
Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Contents
Autotest — Testing the Untestable 9

John Admanski & Steve Howard

Increasing memory density by using KSM 19
Andrea Arcangeli

Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices 29
R. Banginwar, M. Leibowitz, & T. Tanaka

Dynamic Debug 39
Jason Baron

Measuring Function Duration with Ftrace 47
Tim Bird

The Simple Firmware Interface 55
A. Leonard Brown

The Corosync High Performance Shared Memory IPC Reusable C Library 61
Steven C Dake

GStreamer on Texas Instruments OMAP35x Processors 69
D. Darling, C. Maupin, & B. Singh

From Fast to Predictably Fast 79
Dominic Duval

Combined Tracing of the Kernel and Applications with LTTng 87
Pierre-Marc Fournier

Twenty Years Later: Still Improving the Correctness of an NFS Server 95
R. Gardner, S. D’Angelo, & M. Sears

Memory Migration on Next-Touch 101
Brice Goglin & Nathalie Furmento

Non Privileged User Package Management:
Use Cases, Issues, Proposed Solutions 111
François-Denis Gonthier & Steven Pigeon

GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level 123
John Hawley

Porting to Linux the Right Way 131
Neil Horman

Tracing the HA Cluster of Guests with VESPER 141
S. Kim, S. Moriya, & S. Oshima

Hardware Breakpoint (or watchpoint) usage in Linux Kernel 149
Prasad Krishnan

Shoot first and stop the OS noise 159
Christopher Lameter

Tuning 10Gb network cards on Linux 169
B.H. Leitao

A day in the life of a Linux kernel hacker. . . 185
John W. Linville

Transcendent Memory and Linux 191
Dan Magenheimer

Incremental Checkpointing for Grids 201
John Mehnert-Spahn

Putting LTP to test—Validating both the Linux kernel and Test-cases 209
Subrata Modak

Linux-based virtualization for HPC clusters 221
L. Nussbaum, F. Anhalt, O. Mornard, & J.-P. Gelas

I/O Topology 235
Martin K. Petersen

Step two in DCCP adoption: The Libraries 239
L.M. Sales, H. Stuart, H.O. Almeida, & A. Perkusich

Programmatic Kernel Dump Analysis On Linux 251
Alex Sidorenko

Online Hierarchical Storage Manager 263
S.K. Sinha, R.B. Agrawal, V. Agarwal, R. Vashist, R.K. Sharma, & S. Hendre

Effect of readahead and file system block reallocation for LBCAS 275
K. Suzaki, T. Yagi, K. Iijima, N.A. Quynh, & Y. Watanabe

Scaling software on multi-core through co-scheduling of related tasks 287
Srivatsa Vaddagiri

Converged Networking in the Data Center 297
Peter P. Waskiewicz Jr.

How to (Not) Lose Your Data 303
Ric Wheeler

Testing and verification of cluster filesystems 311
Steven Whitehouse

Fixing PCI Suspend and Resume 319
Rafael J. Wysocki

Real-Time Performance Analysis in Linux-Based Robotic Systems 331
H. Yoon, J. Song, & J. Lee

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Autotest — Testing the Untestable

John Admanski
Google Inc.

jadmanski@google.com

Steve Howard
Google Inc.

showard@google.com

Abstract

Increased automated testing has been one of the most
popular and beneficial trends in software engineering.
Yet low-level systems such as the kernel and hardware
have proven extremely difficult to test effectively, and as
a result much kernel testing has taken place in a manual
and relatively ad-hoc manner. Most existing test frame-
works are designed to test higher-level software isolated
from the underlying platform, which is assumed to be
stable and reliable. Testing the underlying platform it-
self requires a completely new set of assumptions and
these must be reflected in the framework’s design from
the ground up. The design must incorporate the machine
under test as an important component of the system and
must anticipate failures at any level within the kernel
and hardware. Furthermore, the system must be capable
of scaling to hundreds or even thousands of machines
under test, enabling the simultaneous testing of many
different development kernels each on a variety of hard-
ware platforms. The system must therefore facilitate ef-
ficient sharing of machine resources among developers
and handle automatic upkeep of the fleet. Finally, the
system must achieve end-to-end automation to make it
simple for developers to perform basic testing and incor-
porate their own tests with minimal effort and no knowl-
edge of the framework’s internals. At the same time, it
must accommodate complex cluster-level tests and di-
verse, specialized testing environments within the same
scheduling, execution and reporting framework.

Autotest is an open-source project that overcomes these
challenges to enable large-scale, fully automated test-
ing of low-level systems and detection of rare bugs
and subtle performance regressions. Using Autotest at
Google, kernel developers get per-checkin testing on a
pool of hundreds of machines, and hardware test engi-
neers can qualify thousands of new machines in a short
time frame. This paper will cover the above challenges
and present some of the solutions successfully employed
in Autotest. It will focus on the layered system architec-

ture and how that enables the distribution of not only
the test execution environment but the entire test control
system, as well as the leveraging of Python to provide
simple but infinitely extensible job control and test har-
nesses, and the automatic system health monitoring and
machine repairs used to isolate users from the manage-
ment of the test bed.

1 Introduction

Autotest is a framework for fully automated testing of
low-level systems, including kernels and hardware. It
is designed to provide end-to-end automation for func-
tional and performance tests against running kernels or
hardware with as little manual setup as possible. This
automation allows testing to be performed with less
wasted effort, greater frequency, and higher consistency.
It also allows tests to be easily pushed upstream to vari-
ous developers, moving testing earlier into the develop-
ment cycle.

Using Autotest, kernel and hardware engineers can
achieve much greater test coverage than such compo-
nents usually receive. This typical lack of effective
low-level systems testing comes with good reason: au-
tomated testing of such systems is a difficult task and
presents many challenges distinct from userspace soft-
ware testing. This paper introduces the requirements
Autotest aims to meet and some of the unique challenges
that arise from these requirements, including robust test-
ing in the face of system instability, scaling to thousands
of test machines, and minimizing complexity of test ex-
ecution and test development. The paper will discuss
solutions for each of these challenges that have been em-
ployed in Autotest to achieve effective, fully automated
low-level systems testing.

2 Background

High-quality automated testing is a necessity for any
large, long-lived software project to maintain stability

• 9 •

10 • Autotest — Testing the Untestable

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autoserv

Test Server

Autoserv

Test Server

Autoserv

Frontend

Control Server

Job
Scheduler

USERS

Figure 1: High level operation of a complete Autotest system

while permitting rapid development. This is as true for
the Linux kernel and other system software as it is for
user-space software. However, so far the benefits of
automated testing have been most successfully realized
within user-space applications.

Most existing test automation frameworks are targeted
at software running on top of the platform provided by
the hardware and operating system, the realm in which
nearly all software operates. By taking advantage of
the assumption that an application is running in a re-
liable standardized environment provided by the plat-
form, a framework can abstract away and simplify most
of the underlying system. When attempting to provide
the same services for kernel (and hardware) testing, this
assumption is no longer reasonable since the underlying
system is an integral component of what is being tested.
This was part of the original motivation for the develop-
ment of the first versions of Autotest and its predecessor,
IBM Autobench[5][4].

Autotest begins with the goal of testing the underlying
platform itself, and this goal engenders a unique set of
requirements. Firstly, because the platform on which

Autotest runs is itself under test, Autotest must be built
from the ground up to assume system instability. This
requires graceful handling of kernel panics, hardware
lockups, network failures, and other unexpected fail-
ures. In addition, tasks such as kernel installation and
hardware configuration must be simple, commonplace
activities in Autotest.

Secondly, because the platform under test cannot be eas-
ily virtualized, every running test requires a physical
machine. Hardware virtualization may be used for basic
kernel testing, but as it fails to produce accurate per-
formance results and can mask platform-specific func-
tional issues it is useful only for the most basic kernel
functional verification. Autotest is therefore built to run
every test on a physical machine, both for kernel and
hardware testing. This makes coordination among mul-
tiple machines a core necessity in Autotest and further-
more implies that scaling requires distribution of testing
among hundreds or even thousands of machines. This
additionally creates a need for a system of efficient shar-
ing of test machines between users to maximize utiliza-
tion over such a large test fleet.

2009 Linux Symposium • 11

Finally, Autotest must fulfill the generic requirements
of any testing framework. In particular, Autotest must
minimize the overhead imposed on test developers. It
must be trivial to incorporate existing tests, easy to write
simple new tests, and possible to write complex multi-
process or multimachine tests, all within the same basic
framework. Furthermore, developing tests should be a
simple, familiar process, requiring interaction with only
a small subset of the available infrastructure. Tests must
therefore be easily executable by hand and simultane-
ously pluggable into a large-scale scheduling system.
These levels of abstraction are broken down into distinct
modules discussed in more detail throughout this paper.

As illustrated in Figure 1, the lowest layer of the sys-
tem is the Autotest client, a simple test framework that
runs on individual machines. The next layer, Autoserv,
is designed to run on centralized test servers to automat-
ically install and execute clients and to coordinate multi-
machine tests. The outermost layer consists of a single
frontend and job scheduler to allow multiple users to
share a single test fleet and results repository. Note that
the dependencies go in only one direction making the
design more modular and allowing users to interact with
the system on multiple levels. On a large scale users can
push a button on a web interface to launch a complete
test suite on a large cluster of machines while on a small
scale users can run a single test on a local workstation
by executing a shell command.

2.1 Related work

The Linux Test Project "has a goal to deliver test suites
to the open source community that validate the reliabil-
ity, robustness, and stability of Linux"[1]. It is a collec-
tion of functional and stress tests for the Linux kernel
and related features as well as a client infrastructure for
test execution. The client infrastructure eases the ex-
ecution of a many tests (there are over 3,000 tests in-
cluded), supports running tests in parallel, can generate
background stress during test execution, and generates a
report of test results at the end of a run. LTP is not, how-
ever, intended to be a general-purpose, fully-automated
kernel testing framework. There are a number of Au-
totest goals that are specifically non-goals of LTP[8]. It
is essentially a collection of tests and is therefore suit-
able for inclusion into Autotest as a test, and indeed such
inclusion has been easily done.

An automation framework called Xentest was developed

for testing the Xen virtualization project. David Bar-
rera et al. note that “testing Linux under Xen and test-
ing Linux itself are very much alike” and perform part
of their testing by “running standard test suites under
Linux running on top of Xen”, including LTP[3]. Since
testing Xen is much like testing the underlying hardware
itself the goals of Autotest share much in common with
those of Xentest, both from a kernel testing and a hard-
ware testing point of view. Xentest is a collection of
scripts with support for building and booting Xen, run-
ning tests under it, and gathering results logs together. It
does not support any automated analysis of test results
to determine pass/fail conditions. Test runs are config-
urable by a control file using the Python ConfigParser
module. This provides simple configuration but lacks
any programmatic power within control files. Finally,
Xentest is built closely around Xen and does not aim to
be generic framework for kernel or hardware testing. On
the other hand, Autotest could be used to perform Xen
testing much like Xentest does and some work has been
done on this in the past.

Crackerjack is another test automation system, one de-
signed specifically for regression testing[10]. It focuses
on finding incompatible API changes between kernel
versions. This is valuable testing but is a narrower focus
from that of Autotest.

Two frameworks that address the problem of distributed
kernel testing are PyReT[6] and ANTS[2]. The former
depends on a shared file system for all communications
while the latter uses a serial console. Both of these re-
quirements on test machines were deemed too restrictive
for Autotest, which relies solely on an SSH connection
for communications. ANTS is quite robust to test ma-
chine failures, as it configures all test machines from
scratch using network booting and is capable of using
remote power control to reset and recover machines that
have become unresponsive. The system additionally in-
cludes a machine reservation tool so that machines can
be shared between developers and the automated sys-
tem without conflict. These are all important features
that have found their way into Autotest. However, the
system is built strictly for nightly testing and does not
support a general queue of user-customizable jobs. It
includes very limited results analysis in the form of an
email report upon completion of the night’s tests. It runs
a number of open-source tests (including LTP) but does
not support more complex, multimachine tests. Finally,
the system is proprietary and therefore of little direct

12 • Autotest — Testing the Untestable

utility to the community.

For distributed performance testing of the kernel there
exist systems presented by Alexander Ufimtsev[9] and
Tim Chen[7]. In both systems, test machines operate
autonomously, running a client harness which moni-
tors the kernel repository, building and testing new re-
leases as they appear. In this sense, the systems are
built around the specific purpose of per-release testing,
although the latter system includes support for testing
arbitrary patches on any kernel. Both systems’ clients
transmit results to a central repository, a remote server in
the former case and a shared database in the latter. The
former system includes some automated analysis for re-
gression detection based on differences from previous
averages, a task not yet implemented in Autotest. The
latter system includes a web frontend displaying graphs
of each benchmark over kernel versions, with support
for displaying profiler information, rerunning tests or
bisecting to find the patch responsible for a regression.
Autotest includes partial support for these features but
could benefit from improvements in this area.

3 Autotest Client

The most basic requirement that Autotest is intended to
fulfill is to provide an environment for running tests on
a machine in a way that meets the following criteria:

1. The lowest, most bare-metal access must be avail-
able.

2. Test results are available in a standard machine-
parseable way.

3. Standard tests developed outside of the framework
can be easily run within it.

The first of the criteria, low-level system access, seems
fairly self-evident when writing tests which are aimed at
the kernel and the hardware itself. To test a particular
component of a system, the test must be written using
tools that have access the standard API for that compo-
nent. Since C is the lingua franca of the systems world,
a C API can generally be counted on as being available,
but even that isn’t always the case. When creating a file
system during a test, mkfs is going to be the easiest
and most readily available mechanism; so as well as be-
ing able to easily incorporate custom C the framework
must also make it easy to work with external tools.

This initial requirement could have been satisfied by
writing the framework itself in C, but that would ulti-
mately have conflicted with the other requirements that
Autotest was expected to meet. First, this would’ve
made calling out to external applications ultimately
more difficult; while functions like fork, exec,
popen and system provide all the basic mechanisms
needed to launch an external process and collect results
from it, working with them in C requires a relatively
large amount of boilerplate compared to a higher-level
scripting language such as Perl or Python. This only be-
comes more true if the output of the executed process
needs to be manipulated and/or parsed in any way. The
second requirement that test results be logged in a stan-
dard way almost guarantees that the test will need to do
string manipulation, another task simplified by using a
scripting language.

To meet these somewhat conflicting requirements, the
Autotest framework itself was written in Python, with
utilities provided to simplify the compilation and exe-
cution of C code. Tests themselves are implemented by
creating a Python module defining a test subclass, sat-
isfying a standardized, pre-defined interface. Individual
tests are packaged up in a directory and can be bundled
along with whatever additional resources are needed,
such as data files, C code to be compiled and executed
or even pre-compiled binaries if necessary.

This also satisfies the third of the three requirements, the
ability to run standard tests written independently of Au-
totest. All that is required is to bundle the components
necessary for the test with a simple Python wrapper. The
wrapper is responsible for setting up any necessary en-
vironment, executing the underlying test, and translat-
ing the results from the form produced by the test into
Autotest standard logging calls. The wrappers are gen-
erally quite simple; the median size of a test wrapper in
the current Autotest distribution is only 38 lines.

Using Python for implementing tests also provides an
easy mechanism for bundling up suites of tests or cus-
tomizing the execution of specific tests. Tests them-
selves are executed by writing a “control file” which is
simply a Python script executing in a predefined envi-
ronment. It can be a single line saying “execute this
test”, a more complex script that executes a whole se-
quence of tests, or even a script that conditionally exe-
cutes tests depending on what hardware and kernel are
running on the machine. The environment provided by
Autotest contains additional utilities that allow control

2009 Linux Symposium • 13

files to put the machine into any state necessary for ex-
ecuting tests, even if it requires installing a kernel and
rebooting the machine. Having the full power of Python
available allows test runners to perform limitless cus-
tomization without having to learn a custom job control
language.

This power does come with one major drawback,
though. Due to the dynamic nature of Python and the
power available to control files, it is impossible to stat-
ically determine much information about a job. For ex-
ample, it is impossible to know in advance what tests a
job will run, and indeed the set of tests run may poten-
tially be nondeterministic. This limitation has not been
severe enough to outweigh the benefits of this approach.

3.1 Installation Problems

As this system was put into use at Google, the instal-
lation of Autotest onto test machines quickly became a
serious performance issue. Allowing test developers to
bundle data, source code and even binaries with their
tests made it easy to write tests but allowed the instal-
lation size to grow dramatically. The situation could be
somewhat alleviated by minimizing how often an install
was necessary, but in practice this only helps if the test
framework can be pre-installed on the systems.

The solution to this problem is a fairly standard one:
rather than treating Autotest and its test suite as a single,
monolithic package, break it up into a set of packages:

• a core package containing the framework itself

• packages for the various utilities and dependencies
such as profilers, compilers and any non-standard
system utilities that would need to be installed

• packages for the individual tests

Each package is able to declare other packages as de-
pendencies. The core package can be installed every-
where and is fairly lightweight, consisting only of a set
of Python source files without any of the more heavy-
weight data and binaries required by some tests. When
executing a job, the framework is then able to dynami-
cally download and install any packages needed to exe-
cute a specific test.

4 Autotest Server

4.1 Distributing test runs across machines

The Autotest client provides sufficient infrastructure for
running low-level tests but it only executes tests and col-
lects results on a single machine. To test a kernel on
multiple hardware configurations, a tester would need
to install the test client on multiple machines, manually
run jobs on each of these machines, and examine the
results scattered across these systems.

This deficiency led to the development of Autoserv, an
Autotest Server, a separate layer designed around the
client. It allows a user to run a test by executing a
server process on a machine other than the test machine.
The server process will connect to the remote test ma-
chine via SSH, install an Autotest client, run a job on
the client, and then pull the results back from the test
machine. Localizing these server runs to a single ma-
chine allows users to run test jobs on arbitrary sets of
machines while collecting all the results into a central
location for analysis.

4.2 Recovering failed test systems

Once users start running tests on larger sets of machines,
dealing with crashed systems becomes a much more
common occurrence. As the number of test machines
increases, bad kernels (and random chance) are going to
result in more failed systems. When testing on a single
machine, manual intervention is the simplest method of
dealing with failure, but this does not scale to hundreds
or thousands of machines. Automation becomes neces-
sary with two major requirements:

• Automatically detect and report on test machine
failures

• Provide a mechanism for repairing broken systems

Handling these requirements entirely within the client
running on the test machine is impractical; detecting
and reporting a kernel panic or hardware failure will
not even be possible when the crash kills the test pro-
cesses on the machine. Similarly, repair may require
re-imaging a machine which will wipe out the client it-
self.

14 • Autotest — Testing the Untestable

With job execution controlled from a remote machine,
handling these requirements becomes feasible. Au-
toserv implements support for monitoring serial console
output, network console output and general syslog out-
put in /var/log. It can also interact with external ser-
vices that collect crash dumps and even power cycle the
machine if that capability is available. In the very worst
case the server process can at least clearly log the failure
of the job (and any tests it was running) along with the
last known state of the failed test machine.

Automated repair can also be performed. This is im-
plemented in Autoserv in an escalating fashion, first by
making several attempts to put the machine back into a
known good state, then by optionally calling out to any
local infrastructure in place to carry out a complete rein-
stallation of the machine, and finally, if necessary, by es-
calating the repair process to a human. Testing on large
numbers of machines now becomes much more practi-
cal when systems broken by bad kernels (or bad tests)
can be put back into a working state with a minimum of
human intervention.

4.3 Multi-machine tests

Remote control of test execution also introduces the
opportunity to run single tests that span multiple ma-
chines. While this could be done with the Autotest client
alone by running the client on a master test system and
having it drive other slave test systems, this would re-
quire duplicating most of the “remote control” infras-
tructure from the server directly into the client. This
could also be problematic from a security point of view
since, rather than routing control through a single server,
the test machines would require much more liberal ac-
cess to one another.

Since Autotest already established the need for a sep-
arate server mechanism, it was natural to extend it to
support “server-side” testing. Instead of only providing
a fixed set of server operations (install client and run job,
repair, etc.), Autoserv allows testers to supply a Python
control file for execution on the server, just like on the
client. This can be used to implement, for example, a
network test with the following flow:

• Install Autotest client on two machines

• Launch “network server” job on one machine

• Launch “network client” job on one machine

• Wait for both jobs to complete and collect results

No single-machine networking test can duplicate the
same results, particularly when attempting to quantify
networking performance and not just test the stability of
the network stack.

This also allows for execution of larger-scale cluster
testing. Although this begins to creep beyond the scope
of systems testing it still has significant value, not as a
way to test the cluster applications but rather as a way
of testing the impact of kernel and hardware changes
on larger-scale applications. A smaller-scale cluster test
can follow a workflow similar to that for network test-
ing. Alternatively, a server job can make use of pre-
existing cluster setup and management tools, simply
driving the external services and collecting results af-
terwards.

4.4 Mitigating Network Unreliability

While one of the primary goals of Autoserv is to in-
crease reliability, it also introduces new unreliabilities as
an unfortunate side effect. The primary issue is that it in-
troduces a new point of failure, the connection between
the server and the client machines. Working directly
with the client, a user can launch a job on a machine
and return after expected completion, and any transient
network issues will not affect the test result. This is no
longer the case when the job is being controlled by a re-
mote server that continuously monitors the test machine.
The problem can be alleviated somewhat by periodically
polling the remote machine rather than continually mon-
itoring it, but ultimately this only reduces susceptibility
to the problem.

Implementing more reliable communications over
OpenSSH ultimately proved too difficult, primarily due
to the lack of control over and visibility into network
failure modes. One alternative considered was to use
a completely separate communication mechanism, but
this was rejected as impractical. Using SSH provides
Autotest with a robust and secure mechanism for com-
munication and remote execution, without requiring the
large investment of time and labor required to invent a
custom protocol that would then need to be installed on
every test machine.

Instead the solution was to add an alternative SSH im-
plementation that uses a Python package (paramiko1)

1http://www.lag.net/paramiko/

2009 Linux Symposium • 15

instead of launching an external OpenSSH process. Us-
ing an in-process library allowed tighter integration and
communication between Autoserv and the SSH imple-
mentation, allowing the use of long-lived SSH connec-
tions with automatic recovery from network failure. At
the same time modifications were made to the Autotest
client to allow it to be run as a detachable daemon so
that the automatic connection recovery could re-attach
to clients with no impact on the local testing.

Adding paramiko support had the additional benefit
of reducing the overhead of executing SSH operations
from Autoserv by performing them in-process, as well
as simplifying the use of multi-channel SSH sessions
to avoid the cost of continually creating and terminat-
ing new sessions. Within Autoserv this is implemented
in such a way that the paramiko-based implementation
can be used as a drop-in replacement for the OpenSSH-
based one, allowing testers to make use of whichever
is better suited to their needs. OpenSSH works better
“out of the box” with most Linux configurations, while
paramiko, which requires more setup and configuration,
ultimately allows for more reliable, lightweight connec-
tions.

5 Scheduler and Frontend

5.1 Shared machine pool

Autoserv provides a convenient and reliable way for in-
dividual users to test small numbers of platforms. As a
standalone application, however, it cannot possibly ful-
fill the requirement of scaling to thousands of machine
and achieving efficient utilization of a shared machine
pool. To address these needs the Autotest service ar-
chitecture provides a layer on top of Autoserv that al-
lows Autotest to operate as a shared service rather than
a standalone application. Rather than execute the Au-
totest client or server directly, users interact with a cen-
tral service instance through a web- or command-line-
based interface. The service maintains a shared machine
pool and a global queue of test jobs requested by users.
There are three major components that make this usage
model possible. The Autotest Frontend is an interface
for users to schedule and monitor test jobs and manage
the machine pool. The Autotest Scheduler is responsi-
ble for executing and monitoring Autoserv to run tests
on machines in the pool in response to user requests. Fi-
nally, the results analysis interface, not discussed in this

paper, provides a common interface to view, aggregate
and analyze test results.

The Autotest Frontend is a web application for schedul-
ing tests, monitoring ongoing testing, and managing test
machines. It operates on a database which takes the
available tests, the machines in the shared test bed, and
the global queue of test jobs that have been scheduled by
users. The scheduler interacts with the frontend through
this database, executing test jobs that have been sched-
uled and updating the statuses of jobs and machines
based on execution progress.

The frontend supports a number of features to help users
organize the machine pool. First, the system supports
access control lists to restrict the set of users that can run
tests on certain machines. Some machines may be open
for general testing, but some users, particularly hard-
ware testers, will have dedicated machines that cannot
be used by others. Second, the system supports tagging
of machines with arbitrary labels. The most common
usage of this feature is to mark the platform of a ma-
chine, which is often important for both job scheduling
and results analysis. Labels can additionally be used to
declare machine capabilities, such as remote power con-
trol, or to group together large numbers of machines for
easier scheduling.

The scheduler is a daemon running on the server whose
primary purpose is to execute and monitor Autoserv pro-
cesses. The scheduler continuously matches up sched-
uled test jobs with available machines, launches Au-
toserv processes to execute these jobs, and monitors
these processes to completion. It updates the database
with the status of each job throughout execution, allow-
ing the user to track job progress. Upon completion,
the scheduler executes a parser to read Autoserv’s struc-
tured results logs into a database of test results. The
user can then perform powerful analysis of these results
through a special results analysis interface.

An important feature of the scheduler is its statelessness.
While it maintains plenty of in-memory state, all impor-
tant state can be reconstructed from the database. This
is exactly what happens upon scheduler startup, ensur-
ing that when the scheduler needs to restart, all tests will
continue running uninterrupted and machine time won’t
be wasted. This is critical for minimizing user impact
during deployments of new Autotest versions or after a
scheduler crash.

16 • Autotest — Testing the Untestable

In addition, as the test fleet scales to thousands of ma-
chines, automated fleet health management becomes
critical. To this end, the scheduler takes advantage of
Autoserv’s machine diagnosis and repair functionality.
The scheduler launches special Autoserv processes to
verify machine health before each job and perform re-
pairs as necessary. Machines that cannot be repaired
are marked as such in the database, from which a ma-
chine health dashboard can read and summarize ma-
chine health data. Additionally, the scheduler performs
periodic reverification of known dead machines to catch
any manual repairs that may have occurred.

5.2 Distributed execution for scalability

When all Autoserv processes are running on a sin-
gle server, serious performance degradation tends to
set in around 1,000 simultaneous machines under test.
The scheduler supports global throttling of running pro-
cesses to avoid bringing the system to a halt, but this still
leaves a scalability limit imposed by the hardware itself.
To alleviate the problem and allow for further scaling,
the scheduler supports distributing Autoserv processes
among a pool of servers.

A single scheduler coordinates execution among mul-
tiple servers and all results are centralized on a single
archive server after execution completes. Each server
can support roughly 1,000 machines under test, and to
date no Autotest installation has reached a limit on the
number of servers that can be utilized in the system.
In addition to increasing scalability, distributed execu-
tion increases system reliability. Since execution servers
are completely independent of each other, each can fail
completely without bringing the entire service to a halt.
With this distributed execution model, the Autotest ser-
vice at Google has scaled to approximately 5,000 simul-
taneous machines under test.

5.3 Automatic generation of control files

To run a single test, users of Autoserv can run one of the
existing control files written for each test. However, in
order to run multiple tests within a single execution the
user must write a custom control file. While control files
have been kept as simple as possible, writing a custom
control file still presents a major barrier to entry for new
users. To this end, the Autotest Frontend simplifies the

process of running multiple tests by support automatic
generation of control files.

Creating a job through the frontend consists of select-
ing a number of tests, a number of machines, and a va-
riety of job options. The user can select tests from a
list, which includes a description of each test, and the
frontend will automatically generate a control file to run
the selected tests. Users may also specify a kernel to
install and select profilers to enable during testing and
the generated control file will incorporate all of these
options. This allows users to run moderately complex
jobs through Autotest with ease, without requiring any
knowledge of control files. Machines can be similarly
selected from a list, either one-by-one or in bulk based
on filtering by hostname or platform (or any other ma-
chine label). Furthermore, users may request that the
job run on any machine of a particular platform and al-
low the scheduler to select one at run time. This feature
helps increase utilization of shared test machines and
makes it particularly easy to run automated jobs without
a static, dedicated set of machines.

5.4 Support for high-level automation

The bulk of the work for the web frontend is per-
formed on the web server, which operates primarily as
an RPC server. It is written in Python using the Django2

web framework and communicates with a MySQL3

database. The web interface is a fully-fledged applica-
tion running in the browser implemented using Google
Web Toolkit4. It communicates with the server solely
through the RPC interface. There is also a command-
line interface, implemented in Python, which communi-
cates with the server through the same RPC interface.
This is made possible by the use of the lightweight
JSON5 data-interchange format which is easily im-
plemented in either language. Furthermore, custom
scripts can be written that access the RPC interface di-
rectly, providing the full capabilities of the web frontend
through a simple interface. This supports powerful and
easy high-level automation, allowing users to extend the
functionality of Autotest with external scripts layered on
top of the frontend.

2http://www.djangoproject.com/
3http://www.mysql.com/
4http://code.google.com/webtoolkit/
5http://www.json.org

2009 Linux Symposium • 17

6 Future Directions

Autotest has made great strides in automating the exe-
cution of kernel and hardware tests. But test execution
usually occurs in the context of a qualification process,
and the full qualification process remains a tedious and
rather mechanical ordeal. Qualifying a new kernel gen-
erally involves running a collection of functional and
performances tests over a large population of machines
representing a range of hardware platforms. The choice
of tests to execute may be dependent on the outcome
of earlier tests. The results must then be compared to
those for a known stable kernel to find statistically sig-
nificant deviations. Furthermore, a continuous testing
system would like to execute this entire process in a
fully-automated fashion, reporting deviations on a per-
change basis. Qualifying a collection of new machines
involves a similar, but not identical, process. In partic-
ular, individual machines will must be tracked through
a cycle of testing, triaging, and repairing by either up-
dating system software or manipulating hardware com-
ponents. At the same time, this individualized tracking
must scale to hundreds or thousands of machines, and
the process must culminate in a report of significant de-
viations from a known stable platform.

While Autotest abstracts away many of the low-level is-
sues involved in these processes, it does little to auto-
mate these higher-level processes. Successful automa-
tion of such processes is one of the major unsolved prob-
lems for the Autotest project. Fortunately, the high-level
automation support provided by the frontend makes it
possible to prototype solutions to these problems. Such
solutions can be built on top of the Autotest architecture
without requiring modifications to Autotest itself, and
indeed a number of such solutions have been built to
satisfy needs of particular Autotest users. These proto-
types provide a useful path forward to incorporate such
automation into the Autotest system.

In addition, improved reporting remains an area of great
opportunity for Autotest. Autotest’s current reporting
interface can generate a variety of reports, potentially
spanning multiple jobs, but it still requires a significant
manual effort to draw useful high-level conclusions and
it still makes triage of failures a difficult task. To aid
the former task, Autotest needs to support better auto-
mated folding of larger amounts of data into smaller,
more concise reports which highlight significant qual-
ity deviations and hide the rest of the data. For easier

triaging of failures, Autotest needs to better categorize
and organize test output and more efficiently guide users
to the places where failure details are most likely to be
found.

7 Conclusion

A significant amount of developer time has been in-
vested in Autotest to enable the continuous execution of
small- and large-scale tests on thousands of machines.
This effort has successfully overcome numerous prob-
lems with reliability and scalability inherent in testing
low-level systems such as the kernel and hardware com-
ponents. While further work remains to be done to im-
prove and automate the high-level testing workflow, the
fundamental components are in place and already usable
for large-scale testing today.

Acknowledgements

We would like to thank Martin Bligh for his input to and
his reviews of drafts of this paper.

Legal Statement

This work represents the view of the authors and does
not necessarily represent the views of Google.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, produce and service names may be the
trademarks or service marks of others.

References

[1] Linux Test Project.
http://ltp.sourceforge.net.

[2] Jason Baietto. Linux Quality Assurance Utilizing
An Automated Nightly Test System. http:
//www.ccur.com/isddocs/ANTS.pdf.

[3] David Berrera, Li Ge, Stephanie Glass, and Paul
Larson. Testing the Xen Hypervisor and Linux
Virtual Machines. In Linux Symposium, volume 1,
pages 271–288, 2005.

18 • Autotest — Testing the Untestable

[4] Kamalesh Bibulal and Balbir Singh. Keeping the
Linux Kernel Honest. In Linux Symposium,
volume 1, pages 19–29, 2008.

[5] Martin Bligh and Andy P. Whitcroft. Fully
Automated Testing of the Linux Kernel. In Linux
Symposium, volume 1, pages 113–125, 2006.

[6] Aaron Bowen, Paul Fox, James M. Kenefick Jr.,
Ashton Romney, Jason Ruesch, Jeremy Wilde,
and Justin Wilson. Automated Regression
Hunting. In Linux Symposium, volume 2, pages
27–35, 2006.

[7] Tim Chen, Leonid I. Ananiev, and Alexander V.
Tikhonov. Keeping Kernel Performance from
Regressions. In Linux Symposium, volume 1,
pages 93–102, 2007.

[8] Subrata Modak and Balbir Singh. Building a
Robust Linux kernel piggybacking The Linux
Test Project. In Linux Symposium, volume 2,
pages 91–100, 2008.

[9] Alexander Ufimtsev and Liam Murphy.
Automatic System for Linux Kernel Performance
Testing. In Linux Symposium, volume 2, pages
403–408, 2006.

[10] Hiro Yoshioka. Regression Test Framework and
Kernel Execution Coverage. In Linux Symposium,
volume 2, pages 285–296, 2007.

Increasing memory density by using KSM

Andrea Arcangeli, Izik Eidus, Chris Wright
Red Hat, Inc.

aarcange@redhat.com, ieidus@redhat.com, chrisw@redhat.com

Abstract

With virtualization usage growing, the amount of RAM
duplication in the same host across different virtual ma-
chines possibly running the same software or handling
the same data is growing at a fast pace too. KSM is a
Linux Kernel module that allows to share equal anony-
mous memory across different processes and in turn also
across different KVM virtual machines. Thanks to the
KVM design and the mmu notifier feature, the KVM
virtual machines aren’t any different from any other pro-
cess from the Linux Virtual Memory subsystem POV.
And incidentally all Guest physical memory is allocated
as regular Linux anonymous memory mappings. But
KSM isn’t just for virtual machines.

The KSM main task is to find equal pages in the system.
To do that it uses two trees, one is the stable tree the
other is the unstable tree. The stable tree contains only
already shared and not changing KSM generated pages.
The unstable tree contains only pages that aren’t shared
yet but that are tracked by KSM.

The content of the pages inserted into the two trees is
the index of the tree, but we don’t want to write-protect
all the pagetables that points to the pages in the unstable
tree. So we allow the content of the pages (so the tree
index) to change under KSM and without knowledge of
the tree balancing code. Thanks to the property of the
red black trees that can keep a tree balanced without
checking the node index value, even if the tree becomes
unusable, the tree still remains balanced and the worst
case insertion/deletion remains O(log(N)), to guarantee
the ksm-tree algorithm not to degenerate in corner cases.

To reduce the number of false negative from the unsta-
ble tree lookups, a checksum is used to insert into the
unstable tree only pages whose checksum didn’t change
recently, but in the future the checksum can be replaced
by checking the dirty bit of the pagetables and shadow
pagetables (not with current EPT though). After a full

scan of all pages tracked by KSM, the unstable tree is
rebuilt from scratch to reset all lookup errors introduced
by the pages changing content during the scan.

Whenever KSM finds a match in the stable or unstable
tree, it proceeds to write-protecting the pagetables that
mapped to the old not shared anonymous page, and it
makes them map the new shared KSM page as read-
only. If any KVM shadow pagetable was mapping the
page, it is updated and write-protected through the mmu
notifier mechanism with a newly introduced change_pte
method.

1 Nomenclature

The name of this Linux Kernel feature might change.
For the scope of this document, the term KSM (as in
Kernel Shared Memory or Kernel Samepage Merging if
you wish) will be used, even if it may be renamed to
Memory Merging in the future.

2 KSM objective

The objective of KSM is to increase memory den-
sity. KSM is generating shared pages by merging equal
pages, and in turn it is making free memory available
allowing to run more virtual machines or applications
on the same system, than otherwise would be possible
without KSM.

3 KSM API

The API to use in KSM has been one of the most dis-
cussed parts of the feature on mailing lists, but it’s also
the least interesting part for the scope of this document
and will be only covered briefly here.

While it would be possible for KSM to scan every single
anonymous page in the system, it would be wasteful to

• 19 •

20 • Increasing memory density by using KSM

scan virtual areas where we don’t expect to find any sig-
nificant amount of equal pages. It would be wasteful not
only in CPU terms but in RAM terms too; to keep track
of the pages, KSM has to make some slab allocation.
The amount of slab allocations increases linearly with
the size of the virtual areas registered. Usually Linux
applications try to be intelligent in sharing memory ei-
ther with shared librarians or through fork. Not all ap-
plications are generating memory regions with lots of
equal anonymous pages in a way that cannot be shared
without the KSM feature, so it’s worth scanning only the
virtual areas that are likely to contain lots of equal pages
that cannot be shared by other means.

Processes (through the KSM API) shall simply have the
option to register which virtual memory areas should be
scanned by the kernel thread that has the task of merging
equal physical pages of memory.

The kernel thread that scans the registered virtual ranges
can be controlled through sysfs at /sys/kernel/mm/ksm
(but if the KSM name changes, supposedly the location
is subject to change too). Writing 1 or 0 in run respec-
tively starts and stop the kernel thread. pages_to_scan
and sleep control how CPU intensive the scan of the
memory will be. The more pages scanned per wakeup
and the more frequent the wakeups, the more CPU the
kernel thread will take, and the faster the equal virtual
memory will be shared. sleep is in usec units, pages is
in PAGE_SIZE units. pages_shared is a read only statis-
tic field showing how many KSM pages are allocated in
the system at any given time. max_kernel_pages can
limit the number of KSM pages, this can be useful es-
pecially in the short term because in its first version the
KSM pages aren’t swappable yet (swapping KSM pages
is possible similarly to how tmpfs swaps and it will be
addressed shortly).

At time of this writing, it seems likely the final mem-
ory merging API that applications can use will be im-
plemented through the madvise syscall with a new
MADV_(UN)MERGEABLE advice parameter.

In the current implementation, only anonymous pages
(like the ones generated by malloc) can be merged with
KSM, but perhaps in the future this could be extended
to other kind of pages.

There will likely be an option to avoid compiling the
KSM code into the kernel to save kernel .text for those
embedded systems where the KSM feature won’t be re-

quired, in which case madvise will fail if passed the rel-
evant memory merging advice parameter.

4 KSM and KVM

One of the primary users of KSM is the Linux Kernel
Virtual Machine. When the same guest OS and guest
applications are running in different virtual machines,
lots of equal anonymous memory will be generated on
the host/hypervisor system. So it is ideal to always
keep KSM enabled with parameters like sleep = 5000
pages_to_scan = 60, so that around 12000 virtual pages
are scanned each second, allowing a max memory merg-
ing rate of 46.87MB/sec (the max rate would materialize
only if all virtual pages scanned during a second of time,
are found to be equal to some other page tracked by
KSM). With this setting the KVM kernel thread should
use around 10% of one CPU core. On very large sys-
tems, however, more aggressive settings can be used, up
to dedicating a CPU core to the KSM kernel thread.

Although at present KSM is only capable of merging
equal anonymous memory on the host system, KVM
virtualization allows KSM running on the host to share
pagecache, tmpfs, or any other type of memory allo-
cated in the guest, because all guest memory is backed
by host anonymous memory.

