy.

For example, if a system supports 300 connections and
re-keys each of them every 20 minutes, then it will do
900 re-keys an hour, one every four seconds on average.
In general, session keys need only a few hundred bits
and can get those from /dev/urandom. Even if each re-
key needed 2048 bits and for some reason it needed the
quality of /dev/random, the kernel would need only 512
bits of input entropy per second to keep up.

This would indicate that maxwell(8) needs to produce a
few hundred bits per second. In fact, it gives an order of
magnitude more, a few K bits per second. Details are in
the “Resources and speed” section.

4.2 Timer entropy

The paper “Analysis of inherent randomness of the
Linux kernel” [10] includes tests of how much random-
ness one gets from various simple sequences. The key
result for our purposes is that (even with interrupts dis-
abled) just:

doing usleep(100), giving 100 µs delay
doing a timer call
taking the low bit of timer data

gives over 7.5 bits of measured entropy per output byte,
nearly one bit per sample.

Both the inherent randomness [10] and the HAVEGE [5]
papers also discuss sequences of the type:

timer call
some simple arithmetic
timer call
take the difference of the two timer values

They show that there is also entropy in these. The time
for even a simple set of operations can vary depending
on things like cache and TLB misses, interrupts, and so
on.

There appears to be enough entropy in these simple
sequences—either usleep() calls or arithmetic—to drive
a reasonable generator. That is the basic idea behind
maxwell(8). The sequence used in maxwell(8) inter-
leaves usleep() calls with arithmetic, so it gets entropy
from both timer jitter and differences in time for arith-
metic.

On the other hand, considerable caution is required here.
The RFC has:

Computer clocks and similar operating sys-
tem or hardware values, provide significantly
fewer real bits of unpredictability than might
appear from their specifications.

Tests have been done on clocks on numerous
systems, and it was found that their behav-
ior can vary widely and in unexpected ways.
... [1]

My design is conservative. For each 32-bit output, it
uses at least 48 clock samples, so if there is 2/3 of a
bit of entropy per sample then the output has 32 bits.
Then it tells random(4) there are 30 bits of entropy per
output delivered. If that is not considered safe enough,
command-line options allow the administrator to in-
crease the number of samples per output (-p) or to re-
duce the amount of entropy claimed (-c) per output.

maxwell(8) uses a modulo operation rather than masking
to extract bits from the timer, so more than one bit per
sample is possible. This technique also helps with some
of the possible oddities in clocks which the RFC points
out:

One version of an operating system running
on one set of hardware may actually pro-
vide, say, microsecond resolution in a clock,
while a different configuration of the “same”
system may always provide the same lower
bits and only count in the upper bits at much
lower resolution. This means that successive
reads of the clock may produce identical val-
ues even if enough time has passed that the
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value “should” change based on the nominal
clock resolution. [1]

Taking only the low bits from such a clock is problem-
atic. However, extracting bits with a modulo operation
gives a change in the extracted sample whenever the up-
per bits change.

4.3 Keeping it small

Many RNGs use a cryptographic hash, typically SHA-1,
to mix and compress the bits. This is the standard way
to distill a lot of somewhat random input into a smaller
amount of extremely random output. Seeking a small
program, I dispense with the hash. I mix just the input
data into a 32-bit word, and output that word when it
has enough entropy. Details of the mixing are in a later
section.

I also do not use S-boxes, although those can be a fine
way to mix data in some applications and are a staple in
block cipher design. Seeking a small program, I do not
want to pay the cost of S-box storage.

In developing this program I looked an existing “Timer
entropy daemon” [2] developed by Folkert van Heusden.
It is only at version 0.1. I did borrow a few lines of code
from that program, but the approach I took was quite
different, so nearly all the code is as well.

The timer entropy daemon uses floating point math in
some of its calculations. It collects data in a substantial
buffer, 2500 bytes, goes through a calculation to esti-
mate the entropy, then pushes the whole load of buffered
data into random(4). My program does none of those
things.

maxwell(8) uses no buffer, no hashing, and no S-boxes,
only a dozen or so 32-bit variables in various functions.
It mixes the input data into one of those variables until
it contains enough concentrated entropy, then transfers
32 bits into the random device. The entropy estimation
is all done at design time; there is no need to calculate
estimates during program operation.

A facility is provided for a cautious system admin-
istrator, or someone whose system shows poor en-
tropy in testing, to override my estimates at will, us-
ing command-line options, -p (paranioa) to make the
program use more samples per output or -c (claim) to

change the amount of entropy it tells random(4) that it
is delivering. However, even then no entropy estima-
tion is done during actual entropy collection; the user’s
changes are put into effect when the program is invoked.

It is possible that my current program’s method of do-
ing output—32 bits at a time with a write() to deliver the
data and an ioctl() to update the entropy estimate each
time—is inefficient. I have not yet looked at this issue.
If it does turn out to be a problem, it would be straight-
forward to add buffering so that the program can do its
output in fewer and larger chunks.

The program is indeed small, under 500 lines in the main
program and under 2000 overall. SHA-1 alone is larger
than that, over 7000 lines in the implementation Turbid
uses; no doubt this could be reduced, but it could not
become tiny. Turbid as a whole is over 20,000 lines and
the Cryptlib RNG over 50,000.

5 Program details

The source code for this program is available from ftp:
//ftp.cs.sjtu.edu.cn:990/sandy/maxwell/.
The archive includes a more detailed version of this
paper, covering the command-line interface, the internal
design of the program, and testing methodologies for
evaluating the quality of the output.

6 Analysis

This section discusses the program design in more de-
tail, dealing in particular with the choice of appropriate
parameter values.

6.1 How much entropy?

The inherent randomness paper [10] indicates that al-
most a full bit of entropy can be expected per timer
sample. Taking one bit per sample and packing eight of
them into a byte, they get 7.6 bits per output byte. Based
on that, we would expect a loop that takes 16 samples to
give just over 15 bits of entropy. In fact we might get
more because maxwell(8) uses a modulo operation in-
stead of just masking out the low bit, so getting more
than one bit per sample is possible.

I designed the program on the assumption that, on typ-
ical systems, we would get at least 12 bits per 16 sam-
ples, the number from the inherent randomness [10] pa-
per minus something for safety. This meant it needed

ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/
ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/
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-p Options Loops Entropy needed per 16 samples
(paranoia) (other than -p) 2p + 3 for 32 bit out for 30 bits claimed

0 No options 3 11 10
1 5 7 6
2 -x 7 5 5
3 -y 9 4 4
4 -z 11 3 3
...

...
...

...
7 17 2 2
...

...
...

...
15 33 1 1

Table 1: The -p (paranoia) option

-p Options Loops Entropy needed per 16 samples
(paranoia) (other than -p) 2p + 3 for 32 bit out for 30 bits claimed

0 -f, -g 3 11 6

Table 2: The -f or -g options

three loops to be sure of filling a 32-bit word, so three is
the default.

I also provide a way for the user to override the default
where necessary with the -p (paranoia) command-line
option. However, there is no way to get fewer than three
loops, so the program is always safe if 16 samples give
at least 11 bits of entropy. The trade-offs are shown in
Table 1. With the -f or -g options, the claim is reduced,
as shown in Table 2.

All these entropy requirements are well below the 15
bits per 16 samples we might expect based on the inher-
ent randomness paper [10]. They are also far below the
amounts shown by my test programs, described in the
previous section. I therefore believe maxwell(8) is, at
least on systems similar to mine, entirely safe with the
default three loops.

In my opinion, setting -p higher than four is unneces-
sary, even for those who want to be cautious. However,
the program accepts any number up to 999.