5 KSM at CERN

We had great feedback from CERN and Lawrence
Berkeley National Laboratory related to the compu-
tations they’re running to crunch the LHC generated
data. Their scientific reconstruction jobs generate lots
of equal pages while they run. With KSM enabled they
achieve memory sharing rates up to 750MB if they run
two similar 2GB jobs (without KSM the sharing is lim-
ited to 250MB). They conclude they are able to run 3
jobs in parallel on a 4GB machine, instead of only 2 be-
fore. This cumulatively saves a very significant amount
of memory, given the number of nodes involved in the
computations.

They’re not yet using virtualization on top of Linux, so
to use KSM, their application has to call into the KVM
API directly (by using a malloc wrapper). If they were
to use KVM as a hypervisor (instead of proprietary hy-
pervisor solutions running underneath of Linux) they
wouldn’t need to change their application at all, and all
memory would be merged transparently at the host ker-
nel level.

2009 Linux Symposium • 21

Figure 1: 2 LHC reconstruction jobs without KSM

Figure 2: 2 LHC reconstruction jobs with KSM

6 KSM and embedded

KSM is suitable to be run on embedded systems too;
the important thing is not to register in KSM regions
that won’t likely have equal pages. For each virtual
page scanned, KSM has to allocate some rmap_item and
tree_item, so while these allocations are fairly small,
they can be noticeable if lots of virtual areas are scanned
for no good.

Furthermore, these KSM internal rmap/tree data struc-
tures are not allocated in high memory. To avoid early
out of memory conditions, it is especially important
to limit the amount of lowmem allocated on highmem
32bit systems that might have more than 4GB of mem-
ory, but these shouldn’t fit in the embedded category in
the first place.

7 KSM and swap size

When KSM merges pages, it frees memory. However, it
must be clear that the shared KSM pages remains shared
only as the virtual machines using them are only read-
ing from and not writing to those pages. So there is no
actual guarantee that the memory freed by KSM as re-
sult of creating shared KSM pages will remain free. To
obviate this problem administrators must tune the swap
size appropriately, to ensure that even if the amount
of shared memory would decrease significantly (if the
workload of the virtual machines suddenly changes) the
host Linux Kernel will not run out of physical memory.

8 KSM tree algorithm

The KSM tree algorithm is built around the concept that
to find equal pages we add each page in the registered
virtual memory areas to a Red Black Tree. The index
of the tree is the content of the page itself. The function
that searches the tree to find an equal page, will check
the memcmp() return value to decide if to go left, right,
or if we already found an equal page indexed into the
tree.

9 KSM pass

A KSM pass for the scope of this document is in-
tended as a entire full scan of all virtual areas marked
VM_MERGEABLE by madvise, so registered in KSM.

22 • Increasing memory density by using KSM

10 Computational complexity

The usual page size for x86 architectures (and most
other architectures) is 4096 bytes. But on average the
memcmp() function will break out of its inner loop be-
fore processing all 4096 bytes. This is because the pages
are unlikely to be all equal except for the last bits. The
cost of finding an equal page, will be the cost of mem-
cmp() multiplied by the number of levels in the tree.
Thanks to the rbtree, the computation complexity of all
insert/search/delete functions is O(log(N)) (where N is
the total number of pages scanned by KSM). So even if
we hit the absolute worst case where the first 4092 bytes
of all pages scanned by KSM are equal, and only the last
4 bytes differs, the KSM tree algorithm will not degrade
too much.

11 Stable and unstable trees

The KSM tree algorithm uses two rbtrees, one called
stable tree (as in Figure 3) and one called unstable tree.
Using two trees is an optimization and also increases
the probability of quickly sharing the pages that are the
most likely to be good candidates for sharing as well as
reducing the instability of the unstable tree. The algo-
rithm flow chart is visible in Figure 4.

For each anonymous page scanned, the kernel thread
proceeds searching a match first in the stable tree that
only contains already shared pages (shared so in turn
write protected, hence their content is stable). If a
match is found in the stable tree, the anonymous page
is merged with the KSM page found in the stable tree.

If no match is found in the stable tree, KSM checks if
the anonymous page has changed content recently using
a checksum.

If the checksum changed since the last KSM pass, KSM
updates the checksum and will defer the search of the
unstable tree to the next KSM pass (assuming that the
checksum won’t change again). This is to avoid merging
or adding to the unstable tree pages that changes content
frequently.

If instead the checksum didn’t change KSM proceeds
searching the unstable tree that only contains anony-
mous pages scanned previously but not merged by KSM
yet. If a match is found in the unstable tree KSM merges
the anonymous page under scan, with the anonymous

Figure 3: KSM stable tree

page in the unstable tree, and the resulting KSM merged
page is added to the stable tree (the anonymous page
found in the unstable tree is removed from the unstable
tree and freed). If a match is not found in the unstable
tree KSM adds the page to the unstable tree.

In the future, instead of the checksum, a dirty bit in the
pte (and spte) can signal KSM if a page is worth adding
to the unstable tree or not, or special instructions can
be used if provided by the CPU to compute a checksum
faster than jhash2.

This ’checksum’ here has really nothing to do with the
KSM Tree algorithm itself. The ’checksum’ is not used
to find equal pages to share; rather, it’s only an heuristic
to try to keep the unstable tree more stable and to avoid
wasting time with bad sharing candidates. Even if we
eliminate the checksum, the algorithm would still work.

If a page changes content frequently, besides risking
the generation of false negatives from the unstable tree
lookups, we’ll likely only waste CPU by sharing it, be-
cause a copy-on-write page fault will likely happen soon
enough, breaking the sharing.

12 When the unstable tree becomes unstable

We must avoid write protecting pages that aren’t shared
yet, or the whole virtual memory scanned by KSM
would be write protected most of the time, in turn lead-
ing to a flood of copy-on-write page faults. The sta-
ble tree only contains shared KSM pages, and we know
all pages inside it aren’t going to change content be-
cause they have to be write protected in the pagetables
and shadow pagetables in the first place in order to be
shared. So a lookup in the stable tree is fully reliable
and can’t return false negatives. It’s just like a lookup of
any other regular rbtree in the kernel, where the index
doesn’t change under the tree after the node is indexed

2009 Linux Symposium • 23

Figure 4: KSM Tree algorithm flowchart

24 • Increasing memory density by using KSM

into the tree. The problem is the lookup of the unsta-
ble tree because the unstable tree only contains regular
anonymous pages not shared yet, that can be still written
to by applications.

Because the rb_insert()/rb_erase() functions that bal-
ance the rbtree while inserting and deleting an element
from the tree are unaware of the index value, we’re guar-
anteed the rbtree will remain well-balanced regardless
of where we insert any new node in the tree. We are also
guaranteed that all insert, search, and delete operations
will not degrade in terms of computational complexity,
even after the unstable tree becomes really unstable.

An example of the unstable tree while it’s still stable
can be seen in Figure 5. If an application writes to a
page indexed in the unstable tree that had the first byte
set to 0x03 when it was inserted in the stable tree, and
it changes it to 0x07 afterwards, the unstable tree might
become unstable as in Figure 6 and lookups might start
to generate false negatives.

To avoid the instability and the resulting false negatives
to be permanent, KSM re-initializes the unstable tree
root node to an empty tree, at every KSM pass (i.e. af-
ter completing a full scan of all virtual areas registered
in KSM). This way, a new unstable tree is rebuilt from
scratch at every KSM pass and the false negatives won’t
be sticky.

To further decrease the probability of false negatives
from the unstable tree lookups, we could also remove
pages from the unstable tree if we find a dirty bit set
or the checksum being not uptodate anymore during the
tree walk, even though we’re not doing it in the current
implementation as it’d make the search in the unstable
tree slower than just a memcmp() for each level of the
tree.

Because all long-term important sharable pages are go-
ing in the stable tree over time, the stable tree guaran-
tees us that the important sharable pages are going to be
merged without any risk of false negatives, regardless of
any temporary instability of the unstable tree.

If all goes well and there are no false negatives, while
inserting an anonymous page in the unstable tree, KSM
will find a page with equal content already indexed in
the unstable tree, so KSM will merge them together, it
will create a new KSM page with equal content added
to the stable tree and remove the indexed anonymous

Figure 5: KSM unstable tree while still stable

Figure 6: KSM unstable tree gone unstable after appli-
cation write

page from the unstable tree, and finally will free both
anonymous pages.

13 Page merging

The procedure used for page merging involves two func-
tions: page_wrprotect() and replace_page(). The for-
mer write protects all pagetables mapping the page
passed as parameter (and sptes too through change_pte()
mmu notifier discussed below) method; the latter
merges two pages by updating the pagetables accord-
ingly (and sptes too through change_pte() mmu noti-
fier), and then by freeing the merged anonymous page
that no pagetable (or spte) maps anymore.

One final memcmp() is required after page_wrprotect()
returns to be sure both pages being compared cannot
change while memcmp() runs. Only if the final mem-
cmp() succeeds (returning zero) replace_page() is called
to merge the two pages.

If there is a match in the stable tree, the KSM page al-
ready in the stable tree is merged with the anonymous
page under scan.

If there is a match in the unstable tree, a new KSM page
is allocated and the content of one of the anonymous
pages is copied to it, and both anonymous pages are
merged with it.

2009 Linux Symposium • 25

Figure 7: rmap_item and tree_item relation

The merge path is a fairly slow path: if it would run
all the time, it would mean that all virtual addresses
scanned by KSM are sharable all the time which cer-
tainly isn’t the case most of the time. In the future we
could however optimize the unstable tree merge path to
transform an anonymous page into a KSM page in place
to avoid one page copy and to optimize away some mi-
nor pte/spte mangling for one of the two anonymous
pages being merged together.

14 KSM rmap_item and tree_item

A physical page is represented in the the stable and un-
stable trees by the tree_item structure. The tree_item is
a rmap structure that contains the head of a list that links
all virtual addresses that map each physical page. The
virtual addresses (the list elements) themself are repre-
sented by a rmap_item structure. Their relation is shown
in Figure 7.

So during the stable and unstable tree lookups KSM,
walks the tree_item list to find the virtual address (in
the rmap_item) to call get_user_pages and to obtain the
physical page address to run memcmp() against.

15 KSM rmap_item and tree_item out of sync
with the Linux VM

The reason get_user_pages() is called during the tree
walk is that we’re tracking virtual addresses instead of

page frame numbers in the tree_item. This is because
the tree_item and the rmap_item are maintained out of
sync with the Linux VM. This means that if an anony-
mous page is swapped out or unmapped, we’ll find out
only during the tree lookups or during the KSM scan on
the virtual areas registered. Whenever we find a virtual
address not mapped in the pagetables, we drop the re-
spective rmap_item and if that was the last rmap_item
in the tree_item linked list, we also drop the tree_item.

16 KSM rmap_item and tree_item in sync if
KSM would register its mmu notifier meth-
ods

We considered to change KSM to avoid the
get_user_pages() call during the tree walk by stor-
ing a pointer to the physical page directly in the
tree_item by using mmu notifiers that would notify us
whenever a rmap_item should be dropped. However,
in addition to making the code more complicated, that
would require global spinlocks that would serialize
the rbtrees lookups against mmu_notifier invalidate
methods, and it might lead to applications to scale
worse because every time a virtual area is unmapped
that global lock would be taken. We want KSM to run
in the background without affecting the regular runtime
of applications as much as possible. Furthermore,
replace_page() used by KSM to merge the pages
would then re-enter KSM again through a mmu notifier
invocation in replace_page() after it mangles the pte,
a case that would require some special handling and
perhaps rmap_item refcounting. Because keeping
the rmap_item and tree_item fully synchronized isn’t
required to efficiently find equal pages, we think it’s
simpler to maintain them out of sync, with the main
disadvantage of the tree walk requiring get_user_pages
calls, but we prefer KSM itself to be a bit slower in
merging memory and not to risk slowing down the
actual applications with global locks.

Strictly speaking for the unstable tree a per-mm unstable
tree protected by a per-mm lock would be feasible but
the stable tree spinlock would need to be global if we
want to share memory system-wide.

There are various implementations but likely the way
KSM will implement the rmap_item scan over the vmas
with the madvise API is to keep an list ordered by
address of rmap_item for each mm with vmas with
VM_MERGEABLE set, and to resync the rmap_item

26 • Increasing memory density by using KSM

list in a inner loop, with the outer loop being the vma-
>vm_next loop. Any rmap_item instantiated in a pre-
vious KSM pass but found not anymore in the range of
any VM_MERGEABLE vma will be dropped, and new
rmap_item will be created for each new virtual address
that has a pagetable pointing to an anonymous page in a
VM_MERGEABLE vma. This way the madvise syscall
will not have to call KSM, and it will only have to split
vmas if needed and set or clear the VM_MERGEABLE
flag in the virtual areas passed as parameter to madvise
MADV_MERGEABLE.

17 MMU notifier change_pte() method

When KSM merge pages, we don’t want to teardown all
secondary pagetables (e.g. the VT shadow pagetables
instantiated by KVM). To avoid that a new change_pte()
method is used by replace_page that will update all
sptes that pointed to the old anonymous page to point
to the location of the new KSM page.

If we used the invalidate_page() method instead of intro-
ducing a new change_pte() mmu notifier method, KSM
would have destroyed the sptes in turn requiring KSM
to take minor faults to recreate them later as the guest
returns to access those guest virtual addresses, by re-
reading the kernel pagetables.

Side note: due to some short term limitation right now
KVM will always trigger write faults as far as the Linux
VM is concerned even if the guest issued a read mem-
ory operation, so lack of change_pte() method would
have prevented the shared KSM pages to be mapped
by any shadow pagetable at all. This limitation in the
KVM page fault will however be addressed in the future,
but change_pte() will still remain an useful optimization
even then, by preventing KVM to vmexit to rebuild in-
validate sptes (even if the sptes in the future could be
rebuilt by KVM with readonly permissions without trig-
gering copy-on-write faults in the Linux VM if the guest
issued a read access on a KSM page).

change_pte() takes the Linux pte as parameter and it
makes sure the sptes are marked readonly if the pte
passed as parameter is readonly.

change_pte() is also used in the Linux VM write protect
page faults triggering on KSM pages as an optimization
to avoid tearing down sptes (do_wp_page()).

Not all MMU notifier users are required to implement
the new change_pte() method; if not implemented, it

will simply fallback to the invalidate_page() backwards
compatible behavior, which is safe but less efficient for
users like KVM. For the MMU notifier users that don’t
manage real secondary pagetables, but only a secondary
tlb (like GRU), implementing the change_pte() method
is unnecessary.

18 KSM not working on pages under GUP

It is interesting to note that page_wrprotect() has
to fail for any page that is temporarily pinned by
get_user_pages() users (to avoid generating I/O corrup-
tion on the drivers that accesses the pinned pages di-
rectly) and it will only function on drivers that uses
MMU notifier and that can unpin the pages immedi-
ately after get_user_pages() returns. So to allow KSM
to work on KVM guest physical memory, we had to re-
move the page pinning on the shadow pagetable map-
pings (in short that means calling put_page() imme-
diately after get_user_pages() returns, and entirely re-
laying on mmu notifiers methods to teardown shadow
pagetables before the corresponding virtual address is
teardown by the Linux VM, either because of VM pres-
sure or userland action).

All get_user_pages() pins shall be temporary; if not, the
pinned pages cannot be paged out by the VM in case
of memory pressure. So if the pins are temporary as
they’ve to be, KSM will simply be able to write protect
those pages (and then possibly to merge them) in one the
next KVM passes. Drivers that use the pages returned by
get_user_pages() in a persistent way like KVM must use
MMU notifiers and release the page pins to be transpar-
ent to the Linux VM and in turn to allow KSM to merge
pages on those memory regions too.

19 KSM multi threading

In the future it will be possible to add more than one
KSM kernel thread by adding a read-write mutex or
spinlock that protects each tree. Starting more than one
KSM kernel thread will be helpful if somebody wants to
dedicate more than 100% of one CPU core at merging
pages.

20 KSM swapping

KSM pages cannot be swapped at this time; KSM pages
are effectively nonlinear entities mapped in the middle

2009 Linux Symposium • 27

of linear anonymous vmas and the Linux VM swap logic
cannot cope with them at this point in time.

Because KSM to function requires its own internal rmap
logic and because we surely don’t want to hurt the Linux
Kernel VM memory footprint when KSM is not en-
abled, likely an external rmap functionality shall be im-
plemented to allow the Linux VM to call into KSM to
unmap all pagetables mapping the shared KSM pages.
The swapin path will also require some change because
the anonymous fault won’t be suitable for swapping-in
KSM pages if they’ve been swapped-out, similarly to
how tmpfs swaps out the tmpfs shared pages.

21 Reduce memcmp() length in tree lookup
maintaining rbtree cumulative info

It should be possible to add to the tree_item some rb-
tree related metadata information on the status of the
left and right nodes. This metadata information can tell
the tree lookup function the offset of the first byte that
differs between the current node physical page, and the
two physical pages in the right and left nodes. That will
require adding a callback to rb_insert() and rb_erase()
called with proper information during each tree balanc-
ing rotation of the nodes, so that this metadata can be
recalculated at every rebalance of the tree. With this in-
formation, we should be able to significantly reduce the
cumulative amount of memory compared by the mem-
cmp() function during a worst case of tree lookup.

If rb_insert() and rb_erase() will be extended like
above, the rebalancing callback could also be used by
get_unmapped_area() to allow it to work in O(log(N))
instead of the current O(N) (where N is the number of
vmas in the mm_struct).

22 KSM benchmark

We run all test cases using a Linux 2.6.30-rc6 kernel,
with a fairly recent KVM external module and the KSM
patchset posted on the Linux Kernel Mailing List on 20
April 2009 with Message-ID: 1240191366-10029-1-git-
send-email-ieidus@redhat.com (which still uses the old
ioctl API and not madvise yet). To merge memory at
the fastest possible peace, KSM clearly has been tuned
so that the single threaded kksmd kernel thread runs at
100% CPU load (sleep = 0, pages_to_scan = 1000000).
The hardware used is on a common and cheap Intel

Q9300 Core 2 Quad at 2.50GHz with 4 GigaByte of
800mhz DDR2 memory.

We intend to measure here the max speed of KSM in
merging pages under best, worst and real life cases. The
number of MegaBytes per sec of memory merged by
KSM when KSM runs at full CPU utilization is a rel-
evant parameter to measure, because it shows how fast
KSM is at merging pages. In real life environments it’s
unlikely KSM will be tuned to run at full CPU utiliza-
tion (with the exception of very large servers with many
CPUs and several dozen GigaBytes of RAM), but the
fastest KSM is at merging pages at full CPU utiliza-
tion, the lower CPU KSM will take when tuned for real
life environments. We could have statistically measured
the average CPU utilization instead, but measuring the
amount of RAM merged per second and maxing out the
CPU utilization allows for a much more reliable mea-
surement of the efficiency of the algorithm under dif-
ferent workloads. The forth column of the output from
’vmstat 1’ will be used to monitor the progress KSM
does in merging memory.

The worst case for KSM that should practically never
materialize in practice (unless of course malicious users
can run their own malicious applications) can be exer-
cised with an application that allocates one gigabyte of
memory and that makes all pages equal except for the
last 4 bytes of each page. The first copy of this appli-
cation called ksmpages will fully populate the unstable
tree. Running a second copy will merge all pages in the
unstable tree and it will create equal amounts of KSM
shared pages in the stable tree and free one gigabyte of
memory in the process. The stable and unstable trees
generated will have many levels and the memcmp() will
not break before at least 4092 bytes have been read for
each level of the tree.

The best case for KSM can be exercised with an appli-
cation that allocates one gigabyte of memory and initial-
izes all pages to the same value. KSM when started will
quickly free one gigabyte of memory minus one KSM
page that will be the only one indexed in the stable tree.
The unstable tree will not be empty only before the very
first merge. A single memcmp() and a single level of the
stable tree has to be walked in order to merge the pages.

The real life case for KSM can be measured by running
two copies of a popular proprietary guest OS in KVM
with 1G of memory each, wait both of the to finish boot-
ing, and finally start KSM and see how fast the memory

28 • Increasing memory density by using KSM

Figure 8: KSM benchmark

is merged (i.e. freed). Then we stop the kksmd thread,
we start a third VM of the same OS, and we start kksmd
again.

23 Conclusions

Considering that even the worst possible malicious case
on one of the cheapest workstation hardware configu-
rations with very cheap motherboard and northbridge,
definitely makes progress at 10.62 MegaBytes merged
per second (note that the only side effect of malicious
behavior is an higher CPU utilization), that the fixed
cost of the virtual address scanning and page merg-
ing is CPU bounded at 269.05 MegaBytes per second,
and that the real life KVM case merges pages at 80.70
MegaBytes per second, we’re comfortable this algo-
rithm (even without the future possible further optimiza-
tions) in the background will be able to merge pages effi-
ciently in virtualization and scientific environments and
in embedded systems as well.

24 References

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, Chapter 13—Red-Black
Trees Introduction to Algorithms, Second Edition. The
MIT Press, September, 2001.

Vincenzo Innocente, Summary of the evaluation of
KSM for sharing memory in a multiprocess
environment, https://twiki.cern.ch/
twiki/bin/view/LCG/EvaluationKSM0409,
20 May 2009.

Izik Eidus, KSM version used for benchmark,
http://kerneltrap.org/mailarchive/
linux-kvm/2009/4/20/5521504, 20 April
2009.

Andrea Arcangeli, ksmpages.c source and some
benchmark,
http://kerneltrap.org/mailarchive/
linux-kvm/2009/3/31/5349904, 31 March
2009.

Sandboxer: Light-Weight Application Isolation in Mobile Internet
Devices

Rajesh Banginwar
Intel Corporation

rajesh.banginwar@intel.com

Michael Leibowitz
Intel Corporation

michael.leibowitz@intel.com

Thomas Tanaka
Department of Computer Engineering

San Jose State University
thomas.tanaka@gmail.com

Abstract

In this paper, we introduce sandboxer, an application
isolation mechanism for Moblin based Mobile Inter-
net Devices (MIDs). MIDs are expected to support the
open but secure device model where end users are ex-
pected to download applications from potentially mali-
cious sources. Sandboxer allows us to safely construct a
system that is similar to the conventional *NIX desktop,
but with the assumption that applications are malicious.
Sandboxer uses a combination of filesystem names-
pace isolation, which provides a secure chroot()like
jail; UID/GID separation, which provides IPC isola-
tion; and cgroups based resource controllers, which
provides access control to devices as well as dynamic
limits on resources. By combining these facilities, we
are able to provide sufficient protection to the user and
system from both compromised applications that have
been subverted as well as malicious applications while
maintaining a very similar environment to the traditional
*NIX desktop. The mechanism also provides facility
for applications to hide the local data from rest of the
applications running in their own sandboxes.

1 Introduction

Mobile internet devices (MIDs) have become an in-
creasingly popular choice of device that people use ev-
ery day as part of their daily routines. The recent re-
leased of Intel Atom processor which targets computer
systems with small form factor such as MIDs and comes
with the capability to deliver full internet experiences
to mobile devices; further adds to a roadmap of more
powerful processors powering MIDs in the near future.

User will thus be able to enjoy high quality entertain-
ment such as game or working towards their business
related tasks on their mobile devices. With the increase
in the computational power, more complex software ap-
plications will be developed to run in mobile devices.
This could potentially lead to an increase in the secu-
rity exploit of the device due to bugs and other possible
software design flaws. Malicious software that has suc-
cessfully penetrated the device will have the available
resources to tap into user’s privacy, which could be in
the form of personal data (e.g., phone number) or sensi-
tive phone conversations.

The majority of the user groups will not be necessarily
equipped with sufficient knowledge to identify a possi-
ble malicious website or application. Therefore, design-
ing and managing a strict security measure for mobile
device is a necessary first step to ensure a safe operat-
ing environment. We have thus proposed sandboxer, the
security tool that will provide a mechanism to protect
mobile device in the event of malicious attacks. The
basic sandboxing technique provides a concealed en-
vironment in which an application can be run, and in
the event of malicious attack, damage to the system is
greatly minimized. There have been similar works in
the sandboxing design by several researchers. Never-
theless, their respective work has been focusing more on
delivering a complete and efficient sandboxing solution
that intends to minimize the possibility of an exploit in
a vulnerable desktop/server like system rather than tar-
geting specifically on mobile devices. Savitha and Ko-
lar have proposed the use of hardware base solution to
create the fine grained sandboxing by utilizing the privi-
lege level adjustment that is available in today’s proces-
sors [1]. West and Gloudon have proposed to monitor

30 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

system calls that required the modification of the kernel
codes [2]. Yee et al. have developed a novel approach
that utilizes the system interaction in terms of software
fault isolation and controlling the runtime environment
securely [11]. On the other hand, Chang et al. have im-
plemented user level sandbox that uses resource mon-
itoring and restrictions on applications specifically on
Windows platform [10].

Our implementation differs in that we specifically focus
on implementing the application sandboxing in a Linux
platform, as part of the Moblin.org open source project
[15]. Moblin is an open source Linux based operating
system specifically targeted for MIDs. The unique fea-
tures of our designs are as follows:

• The use of available and simple yet robust filesys-
tem and privilege isolation techniques that are
available as part of the Linux platform.

• User level implementation that does not require any
modification to the Linux kernel only relying on
the existence of a stable kernel and system.

• The ability to further extend the functionality of the
sandbox through the use of plugins.

• The use of cgroups as a plugin to further enhance
the sandboxing capability to include a tool that ca-
pable of enforcing a policy base resource control
mechanism on the system.

With this, we will begin our discussion of the overall
sandbox architecture design. We will then proceed on
how we isolate the filesystem and privileges. Finally,
we will proceed with the brief discussion of cgroups
and specifically which features of cgroups that is cur-
rently included in our overall sandbox design.

2 Design and Implementation

Our design principle is based on the following key ob-
jectives:

1. To guarantee that a compromised application could
not take ownership of the whole system. In other
words, an attacker will not be able to use a possible
vulnerable application as a springboard to launch a
premeditated attack.

2. To provide the ability to hide information or data
associated with an application from the rest of the
applications running on the platform.

3. To provide the way to restrict access to the part of
the system that an application does not require to
accomplish its task.

4. To provide the ability to customize extended func-
tionality of the sandbox by providing software
hooks that could be developed and installed as a
plugin.

Based on the above objectives, we have the overall high
level system architecture of our design as shown in Fig-
ure 1.

Sandbox BSandbox A

Sandboxerd
Package File

Database

launches

launches

Launch

Un-trusted
Application

Trusted
Application 1

Trusted
Application 2

StubD

launches launches

DBUS

Figure 1: Architecture Overview

Our design consists of three functional components:
Package File Database, Sandboxer Daemon, and Stub
Daemon, as shown in Figure 1 above. The roles of these
three functional components are as follows:

• Package file database decides whether to create a
new sandbox or to use the existing one for the
newly invoked application.

• Sandboxerd responds to request from the new ap-
plication to execute.

• Stub Daemon is a daemon that only launches
within a sandbox that contains multiple trusted ap-
plications. It specifically handles the request from
the Sandboxerd where a new trusted application
needs to run in the existing sandbox.

2009 Linux Symposium • 31

Trusted Domains
- Packages are installed in the /usr hierarchy as per Filesystem Hierarchy Standard (FHS) recommendations
- Binary files/directories are owned by (root, root)
- Binaries are run as <unique_uid>, <unique_gid>
- Multiple binaries may be run in the same sandbox
Untrusted Domains
- Packages are installed in /opt/<package-name> as per FHS recommendations
- Files/directories are owned by <unique_uid>, <unique_gid>
- Binaries are run as <unique_uid>, <unique_gid>

Table 1: Assumptions based on trusted and untrusted domains

Notice that we emphasize the notion of trusted applica-
tions. Trusted applications are verified as safe applica-
tions and from trusted domains. The assumptions be-
tween trusted and untrusted domains are summarized in
Table 1.

The package file database’s primary role is to provide
a mapping between trusted binaries to sandbox in the
form of configuration file or database. All applications
to be run in a sandbox are configured here, both trusted
and untrusted. The distinction from trusted and un-
trusted operation is the configuration of the sandboxes,
rather than the flag in the database. Care must be exer-
cised during the creation of such entries. The format is
illustrated in Table 2 below.

[Sandbox]
SandboxName=shared_sandbox
PackageName=firefox
Users=firefox
ExecPaths=/usr/lib/firefox-3.0.8/firefox
[Sandbox]
SandboxName=shared_sandbox
PackageName=gcalctool
Users=gcalctool
ExecPaths=/usr/bin/gcalctool
[Sandbox]
SandboxName=xterm_sandbox
PackageName=xterm
Users=xterm
ExecPaths=/usr/bin/xterm.bin

Table 2: Example .package files

The application firefox and gcalctool will there-
fore share the sandbox which will be referred to as
’shared sandbox’, while xterm will use the new
sandbox referred to as ’xterm_sandbox’.

2.1 Filesystem and privilege isolation method

By filesystem isolation we mean that the sandboxed ap-
plication runs in the pre-defined subset of filesystem
that it cannot escape from. This is commonly referred
to as “jail” and is most commonly accomplished with
chroot(). Exploits that will compromise a simple
chroot() are well known [14]. Our implementation
does not use chroot() directly. Instead, we uses the
CLONE_NEWNS flag introduced in the Linux 2.4.19 as
a flag to create a new filesystem namespace with the
unshare() system call. Once a process has entered
its own namespace, mount() and umount() only af-
fect the namespace of the current process and not the
parent. Thus, manipulation to the root filesystem is pos-
sible that is specific to a certain process. Bind mounts
(Linux 2.4 onwards) allow a sub-tree of the filesystem to
be mounted as though it were a filesystem on a path. Us-
ing this mechanism, one can, for example, bind mount
/foo/bar to /baz with mount("/foo/bar",
"/baz", NULL, MS_BIND, NULL). With these
two tools, a secure jail can be constructed simply with:

chdir("/jail");
unshare(CLONE_NEWNS);
mount("/jail","/jail",0,MS_BIND,0);
pivot_root("/jail","/jail/old_root");
chdir("/");
mount("/old_root/bin","bin",0,MS_BIND,0);
mount("/old_root/usr","usr",0,MS_BIND,0);
mount("/old_root/lib","lib",0,MS_BIND,0);
umount2("/old_root",MNT_DETACH);
/* drop privilege omitted */
exec(application);

For privilege isolation, we use conventional UNIX users
and groups. It is expected that individual applications
will run with individual UID and GIDs. This allows

32 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

traditional isolation among users, which UNIX systems
provide to keep applications distinct from each other.
Several unprivileged applications will likely be put in
their own sandbox. Certain applications will remain out-
side of sandboxes. These generally include privileged
applications and daemons as well as applications that
need unfettered access to the whole filesystem to work
correctly (such as the IDS system). Of course, X is out-
side of a sandbox.

It may be desirable to put a PIM application and the
web browser in separate sandboxes because both pro-
cess’ considerable input from the outside. It would be
undesirable if an arbitrary code execution’s flaw in the
web browser exposed all of user’s email. Likewise, the
damage the compromised web browser will do should
be limited.

2.2 Sandoxerd and Stub Daemon

Sandboxerd uses D-Bus as the communication medium
among client applications. Sandboxerd exists as a dae-
mon that manages the creation of sandbox and ver-
ify the policy that comes with that particular sandbox.
It exposes an interface that is roughly analogous to
vfork() and wait() usages. Note that this is API
usage. A helper application is provided that can be di-
rectly vfork’d and waited. The helper utility is called
sandbox and the usage of such utility would be:

sandbox <cmd> [args]

The calling application can directly use vfork()/
exec() and waitpid() on this helper utility. With
such a utility, enabling the use of sandboxing to applica-
tions is a mere configuration change rather than a code
change.

The Stub Daemon exists for the case where two or more
trusted applications are to share a sandbox. This can be
determined in advance by cross-indexing the application
name to the sandbox name in the configuration database
during the mapping procedure. Because a sandbox is a
premised on a filesystem namespace (CLONE_NEWNS),
the only way to add a process to an existing sandbox
is with fork(). For this scenario, the Sandboxerd
vfork() the Stub Daemon. The Stub Daemon does
the unshare() and bind mounts filesystems available
to the sandbox and waits for commands from Sandbox-
erd. When all the children have exited, the daemon ex-
its, thus destroying the sandbox. The following pseu-
docode further illustrates the mechanism.

loop {
wait for command from Sandboxerd() {

pid= fork;
if (pid) {

children << pid;
send child pid to Sandboxerd;

} else {
setgid();
setruid();
exec();

}
}

if children is empty
exit;

}

To better understand how these blocks function together,
two flow examples are provided side by side. Note that
although we use the UML sequence notation, each life-
line represents a process rather than an object. Referring
to Figure 2, in the first use case (the left figure), one ap-
plication in a sandbox (App1), requests for the launch-
ing of a second application in a sandbox (App2), and
each application exists in its own sandbox.

2.3 Plugins architecture

Our implementation of sandbox provides strategically
placed hooks. Referring to our method of creating a
secure “jail” in the previous 2.1 section, the following
hooks in order:

• INIT – initialization state; run as sandboxer user

• PRE_FORK – state before fork() system call;
run as sandboxer user

• PRE_UNSHARE – state before unshare() sys-
tem call; run as root

• PRE_PIVOT_ROOT – state before pivot_
root() system call; run as root

• PRE_UMOUNT – state before unmounting old_
root; run as root

• PRE_SETUID – state before dropping privileges;
run as root

• PRE_EXEC – state before exec() system call;
run with privilege specified in .package file

• FINALIZE – final state; run as sandboxer user

2009 Linux Symposium • 33

Figure 2: One application run on one sandbox (left), and semantics of Stub Daemon with two applications run inside
the same sandbox (right)

Various plugins will be instantiated and registered
within the Sandboxerd and Stub Daemon through con-
figuration files. When new process is to be run,
the Sandboxerd and Stub Daemon will invoke a par-
ticular function provided by the plugins, i.e. before
unshare() a filesystem, the PRE_UNSHARE plugins
function will be called to accomplish the necessary task
related to that particular process. The hook function will
provide information of the respective parent of particu-
lar process and the sandbox environment, i.e. its con-
fined filesystem. Notice that at each of the hook, uid
(UID) and gid (GID) will be different depending on
which stage of the sandbox creation process a particular
plugin function is invoked.

With the adaption of the plugins architecture towards
our sandbox design, it enables the flexibility in extend-
ing beyond the simple “jail” mechanism that the basic
sandbox provides. The need to expand the security fea-

tures of the sandbox will be available to a developer
simply by implementing a plugin. We have chosen to
demonstrate the use of plugin to enhance our sandbox by
integrating a resource control mechanism (cgroups)
via a plugin.

2.4 Resource control

Resource control enables us to establish policy in re-
gards to memory usage or devices available in the sys-
tem. We have integrated cgroups into our sandbox
to achieve this goal. Cgroups also known as con-
trol groups is Linux kernel mechanism that is currently
a work in progress, which provides a way to partition
tasks and their respective children into a hierarchical
groups [6]. It was originally developed with the in-
tention to become a Linux container. Cgroups by
itself provides a simple job tracking mechanism avail-
able inside the kernel. It comes with several subsystems

34 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

Sandbox 1 Sandbox 2 Sandbox 1 Sandbox 2

Apps 1, Apps 2
Fs:/usr;/home;

/bin;

Apps 3
Fs:/foo;/foo1;

/foo2;

Apps 1, Apps 2
Fs:/usr;/home;

/bin;

Apps 3
Fs:/foo;/foo1;

/foo2;

Namespace: UID1
GID1

Namespace: UID3
GID3

Namespace: UID1
GID1

Namespace: UID3
GID3

Memory, CPUs, Available devices (/dev)
Memory: n bytes
CPU: 0
Devs: /dev/foo1

/dev/foo2

Memory: n+1 bytes
CPU: 1
Devs: /dev/foo3

/dev/foo4

Sandbox without Cgroups Sandbox withCgroups

Figure 3: High level comparison on sandbox design with and without cgroups

which uses this basic functionality to extend the abil-
ity to provide resource controls. Currently there are ten
or more cgroups subsystems being developed and ex-
perimented. Since this is a work in progress, more sta-
ble and new subsystems will be available in the near fu-
ture. By enabling cgroups subsystems into our sand-
box design, we are able to provide policies that capa-
ble of directly controlling the limit on the usage of sys-
tem resources. Currently, we have included only a to-
tal of three subsystems (memory, memrlimit and
devices) to be included as part of our sandbox de-
sign.

Memory subsystem provides the availability to limit
the available memory per sandbox [8]. Memrlimit
subsystem provides the same functionality as
memrlimit() system call and this limit applies
in per sandbox context (regardless of the number of
processes residing inside particular sandbox) as oppose
to per process context as in the original system call.
Device subsystem provides the ability to restrict
access to devices available in the system as available in
/dev filesystem. It provides ability to track and enforce
open and mknod restrictions on device files [7].

The memrlimit capability provides the sandbox an
ability to automatically keep tracks of the total mem-
ory limit (available address space or number of bytes
allocated via malloc(), sbrk(), mmap()). It will
automatically fail any attempt to allocate dynamic mem-
ory beyond the specified allocated limit as per sand-
box configuration policy. Device subsystem provides
a way to enable and disable the available devices (de-
vice whitelists) to a particular sandbox. Customize pol-
icy that distinguished between the availability of device
between a trusted sandbox and those which serves un-
trusted/possible malicious application.

With these three subsystems implemented in our sand-
box, we could further provide a more targeted policy
control for specific applications. One example is the
ability to enforce a strict policy to target sandbox us-
age for a potential un-trusted/malicious application. Al-
though the filesystem and privilege isolation is a de-
fense mechanism in the event of an attack; the system
resources are still available to be exploited, specifically
memory limit. As depicted in Figure 3, system’s mem-
ory and cpu(s) are shared among the sandbox in the
absence of cgroups. With cgroups, memory and

2009 Linux Symposium • 35

cpu(s) usage and access policy is enforced. The need
to always ensure sufficient memory availability is a ne-
cessity for a device that has telephonic capability. In
the event of an emergency call such as 911, we have to
provide a high level of assurance that the call will not
be interrupted in the possible event of depleted mem-
ory availability consumed by some malicious processes.
With resource control functionality, thus we are able to
create a policy that will pre-allocate sufficient system
resources to ensure the emergency call will proceed un-
interrupted.

2.5 Cgroups as a plugin

The first prerequisite in enabling the cgroups re-
source capability is to compile the Linux kernel with
required cgroups subsystem enabled. The configu-
ration for each sandbox object comes with the lists of
cgroups variable of interest. The running system is
also required by default to create a virtual filesystem
that cgroups will use to operate. The hooks for the
cgroups functionality need only to be called during
the PRE_FORK and PRE_SETUID state. Initialization
and setting up necessary parameters such as memory
limits and lists of allowable devices are accomplished at
the PRE_FORK state by reading available package files.
At the PRE_SETUID, the pid of the running process in a
particular sandbox will be registered with the cgroups
system. Cgroups will then perform an accounting and
monitoring activity.

3 Sandbox confines

For most applications, some shared variable is required
as well as some Inter Process Communication (IPC).
To the end user, the sandbox should be transparent and
they should not see individual fields of data that can-
not be merged. For most applications to work cor-
rectly, several environment variables must be set up in
the sandbox. Examples of such environment variables
are PATH, USER, HOME, HOSTNAME, and GTK+
themes. However, manipulation of environment vari-
ables by a nefarious caller can lead to compromise. As
such, the environment variables used inside the sandbox
must be taken from a source other than the caller. Since
the environment of the Stub Daemon is trusted, it serves
as the source for environment variables to be used inside
sandboxes.

Since the sandboxes are file-system based, most forms
of IPC are possible across sandboxes. Most IPC se-
mantics require some handle to be present for one ap-
plication to know the IPC method and path to be used
to connect to. For example, D-Bus uses the environ-
ment variable DBUS_SESSION_ADDRESS. For these
IPC mechanisms to be readily available inside the sand-
box, they need to be copied over. At present, Xauth
cookies and D-Bus handles are copied over. Plugin-
type architecture will allow for flexible manipulation
of the sandbox environment at creation. Mechanics
for sharing files between sandboxed applications can be
done simply for trusted applications. Standard POSIX
permissions and groups offer an appropriate method.
For example, suppose we wish for all trusted applica-
tions to be able to read and write files in the direc-
tory /usr/share/foo. If all trusted applications
are in the “trusted” group and /usr/share/foo is
set GID foo with mode 770, then all trusted appli-
cations can read, write, create, and execute files out of
/usr/share/foo.

Although the sandbox environment provides almost all
of the same functionality as a normal Linux program-
ming environment, certain exceptions and caveats are
present. The most notable difference for the program-
mer is the absence of /proc and /sys inside the sand-
boxes. The removal of proc and sys effectively limit
the visibility of sandboxed applications to see the true
environment. Most end-user applications function with-
out proc being present; however application writers
should be cognizant of this omission. Additionally, the
/dev and /etc directories are present, but are not true
copies of the respective system directories. They are
“shims” with only the relevant files or sections of files
present. Unlike the bind mounts for the other root direc-
tories, the shims are selective copies that are created on
demand, although they can be cached. In /etc, for ex-
ample, the full passwd database will not be present.
However, an abridged version will be created on de-
mand that only contains the relevant user and group in-
formation for the application(s) that run in that sand-
box. Similarly, most host information available in /etc
are not copied over. In /dev only devices that need
to be present need to be created. For most applica-
tions, only non-hardware devices will be present, such
as random, null, and zero. For trusted applica-
tions, some devices may need to be present as specified
in the package file database.

36 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

Additionally, top level directories cannot be removed
from within sandboxes. For example if there was a
top level directory /foo and it was mode 777 with a
bind-mounted directory, then it could not be removed
from either inside or outside the sandbox. Although
files can be removed from /foo, the directory /foo
itself is unremovable. There are two examples where
expected results may occur if the developer is not aware
of the sandboxed environments. The first is the unin-
tentional launching of an application within the same
sandbox. For example, if the browser wishes to launch
the email client (to handle a mailto: url), and it uses
vfork/exec of the email executable directly instead
of the convenience wrapper, it will inadvertently start
the email client within the same sandbox. This will most
likely lead to a non-functional email client, but could be
an exploitable condition. Care should therefore be ex-
ercised. Similarly, care must be exercised with D-Bus
activation. Since the session bus is shared amongst all
sandboxes outside of their respective sandbox. An ap-
plication that wishes to use D-Bus activation will use
the convenience wrappers in its activation procedure to
allow proper functionality. Failure to do so will result in
activation failing. With these sandboxing approaches,
we feel that we can limit the damage of application sub-
version, lessen the risks of disclosure of sensitive data,
as well as reduce opportunities for privilege escalation.

4 Related work

Many implementations of sandboxing technologies fo-
cused on almost many different approaches, both soft-
ware and hardware utilization. One of the hardware im-
plementations from the work of Sahita and Kolar that
proposed the use of Virtual Machine Monitor (VMM)
is included in the hardware virtualization support inside
Intel’s CPU [1]. The implementation consisted of cre-
ating a monitoring scheme that utilized a VMM and a
kernel service that will particularly monitor the request
for memory usage. The monitoring agent will allocate a
range of linear addresses for the new application. Mem-
ory access needs to be requested via a communication
with the monitoring agent that runs as VMM. Trusted
and untrusted application will run on separate isolation
of memory addressing that will be determined by a pol-
icy access of a particular sandbox. The similarity in our
implementation is in the policy that we have enforced
for a particular sandbox which has lists of variables such
as memory limit and devices white list. Our implemen-
tation is only restricting the amount of memory instead

of restricting access to a range of linear addresses. With
a fine grained control of range of accessible linear ad-
dresses, malicious application will not be able to gain
access to the protected memory regions thus reducing
the damage caused to the system. However, the tradeoff
will be the complexity in the integration with the sys-
tem hardware. Our implementation focused on provid-
ing a simple yet robust solution that provides the sand-
box properties that will work on all platforms capable of
running Linux operating system regardless of the under-
lying hardware design.

The work of Chang et al. in the implementation of
user-level resource constrained sandbox is closely re-
lated to our work [10]. The implementation covered the
ability to constrain the system usage of CPU, memory
and network. The focus of their implementation was
specifically on the Windows NT platform. Although
Linux platform was included in the experimental test-
ing, the paper lacks the discussion on the details of
the implementation. CPU resource constrained is ac-
complished by implementing a monitoring scheme that
scheduled processes based on the priority level. A pro-
cess that exceeded the limit will be penalized by low-
ering its priority level. Memory constrained is accom-
plished with the way of sampling the memory usage
by intercepting memory allocation API. Those applica-
tions that exceeded its limit will be penalized by hav-
ing the extra memory pages marked, such that access
to the marked pages will result in page fault. The dif-
ference in our implementation is that we have used the
resource constrained capability-cgroups as part of the
kernel. Cgroups provide a simple yet robust frame-
work for resource control capability within the Linux
kernel. Instead of penalizing a process that exceeded
its limit, i.e. malloc() request, cgroups will simply
return a fail for any attempt to request for resource us-
age beyond its preset sandbox limit. Instead of per pro-
cess restriction, our cgroups implementation provides
per sandbox policy restriction. Without the complexity
of monitoring each and every resources allocation API,
cgroups keep a simple accounting routine that will
check if the policy limit has been exceeded and thus re-
quires less processing overhead. It therefore translated
into a lower total power consumption. The needs for
more complex solution that involves kernel functional-
ity could always be extended as part of the cgroups
subsystem.

West and Gloudon proposed a user level sandbox to

2009 Linux Symposium • 37

provide protection for extensible system [2]. Their ap-
proach modifies a process address space to contain one
or more shared pages. The extension codes will then
be mapped into this shared page that comes with ac-
cess privilege as a protection mechanism during tran-
sition from the user to kernel space. Through changing
the access privilege of the shared page, kernel is able to
maintain the integrity over the newly implemented ex-
tension codes. Though not particularly focusing on an
extensible system, our design provides the capability of
running a completely new or existing sandbox setup, in
which a new extension of the system is desire. The sets
of policy could be reused or recreated to accommodate
the changes. It may contain a total set of filesystems
or various sandbox variables to better accommodate and
provide security isolation to the newly modified appli-
cation.

Yee et al. introduced Native Client, the protection mech-
anism to run un-trusted native code specifically on the
x86 based system [11]. Native Client provides a se-
cure runtime protection and software fault isolation. A
two layer of sandbox is introduced, with the inner layer
provides memory reference constraint through the use
of x86 segmented memory capability. The outer layer
compares each request of a system call with the database
of trusted system call. Our implementation does not in-
tercept against any system call made by an application.
However, we restrict the namespace of the particular ap-
plication, so that it could only have the visibility of a suf-
ficient set of filesystems to accomplish its task. Filesys-
tems that contain system information such as proc,
sys, etc. may not be available to the application.
The application will execute with sufficient privilege to
accomplish its task. In the event that software fault that
could trigger an attack, such as buffer overflow, the com-
promised application will be confined to its own sand-
box environment with its default privilege, thus gaining
a root access privilege will be difficult.

Most of the isolation solutions that we have seen so far
tend towards the use of restriction against access to spe-
cific memory range to protect sensitive data. With such
a fine grained control of memory access, it will be able
to prevent any unintended access towards a particular
memory area; however, a complex modification in both
hardware and software is almost a major requirement.
The cost of implementing and maintaining will increase
correspondingly with respect to the the complexity of
the system design. System call interception is also an-

other common approach. Our main goal of creating the
sandbox solution is to use the simple approach that al-
ready existed in the system especially in the Linux plat-
form and by integrating a kernel level control that is pro-
vided by a framework such as cgroups that has low
system overhead. By going with a simplistic approach
we are not sacrificing any security measure, since we
are using a Linux system mechanism that has been thor-
oughly used and tested overtime in terms of its stabil-
ity and security. Additionally, our goal is to enable the
porting of our implementation across the many different
hardware platforms with minimal difficulty.

5 Future work

We hope to get insightful feedback and contribution
from the open source community and integrate it into
our future design. With the inclusion of cgroups,
we are always capable of improving and adding the
resource control functionalities by including the new
cgroups subsystem. The plugin capability also allows
the user of our sandboxer to add an extra functionality
as required.

6 Conclusion

This paper provides an overview of our design of the
user level sandboxing design which provides filesystem
namespace isolation, flexibility to extend sandbox capa-
bility through innovative design of plugins architecture,
and utilization of a resource control capability through
Linux kernel cgroups. We have described in this pa-
per how we achieve filesystem and namespace isolation,
and how we utilized our sandbox plugin capability by
making cgroups a plugin. With the ability to contain
and run predefined sets of policy, we are thus prevent-
ing a compromised application to invoke a significant
damage in a system such as MIDs. This project is also
part of the moblin.org open source project initiative for
Linux based operating system specifically targeted for
MIDs.

7 References

[1] R. Sahita and D. Kolar, Beyond Ring-3: Fine
Grained Application Sandboxing. World Wide Web
Consortium (W3C), December 2008.

38 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

[2] R. West and J. Gouldon, User-Level Sandboxing: a
Safe and Efficient Mechanism for Exensibility.
Technical Report, 2003-014, Boston University, June
2003.

[3] R. West and J. Gouldon, QoS Safe’ kernel
extensions for real-time resource management. The
14th EuroMicro International Conference on
Real-Time Systems, June 2002.

[4] I. Goldberg, D. Wagner, R. Thomas and E. Brewer,
A secure environment for untrusted helper applications.
In Proceedings of 6th USENIX Security Symposium,
July 1996.

[5] S. Miwa, T. Miyachi, M. Eto, M. Yoshizumi and Y.
Shinoda, Design Issues of an Isolated Sandbox Used to
Analyze Malwares. In Lecture Notes in Computer
Science: Advances in Information and Computer
Security, Heidelberg, 2007.

[6] Cgroups documentation.
/linux-2.6.X/Documentation/cgroups/
cgroups.txt

[7] Cgroups devices documentation.
/linux-2.6.X/Documentation/
controllers/devices.txt

[8] Cgroups memory documentation.
/linux-2.6.X/Documentation/
controllers/memory.txt

[9] Robert N. M. Watson, Exploiting concurrency
vulnerabilites in system call wrappers. In 1st USENIX
Workshop on Offensive Technologies, August 2007.

[10] F. Chang, A. Itzkovitz and V. Karamcheti,
User-level Resource-constrained Sandboxing. USENIX
Windows Systems Symposium, August 2000.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula and N. Fullagar,
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. Technical paper Google Inc, 2008.

[12] S. Santhanam, P. Elango, A. A-Dusseau and M.
Linvy, Deploying Virtual Machines as Sandboxes for
the Grid. Proceedings of the 2nd conference on Real,
Large Distributed Systems-Volume 2, San Francisco
2005.

[13] B. Ford and R. Cox, Vx32:Ligthweight User-level
Sandboxing on the x86. 2008 USENIX Annual
Technical Conference, June 2008.

[14] Using chroot() Securely.
http://linuxsecurity.com/content/
view/117632/49/

[15] Moblin.
http://moblin.org

Dynamic Debug

Jason Baron
Red Hat

jbaron@redhat.com

Abstract

The kernel is sprinkled with debug statements that are
only available by individually re-compiling the various
subsystems of the kernel. In addition, each subsys-
tem has its own rules and methods for expressing these
debug statements - dprintk(), DEBUGP(), pr_
debug(), etc. Dynamic debug, introduced in ker-
nel 2.6.28, organizes these debug statements and makes
them available at run-time. Statements can be enabled
on an individual basis, or via higher level organizations
such as per-module. Dynamic debug can be thought of
as a verbose mode for the kernel. We explore the design,
usage, and performance impact of this new feature. We
also highlight issues that have been debugged with this
methodology and future work.

1 Introduction

The kernel contains many debug statements. In kernel
2.6.29 there are 3058 pr_debug() calls, 3158 dev_
dbg() calls, 5618 dprintk() calls, 206 DEBUGP()
calls, and countless additional debugging statements.
Some of these statements are activated by defining
DEBUG in the corresponding .c files, while others are
activated by enabling subsystem specific configuration
parameters. Some subsystems have developed sophisti-
cated debug statement frameworks, allowing fine grain
control via bit flags and debug levels. Thus, when a
problem occurs that requires additional debugging infor-
mation, a kernel would typically need to be re-compiled
in order to obtain this additional debugging information.

According to Linux Device Drivers, “The most common
debugging technique is monitoring, which in applica-
tions programming is done by calling printf at suitable
points. When you are debugging kernel code, you can
accomplish the same goal with printk”[4]. Many, if not
most user space programs have a verbose mode. So,
why doesn’t the kernel have such a mode?

Really, the kernel does already have such a mode.
We currently label printk messages, from most severe,
KERN_EMERG, to least severe, KERN_DEBUG. Thus, a
printk of level KERN_DEBUG already exists. Why don’t
we simply convert the 10,000 or so debug statements
previously mentioned, to printks of level KERN_DEBUG
and be done with it?

First, enabling all those debug statements would clutter
up the logs. These debug statements are often found
in high frequency code paths, and thus would make
noise to signal ratio of the logs rather high. Second,
even when a printk message doesn’t make its way to the
console and/or the system logs, we still ‘render’ every
printk in the kernel, which is an expensive operation.
In ‘rendering’ a printk, we format the messages into a
buffer with locks held and irqs disabled. In fact, we
saw an 86% tbench performance degradation, when en-
abling all the debug statements, but not logging any of
the messages to the system logs or console. Thus, there
is an enormous cost associated with simply turning these
messages into printk statements of level KERN_DEBUG.

Dynamic debug addresses these two core concerns. The
verbosity is tackled using a unique language, which al-
lows expression for fine grain control of each debug
statement, while also permitting coarser control, using
for example, per-module enabling. This control lan-
guage was originally developed by Greg Banks at SGI
and was incorporated into dynamic debug[1]. The run-
time performance concerns are addressed while making
use of a bloom filter[2].

There has been a lot of work recently in the gen-
eral area of kernel tracing. Ftrace[6], LTTng[5], and
Systemtap[3] can all be used to trace the kernel. We
view dynamic debug as a complementary technology
that can be used in conjunction with these other tools.
There may also be ways for dynamic debug to leverage
and/or combine with some of these tools, which we will
explore.

• 39 •

40 • Dynamic Debug

In the next section, we will look at the implementation
of dynamic debug. We will then look at its usage and
some examples. Next, we will analyze the impact of
dynamic debug in terms of its size and performance.
We then introduce a subtle variation on dynamic debug
which can handle more complex debugging statements.
Finally, we conclude by commenting on the organiza-
tion of kernel debug statements, and suggesting areas
for future work.

2 Implementation

As mentioned, the two central goals of the implemen-
tation are controlling what ends up in the system logs
or filtering, and efficiency or minimal run-time cost.
The initial implementation focused on two functions -
pr_debug and dev_dbg. These functions are de-
fined centrally, thus, ‘overwriting’ their definition was
contained to two source files.

We then associate meta data with each debug statement.
This meta data records the containing .c file, line num-
ber, containing module, and associated format string.
This information enables the user to understand and
control which statements are enabled. The size of the
meta data is then proportional to information stored for
each debug statement and the number of debug state-
ments. We explore the meta data associated with each
debug statement, and the run-time control, in the follow-
ing two sections entitled ‘data structures’, and ‘bloom
filters’ respectively.

2.1 Data Structures

We hook into the pr_debug macro with some simple
macro magic. Prior, to the introduction of dynamic de-
bug we had:

#ifdef DEBUG
#define pr_debug(fmt, arg...) \

printk(KERN_DEBUG fmt, ##arg)
#else
#define pr_debug(fmt, arg...) \

({ if (0) printk(KERN_DEBUG fmt, ##arg); 0; })
#endif

We re-define this construct as follows:

#if defined(DEBUG)
#define pr_debug(fmt, ...) \

printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
#elif defined(CONFIG_DYNAMIC_DEBUG)
#define pr_debug(fmt, ...) do { \

dynamic_pr_debug(fmt, ##__VA_ARGS__); \
} while (0)

#else
#define pr_debug(fmt, ...) \

({ if (0) printk(KERN_DEBUG pr_fmt(fmt),
##__VA_ARGS__); 0; })

#endif

Thus, if DEBUG is defined, we continue to get an in-
lined printk statement, while no code is generated when
DEBUG is not defined. The new case that we have intro-
duced results from defining the new configuration pa-
rameter CONFIG_DYNAMIC_DEBUG. When this con-
figuration parameter is defined, we hook into the new
dynamic debug code. Note, that DEBUG takes prece-
dence over CONFIG_DYNAMIC_DEBUG. In this way,
code that defines DEBUG continues to work as was pre-
viously expected. The dev_dbg() hook is imple-
mented in a similar manner.

The dynamic_pr_debug() macro expands to store
debug statement data in the struct _ddebug data
structure, which follows.

struct _ddebug {
/*
* These fields are used to drive the user

* interface for selecting and displaying

* debug callsites.

*/
const char *modname;
const char *function;
const char *filename;
const char *format;
char primary_hash;
char secondary_hash;
unsigned int lineno:24;
/*
* The flags field controls the behaviour

* at the callsite. The bits here are

* changed dynamically when the user

* writes commands to

* <debugfs>/dynamic_debug/control

*/
#define _DPRINTK_FLAGS_PRINT (1<<0)
#define _DPRINTK_FLAGS_DEFAULT 0

unsigned int flags:8;
} __attribute__((aligned(8)));

The modname, function, filename and lineno fields
are populated using the C code definitions KBUILD_
MODNAME, __func__, __FILE__, and __LINE_
_, respectively. The format field is filled using the
supplied in format string. The primary_hash and
secondary_hash fields are explained in subsequent

2009 Linux Symposium • 41

bloom filter section. Finally, the flags field is used as a
per-call site control variable.

Thus, the struct _ddebug data structure is 40 bytes
in size. With a combined 6,000 call sites for pr_debug
and dev_dbg, that amounts to 23k(6000*40) in addi-
tion to the size of associated strings. We share results of
the kernel image size increases in the results section.

When the kernel boots or as new modules are inserted
and removed we create a new struct ddebug_
table structure for each logically module, which fol-
lows.

struct ddebug_table {
struct list_head link;
char *mod_name;
unsigned int num_ddebugs;
unsigned int num_enabled;
struct _ddebug *ddebugs;

};

The pointer to the _ddebugs structures which are as-
sociated with a particular module are then assigned to
the _ddebug field of the associated ddebug_table
data structure. The ddebug_table structures are then
linked together in a linked list. Thus, using this list we
can easily look up entries and display them. A linked
list works fine since looking up these entries when set-
ting values, is not a hot path.

2.2 Bloom Filter

We associate two hash values with each instrumented
debug statement. Both hashes are in the range 0-
64. These are stored in the primary_hash and
secondary_hash fields of the _ddebug structure.
We use the djb2 and the r5 hash algorithms. The input to
the hash function is the Linux source code directory and
the module name. Thus, modules of the same name that
are located in different source directories likely have dif-
ferent hash values. Thus, hash bits ‘n’ and ‘m’ are asso-
ciated with each debug statement.

Two global variables of type long long are also in-
troduced. They are dynamic_debug_enabled and
dynamic_debug_enabled2. When we wish to
enable a debug statement, we set bit ‘n’ and ‘m’ in
the global variables dynamic_debug_enabled and

dynamic_debug_enabled2 respectively. Thus,
each debug statement is conditioned on having bits ‘n’
and ‘m’ set in the global variables dynamic_debug_
enabled and dynamic_debug_enabled2 re-
spectively. This is a variation on a bloom filter[2]. There
can be false positives, and thus we use the flags field
of the struct _ddebug field as a third, and defini-
tive check before calling into the associated printk state-
ment.

Thus, the pseudo-code for the above described case is:

bit1 = hash1(kernel path + module name)
bit2 = hash2(kernel path + module name)
if (bit1 & dynamic_debug_enabled &&

bit2 & dynamic_debug_enabled &&
_ddebug field is set)
(do the printk)

While there may be more complex implementation
which involve live code patching, such as the immediate
variable work, we find this implementation to be a good
trade off between complexity and speed. Notice we have
no locking or synchronization of any kind. Thus in the
off case we expect to execute only a couple of additional
instructions, and because we are relying only two global
variables, we expect the code to exhibit good caching
property. We can also further tweak the properties of
the bloom filter by creating additional levels of hashing.
Notice we could also fold the hashing into one global
variable as well.

Next we turn to hash collisions. In building the v2.6.29
kernel with these options, when all module are disabled,
both global variables are set to 0, and thus we have no
false positives. When we turn all debugging on, we set
both of the globals to all 1s, and thus we have no false
positives in this case either. When one module is en-
abled, we also have no false positives. This is not neces-
sarily true, but is true for v2.6.29 kernel that was tested.
This kernel produced eighty separate modules, and thus
eighty unique sets hashes. We did not compute three
way collisions.

Thus, when no, one, or all modules are enabled we have
no false positives. Even in the case where we do have
a false positive, we do not call through to a function
we simply check the unique variable associated with the
corresponding debug statement.

42 • Dynamic Debug

3 Usage and Examples

3.1 Controlling Dynamic Debug Behavior

The behaviour of pr_debug() and dev_debug()
are controlled by writing to a control file in the debugfs
filesystem. Thus, you must first mount the debugfs
filesystem, in order to make use of this feature. Sub-
sequently, we refer to the control file as: <debugfs>
/dynamic_debug/control. For example, if you
want to enable printing from source file svcscok.c, line
1603 you simply do:

echo ’file svcsock.c line 1603 +p’ >
<debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail
thus:

echo ’file svcsock.c blah 1 +p’ >
<debugfs>/dynamic_debug/control
-bash: echo: write error: Invalid argument

3.2 Viewing Dynamic Debug Behavior

Viewing the current configuration is done with a simple
read. See Figure 1

3.3 Command Language Reference

At the lexical level, a command comprises a sequence
of words separated by whitespace characters. Note that
newlines are treated as word separators and do not end
a command or allow multiple commands to be done to-
gether. So these are all equivalent:

echo -c ’file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control
echo -c ’ file aio.c line 1603 +p ’ >
<debugfs>/dynamic_debug/control
echo -c ’file aio.c\nline 1603 +p’ >
<debugfs>/dynamic_debug/control
echo -n ’file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control

Commands are bounded by a write() system call. If you
want to do multiple commands you need to do a separate
"echo" for each:

echo ’file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control;\

> echo ’file svcsock.c line 1563 +p’ >
<debugfs>/dynamic_debug/control

or even:

(
> echo ’file svcsock.c line 1603 +p’ ;\
> echo ’file svcsock.c line 1563 +p’ ;\
>) > <debugfs>/dynamic_debug/control

At the syntactical level, a command comprises a se-
quence of match specifications, followed by a flags
change specification.

command ::= match-spec* flags-spec

The match-spec’s are used to choose a subset of the
known debug statements to which to apply the flags-
spec. Think of them as a query with implicit ANDs
between each pair. Note that an empty list of match-
specs is possible, but is not very useful because it will
not match any debug statement call sites.

A match specification comprises a keyword, which con-
trols the attribute of the call site to be compared, and a
value to compare against. Possible keywords are:

• match-spec ::= ’func’ string | ’file’ string | ’module’
string | ’format’ string | ’line’ line-range

• line-range ::= lineno | ’-’lineno | lineno’-’ | lineno’-
’lineno // Note: line-range cannot contain space,
e.g. // "1-30" is valid range but "1 - 30" is not.

• lineno ::= unsigned-int

The meanings of each keyword are:

• func. The given string is compared against the
function name of each callsite. Example:

func svc_tcp_accept

• file. The given string is compared against either the
full pathname or the basename of the source file of
each callsite. Examples:

file svcsock.c
file sched.c

2009 Linux Symposium • 43

You can view the currently configured behaviour of all the debug statements via:

cat <debugfs>/dynamic_debug/control
filename:lineno [module]function flags format
fs/sysfs/file.c:147 [file]sysfs_read_file - "%s: count = %zd, ppos = %lld, buf = %s\012"
fs/sysfs/dir.c:788 [dir]__sysfs_remove_dir - "sysfs %s: removing dir\012"
fs/sysfs/bin.c:110 [bin]read - "offs = %lld, *off = %lld, count = %d\012"
fs/debugfs/inode.c:217 [debugfs]debugfs_create_file - "debugfs: creating file ’%s’\012"

You can also apply standard Unix text manipulation filters to this data, e.g.:

grep -i aio <debugfs>/dynamic_debug/control | wc -l
10
grep -i security <debugfs>/dynamic_debug/control | wc -l
163

Note in particular that the third column shows the enabled behaviour flags for each debug statement call site. The default value,
no extra behaviour enabled, is "-". So you can view all the debug statement call sites with any non-default flags:

[root@mets dynamic_debug]# awk ’$3 != "-"’ control
filename:lineno [module]function flags format
fs/aio.c:77 [aio]aio_setup p "aio_setup: sizeof(struct page) = %d\012"
fs/aio.c:222 [aio]__put_ioctx p "__put_ioctx: freeing %p\012"
fs/aio.c:1788 [aio]sys_io_cancel p "calling cancel\012"
fs/aio.c:1698 [aio]sys_io_submit p "EINVAL: io_submit: invalid context id\012"
fs/aio.c:1604 [aio]io_submit_one p "EINVAL: io_submit: overflow check\012"
fs/aio.c:1594 [aio]io_submit_one p "EINVAL: io_submit: reserve field set\012"
fs/aio.c:1335 [aio]sys_io_destroy p "EINVAL: io_destroy: invalid context id\012"
fs/aio.c:1303 [aio]sys_io_setup p "EINVAL: io_setup: ctx %lu nr_events %u\012"
fs/aio.c:248 [aio]ioctx_alloc p "ENOMEM: nr_events too high\012"
fs/aio.c:1022 [aio]aio_complete p "added to ring %p at [%lu]\012"

Figure 1: Viewing current dynamic debug status

• module. The given string is compared against the
module name of each callsite. The module name
is the string as seen in “lsmod”, i.e. without the
directory or the .ko suffix and with ‘-’ changed to
‘_’. Examples:

module sunrpc
module nfsd

• format. The given string is searched for in the dy-
namic debug format string. Note that the string
does not need to match the entire format, only some
part. Whitespace and other special characters can
be escaped using C octal character escape notation,
e.g. the space character is
040. Alternatively, the string can be enclosed in
double quote. Examples:

format svcrdma: // many of the NFS/RDMA server
dprintks
format readahead // some dprintks in the readahead
cache
format nfsd:
040SETATTR // one way to match a format with
whitespace

format “nfsd: SETATTR” // a neater way to match
a format with whitespace
format ‘nfsd: SETATTR’ // yet another way to
match a format with whitespace

• line. The given line number or range of line num-
bers is compared against the line number of each
debug statement call site. A single line number
matches the call site line number exactly. A range
of line numbers matches any call site between the
first and last line number inclusive. An empty first
number means the first line in the file, an empty
line number means the last number in the file. Ex-
amples:

line 1603 // exactly line 1603
line 1600-1605 // the six lines from line 1600 to
line 1605
line -1605 // the 1605 lines from line 1 to line 1605
line 1600- // all lines from line 1600 to the end of
the file

The flags specification comprises a change operation
followed by one or more flag characters. The change
operation is one of the characters:

44 • Dynamic Debug

• - remove the given flags

• + add the given flags

• = set the flags to the given flags

The flags are:

• p Causes a printk() message to be emitted to
dmesg

Note the regexp ^[-+=][p]+$ matches a flags speci-
fication. Note also that there is no convenient syntax to
remove all the flags at once, you need to use “-p”.

3.4 Examples

In the figure 2 below we show two examples, to give a
flavor of the output. The first example shows enabling
all messages. The second example shows enabling kob-
ject module output while the cifs module is loaded.

4 Size and Performance

The kernel used for testing was v2.6.28 compiled for
x86_64. An Intel quad core machine running at 1.6 GHz
with 2GB of RAM was used for all tests.

test case tbench throughput
CONFIG_DYNAMIC_DEBUG disabled 773.054 MB/sec
CONFIG_DYNAMIC_DEBUG enabled 773.913 MB/sec
CONFIG_DYNAMIC_DEBUG enabled 79.664 MB/sec
and all debug statements enabled

Table 1: performance results

Thus, the run-time cost of having CONFIG_DYNAMIC_
DEBUG enabled, but none of the debug statements print-
ing, is negligible. However, when we enable all of
the debugging statements, the system throughput drops
quite dramatically. Thus, simply converting all of these
high frequency debug statements to printk at KERN_
DEBUG level is not viable. This also suggests that al-
ternate methods for ‘rendering’ the format strings might
be worth investigating. We discuss this further in the
future work section.

In terms of kernel code size growth, the kernel increased
2% when enabling CONFIG_DYNAMIC_DEBUG.

5 More Complex Debugging Statements

Thus far, we’ve looked at debug statements that are bi-
nary - they are either enabled or disabled. However, sev-
eral kernel subsystems have developed more complex
debugging facilities based on ‘levels’ or ‘flags’. The
‘levels’ model is employed by the CPU frequency sub-
system, where messages above a configurable level n
are emitted. Currently, the level is set via module pa-
rameters. Thus, to change the level, one would need to
unload and re-load the CPU frequency modules. The
NFS filesystem uses a ‘flags’ style of debugging, where
each ‘flag’ or bit in an integer toggles on or off a set of
debugging statements.

If we extend the dynamic debug construct somewhat, we
can accommodate both the ‘level’ and ‘flags’ debugging
style. For ‘flags’ we can create the following general
function (pseudo-code):

#define debug_enabled_flag
(flag_bit, subsys_set_bits)

if (normal dynamic debug checks) {
if (flag_bit & subsys_set_bits) {

return 1;
}

}
return 0;

The ‘flag_bit’ refers to the bit associated with this partic-
ular debug statement. The ‘subsys_set_bits’ refers to the
global integer which is associated with this subsystem.
The ‘normal dynamic debug checks’ have the associated
hash bits set corresponding module if any of the flag bits
are set. We can then design a subsystem specific macro
for any subsystem as follows:

#define subsystem_foo_level_debug
(flag_bit, fmt, va_args)

if (debug_enabled_flag(flag_bit,
subsys_set_bits)) {

print(fmt, va_args);
}

Subsystem can thus pass in any subsystem specific print
information. Also, by designing this interface in this
manner, subsystems could easily perform any additional
checks that they wish where the ‘print’ statement is
located. Thus, we can imagine dynamic debug being
used for more than just printing information. We’ve

2009 Linux Symposium • 45

cut -f2 -d"[" control | cut -f1 -d"]" | xargs -i echo ’module {} +p’ > control

Apr 14 15:17:49 mets kernel: [3883.017536] nf_conntrack:tcp_in_window: START
Apr 14 15:17:49 mets kernel: [3883.017539] nf_conntrack:tcp_in_window: <7>nf_conntrack:seq=376950469
ack=3577053373 sack=3577053373 win=1803 end=376950469
Apr 14 15:17:49 mets kernel: [3883.017549] nf_conntrack:tcp_in_window: sender end=376950469
maxend=376964293 maxwin=115392 scale=6 receiver end=3577053373 maxend=3577168717 maxwin=13824 scale=7
Apr 14 15:17:49 mets kernel: [3883.017555] nf_conntrack:tcp_in_window: <7>nf_conntrack:seq=376950469
ack=3577053373 sack =3577053373 win=1803 end=376950469
Apr 14 15:17:49 mets kernel: [3883.017565] nf_conntrack:tcp_in_window: sender end=376950469
maxend=376964293 maxwin=115392 scale=6 receiver end=3577053373 maxend=3577168717 maxwin=13824 scale=7
Apr 14 15:17:49 mets kernel: [3883.017571] nf_conntrack:tcp_in_window: I=1 II=1 III=1 IV=1
Apr 14 15:17:49 mets kernel: [3883.017577] nf_conntrack:tcp_in_window: res=1 sender end=376950469
maxend=376964293 maxwin=115392 receiver end=3577053373 maxend=3577168765 maxwin=13824
Apr 14 15:17:49 mets kernel: [3883.017582] nf_conntrack:tcp_conntracks: <7>nf_conntrack:syn=0 ack=1
fin=0 rst=0 old=3 new=3
Apr 14 15:17:50 mets kernel: [3883.110062] file:sysfs_read_file: count = 4096, ppos = 0,
buf = 00000000,0000000f
Apr 14 15:17:50 mets kernel: [3883.110116] file:sysfs_read_file: count = 4096, ppos = 0,
buf = 00000000,00000001
Apr 14 15:17:50 mets kernel: [3883.110164] file:sysfs_read_file: count = 4096, ppos = 0,
buf = 00000000,00000005
Apr 14 15:17:50 mets kernel: [3883.110204] file:sysfs_read_file: count = 1, ppos = 0,
buf = 1

echo ’module kobject +p’ > /mnt/debugfs/dynamic_debug/control
/sbin/modprobe cifs

Apr 14 15:54:45 mets kernel: [184.968002] kobject:kobject: ’cifs’ (ffffffffa007e0f0):
kobject_add_internal: parent: ’module’, set: ’module’
Apr 14 15:54:45 mets kernel: [184.970204] kobject:kobject: ’holders’ (ffff880073c34580):
kobject_add_internal: parent: ’cifs’, set: ’<NULL>’
Apr 14 15:54:45 mets kernel: [184.970225] kobject:kobject: ’cifs’ (ffffffffa007e0f0):
fill_kobj_path: path = ’/module/cifs’
Apr 14 15:54:45 mets kernel: [184.970267] kobject:kobject: ’notes’ (ffff880073c34440):
kobject_add_internal: parent: ’cifs’, set: ’<NULL>’
Apr 14 15:54:45 mets kernel: [184.970761] kobject:kobject: ’cifs_inode_cache’ (ffff880075d230a8):
kobject_add_internal: parent: ’slab’, set: ’slab’
Apr 14 15:54:45 mets kernel: [184.970807] kobject:kobject: ’cifs_inode_cache’ (ffff880075d230a8):
fill_kobj_path: path = ’/kernel/slab/cifs_inode_cache’
Apr 14 15:54:45 mets kernel: [184.970862] kobject:kobject: ’:0016512’ (ffff880075d214a8):
kobject_add_internal: parent: ’slab’, set: ’slab’

Figure 2: Dynamic debug output examples

recently re-named this work to dynamic debug from
the original dynamic printk, to make this clear. The
above debug_enabled_flag() macro could easily
accommodate the ‘level’ style debugging, by replacing
the bit check with a greater than check. Prototypes have
already implemented and will be proposed in the near
future.

There are a number of modules that set module debug-
ging levels using module parameters Thus, we would
propose system wide ‘standard’ module name parame-
ters that dynamic debug can implement. For example, as
dynamic_debug_level=n, dynamic_debug_flag=0101,
and dynamic_debug=enabled/disabled.

6 Debug Statement Organization

As mentioned at the outset of the work, there are a myr-
iad of styles and macros for debug printing. We pro-
pose that the various subsystems make use of the ‘core’
debugging functions to the extent that they suit their
needs. For example, if you are just printing out text use
pr_debug(), or dev_dbg() if you are in a driver.
If you are doing ‘flag’ or ‘level’ style debugging use the
corresponding dynamic debug macros. For example, in
kernel/module.c, DEBUGP() is used. We should con-
vert it to pr_debug() so that it can tie into the dy-
namic debug infrastructure.

The question also becomes when should one use pr_
debug() and when should printk(KERN_DEBUG)

46 • Dynamic Debug

be used? Obviously, given the test results posted one can
not simply sprinkle printk(KERN_DEBUG) every-
where. Thus, for frequently used codepaths need to use
pr_debug(). Additionally, now that pr_debug()
can be compiled in, pr_devel() can be used for those
cases where you wouldn’t want dynamic debug to pick
up the debug statement.

7 Future Work

Clearly, converting more kernel code to use the standard
debug statements of pr_debug() and dev_dbg() is
desired. Further, along these lines would be converting
subsystems that have more complex debugging styles to
the proposed framework. Also, adding command line
control parameters, module parameters, and a simple
enable and disable all debug statements control mode
would be desirable.

As mentioned in the results section, when all the debug
statements are enabled, the system performance drops
significantly. Although, this is not the ‘hot path’, it
might be nice to improve this case. By simply attach-
ing the backend of these patches to the new ring buffer
code we should drastically speed things up. Perhaps, its
an option as I think getting the information out via the
normal printk path is important as well. There might
also be a chance for further integration with Ftrace code
specifically the event code[7].

8 Conclusion

‘Dynamic Debug’ has successfully made high frequency
debug statements available at run-time in a manner that
does not degrade performance. It has already been used
by SGI to help resolve NFS problems, and it is planned
to be incorporated into upcoming enterprise kernel re-
leases. We hope that this paper will further understand-
ing of this new feature, in hopes that it can be further
adopted and expanded.

9 Acknowledgements

SGI independently developed a very similar debugging
system which tied into dprintk() and has been used for
a number of years to help diagnose customer issues[1].
Greg Banks submitted this work upstream shortly after
I submitted the dynamic debug work. Dynamic debug

owes its control language to this work. Section 3, Usage
and Examples, is largely taken from the documentation
that Greg Banks wrote for the dprintk() work.

References

[1] Greg Banks. activate & deactivate dprintks
individually and severally. http://marc.info/
?l=linux-kernel&m=123241522202638&w=2.

[2] Pei Cao. Bloom filters - the math.
http://pages.cs.wisc.edu/~cao/papers/
summary-cache/node8.html.

[3] Frank Ch. Eigler. Problem solving with systemtap. In
Proceedings of the Ottawa Linux Symposium 2006,
2006.

[4] Greg Kroah-Hartman Jonathan Corbet,
Alessandro Rubini. Linux Device Drivers. O’Reilly,
2005. ISBN 0-596-00590-3.

[5] Michel Dagenais Mathieu Desnoyers. Lttng: Tracing
across execution layers, from the hypervisor to
user-space. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[6] Steve Rostedt. ftrace tracing inftrastructure.
http://lwn.net/Articles/270971/.

[7] Steven Rostedt. event tracer. http://marc.info/
?l=linux-kernel&m=123550413414913&w=2.

Measuring Function Duration with Ftrace

Tim Bird
Sony Corporation of America
tim.bird@am.sony.com

Abstract

FTrace is a relatively new kernel tool for tracing func-
tion execution in the Linux kernel. Recently, FTrace
added the ability to trace function exit in addition to
function entry. This allows for measurement of func-
tion duration, which adds an incredibly powerful tool
for finding time-consuming areas of kernel execution.

In this paper, the current state of the art for measuring
function duration with FTrace is described. This in-
cludes recent work to add a new capability to filter the
trace data by function duration, and tools for analyzing
kernel function call graphs and visualizing kernel boot
time execution.

Introduction

Analyzing a running operating system kernel can be a
difficult task. In the 2.6.27 version of the kernel, a
powerful tracing mechanism called Ftrace was added to
mainline Linux. Ftrace provides some very nice facil-
ities for instrumenting the kernel, recording trace data,
and outputting the data to user space.

The Ftrace system provides a generic tracing framework
in the kernel, upon which several different kinds of trac-
ers can be implemented. Different kinds of tracers uti-
lize different methods of instrumenting the kernel code
and different data collection algorithms.