6.2 Attacks

The Yarrow paper [7] gives a catalog of possible weak-
nesses in a random number generator. I shall go through
each of them here, discussing how maxwell(8) avoids
them. It is worth noting, however, that maxwell(8) does
not stand alone here. Its output is fed to random(4), so

some possible weaknesses in maxwell(8) might have no
effect on overall security.

The first problem mentioned in [7] is “Entropy Overesti-
mation and Guessable Starting Points”. They say this is
both “the commonest failing in PRNGs in real-world ap-
plications” and “probably the hardest problem to solve
in PRNG design.”

My detailed discussion of entropy estimation is above.
In summary, the outputs of maxwell(8) have 32 bits of
entropy each if each timer sample gives two thirds of a
bit. The Inherent Randomness paper [10] indicates that
about one bit per sample can be expected and my tests
indicate that more than that is actually obtained. Despite
that, we tell random(4) that we are giving it only 30 bits
of entropy per output, just to be safe.

There are also command-line options which allow a
system administrator to overrule my estimates. If
maxwell(8) is thought dubious with the default parame-
ters, try maxwell -p 3 -c 20 or some such. That is secure
if 144 timer samples give 20 bits of entropy.

There is a ”guessable starting point” for each round
of output construction; one of five constants borrowed
from SHA is used to initialise the sample-collecting
variable. However, since this is immediately followed
by operations that mix many samples into that variable,
it does not appear dangerous.
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The next problem mentioned in [7] is “Mishandling of
Keys and Seed Files”. We have no seed file and do not
use a key as many PRNGs do, creating multiple outputs
from a single key. Our only key-like item is the entropy-
accumulating variable, that is carefully handled, and it
is not used to generate outputs larger than input entropy.

The next is “Implementation Errors”. It is impossible
to entirely prevent those, but my code is short and sim-
ple enough to make auditing it a reasonable proposition.
Also, there are test programs for all parts of the program.

The next possible problem mentioned is “Cryptanalytic
Attacks on PRNG Generation Mechanisms”. We do not
use such mechanisms, so they are not subject to attack.
random(4) does use such mechanisms, but they are de-
signed to resist cryptanalysis.

Of course, our mixing mechanism could be attacked, but
it seems robust. The QHT is reversible, so if its out-
put is known the enemy can also get its input. How-
ever, that does not help him get the next output. None
of the other mixing operations are reversible. Because
the QHT makes every bit of output depend on every bit
of its input, it appears difficult for an enemy to predict
outputs as long as there is some input entropy.

The next attacks discussed are “Side Channel Attacks”.
These involve measuring things outside the program
itself—timing, power consumption, electromagnetic ra-
diation, ...—and using those as a window into the inter-
nal state.

It would be quite difficult for an attacker to mea-
sure maxwell’s power consumption independently of the
general power usage of the computer it runs on, though
perhaps not impossible since maxwell’s activity comes
in bursts every 100 µs or so. Timing would also be hard
to measure, since maxwell(8) accepts no external inputs
and its only output is to the kernel.

A Tempest type of attack, measuring the electromag-
netic radiation from the computer, may be a threat. In
most cases, a Tempest attacker would have better things
to go after than maxwell(8)—perhaps keyboard input,
or text on screen or in memory. If he wants to attack
the crypto, then there are much better targets than the
RNG—plaintext or keys, and especially the private keys
in a public key system. If he does go after the RNG,
then the state of random(4) is more valuable than that of
maxwell(8).

However, it is conceivable that, on some systems, data
for other attacks would not be available but clock in-
teractions would be visible to an attacker because of the
hardware involved. In that case, an attack on maxwell(8)
might be the best possibility for the attacker. If an at-
tacker using Tempest techniques could distinguish clock
reads with nanosecond accuracy, that would compro-
mise maxwell(8). This might in principle compromise
random(4) if other entropy sources were inadequate,
though the attacker would have considerable work to do
to break that driver, even with some known inputs.

The next are “Chosen-Input Attacks on the PRNG”.
Since maxwell(8) uses no inputs other than the timer and
uses the monotonic timer provided by the Linux real-
time libraries, which not even the system administrator
can reset, direct attacks on the inputs are not possible.

It is possible for an attacker to indirectly affect timer be-
haviour, for example by accessing the timer or running
programs that increase system load. There is, however,
no mechanism that appears to give an attacker the sort
of precise control that would be required to compro-
mise maxwell(8)—this would require reducing the en-
tropy per sample well below one bit.

The Yarrow paper [7] then goes on to discuss attacks
which become possible “once the key is compromised.”
Since maxwell(8) does not use a key in that sense, it is
immune to all of these.

Some generators allow “Permanent Compromise At-
tacks”. These generators are all-or-nothing; if the key is
compromised, all is lost. Others allow “Iterative Guess-
ing Attacks” where, knowing the state at one time, the
attacker is able to find future states with a low-cost
search over a limited range of inputs, or “Backtracking
Attacks” where he can find previous states. However,
maxwell(8) starts the generation process afresh for each
output; the worst any state compromise could do is give
away one 32-bit output.

Finally, [7] mentions “Compromise of High-Value key
Generated from Compromised Key”. However, even
if maxwell(8) were seriously compromised, an attacker
would still have considerable work to do to compromise
random(4) and then a key generated from it. It is not
clear that this would even be possible if the system has
other entropy sources, and it would certainly not be easy
in any case.

The program does not use much CPU. It spends most
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Option Delay Samples msec per output K bit/sec
Default 97 48 5 ∼6
-f, -g 41 or 43 48 2 ∼16

-x 101 112 11.3 ∼2.8
-y 103 144 14.8 ∼2.1
-z 107 176 18.8 ∼1.6

Table 3: Output rates

of its time sleeping; there is a usleep(delay) call before
each timer sample, with delays generally around 100 µs.
When it does wake up to process a sample, it does only
a few simple operations.

The rate of entropy output is adequate for many appli-
cations; I have argued above that a few hundred bits per
second is enough on most systems. This program is ca-
pable of about an order of magnitude more than that.
With the default parameters there are 48 usleep(delay)
calls between outputs, at 97 µs each so total delay is
4.56 ms. Rounding off to 5 ms to allow some time
for calculations, we find that the program can output up
to 200 32-bit quantities—over six kilobits—per second.
Similar calculations for other parameter combinations
are shown in Table 3.

Of course, all of these are only approximate estimates.
Testing with dieharder(1) and a reduced delay shows
367 32-bit rands/sec or 11.7 Kbits/sec, showing that
these figures are not wildly out of whack but are likely
somewhat optimistic.

On a busy system, the program may be delayed because
it is timeshared out, or because the CPU is busy deal-
ing with interrupts. We need not worry about this; the
program is fast enough that moderate delays are not a
problem. If the system is busy enough to slow this pro-
gram down significantly for long enough to matter, then
there is probably plenty of entropy from disk or net in-
terrupts. If not, the administrator has more urgent things
to worry about than this program.

The peak output rate will rarely be achieved, or at least
will not be maintained for long. Whenever the ran-
dom(4) driver has enough entropy, it causes any write
to block; the writing program is forced to wait. This
means maxwell(8) behaves much like a good waiter, un-
obtrusive but efficient. It cranks out data as fast as it
can when random(4) needs it, but automatically waits
politely when it is not needed.

7 Conclusion

This program achieves its main design goal: it uses min-
imal resources and provides high-grade entropy in suffi-
cient quantity for many applications.

Also, the program is simple enough for easy auditing.
The user interface is at least a decent first cut, simple
but providing reasonable flexibility.
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Abstract

In recent years, the number of CPUs per platform has
continuously increased, affecting almost all segments
of the computer market. Because of this trend, many
researchers have investigated the problem of how to
scale operating systems better on high core-count ma-
chines. While many projects have used Linux as a ve-
hicle for this investigation, others have proposed new
OS designs. Among them, the replicated-kernel OS
model, specifically the multikernel, has gained traction.
In this paper, we present Popcorn: a replicated-kernel
OS based on Linux. Popcorn boots multiple Linux ker-
nel instances on multicore hardware, one per core or
group of cores. Kernels communicate to give to ap-
plications the illusion that they are running on top of a
single OS. Applications can freely migrate between ker-
nels, exploiting all the hardware resources available on
the platform, as in SMP Linux.

1 Introduction

In recent years, the number of CPUs per platform has
continuously grown, affecting almost all segments of
the computer market. After it was no longer practi-
cal to increase the speed of a processor by increasing
its clock frequency, chip vendors shifted to exploiting
parallelism in order to maintain the rising performance
that consumers had come to expect. Nowadays, multiple
chips, each containing multiple cores, are being assem-
bled into single systems. All cores, across the differ-
ent chips, share the same physical memory by means of
cache coherency protocols. Although researchers were
skeptical that cache coherence would scale [6] the multi
core market continues to grow. Multi core processors
are ubiquitous, they can be found in embedded devices,
like tablets, set top boxes, and mobile devices (e.g.,
Exynos Octa-Core [3]), in home/office computers (e.g.,
AMD Fusion, Intel Sandy Bridge), in high-end servers
(e.g., AMD Opteron [13], Intel Xeon [1]), and in HPC

machines (e.g., SGI Altix [2]). These types of multi-
processor systems, formerly available only as high cost
products for the HPC market, are today more affordable
and are present in the consumer market. Because of this
trend, many researchers have investigated the problem
of how to better scale operating systems on high core
count machines. While some projects have used Linux
as a vehicle for this investigation [6, 7], others have pro-
posed new operating system (OS) designs [5]. Among
them, the replicated-kernel OS model has gained trac-
tion.

Linux has been extended by its large community of de-
velopers to run on multiprocessor shared memory ma-
chines. Since kernel version 2.6, preemption patches,
ticket spinlocks, read/write locks, and read-copy-update
(RCU) have all been added. Several new techniques
have also been added to improve data locality, includ-
ing per_cpu infrastructure, the NUMA-aware memory
allocator, and support for scheduling domains. B. Wick-
izer et al. [6] conclude that vanilla Linux, on a large-
core-count machine, can be made to scale for differ-
ent applications if the applications are carefully written.
In [7] and [12] the authors show that scalable data struc-
tures, specifically scalable locks, like MCS, and RCU
balanced tree, help Linux scale better when executing
select applications.

Although recent research has demonstrated Linux’s
scalability on multicore systems to some extent, and
Linux is already running on high core count machines
(e.g., SGI Altix [2]) and accelerators (e.g., Intel Xeon-
Phi [15]), it is important to understand whether Linux
can be used as the basic block of a replicated-kernel OS.
Understanding the advantages of this OS architecture on
Linux – not just from a scalability standpoint – is im-
portant to better exploit the increasingly parallel hard-
ware that is emerging. If future processors do not pro-
vide high-performance cache coherence, Linux’s shared
memory intensive design may become a significant per-
formance bottleneck [6].
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The replicated-kernel OS approach, advanced in oper-
ating systems including Hive, Barrelfish, FOS, and oth-
ers, is a promising way to take advantage of emerging
high-core count architectures. A. Baumann et al. [5]
with Barrelfish introduced the term multikernel OS and
showed appealing scalability results demonstrating that
their design scales as well, if not better, than SMP Linux
on selected applications up to 32 cores. A multikernel
OS is an operating system that is made up of different
(micro-) kernel instances, each of which runs on a sin-
gle core of a multi core device. Kernels communicate in
order to cooperatively maintain partially replicated OS
state. Each kernel runs directly on bare hardware, no
(hardware or software) virtualization layer is employed.
Because Popcorn does not adhere to such definition we
use the term replicated-kernel OS to identify a broader
category of multikernels, including Popcorn.

Popcorn In this paper, we present Popcorn: a
replicated-kernel OS based on Linux. Popcorn boots
multiple Linux kernel instances on multicore hardware,
one per core or group of cores, with kernel-private mem-
ory and hardware devices. The kernel instances directly
communicate, kernel-to-kernel, in order to maintain a
common OS state that is partially replicated over ev-
ery individual kernel instance. Hardware resources (i.e.,
disks, network interface cards) are fully shared amongst
the kernels. Kernel instances coordinate to maintain the
abstraction of a single operating system (single system
image), enabling traditional applications to run trans-
parently across kernels. Inter-kernel process and thread
migration are introduced to allow application threads
to transparently execute across the kernels that together
form the OS. Considering that vanilla Linux scales well
on a bounded number of cores, we do not put any restric-
tions on how many cores the same kernel image will run
on.

Contributions Our primary contribution is an open-
source replicated-kernel OS using Linux as its basic
building block, as well as its early evaluation on a set
of benchmarks. To the best of our knowledge this is
the first attempt in applying this design to Linux. Mul-
tiple Popcorn kernels, along with the applications that
they hosts, can simultaneously populate a multi core ma-
chine. To facilitate this, we augmented the Linux ker-
nel with the ability to run within a restricted subset of
available hardware resources (e.g. memory). We then

strategically partition those resources, ensuring that par-
titions do not overlap, and dedicate them to single kernel
instances.

To create the illusion of a single operating system on
top of multiple independent kernel instances we intro-
duced an inter-kernel communication layer, on top of
which we developed mechanisms to create a single sys-
tem image (e.g. single filesystem namespace) and inter-
kernel task migration (i.e. task and address space migra-
tion and address space consistency). TTY and a virtual
network switch was also developed to allow for com-
munication between kernels. Our contribution also in-
cludes a set of user-space libraries and tools to support
Popcorn. A modified version of kexec was introduced to
boot the environment; the util toolchain was built to cre-
ate replicated-kernel OS configurations. MPI-Popcorn
and the cthread/pomp library were introduced to sup-
port MPI and OpenMP applications on Popcorn, respec-
tively. Here we describe Popcorn’s architecture and im-
plementation details, in particular, the modifications that
we introduced into the Linux source code to implement
the features required by a replicated-kernel OS design.
We also present initial results obtained on our proto-
type, which was developed on x86 64bit multicore hard-
ware. Popcorn has been evaluated through the use of
cpu/memory intensive, as well as I/O intensive work-
loads. Results are compared to results from the same
workloads collected on SMP Linux and KVM.

Document Organization We first present the existing
work on the topic in Section 2. We introduce our de-
sign choices and architecture in Section 3, and we cover
the implementation details of our prototype in Section 4.
We present the experimental environment in Section 5
and discuss the results we obtained by running selected
benchmarks on Popcorn against mainly vanilla Linux
(called SMP Linux hereafter) in Section 6. Finally, we
conclude in Section 7.

2 Related Work

The body of work related to our approach includes con-
tributions in operating systems, distributed and cluster
systems, and Linux design and performance measure-
ments. We leveraged ideas and experience from these
different efforts in order to build on their findings and to
address their limitations where possible.
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Non-Linux based Several decades ago, Hurricane
[22] and Hive [11] (’92 and ’95) introduced the idea of
a replicated-kernel OS by means of clusters or cells (in
Hive) of CPUs sharing the same kernel image. This is
different from common SMP operating systems, where
a single kernel image is shared by all the CPUs. While
these approaches were built to work on research hard-
ware, the multikernel model was recently revisited by
Barrelfish [5] on modern multicore commodity hard-
ware, with each core loading a single kernel image.
A similar approach was taken by FOS [23] addressing
emerging high core-count architectures where computa-
tional units do not share memory. All these approaches
use message passing for inter-kernel communication.
These message passing mechanisms are implemented
using shared memory programming paradigm. Pop-
corn follows the same approach but differs in the way
the communication mechanism is implemented and in
which data structures are kept consistent amongst ker-
nels. Hurricane, Barrelfish and FOS are microkernel-
based, but Hive was developed as a modification of the
IRIX variant of Unix, similarly to how our work is based
on Linux.