Ftrace supports the ability do basic function tracing,
which consists of recording information at the time of
entry to every function executed in the kernel. Addition-
ally, on some architectures, Ftrace supports the ability to
perform function graph tracing, which involves tracking
not just function entry but also function exit, and the
ability to measure function duration. This is is useful to
find performance problems and latency problems in the
kernel.

This paper presents work by the author to add function
graph tracing to the ARM architecture. This includes
a description of the mechanisms used and some of the
issues involved on the ARM architecture.

Also, this paper describes the author’s efforts to add du-
ration filtering to the function graph tracer. Even on
a relatively slow processor, the kernel executes many
thousands of functions per second. Without filtering,
the length of time that data can be captured in the trace
log without loss is very limited. By adding duration fil-
tering, it is possible to greatly extend the duration of a
trace, to capture more events of interest and to help iso-
late problem areas.

1 Overview of Ftrace Operation

1.1 Instrumentation

Ftrace operates by adding tracepoints to the Linux ker-
nel. The insertion into the Linux kernel of locations
where tracing information is recorded is referred to as
instrumentation. Instrumentation comes in two main
forms—explicitly declared tracepoints, and implicit tra-
cepoints. Explicit tracepoints consist of developer-
defined declarations which specify the location of the
tracepoint, and additional information about what data
should be collected at a particular trace site. Implicit
tracepoints are placed into the code automatically by the
compiler, either due to compiler flags or by developer
redefinition of commonly used macros.

Function tracing and function graph tracing utilize im-
plicit instrumentation. The kernel consists of many
thousands of C functions, and it would be extremely im-
practical to maintain explicit tracepoint definitions for
all of them. To instrument functions implicitly, when
the kernel is configured to support function tracing, the
kernel build system adds -pg to the flags used with
the compiler. This causes the compiler to add code to

• 47 •

48 • Measuring Function Duration with Ftrace

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e3a00001 mov r0, #1 ; 0x1
580: ebffffa0 bl 408 <do_sync>
584: e3a00000 mov r0, #0 ; 0x0
588: e89da800 ldmia sp, {fp, sp, pc}

Figure 1: ARM code without call to mcount

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e1a0c00e mov ip, lr
580: ebfffffe bl 0 <mcount>
584: 00000028 andeq r0, r0, r8, lsr #32
588: e3a00001 mov r0, #1 ; 0x1
58c: ebffff9d bl 408 <do_sync>
590: e3a00000 mov r0, #0 ; 0x0
594: e89da800 ldmia sp, {fp, sp, pc}

Figure 2: ARM code with call to mcount

the prologue of each function, which calls a special as-
sembly routine called mcount. This compiler option is
specifically intended to be used for profiling and tracing
purposes.

Figures 1 and 2 show the ARM assembly code gener-
ated when compiling the short routine sys_sync()
both with and without the -pg compiler flag. The as-
sembly code was produced from the compiled object
file with the command: arm-eabi-objdump -S fs/

sync.o >fs/sync.S. Comparing the two shows that
the mcount call only takes a few extra instructions.

The mcount routine is written in platform-specific
assembly, located in the file arch/arm/kernel/

entry-common.S, for the ARM platform. It is called
every time a function is entered. Because of this, it is
important that the routine have very low overhead, es-
pecially when tracing is disabled1.

Another issue with use of mcount is that it is in-
compatible with certain kinds of compiler optimiza-

1Note that on some platforms, Ftrace includes the capability to
use “dynamic tracepoints,” whereby the tracepoints are replaced
with ’nop’ instructions at runtime, to reduce overhead when not trac-
ing. This is a very neat capability, which dramatically reduces over-
head and makes it feasible to leave tracing configured on even for
some production systems. However, detailed discussion of this ca-
pability is outside the scope of this paper.

tions. mcount must be called with a consistent stack
frame and frame pointer, in order for it to operate
correctly. Some compiler optimizations produce stack
frames, frame pointers, or call sequences that would
cause mcount to be inaccurate, or worse, to function
incorrectly. For example, on the ARM platform, the
kernel must be compiled to use frame-pointers in or-
der for function tracing to work correctly. That is, you
cannot use the -fomit-frame-pointers compiler
option.

Luckily, when the -pg compiler option is used, the gcc
compiler automatically disables several optimizations
which it might normally perform. Also, the kernel con-
figuration system automatically adjusts compiler flags at
build time to avoid conflicts between tracing options and
optimization options.

1.2 Tracing at Runtime

At runtime, tracing is disabled until enabled by the user.
In this situation, the mcount routine returns as quickly
as possible to the instrumented function, and kernel pro-
cessing continues. When tracing is enabled, mcount
calls the function corresponding to the user-selected
tracer, which then records information and makes an en-
try in the trace log.

Tracing can be enabled by the user by the manipulation
of pseudo-files in the debug file system. The user can se-
lect what tracer to activate, and also set various tracing
parameters. Files in the Documentation/trace di-
rectory describe the pseudo-files that are presented by
Ftrace, the different tracers, and what parameters can be
used by each one. In general, there are files for initiating
and suspending a trace, adjusting the trace log size, for
setting parameters for trace-time filtering, and for cus-
tomizing the format of the trace log output.

1.3 Trace Data Capture

The trace log is kept in a new kernel data structure called
the ring buffer. This data structure is specifically de-
signed for holding trace data, for quick and lockless data
entry, and for simultaneous reader and writer access to
the buffer.

The ring buffer provides automatic management of
timestamps used with the trace data. Also, it provides
page-aligned, per-cpu buffers for holding trace data. A

2009 Linux Symposium • 49

more detailed description of the ring buffers is outside
the scope of this document, but see Documentation/
trace/ring-buffer-design.txt for more infor-
mation.

Note that to avoid locking operations, data entry into
the ring buffer is done in steps. First, the data posi-
tion is reserved in the buffer, using the function ring_
buffer_lock_reserve(). The data position is re-
served in an atomic fashion, to avoid a costly lock oper-
ation. (Note that the word lock in the function name is
misleading.)

Next the data for the trace event is filled in. If the
trace data is to be saved (the normal case), then ring_
buffer_unlock_commit() is called to commit the
data to the buffer. If for some reason the event data
should not be saved, then ring_buffer_discard_
commit() can be called to eliminate the event from
the buffer. If no other data has been written to the
buffer, the discard_commit operation can remove the
data from the buffer. However, if other data has been
written, ring_buffer_discard_commit() just
marks the data so that it is ignored by the tracer output
system. In the case of filtering, it is highly desirable to
not merely mark the data, but to actually remove it from
the buffer, to free up space for other event data. This
will be discussed in more depth in Section 2.1.

1.4 Trace output

Finally, a user can access the trace data via more debugfs
pseudo-files. Trace data is formatted in plain text, and
intended to be easily readable by humans, as well as
easily processable by post-trace analysis tools.

Trace data can be accessed either after a trace has com-
pleted, or during a trace run.

1.5 Function Graph Tracing

Function graph tracing is a form of function tracing
where both the function entry and exit are tracked by
the tracer. With “regular” function tracing, only func-
tion entry is traced. When both the entry and exit of
functions are available, it is possible to see the relation-
ship between functions. It is possible to reconstruct the
complete graph of function calls for a particular oper-
ation in the kernel. This is very helpful to understand

the operation of the kernel, and also to detect anoma-
lies in kernel operation. Also, by measuring both entry
and exit, it is possible to measure the duration of each
function.

Function graph tracing utilizes the same compiler in-
strumentation as function tracing. However, using the
mcount mechanism to capture the exit of a function
requires some tricky manipulation of the stack and call
sequence. Since the -pg compiler option only adds
instrumentation for function entry, the Ftrace system
needs to adjust the register and stack conditions before
returning to execute the instrumented function so that
Ftrace can regain control when the function exits.

It does this with a return “trampoline.” This is shown
in Figure 3. When Ftrace is called on function entry, it
records the real return address (the address that the in-
strumented function was called from) and saves it in the
process’ task structure. Because multiple functions will
nest before the returns are processed, these are kept in a
stack of return addresses. After Ftrace calls the function
graph tracer, it replaces the return address (either on the
stack or in a register, depending on the architecture and
ABI being used) with the address of an Ftrace routine
to handle the return trace. Then Ftrace returns to the
instrumented routine so that it can execute. When the
instrumented routine finishes and returns, instead of re-
turning to it’s original caller, it returns to Ftrace. Ftrace
then calls the function graph tracer again, with the func-
tion exit tracepoint data. Then Ftrace retrieves the real
return address from the task structure, and returns to the
real caller.

2 Adding Function Graph Tracing to ARM

Function graph tracing was originally developed on the
x86 architecture. This section describes some of the is-
sues encountered while adding support for this feature
to the 2.6.30 Linux kernel, for the ARM platform.

Here is the list of problems encountered, and the solu-
tions implemented to fix them.

1. Basic function tracing was supported for the ARM
architecture, but testing revealed that the system
hung when it was activated on my particular plat-
form.

50 • Measuring Function Duration with Ftrace

Figure 3: Mcount Handling and Return Trampoline

This was eventually determined to be an issue with
recursion in the tracing code, due to some rou-
tines in the timestamping code path being instru-
mented. For this, I added the ’notrace’ attribute
to my platform-specific sched_clock() and all
possible nested functions called by that routine.

2. Function graph tracing was implemented by doing
the following:

• Extending the ARM mcount routine in
arch/arm/kernel/entry-common.S
to check for and call a registered graph tracer
function.

• Adding a return trampoline for Ftrace for
ARM.

• Adding the return stack data structure to the
task structure for processes.

• Adding an interrupt segment to the ARM
linker directive file.
This was required because portions of the
function graph display code examine routines
to see whether they are interrupt functions.
They do this by checking whether the func-
tion resides in the “interrupt segment.” Note
that I did not actually declare any routines to
be interrupt routines, which is done with a
qualifier on the function declaration.

3. I also modified the code to use a higher-resolution
clock source for timestamps. The default clock
source on my OMAP platform produced times-
tamps with a resolution of only 31 microseconds.
This did not allow trace event times to be dis-
tinguished accurately. Luckily, there was another
clock source (the MPU_TIMER, in my case) avail-
able that had higher resolution.

2009 Linux Symposium • 51

To use this clock source for trace timestamps, I
modified the OMAP sched_clock() to use the
different clock read routine for this timer.

4. I added duration filtering, using the existing
tracing_thresh debugfs pseudo-file. The du-
ration, calculated on function exit, was checked
against this threshold and events discarded if the
threshold was not met.

5. I optimized the duration filtering by adding rou-
tines to the ring buffer code to allow for discard-
ing already-committed events. This change is dis-
cussed in the next section.

2.1 Optimizing the Discard of Trace Events

The function graph tracer places two events in the trace
log for each function call. One event is logged for trace
entry, and one for trace exit. The duration of the func-
tion is recorded in the trace exit event. In the first version
of the duration filtering code, function exit events were
discarded using ring_buffer_discard_commit(),
and the function entry events were discarded using
ring_buffer_discard_event(). ring_buffer_

discard_commit() can usually back up the write
pointer for the log, resulting in complete removal of the
event from the trace buffer. However, ring_buffer_
discard_event() just marks an entry as padding, and
leaves it in the buffer.

This means that even though a trace log entry is not used
in the trace output, it still occupies space in the trace log
buffer, reducing the total number of events that can be
held in the buffer at once.

Normally, previously committed entries in the trace log
cannot be removed from the log, since subsequent en-
tries cannot be moved to reclaim the space in the log
without adding unacceptable overhead to the trace oper-
ation. So for post-commit filters, the only option is to
mark the entry to be discarded as pad and leave it in the
log.

However, the case of a duration filter is special, in that if
a function is less than the duration threshold, all nested
functions will also be less than the threshold. This
means that, when using per-cpu trace buffers, and pro-
cessing an exit event, if all nested function entry and exit
events have been eliminated from the trace buffer, the

last event in the trace buffer will always be the function
entry event for the function that is currently exiting.

This observation allows for optimization of the ring
buffer discard operation. If no other events follow the
event to be discarded in the ring buffer, then it is possible
to back up the commit and write pointers for the event
(avoiding the unacceptably costly move operation), and
eliminate the function entry event completely from the
buffer.

I implemented a new ring buffer routine, called ring_
buffer_rewind_tail() to do this more intelli-
gent discard. In order to validate that rewind_
tail() improved the length of the trace, compared to
a regular discard_event(), I measured the amount
of time I could capture in a trace, using different dura-
tion filter values with the different routines. All tests
were performed with a buffer size of 1408KB.

The results of this testing are found in Table 1.

Discard Duration Total Time Trace
operation filter function covered event

value count by trace count
discard_event 0 3.292M 0.39 s 27392
discard_event 1000 3.310M 1.29 s 26630
discard_event 100000 3.309M 1.34 s 26438
rewind_tail 0 3.295M 0.39 s 27316
rewind_tail 1000 3.327M 31.26 s 35565
rewind_tail 100000 3.328M †79.44 s 1669

†The test only lasted 79 seconds—extrapolating the results yields a
trace coverage time of 27 minutes

Table 1: Comparison of Discard Operations

The results clearly show the efficacy of the optimized
discard operation. When function entry events were left
in the trace log, the log filled up after approximately 1.3
seconds, no matter what the duration filter value was.
The low value (1669) for the event count in the last row
of the table indicates that the test completed before the
log became full. When almost all filtered function entry
events are removed from the log using the rewind_
tail() operation, the buffer can hold almost as many
events of interest as the size of the buffer allows.

3 Example of Use

In this section, I describe use of the function graph tracer
with duration filtering. For this example, I piped data

52 • Measuring Function Duration with Ftrace

between two Linux commands operating on file system
data. The sample program is busybox, running the
’ls’ and ’sed’ commands, with sed executing a trivial
character replacement script. This was run in a loop 10
times.

Steps:

$ mount debugfs -t debugfs /debug
$ cd /debug/tracing
$ cat available_tracers \

function_graph function sched_switch nop
$ echo 0 >tracing_enabled
$ echo 1000 >tracing_thresh
$ echo function_graph >current_tracer
$ echo 1 >tracing_enabled
$ for i in ‘seq 1 10‘ ; do \

ls /bin | sed s/a/z/g ; done
$ echo 0 >tracing_enabled
$ echo funcgraph-abstime >trace_options
$ echo funcgraph-proc >trace_options
$ cat trace

Figure 4 shows the first 25 lines of function graph
trace output. Note that for this example I turned on
the funcgraph-abstime and funcgraph-proc
trace output options. Duration times for the functions
are shown in units of microseconds, on the line contain-
ing the closing brace indicating the function exit.

Note that all functions in the log output took longer than
1000 microseconds to complete. Other functions which
took less time than the tracing_thresh were fil-
tered at runtime from the log.

3.1 Using ’ftd’ to Analyze Data

To analyze system data, a post-processing tool called
ftd was written. ftd stands for function trace dump,
and it is a script with the capability to show call counts
and cumulative time for functions in a trace log. ftd
is written in Python. If you are analyzing a trace log
from an embedded target, it is recommended to move
your trace log to a development host and run ftd there,
rather than on the target.

ftd currently requires the absolute time and process in-
formation per trace line in the trace log, in order to work
properly. Make sure these display options are set before
retrieving the trace log data and using ftd on the data.

To retrieve the trace log data, use:

$ cat trace >/tmp/trace-data.txt

To see a list of functions, sorted by total time spent in
them, use:

$ ftd /tmp/trace-data.txt

The first 10 lines of results for this command on some
sample data are shown in Figure 5.

Other useful tasks that ftd can be used for include:

• Sorting the function list by function count—the
number of times that the function was called during
the trace.

• Examining the local time of a function. The local
time of a function is the elapsed time between the
start and end of the function, minus the time spent
in all functions called between the start and end of
the function. Note that this includes not just chil-
dren function called by this function, but also in-
terrupts. Local time also includes the time spent in
user space, and in other processes’ kernel functions
(i.e. when the function’s process is scheduled out.)
So local time should be interpreted cautiously, with
this understanding.

• Finding the subroutines called by functions the
most times.

See ftd -h for usage help documenting the command
line options to use for these tasks.

4 Performance Measurements

The performance of various Ftrace configurations was
measured, to get a sense of how much overhead tracing
caused during kernel execution.

All results are for an OMAP 5912 processor running
at 192 MHZ. The program I traced was a simple shell
script consisting of:

for i in ‘seq 1 10‘ ; do
echo $i ; find /sys >/dev/null ;

done

2009 Linux Symposium • 53

tracer: function_graph
#
TIME CPU TASK/PID DURATION FUNCTION CALLS
| | | | | | | | | |

193.719625 | 0) ls-556 | | sys_lstat64() {
193.719641 | 0) ls-556 | | vfs_lstat() {
193.719650 | 0) ls-556 | | vfs_fstatat() {
193.719660 | 0) ls-556 | | user_path_at() {
193.719722 | 0) ls-556 | | do_path_lookup() {
193.719755 | 0) ls-556 | | path_walk() {
193.719777 | 0) ls-556 | | __link_path_walk() {
193.719826 | 0) ls-556 | | do_lookup() {
193.719855 | 0) ls-556 | | nfs_lookup_revalidate() {
193.719883 | 0) ls-556 | ! 1028.500 us | _text();
193.719946 | 0) ls-556 | ! 1189.500 us | }
193.719965 | 0) ls-556 | ! 1258.500 us | }
193.719986 | 0) ls-556 | ! 1775.167 us | }
193.720016 | 0) ls-556 | ! 1874.333 us | }
193.720045 | 0) ls-556 | ! 2018.167 us | }
193.720069 | 0) ls-556 | ! 2143.000 us | }
193.720099 | 0) ls-556 | ! 2397.000 us | }
193.720108 | 0) ls-556 | ! 2415.167 us | }
193.720139 | 0) ls-556 | ! 2478.334 us | }
193.720315 | 0) ls-556 | | sys_lstat64() {
193.720337 | 0) ls-556 | | vfs_lstat() {
193.720346 | 0) ls-556 | | vfs_fstatat() {
193.720357 | 0) ls-556 | ! 1094.500 us | user_path_at();
193.720410 | 0) ls-556 | ! 1738.167 us | }
193.720419 | 0) ls-556 | ! 1758.500 us | }
193.720452 | 0) ls-556 | ! 1825.500 us | }

Figure 4: A function graph trace, with a duration filter of 1000 microseconds

I found that this sequence was CPU-bound and spent
most of its time in the kernel. Raw data is not provided
here, but the results of my testing showed that the over-
head for function graph tracing is quite large. My tests
generated approximately 3 million kernel function calls.
The overhead per call, when tracing was active, was ap-
proximately 18.9 microseconds per call. The average
time to execute a kernel function call during the test was
1.7 microseconds, so this represents a significant over-
head. It should be noted that function graph tracing re-
quires 2 calls through the tracer code per function called
(one each for entry and exit).

I found that the overhead per function with tracing dis-
abled was about .3 microseconds per function. This
added, on average, 19% overhead to kernel execution.
The overhead for when function graph tracing was ac-
tive was approximately 1100%. (That’s right, over one
thousand percent).

It should be noted that these are microbenchmarks, oper-
ating on a test designed to be kernel-function intensive,
using non-blocking operations. The CPU utilization of
these tests was always close to 100%. The overhead of

using Ftrace on a system with a real user-space work-
load and real I/O would not be this high.

Tracer Elapsed Function Time Overhead
Status Time count† per per

function function
TRACE=n 9.25 s 2.91M 1.72 us -

nop 10.30 s 2.92M 2.05 us 0.33 us
graph disabled 19.85 s 2.98M 5.22 us 3.50 us
graph active 72.15 s 3.29M 20.61 us 18.89 us

†Function counts were estimated, using data from other testing

Table 2: Overhead of Function Graph Tracing

5 Future Work

The primary motivation for adding these features to
Ftrace on ARM is to use them to help find problem areas
in early boot. The next step in developing these features
is to make it possible to use them during early kernel
startup, to see which functions are taking a long time to
execute, or which functions are called excessively dur-
ing kernel startup.

Unfortunately, it may prove difficult to utilize Ftrace

54 • Measuring Function Duration with Ftrace

Function Count Time Average Local
------------------------------ ----- ------------ ---------- ------------
schedule 70 1353560.333 19336.576 1337519.333
pipe_wait 1 526363.500 526363.500 56.535
preempt_schedule 320 414278.260 1294.620 3870.986
preempt_schedule_irq 17 294134.456 17302.027 -82.004
_text 465 278833.987 599.643 -58897.146
handle_IRQ_event 436 239268.153 548.780 88927.501
handle_mm_fault 396 228733.980 577.611 5986.491
local_bh_enable 1342 220684.604 164.445 16004.635
do_DataAbort 304 197972.822 651.226 61489.333
sys_wait4 4 144681.433 36170.358 144681.433

Figure 5: Output of ftd command

during early boot. Some of the requirements for doing
this are listed below.

Requirements for using Ftrace in early boot:

• Early clock – The tracing systems depends on the
availability of a clock source for timestamps very
early in the boot sequence. On many platforms
(X86, MIPS, and PPC), cpu registers are available
from power-on which can be used for this purpose.
On ARM, clocks are not initialized until after the
kernel has already started running. This would
limit how early tracing could start on ARM.

• Static trace parameters – Trace parameters, such
as the start location for the trace, and the duration
threshold, would have to be specified at compile
time to be available from the earliest kernel execu-
tion points (i.e. start_kernel().)

• Static ring buffer – Possibly the most difficult prob-
lem is pre-initializing the ring buffer data structures
to prepare them for receiving trace data. Other
early-accessible data structures in the kernel, such
as the kernel’s printk log buffer, are much simpler
and their initialization state can be prepared by the
compiler.

Another area that should be worked on is performance.
The overhead of Ftrace should be reduced. The general-
ity of the Ftrace system and utilization of generic clock
routines and ring buffer code add substantial overhead
to a system that should be lightweight. Currently, Ftrace
adds approximately 6 times more overhead, on the same
hardware, than a function graph tracing system that the

author used previously.2.

Finally, this work should be submitted (again) to the ker-
nel mailing list for review and consideration for main-
lining. The patches for the 2.6.31-rc1 kernel and the
ftd may currently be found at http://elinux.org/
Ftrace_Function_Graph_ARM.

6 Conclusion

The Ftrace system continues to be enhanced with new
features and capabilities. This new duration filtering
feature should help kernel developers continue to en-
hance the operation of the kernel. This effort is par-
ticularly focused on finding and reducing latencies in
early boot, so that the Linux kernel can continue to be
improved in the area of fast booting.

2Kernel Function Trace—see http://elinux.org/
Kernel_Function_Trace

The Simple Firmware Interface

A. Leonard Brown
Intel Open Source Technology Center

len.brown@intel.com

Abstract

The Simple Firmware Interface (SFI) was developed as
a lightweight method for platform firmware to commu-
nicate with the Operating System.

Intel’s upcoming “Moorestown” hand-held platform
will be deployed using SFI.

Here we summarize the motivation for SFI, summarize
the contents of the SFI specification, and detail choices
made in the Linux kernel implementation.

1 Introduction

The SFI project home page is http://
simplefirmware.org.

This paper starts by briefly summarizing the site’s con-
tent, including the content of the SFI specification. Then
we describe the implementation of SFI on Linux.

For more details, readers are encouraged to look over the
specification, to read and participate on sfi-devel@
simplefirwmare.org, and to review and suggest
enhancements to the source code.

2 Motivation

Intel’s upcoming Moorestown hand-held platform is the
reason that SFI exists. However, SFI is intended to be
both general and open, such that it could be re-used for
other platforms.

While Moorestown contains an Intel R© AtomTM proces-
sor and PCI Express R©, it does not contain the legacy ele-
ments of a system that make it PC compatible, or ACPI1

compatible.

1Advanced Configuration & Power Interface, http://www.
acpi.info

Moorestown cannot run in ACPI mode because its
chipset does not include the required ACPI hardware,
and it cannot run in legacy mode because the PC-
compatible elements of the system simply do not exist.

3 SFI vs. ACPI

System platforms are either “SFI-platforms” support-
ing SFI firmware tables, or “ACPI-platforms” support-
ing ACPI tables.

An Operating System (OS) kernel that supports SFI is
an “SFI-OS.” An OS that supports ACPI is an “ACPI-
OS.”

An SFI-platform requires an SFI-OS to boot and run op-
timally. An ACPI-platform requires an ACPI-OS to boot
and run optimally.2

A single OS binary can boot and run optimally on both
SFI-platforms and ACPI-platforms. It simply includes
the capabilities of the SFI-OS and ACPI-OS, making an
“ACPI-SFI-OS.”

It is conceivable to build an ACPI-SFI-platform, and
such a lab prototype is useful for testing. However,
it makes little sense to ship such a system as a prod-
uct. Were an ACPI-SFI-OS to boot on an ACPI-SFI-
platform, the SFI-platform support would simply be ig-
nored in favor of the ACPI-platform.

That said, SFI-platforms can provide access to selected
ACPI-defined and ACPI-reserved tables. However, ex-
tending SFI with ACPI tables does not make the plat-
form into an ACPI-platform.

2ACPI platforms can often also boot in legacy PC mode, but no
known SFI platforms are able to boot in legacy PC mode.

• 55 •

56 • The Simple Firmware Interface

4 SFI and UEFI

SFI is agnostic as to whether a platform supports UEFI3

or not.

However, for platforms that choose not to implement
UEFI, SFI does define a static “MMAP” table that
returns the information defined by UEFI’s GetMemo-
ryMap() API.

5 SFI Tables

SFI tables are simply a data structure in memory popu-
lated by system firmware for the benefit of the OS.

5.1 SFI Table Header

All SFI tables share a common table header format
shown in Figure 1. The format is a proper sub-set of

Signature (4)
Length (4)
Revision (1)
Checksum (1)
OEMID (6)
OEM Table ID (8)
Table Payload
...

Figure 1: SFI Common Table Format

ACPI’s static table format4 and the semantics and use of
the fields in SFI is exactly the same as in ACPI.

However, even though they share a similar format, SFI
table signatures are entirely independent of ACPI table
signatures. Were a future version of the specifications
to define a table signature used by the other, they would
refer to two entirely different tables, unless explicitly
defined to refer to the same table.

Today SFI’s “XSDT” explicitly refers to the exact same
XSDT as defined by ACPI. Indeed, the XSDT is the
mechanism used by SFI to prevent name-space colli-
sions between SFI and ACPI.

3UEFI, Unified Extensible Firmware Interface, http://www.
uefi.org

4SFI deleted the OEM Revision, Creator ID, and Creator Revi-
sion because they had no apparent function.

5.2 SFI System Table (SYST)

The payload of the SFI System Table (SYST) is an array
of pointers to other tables.

While the SYST must reside within a fixed memory re-
gion, using an array of pointers allows system firmware
the flexibility to locate the actual tables and any conve-
nient address.

It is not uncommon, however, for all of the tables shown
in Figure 2 to reside on the same physical page of mem-
ory.

5.3 SFI CPUS Table

The optional CPUS table is an array of 32-bit Local
APIC IDs, enumerating all the logical processors in the
system.

5.4 SFI MMAP Table

The optional MMAP table describes the RAM present in
the system. It contains memory descriptors as defined in
UEFI’s GetMemoryMap() API.

5.5 SFI (IO) APIC Table

The optional APIC table is an array of physical ad-
dresses of the IO-APICs in the system.

5.6 SFI FREQ Table

The optional FREQ table describes the available proces-
sor frequencies in the system, in addition to the transi-
tion latency and the actual control word used for native
hardware performance-state control.

The entries in the FREQ table apply to all processors in
the system. The table applies to every logical processor
in the system. If there are topology dependencies be-
tween processors, the OS must discover those via native
hardware methods.

2009 Linux Symposium • 57

SYST CPUS

MTMR

WAKE

MMAP

APIC

FREQ

IDLE

MCFG
XSDT

OEMx

MRTC

Figure 2: SFI 0.6 table structure

5.7 SFI IDLE Table

The optional Idle Table describes the power saving CPU
idle states (e.g., ACPI C-states) available to the OS.
These are accessed via the native hardware MWAIT in-
struction. The IDLE table also enumerates the worst-
case exit-latency for each state.

The table applies to every logical processor in the sys-
tem. If there are topology dependencies between pro-
cessors, the OS must discover those via native hardware

methods.

5.8 SFI WAKE Table

The optional WAKE vector table contains the 64-bit
physical address of the location where the OS writes its
resume vector.

5.9 SFI MTMR Table

The optional MTMR table describes the location, fre-
quency, and IRQ of the platform timers present in the
Moorestown chip set.

5.10 SFI MRTC Table

The optional MRTC table describes the location and
IRQ of the real time clock present in the Moorestown
chip set.

5.11 SFI OEMx Table

The optional OEMx table allows OEMs to define
vendor-specific SFI tables while avoiding name-space
collisions with other platform vendors. The OS and
drivers search for tables not only on their base signature,
but also using the “6-byte” OEM-id and 8-byte “OEM
table id.”

OEMx is intended to mean OEM1, OEM2, OEM3, etc.
But the reality is that if a unique OEM-id and OEM-
table-id are used in a table search, any arbitrary table
signature would work. However, to avoid confusion in
the table signature name-space, it is highly encouraged
that the OEMx signature be used for vendor specific ta-
bles.

5.12 SFI XSDT Table

The optional SFI XSDT is a standard ACPI XSDT. A
standard ACPI XSDT can appear in the SYST as a valid
SFI table because the SFI table header is a proper sub-
set of the ACPI table header. (SFI simply views the extra
ACPI header fields as part of the table body.)

The purpose of the XSDT is to allow SFI to be extended
by access to tables and table signatures defined and re-
served by the ACPI specification in their standard for-
mat. It is not meant to imply that the same system should
support both SFI and ACPI at the same time.

58 • The Simple Firmware Interface

5.13 ACPI Tables, and the PCI MCFG

The PCI Memory Configuration Table (MCFG) is de-
fined by the PCI Firmware Specification. It is shown
in Figure 2 as an example of a standard ACPI table ac-
cessed via SFI.

6 Linux SFI Implementation

The SFI tables can be classified based on when in the
boot process they are accessed.

6.1 Early Boot time

First the SYST is located in a reserved region of physical
memory. The SYST must be properly aligned and must
not cross a 4 KB boundary, which also puts an upper
bound on its length.

Linux has several methods to discover the machine’s
physical memory map, including BIOS e820, UEFI, or
boot parameters. If none of those are available, SFI
SYST can point to an MMAP table, which must be lo-
cated and parsed before the MMU is enabled.

6.2 Early OS Initialization

Parts of the kernel will parse SFI tables during the pe-
riod after the MMU is enabled, but before the OS can
set up permanent virtual mappings with ioremap().
During this period, the tables are temporarily mapped
via early_ioremap() for the duration of the pars-
ing routine.

sfi_init() is responsible for sanity checking all the
SFI tables. It also prints out the table headers to the
console.

Linux takes several steps to harden itself against
firmware bugs. For a given table signature and version
number, it will compare the table length to that listed in
the specification before calculating the check-sum.

If any SFI tables fail to check-sum properly, SFI is dis-
abled (and the system will likely not boot).

Linux parses the CPUS and (IO) APIC tables during this
period, to enable the processors and interrupts.

6.3 Late OS Initialization

SFI tables can be parsed after the system is up and run-
ning and __init memory has been freed. Indeed, the
main table parsing entry point is exported by the SFI
core code such that drivers can parse SFI tables at any
time.

6.4 Implementation Choices

In the original prototype, we copied the table headers
into a static array in kernel .data to make scanning
for table signatures fast and compact. However, at Andi
Kleen’s suggestion, the SFI core no longer copies any
tables. Instead they are all parsed in place. The reason
is that in the common case, the tables all reside on the
same page of memory, so scanning the headers in-place
requires no MMU operations and is thus the same speed
as doing compares in a data structure optimized for that
purpose. Also, most of the tables are scanned at boot
and initialization time and never accessed again, so there
seems little justification to keep a copy of all the headers
around in kernel memory for the up-time of the system.

Of course the driver supplied parsing routine is still free
to do whatever it wants with the table, including copying
its data into local data structures.

Earlier we mentioned that Linux will sanity check each
table signature, version, length, and compute a check-
sum. However, old versions of Linux must be able to
handle tables that are defined by new versions of the
specification. Obviously, it can not look up a future ta-
ble’s signature and version number to check its length.
So for unknown tables, Linux uses an arbitrary 1 MB
length limit before it check-sums a table.

6.5 Source Code

The core SFI patch is about 1,000 lines of code.

This includes the basic SFI table parsers. Drivers that
consume SFI tables will provide their own table-specific
parsers.

The source code is targeted to go upstream in Linux-
2.6.32.

2009 Linux Symposium • 59

7 Conclusion

The Simple Firmware Interface is indeed simple.

The Linux Kernel patches to implement SFI have been
public since late-June. They are currently running on
Moorestown hardware, and are expected to be upstream
in Linux-2.6.32.

To get involved, please go to the SFI home page, http:
//simplefirmware.org. Review the latest speci-
fication, join the mailing list, review and comment on
the source code.

8 Acknowledgements

The author thanks Jacob Pan for prototyping the initial
Linux SFI support, Feng Tang, for writing most of the
final code—and testing it on pre-production hardware—
Ingo Molnar, Andi Kleen, and everybody on the lists for
their thoughtful code review.

60 • The Simple Firmware Interface

The Corosync High Performance Shared Memory IPC Reusable C
Library

Steven Dake
Red Hat, Inc.

sdake@redhat.com

Abstract

The Corosync coroipc reusable C libraries providing
high performance client server communication are pre-
sented. The rationale for this effort is provided. An
overview of the coroipc features are given. The pro-
gramming API is described in enough detail to provide
developers with a complete understanding of how to de-
velop a client server application. Finally performance
results are provided.

1 Introduction

The Corosync Cluster Engine project was created in
July 2008 to address the needs of the Linux clustering
community. As part of this effort, the project imple-
mented and qualified a high performance client server
interprocess communication system called coroipc.

Throughout the history of client server applications, ev-
ery project implemented a unique IPC system. These
IPC systems each contain a unique set of defects, per-
formance characteristics, security model, thread safety,
and portability support. After developing coroipc,
the Corosync community determined coroipc could be
modified to be reusable by third party client server ap-
plications.

By making coroipc reusable, coroipc enables consum-
ing projects to focus on their strengths. Further by cen-
tralizing development effort on one IPC system, a larger
community of experienced designers can provide sup-
port for that IPC system. Finally since coroipc is built
into a significant portion of the Linux community’s clus-
ter infrastructure, it provides a perfect environment for
ensuring the software has a sanitary design model and is
defect free.

2 Features

2.1 Security

The coroipcs library provides a mechanism to ensure
only users with specific user id or group id access the
IPC system, and by inference, the server. This is en-
forced on all platforms which support the ability to re-
trieve the uid or gid of a connecting socket from a
platform-specific system call.

2.2 High Performance

The coroipc client and server use almost exclusively the
mmap() system call to map shared memory. As a re-
sult, in most cases there is no copy into the kernel, or
from the kernel to userspace for communications. No-
tification of new messages occurs through a system V
semaphore.

2.3 Portability

The coroipc system is dependent upon a Posix API, a co-
herent mmap() system call, and system V semaphores.
Nearly all modern Posix platforms provide these fea-
tures. The coroipc system has been ported and tested on
Linux, BSD, Darwin, and Solaris.

2.4 Thread Safety

The coroipc client library is thread safe and requires
no special attention by the client library users to en-
sure thread safety. Thread safety is implemented us-
ing reference counting on the identifier used for a client
IPC connection. The reference counting critical sections
are protected by spinlocks on platforms which support
them, or a mutex on platforms without spinlocks.

• 61 •

62 • The Corosync High Performance Shared Memory IPC Reusable C Library

2.5 Zero Copy

Clients may allocate a zero copy buffer which removes
one copy from client requests. Allocating a zero copy
buffer is an expensive operation and is reserved for
buffers with a consistent size which are consistently
reused.

2.6 Support for External Poll Systems

The coroipc server allows the server developer to use
customized polling mechanisms. Currently there are no
examples of using third party polling systems beyond
the coropoll API provided with the software. We expect
a glib example to be available in the community.

2.7 Asynchronous Client Delivery

The coroipc client blocks when the waiting for a server
response. If the server takes long periods to process re-
quests, it may prefer to issue an asynchronous response
to unblock the client. The coroipc system supports the
delivery of these messages through a special channel
called the dispatch channel.

3 Architecture Overview

Client Library or Application

coroipcc.so

coroipcs.so

Server Application

Figure 1: Example client-server application

The coroipc system is composed of two major compo-
nents. The client component is composed of a client
header file called coroipcc.h and client shared library
called coroipcc.so. The server component is composed
of a server header file called coroipcs.h and server
shared library called coroipcs.so. Figure 1 an example

client server application with multiple clients communi-
cating to one server.

The global header file coroipc_types.h is shown
in Listing 1. Every request message sent by li-
brary coroipcc clients should begin with a coroipc_
request_header_t. The size parameter should
be set to the size of the message and the id parameter
should be set to the message identifier.

The server coroipcs handlers should format a message
with a header of coroipc_response_header_t.
The coroipcc clients should expect to receive a message
with the coroipc_response_header_t header.

t y p e d e f s t r u c t {
i n t s i z e ;
i n t i d ;

} c o r o i p c _ r e q u e s t _ h e a d e r _ t ;

t y p e d e f s t r u c t {
i n t s i z e ;
i n t i d ;
c s _ e r r o r _ t e r r o r ;

} c o r o i p c _ r e s p o n s e _ h e a d e r _ t ;

Listing 1: The coroipcc Types Definition

4 coroipcc

The coroipcc library provides lifecycle operations, dis-
patch operations, request and reply operations, and zero
copy buffer operations. The full API is shown in List-
ing 2.

4.1 Lifecycle Operations

Clients connect to servers using the coripcc_
service_connect() API. When a client connects,
the client and server both mmap() several files into
memory shared by the client and server. Finally a
semaphore set is created to provide signalling between
client and server of new messages.

Several files are mapped using the mmap() system call
into the address space of both the client and server.
The first of these files is the control buffer which is
used internally for communication between the client
and server. A unique file is also mapped for client to
server requests and server to client responses. Finally an

2009 Linux Symposium • 63

e x t er n c s _ e r r o r _ t
c o r o i p c c _ s e r v i c e _ c o n n e c t (c o n s t char ∗ socket_name , unsigned i n t s e r v i c e ,

s i z e _ t r e q u e s t _ s i z e , s i z e _ t r e s p n s e _ s i z e , s i z e _ t d i s p a t c h _ s i z e ,
h d b _ h a n d l e _ t ∗ h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ s e r v i c e _ d i s c o n n e c t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ f d _ g e t (h d b _ h a n d l e _ t hand le , i n t ∗ fd) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ g e t (h d b _ h a n d l e _ t hand le , void ∗∗ buf , i n t t i m e o u t) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ p u t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ f l o w _ c o n t r o l _ g e t (h d b _ h a n d l e _ t hand le ,

unsigned i n t ∗ f l o w _ c o n t r o l _ s t a t e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e (h d b _ h a n d l e _ t hand le , c o n s t s t r u c t i o v e c ∗ iov ,

unsigned i n t i o v _ l e n , void ∗ res_msg , s i z e _ t r e s _ l e n) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e _ i n _ b u f _ g e t (h d b _ h a n d l e _ t hand le ,

c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n , void ∗∗ res_msg) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e _ i n _ b u f _ p u t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ a l l o c (h d b _ h a n d l e _ t hand le , void ∗∗ b u f f e r , s i z e _ t s i z e ,

s i z e _ t h e a d e r _ s i z e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ f r e e (h d b _ h a n d l e _ t hand le , void ∗ b u f f e r) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ m s g _ s e n d _ r e p l y _ r e c e i v e (h d b _ h a n d l e _ t hand le , void ∗msg ,

void ∗ res_msg , s i z e _ t r e s _ l e n) ;

Listing 2: The coroipcc C API

asynchronous dispatch buffer is mapped twice to avoid
copies during dispatch operations.