Linux-based approaches To the best of our knowl-
edge there is no previous effort that uses Linux as the
kernel block in a replicated-kernel OS. However, there
are notable efforts in this direction that intersect with
the cluster computing domain, including ccCluster (L.
McVoy), K. Yaghmour’s work [24] on ADEOS, and
Kerrighed [18]. Kerrighed is a cluster operating system
based on Linux, it introduced the notion of a kernel-level
single system image. Popcorn implements a single sys-
tem image on top of different kernels as well, but the
consistency mechanism and the software objects that are
kept consistent are fundamentally different. ccCluster
and ADEOS aim to run different operating systems on
the same hardware on top of a nano-kernel, cluster com-
puting software was used to offer a single system image.
Popcorn kernels run on bare hardware.

We know of three separate efforts that have imple-
mented software partitioning of the hardware (i.e. mul-
tiple kernel running on the same hardware without vir-
tualization) in Linux before: Twin Linux [16], Linux
Mint [19] and SHIMOS [21]. Different from Popcorn,
the source code of these solutions are not available (even
upon request). Although they describe their (different)
approaches, they do not present significant performance

CPUCPU CPU

Linux

Application

Figure 1: SMP Linux software architecture on multi
core hardware. A single kernel instance controls all
hardware resources and manages all applications.

numbers, and they do not explore the functionality of
their solution over 4 CPUs (on the x86 architecture).
Twin Linux was deployed on a dual-core processor. The
authors modified GRUB in order to boot two instances
of Linux in parallel using different images and hard-
ware resource partitions on different cores. To allow
the kernels to communicate with each other, they pro-
vide a shared memory area between the kernels. Linux
Mint, despite similarities to Twin Linux, lacks an inter-
kernel communication facilities. The bootup of differ-
ent kernel instances in Linux Mint is handled sequen-
tially by the bootstrap processor, something we borrow
in our implementation of Popcorn. Popcorn and SHI-
MOS boot different kernel instances sequentially but
any kernel can boot any other kernel. SHIMOS imple-
ments an inter-kernel communication mechanism in or-
der to share hardware resources between different Linux
instances. Despite the fact that the same functionality
is implemented in Popcorn, SHIMOS was designed as
a lightweight alternative to virtualization. Therefore it
does not implement all of the other features that charac-
terize a multikernel OS.

3 Popcorn Architecture

The replicated-kernel OS model, mainly suitable for
multi-core hardware, implies a different software archi-
tecture than the one adopted by SMP Linux. The SMP
Linux software stack is depicted in Figure 1. A single
kernel instance controls all hardware resources. Appli-
cations run in the user space environment that the kernel
creates. Popcorn’s software stack is shown in Figure 2.
Each kernel instance controls a different private subset
of the hardware. New software layers have been intro-
duced to allow an application to exploit resources across
kernel boundaries. These new software layers are ad-
dressed in this section.
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Figure 2: Popcorn Linux software architecture. Each
core or group of cores loads a kernel instance. Instances
communicate to maintain a single system image.

3.1 Software Partitioning of the Hardware

The idea of running different kernels on the same ma-
chine is nowadays associated with virtualization tech-
nologies. The replicated-kernel OS model does not im-
ply a virtualization layer. In a virtualized environment
different guest kernels coexist on top of a hypervisor.
Several virtualization solutions (e.g., Xen, KVM) rely
on the presence of one of the kernels, the host, for ser-
vices, drawing on a hierarchical relationship between
them. There is no hypervisor in our approach. Instead,
all kernel instances are peers that reside within differ-
ent resource partitions of the hardware. Thus, services
can run (virtually) anywhere. Without the hypervisor
enforcing hardware resource partitioning and manag-
ing hardware resource sharing among kernels, the Linux
kernel itself should be able to operate with any subset of
hardware resources available on the machine. Therefore
we added software partitioning of the hardware as first
class functionality in Popcorn Linux.

CPUs Within SMP Linux, a single kernel instance
runs across all CPUs. After it is started on one CPU, as
a part of the initialization process, it sequentially starts
all the other CPUs that are present in the machine (Fig-
ure 1 and Figure 3.a). Within Popcorn, multiple kernel
instances run on a single machine (Figure 2). After an
initial kernel, named primary, has been booted up on
a subset of CPUs (Figure 3.b), other kernels, the secon-
daries, can be booted on the remaining CPUs (Figure 3.c
and 3.d). Like in SMP Linux each Popcorn kernel in-
stance boots up on single CPU (the bootup) and even-
tually brings up a group of application CPUs. In Fig-
ure 3.b Processor 0 Core 0 is the bootup CPU and starts
Processor 0 Core 1. We support arbitrary partitioning
and clustering of CPUs, mapping some number of CPUs
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Figure 3: Partitioning and clustering of hardware re-
sources. A kernel instance can be assigned to different
a single core or a group of cores. Memory is partitioned
on node boundaries (when possible).

to a given kernel instance. Partitioning refers to assign-
ing one kernel instance per processor core (Figure 3.c
and 3.d); clustering refers to configurations where a sin-
gle kernel image runs on multiple processor cores (Fig-
ure 3.b). CPUs that are working together in a kernel
instance do so in SMP fashion.

Memory and Devices Linux is an SMP OS, as such,
when loaded it assumes that all hardware resources
must be discovered and loaded; i.e. all resources belong
to one kernel instance. In Popcorn, different kernels
should coexist, so we start each kernel with a different
subset of hardware resources; enforced partitioning is
respected by each kernel. Popcorn partitioning includes
CPUs (as described above), physical memory and de-
vices. Every kernel owns a private, non overlapping,
chunk of memory, and each device is assigned at startup
to one only kernel.

In Figure 3 depicts an example of partitioning of 4 de-
vices to 3 kernels. Figure 3.b shows that Device 0 is
owned by Kernel 0; Figure 3.c shows that Device 2 and
Device 3 are own by Kernel 1.

On recent multi-core architectures, each group of cores
has a certain amount of physical memory that is di-
rectly connected to it (or closely bounded). Thus, ac-
cessing the same memory area from different processors
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Figure 4: Non-NUMA-aware (a) and NUMA-aware (b)
partitioning/clustering of memory on the x86 architec-
ture. The PCI memory hole and the sharing of the first
1 MB of RAM are enforced by the architecture.

incurs different amounts of latencies (NUMA). Physical
RAM is usually contiguous but it can contain memory
holes, for example to map hardware devices (e.g. PCI
hole in x86). Moreover, depending on host architecture,
parts of the address space must be shared between all
kernels (e.g. in x86 the first 1MB of memory should
be shared because of the boot sequence). The parti-
tioning of physical memory must consider all of these
architecture-specific details. We developed a variety of
memory partitioning policies that apply to CPU parti-
tions or clusters. Figure 4 shows two possible memory
policies: non-NUMA-aware (Figure 4.a), and NUMA-
aware (Figure 4.b). The latter gives greatest weight to
deciding how to allocate private memory windows to the
system topology, with the aim of reducing memory ac-
cess latencies.

3.2 Inter-Kernel Communication

A replicated-kernel OS, strives to provide a single ex-
ecution environment amongst kernels. In order to ac-
complish this, kernels must be able to communicate. In
Popcorn, communication is based on message passing.