Clients may disconnect via the coroipcc_
service_disconnect() API. A disconnect
doesn’t actually occur until all references of the ipc
connection have been released.

4.2 Dispatch Operations

Client server applications may desire asynchronous
communication. In coroipc, these are called dispatch

operations.

To determine when a dispatch operation is available, the
poll() system call should be used on a file descriptor
obtained with coroipcc_fd_get().

To retrieve the current dispatch buffer contents, the
coroipcc_dispatch_get() API is called. The
dispatch buffer is implemented internally as a circular
buffer. To avoid copies, the operating system virtual
memory system is used to provide a circular buffer map-
ping. The coroipcc_dispatch_get() operation
pins the dispatch message. It can be then be released

64 • The Corosync High Performance Shared Memory IPC Reusable C Library

with coroipcc_dispatch_put().

The design of coroipcc requires there is only one
thread of execution which executes a coroipcc_
dispatch_get() and coroipcc_dispatch_
put() operation. This model is consistent with the user
of coroipc providing an API to handle asynchronous dis-
patching of events and using the internal coroipcc dis-
patch operation functions.

The coroipcc_fd_get() API does not have to be
used for those client applications which don’t need to
multiplex input/output operations in the client. Instead
coroipcc_dispatch_get() may be used directly
and will use semaphores to avoid busy spins.

4.3 Request and Reply Operations

The coroipcc library provides message request and
reply operations to allow requests to be sent syn-
chronously to a server and a reply to be received
from the server. The common API is coroipcc_
msg_send_reply_receive() which copies the
response into a user supplied buffer. The remain-
ing two APIs allow zero copy reading of the re-
sponse buffer by pinning the response buffer into
memory. Pinning is done via coroipcc_msg_
send_reply_receive_in_buf_get() and an
unpin operation occurs via coroipcc_msg_send_
reply_receive_in_buf_put().

4.4 Zero copy buffer operations

To provide zero copy requests, the client must allocate
memory in both the client and server and share it via
mmap(). The client requests the server allocate this
shared memory via coroipcc_zcb_alloc() and
free the memory via coroipcc_zcb_free(). Since
these operations are expensive, they should be rarely
done and zero copy buffering should only be used on
often reused buffer areas. To send a request and re-
ceive a reply, the API coroipcc_zcb_msg_send_
reply_receive() is used.

5 coroipcs

Servers link with the coroipcs library and include the
coroipcs.h file to access coroipcs services. The coroipcs
library includes lifecycle operations, response opera-
tions, and integration with third party polling systems.

5.1 Lifecycle Operations

The coroipcs system is initialized by coroipcs_
init() and exited by coroipcs_exit(). The
initialization is defined by the structure coroipcs_
init_state shown in Listing 3. This structure in-
cludes many user provided function parameters. These
routines include scheduling policy, memory mange-
ment, serialization, flow control, security, custom poll
handler control, and functions to retrieve operations of
the user service.

5.1.1 Scheduling Policy

The coroipcs threads may be scheduled at Posix
scheduling policies rather then the default scheduler.
The policy parameter to coroipcs_init controls
the policy and the sched_param parameter controls
the parameters related to the policy.

5.1.2 Memory Management

Many servers provide their own memory allocation. In
that case, the internal use of malloc() and free()
can be overridden with user defined functions.

5.1.3 Serialization

If the backend function handlers are not thread safe,
the user may provide a serialize_lock() func-
tion that is executed when the service function callbacks
are called and serialize_unlock() function that
is executed when the service function callback is done
with execution. This acts to serialize input into the ser-
vice so no extra mutual exclusion is needed. If high
concurrency is desired, these functions can be defined
to NULL and will not be used. Instead the user should
provide finer grained locking within their callbacks.

5.1.4 Flow Control

Two functions are provided to provide flow control
into the server handler callbacks determined by the
handler_fn_get() callback.

2009 Linux Symposium • 65

t y p e d e f i n t (∗ c o r o i p c s _ i n i t _ f n _ l v a l u e) (void ∗ conn) ;
t y p e d e f i n t (∗ c o r o i p c s _ e x i t _ f n _ l v a l u e) (void ∗ conn) ;
t y p e d e f void (∗ c o r o i p c s _ h a n d l e r _ f n _ l v a l u e) (void ∗conn , c o n s t vo id ∗msg) ;

s t r u c t c o r o i p c s _ i n i t _ s t a t e {
c o n s t char ∗ socke t_name ;
i n t s c h e d _ p o l i c y ;
c o n s t s t r u c t sched_param ∗ sched_param ;
void ∗ (∗ ma l l oc) (s i z e _ t s i z e) ;
void (∗ f r e e) (void ∗ p t r) ;
void (∗ l o g _ p r i n t f) (c o n s t char ∗ fo rmat , . . .) _ _ a t t r i b u t e _ _ ((f o r m a t (p r i n t f , 1 , 2))) ;
i n t (∗ s e r v i c e _ a v a i l a b l e) (unsigned i n t s e r v i c e) ;
i n t (∗ p r i v a t e _ d a t a _ s i z e _ g e t) (unsigned i n t s e r v i c e) ;
i n t (∗ s e c u r i t y _ v a l i d) (i n t uid , i n t g i d) ;
void (∗ s e r i a l i z e _ l o c k) (void) ;
void (∗ s e r i a l i z e _ u n l o c k) (void) ;
i n t (∗ s e n d i n g _ a l l o w e d) (unsigned i n t s e r v i c e , unsigned i n t id , c o n s t vo id ∗msg ,

void ∗ s e n d i n g _ a l l o w e d _ p r i v a t e _ d a t a) ;
void (∗ s e n d i n g _ a l l o w e d _ r e l e a s e) (void ∗ s e n d i n g _ a l l o w e d _ p r i v a t e _ d a t a) ;
void (∗ p o l l _ a c c e p t _ a d d) (i n t fd) ;
void (∗ p o l l _ d i s p a t c h _ a d d) (i n t fd , void ∗ c o n t e x t) ;
void (∗ p o l l _ d i s p a t c h _ m o d i f y) (i n t fd , i n t e v e n t s) ;
void (∗ p o l l _ d i s p a t c h _ d e s t r o y) (i n t fd , void ∗ c o n t e x t) ;
void (∗ f a t a l _ e r r o r) (c o n s t char ∗ e r r o r _ m s g) ;
c o r o i p c s _ i n i t _ f n _ l v a l u e (∗ i n i t _ f n _ g e t) (unsigned i n t s e r v i c e) ;
c o r o i p c s _ e x i t _ f n _ l v a l u e (∗ e x i t _ f n _ g e t) (unsigned i n t s e r v i c e) ;
c o r o i p c s _ h a n d l e r _ f n _ l v a l u e (∗ h a n d l e r _ f n _ g e t) (unsigned i n t s e r v i c e , unsigned i n t i d) ;

} ;

Listing 3: The init state structure

The sending_allowed() function determines if an
IPC message may be delivered to the server. If it re-
turns the value 1, the coroipcs library will deliver the
IPC message to the appropriate server handler.

After an IPC message is delivered, the sending_
allowed_release() callback is executed.

It is often helpful to store some private information for
these two functions to share their operating state. A
64 byte parameter sending_allowed_private_
data is passed to both functions to store this opera-
tional state. The use of this private data is optional and
invisible to the coroipcs library.

5.1.5 Security

The security_valid() function is called by
coroipcs when a new IPC connection is made to the sys-
tem. The uid and gid are passed as parameters to this
function. The function should return 1 if the uid or gid
are valid users of the coroipcs application, otherwise it
should return 0.

5.1.6 Poll Handling

The poll_dispatch_add() call is executed when
a dispatch routine is required to be added to the poll
loop. The poll_dispatch_modify() is used
modify the events on the existing file descriptor. The
poll_dispatch_destroy() removes the fd from
the polling system.

5.1.7 Function Retrieval

The coroipcs system works by retrieving a function from
user defined selectors and executing those functions
when the appropriate action is requested by the ipc client
library. The init_fn_get() function is called to re-
trieve the initialization function for the service. When
the ipc connection disconnects, the exit_fn_get()
function is called to retrieve the exit function for the ipc
connection. Finally handler_fn_get() is used to
retrieve the appropriate IPC handler.

66 • The Corosync High Performance Shared Memory IPC Reusable C Library

e x t er n void c o r o i p c s _ i p c _ i n i t (s t r u c t c o r o i p c s _ i n i t _ s t a t e ∗ i n i t _ s t a t e) ;

e x t er n void
∗ c o r o i p c s _ p r i v a t e _ d a t a _ g e t (void ∗ conn) ;

e x t er n i n t
c o r o i p c s _ r e s p o n s e _ s e n d (void ∗conn , c o n s t vo id ∗msg , s i z e _ t mlen) ;

e x t er n i n t
c o r o i p c s _ r e s p o n s e _ i o v _ s e n d (void ∗conn , c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n) ;

e x t er n i n t
c o r o i p c s _ d i s p a t c h _ s e n d (void ∗conn , c o n s t vo id ∗msg , s i z e _ t mlen) ;

e x t er n i n t
c o r o i p c s _ d i s p a t c h _ i o v _ s e n d (void ∗conn , c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n) ;

e x t er n void
c o r o i p c s _ r e f c o u n t _ i n c (void ∗ conn) ;

e x t er n void
c o r o i p c s _ r e f c o u n t _ d e c (void ∗ conn) ;

e x t er n void
c o r o i p c s _ i p c _ e x i t (void) ;

e x t er n i n t
c o r o i p c s _ h a n d l e r _ a c c e p t (i n t fd , i n t r e v e n t , void ∗ c o n t e x t) ;

e x t er n i n t c o r o i p c s _ h a n d l e r _ d i s p a t c h (i n t fd , i n t r e v e n t , void ∗ c o n t e x t) ;

Listing 4: The coroipcs API

5.2 Response Handling

The IPC services on delivery of a message can re-
spond via the APIs shown in Listing 4. More
specifically a regular response can be sent via
coroipcs_response_send() or via iovectors
with coroipcs_response_iov_send(). To
send to the dispatch output channel, coroipcs_
dispatch_send() can be used and and iovector ver-
sion is also available with coroipcs_dispatch_
iov_send().

5.3 Custom Poll Handling

The init functions specified in the structure
coroipcs_init_state for poll_accept_
add() and poll_dispatch_add() should register
callbacks with the poll system which then call the exter-
nal coroipcs APIs coroipcs_handler_accept()
and coroipcs_handler_dispatch() respec-
tively. The purpose of the external APIs is to translate

whatever API the application uses for poll into function
calls the coroipcs system can understand.

6 Performance

The coroipcs system is designed for high concurrency
operation on multiple processors. Each IPC connec-
tion is represented in the OS by a separate scheduling
entity to allow multi-threaded server designs. As a re-
sult, coroipcs should better be able to utilize the oper-
ating system scheduling features to achieve higher con-
currency then single threaded server applications.

The throughput in megabytes per second for message
sizes ranging from 1000 to 500,000 in 1000 byte in-
crements is shown in Figure 2. As can be seen from
the Figure 2, newer processor designs have higher total
throughput of up to 30 GB/sec for larger message sizes.
Older processor designs reach maximum throughput of
6 GB/sec for larger message sizes. The dropoff for very
large message sizes on 4 client Nehalem processors is

2009 Linux Symposium • 67

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

M
B

/S
ec

on
d

Message Size

MB/second for Various Configurations

1 client Nehalem Intel 5530 (2.4ghz)
1 client Core2 Intel T7200 (2.0ghz)

4 clients Nehalem Intel 5530 (2.4ghz)
4 clients Core2 Intel T7200 (2.0ghz)

Figure 2: MB/Sec Throughput

unexplained but may be a result of cache behavior of
the processor.

Transactions per second is shown in Figure 3. Nahalem
with 4 clients in this graph shows very good results of
one million transactions per second while a single client
shows results of 100,000 transactions per second. As
the size of the message increases, more time is spent
within the memcpy() C library function resulting in
lower overall transaction rates.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Message Size

Transactions/Second for Various Configurations

1 client Nehalem Intel 5530 (2.4ghz)
1 client Core2 Intel T7200 (2.0ghz)

4 clients Nehalem Intel 5530 (2.4ghz)
4 clients Core2 Intel T7200 (2.0ghz)

Figure 3: Transactions/Sec Throughput

7 Future Work

One area for future development is the tracking and no-
tification of buffer lengths to prevent a blocked client
from triggering server memory pressure. There are
many choices for how this could be done and remains
a further area of investigation.

Currently when a coroipcc request is made, a mutex
is taken on the shared memory area responsible for re-

quests and responses. This blocks other requests on the
same handle instance from proceeding until a response
is made. To improve concurrency, we plan to inves-
tigate removal of the mutex requirement by allowing
multiple requests and responses to be mapped into the
shared memory segment for multithreaded high concur-
rency applications.

Since our implementation just concluded, we have not
had a thourough chance to optimize small message sizes
for maximum MB/sec and transactions/sec throughput.
We intend to further analyze and characterize the per-
formance of coroipc to find hot spots within the imple-
mentation and make improvements where possible.

8 Conclusion

The coroipc system is a reusable C library that meets
the general needs of many client server applications. It
is portable to most Posix platforms, provides a sanitary
security model, and is thread safe for both clients and
servers. While improvements can be made with perfor-
mance, the performance of the initial implementation is
very good for many workload combinations. Our initial
requirements of an IPC system are met satisfactorily and
we expect future work to provide improved performance
and usability.

68 • The Corosync High Performance Shared Memory IPC Reusable C Library

GStreamer on Texas Instruments OMAP35x Processors

Don Darling
Texas Instruments, Inc.
ddarling@ti.com

Chase Maupin
Texas Instruments, Inc.

chase.maupin@ti.com

Brijesh Singh
Texas Instruments, Inc.
bksingh@ti.com

Abstract

The Texas Instruments (TI) OMAP35x applications pro-
cessors are targeted for embedded applications that need
laptop-like performance with low power requirements.
Combined with hardware accelerators for multimedia
encoding and decoding, the OMAP35x is ideal for hand-
held multimedia devices. For OMAP35x processors
that have both an ARM R©and a digital signal processor
(DSP), TI has created a GStreamer plugin that enables
the use of the DSP and hardware accelerators for encode
and decode operations while leveraging open source el-
ements to provide common functionality such as AVI
stream demuxing.

Often in the embedded applications space there are
fewer computation and memory resources available than
in a typical desktop system. On ARM+DSP systems,
the DSP can be used for CPU-intensive tasks such as
audio and video decoding to reduce the number of cy-
cles consumed on the ARM processor. Likewise, addi-
tional hardware accelerators such as DMA engines can
be used to move data without consuming ARM cycles.
This leaves the ARM available to handle other opera-
tions such as running a web browser or media player,
and thus provides a more feature-rich system. This pa-
per covers the design of the TI GStreamer plugin, con-
siderations for using GStreamer in an embedded envi-
ronment, and the community project model used in on-
going development.

1 GStreamer Overview

GStreamer is an open source framework that simpli-
fies the development of multimedia applications, such as
media players and capture encoders. It encapsulates ex-
isting multimedia software components, such as codecs,
filters, and platform-specific I/O operations, by using a
standard interface and providing a uniform framework
across applications.

The modular nature of GStreamer facilitates the addi-
tion of new functionality, transparent inclusion of com-
ponent advancements and allows for flexibility in ap-
plication development and testing. Developers can join
modular elements together in a pipeline to easily create
custom workflows.

GStreamer brings a lot of value-added features to
OMAP35x, including audio and video synchronization,
interaction with a wide variety of open source plugins
(muxers, demuxers, codecs, and filters), and the ability
to play multimedia clips such as those available from
YouTube. Collaboration with the GStreamer commu-
nity exposes many opportunities for code reuse, which
aids in the stabilization and enrichment of existing com-
ponents rather than replicating existing functionality.
New GStreamer features are continuously being added,
and the core libraries are actively supported by partic-
ipants in the GStreamer community. Additional infor-
mation about the GStreamer framework is available on
the GStreamer project site [3].

2 The TI GStreamer Plugin

One benefit of using GStreamer as a multimedia frame-
work is that the core libraries already build and run
on ARM Linux. Only a GStreamer plugin is re-
quired to enable additional OMAP35x hardware fea-
tures. The TI GStreamer plugin provides elements for
GStreamer pipelines that enable the use of plug-and-
play DSP codecs and certain hardware-accelerated op-
erations, such as video frame resizing and accelerated
memory copy operations.

In addition to enabling OMAP35x hardware features,
the following additional goals needed to be addressed
when writing the TI GStreamer plugin:

• The plugin should provide a robust, portable base-
line implementation that serves as a stable starting
point for customer application development.

• 69 •

70 • GStreamer on Texas Instruments OMAP35x Processors

• The plugin should be easy to build and install.

• Certain performance requirements need to be met
beyond the basic utilization of the DSP and hard-
ware accelerators. More detail on performance
considerations will be addressed in section 3.

• The amount of custom TI code should be kept to a
minimum by using open source solutions wherever
possible.

• There should not be any additional restrictions im-
posed by the TI GStreamer plugin on the types of
pipelines created. For example, the video decode
elements should be able to interface with existing
video sinks—not just the video sink from our plu-
gin. Likewise, our video sink should also accept
buffers from open source ARM video decoders.
All elements in the plugin should be interchange-
able with ARM-side equivalents when needed.

• The open source community should be able to use
the plugin, customize it to meet their needs beyond
what is provided in the baseline implementation,
and contribute back where it makes sense.

The TI GStreamer plugin provides baseline support
for eXpressDSPTM Digital Media (xDM1) plug-and-play
codecs and a video sink for using video drivers not sup-
ported by any open source plugin. Multiple xDM ver-
sions are supported, making it easy to migrate between
codecs that conform to different versions of the xDM
specification.

TI is not supporting the productization of the GStreamer
plugin or GStreamer-based solutions. Complete prod-
ucts may require additional development for custom
boards, features not specific to TI hardware (i.e., vi-
sual effects) or the implementation of applications that
provide multimedia functionality through GStreamer.
However, many components such as demuxers, media
players, and other common features and applications are
already available in various open source projects.

3 Considerations for Embedded Systems

When working in an embedded system there are usually
fewer computation and memory resources available than

1TI’s xDM specification defines a uniform set of APIs across var-
ious multimedia codecs to ease integration and ensure interoperabil-
ity. xDM is built over TI’s eXpress DSP Algorithm Interoperability
Standard (also known as xDAIS) specification [7].

in the typical desktop system. Following are some of the
key resource considerations while implementing the TI
GStreamer plugin.

Limited CPU Resources:
In an ARM+DSP system, the ARM is sufficient for
running Linux, driving the peripherals and perhaps
running a simple interface application or browser.
However, in CPU-intensive multimedia applica-
tions that perform operations on complex media
streams, the ARM is simply not powerful enough
to do all of the work and still achieve real-time
playback or encoding. To meet real-time require-
ments, the TI GStreamer plugin must utilize the
DSP and other hardware accelerators to off-load
the work required to process audio and video from
the ARM processor.

Memory Copies are Expensive:
When processing audio and video it is often nec-
essary to copy data between buffers. For example,
when displaying a video frame on a display sub-
system such as the frame buffer, it may be neces-
sary to copy data into buffers provided by the de-
vice driver. Video frames can be quite large. If the
normal system memcpy routine is used, it would
create a significant load on the ARM processor
since real-time playback can require 30 frames to
be copied every second. Hardware acceleration for
buffer copies must be used to keep the ARM load
low enough to perform other tasks such as demux-
ing a stream or managing a media playback inter-
face.

Parallelizing I/O Operations:
In an embedded system the I/O devices available
are often slower than those available on a typical
desktop system. Audio and video files may be
stored on media such as NAND flash or SD/MMC
cards. This means that the I/O wait times are longer
and have more of an impact on real-time perfor-
mance. On embedded systems, the I/O operations
must be performed while the DSP is performing
encode or decode operations to ensure the DSP al-
ways has available data.

4 Software Stack

Figure 1 depicts what the software stack looks like on
an OMAP35x system running a GStreamer-based ap-

2009 Linux Symposium • 71

Codec
Package

Codec
Package

Codec
Package

ARM

ARM Linux Application

GStreamer Libraries
TI Plugin

DMAI
Vdec Adec Framecopy Display

Device Drivers

Linux KernelCodec Engine
VISA APIs

DSP

Link
DSP

Other Application

Support Libraries

Framework Components

DSP/BIOS Kernel
TM

Figure 1: Software Stack for a GStreamer-based application using the TI GStreamer plugin.

plication. At the highest level there will be an ARM
Linux application, such as a media player that is us-
ing the GStreamer library. At this level, developers
familiar with Linux do not need to know a lot about
programming for an embedded system. Other than
cross-compiling their application, there are not a lot of
differences between developing a GStreamer-based ap-
plication on an OMAP35x and on a desktop system.
The GStreamer library loads and interfaces with the TI
GStreamer plugin, which handles all the details specific
to the entitlement of OMAP35x hardware acceleration
and use of the DSP. The core GStreamer library does not
need to be aware of anything specific to the OMAP35x.

The TI GStreamer plugin interfaces with OMAP35x
hardware using software components from the Digital
Video Software Development Kit (DVSDK2). DVSDK
components are all system tested for interoperability,
providing a stable baseline for development. In the
DVSDK software model, the DSP is mostly treated as
a "black box" for running codecs—all peripherals are
controlled using ARM-side Linux device drivers.

As part of the GStreamer framework, the TI GStreamer

2DVSDK release notes and documentation are available from the
TI web site [5].

plugin also gains the ability to interface with many other
open source GStreamer plugins that provide features
such as:

• Demuxers for AVI, TS, and MP4 containers

• OSS and ALSA audio output

• V4L2 video capture

• ARM codecs including MP3 and AAC decoders

4.1 Portability and Reusability through the
DaVinciTM Multimedia Application Interface
(DMAI)

The most vital DVSDK component used by the TI
GStreamer plugin is the DMAI [1], which enables porta-
bility to multiple TI platforms and newer DVSDK re-
leases with minimal changes to the plugin code base.
The interface with DMAI is also the boundary between
the generic ARM Linux components and the DVSDK.
DMAI directly and indirectly interfaces with all of the
other software components of the DVSDK, providing a
clean interface for interacting with hardware accelera-
tors and DSP-side codecs. It should be noted that the

72 • GStreamer on Texas Instruments OMAP35x Processors

0%

20%

40%

60%

80%

100%

0 s 10 s 20 s 30 s 40 s 50 s 60 s

A
R

M
 U

til
iz

at
io

n
(%

 lo
ad

)

Time (seconds)

ARM Utilization during MPEG-2 Video Decode (720x480)

High Motion Video @ 10000 kb/s
No Motion Video @ 200 kb/s

Figure 2: ARM utilization during MPEG-2 video decode.

TI GStreamer plugin also works on other TI platforms
through use of the DMAI library. There is a single code
base for the TI GStreamer plugin that is shared by all
supported platforms.

The DMAI library provides a simple software inter-
face but implements the many details of device driver
and codec handshaking under the hood. It also pro-
vides a buffer abstraction that allows for the easy trans-
fer of data between codecs, hardware accelerators and
device drivers. Hardware acceleration is often pro-
vided without requiring developers to understand the
platform-specific implementation details. For example,
when using DMAI to perform a hardware-accelerated
frame copy, DMAI can use a DMA operation on the
OMAP35x, but will use the hardware resizer to perform
a copy on platforms where a resizer could give better
performance.

DMAI interfaces directly with the xDM interfaces of
the available codecs and mostly abstracts out the dif-
ferences between different xDM API versions. Where
needed, it also abstracts out differences between device
drivers and in some places, differences between kernel

versions. For example, DMAI provides a display mod-
ule that is configurable to use either the frame buffer or
V4L2 API. The TI GStreamer plugin does not need any
specialized code depending on the type of display it is
using. Finally, DMAI aids in the error handling of low-
level DVSDK components.

Since platform-specific code is abstracted by the DMAI
library, the TI GStreamer plugin is mostly free of
platform-specific code, making it extremely portable.

5 Performance

The graph in Figure 2 shows the ARM CPU utilization
while decoding video files using the OMAP35x MPEG-
2 DSP decoder. In this experiment, the decoder is run
with two different NTSC-resolution video clips. The
first video clip is designed to have zero-motion and a
low bitrate to demonstrate the best-case ARM load. The
second video clip is designed to have high-motion and
a high bitrate to stress the system and demonstrate a
worst-case ARM load.

2009 Linux Symposium • 73

Creation of MPEG-2 Test Files

No Motion @ 200kb/s:

$ gst-launch videotestsrc pattern=9 num-buffers=3600 ! \
’video/x-raw-yuv, format=(fourcc)I420, width=720, height=480’ ! \
filesink location=sample_m2v.yuv

$ ffmpeg -pix_fmt yuv420p -s 720x480 -i sample_m2v.yuv -vcodec mpeg2video \
-b 200000 sample_staticimage.m2v

High Motion @ 10000kb/s:

$ gst-launch videotestsrc pattern=1 num-buffers=3600 ! \
’video/x-raw-yuv, format=(fourcc)I420, width=720, height=480’ ! \
filesink location=sample_m2v.yuv

$ ffmpeg -pix_fmt yuv420p -s 720x480 -i sample_m2v.yuv -vcodec mpeg2video \
-b 10000000 sample_snow.m2v

Decode of MPEG-2 Test Files

No Motion @ 200kb/s:

$ gst-launch filesrc location=/mnt/sample_staticimage.m2v ! \
TIViddec2 codecName=mpeg2dec engineName=decode ! fakesink

High Motion @ 10000kb/s:

$ gst-launch filesrc location=/mnt/sample_snow.m2v ! \
TIViddec2 codecName=mpeg2dec engineName=decode ! fakesink

Figure 3: Steps to create and decode video test files for performance measurements.

Focus is put on MPEG-2 since it has a lower compres-
sion ratio than other video codecs. Since the ARM
load is directly affected by the rate of data through-
put, MPEG-2 is an upper-bound on the ARM load re-
quired to feed video data to the DSP codec. The same
tests were performed with H.264 and MPEG-4 decoders
yielding similar results at the same bitrates. Please note
that H.264 and MPEG-4 exhibit better compression and
their typical bitrate tends to be lower than MPEG-2.

On average, the ARM is not loaded more than 60 per-
cent while decoding the high-bitrate video clip, and
rarely went above 20 percent while decoding the low-
bitrate clip. The decoders are allowed to run at maxi-
mum speed, and are not slowed down for real-time play-
back. This explains why the low-motion clip takes less
time to decode than the high-motion clip, even though
both clips are two minutes in duration. It should be
noted that the video clips are read from an SD card,

which contributes to part of the ARM load.

Figure 3 shows how GStreamer and FFmpeg3 are used
to create and decode the clips used for ARM load mea-
surements.

6 Community Model

The TI GStreamer plugin is an open source project
located at http://gstreamer.ti.com [4]. The
project site provides a collaboration environment that
includes:

• Source control using Subversion

• A wiki for documentation
3FFmpeg is a command-line utility for recording and convert-

ing audio and video streams. More information is available on the
FFmpeg web site [2].

74 • GStreamer on Texas Instruments OMAP35x Processors

Detect File

(typefind)
Type

(mpegtsdemux)

Demux Audio
and Video Streams

Queue Video

(queue)
Buffers

Queue Audio

(queue)
Buffers

Decode Video

(TIViddec2)

Decode Audio

(TIAuddec1)

Adjust Audio

(volume)
Volume

Play Decoded

(TIDmaiVideoSink)
Video

Play Decoded
Audio
(osssink / alsasink)

Read File

(filesrc)

gst−launch filesrc location="video.ts" ! typefind ! mpegtsdemux name=demux \

 demux. ! ’video−x−h264’ ! queue ! TIViddec2 ! TIDmaiVideoSink \

 demux. ! ’audio/mpeg’ ! queue ! TIAuddec1 ! volume volume=5 ! alsasink

Figure 4: Example GStreamer pipeline. Shaded pipeline elements are provided by the TI GStreamer plugin.

• A package release system

• An issue and feature tracker

• Forums for support and discussion

An IRC channel (#gst_ti) is available on
irc.freenode.net for developers interested
in GStreamer on OMAP35x as well as other TI
processors.

Anonymous access to the project and Subversion repos-
itory is supported. Account registration on the project
site is optional but is needed for the submission of bug
reports and patches. Developers interested in participat-
ing in the project can find answers to frequently asked
questions, getting started guides and other project par-
ticipation guidelines on the project site.

The TI GStreamer plugin project is community sup-
ported. TI is committed to enabling the community in
their efforts to develop multimedia applications on TI
processors using GStreamer. Community members are
encouraged to use the forums and IRC channel to ask
questions and discuss future development. For develop-
ers that want or need more support, a commercial sup-
port option is available from RidgeRun4.

7 Plugin Design

Before diving into the design of the TI GStreamer plu-
gin, an overview of the GStreamer pipeline model and
how GStreamer plugins integrate into the framework
should be discussed first.

4More information on RidgeRun is available on the RidgeRun
web site [6]. Information on RidgeRun support for GStreamer
is located at http://www.ridgerun.com/products/
gstreamer.shtml.

7.1 The GStreamer Pipeline

A typical GStreamer pipeline starts with one or more
source elements, uses zero or more filter elements and
ends in a sink or multiple sinks. The example pipeline
shown in Figure 4 demonstrates the demuxing and play-
back of a transport stream. An input file is first read
using the filesrc element, parsed by the typefind
element to ensure the input file is a transport stream,
and then processed by the mpegtsdemux element,
which demuxes the stream into its audio and video
stream components. The video stream is sent through
the TIViddec2 element to decode the video using
the DSP on the OMAP35x. Then it is finally sent to
the TIDmaiVideoSink sink element to display the
decoded video on the screen. The audio stream is
processed by the TIAuddec1 element to decode the
audio on the DSP and reaches its destination at the
alsasink or osssink element to play the decoded
audio, depending on if the system uses an OSS sound
driver or an ALSA sound driver.

Note that in the example pipeline, the TI GStreamer plu-
gin is only contributing the TIViddec2, TIAuddec1
and TIDmaiVideoSink elements. All other elements
in the pipeline come from available open source plugins.

The main GStreamer distribution includes an applica-
tion called gst-launch, which is a simple command
line utility that allows you to construct and execute
an arbitrary pipeline. It provides a flexible way to
test pipelines without having to write entire GStreamer-
based applications. The bottom half of Figure 4 shows
the gst-launch command that would be used to con-
struct and execute the pipeline shown.

2009 Linux Symposium • 75

libgstcoreelements.so
(source: GStreamer)

Read File

(filesrc)

Queue Video

(queue)
Buffers

Detect File

(typefind)
Type

(source: GStreamer)
libgstvolume.so

Adjust Audio

(volume)
Volume

libcompanyX.so
(example 3rd Party)

Demux Audio
and Video Streams
(example only)

(source: GStreamer)
libgstossaudio.so libgstticodecplugin.so

(source: TI)

Decode Video

(TIViddec2)

Decode Audio

(TIAuddec1)

Play Decoded

(TIDmaiVideoSink)
Video

Play Decoded
Audio
(osssink)

Figure 5: GStreamer pipeline elements and the the Linux shared objects that contain them. Shared object libraries
may contain additional elements not shown here.

7.2 Shared Object Libraries

GStreamer filter elements are interchangeable, making
it easy to perform different operations on a data stream.
Further, GStreamer only needs to load into memory the
plugins that contain elements for the desired pipeline,
saving valuable system resources.

A GStreamer plugin typically maps to one or more
shared object libraries on the Linux file system (see Fig-
ure 5). A single shared object library contains one or
more pipeline elements. When a GStreamer-based ap-
plication starts, it searches the shared object libraries
for available elements. These shared object libraries can
come from GStreamer itself or from other parties that
provide custom GStreamer elements. The TI GStreamer
plugin provides a shared object library that contains all
of the pipeline elements that use the DSP and other hard-
ware accelerators on the OMAP35x. These elements
can connect and interact with pipeline elements from the
main GStreamer base and from other third parties.

7.3 Decode Element Design

DSP decode algorithms require input buffers to be lo-
cated in physically-contiguous memory and to have a

full frame available for processing prior to being in-
voked. Physically-contiguous memory is allocated from
memory regions shared by the ARM and DSP, allow-
ing data to be passed between them without additional
copy operations. However, these requirements also pose
a problem as input buffers to the decode elements can
be allocated from regular system memory and in some
cases do not hold a complete frame. In order to use the
decoder the input data must be prepared first so it is in a
form usable by the DSP.

The TIViddec2 decode element is implemented using
two sub-threads (see Figure 6). The queue thread is in
charge of preparing the input data for the DSP, and the
decode thread invokes the DSP decoder when data is
available for processing. The decode thread is a real-
time thread to minimize the DSP idle time when there is
data available for it to process. The queue thread copies
incoming buffers into a physically-contiguous buffer for
the DSP decoder. When there is enough data available to
satisfy the DSP, the decode thread is signaled and DSP
decoder is invoked. Since the code driving the DSP is
in a separate thread, the queue thread continues to copy
additional buffers into the physically-contiguous buffer
while the DSP is running. When the DSP is finished,
the decode thread pushes the decoded video frame to
the downstream pipeline element.

76 • GStreamer on Texas Instruments OMAP35x Processors

Invoke DSP

Decoder

Video Decode Thread (REAL−TIME Priority)

Buffer Queue Thread (Regular Priority)

FIFO
Video Buffer

Encoded

Decode Video (TIViddec2)

Decoded

Video Frame

Physically−Contiguous Circular Buffer

Complete frame or worst−case size given by codec

Figure 6: TIViddec2 decode element design.

In some cases it cannot be determined when enough in-
put buffers have been received to guarantee a complete
frame is available for calling the DSP decoder. In these
cases, the decoder specifies the worst-case amount of
data needed before it can be invoked. If more data is
passed to the decoder than is actually needed, the de-
coder returns how much data was consumed so the next
time it is invoked the remaining unprocessed data can
be given again, along with additional data queued up
since the last invocation. To effectively handle this sce-
nario, the physically-contiguous buffer is managed as a
circular buffer. This allows the plugin to simply pass the
location where the DSP should start processing the next
frame and eliminates any need to copy unprocessed data
into a new buffer.

All audio, video and imaging decode elements operate
in the same manner as the TIViddec2 video decode
element.

7.4 Encode Element Design

The design of the TIVidenc1 encode element is very
similar to the TIViddec2 decode element, but it has
one minor difference. When performing an encode op-
eration, there is a potential opportunity for a hardware-
accelerated copy of the input buffer when it is known to
come from a capture source element. In this case, the in-
put buffer is already physically-contiguous in memory,

which allows a hardware-accelerated copy into the el-
ement’s physically-contiguous buffer. Input buffers re-
ceived from a capture source also meet the requirements
to be passed directly to the DSP. However, a copy is
still needed as the capture source has few resources, and
there is a risk of starvation if the input buffer is not re-
leased as soon as possible.

Although a capture source will typically give a complete
frame in each input buffer, the physically-contiguous
buffer in the encode element is still managed as a cir-
cular buffer. This enables support for encoding a stream
from a file or network source where input buffers do not
contain full frames. In this case, the encode element
operates in an almost identical manner to the decode el-
ement.

All video and imaging encode elements operate in the
same manner as the TIVidenc1 video encode ele-
ment.

7.5 Video Sink Design

When the TIDmaiVideoSink element receives its
first decoded frame, it uses the metadata in the buffer to
configure the display device. Several display sink prop-
erties are also configurable by GStreamer-based appli-
cations to control the selection of frame buffer or V4L2
output, display resolution, video standard and others.

2009 Linux Symposium • 77

TI GStreamer Plugin Elements
Element Name Description
TIAuddec1 Audio decoder for xDM 1.x codecs
TIAuddec Audio decoder for xDM 0.9 codecs
TIDmaiVideoSink Display sink for frame buffer and V4L2 display subsystems
TIImgdec1 Image decoder for xDM 1.x codecs
TIImgdec Image decoder for xDM 0.9 codecs
TIImgenc1 Image encoder for xDM 1.x codecs
TIImgenc Image encoder for xDM 0.9 codecs
TIViddec2 Video decoder for xDM 1.x codecs
TIViddec Video decoder for xDM 0.9 codecs
TIVidenc1 Video encoder for xDM 1.x codecs
TIVidenc Video encoder for xDM 0.9 codecs

Table 1: TI GStreamer Plugin Elements. DSP codecs currently available for OMAP35x all use the xDM 1.x specifi-
cation, so a typical GStreamer pipeline on OMAP35x would use TIViddec2, TIAuddec1 and TIImgdec1 for
decode and TIVidenc1, TIImgenc1 for encode.

If no configuration parameters are specified to the
TIDmaiVideoSink element, it uses reasonable de-
faults for OMAP35x based on recommendations from
the DMAI library. It can optionally calculate the best
supported resolution to fit the video clip being played.

Input buffers that come from the TIViddec2 ele-
ment can be detected by the video sink, in which case
means the input buffers are physically-contiguous and
hardware-acceleration is used to copy the input buffers
into display buffers. If the input buffers do not come
from TIViddec2, a regular memcpy is used to copy
the input buffer.

8 Feature Summary and Future Work

A complete list of the elements provided by the TI
GStreamer plugin is shown in Table 1. Support for
audio encode is still missing but will be addressed in
a future release. DSP codecs currently available for
OMAP35x all use the xDM 1.x specification, so a
typical GStreamer pipeline on OMAP35x would use
TIViddec2, TIAuddec1 and TIImgdec1 for de-
code and TIVidenc1, TIImgenc1 for encode. Ele-
ments that support xDM 0.9-based codecs are listed for
completeness. Future work may eliminate the need for
GStreamer-based applications to know which xDM ver-
sion is used by the codecs. The TI GStreamer plugin
should be up-to-date with support for new TI processors,
updated DVSDK components and updated GStreamer
base components. The complete list of planned work is
available on the project site.

References

[1] DaVinciTM Multimedia Application Interface.
Project site: https:
//gforge.ti.com/gf/project/dmai/.

[2] FFmpeg. Project site:
http://www.ffmpeg.org/.

[3] GStreamer Open Source Multimedia Framework.
Project site:
http://gstreamer.freedesktop.org/.

[4] GStreamer on TI DaVinciTM and OMAPTM

processors. Project site:
http://gstreamer.ti.com/.

[5] OMAP3530 Digital Video Software Development
Kit (DVSDK) 3.00.00.29 Release Notes. Online
documentation:
https://www-a.ti.com/downloads/
sds_support/targetcontent/dvsdk/
oslinux_%dvsdk/v3_00_3530/exports/
omap3530_3_00_00_29_release_notes.
pdf. Free login account required for viewing.

[6] RidgeRun – Embedded Solutions. Company site:
http://www.ridgerun.com/.

[7] Texas Instruments, Inc. xDAIS-DM (Digital
Media) User Guide, January 2007. Literature
Number: SPRUEC8B.

78 • GStreamer on Texas Instruments OMAP35x Processors

From Fast to Predictably Fast

Dominic Duval
Red Hat Inc.

dduval@redhat.com

Abstract

Many software applications used in finance, telecom-
munications, the military, and other industries have ex-
tremely demanding timing requirements. Forcing an ap-
plication to wait for a few extra milliseconds can cause
vast sums of money to be lost on the stock markets, im-
portant phone calls to be dropped, or an industrial weld-
ing laser to miss its target. Highly specialized realtime
operating systems have historically been the only way
to guarantee that timing constraints would always be re-
spected.