To let the kernels communicate we introduced a low-
level message passing layer, deployed over shared mem-
ory. Many message passing techniques have been intro-
duced in the literature [9, 10, 5]. We opted for a commu-
nication mechanism with private receive-only buffers.

Such buffers are allocated in the receiver kernel mem-
ory. The layer provides priority-based, synchronous and
asynchronous messaging between kernels.

It also provides multicast capabilities to allow for one to
many communications. This capability is useful in im-
plementing many distributed algorithms, including dis-
tributed locks, voting mechanisms, and commit proto-
cols.

3.3 Single System Image

Applications running on SMP Linux expect a single sys-
tem image regardless of the CPU they are running on.
That is all the CPUs, peripheral devices, memory, can
be used by all applications concurrently; furthermore
processes communicate and synchronize between them.
In Popcorn, the messaging layer is used to coordinate
groups of kernels to create a single working environ-
ment. Similar to the pioneering work in Plan9 [20],
Popcorn’s single system image includes: single filesys-
tem namespace (with devices and proc), single pro-
cess identification (PID), inter-process communication
(IPC), and CPU namespaces.

Relative to physical memory and available CPUs, hard-
ware peripherals are comparatively limited in number.
After being initialized by a kernel they cannot be ac-
cessed in parallel by different kernels; for the same rea-
son concurrent access to devices in SMP Linux is syn-
chronized through the use of spinlocks. Popcorn makes
use of a master/worker model for drivers to make de-
vices concurrently accessible through any kernel via the
single system image. The master kernel owns the de-
vice, and the worker kernels interact with the device
through message exchange with the master kernel. A
specific example of such a device is the I/O APIC, the
programmable interrupt controller on the x86 architec-
ture. The I/O APIC driver is loaded exclusively on the
primary kernel, that becomes the master, and any other
kernels with a device in their resource partition that re-
quires interrupts registration exchange messages with
that kernel in order to operate with the I/O APIC.

3.4 Load Sharing

In a multikernel OS, as in a SMP OS, an applications’
threads can run on any of the available CPUs on the
hardware. Popcorn was extended to allow user-space
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tasks to arbitrarily migrate between kernels. Most of the
process related data structures are replicated, including
the virtual address space. The virtual address space for
a process with threads executing on different kernels is
maintained consistent over the lifetime of the process.

4 x86 Implementation

Linux was not designed to be a replicated-kernel OS. In
order to extend its design, large parts of Linux had to be
re-engineered. In this section we cover implementation
details that characterize our x86 64bit prototype. We
deployed Popcorn starting from vanilla Linux version
3.2.14. The current Popcorn prototype adds a total of
∼ 31k lines to the Linux kernel source. The user-space
tools are comprised of ∼ 20k lines of code, of which
∼ 4k lines were added to kexec.

4.1 Resource Partitioning

Loading Popcorn Linux requires the establishment of a
hardware resource partitioning scheme prior to booting
the OS. Furthermore, after the primary kernel has been
booted up, all of the remaining kernels can be started.
Once this procedure has been followed, the system is
ready to be used, and the user can switch to the Popcorn
namespace and execute applications on the replicated-
kernel OS. Figure 5.a illustrates the steps involved in
bringing up the Popcorn system - from OS compilation
to application execution. If the Hotplug subsystem is
available, the steps in Figure 5.b can be followed in-
stead.

In support of partitioning, we have built a chain of appli-
cations that gather information on the machine on which
Popcorn will run. That information is then used to create
the configuration files needed to launch the replicated-
kernel environment. This tool chain must be run on
SMP Linux, on the target machine, since it exploits
resource enumeration provided by the Linux kernel’s
NUMA subsystem. A vast set of resource partitioning
rules can be used to generate the configuration, includ-
ing and not limited to one-kernel per core, one-kernel
per NUMA node, same amount of physical memory per
kernel, memory aligned on NUMA boundary. The con-
figuration parameters that are generated are mostly in
the form of kernel command-line arguments.
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Figure 5: Two different ways of booting Popcorn Linux.
Without and with hotplug (CPU and memory) support.

4.2 Booting Multiple Kernels

The kexec software is normally used to reboot a ma-
chine into a new kernel from an already-running ker-
nel. We modified both the kexec application itself and
the backend code in the Linux kernel to load new kernel
instances (secondary kernels) that run in parallel with
the current one, but on a different partition of hardware
resources. Kernels are booted in sequence.

As part of the kexec project, the Linux kernel was made
relocatable, and can potentially be loaded and executed
from anywhere within the physical address space [14].
However, it was necessary to rewrite the kernel bootup
code in head_64.S to boot kernels at any location
throughout the entire physical address space. This mod-
ification required an addition to the early pagetable cre-
ation code on x86 64bit. In order to boot secondary ker-
nels, we modified the trampoline, that is the low level
code used to boot application processors in SMP Linux.
We added trampoline_64_bsp.S whose memory space
gets reserved in low memory at boot time. The same
memory range is shared by all kernels. Because the
trampolines are used by all CPUs, kernels should boot
in sequences. The structure boot_param has been also
modified in order to support a ramdisk sit everywhere in
the physical address space.

The boot sequence of a secondary kernel is triggered
by a syscall to the kexec subsytem. A kernel image is
specified in a syscall argument. Rather than reusing the
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Figure 6: Linux’s bzImage objects loading addresses.
bzImage is a compressed kernel image. It self-extracts
the vmlinux binary executable at 16MB.

same bzImage used by the primary kernel to bring up
the machine, a decompressed and stripped kernel binary
is used to boot the secondary kernels. Figure 6 shows
the organization of the bzImage format. We extract and
boot the “Compressed kernel image”, i.e. a stripped ver-
sion of vmlinux, to keep the size bounded and speed up
the boot process.

The modified kexec copies the kernel binary and the
boot ramdisk to the selected physical locations. It then
initializes the secondary kernel’s boot_paramswith the
appropriate kernel arguments and ramdisk location/size.
At this point kexec sets the remote CPU’s initial instruc-
tion pointer to point to the Popcorn trampoline, and
sends an inter-processor interrupt (IPI) to the CPU to
wake up. After the remote CPU executes its trampoline,
which loads Popcorn’ 64bit identity-mapped pagetable
for the appropriate region, the CPU is able to start a ker-
nel located anywhere in the physical address space.

4.3 Partitioning CPUs

In SMP Linux, each CPU receives an incremental log-
ical identifier, starting from 0, during boot. This log-
ical id can be acquired by kernel code with a call to
smp_processor_id(). This identifier is separate from
the local APIC identifier adopted in the x86 architecture
to distinguish processor cores. In a multicore machine
Popcorn tries to keep the same CPU enumeration as is
used in SMP Linux; for example CPU identifiers of Ker-
nel 0 and Kernel 1 in Figure 3.b and 3.c will be 0,1 and
2 respectively (not 0,1 and 0). This was achieved by re-
lying on the APIC ids and the ACPI tables passed in by
the BIOS.

We furthermore modified the Linux source to up-
grade the legacy subsystems initialization, based on
a check on the kernel id, to a more generic mecha-
nism. Many kernel subsystems were initialized only
if smp_processor_id() was 0. In Popcorn, a new
function has been added that returns true if the cur-
rent CPU is booting up the kernel. Another function,
is_lapic_bsp(), reveals whether the kernel is the pri-
mary.

In order to select which CPUs are assigned to a
kernel we introduce the kernel command line ar-
gument present_mask, which works similarly to
possible_mask added by the Hotplug subsystem.
Booting a kernel on a cluster of cores can be done by
choosing any combination of core ids. It is not neces-
sary that they are contiguous.

4.4 Partitioning Memory and Devices

A resource-masking feature was implemented to let pri-
mary and secondary kernels boot with the same code, on
the same hardware. Linux comes with a set of features
to include and exclude memory from the memory map
provided by the BIOS. We exploited the memmap family
of kernel command line arguments to accomplish mem-
ory partitioning.

In Popcorn, we restrict each kernel to initialize only
the devices in its resource partition. When SMP Linux
boots, it automatically discovers most of the hardware
devices present on the system. This process is possible
by means of BIOS enumeration services and dynamic
discovery. Dynamic discovery is implemented in several
ways, e.g. writing and then reading on memory locations
or I/O ports, writing at an address and then waiting for
an interrupt. This feature is dangerous if executed by
kernel instances other than the kernel that contains a de-
vice to be discovered in its resource partition. Currently
only the primary kernel has dynamic discovery enabled.

BIOS enumeration services provide lists of most of the
devices present in the machine (in x86 ACPI). Each ker-
nel in our system has access to these lists in order to
dynamically move hardware resources between running
kernels. If the static resource partition of a kernel in-
stance does not include a hardware resource, this re-
source must not be initialized by the kernel. For ex-
ample, in the PCI subsystem, we added a blacklisting
capability to prevent the PCI driver from initializing a
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device if it was blacklisted. In our implementation, the
blacklist must be provided as a kernel command line ar-
gument (pci_dev_flags).

4.5 Inter-Kernel Message Passing

A kernel-level message passing layer was implemented
with shared memory and inter processor interrupt (UPI)
signaling to communicate between kernel instances.
The slot-based messaging layer uses cache-aligned pri-
vate buffers located in the receivers memory. The
buffering scheme is multiple writer single reader; con-
currency between writers is handled by means of a tick-
eting mechanism. After a message has been written into
a buffer, the sender notifies the receiver with an IPI. In
order to mitigate the inter processor traffic due to IPIs,
our layer adopts a hybrid of polling and IPI for notifi-
cation. While the receiver dispatches messages to tasks
after receiving a single IPI and message, senders can
queue further messages without triggering IPIs. Once
all messages have been removed from the receive buffer,
IPI delivery is reinstated.

A multicast messaging service is also implemented. In
order for a task to send a multicast message it first
should open a multicast group. Every message sent to
the group is received by the groups subscribers. Multi-
cast groups are opened and closed at runtime. When a
message is sent to a group, it is copied to a memory lo-
cation accessible by all subscribers and an IPI is sent to
each of them iteratively. Because in a replicated-kernel
OS different kernels coexist on the same hardware, we
disable IPI broadcasting (using the kernel command line
argument no_ipi_broadcast). IPI broadcasting will
add additional overhead if used for multicast notifica-
tion. Nonetheless, the hardware we are using does not
support IPI multicast (x2 APIC).

The message passing layer is loaded with
subsys_initcall(). When loaded on the pri-
mary kernel, it creates an array of buffer’s physical
addresses (rkvirt, refer to Figure 7). These arrays are
populated by each of the kernels joining the replicated-
kernel OS with their respective receiver buffer addresses
during their boot processes. The address of this special
array is passed via boot_param struct to each kernel.
Every time a new kernel joins the replicated-kernel
OS it adds its receiver buffer address to rkvirt first,
and then communicates its presence to all the other
registered kernels by message.
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Figure 7: Receiver buffers are allocated in the kernel’s
private memory. In gray is the private memory of each
kernel. rkvirt, the array holding the addresses of the
receiving buffers, is allocated on the primary kernel.

4.6 Namespaces

Namespaces were introduced into SMP Linux to cre-
ate sub-environments, as a lightweight virtualization al-
ternative implemented at the OS level. Kerrighed [18]
uses namespaces (containers) to migrate applications in
a cluster by reproducing the same contained environ-
ment on different kernels. Popcorn uses namespaces to
provide a single environment shared between kernels.
Each kernel’s namespace is kept consistent with the oth-
ers’ through the messaging layer.

Linux 3.2.14, on top of which we developed Popcorn,
supports uts, mount, IPC, PID and network namespaces,
though the API is incomplete. Hence code has been
back ported from Linux kernel 3.8. Popcorn was ex-
tended to include a CPU namespace (see below). Mech-
anisms were also added to create namespaces that are
shared between kernels. Currently the mount names-
pace relies on NFS. The network namespace is used to
create a single IP overlay.

After kernels connect via the messaging layer, static
Popcorn namespaces are created in each kernel. A
global nsproxy structure is then made to point to Pop-
corn’s uts, mount, IPC, PID, network and CPU names-
pace objects. Namespaces on each kernel are updated
whenever a new kernel joins the replicated-kernel OS.
Because Popcorn namespaces get created by an asyn-
chronous event rather than the creation of a task, instead
of using the common /proc/PID/ns interface we added
/proc/popcorn. Tasks join Popcorn by associating to its
namespaces through the use of the setns syscall, which
has been updated to work with statically created names-
paces. When a task is migrated to another kernel it starts
executing only after being (automatically) associated to
Popcorn namespaces.
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CPU Namespace An application that joins Pop-
corn’s CPU namespace can migrate to any kernel
that makes up the replicated-kernel OS, i.e., by mean
of sched_setaffinity(). Outside Popcorn’s CPU
namespace, only the CPUs on which the current ker-
nel is loaded are available to applications. If Linux’s
namespaces provides a subset of the resources (and for
CPUs Linux includes cgroups or domains), Popcorn’s
namespaces show a superset.

We added the kernel command line parameter
cpu_offset. This is the offset of the current
cpumask_t in the Popcorn CPU namespace. We added
the field cpuns of type struct cpu_namespace *
to the struct nsproxy. We augment task_struct
with a new list_head struct to hold a variable
length cpu bitmap. Amongst the other, the functions
sched_getaffintiy and sched_setaffinity have
been updated to work based on the current CPU names-
pace. Finally, a task in a different CPU namespace
will read different contents from /proc/cpuinfo. In the
Popcorn namespace it will see all the CPUs available in
all joining kernels.

4.7 Devices

Following the peer kernel paradigm, implied by the
replicated-kernel OS design, we adopted inter-kernel
coordination in order to access remotely owned hard-
ware resources. Devices rely on namespaces for enu-
meration purposes, and message passing for access and
coordination. Access to a device can be proxied by a
kernel (e.g. the I/O APIC example from Section 3.3)
otherwise ownership of a device can be passed to an-
other kernel (in the case where exclusive ownership is
required, i.e. CD-ROM burning application). On kernels
in which a device is not loaded, a dummy device driver
monitors application interaction with that device. Based
on the device type, application’s requests are either for-
warded to the owner kernel (proxied access), or locally
staged waiting for local device driver re-initialization
(ownership passing).

The following inter-kernel communication devices were
implemented outside the messaging dependent mecha-
nism described above for debugging and performance
reasons.

Virtual TTY For low-bandwidth applications (e.g.
launching processes or debugging) a virtual serial line

device, controlled by a TTY driver, is provided between
any kernel pair. Each kernel contains as many virtual
TTY device nodes (/dev/vtyX) as there are kernels in
Popcorn (X is the smallest CPU id of the kernel to con-
nect to). Each kernel opens a login console on /dev/vty0
during initialization. A shared memory region is divided
between all of the device nodes in a bidimensional ma-
trix. Each cell of the matrix holds a ring buffer and the
corresponding state variables. The reading mechanism
is driven by a timer that periodically moves data from
the shared buffer to the flip buffer of the destination ker-
nel.