Several enhancements to the Linux kernel have recently
made it possible to achieve predictable, guaranteed re-
sponse times. The Linux kernel is now, more than ever
before, well equipped to compete with other realtime
operating systems. However, applications may still need
to be modified and adjusted in order to run predictably
and fully benefit from these realtime extensions. This
paper describes our findings, experiences and best prac-
tices in reducing latency in user-space applications. This
discussion focuses on how applications can optimize the
realtime extensions available in the Linux kernel, but is
also relevant to any software developer who may be con-
cerned with application response times.

1 Before we start

It is worth emphasizing that no special libraries or ap-
plication programming interfaces are required under the
realtime kernel in order to use the real time capabilities
discussed in this document. The CONFIG_PREEMPT_
RT realtime patch, as opposed to other realtime initia-
tives in the Linux community, follows standard Posix
API’s. The realtime patch only affects code in the ker-
nel: user space applications should not notice any dif-
ference other than better determinism in how they per-
form. Consequently, there is no need for applications
to invoke special libraries in order to benefit from the
realtime kernel.

Some programming techniques, however, are known to
create large sources of latencies in applications. This
could cause a realtime application to lack the level of
determinism that is required from it and to behave un-
predictably to some degree. These techniques and habits
are precisely the ones we will address in this document
and for which alternative methods will be discussed.

2 Testing the system for realtime capabilities

Any environment from which realtime capabilities are
expected should first make sure that the underlying sys-
tem meets realtime requirements. This involves making
sure that:

• The application may lock memory

• The scheduler API is available and the applica-
tion is allowed to set the scheduler to a non-default
scheduling strategy such as SCHED_FIFO

• The kernel was compiled with CONFIG_
PREEMPT_RT=y

• Both user space and kernel space support robust
mutexes

• High Resolution Timers are available

• Clock resolution is high enough to meet the appli-
cation’s requirements

All these tests could be executed by the application
itself, in user space. Alternatively, a tool named
rtcheck is also available for that purpose. rtcheck
consists of a simple application that automatically con-
ducts the tests listed above and returns 0 if they all suc-
ceeded. A non-zero value will be returned if any of the
following tests fails:

• 79 •

80 • From Fast to Predictably Fast

• Memory Lock. Verify ability to lock 32K of mem-
ory in user space and ensure not limits are set by
default for memory locking.

• Scheduler. Exercise the scheduler API to deter-
mine if it supports real-time; namely setting the
scheduler to SCHED_FIFO. If it takes this setting,
we know we have this capability. We can imply
from this test that SCHED_RR can also be set.

• CONFIG_PREEMPT_RT. Look for the presence
of /proc/loadavgrt. If found, we can de-
duce that the system is running with CONFIG_
PREEMPT_RT=y.

• Robust Mutexes: Do lookups on a few symbols in-
dicative of user space support of robust mutexes
and then do test calls of these symbols to confirm
kernel support of robust mutexes.

• High Resolution Timers. Nanosleep is
timed using clock_nanosleep() and
clock_gettime() calls. The value is com-
pared against a threshold large enough to be
infeasible on a system using hrtimers and small
enough to be too fine-grained for a system not
using hrtimers. The threshold currently being used
is 20us.

• Clock Resolution. Using clock_getres(),
make sure the clock resolution is under 200us.

3 Setting Scheduling Policies Right

One of the most basic attribute of a realtime operating
system is the ability to run processes and threads with
different realtime policies and priorities. This mecha-
nism is strictly enforced by the scheduler of a realtime
kernel. Correctly setting priorities for all threads of an
application involves first of all evaluating what parts of
the application need to behave in a realtime way and
which don’t have to. Tasks that are best left to regular
(i.e., SCHED_OTHER) or low priority threads include:

• Interaction with devices for which the speed is con-
sidered unpredictable (i.e., storage devices)

• Dynamic memory allocation

• Filesystem operations

• Logging

It does, however, make sense to set a realtime prior-
ity for any other task that requires predictability. In
this case, the first step involves setting the schedul-
ing policy using the sched_setscheduler() sys-
tem call. We typically need to assign realtime threads
the SCHED_FIFO or SCHED_RR policy here. Threads
running with realtime scheduling policies (also called
scheduling classes) are fairly different from others run-
ning under the regular SCHED_OTHER policy:

• They always preempt regular threads (assuming
they’re ready to run and not blocked).

• They do not expire. There’s no such thing as a time
slice for real time processes (unless two or more
processes rely on SCHED_RR)

• They will completely starve other threads of lower
priority, realtime or not, if they don’t go to sleep.

3.1 Setting priorities right

The last parameter in the sched_setscheduler()
system call consists in a priority ranging from 0 to 99,
99 being the highest possible priority. This value should
be the result of careful analysis of your realtime appli-
cation and how threads interact. Typical priorities look
as follows:

Real Time Priorities
99 Watchdog and migration threads
90-98 High priority realtime application threads
81-89 IRQ threads
80 NFS
70-79 Soft IRQs
2-69 Regular applications
1 Low priority kernel threads

It is worth emphasizing from the example above that
interrupts have been assigned priorities (usually around
85) to handle work resulting from the use of a network
interface, for instance. One can always reorder those
priorities. To make sure network traffic will get priori-
tized at the driver level, for example, it would be possi-
ble to adjust the realtime priority of the corresponding
IRQ thread in such a way that it would preempt other
high priority realtime threads. This scheme provide
complete control over what should be executed first.

Setting the scheduling policy and priority involves in-
voking the sched_setscheduler() call like this:

2009 Linux Symposium • 81

struct sched_param sp;
int policy = SCHED_FIFO
sp.sched_priority = 70;
if (sched_setscheduler(0,policy,&sp)) {

perror("Could not set policy and priority");
exit(1);

}

Alternatively, a tool such as rtctl can be used to set
priorities manually at runtime or automatically when the
system boots up.

4 Avoiding Page Faults

Performance associated to memory access can be af-
fected by two factors: pages of memory being swapped
out to disk and memory allocation. By default, Linux
does not provide any guarantees about whether mem-
ory allocated by an application will remain in physical
memory or get swapped out. Memory that ends up on
the swap device may eventually need to be copied back
to physical memory in order to be accessed, thus caus-
ing a major page fault. This is an extremely large source
of latency in applications since that delay depends es-
sentially on the speed of the storage device, which is
usually a few orders of magnitude slower than physical
memory accesses (milliseconds vs nanoseconds).

Likewise, Linux does not guarantee that memory ac-
tually gets allocated at all in physical RAM. In fact,
memory allocated on the stack or via functions such
as malloc() is usually not immediately allocated in
RAM: pages of physical memory can be allocated on the
fly whenever the application writes data to that memory.
This mechanism relies on minor page faults. While mi-
nor faults can be dealt with relatively quickly, they can
also introduce delays in the application.

In order to address these sources of latency we rec-
ommend making use of the mlockall() system call,
which ensures that memory allocated on behalf of a pro-
cess never causes a page fault. mlockall() supports
two flags:

• MCL_CURRENT: Lock all pages which are cur-
rently mapped into the address space of the pro-
cess.

• MCL_FUTURE: Lock all pages which will become
mapped into the address space of the process in the
future. These could be for instance new pages re-
quired by a growing heap and stack as well as new
memory mapped files or shared memory regions.

For most applications both flags are needed: this will
make sure no present or future allocated memory areas
cause any major page faults, i.e.:

if (mlockall(MCL_CURRENT|MCL_FUTURE) == -1) {
perror(Could not lock memory.’’);
exit(1);

}

Make sure you have an idea what the memory consump-
tion of your application should look like before you use
mlockall(). All pages of memory belonging to the
process making a call to mlockall() will be locked
in physical memory. That includes code, data and li-
brary contents. Locked memory can be unlocked if
needed using the munlockall() system call.

For large applications or systems with limited resources,
this system call can easily cause memory starvation
issues on the entire system. As an alternative to
mlockall(), applications that require more flexibil-
ity may rely on the mlock() system call. In this case,
specific memory regions may be locked and unlocked
later on with munlock().

Furthermore, if the application does not get invoked by
the superuser you will need to set the appropriate pro-
cess capability, i.e., CAP_IPC_LOCK. If set, no lim-
its will be placed on the amount of memory the pro-
cess can lock. Similarly, for unprivileged processes the
RLIMIT_MEMLOCK limit can be set instead in order
to define the maximum amount of memory that can be
locked.

You may verify default settings by running the
rtcheck utility discussed previously in this document
or by invoking

$ ulimit -l

Modifying the RLIMIT_MEMLOCK value typically in-
volves assigning the user running the application to
the realtime group. Limits listed under /etc/
security/limits.d/realtime.confwill then
automatically be applied next time this user logs in.
Such a configuration file may look as follows:

@realtime soft cpu unlimited
@realtime - rtprio 100
@realtime - nice 40
@realtime - memlock unlimited

82 • From Fast to Predictably Fast

Similarly, limits may be set programmatically by the su-
peruser with the setrlimit() system call. In the
following example we’re setting limits for the current
process to unlimited:

#include <sys/resource.h>
struct rlimit rlim = {RLIM_INFINITY,

RLIM_INFINITY};
setrlimit(RLIMIT_MEMLOCK, rlim);

4.1 Pre-faulting the stack

The stack of a process is another potential source of
page faults to be avoided: whenever a local variable gets
defined or a function gets executed, the stack grows by a
few extra bytes. At some point (i.e., when we run out of
physical memory in a stack page) this will trigger a mi-
nor page fault and allocate one more page of RAM. This
can obviously cause some latency that’s not desirable in
the context of a realtime application. As a solution, we
recommend pre-faulting the stack when the application
or the thread get started. This can be done as follows:

#define MAX_STACK_SIZE (128*1024)
void prefaulter(void) {

unsigned char dummy[MAX_STACK_SIZE];
memset(&dummy, 0, MAX_STACK_SIZE);

}

Note that the main challenge here is to determine ahead
of time what the maximum stack usage in the appli-
cation will be. A practical way to determine the stack
size is to pre-fault the entire stack to a known value at
startup time and determine, when the application gets
terminated, which pages of the stack got modified. This
iterative technique is not without its limits but the result
can at least be used as a starting value in the example
listed above.

4.2 Working around malloc’s unpredictability

glibc’s malloc function comes with a default set of
tunings that works well in the common (non realtime)
case, but lacks the predictability expected from real-
time applications. Fortunately, a function known as
mallopt()makes it possible to eliminate many issues
associated with malloc().

Calls to malloc and free are not always necessarily
translated to a corresponding call to sbrk(). In fact,

malloc() usually makes use of a set of preallocated
subheaps in order to reduce memory fragmentation and
speed up memory allocation. This also means that any
application calling free() will use sbrk() to give
memory back to the system. We obviously don’t want
that to happen in the context of a realtime application.
The mallopt() function, in conjunction with the M_
TRIM_THRESHOLD flag lets us modify this behavior
and completely disable the memory reclaim:

if (!mallopt(M_TRIM_THRESHOLD, -1) {
return 1;

}

malloc uses mmap() by default in order to allocate
any block of memory larger than 128k. This can create
undesirable situations where a call to free will result
in the munmap system call being invoked, thus giving
back locked pages to the kernel. Since we want to keep
those locked pages in our address space, we need to dis-
able the use of mmap() in malloc() context:

if (!mallopt(M_MMAP_MAX, 0)) {
return 1;

}

4.3 Real time dynamic memory allocator

As we have just seen, allocating memory dynamically
is generally considered incompatible with the require-
ments of a realtime system. Memory locking is widely
viewed as the only alternative to this problem.

There are cases, however, where memory locking just
is not practical. There are applications for which we
just cannot predict the memory footprint. We must thus
come up with a solution that makes it possible to rely
on a dynamic allocator that offer guaranteed response
times. The Two-Level Segregate Fit (TLSF) allocator
is a constant cost memory allocator that can be used in
these cases. While it cannot avoid major page faults
(disabling swap may thus be required), it does pro-
vide guarantees about the time required to allocate any
amount of memory: TLSF operates with O(1), i.e. con-
stant, cost.

4.4 Dynamic library preloading

Linux uses a technique known as “lazy linking” in order
to load libraries into memory at execution time. This

2009 Linux Symposium • 83

static bool dumpPageFaults(void) {
bool l_PageFaultsDetected = false;
static bool ls_Init = false;
static struct rusage Previous;
struct rusage Current;

getrusage(RUSAGE_SELF, &Current);
int a_NewMinorPageFaults = Current.ru_minflt - Previous.ru_minflt;
int a_NewMajorPageFaults = Current.ru_majflt - Previous.ru_majflt;
Previous.ru_minflt = Current.ru_minflt;
Previous.ru_majflt = Current.ru_majflt;

if (ls_Init) {
if ((a_NewMinorPageFaults > 0) || (a_NewMajorPageFaults > 0)) {

printf("New minor/major page faults: %d/\d{\n",
a_NewMinorPageFaults,
a_NewMajorPageFaults);

l_PageFaultsDetected = true;
}

}
ls_Init = true;
return l_PageFaultsDetected;

}

Figure 1: An example of how to monitor page faults.

method essentially means that a library to which an ex-
ecutable is linked will not be loaded in RAM unless a
call is made to a component of that library. Page faults
can therefore be avoided in the common case where no
calls are made to some parts of the library and, most
importantly, physical memory usage can be minimized.

Applications that link and use libraries will likely cause
page faults. As we have seen in the last section, page
faults are detrimental to the application’s responsiveness
and need to be avoided in realtime environments. This
means we need a way to load libraries in advance, i.e.,
whenever the application gets started.

Lazy linking can be controlled by the environment vari-
able LD_BIND_NOW. The loader reads this variable in
order to determine whether it should load libraries in
memory right now (LD_BIND_NOW) or when it will ac-
tually be invoked (also known as lazy linking). Setting
this environment variable can be done on the command
line with:

$ export LD_BIND_NOW=1

Alternatively, lazy linking can be configured on the ex-
ecutable file itself with the -z linker option at compile

time:

$ gcc app.c -o app -Wl,-z,lazy

As a result, all dynamic libraries will be automatically
loaded when the application gets invoked.

4.5 Monitoring page faults

As we have seen in the previous sections, page faults are
generally one of the largest sources of latency in real-
time applications. Minimizing or eliminating them will
help you achieve better latency results. In order to val-
idate the strategies documented in this whitepaper we
recommend using the getrusage() function defined
in resource.h:

int getrusage(int who, struct rusage

*usage);

The first parameter is generally RUSAGE_SELF: this
will let you access statistics for the current process,
which includes all its threads but excludes any child pro-
cess that may have been created before. The second ar-
gument is a reference to a data structure that contains a
number of statistics related to the current process:

84 • From Fast to Predictably Fast

struct rusage {
[...]
long ru_minflt;
long ru_majflt;
[...]
};

What we really want to focus on here are the ru_
minflt and ru_majflt fields, which report the
number of minor and major faults since the process
started, respectively. An increasing number of minor
and major faults in a realtime application should be a
concern only after the application has been fully initial-
ized: at that point very few operations should generate
faults.

As an example, an application can keep track and report
page fault statistics by implementing something similar
to what’s listed in Figure 1 above.

5 Efficient Locking

The realtime patch is known to expose lock-related bugs
more easily due to the fine grained nature of the realtime
kernel. These bugs are not necessarily new in user space
applications: they were typically just left unnoticed due
to the less dynamic behavior of the standard kernel (this
is particularly true for non-SMP systems). Solving lock-
ing issues should first involve analyzing which locks are
used in the application and ensuring that lock contention
won’t everbecome a problem as the application scales.

Other steps can also be taken in order to improve lock
efficiency in a user space application running on the re-
altime kernel:

• Never use SysV semaphores in order to protect
shared data resources in your application. These
mechanisms are not designed and implemented to
support priority inheritance, which is a requirement
for any realtime system. Pthread mutexes should
be used instead.

• Pthread mutexes should be given the PTHREAD_
PRIO_INHERIT attribute in order to turn priority
inheritance on.

• Rely on mutex priority ceilings if priority inheri-
tance can’t be used.

• If a counting (i.e., non-binary) semaphore is re-
quired in the application, implement it using con-
dition variables.

6 Priority Inversion

Extra latency can occur when threads with different pri-
orities share a common resource that’s protected by a
lock. Priority inversion happens when a high priority
thread tries to obtain exclusive access to a resource that’s
already locked by a lower priority thread. This phe-
nomenon is expected in threaded applications and can-
not be avoided in most cases.

A worst scenario (defined as unbounded priority inver-
sion) would consist of three threads A (high priority),
B (medium priotiy) and C (low priority), all relying on
a common resource. Imagine a situation where thread
C starts first and locks the resource. Thread A (which
is of higher priority) then wakes up, preempts thread C
and tries to access the common resource. Since the re-
source is already locked, thread A will go to sleep. If
thread B wakes up at this point it will delay execution of
thread C since it runs with a higher priority. End result is
that thread C is delaying thread A (which does not make
sense priority-wise) and thread B is not giving thread C
a chance to complete its work. This unbounded priority
inversion situation will persist as long as thread B keeps
executing, which has some obvious latency effects on
thread A.

Two mechanisms are available to help with this situa-
tion:

• Priority inheritance

• Priority ceilings

6.1 Priority Inheritance

With priority inheritance, a low priority thread that holds
a mutex can automatically have its priority increased in
order to complete its work faster and let a higher priority
thread gain access to the lock more quickly. End result is
better response time for high priority threads and better
predictability.

It is worth noting here that recompiling the application
may be required in order to benefit from priority inher-
itance. Since this feature depends on a synchroniza-
tion mechanism called pi futexes, applications that were
compiled under an older glibc release will not get access
to the corresponding feature.

2009 Linux Symposium • 85

6.2 Priority Ceilings

The validity of priority inheritance as a way to mitigate
problems associated with priority inversion has histori-
cally been a debate in the realtime systems community.
Another way to address this unbounded priority inver-
sion problem is to design the application in such a way
that low priority threads get a temporary boost when
they acquire a resource. This makes it impossible for
other threads to preempt the one that’s currently hold-
ing the resource. Moreover, this can minimize the time
spent while the resource is locked since the thread that
holds it can now run at a higher priority. This requires
use of some functions available in the pthread interface:

#include <pthread.h>

pthread_mutexattr_setprotocol(&attr,
PTHREAD_PRIO_PROTECT)
pthread_mutexattr_setprioceiling(&attr,
PTHREAD_PRIO_PROTECT)

7 Scheduling

The sched_yield() system call has historically
been very popular with developers preoccupied with ap-
plication latency. This function used to make it possible
for a process to give up its share of CPU time and let the
scheduler determine what should be executed next. The
idea was that without calls to sched_yield(), the
process would consume its CPU time slice and even-
tually get replaced with another process. This would
obviously takes a relatively long period of time to com-
plete and the process would be ready to run again after
sched_yield() would return.

There are challenges associated with sched_
yield() usage: this system call gives very little
visibility to the scheduler about what the application is
expecting to do next. Moreover, POSIX is extremely
vague about what should happen with the calling
process.

Use of the sched_yield() system call is now dis-
couraged under the real time kernel. The new Com-
pletely Fair Share (CFS) scheduler was designed in such
a way that sched_yield() should not be needed in
any case. In fact, sched_yield() now accomplishes
essentially nothing if it’s called from a realtime process.
Moreover, based on our experience we can conclude that
in most cases we can actually re-architect applications

that depend on sched_yield() in such a way that
pthread_mutex_* calls or condition variables can
replace it. These methods work much more nicely with
the realtime kernel, and provide more visibility to the
scheduler. It can thus make better decisions.

Under normal circumstances, on a system running the
realtime kernel, using sched_yield() should not
result in better results. For instance, in the case of
two CPU-bound programs we extracted the ps output
below. We can see that the two processes were allo-
cated the same CPU time even though one of them,
loop_yield, was making sched_yield() calls in
every loop:

PID USER PR NI S %CPU TIME+ COMMAND
15021 dd 20 0 R 50.1 1:42.33 with_yield
15022 dd 20 0 R 50.1 1:42.96 without_yield

There are very rare cases where application develop-
ers might actually need true sched_yield() capa-
bilities. It is possible, with the realtime kernel, to turn
sched_yield() into a more aggressive mode that
will move the process that makes the call at the very
end of the rbtree. This behavior is close to what is
available under the standard kernel. With this sysctl
turned on (kernel.sched_compat_yield=1), a
process such as loop_yield would end up never get-
ting invoked on the CPU if it was competing against an-
other process that kept the CPU busy with no sched_
yield() calls:

PID USER PR NI S %CPU COMMAND
15044 dd 20 0 R 99.5 0:25.94 without_yield
15046 dd 20 0 R 0.3 0:00.06 with_yield

8 Signals

Relying on signals to execute specific code in a realtime
application is generally considered a bad idea. The code
paths involved in the Linux kernel vary depending on the
interface used: it is thus very hard to make this operation
deterministic.

A better alternative to signals is to use POSIX Threads
to distribute the workload and use condition variables,
mutexes or barriers to let them communicate together.
This method also provides much greater visibility to the
scheduler, which can then make the right decisions to
prioritize tasks.

86 • From Fast to Predictably Fast

If eliminating signals is not possible at all, we suggest
creating one or multiple threads which will be blocking
on the sigwait() system call. Assuming all other
threads in the application have blocked signals, the sig-
nal handler thread will be the only one processing the
corresponding code. This can lead to better signal re-
sponse time and will make the entire application more
deterministic by eliminating interruptions due to sig-
nals.

9 ioctls

Some applications make heavy use of the ioctl()
system call. This is generally used to acquire control
data or statistics from hardware devices. One aspect
about ioctl() is of critical importance for realtime
applications: the code executed in the kernel is invoked
by default while the Big Kernel Locki (BKL) is held.
The BKL is required in a number of different contexts in
the kernel. Executing the ioctl() system call can end
up delaying other threads or processes, and ultimately
produce a large source of latency in the application.

A special unlocked version of the ioctl() system call
may be provided by some drivers. Whenever that is
true, any ioctl() call will automatically rely on the
unlocked version. For that reason, unlocked ioctls
are generally considered safe for use in realtime envi-
ronments. Do keep in mind, however, that the ioctl
behavior (and the amount of time it takes to return) is ul-
timately dependent on the driver implementation, where
some amount of locking can also happen and where la-
tency may be introduced.

Developers of applications depending on the ioctl()
system call can address latency issues by first assessing
the delay caused by ioctl() in the application itself.
If that delay is not acceptable, we recommend:

1. Verifying if a version of the driver contains a BKL-
free ioctl implementation. If so, use it!

2. Wrap any ioctl() invocation around a low-
priority thread of execution that will not affect the
latency-sensitive parts of the application.

10 References

Arnaldo Carvalho de Melo. Earthquaky kernel
interfaces. http://vger.kernel.org/~acme/
unbehaved.txt. 2008.

Bill O. Gallmeister. POSIX.4 Programmers Guide -
Programming for the Real World. O’Reilly and
Associates, 1995.

The GNU C Library - Memory Allocation
http://www.gnu.org/s/libc/manual/
html_node/Memory-Allocation.html

Philippe Gerum, Karim Yaghmour, Jon Masters, Gilad
Ben-Yossef. Building Embedded Linux Systems.
O’Reilly, 2008.

Real-Time Linux Wiki
http://rt.wiki.kernel.org

Red Hat Enterprise Linux Real Time Wiki
http://rt.et.redhat.com

rtcheck
ftp://ftp.redhat.com/pub/redhat/
linux/enterprise/5Server/en/RHEMRG/
SRPMS/rtcheck-0.7.4-2.el5rt.src.rpm

TLSF: Memory Allocator for Real-Time
http://rtportal.upv.es/rtmalloc/

Combined Tracing of the Kernel and Applications with LTTng

Pierre-Marc Fournier
École Polytechnique de Montréal

pierre-marc.fournier@polymtl.ca

Mathieu Desnoyers
École Polytechnique de Montréal

mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

Increasingly complex systems are being developed and
put in production. Developers therefore face increas-
ingly complex bugs. Kernel tracing provides an ef-
fective way of understanding system behavior and de-
bugging many types of problems in the kernel and in
userspace applications. In some cases, tracing events
that occur in application code can further help by pro-
viding access to application activity unknown to the ker-
nel.

LTTng now provides a way of tracing simultaneously
the kernel as well as the applications of a system. The
kernel instrumentation and event collection facilities
were ported to userspace. This paper describes the ar-
chitecture of the new LTTng Userspace Tracer and how
it can be used in combination with the kernel tracer.
Results of some early performance tests are also pre-
sented.

1 Introduction

Technologies such as multi-core, clusters, and embed-
ded systems are used to build increasingly complex sys-
tems, which results in developers facing increasingly
complex bugs. These bugs may, for example, occur
only in production, disappear when probed, occur rarely,
or have a slowdown of the system as the only symp-
tom.These characteristics make traditional debugging
tools ineffective against them. New debugging tools are
therefore required.

The impact of these tools on system performance must
be as small as possible, so they can run on systems in
production, whose hardware is chosen to match the pro-
duction load (and not debugging tools), or on which

adding debugging tools may render certain bugs unre-
producible.

Kernel tracing is one of these tools. It may be used to
understand a great variety of bugs. Quite often, the ker-
nel is aware of all the important activities of an appli-
cation, because they involve system calls or traps. In
certain cases however, kernel tracing is not sufficient.
For example, the execution of applications that process
a large number of requests or that have a large num-
ber of threads may be more difficult to follow from a
kernel perspective. For this reason, applications need
to be traceable too. It is moreover highly desirable that
userspace trace events be correlatable with kernel events
during the analysis phase.

LTTng [3], while providing a highly efficient kernel
tracer, lacks a userspace tracer of equal performance.
In this paper, the LTTng Userspace Tracer, a work in
progress to fill this gap, is described. In the next sec-
tions, its architecture is presented. Afterwards, perfor-
mance tests are discussed, followed by proposals for fu-
ture work.

2 Related Work

The classic strace tool provides a primitive form of
userspace tracing. It reports system calls and signals in
a process. Unfortunately, its usage induces a significant
performance penalty. It is moreover limited to tracing
system calls and signals, both of which are nowadays
obtainable at a much lower cost through kernel tracing.

DTrace has statically defined tracing (SDT) that can be
used inside userspace applications[6]. This implementa-
tion uses special support inside the runtime linker. Upon
activation of an instrumentation point, NOP instructions

• 87 •

88 • Combined Tracing of the Kernel and Applications with LTTng

placed by the linker are replaced by an instruction that
provokes a trap. Probes are limited to 4 arguments.

SystemTap has an implementation of SDT[2] that seems
to be very similar to that of DTrace.

LTTng has offered several different userspace tracing
technologies over the years. The first is called “sys-
tem call assisted” userspace tracing. It declares two new
system calls. The first is used to register an event type;
it returns an event ID. The second is used to record an
event; it requires an event ID and a payload to be passed
as arguments.

The second, called “companion process” userspace trac-
ing, requires no kernel support. Processes write their
events in buffers in their own address space. Each thread
had a “companion” process, created by the tracing li-
brary, that shares the buffers (through a shared mem-
ory map). The companion consumes the buffers using a
lockless algorithm.

After some refactoring of the LTTng core, these two
approaches were dropped. Eventually, a quick replace-
ment was devised, which consists in a simple system call
taking a string as argument. Calling it produces an event
whose argument is the string. The event always has the
same name; an indication of the application generating
the event needs to be prepended to the string.

Eventually, the feature was moved from a system call
to a file in DebugFS (/debug/ltt/write_event).
Writing a string to this file generates an event called
userspace_event whose argument is the string.

Ftrace[7], another kernel tracer, has a similar feature us-
ing a file called trace_marker.

3 Architecture

The LTTng Userspace Tracer (UST) is a port of the
LTTng static kernel tracer to userspace. This section
describes the architecture of the UST, insisting on the
particularities of the userspace implementation. Figure
1 shows an overview of the UST architecture.

Here are some of the important design goals of the UST,
that influenced its architecture.

• It should be completely independent from the ker-
nel tracer. Kernel and userspace traces should be
correlated at analysis time.

• It should be completely reentrant, supporting
multi-threaded applications and tracing of events
in signal handlers.

• There should be no system call in the fast path.

• The trace data should never be copied.

• It should be possible to trace code in shared li-
braries as well as the executable.

• The instrumentation points should support an un-
limited number of arguments.1

• No special support from the linker or compiler
should be required.

• The trace format should be compact.

3.1 Tracing Library

Programs that must be traced are linked with the
tracing library (libust). They must also be
linked with the Userspace Read-Copy-Update library
(liburcu)[4], which is used for lockless manipula-
tion of data structures. They must finally be linked with
libkcompat[5], a library that provides a userspace
version of some APIs available in the Linux kernel
(atomic operations, linked list manipulation, kref-style
mechanism, and others).

3.2 Time

There are no dependencies between the kernel and
userspace tracers of LTTng. However, in order to do
a combined analysis of a kernel trace and of userspace
traces, timestamps of all traces must be coherent (e.g.
they must come from the same time source).

An appropriate tracing time source must have a high res-
olution in addition to being coherent across cores. The
cost of accessing this time source must be low in ker-
nel space, but also in userspace (making a system call
is too costly). Work is needed in the Linux kernel to
make such a time source with all these characteristics
available in all architectures.

The UST code currently works only on x86 (32 and 64
bits). Until a suitable time source is provided by the ker-
nel, the TSC is read directly with the rdtsc instruction.
This is the same time source used by the kernel tracer. It
is quick to read and synchronized across cores in most
variants of the architecture.

1The only constraint is that an event must fit in a sub-buffer.

2009 Linux Symposium • 89

ustd

Consumer
daemon

Trace Buffer

Shared memory
segment

Tracing library
communication

thread

Created only
when needed

Traced
application

Socket

Disk

Path of trace data (zero copy)

Network
ust

Trace control program
Tracing commands

Consumer synchronization

Figure 1: Overview of the LTTng Userspace Tracer architecture.

3.3 Instrumentation Points

Instrumentation points consist in ports of the two kernel
instrumentation technologies LTTng uses: markers and
tracepoints. Their usage is the same as in the kernel.

Inserting a marker is as simple as adding a single line
of code at the point where the event must be recorded.
Figure 2 shows an example of a marker. Markers include
a format string that resembles printf format strings;
they include the name of each argument, the format of
the event in the trace and the type of the variable passed
to trace_mark.

Tracepoints are designed to be more elegant and pro-
vide type checking. An example is shown in Figure
3. They do not include a format string in the call, but
necessitate some declarations, typically in separate C
and header files. This makes them more suitable for
permanent instrumentation. Markers are best suited for
quickly adding instrumentation while debugging.

Markers and tracepoints list information about them-
selves in a special section of the executable or dynamic
object. Each library and each executable that contains
instrumentation must therefore register its markers/tra-
cepoints section via a call to the tracing library. This is
done by invoking a macro that adds a constructor that
automatically does this, in one of the source files of ev-
ery executable and every dynamic object.

Each of the instrumentation points may be enabled or
disabled by the user, even while the trace is active. Each
time the control flow passes on an instrumentation point,
a global variable is tested to verify whether it is enabled.

3.4 Buffering Mechanism

The buffering mechanism is a port of the lockless LTTng
algorithm. Its design reuses many ideas from the K42
operating system and the Linux kernel Relay[8] system.

Events are written in a circular, per-process buffer,
which is divided in sub-buffers. By default, when a sub-
buffer is full, it is consumed by a consumer daemon. In
another operating mode called flight recorder, the circu-
lar buffers are constantly overwritten, until the buffers
are flushed, either by the user or by a program. This
is useful to wait until an infrequent bug occurs in the
application.

Each event is associated with a channel. Each process
has a distinct buffer for each channel. Having several
channels allows to choose the size of sub-buffers per
channel. It also allows to keep some events for a longer
period of time by putting them in a low-rate buffer when
operating in flight recorder mode.

The buffers are allocated inside System V shared mem-
ory segments so the consumer daemon can map them in
its address space.

Writes to the buffers are done using a lockless algorithm
whose correctness was formally verified. It is therefore
reentrant and thread- and signal-safe.

3.5 Trace Control

There needs to be a way to command an application to
start or stop tracing, to enable, disable or list instrumen-
tation points and to control trace parameters such as sub-
buffer size and count.

90 • Combined Tracing of the Kernel and Applications with LTTng

trace_mark(main, myevent, "firstarg %d secondarg %s", v, st);

Figure 2: Example of a marker. The first argument is the channel and the second is the event name. The third is
the format string of the event arguments while the last are the event arguments. In the format string, each argument
name is followed by its format.

trace_main_myevent(v, st);

Figure 3: Example of a tracepoint.

A helper application called ust is used for this purpose.
It communicates with the traceable application through
a Unix socket. Communications are handled by a spe-
cial thread in the traced process.

In order for the UST to be as minimally invasive as pos-
sible, this thread is not launched automatically when
the application starts. Instead, the tracing library con-
structor registers a signal handler for a particular signal.
When that signal is received, a listener thread is started.
This thread creates a named socket in a predefined di-
rectory. The name of the socket is the process ID.

For now, the SIGIO signal is used. Although this sig-
nal is used for other purposes on occasion, the siginfo_t
structure allows to determine whether the signal was
sent by a process or the kernel.

3.6 Data Collection

A single process collects trace data for all processes be-
ing traced on the system. This process is called ustd.
It opens a named socket, called ustd and located in the
same directory as the applications’ sockets. Through it,
ustd can be commanded to collect the trace data of a
certain buffer of a given PID.

Upon receiving this command, ustd creates a new
thread that connects to the socket of the tracing process,
first sending it the SIGIO signal if the socket is not yet
available. It then requests the shared memory segment
IDs for the buffers and maps them.

Still using the socket of the traced application, this con-
sumer thread sends a command requesting access to the
next sub-buffer. When the next unconsumed sub-buffer
is full, a reply is sent, and the consumer thread writes its
data to the trace file, reading from the shared memory
segment. Because the memory area passed to write()

is in the shared memory segment, no copying in RAM
occurs.

3.7 Early and Late Tracing

A few complicating factors must be taken into account
when tracing very early or late in the program lifespan.

3.7.1 Tracing from program start

Sometimes, it is important to trace the program from its
beginning. One can try to start the program, and then
enable tracing. But chances are by the time the SIGIO
signal is sent and received, and the command to start
tracing is sent through the socket, some events will have
been lost. In some cases, the program may have already
ended.

Therefore the UST has a special mechanism for trac-
ing from the beginning of the program execution. To
trace a program from its beginning, the user can run the
program with two environment variables defined. These
variables are parsed by the tracing library constructor.
Defining both these variables guarantees that by the time
the program enters its main() function, tracing will
have started.

UST_TRACE=1 Automatically activate tracing on pro-
gram start.

UST_AUTOPROBE=1 Automatically enable all instru-
mentation points.

3.7.2 Tracing until the end of the program

Things are also slightly more complicated when tracing
near the end of a program. The program can crash and

2009 Linux Symposium • 91

be unable to notify ustd that its last sub-buffer should
be consumed. Worse, it may end before ustd is able
to map its buffers. In the former case, the end of the
trace will be lost. In the latter, the full trace is lost, since
the kernel deallocates shared memory segments when
their last user disconnects from them. The following
describes how the UST deals with these issues.

When a program crashes, its socket connections are
closed by the kernel. ustd can detect this and run a
crash recovery procedure on the buffer. The recovery
procedure identifies which sub-buffers contain data that
is not yet consumed, and how much data can be recov-
ered in each one of them. This data is appended to the
trace file. The procedure guarantees that all the events
up to the last that is recovered are valid and that none
was skipped (provided there are no lost events in the
buffer due to overflow). It is possible to determine what
data in each sub-buffer is valid, because some counters
used in the atomic algorithm are mapped along with the
buffer in the shared memory segment.

When the program lifetime is too short for ustd to have
time to map its memory, a different problem is encoun-
tered. Although the UST does not yet support this case,
it is planned to use a destructor to handle this case. If the
destructor of the trace library detects that a trace is being
recorded and that its buffers have not yet been mapped,
it will extend the life of the process slightly to give time
to ustd to map them.

4 Trace Analysis

LTTV[1], the LTTng Viewer, is a graphical trace viewer
for LTTng traces. LTTV provides a number of graph-
ical, statistical and text-based views for traces. Fur-
thermore, it has the ability to display concurrently the
events of several traces that were recorded simultane-
ously. This is useful for viewing traces recorded in vir-
tual machines at the same time as a trace of the host
system.

This feature can also be used to display a kernel trace
at the same time as userspace traces. In the event list,
the events of all the traces are then interleaved. This al-
lows to get a better grasp of problems that involve both
the userspace and kernel side. The usage of a precise
and common time source ensures events in the list are
correctly ordered even if they are produced on different
cores or on different sides of the kernel/userspace bor-
der.

5 Performance

This section presents some early performance measure-
ments for the UST, as well as a comparison with the
performance of DTrace SDT for an equivalent tracing
task.

The tests were run cache-hot on a dual quad-core Xeon
2GHz with 8GB of RAM. DTrace was run under
OpenSolaris. The test consisted in running 60 times
the command find /usr -regex ’.*a’. This
regular expression was chosen arbitrarily to provoke
malloc/free activity.

The calls to malloc and free made by find were
instrumented. This was done by intercepting the calls to
them using a shared library loaded with LD_PRELOAD.
The intercepting functions contained the actual instru-
mentation points and called the real version of the func-
tion. The malloc/free interception was active for all
tests, even when not tracing. The malloc/free ar-
guments and return values were recorded by the instru-
mentation.

Event counts vary between DTrace and UST tests be-
cause the /usr directory contained more files in the
Linux system (for UST tests) than in the OpenSolaris
system (used for DTrace tests).

The DTrace performance (Table 1) was first measured
with tracing disabled. Then, it was measured with trac-
ing enabled, with two different scripts. One (printing
probe) printed the function name (malloc or free),
its arguments and its return value. The output was redi-
rected to a file. The other (simple probe), only counted
the number of events. Its aim was to verify how much
time is due to the actual printing operation. The cost per
event was obtained by taking the time in excess of the
time with tracing disabled and dividing it by the number
of events.

The UST performance (Table 2) was measured first with
the instrumentation not compiled in and then compiled
in. The difference between these two measures was not
significant. In fact, in these tests, the execution time di-
minished when compiling in the instrumentation. With
probes connected but tracing not active, the execution
time was slightly higher. In this mode of operation, a
function call is made upon hitting an instrumentation
point, but the function returns almost immediately, af-
ter finding out tracing is disabled. Finally, with tracing

92 • Combined Tracing of the Kernel and Applications with LTTng

Test Exec. time Nb. of events Cost / event
Not tracing 53.29 s – –
Tracing, simple probe 251.81 s 44,085,780 4.5 µs
Tracing, printing probe 274.51 s 44,085,780 5.0 µs

Table 1: DTrace results.

Test Exec. time Nb. of events Cost / event
Not tracing, instrumentation not compiled in 92.61 s – –
Not tracing, instrumentation compiled in 92.18 s 145,168,560 ≈ 0
Not tracing, probes connected 99.25 s 145,168,560 46ns
Tracing 193.94 s 145,168,560 698ns

Table 2: LTTng Userspace Tracer results.

enabled, a cost per event of 698ns was obtained. The
cost per event was calculated by taking the time in ex-
cess of the time with instrumentation not compiled in
and dividing it by the number of events.

The LTTng UST had a cost per event more than 7 times
lower than DTrace. This difference is explained by the
method used by each tracer to record events. While
DTrace executes a trap at each event, the UST writes
the event in a buffer in the program memory, saving a
round-trip to the kernel.

The UST has a low per event cost, while having no ap-
parent impact while disabled. This makes it particularly
useful in production systems, and other systems where
affecting performance as little as possible is critical. Its
compact trace format further limits its impact by limit-
ing the disk and network usage.

As the UST becomes more mature, it is likely that new
optimizations will result in an even lower cost per event.
The Future Work sections mentions a few possibilities to
this effect.

6 Future Work

The current per-process buffers were a simple first step
for a port. However, this approach has an important lim-
itation. It induces cacheline bouncing on multi-threaded
applications. Using per-thread buffers would fix this
problem.

In the kernel, the most optimized variant of the markers
uses immediate values, a technique that modifies an in-
struction at the instrumentation point site when enabling

or disabling markers. This code modification consists in
changing the immediate value in a load immediate in-
struction. This instruction is immediately followed by a
test of the register in which the value was loaded. De-
pending on the result of the test, the event is recorded
or not. Although this approach is faster than the cur-
rent test of a global variable, is much more architecture-
dependant.

UST_AUTOPROBE should allow the specification of a
list or pattern of markers. Its current limitation of ac-
tivating all of them at once may cause a performance
penalty that is higher than necessary on programs where
markers encountered extremely often are compiled in
but not needed for the specific problem being debugged.

Complex programs that necessitate userspace tracing
are often written in high-level languages. Therefore the
UST should be available to these languages. For ex-
ample, a Java API using the JNI to interface the C API
would be straightforward to implement.

Work is currently in progress to enhance the daemon so
it can send traces over a network. This is particularly
useful on special purpose systems with little or no disk
space available.

References

[1] LTTV. http://lttng.org.

[2] Systemtap static probes.
https://fedoraproject.org/wiki/
Features/SystemtapStaticProbes.

[3] Mathieu Desnoyers and Michel R. Dagenais. The
LTTng tracer: A low impact performance and

2009 Linux Symposium • 93

behavior monitor for GNU/Linux. In Linux
Symposium, Ottawa, Ontario, Canada, June 2006.

[4] Mathieu Desnoyers and Paul E. McKenney.
Userspace Read-Copy-Update Library.
http://ltt.polymtl.ca/cgi-bin/
gitweb.cgi?p=userspace-rcu.git.

[5] Pierre-Marc Fournier and Jan Blunck. libkcompat.
http://git.dorsal.polymtl.ca/?p=
libkcompat.git.

[6] Frank Hofmann. The DTrace backend on Solaris
for x86/x64. http://opensolaris.org/
os/project/czosug/events_archive/
czosug2_dtrace_%x86.pdf.

[7] Steve Rostedt. ftrace.
http://lwn.net/Articles/290277/.

[8] Karim Yaghmour, R Wisniewski, R Moore, and
M Dagenais. relayfs: An efficient unified approach
for transmitting data from kernel to user space. In
Linux Symposium, Ottawa, Ontario, Canada, 2003.

94 • Combined Tracing of the Kernel and Applications with LTTng

Twenty Years Later: Still Improving the Correctness of an NFS Server

Robert Gardner
Hewlett Packard

rob.gardner@hp.com

Scott D’Angelo
Hewlett Packard

scott.dangelo@hp.com

Matt Sears
Hewlett Packard

matt.sears@hp.com

Abstract

The NFS reply cache, also known as the Duplicate Re-
quest Cache, was first described over twenty years ago
[Juszczak] as a way to help a server give correct re-
sponses to certain types of replayed operations. Some
operations, called idempotent, can be safely repeated
and will do no harm. Other operations, called non-
idempotent, can only succeed once [Callaghan]. For ex-
ample, a request to read a certain block of a file will
produce the same result each time. But an operation
such as rename will succeed the first time, but a sub-
sequent retry will result in an error being reported to
the client. The reply cache keeps track of responses to
recently performed non-idempotent transactions, and in
case of a replay, the cached response is sent instead of
attempting to perform the operation again. In addition to
avoiding these client-visible errors, performance is also
improved by avoiding unnecessary work.

The trouble begins when the size of the cache is inad-
equate to deal with the rate of incoming transactions.
Now the mechanism breaks down, and replayed requests
may result in duplicate work being done and erroneous
results generated. Even modest workloads can result
in an enormous rate of non-idempotent requests which
would necessitate enlarging the reply cache to unaccept-
able levels. Heavy workloads can cause network con-
gestion and delays that can foil attempts to cache enough
transactions to maintain correctness. Simply increasing
the cache size, even by large factors, isn’t effective.

We address these problems by making the cache smarter
instead of larger. First, we add the concept of pro-
tecting a cache entry, which temporarily makes it ex-
empt from the usual replacement process. Next, we add
some heuristics that grant or revoke the protection of a
cache entry. Finally we eliminate automatic expiration
of cache entries. Taken all together, this scheme dras-
tically reduces the number of errors reported by clients
on a large network.

1 Traditional Design

Linux drew strongly from its predecessors in its imple-
mentation of the NFS reply cache, and despite occa-
sional rumors of being rewritten [Kirch], it has changed
very little since its inception. In addition to the actual re-
ply data, each cache entry contains other essential infor-
mation about one NFS transaction, including the client’s
IP address, the transaction ID (XID), NFS procedure
number, timestamp, etc. As entries are created, they
are placed onto hash chains indexed by the XID to en-
able faster searching. When a new request is received,
the cache is searched. If a match is found (a hit) then
the cached reply is sent back to the client. Otherwise,
a new entry is made, replacing an existing entry via a
least-recently-used policy. An entry “expires” after two
minutes, which excludes it from searches, even if other
cache entries have not replaced it. This is to avoid issues
with transaction ID re-use [Werme]. The cache entries
are also kept on an additional linked list that is ordered
by time of use. When an entry is created or touched, it
is moved to the head of this list. This makes the least re-
cently used entry instantly accessible when replacement
is invoked.

The size of the NFS reply cache is critically important,
since it directly affects residency time of a cache entry.
If entries are replaced too quickly, then a replayed trans-
action will not be found in the cache and a client visible
error will result. We call this a critical reply cache miss.
A worse consequence of a critical reply cache miss is
the “lost write due to replayed truncate” problem [Sun]
which can cause data loss.

The design and sizing of the reply cache dates back
to 1989 [Juszczak] when processing power and net-
work bandwidth were rather limited, which in turn con-
strained the rate of incoming NFS requests. The power
of a modern server makes configurations possible which
were probably not envisioned twenty years ago. Nowa-
days it is not uncommon for a server to handle requests

• 95 •

96 • Twenty Years Later: Still Improving the Correctness of an NFS Server

from hundreds, or even thousands of clients simultane-
ously, so it is not a huge leap to realize that the reply
cache must be sized appropriately for the expected load.

The number of entries in the reply cache has been sub-
ject to many changes over the years, with various imple-
mentations (i.e., BSD, DEC Unix, HP-UX, Solaris, etc)
employing widely differing sizes, and the Linux code
settling on 1024 entries. The paucity of data to jus-
tify any particular choice suggests that some guesswork
was involved in each implementation. A clever scheme
to dynamically resize the reply cache based on demand
was described in [Banks], and this work will probably
be incorporated into the Linux kernel in the very near
future. Our experiments with a reply cache 16 times
larger than normal (16384) showed cache entries surviv-
ing for mere seconds. With typical RPC replay timers
being multiples of minutes [Eisler], we were convinced
to look at possibilities that did not involve enlarging the
cache.

In addition to the sizing dilemma, the cache replace-
ment algorithm is rather unintelligent. The simple least-
recently-used policy doesn’t take into account any sta-
tistical data available. For instance, busy clients may
consume many cache entries, but this should not have
adverse effects on less busy clients. Network conges-
tion can cause replies to be lost and wreak havoc on the
simplistic cache replacement algorithm. Since there is a
practical limit to how much memory should be devoted
to the cache, a solution more appropriate for today’s en-
terprise environments is needed.

2 Is this a problem worth solving?

A human operator may not notice, may not care, or very
likely will not know how to interpret the symptom of
a critical reply cache miss. All that will be seen by a
user is a puzzling failure of a mkdir command, for in-
stance, when in fact the directory was created success-
fully. A user faced with this scenario is likely to pre-
tend the whole thing was a dream, and move on. Conse-
quently, problem reports are rare, and unlikely to iden-
tify the true source of the problem. This line of reason-
ing might explain why we haven’t seen many efforts to
correct the problem.

Now envision a different type of scenario. There’s a file
server with hundreds or even thousands of active clients.
The clients are running applications that are updating

databases, or something equally critical. Perhaps client
applications exit prematurely when they see unexpected
failures of simple file operations. In these scenarios,
critical reply cache misses are likely to be noticed, since
applications are much less forgiving than human oper-
ators when faced with unexpected results. At best, this
will result in customer complaints, and at worst, there
may be data corruption.

New file serving protocols, such as NFSv4.1 [Noveck]
[Shepler], do not suffer from this problem. But history
has shown that emerging technologies do not instantly
displace old ones, and NFSv3 will likely be around for
many more years.

3 New Paradigms, New Problems

A High Availability NFS server coupled with a clustered
filesystem [CITI] [Bhide] creates new problems for the
NFS reply cache. Although high availability and cluster
issues are not the focus of this paper, the myriad prob-
lems that they expose provided much of the impetus to
design new methods. These new ideas are completely
applicable to a standalone server.

Transient service disruptions, such as failover events,
often exacerbate networking back-off mechanisms and
can cause extended replay delays. In practice, a failover
may require several seconds or more to complete, but
may incite transaction replay delays of a minute or
more. Failover events are hot spots of trouble for the
reply cache because of the greatly increased probability
of a lost reply and a subsequent replayed transaction.

For example, when a failover event is initiated for ad-
ministrative reasons, i.e. maintenance, load balancing,
etc., the contents of the reply cache from the failing
server must be transported to the takeover server. Vari-
ous schemes for doing this have been suggested [Bhide]
and the straightforward method we use is to simply have
the failing server write out the contents of the reply
cache to some network accessible location, and then
have the takeover server read it back. This approach im-
mediately caused a new problem, as the flood of new
cache entries from the failing server displaced more
recent cache entries that were already resident on the
takeover server. New logic had to be created to deal
with these competing sets of cache entries.

2009 Linux Symposium • 97

4 Evolution and Implementation of a New Ap-
proach

The cache entry competition caused increased client-
visible errors right after a failover event. As a first step,
acquired cache entries should not displace existing en-
tries on the takeover server, but rather should be merged
with them as space allows. Since clients of the fail-
ing server are victims of a transient service disruption,
they are more likely to retry requests, and thus their re-
ply cache entries are more important than existing ones.
This led to the first major change to the reply cache
logic. A protected_until field was added to the
cache entry structure, signifying that this entry is exempt
from replacement and reuse until a certain time in the fu-
ture. This gave the acquired entries a survival advantage
over normal entries, and greatly eased the problem of
failover related client request errors.

Once this protected status was available for cache en-
tries, other opportunities arose to implement policies
that could be applied to grant or revoke this special sta-
tus, and thus help in other problematic scenarios. For
instance, when a cache hit is found, the lookup code
checks to see if it’s for a transaction that is still being
processed by the filesystem. If so, we have no answer
to give the client, so RC_DROPIT is returned, which
has the effect of sending no reply whatsoever. It’s not
clear why the client sent a duplicate request. Perhaps the
original request was delayed due to a media problem,
disruption in connection to a SAN or RAID, filesystem
repair, etc. In any case, no response has yet been sent for
the original request, and now the code is dropping the re-
ply to the duplicate request. It seems like a sure bet that
the client is going to try the request again! As such, the
cache entry is a perfect candidate for “protected” status.

A similar piece of logic in the lookup code discards the
reply for a request received too soon after the previous
identical request. Again, it’s not clear what could cause
this to happen, but if it does, we know that the client
may not have received a response to its previous request,
and it won’t receive a response to the current one ei-
ther. Likewise, this cache entry ought to be protected
since it is very likely that the client will try again soon.
These hints were very successful in reducing critical re-
ply cache misses.

The two minute cache entry expiration came under
scrutiny next. If extreme conditions could cause re-
plays to be delayed for long periods, then the two minute

expiration time would foil any attempt to do anything
more sophisticated. The best explanation available for
the existence of the expiration period is that it prevents
false positive cache hits when a client reuses XIDs with-
out cycling through the entire 32-bit space available
[Werme]. This may happen, for instance, when a client
reboots or when multiple NFS clients originate from the
same IP address [Oracle]. Though XID reuse could well
be considered a client bug, with the fix belonging in the
client code, a responsible server should attempt to han-
dle this better. Our reply cache code stores a simple
checksum of some of the data payload along with the
traditional cache keys and requires a match of the check-
sum before declaring a cache hit. This substantially re-
duces the probability of a false positive cache hit. Given
this new logic, the two minute expiration logic was elim-
inated entirely, thus paving the way for cache entries to
have extended lives in the system.

Following the successes of the previous hints, an ex-
ploration was made of other available information that
could be used to predict which cache entries are likely
to be needed in the future. One predictor seemed to be
very powerful: a client running a single threaded NFS
application generally does not issue a new request un-
til it receives a reply to the last one. This means that
a replayed transaction is very likely to be the last one
received from that client. This suggests that the cache
hit rate can be greatly increased by simply remembering
each client’s most recent transaction. This rule for single
threaded clients only seems to fail when the client appli-
cation writes lots of data, since write operations may be
reordered, delayed, or grouped by the client.

Storage is allocated to keep essential information about
the most recently used transaction for a fixed number of
clients. This new structure is called the Most Recently
Used (MRU) list. It is indexed using a standard hashing
function of the client’s IP address and keeps track of
the XID of the most recent transaction, the time that the
transaction occurred, and a pointer to the actual reply
cache entry for the transaction.

When a cache entry is being made, the MRU list is up-
dated with the information describing the new transac-
tion. The reply cache entry itself is marked with a pro-
tect time in the future using the previously described
protected_until cache entry field. If there is an
existing most recently used cache entry associated with
the client, its protection time is cancelled, thus making
it eligible for replacement.

98 • Twenty Years Later: Still Improving the Correctness of an NFS Server

5 Test Environment and Results

During the course of rigorous product testing, our
servers are routinely subjected to extremely high loads
and unusual configurations. It was in this harsh environ-
ment that many subtle problems came to light. Most of
the problems can be boiled down to critical reply cache
misses, and so for this paper, test data was generated
using a relatively small network and artificially inject-
ing transaction reply losses into the traffic. These losses
caused the clients to retry after 60 seconds. Ten clients
were doing nothing but generating a non-idempotent
workload on the server, while two other clients ran the
well known test suite, Connectathon [CTHON]. Con-
nectathon encompasses a large variety of tests, each de-
signed to exercise some particular aspect of function-
ality over NFS, but only the “special” tests were run
since those emphasize operations that are sensitive to
reply cache behavior. This setup generated roughly 450
non-idempotent transactions per second. Linux kernel
version 2.6.29 was used, changing only the reply cache
size from its original value of 1024.

Critical reply cache misses are reduced to zero for sin-
gle threaded NFS clients, which also brings the num-
ber of client visible errors on unlink, rename, etc. to
zero. The graph (Figure 1) shows the number of criti-
cal reply cache misses for several easily observed non-
idempotent operations using a variety of reply cache
sizes (1024, 4096, and 16384) on the stock Linux kernel.
Increasing the cache size to 16384 makes essentially no
difference in the number of client visible errors. The
cache size must be increased to over 27,000 entries be-
fore a significant improvement in behavior is seen. Also
shown is the result for a reply cache modified with our
MRU logic. Note that this modified reply cache only
had 128 entries.

Do be aware that although the Connectathon test suite
is not sensitive to the subtle corrupting effects of re-
played write operations, the MRU list has the same
power to deal with these as it does with other replayed
non-idempotent operations.

6 Potential problems and opportunities for
further development

The MRU list only keeps track of one transaction per
client. If there is more than one thread on a single client
that is making requests, the scheme breaks down. If one

RC 1024

RC 4096

RC 16384

RC 27500

MRU 128

Type and Size of Cache

0

10

20

30

40

50

60

C
ri

ti
ca

l
M

is
se

s
p
e
r

1
0

0
0

 C
o
n
n
e
ct

a
th

o
n
 I
te

ra
ti

o
n
s

Critical Misses vs. Type and Size of Cache

NFS Operations

Link
Rmdir
Mkdir
Rename
Unlink
Symlink

Figure 1: Results

thread gets stuck waiting for a lost reply, the other is
not impeded and keeps sending requests. This could re-
sult in multiple outstanding RPC transactions, of which
only one will be recorded by the MRU list. Ignoring
multiple applications running on a client, this primarily
affects user space NFS client implementations, such as
Oracle’s Direct NFS [Oracle], and clients that connect
from a private network using network address transla-
tion [NAT]. The latter includes some configurations of
virtual machines [Xen] [VMware] [VirtualBox].

Is it possible somehow to distinguish between two par-
allel streams of requests from the same client? Parallel
userland NFS clients (such as Oracle DNFS) must each
maintain their own TCP connections, each with a unique
source port. Keeping an MRU entry for each unique (IP
address, source port) pair might solve the problem for
this particular case. Parallel userland NFS clients also
probably generate different continuous streams of XIDs,
so it may be workable to detect this and remember the
last XID for each stream. It also may be possible to dis-
tinguish different client threads through their credentials
(i.e., different UIDs).

When the MRU fails to provide a matching cache entry,
there are some hints we can use to attempt detection.
XIDs from each client are often monotonically increas-
ing with respect to the client’s host byte order. If the
XID of a new request is numerically less than that of
the most recently used one, that indicates that it might
be a replay. Though information beyond the single most

2009 Linux Symposium • 99

recently used transaction is not saved, this situation can
be flagged and a log may be kept of how often it oc-
curs. Similarly, if a transaction arrives with an XID
that matches the XID in the MRU list, but misses in the
cache, then it must be because the protection time given
to the cache entry wasn’t long enough, and it got re-
placed by a newer entry. Once again, this situation can
also be recorded for later analysis. Although the RPC
specification [RFC1831] explicitly prohibits treating the
XID as a sequence number as we do here, our use of it
in this way is only a heuristic for failure detection and
has no effect on the semantics of the NFS server.

Another problem is that the MRU list must keep track
of at least one datum for each client. If the number of
clients exceeds the size of the MRU list, we’re back at
square one. So another opportunity for improvement is
a dynamically expanding MRU list, or at least a dynam-
ically sizable list that an administrator could configure.

Finally, along with the addition of new data structures
and code comes complexity, and subsequently the po-
tential for bugs and performance loss. This is especially
important since the reply cache can already be some-
what of a bottleneck, and at least one good effort has
been made to remedy this [Banks]. The actual perfor-
mance implications of the MRU list have not been thor-
oughly analyzed and there is the potential that improv-
ing correctness in this fashion hurts performance in an
area where it cannot be afforded. For instance, the MRU
list search algorithm is simplistic. A hash of the client’s
IP address is used as an index into the list, but if there
is a collision, then a linear search algorithm takes over.
Clearly this could be made better with a more sophisti-
cated hashing scheme, but this tradeoff was made after
brief analysis showed that the linear search has to tra-
verse more than a few entries only when the MRU list is
nearly full.

7 Conclusions

The current NFS reply cache implementation is not suf-
ficient for today’s enterprise environments. The fixed
size cache is not large enough and there may not be
a practical way to make it large enough to deal with
heavy workloads without client visible errors. The logic
of the existing solution only takes into account the age
of a cache entry when deciding on an entry to replace.
There is abundant information available that could help
to make more intelligent replacement decisions, but

none of it is utilized. Our contribution is to make use
of some of this data, and make better decisions about
which cache entries to keep and which to throw away.
By making the reply cache algorithm smarter instead of
simply larger, we have minimized the likelihood of er-
rors in both the clustered/HA environments as well as
the single server node environments.

8 Acknowledgements

Thanks to all the diligent and critical reviewers, espe-
cially Chet Juszczak, J. Bruce Fields, Greg Banks, and
Stuart Friedberg. We would also like to thank Hewlett-
Packard and the Storage Works Division for allowing us
the opportunity to explore, develop and improve on the
existing code base. These improvements are not a the-
oretical novelty done for research purposes, but rather
are a genuine attempt to solve real world problems,
and code implementing these ideas are being shipped as
part of the HP StorageWorks Scalable NAS File Serving
Software product.

References

[Juszczak] Juszczak, C., Improving the Performance
and Correctness of an NFS Server, USENIX
Conference Proceedings, Winter, 1989

[Callaghan] Callaghan, B., NFS Illustrated, ISBN
0-201-32570-5

[Kirch] Kirch, O., Why NFS Sucks, Linux Symposium,
2006, Ottawa

[Werme] Werme, R., RPC XID Issues, Connectathon
1996 Talks, http://www.connectathon.
org/talks96/werme1.pdf

[Sun] Sun Microsystems, NFS: Network File System
Version 3 Protocol Specification, 1994

[Banks] Banks, G., Making the Linux NFS Server Suck
Faster, Presented at linux.conf.au, 2007

[Eisler] Eisler, M., NFS over TCP, Again, March 1,
2006, Connectathon Talks,
http://www.connectathon.org/
talks06/eisler.pdf

[Noveck] Noveck, D., NFSv4.1 Current Status, Feb. 5,
2007, Connectathon Talks,
http://www.connectathon.org/
talks07/NFSv41update.pdf

100 • Twenty Years Later: Still Improving the Correctness of an NFS Server

[Shepler] Shepler, S., Eisler, M., Noveck, D., NFS
Version 4 Minor Version 1, IETF Draft, Dec. 15,
2008, http:
//www.ietf.org/internet-drafts/
draft-ietf-nfsv4-minorversion1-29.
txt

[CITI] Center for Information Technology Integration,
Linux NFS Requirements for Cluster File System
and Multi-protocol Servers, Feb. 2008,
http://www.citi.umich.edu/
projects/cluster_nfsv4/google+
citi-SoW-redact.pdf

[Bhide] Bhide, A., Elnozahy, E., Morgan, S., A Highly
Available NFS Server, Proceedings of the Winter
1991 USENIX Conference

[CTHON] Connectathon Test Suite, http://www.
connectathon.org/nfstests.html

[Oracle] Oracle Database 11g Direct NFS Client,
Oracle White Paper, July 2007

[NAT] The IP Network Address Translator (NAT),
Network Working Group, May, 1994, http:
//www.ietf.org/rfc/rfc1631.txt

[RFC1831] Remote Procedure Call Protocol
Specification Version 2, Internet Engineering Task
Force, http:
//www.ietf.org/rfc/rfc1831.txt

[Xen] Barham, P., B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield (2003). Xen and the art of virtualization,
In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, New
York, NY, USA, pp. 164-177. ACM Press.

[VMware] http://vmware.com/

[VirtualBox] Sun Microsystems, Optimizing the
Desktop using Sun VirtualBox,
http://www.virtualbox.org/

[Sandberg] Sandberg, R., D. Goldberg, S. Kleiman, D.
Walsh, B. Lyon, Design and Implementation of the
Sun Network Filesystem, USENIX Conference
Proceedings, USENIX Association, Berkeley, CA,
Summer 1985.

[Pawlowski] Pawlowski, B., C. Juszczak, P. Staubach,
C. Smith, D. Lebel, and D. Hitz (1994). NFS

Version 3 Design and Implementation, In
Proceedings of the Summer 1994 USENIX
Technical Conference, pp. 137-152.

[RFC1094] Network Filesystem Specification, Version
2, RFC 1094, Sun Microsystems, Inc., March
1989, http:
//www.ietf.org/rfc/rfc1094.txt

[RFC1813] Network Filesystem Specification, Version
3, RFC 1813, IETF, June 1995, http:
//www.ietf.org/rfc/rfc1813.txt

Memory Migration on Next-Touch

Brice Goglin
INRIA, LaBRI, University of Bordeaux

Brice.Goglin@inria.fr

Nathalie Furmento
CNRS, LaBRI, University of Bordeaux
nathalie.furmento@labri.fr

Abstract

NUMA abilities such as explicit migration of mem-
ory buffers enable flexible placement of data buffers at
runtime near the tasks that actually access them. The
move_pages system call may be invoked manually
but it achieves limited throughput and implies a strong
collaboration of the application. Indeed, the location of
threads and their memory access patterns must be care-
fully known so as to decide when migrating the right
memory buffer on time.

We present the implementation of a Next-Touch mem-
ory placement policy so as to enable automatic dynamic
migration of pages when they are actually accessed by a
task. We introduce a new PTE flag setup by madvise,
and the corresponding Copy-on-Touch codepath in the
page-fault handler which allocates the new page near
the accessing task. We then look at the performance
and overheads of this model and compare it to using the
move_pages system call.

1 Introduction

The democratization of Non-Uniform Memory Ac-
cess (NUMA), from ITANIUM based platforms, to
AMD HYPERTRANSPORT architecture and INTEL’s
new QUICKPATH interconnect, raises the need to care-
fully place data buffers near the tasks that access
them [1]. Indeed, when local data access is significantly
faster than remote access, data locality becomes a crit-
ical criterion for scheduling tasks. And the idea of mi-
grating data buffers together with their accessing tasks
has to be considered.

In the last decade, LINUX slowly learnt how to man-
age NUMA requirements. It first gained NUMA-aware
allocation facilities in the early 2.6 kernels, either au-
tomatically on first touch, or thanks to the mbind and

set_mempolicy system calls. It then acquired mem-
ory migration abilities a couple years ago with the ad-
dition of migrate_pages and move_pages. These
features enable the manual adaptation of the data dis-
tribution across memory nodes to the current task loca-
tions. However, dynamic applications with migrating
threads may require the corresponding data buffers to
migrate automatically as well.

Indeed, threads are a convenient way to program modern
highly-parallel hosts. Parallel programming languages
such as OPENMP [6] try to ease the mapping of paral-
lel algorithms onto the architecture. The quality of the
thread scheduling has a strong impact on the overall ap-
plication performance because of affinities. This issue
now becomes critical due to the variable memory ac-
cess latencies and bandwidths that NUMA architectures
exhibit. We thus propose in this article an implemen-
tation of the Next-Touch policy which provides appli-
cations with a convenient way to have memory buffers
dynamically follow their accessing tasks.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background information about mul-
tithreaded applications requirements and LINUX abili-
ties over NUMA architectures. Section 3 explains our
implementation of the Next-Touch policy in the LINUX

kernel. Experiments shown in Section 4 emphasize the
performance advantages of our approach. Before con-
cluding, both our design and implementation are dis-
cussed in Section 5.

2 Multithreading on NUMA Architectures

We briefly introduce in this section the requirements in
term of memory affinity in multithreaded applications,
the available migration strategies in LINUX, and our mo-
tivations to implement a Next-Touch strategy.

• 101 •

102 • Memory Migration on Next-Touch

2.1 Dynamic Multithreading Requirements

Memory access requirements of multithreaded applica-
tions obviously depend a lot of on thread access pat-
terns, but also on the way the application parallelism
is mapped onto threads. Indeed, a application binding
one thread per core and allocating its dataset nearby
will get satisfying performance. If some threads need
to exchange some data, the application has to either mi-
grate the thread near their new target buffers, or migrate
these buffers. As long as the application manipulates
threads directly (for instance through the pthread inter-
face) and knows their memory access patterns, manipu-
lating memory buffers manually is possible.

The situation becomes far more complex when paral-
lel programming languages are involved. OPENMP ap-
pears nowadays as a very easy way to exploit multicore
architectures. Indeed, it enables easy thread-based par-
allelization of sequential applications by adding prag-
mas in the source code. The democratization of this ap-
proach in high-performance computing raises two prob-
lem. First, OPENMP does not provide the compiler or
runtime-system with any information about memory ac-
cess patterns. Second, parallel sections may be nested
and thus cause dramatic load imbalance in case of ir-
regular applications such as adaptive mesh refinement.
Indeed, one of the OPENMP threads may open a new
parallel section if it has to much work to do compared
to its teammates.

Such nested parallelism causes the operating system or
the runtime OPENMP system to load-balance newly
created threads across all cores in the machine. Each mi-
grated thread may thus have to migrate its own dataset
so as to reduce distant memory accesses and avoid con-
gestion in the memory interconnect [7]. However, hav-
ing a precise knowledge of which buffer to migrate is
often hard. And the absence of memory-affinity-related
pragmas in parallel languages does not help. Moreover
predicting or detecting each thread migration is also dif-
ficult (unless the scheduler is embedded in the applica-
tion). Migrating memory buffers on time when threads
are migrated is thus a challenge.

2.2 NUMA Management APIs in LINUX

NUMA-awareness was added to LINUX during the de-
velopment of 2.6 kernel. Most features are made
available to user-space applications thanks for instance

to the libnuma interface [3]. It provides applica-
tions with memory placement primitives such as set_
mempolicy and mbind that insure buffers are allo-
cated on the right NUMA node(s). Such static policies
are indeed useful when the application knows where the
accessing threads run: if a thread is bound to a NUMA
node, its dataset may be bound there as well.

When the thread location is unknown, a commonly-used
approach is First-Touch. It relies on the operating sys-
tem laziness when it comes to actually allocating phys-
ical pages. Many OPENMP applications thus add an
initialization round where each thread touches all the
pages of its own dataset so that they are actually al-
located on its local NUMA node. However, as soon
as some threads have to migrate (for instance because
of load-balancing in irregular parallelism), the First-
Touch approach cannot help anymore since pages have
already been touched and allocated during the initializa-
tion round.

Memory migration is thus required as a way to have
datasets migrate with their accessing tasks. LINUX

earned migration primitives such as move_pages and
migrate_pages a couple of years ago [4]. The lat-
ter migrates an entire process address space onto some
NUMA node(s). It was designed together with Cpusets
as a way for administrators to partition machines. And
therefore it is not relevant for multithreaded applications
where only part of the address space may migrate.

The move_pages system call is the only way to ex-
plicitly migrate a buffer within an application1. How-
ever, it is a synchronous function that must be invoked
by user-space, for instance when a thread is migrated or
when it starts working on a new dataset. It requires a
strong cooperation between the application and the run-
time system when some threads decide to migrate (as-
suming they even properly know their thread access pat-
terns).

2.3 The Need for Dynamic Migration Primitives

The democratization of dynamic parallelism such as
adaptive mesh refinement, especially thanks to nested
parallel sections in OPENMP, goes beyond what LINUX

memory management interface targets nowadays. Both

1The mbind system call with the MPOL_MF_MOVE flag is actu-
ally somehow equivalent to move_pages.

2009 Linux Symposium • 103

the operating system and user-space applications or run-
time systems may have to migrate threads for load-
balancing reasons. It thus becomes important to have
an easy way to migrate the corresponding buffers at the
same time. However, the First-Touch approach is not ap-
plicable except during the initialization phase. And ex-
plicit migration requires the precise knowledge of when
each thread is migrated and of their memory access pat-
terns. It is difficult to achieve because parallel languages
such as OPENMP do not provide the required annota-
tions, and also because user-space has no way to specify
task-memory affinity to the LINUX kernel.

Actually, it is not clear that such affinities belong in the
kernel. People have been working on user-level thread
scheduling as a way to get highly-configurable schedul-
ing algorithms as well as reduced management costs.
This model enables the addition of affinities between
threads and/or data and the design of custom sched-
ulers dedicated to some classes of applications [9]. One
may think that migrating data buffers may thus have to
be managed in user-space as well. However, it brings
back the issue of parallel languages not providing the
required annotations to explicit task/data affinities. And
still, requiring a precise knowledge of these affinities is
a very hard work for the developer, for instance because
some buffers may be accessed by multiple threads with
different read/write patterns. From the user-level devel-
oper point of view, it is much more work than just trying
to load-balance threads across all cores of the machine.

We thus envision the addition in the LINUX kernel of a
new mechanism for managing the requirements of such
multithreaded applications. The idea behind the Next-
Touch policy is to have data buffers automatically mi-
grate near their accessing tasks when touched. As many
other LINUX features such as page allocation or Copy-
on-Write, this policy relies on the operating system lazi-
ness since migration only occurs when it is actually
needed. The application thus just has to mark buffers as
Migrate-on-Next-Touch when it knows that thread mi-
gration is expected in the near future: for instance when
the application begins a new phase with different mem-
ory access patterns, or when it enters a new OPENMP
parallel section. Such events are indeed very common
in multithreaded applications, and may be easily located
by their developer.

As a result, as soon as a thread touches a marked buffer
that is not allocated on its local memory node, it is au-
tomatically migrated. The scheduler may then freely

migrate threads to accommodate load-balancing to dy-
namic/nested parallelism without having to care about
data affinities. This model dramatically reduces the
work for the developer since there is no need to know
where buffers are allocated, when each thread is actually
migrated, and which buffers are manipulated by each
thread.

Some proprietary operating systems such as SOLARIS

actually implement such a policy and it has been proven
to significantly help high-performance computing [5].
We detail in the next section our design and implemen-
tation of a similar solution in the LINUX kernel.

3 Implementation of the Next-Touch Policy

We now explain why a Next-Touch policy requires ker-
nel support and how we implemented it.

3.1 Why a User-Space Implementation is a Bad
Idea

Implementing a Next-Touch policy is possible in user-
space thanks to user-directed memory protection and
segmentation fault management. This strategy has been
used to implement distributed shared memory across
machines and may also be used to detect next touches.
Indeed, the mprotect system call may be used to pre-
vent application accesses to any memory zone and cause
segmentation faults that a custom signal handler will
catch. This handler then just needs to migrate the corre-
sponding buffer and set the default protection back. This
strategy is however hard to implement safely in multi-
threaded environment and obviously exhibits an impor-
tant overhead. For instance, it has been shown to in-
crease the performance of a Jacobi Solver on NUMA
machine much less than a native Next-Touch approach
under SOLARIS [8].

One unexpected drawback of this approach is actually
the limited performance of the move_pages system
call. Indeed, aside from having to call mprotect twice
(hence flushing the TLBs) and handle the segmentation
fault signal, migrating pages has a very large initializa-
tion overhead. One could think that this Next-Touch ap-
proach could then be used only for large buffers, but the
asymptotic throughput of move_pages is actually low
as well2.

2Even after move_pages was fixed in 2.6.29 to have a linear
complexity as shown in http://lkml.org/lkml/2008/10/
11/117.

104 • Memory Migration on Next-Touch

Still, one advantage of a user-space implementation is
that migrating at the user level lets the user application
manage buffer granularity. The signal handler may thus
migrate a single page or a very large buffer depending
on the application datasets and wishes. However, again,
it requires the application to know the memory access
patterns of its threads. Also not that many applications
actually rely on very large granularity. And it is not clear
that migrating a large buffer at once will always be faster
than migrating multiple pages independently in the ker-
nel.

One way to observe the relative slowness of a user-
space implementation is to compare it with a Copy-
on-Write across different NUMA nodes. The pseudo-
code below is indeed able to copy-on-write pages from
NUMA node #0 to #1 at more than 800 MB/s on a
quad-socket Barcelona machine. However, as of 2.6.29,
move_pages cannot migrate the same pages at more
than 600 MB/s. Actually, Next-Touch may be seen as
Copy-and-Free-on-Read-or-Write. We therefore feel
that LINUX should be able to provide a Next-Touch pol-
icy with a similar implementation and performance as
Copy-on-Write.

buffer = mmap(NULL, LENGTH, ...,

MAP_PRIVATE, ...);

mbind(buffer, LENGTH, <node #0>);

/∗ prefault on node #0 ∗/
memset(buffer, 0, LENGTH);

if (!fork()) {

mbind(buffer, LENGTH, <node #1>);

sched_set_affinity(<node #1>);

/∗ copy-on-write on node #1 ∗/
for(i=0; i<LENGTH; i+= PAGE_SIZE)

buffer[i] = 0;

}

3.2 Page-Faulting on Next-Touch

LINUX implements Copy-on-write by removing the
write-access bit from the PTEs (Page Table Entry) so
that any write generates a page-fault. The page-fault
handler verifies in the VMA flags (Virtual Memory
Area) that this write-access is actually valid from the
application point of view. If so, it copies the page in-
stead of killing the process with a segmentation fault.
The strategy thus relies on the difference between the
high-level VMA flags (defined/visible at the application

page−fault

Processor

change PTE

restore PTE

Operating System

touch

Application

touch retry

set next−touch flag

mark next−touch

madvise()

page−fault handler

check next−touch flag

migrate page

remove next−touch flag

protection

protection

Figure 1: Description of the implementation of the Next-
touch policy using madvise and a dedicated flag in the
page-table entry (PTE).

level) and the low-level PTE flags (defined by the kernel
and used by the processor).

We implemented the Next-Touch policy in a similar
manner, i.e. by removing read and write-access per-
missions from the PTEs so that a page-fault occurs on
next touch, as depicted in Figure 1. However, the im-
plementation is harder than Copy-on-Write since there
cannot be any high-level VMA flag for Next-Touch. In-
deed, the migrate-on-next-touch status is only tempo-
rary. It must be cleared when the touch occurs. And a
VMA might have been only partially touched, causing
only some pages to have been migrated yet while some
other are still marked.

For this reason, we implemented the Next-Touch pol-
icy by only modifying PTEs: When the Next-Touch flag
is added, read and write access is disabled. When the
page-fault occurs, the flag is removed and regular per-
missions are re-enabled.

The application interface to enable the Next-
Touch policy relies on a new madvise be-
havior which is implemented in the kernel by
madvise_migratenexttouch() and in the end
by set_migratenexttouch_pte_range().
The whole kernel implementation is quickly summa-
rized in Figure 2.

3.3 Migrating in the Page-Fault Handler

Once read/write access has been disabled for some
pages, the page-fault handler has to be able to actually
detect whether a fault was caused by the Next-Touch
policy. Comparing VMA and PTE flags cannot help
here, but our new migrate-on-next-touch PTE flag was

2009 Linux Symposium • 105

/∗∗∗∗∗ in mm/madvise.c ∗∗∗∗∗/
static void

set_migratenexttouch_pte_range(mm, vma, pmd, addr, end)

{

...

if (pte_present(oldpte)) {

pte_t ptent = ptep_modify_prot_start(mm, addr, pte);

ptent = pte_modify(ptent, vm_get_page_prot(0)); /∗ no access rights granted ∗/
ptent = pte_mkmigratenexttouch(ptent);

ptep_modify_prot_commit(mm, addr, pte, ptent);

}

...

}

static long

madvise_vma(vma, prev, start, end, behavior)

{

...

case MADV_MIGRATENEXTTOUCH:

error = madvise_migratenexttouch(vma, prev, start, end);

break;

...

}

/∗∗∗∗∗ in mm/memory.c ∗∗∗∗∗/
static int do_migrateontouch_page(mm, vma, address, page_table, pmd, ptl, orig_pte)

{

...

/∗ if page already local, no need to migrate ∗/
if (page_to_nid(old_page) == numa_node_id())

goto reuse;

...

/∗ similar to do_wp_page() and clear the migrate-on-next-touch PTE flag ∗/
...

}

static inline int handle_pte_fault(mm, vma, address, pte, pmd, int write_access)

{

/∗ handle !pte_present ∗/
...

/∗ handle migrate-on-next-touch ∗/
if (pte_migratenexttouch(entry))

return do_migrateontouch_page(mm, vma, address, pte, pmd, ptl, entry);

/∗ handle copy-on-write ∗/
...

}

Figure 2: Summary of the implementation of the Next-Touch policy through a new madvise behavior, a new PTE
flag, and the corresponding page-fault handling code which mimics a copy-on-write.