Virtual Network Switch As in virtual machine envi-
ronments, we provide virtual networking between ker-
nel instances. The kernel instance that owns the network
card acts as the gateway and routes traffic to all the other
clients. In this setup each kernel instance has an asso-
ciated IP address, switching is automatically handled at
the driver level. A network overlay, constructed using
the network namespace mechanism, provides a single
IP amongst all kernels. We developed a kernel level net-
work driver that is based on the Linux TUN/TAP driver
but uses IPI notification and fast shared-memory ring
buffers for communication. Our implementation uses
the inter-kernel messaging layer for coordination and
check-in (initialization).

4.8 Task Migration

To migrate tasks, i.e. processes or threads, between ker-
nel instances, a client/server model was adopted. On
each kernel, a service is listening on the messaging layer
for incoming task migrations. The kernel from which a
task would like to out-migrate initiates the communica-
tion.

An inter-kernel task migration comprises of three main
steps. First, the task which is to be migrated is stopped.
Secondly, the whole task state is transferred to the
server, where a dummy task, that acts as the migrated
task, is created on the remote kernel. Thirdly, all the
transferred information about the migrated task are im-
ported into the dummy task, and the migrated task is
ready to resume execution.

The task that was stopped on the sending kernel remains
behind, inactive, as a shadow task. A shadow task is
useful for anchoring resources, such as memory and file
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descriptors, preventing reuse of those resources by the
local kernel. Shadow tasks also serve the purpose of
speeding up back migrations. When a task is migrated
back to a kernel that it has already visited, its current
state is installed in the shadow task, and the shadow task
is reactivated.

Task State The state of a task is comprised of reg-
ister contents, its address space, file descriptors, sig-
nals, IPCs, users and groups credentials. Popcorn cur-
rently supports migrating struct pt_regs and union
thread_xstate, as CPU’s registers on the x86 archi-
tecture. The address space must also be migrated to
support the continued execution of migrated tasks. An
address space is comprised of virtual memory area in-
formation struct vm_area_struct, and the map of
physical pages to those virtual memory areas. The
latter can obtained by walking the page tables (using
walk_page_range). Address space mappings are mi-
grated on-demand, in keeping with Linux custom. Map-
pings are migrated only in response to fault events. This
ensures that as a task migrates, overhead associated with
carrying out mapping migrations is minimized by mi-
grating only mappings that the task needs. When an
application needs a mapping, that mapping is retrieved
from remote kernels, and replicated locally. Page level
granularity is supported. If no mapping exists remotely,
one is created using the normal Linux fault handling
routine. This is how tasks come to rely on memory
owned by multiple kernels. As a task migrates and
executes, it’s memory is increasingly composed of lo-
cally owned memory pages and remote owned mem-
ory pages (the latter do not have an associated struct
page, therefore are not normal pages). Remote pages
are guaranteed to remain available due to the presence of
shadow tasks. A configurable amount of address space
prefetch was also implemented, and found to have posi-
tive performance effect in some situations. Prefetch op-
erations are piggy-backed on mapping retrieval opera-
tions to reduce messaging overhead.

State Consistency No OS-level resources are shared
between tasks in the same thread group which happen to
be running on different kernels. Instead, those resources
are replicated and kept consistent through protocols that
are tailored to satisfy the requirements of each replicated
component.

Inter-kernel thread migration causes partial copies of
the same address space to live on multiple kernels. To
make multi-threaded applications work correctly on top
of these different copies, the copies must never contain
conflicting information. Protocols were developed to
ensure consistency as memory regions are created, de-
stroyed, and modified, e.g. mmap, mprotect, munmap,
etc.

File descriptors, signals, IPCs and credentials are also
replicated objects and their state must also be kept con-
sistent through the use of tailored consistency protocols.

5 Evaluation

The purpose of this evaluation is to investigate the be-
havior of Popcorn when used as 1) a tool for software
partitioning of the hardware, and 2) a replicated-kernel
OS. A comparison of these two usage modes will high-
light the overheads due to the introduced software mech-
anism for communication, SSI and load sharing between
kernels. We compared Popcorn, as a tool for software
partitioning of the hardware, to a similarly configured
virtualized environment based on KVM, and to SMP
Linux. Popcorn as a replicated-kernel OS is compared
to SMP Linux.

Hardware We tested Popcorn on a Supermicro
H8QG6 equipped with four AMD Opteron 6164HE pro-
cessors at 1.7GHz, and 64GB of RAM. Each processor
socket has 2 physical processors (nodes) on the same
die, each physical processor has 6 cores. The L1 and
L2 caches are private per core, and 6 MB shared L3
cache exist per processor. All cores are interconnected
cross-die and in-die, forming a quasi-fully-connected
cube topology [13]. RAM is equally allocated in the
machine; each of the 8 nodes has direct access to 8GB.

Software Popcorn Linux is built on the Linux 3.2.14
kernel; SMP Linux results are based on the same vanilla
kernel version. The machine ran Ubuntu 10.04 Linux
distribution, the ramdisk for the secondary kernels are
based on Slackware 13.37.

In a first set of experiments we used the most recent
version of KVM/Nahanni available from the project
website [17]. We adopted libvirt (version 0.10.2)
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for managing the VMs. Since libvirt does not cur-
rently support ivshmem devices (Nahanni), we modi-
fied the libvirt source code. To run the MPI experi-
ments, KVM/Nahanni includes a modified version of
MPICH2/Nemesis called MPI-Nahanni (although not
publicly available). The modified version exploits
Nahanni shared memory windows for message pass-
ing. The code we received from the authors re-
quired some fixes to work properly. Based on MPI-
Nahanni we implemented an MPI-Popcorn version of
MPICH2/Nemesis.

The OpenMP experiments do not use glibc/pthread nor
glibc/gomp. Instead a reduced POSIX threading library,
without futexes, is adopted, called cthread. Furthermore
gomp is replaced by a modified version of the custom
OpenMP library derived from the Barrelfish project, we
called it pomp as Popcorn OpenMP.

In all experiments we setup KVM/Nahanni with one vir-
tual machine per core. Similarly, we configure Popcorn
with one kernel per core. Linux runs with all available
cores on the machine active but not when running the
OpenMP experiments. In this case we set the number of
active cores equal to the number of threads.

5.1 CPU/Memory Bound

To evaluate Popcorn on CPU/memory bounded work-
loads, we used NASA’s NAS Parallel Benchmark (NPB)
suite [4]. In this paper we present results from Class A
versions of Integer Sort (IS), Conjugate Gradient (CG),
and Fourier Transform (FT) algorithms. We chose Class
A, a small data size, in order to better highlight operat-
ing system overheads. NPB is available for OpenMP
(OMP) and MPI. The OMP version is designed for
shared memory machines, while the MPI version is
more suitable for clusters.

Because they use two different programming
paradigms, OMP and MPI are not directly compa-
rable. Because of that, we use both versions to quantify
the overhead, compared to Linux, of the software
partitioning of the hardware functionality, and the full
software stack required by the replicated-kernel OS.

MPI A setup in which multiple kernel instances co-
exist on the same hardware resembles a virtualiza-
tion environment. Therefore we decided to compare

Popcorn, not only with SMP Linux but also with
KVM/Nahanni [17] (that resemble the Disco/Cellular
Disco replicated-kernel OS solution [8]).

Nahanni allows several KVM virtual machines, each
running Linux, to communicate through a shared mem-
ory window. MPI applications are used in this test be-
cause despite there is shared memory, an OpenMP appli-
cation can not run across multiple virtual machines. Be-
cause this test focuses on compute/memory workloads,
we used MPI-Nahanni, which does use network com-
munication, only for coordination, i.e. there is no I/O
involved after the application starts. For this test Pop-
corn is not exploiting it’s messaging layer, SSI, or load
sharing functionality. MPI-Popcorn relies only on the
presence of the standard /dev/mem, although the virtual
network switch is used to start the MPI application.

OpenMP As a replicated-kernel OS, Popcorn is able
to transparently run a multithreaded application across
multiple kernels. Therefore we compare the perfor-
mance of the aforementioned NPB applications while
running on SMP Linux and Popcorn. OMP NPB ap-
plications were compiled with gcc once with cthread,
and pomp, and then run on both OSes. This experiment
highlights the overhead due to all of Popcorn’s software
layers.

5.2 I/O Bound

This test investigates the response time of a web server
running on our prototype in a secondary kernel. Be-
cause our inter-kernel networking runs below the SSI
layer, this test stresses the software partitioning of the
hardware functionality of Popcorn.

We run the event-based nginx web server along with
ApacheBench, a page request generator from the
Apache project. From a different machine in the same
network, we generate http requests to SMP Linux, to
secondary kernels in Popcorn, and to guest kernels on
KVM. This configuration is shown in Figure 8. Al-
though higher-performance network sharing infrastruc-
tures exist for KVM, we use the built-in bridged net-
working that is used in many research and industrial se-
tups.
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Apache 
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Figure 8: The network configuration used to generate
the results in Figure 15.

6 Results

6.1 CPU/Memory workloads

MPI Figures 9, 10 and 11 show how Popcorn and its
competitors perform on integer sort, the Fourier trans-
form, and the conjugate gradient benchmarks, respec-
tively, within MPI. Graphs are in log2 scale. For each
data point, we ran 20 iterations, and provide average
and standard deviation. Popcorn numbers are always
close to SMP Linux numbers, and for low core counts
Popcorn performs better. In the best case (on 2 and 4
cores running CG), it is more than 50% faster than SMP
Linux. In the worst case (on 16 cores running FT), Pop-
corn is 30% slower the SMP Linux.

In Linux, MPI runs a process per core, but such pro-
cesses are not pinned to the cores on which they are cre-
ated: they can migrate to another less loaded core if the
workload becomes unbalanced. In Popcorn, each pro-
cess is pinned by design on a kernel running on a single
core; if the load changes, due to system activities, the
test process can not be migrated anywhere else. This is
part of the cause of the observed SMP Linux’s trends.
Popcorn must also pay additional overhead for virtual
networking and for running the replicated-kernel OS en-
vironment. We believe that communication via the vir-
tual network switch is the main source of overhead in
Popcorn. Considering the graphs, this overhead appears
to be relatively small, and in general, the numbers are
comparable. Finally, Popcorn enforced isolation results
in a faster execution at low core counts; this shows that
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Figure 9: NPB/MPI integer sort (IS) benchmark results.
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Figure 10: NPB/MPI fast Fourier transform (FT) bench-
mark results.

Linux’s distributed work stealing scheduling algorithm
can be improved.

Nahanni is the worst in terms of performance. It is up
to 6 times slower than SMP Linux and Popcorn (on 32
cores running either CG or FT). Although Nahanni’s one
core performance is the same as SMP Linux, increas-
ing the core count causes the performance to get worse
on all benchmarks. A slower benchmark execution was
expected on Nahanni due to the overhead incurred by
virtualization. However, the high overhead that was ob-
served is not just because of virtualization but is also
due to inter-VM communication and scheduling on the
Linux host.
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Figure 11: NPB/MPI conjugate gradient (CG) bench-
mark results.

OpenMP Figures 12, 13 and 14 show how Popcorn
and SMP Linux perform on IS, FT, and CG benchmarks,
respectively, within OpenMP. Graphs are in log2 scale.
For each data point, we ran 20 iterations, and we provide
average and standard deviation.

Unlike the MPI experiments, there is no obvious com-
mon trend among the experiments. In the IS exper-
iment, Popcorn is in general faster than SMP Linux,
SMP Linux is up to 20% slower (on 32 cores). The
FT experiment shows similar trends for Popcorn and
SMP Linux, although SMP Linux is usually faster (less
than 10%) but not for high core counts. In the CG ex-
periment Popcorn performs poorly being up to 4 times
slower than SMP Linux on 16 cores.

These experiments show that the performance of Pop-
corn depends on the benchmark we run. This was ex-
pected, as our address space consistency protocol per-
formance depends on the memory access pattern of the
application. Analysis and comparison of the overhead in
SMP Linux and Popcorn Linux reveals that the removal
of lock contention from SMP Linux yields significant
gains for Popcorn over SMP Linux. This contention re-
moval is an artifact of the fact that data structures are
replicated, and therefore access to those structures does
not require significant synchronization. However, Pop-
corn must do additional work to maintain a consistent
address space. These two factors battle for dominance,
and depending on the workload, one will overcome the
other. Mechanisms are proposed to reduce the Popcorn
overhead with the goal of making further performance
gains on SMP Linux.

4

8

16

0.5 1 2 4 8 16 32

T
im

e
 (

C
y
c
le

s
 x

 1
0

8
)

Cores

SMP Linux Popcorn

Figure 12: NPB/OpenMP integer sort (IS) benchmark
results.
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Figure 13: NPB/OpenMP fast Fourier transform (FT)
benchmark results.
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Figure 14: NPB/OpenMP conjugate gradient (CG)
benchmark results.
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Figure 15: Apache Bench results on nginx web server
on SMP Linux, Popcorn and KVM. Response time in
ms on the x axis, number of requests on the y axis.

6.2 I/O Bound

We set ApacheBench to run 10000 requests with a con-
currency level of 100 and 1000 threads to obtain the data
in Figure 15.

The data show that the Popcorn architecture does not
hinder the performance of running a web server (I/O
bound benchmark) on the selected hardware, when com-
pared to SMP Linux. Figure 15 shows that in most
cases, Popcorn can serve a request faster then Linux,
which is attributable both to scheduling and to the fact
that the task of handling the hardware network interface
is shared with the kernel instance that owns it. KVM
suffers due to virtualization and scheduling overhead.

7 Conclusions

We introduced the design of Popcorn Linux and the re-
engineering required by the Linux kernel to boot a coex-
istent set of kernels, and make them cooperate as a sin-
gle operating system for SMP machines. This effort al-
lowed us to implement and evaluate an alternative Linux
implementation while maintaining the shared memory
programming model for application development.

Our project contributes a number of patches to the
Linux community (booting anywhere in the physical
address space, task migration, etc.). Popcorn’s boot-
ing anywhere feature offers insight into how to re-
engineer Linux subsystems to accommodate more com-
plex bootup procedures. Task migration enables Linux

to live migrate execution across kernels without virtual-
ization support. Next steps include completing and con-
solidating the work on namespaces, using rproc/rpmsg
instead of kexec and re-basing the messaging on virtio.

Our MPI results show that Popcorn provides results sim-
ilar to Linux, and that it can outperform virtualization-
based solutions like Nahanni by up to a factor of 10. The
network test shows that Popcorn is faster than Linux and
Nahanni. Popcorn is not based on hypervisor technolo-
gies and can be used as an alternative to a set of virtual
machines when CPUs time-partitioning is not necessary.
The OpenMP results show that Popcorn can be faster,
comparable to, or slower then Linux, and that this be-
haviour is application dependent. The replicated-kernel
OS design applied to Linux promises better scaling, but
the gains are sometimes offset by other source of over-
heads (e.g. messaging). An analysis on a thousands of
cores machine can provide more insight into this solu-
tion.

It turns out that a replicated-kernel OS based on Linux
aggregates the flexibility of a traditional single-image
OS with the isolation and consolidation features of a vir-
tual machine, but on bare metal, while being potentially
more scalable on high core count machines. The full
sources of Popcorn Linux and associated tools can be
found at http://www.popcornlinux.org.
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