106 • Memory Migration on Next-Touch

designed specifically for this. The detection must occur
after having taken care of non-present pages (since only
pages that are present in physical memory may need mi-
gration). Migration on next touch should however be
handled before looking at Copy-on-Write so that the lat-
ter does not have to check our new PTE flag which dis-
ables write-access in a similar way. The way handle_
pte_fault()manages these cases and the invocation
of our new do_migrateontouch_page() func-
tion is summarized in Figure 2.

Migrating the page in the handler is the key to perfor-
mance here. We chose to target the performance crit-
ical case, which is private anonymous mappings. For-
tunately, the madvise system call is only an advise
given by the application to the kernel. It thus does not
definitely enforces that any kind of memory mapping
should actually be migrated on next touch. We discuss
this design choice further in Section 5.

Migrating private anonymous mapping is actually very
simple since there is no need to handle shared pages
properly. The final code is therefore very similar to
the Copy-on-Write code (in do_wp_page()). The old
page is copied into a new page that was allocated on the
local node. Then the old page is released.

4 Performance Evaluation

We present in this section a performance evalua-
tion of our Next-Touch policy implementation in the
LINUX kernel. The experimentation platform is a
quad-socket quad-core OPTERON Barcelona (2347HE,
1.9 GHz) machine. It runs 2.6.27 with the move_
pages performance-fix patches and our Next-Touch
patches.

4.1 Migration Throughput

Figure 3 presents a comparison of the throughput of
various data migration strategies. It first shows that
the existing migration system calls have a very large
initial overhead and a limited asymptotic throughput
(800 MB/s for migrate_pages and 600 MB/s for
move_pages).

Our Next-Touch implementation shows a very small
base initialization overhead. Its asymptotic throughput
(800 MB/s) is reached with very small buffers. It shows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 4 16
 64

 256
 1024

 4096
 16384

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of 4-kB Pages

user-level memcpy
migrate pages
move pages
madvise + next-touch

Figure 3: Migration and memory copy throughput com-
parison between NUMA nodes #0 and #1.

that only our Next-Touch implementation is able to mi-
grate small buffers efficiently.

Overall, migrating pages appears to be much slower
than copying data manually with memcpy both for
small and large buffers. It explains why some people
even consider copying data between different buffers
and modifying the application pointers instead of ac-
tually using migration. We measured that the kernel
copies data during migration at a 1 GB/s throughput.
It is much slower than user-space copies due to less
MMX/SSE-like optimizations. But the actual slowness
of migration is also related to the management over-
heads that we detail in the next section.

4.2 Understanding the Overheads

We measured that setting a memory range as migrate-
on-next-touch with madvise only costs about 600 ns plus
40 ns per page. Then the actual migration on next-touch
costs about 5.2 µs per page. Since the actual memory
copy throughput in the kernel is about 1 GB/s, it shows
that only 1 µs (20 %) is needed to manage each page
(handle the page-fault and then do the actual update of
kernel structures such as the PTE).

On the other hand, move_pages shows a 72 µs base
overhead and then requires 2.5 µs to handle each page
migration (before copying at 1 GB/s rate). We found
out that it is possible to reduce it down to 1.4 µs/page3

but it remains much higher than the 1 µs management

3move_pages performance might be further improved in up-
coming kernels, as explained at http://lkml.org/lkml/
2009/4/15/75.

2009 Linux Symposium • 107

cost in the Next-Touch fault handler. The reason is that
move_pages works on pages instead of PTEs. It is
able to migrate many different types of pages, including
shared mappings. Therefore, it has to isolate pages from
concurrent process access during migration. Once the
data has been copied, it also has to update the PTEs of
all involved processes (not only the migrating one).

The initialization code of move_pages therefore
drains pages out of the per-CPU pagevec lists so that
they may actually be isolated from migration once they
are in the main LRU list. This invocation of lru_add_
drain_all() schedules a deferred work on each pro-
cessor. It is actually responsible for the whole 72 µs
base overhead of move_pages. However we do not
understand why this cost appears to be linear with the
number of processors in the machine (about 6 µs plus
4 µs per processor on our machine) while we expected
this parallel operation to scale with satisfying perfor-
mance under normal load. Further optimization may be
needed here.

This result raises the question of whether all the move_
pages complexity is actually required in most cases.
Indeed, migrating shared mapping pages may not be in-
teresting for many applications. It may then be inter-
esting to look at a new migration primitive that would
ignore complex cases such as shared mappings. We will
discuss this idea further in the next sections.

5 Discussion

We discuss in this section several questions that have
to be raised when designing and implementing a Next-
Touch policy.

5.1 User Interface

Our implementation expects applications to mark
contiguous areas as migrate-on-next-touch us-
ing the madvise system call and the new
MADV_MIGRATENEXTTOUCH behavior. Some other
interfaces such as set_mempolicy or mprotect
could be considered but they work on VMAs and
rely on setting static flags in the kernel structures.
However, the Next-Touch policy has no reason to be
defined on a per-VMA basis, and it must only be set
temporarily since the status disappears after the actual
touch. Moreover, the madvise interface only gives

Hints to the kernel. It is thus possible to ignore it under
some special circumstances such as non-migratable
pages. For the record, SOLARIS uses madvise with
the behavior MADV_ACCESS_LWP meaning that the
next lightweight process will access the memory range
heavily. The implications are therefore even less strict
than ours since the SOLARIS kernel could even try to
optimize some internal structures that are not directly
related to memory migration.

Our implementation is page-based while a user-space
implementation may migrate large buffers at once.
Adding granularity information to a kernel implemen-
tation would require a new interface. VMAs cannot be
used to do so since they may be merged/split by the ker-
nel during many system calls such as mprotect. Actu-
ally, applications may enforce the migration of a whole
segment on our page-based implementation by touching
all pages. The overhead of this strategy is linear. And
migrating pages enables more laziness and thus may re-
duce the actual copy overhead in some cases. Indeed,
as the madvise overhead is small, applications may
mark very large buffers as Next-Touch even if there is a
chance that some pages are never actually touched, and
thus never migrated for real.

Another question that needs to be raised is whether
read and write accesses must be distinguished. Our
implementation migrates pages in both cases, but
some applications may actually want to migrate only
in case of a write-access. Indeed, for instance,
a single-producer-many-consumers model may need
a privileged write access. Implementing a MADV_
MIGRATEONNEXTWRITE might thus be interesting as
well. Its implementation would be even closer to the
existing Copy-on-Write code.

Finally, it is not clear whether applications may some-
times need to query the migrate-on-next-touch status of
a segment, or even clear it. No such usage looks obvious
in the context of high-performance computing. Clearing
would be easy to implement using another madvise
behavior. However, retrieving the status of pages looks
harder. The move_pages system call is able to re-
trieve the location of a set of pages. We could imagine
marking its return values with a special bit if a new flag
MPOL_MF_GETNEXTTOUCH was given.

108 • Memory Migration on Next-Touch

5.2 Implementation Details

The main drawback of our experimental implementation
is that it only works with private anonymous mappings.
Migration of file-backed mappings is not supported so
far because it does not seems to be widely used in high-
performance computing. However, we do not see any
reason to not implement it. We do not support the mi-
gration of shared mappings either, because it is harder to
implement since it requires to update all address spaces
pointing to the migrated pages. It may actually be one
of the reason why move_pages is slower than our ap-
proach.

Our implementation enforces the copy of the touched
page into a new one even in case of a read touch. If a
private page is still used by 2 processes because none of
them modified it yet, the Next-Touch always causes its
duplication as Copy-on-Write does. Both processes then
keep their own private copy of the original page. This
strategy does not break the semantics of memory map-
pings but it may slightly increase the memory consump-
tion. Indeed, pages that are marked as migrate-on-next-
touch may actually be duplicated earlier than with a reg-
ular Copy-on-write model. Our feeling is that this im-
plementation has the advantage of not migrating pages
that are used by other processes. It is not clear to us that
some process should have a privileged access to a shared
page regardless of the other processes using it. Our early
duplication of pages on next-touch causes each process
to keep their own pages locally as they wish. Moreover,
since setting the Next-Touch policy is only a hint, the
idea of ignoring it for shared pages has to be considered
anyway. This idea goes with our proposal for a new mi-
gration primitive as explained in Section 4.2.

Another point that might need to be discussed is whether
the Next-Touch flag should be stored in PTEs or in
pages. One advantage of switching to page flags would
be that they are more room for additional flags than in
PTEs. However using page flags would also imply that
shared pages are migrated as move_pages does. How-
ever, as explained above, it is not clear that it is the
desired behavior. The idea of using PTE flags has the
advantage of keeping the page-fault handler very sim-
ilar to the Copy-on-Write handler (do_wp_page()).
Merging our implementation into a more generic Copy-
on-Write handler might even be possible.

Our implementation as well as the Copy-on-Write han-
dler uses alloc_page_vma() to allocate the new

page. The default behavior is thus to allocate a local
page, except if the application sets a NUMA binding
policy on the virtual region. It may result in funny situ-
ations where Next-Touch pages get migrated to another
NUMA node than the one touching them. It is not clear
whether this should be handled automatically by the
kernel, since a valid application should have canceled
the NUMA binding policy before enabling the Next-
Touch policy. However, our do_migrateontouch_
page() only checks whether the old page is already lo-
cal. It might have to be changed into checking whether
the old page matches the memory allocation policy.

The last question that may have to be raised is when
the Next-Touch status of a page should be cleared. It
looks obvious that calling move_pages should can-
cel pending migration on next touch since the appli-
cation is trying to enforce the actual location of pages
synchronously. However, it is less obvious for cases
where the allocation policy is modified with set_
mempolicy or mbind. Meanwhile, PTE modifica-
tions (for instance in case of mprotect) probably
needs to maintain the Next-Touch flag. It raises again the
question of adding a madvise behavior for cancelling
a pending migration on next touch.

6 Conclusions

As NUMA architectures are becoming mainstream
thanks to the spreading of HYPERTRANSPORT and
QUICKPATH technologies, affinities between tasks and
data becomes a critical criteria for scheduling decisions.
Dynamic applications such as adaptive mesh refinement
with OPENMP threads have complex and irregular ac-
cess patterns. The ideal thread and data distribution
across the machine may thus evolve during the execu-
tion. Migration of data buffers therefore becomes a con-
venient way to dynamically maintain locality.

The LINUX kernel has gained NUMA abilities during
the 2.6 development but we explained that the exist-
ing primitives are mostly designed for static application
behaviors. Dynamic parallelism requires more com-
plex capabilities so as to take care of affinities between
threads and data buffers dynamically and automatically.
Requiring the application to pass the whole knowledge
of memory access patterns down to the thread scheduler
would lead to way too much development overhead.

The Next-Touch policy is a convenient way to imple-
ment the automatic migration of data buffers near their

2009 Linux Symposium • 109

accessing tasks. We feel that it may easily be ap-
plied to multithreaded applications by locating the ap-
plication phases, where the thread-data affinities may
change, or when a new OPENMP parallel section be-
gins. We presented an implementation of this policy
in LINUX and showed that it provides interesting per-
formance improvements thanks to minimal initializa-
tion overhead, page-based granularity, and satisfying
asymptotic throughput. Applying this strategy to high-
performance computing application is under work and
shows interesting result such as 100 % speedup on a
OPENMP-threaded LU factorization.

Several key points have been discussed regarding the ac-
tual user interface that should be offered to applications
and its internal implementation in the kernel. We also
detailed the overheads of the existing move_pages
system call and of our implementation. The former
is still under optimization, but it still exhibits a large
initialization cost due to its ability to handle complex
cases. We thus raised the idea of adding a new migration
primitive with improved performance thanks to relaxed
guaranties and a more simple interface. Other ideas
could be studied, such as offloading page copies dur-
ing migration on DMA engine hardware [2]. We hope
that these results will attract developers into working in
this area.

References

[1] Timothy Brecht. On the Importance of Parallel
Application Placement in NUMA Multiprocessors.
In Proceedings of the Fourth Symposium on
Experiences with Distributed and Multiprocessor
Systems (SEDMS IV), San Diego, CA, September
1993.

[2] Andrew Grover and Christopher Leech.
Accelerating Network Receive Processing (Intel
I/O Acceleration Technology). In Proceedings of
the Linux Symposium (OLS2005), pages 281–288,
Ottawa, Canada, July 2005.

[3] Andreas Kleen. A NUMA API for LINUX, April
2005. Novell, Technical Linux Whitepaper.

[4] Christoph Lameter. Local and Remote Memory:
Memory in a Linux/NUMA System. In Linux
Symposium (OLS2006), Ottawa, Canada, July
2006.

[5] Henrik Löf and Sverker Holmgren.
affinity-on-next-touch: Increasing the Performance
of an Industrial PDE Solver on a cc-NUMA
System. In Proceedings of the 19th annual
international conference on Supercomputing, pages
387–392, Cambridge, MA, November 2005.

[6] OpenMP: Simple, Portable, Scalable SMP
Programming. http://openmp.org.

[7] Nathan Robertson and Alistair Rendell. OpenMP
and NUMA Architectures I: Investigating Memory
Placement on the SGI Origin 3000. In Springer
Verlag, editor, Proceedings of the 3rd International
Conference on Computational Science, volume
2660 of Lecture Notes in Computer Science, pages
648–656, 2003.

[8] Christian Terboven, Dieter an Mey, Dirk Schmidl,
Henry Jin, and Thomas Reichstein. Data and
Thread Affinity in OpenMP Programs. In
Proceedings of the 2008 workshop on Memory
access on future processors (MAW ’08), pages
377–384, New York, NY, 2008. ACM.

[9] Samuel Thibault. A Flexible Thread Scheduler for
Hierarchical Multiprocessor Machines. In
Proceedings of the Second International Workshop
on Operating Systems, Programming Environments
and Management Tools for High-Performance
Computing on Clusters (COSET-2), Cambridge,
MA, June 2005.

110 • Memory Migration on Next-Touch

Non Privileged User Package Management:
Use Cases, Issues, Proposed Solutions

François-Denis Gonthier
Kryptiva, Inc.

fdgonthier@kryptiva.com

Steven Pigeon
École de Technologie Supérieure

Département de Génie Logiciel et
des Technologies de l’Information

spigeon@etsmtl.ca

Abstract

The package manager and the associated repositories
play a central role in the usability and stability of user
environments in GNU/Linux distributions. However,
the current package management paradigm puts the con-
trol of the system exclusively in the hands of the system
administrator, a root-like user. The non privileged user
must rely on the administrator to install the packages
he needs, while having to deal with delays or even re-
fusal. We think that non privileged package manage-
ment is the solution to the users’ woes. We show that
not only non privileged package management has real-
istic use cases, but also that it is quite feasible. We ex-
amine several possible existing solutions and show how
they cannot be satisfactory for the deployment of un-
privileged user package management. Finally, we anal-
yse the dpkg package manager and show how it can be
extended to include safe, consistent, non privileged user
package management. Amongst results, we present the
conflict resolution rules to include multiple databases, to
ensure system consistence and proper dependency man-
agement. We also present how to modify user environ-
ment initialization to include alternate install locations.
We show, finally, the feasibility and usefulness of un-
privileged user package management and how small the
changes to be made to a package manager such as dpkg
are.

1 Introduction

Non privileged user package management is not consid-
ered as an important use case in package management.
Package management focuses mainly on security and
system stability, relying on a centralized model where
control lies in the hands of the administrator(s). This

model, essentially the only one used in Linux distribu-
tions, relies on the implicit assumption that users cannot
manage their environment in any meaningful way, ex-
cept for minor tweaks and configurations, and that deci-
sions regarding packages can only be taken by adminis-
trators. We argue that while this model has proved itself
effective, there is room for the users to manage their en-
vironments beyond mere tweaks.

The problem of non privileged user package manage-
ment does not present itself when the user is the owner
and administrator of the machine but poses itself clearly
when the user is but one of many users of shared work-
stations or of a multi-user server for which he does not
possess administrative privileges. In this case, the user
must ask the administrator for the packages he needs,
and his request may very likely be denied, either be-
cause the package is against the local policies, because
the package conflicts with other packages on the sys-
tem, because it would affect adversely the other users,
because it represents a security risk, or even because the
administrator decides that the benefits to the user from
adding the requested packages are not worth the effort.
Whatever the reasons, the net result is that the user does
not get the needed packages and is left at his own de-
vices.

Being left at his own devices, the user will simply
resort to installing the needed software from tarballs,
downloaded from some location without authentication.
Launching the configure script, by specifying in-
stall location (usually through the --prefix switch),
building the software using the created Makefile, and
modifying his environment variables, he will eventually
succeed in locally installing the software.

The tarball approach suffers from a number of impor-
tant drawbacks, despite being the standard for develop-

• 111 •

112 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

ment builds. First, one must deal manually with the
missing dependencies of the software being compiled
and installed. As most software do not quite fail build-
ing but merely disable features when dependencies are
missing, it is every difficult for novice users—and even
more advanced ones—to configure software correctly.
Eventually, after fetching and building all needed de-
pendencies, the user manages to compile, install, and to
get the software to run correctly, but he still faces the
onus of making updates by himself, going through the
tarballing all over again at each new release.

It is our opinion that users should be able to locally in-
stall software through the much simpler process of using
the distribution-specific package manager, thus obtain-
ing all the benefits of centralized, trusted, and simple
to access distribution-specific repositories—as exist for
all major distributions—that provide packages with all
their dependencies. In addition to the simplified instal-
lation process, the user should get updates automatically
through the distribution’s update manager, without so
much intervention as a simple confirmation.

However, non privileged user package management is
seemingly a complex problem, and one can oppose it
several objections (that we discuss in Section 2.2) of
which security is the most obvious and the most serious.
Indeed, one cannot grant any user the right to install any
package as it may affect adversely other users or even
render the system inoperable. Delegating package man-
agement via a simple mechanism like the sudoers list
both is dangerous and insufficient.

The correct solution is therefore, in our opinion, to use
fully relocatable packages and to allow non privileged
users to perform private installs in their home directories
(or some other accessible location) through the pack-
age manager. This implies that there is a local pack-
age database for each user, and that the package man-
ager must maintain coherence between the user’s and
the system’s databases, being fully capable of detecting
and resolving package conflicts.

In this paper, we study the problem of non privileged
user package management. We outline the problem, as
we see it, and present venues for solutions. The paper
is organised as follows. Section 2 presents the proposed
use cases as well as possible objections to the proposed
model. Section 3 reviews the existing strategies to dele-
gate package management as well as existing package
managers, and discusses their shortcomings. In Sec-

tion 4 we outline our proposed solution using dpkg and
apt as example implementations. Finally, we conclude
in Section 5.

2 Non Privileged User Managed Packages

In this section, we propose use cases for non privileged
user package management and discuss possible objec-
tions to the extension of classical package management
to include non privileged user operations.

But before continuing, let us present the definitions of
the terms we will be using in the remainder of this text
and that should not be ambiguous to the reader.

The administrator is a special user with access to all of
the system’s files and programs. Amongst other things,
an administrator is a user that can manage packages on
a system. The administrator is a user with root privi-
leges. The user, on the other hand, is a user with no
administrative rights. His privileges are limited to his
personal files, programs made available to him, and he
cannot install packages on the system.

In a virtualization context, the host is the machine or
system that provides CPU and shared resources to one or
more guests operating systems. The host has complete
control over the guests it runs. A guest is a virtualized
instance of an operating system running on a host. The
guest can use the resources provided by the host, but in
isolation from the other guests.

The package manager is the software suite that takes
over the operations of installing, maintaining, or remov-
ing pre-compiled software packages in Linux distribu-
tions. Examples of packages managers are the Red Hat
Package Manager (RPM) and Debian’s dpkg. Selectable
pre-compiled software packages are stored in one or
many shared repositories.

A maintainer script is a script that is called during
package maintenance whether installation, upgrade or
removal. Maintainer scripts usually perform complex
tasks such as creating users and groups, generating or
removing application-specific configuration files, gen-
erate SSL or SSH keys, etc.

Repositories are storage locations containing a typically
large number of software packages, which can be re-
trieved by the package manager. Repositories contain
a certain amount of meta-data about the packages they
contain. Trusted repositories contain digitally signed
packages and are deemed safe (malware free).

2009 Linux Symposium • 113

2.1 Use Cases

The most difficult part, it seems, is to justify non priv-
ileged user package management as a valid and impor-
tant use case for Linux-based computer users. While it
may not seems a priori as an important use case, the
proliferation of shared Linux workstations at work, in
schools, and at home, warrants the question to be ex-
plored seriously. Indeed, how do we bring a superior
user experience, better customization, and higher us-
ability to users sharing computers, as in, for example,
a computer science class or similar environments while
minimizing the effort from the system’s administrators?

Non privileged user package management may be the
solutions to a number of administrative woes. Consider:

1. Reduced workload for administrators. Adminis-
trators would not be pressed to install user-requested
packages. The current installation process asks for
the administrator to personally intervene to install the
packages, but only after having investigated whether
or not the packages threaten the system in some way,
and after deciding whether the user’s benefit is worth
the effort of installation.

2. Reduced delays for users. Users in large machine
parks would not need to wait for their requests for
given packages to be processed and possibly denied
by the administrators. Users could install packages
in their environment right away, to no detriment to
other users.

3. User Empowerment. Users would gain direct con-
trol over their work environment without impeding
on the other users. Users would be able to con-
figure and streamline their environments for maxi-
mum usability and productivity, having all the appli-
cation they need, rather than subset of software pre-
established by the administrators.

What we advocate is, in essence, a shift away from the
current centralized, somewhat totalitarian, management
model to a distributed, delegated management model
where users can setup their own environments, subject
to the system’s policies, while minimizing impacts onto
other users.

As of today, adept users circumvent the impossibility
of installing their own packages through the package
manager by making local installs from tarballs. As al-
ready described, this is a tedious and error-prone pro-
cess. Additionally, packages installed from tarballs are

not recognized by the system’s package manager and
therefore are not automatically upgraded. Ideally, user-
installed package should provide the same facilities than
system packages, that is, minimizing installation effort,
reducing considerably the risk of setup and configura-
tion problems, while increasing maintainability through
periodic and automatic package upgrades.

2.2 Objections

Even though “user empowerment” is a nice idea, one
may object to non privileged user package management
by raising a number of objections. A possible list of
such objections could be as follows:

1. Delegation using sudoers. One could allow users
to access the package manager without really giv-
ing them root privileges by adding them and the spe-
cific command to the sudoers list. However, allow-
ing users to use the package manager to install global
packages is tantamount to giving them root access as
they are free to install whatever package they want,
including broken or malicious packages. Even well
intentioned, they can install software that affects ad-
versely the other users and they can make the sys-
tem inoperable as a whole. This would be prevented
by user-managed local installs, since unprivileged
users are granted permission to install packages from
a possibly limited set of packages (defined by ad-
ministrator policies) and only in their own user en-
vironments; and thus installed software runs with the
users’ privilege levels. Decisions on how to resolve
packages conflicts are made by the user—but never
to the detriment of the system. We will this discuss
this issue in detail in Section 4.5.

2. “Root” packages. Packages containing software
that must be run with privileges level higher than
a normal user, such as kernel modules, services
using protected resources like port numbers under
1024, etc., clearly cannot be left to user manage-
ment. Therefore, there must be configurable poli-
cies built into the package management system to
prevent users from installing such packages, and this
issue cannot be removed by non privileged user pack-
age management. However, critical packages can be
tagged in the repository as such and are therefore pre-
vented from being installed by a non privileged user.

3. Security of repositories. Trust management for
packages is a major issue. One cannot allow the

114 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

addition of arbitrary repositories, nor allow the in-
stallation of packages of unknown origin. Indeed,
if one allows user-managed packages, does it im-
ply that one also must allow user-managed reposi-
tories as well? If so, it means that the repositories
allowed must be trusted repositories (for example,
distribution-specific canonical repositories and their
trusted mirrors) to prevent users from adding poten-
tially harmful packages from arbitrary repositories.
A system-level policy must be used to allow or dis-
allow users from installing packages from unknown
repositories or from a local directory.

4. Redundancy and Disk Space. A given package
may be installed by more than one user, resulting
in multiple copies of the package’s files (including
configuration) that must be maintained. Moreover,
if the user can access his account from machines
with different architectures (via NIS and home di-
rectories over NFS, for example), the package may
be installed for each architecture, if available. Un-
less users lock the package version (for reasons their
own), these multiple copies should be updated cor-
rectly whenever system-wide updates are launched,
resulting in extra computational cost. This is mit-
igated by using group-level installs (which we will
discuss later on in Section 4.2) and by the fact that the
number of user-managed packages on a given system
is expected to remain relatively modest compared to
the total number of packages installed on the system.
Moreover, disk space quotas would sufficient to pre-
vent users from using an inordinate amount of disk
space, at the detriment of other users.

5. Users ignore policies. The administrator may want
to prevent users from installing software such as
games, BitTorrent software, etc. As simply inform-
ing the users of one’s wishes is not sufficient to pre-
vent them from installing forbidden software, the
policies must be enforced in the package manager
system itself. Policies define what is an acceptable
package (and its provenance), and where it can be
installed. We discuss policies in sect 4.6.

6. Users don’t know what they’re doing. While it
may be true that not every user is familiar with the in-
tricate details of package management, and that users
may not understand the impacts of installing a given
package, the package management system must pre-
vent them from causing damage to the system and
their own environments by applying its rules of con-
flict resolution.

7. Packages and Repositories must be modified. It is

true that a major reworking of repositories, packages,
and software they contain is needed to make user-
managed packaging systems possible. Every pack-
age has to be tagged with the specific set of privi-
leges required for its installation and use, but more
importantly, has to be made completely relocatable
so that user installs can be completed. Relocation
means that maintainer scripts and meta-data, other
than system-provided, must be rewritten in order to
accept arbitrary locations for the packages—it may
even imply change in the software itself so it can
adapt to new locations. It also implies that the user
environment setup scripts must be modified to ensure
that correct environment variables, paths and priori-
ties for packages are set.

8. Package Managers must be modified. The package
management software must be modified as well to
take into account the new meta-data found in repos-
itories and packages. More importantly, package
management software must be modified to manipu-
late multiple package databases and deal with pack-
age conflicts between the non privileged users in-
stalls and the system’s packages, ensuring consis-
tency of the system as a whole. In particular, conflict
resolution rules must be extended to include several
databases. Far from being impossible, we show that,
indeed, conflict resolution rules may be extended to
include several package databases.

Most of the preceding objections can be lifted, either
totally or at least greatly mitigated. For example, one
could use the potential explosion in needed disk space
as an argument against user-managed packages, but in
reality, this is not a problem given that there are other
facilities within the operating system to limit a user’s
disk space usage (which would already be in use in a
multi-user system), and that, for all intent, the cost of
the disk space itself is negligible.

The only serious objection to user-managed packages is
the amount of work needed to convert repositories and
modify package management software. What would be
an argument against the modification of packages is but
an argument about workload, not about the philosophy
of non privileged user package management itself. The
amount of work needed to modify the repositories for
added security and to allow truly relocatable package is
not small, but may not be as important as first thought.
We discuss the necessary changes to packages in Sec-
tion 4.4 and 4.7.

2009 Linux Symposium • 115

As for package management software, we show in this
paper that the changes are likely minimal and that con-
flict resolution rules may be extended to non privileged
user package management as well, as we will show in
Section 4.5.

3 Existing Solutions

While it is our opinion that no exact solution to our
problem already exists, in this section, we consider the
different solution venues. First, we discuss VServer, a
system-level virtualization kernel modification that al-
lows one to create distinct virtual copies of the kernel
on a single machine. We discuss PackageKit, a pack-
age management API and GUI. We then discuss widely
used package managers such RPM (Red Hat) and dpkg
(Debian). For each, we explain why they are not exactly
solutions to the problem we are interested in, as stated
in Section 2.

VServer is a modification to the Linux kernel to al-
low system-level virtualization, enabling the computer
to run several guest virtual instances of the same host
kernel. This means that one can setup several isolated
instances of the same Linux distribution, or even dif-
ferent distributions provided they use the same kernel.
Each instance can be used by different owners, each en-
joying root privileges but unable to influence other in-
stances. VServer is therefore used to share the same
hardware between users with different needs, as each
user can install his own customized environment.

Delegating system management using virtualization is
a too heavy-handed answer to our problem. Using
VServer, the host system’s administrator relinquish full
control to his users (the administrators of the guests)
as to what is installed in their instances. The admin-
istrator can still control which repositories the users can
use, but this means reducing the customizability of the
guest systems. Obviously, the VServer kernel extension
provides no solutions for redundancy, as each guest has
its own instances of files. However, redundancy can be
limited somehow by hard-linking files across guests, but
this also limits the freedom of the users to choose their
packages, while adding the possibility of conflicts. Re-
dundancy is also mitigated as, very often, but not al-
ways, VServer is used to create several server-type guest
environments, which are, almost by definition, much
lighter—in terms of the number of packages installed—
than desktop environments.

Since a VServer guest installation is a complete Linux
installation, it gives its guest administrators full con-
trol on which packages are installed in the guest system
(provided they are so allowed by the host administra-
tor). Inside the guest system, the problem of allowing
users to install packages is still complete. Users having
access to the guest system but that are not administra-
tor for that guest cannot install packages, and the guest
administrator cannot delegate this right to his users in
a way that does not raise the objections stated earlier.
The multiplication of guest installations may also mean
that the host administrator has an increased workload as
he must now provide not only for the host, but also for
the various guests’ environments and users. Since all
guests could potentially be very different distributions
(but sharing the same kernel) the lack of uniformization
in each environment clearly does not simplify the host’s
administrative work.

PackageKit’s primary goal is to standardize pack-
age management across distributions. PackageKit ab-
stracts the complexities of the various existing pack-
age managers by offering a consistent interface across
the various distributions that already use it. It is com-
posed of a privileged dæmon, packagekitd, several
distribution-specific back-ends and GUIs. The front-
ends communicate with the dæmon using the D-BUS
desktop integration protocol, which in turn, delegates
the actual package management to the distribution-
specific back-end. By design, PackageKit deals with
some of the objections we raised to the traditional pack-
age management strategy.

The use of a privileged dæmon means that users can be
granted or denied its use in a secure fashion using priv-
ileges set by the PackageKit administrators. However,
PackageKit is still limited by the inherent (in)capability
of the underlying package managers as it uses them as
back-ends to complete its tasks. Improper configuration
of PackageKit opens the door to the same kinds of prob-
lems encountered when using delegation through sudo-
ers. If we suppose that user requests can be filtered, the
filters become a critical element of the package manage-
ment system. Malicious—or simply unskilled—users
could otherwise install packages that results in system-
wide damage. Such policy filters are not implemented
in PackageKit as of now; however, due to PackageKit’s
design, there should be no major obstacle to adding this
feature [1, 2].

This being said, it is worthwhile to note that Pack-

116 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

ageKit’s design is not fundamentally incompatible with
non privileged package management, even though it cur-
rently offers no direct support for it. It would be indeed
possible to do so, since a contribution to PackageKit al-
lows the local install of specific audio/video codecs to a
user’s directory.

RPM, the Red Hat Package Manager—one of the two
major package managers along with Debian’s dpkg—
implements package relocation in two ways, although
the original intend was not to allow regular users to per-
form private installs [3]. The first type of relocation, us-
ing the --prefix switch, causes all of the package’s
contents to be installed in the specified directory, includ-
ing configurations files that would normally be installed
in locations such as /etc/. The --prefix option
provides support to the maintainer scripts through the
environment variable RPM_INSTALL_PREFIX which
contains the path to the alternate location. Maintainer
scripts can use the variable to detect relocation and use
the new install location.

The second method, path replacement, is a sim-
ple technique that allows to install a subset of
package’s files in alternate locations and uses the
--relocate switch to do so. For example, specifying
--relocate=/etc=$HOME/etc would cause the
package manager to substitute /etc for $HOME/etc
wherever it occurs and, accordingly, all files that would
have been installed under /etc/ are now occupying the
same relative location under the specified alternate loca-
tion. Used without care, the --relocate option can
lead to non-functional packages, as it offers no means to
signal relocation to maintainer scripts.

RPM allows for relocating the package database, either
by using the --dbpath switch, which specifies an ex-
plicit location, or by using the --root switch, which
specifies a new root directory under which the relative
location of files is preserved. However, relocating the
database may necessitate the use of --nodeps and
--noscripts, two switches bypassing important fea-
tures of the package manager. Using --nodeps will
cause the package manager to skip dependency checks
as the package manager will refuse to install pack-
ages that have missing dependencies, either because
they are not installed or because relocation prevents the
package manager from detecting them correctly. The
--noscripts may be necessary for non relocatable
packages as their post-install scripts are not using rela-
tive, relocatable, paths.

While this gives users the opportunity to install pack-
ages in their own directories and manage their own
databases without root privileges, the RPM approach
has a number of serious drawbacks. First, relocation
using path replacement may cause the installed soft-
ware to fail as it may not be able to find the files it
needs. Were the packages relocatable, they would be
able to look for the configuration files in the new lo-
cations rather than in the default locations; something
that is, as of now, provided neither by the RPM package
manager nor by the packages themselves. Second, relo-
cating a RPM package will likely cause it to be unmain-
tainable. RPM keeps track of packages that are installed,
and where, but if the maintainer scripts are not able to
manage relocation, fully automatic package updates will
not be possible, even with user package databases. Re-
location can also break dependencies when other pack-
ages depending on the relocated packages are installed
as the installed dependencies are detected, but default
locations still assumed. Third, and lastly, RPM is un-
able to maintain the consistency between the system’s
database and the user databases because it merely allows
relocation of the database; not multiple databases, thus
potentially causing the user packages to break whenever
system-side dependencies are modified. The user must,
each time, manually reconfigure his packages to adapt
for system-side changes, a time consuming and error-
prone process.

RPM offers enough options to allow non privileged
users to manage their own databases and packages, but
as we explained, packages cannot be maintained auto-
matically and may be installed in a non-functional state
that may require manual effort to reconfigure properly—
if possible at all. In addition, none of the user’s envi-
ronment variables will be updated correctly, requiring
further manual intervention.

Dpkg, Debian’s package manager simply does not al-
low non privileged users to maintain private databases.
Dpkg has no facilities to allow relocation, save for in-
stallation inside “chrooted” environments. Maintaining
a local database and relocated packages will cause dpkg
to use the chroot system call before launching main-
tainer scripts. However, chroot is a privileged com-
mand unavailable to normal users. Additionally, dpkg’s
maintainer scripts are often complex, and invariably as-
sume / as the path prefix.

While adding relocation capabilities to dpkg was dis-
cussed [4], there are no serious plans to implement the

2009 Linux Symposium • 117

feature, as deemed an unimportant border case [5].

So, in essence, neither PackageKit nor VServer can
be used to allow non privileged user managed pack-
age. PackageKit offers an abstraction to package man-
agement in order to standardize the package manage-
ment API, relying on distribution-specific package man-
agement software to perform the actual management.
PackageKit may be promising because it may allow the
addition of policies to package management, but still
lacks the possibility to relocate packages as it is fun-
damentally limited by the underlying package manager.
VServer, on the other hand, only serves to create a
nested version of the problem where the management
of guest installs is delegated to their respective adminis-
trators (which are themselves subordinated to the host’s
administrator) and where the users of each guest are as
normal users on a normal distribution, that is, unprivi-
leged and unable to manage their own packages.

The principal package managers’ limitation is that they
expect their databases to be in a unique preassigned lo-
cation and cannot deal with multiple, possibly conflict-
ing, databases. Therefore, to minimize risks for the sys-
tem, the databases are set to be accessed with root priv-
ileges only. Package managers may offer means to relo-
cate the database, but they are limited to a simple relo-
cation. If a user uses these features to create a database
within his home directory, he could, theoretically, man-
age his own packages. But we saw that doing so forfeits
most of the package manager’s advantages such as auto-
matic updates, conflict and dependency resolution, and
automatic configuration.

Parts of the problems with relocation and automatic
package configuration lie with the packages themselves;
as their install scripts are unable to provide for arbitrary
relocation of the files they contain, and even worse, not
all software is capable of being relocated. This means
that the users must perform the necessary configurations
by hand, if allowed by the software at all.

In the next sections, we outline what we think would
constitute a viable solution addressing all the objectives
(and possible objections) stated until now, in particular
package relocation, conflict and dependency resolution
using multiple databases.

4 Proposed Solution

The minimal changes made to a package manager to
accommodate unprivileged user package management

necessarily depends strongly on the package manager
one wants to modify. The first important modification
is to allow the package manager to use user-specific
databases in addition to the system database. The sec-
ond is how the packages themselves are modified to al-
low fully relocatable installs. The third important mod-
ification concerns the users’ run-time environment that
must be set up correctly so that the users’ packages are
correctly configured. All modifications must be mini-
mal, and, if possible, hidden to the user. Furthermore,
a good solution would also be compatible with the File
Hierarchy Standard (FHS) [6].

To outline our proposed solution, we will use dpkg as an
example, especially that dpkg does not currently allow
local installs at all. We will present how to extend dpkg
to include unprivileged user package management.

4.1 Package Databases

The package manager must be extended to account for
user-managed package databases. The user must be
able to create a database for himself without further
privileges than he already has. The creation of such
a database would be automatic whenever the user in-
vokes apt-get install or dpkg -i without root
privileges. The location of the user’s package database
would be hidden in a dot file, or even a file within a dot
directory. The database would maintain the list of pack-
ages installed by the user as well as their locations. Note
that now, default location takes quite a different mean-
ing. It can mean the usual FHS or a relocated file hierar-
chy relative to the user’s home directory, depending on
the privileges used during installation.

Without any special rights, the user could now (possibly
with the help of some desktop applet) perform automatic
and periodic updates of his installed packages. As pack-
ages are updated by either the user or by the system’s
administrators, dependencies conflicts must be resolved
in an intelligent fashion. We will discuss conflict reso-
lution at length in Section 4.5.

4.2 Managing Local Databases

The default user database location should be sufficient
in most cases, but it could be explicitly relocated. By
default, privileged user would use the system default
database, location, and install paths, which are relative

118 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

to /. For an unprivileged user, the hierarchy would be
relative to his $HOME. In addition to installed packages
and their location, the users’ databases must include a
list of package-provided setup scripts that allow each
package to configure its environment properly.

The package manager must now support at least a
few new commands which we will outline. Let those
new commands be accessed through the added program
dpkg-env. Note that in addition to dpkg-env, one
would modify dpkg itself (and any front-ends, such as
apt) and the necessary modifications will be made clear
in the following paragraphs.

Through dpkg-env, the administrators and users
will be able to perform local database management
and environment setup. The first important set of
commands would allow the addition, management,
and removal of local user (and group) databases.
For example, a user can invoke dpkg-env --new
without privileges to create his own local package
database. If it already exists, the command succeeds.
One could also invoke dpkg-env --new --user
username with sufficient privileges to create a lo-
cal database for user username (it would also be
automatically created for the user invoking non priv-
ileged package management for the first time). In-
voking dpkg-env --new --group groupname
with sufficient privileges would create a group-specific
database located in /var/lib/dpkg/groups/
or, if specified otherwise, in some other loca-
tion. The packages themselves would be installed in
/var/lib/dpkg/groups/$GROUP. The important
nuance with group installs is that all users that are mem-
ber of this group will inherit the group’s packages and
environment at the login. A corresponding --remove
command would destroy a database after launching de-
installation of all related packages, preventing unusable
packages as well as loss of disk space.

4.3 Configuring the environment

The next important command relates to the user’s en-
vironment setup. For example, dpkg-env --setup
would scan the system database, the groups’ databases
and finally the user database to set up correctly the
environment for every installed package. The system
database would provide only default location installa-
tion, so all packages in the system database can be

swiftly dealt with by using the default environment set-
tings (as it is currently done on Debian and related distri-
butions). For groups and users, the procedure is similar.
The database is scanned and the package-specific envi-
ronment setup scripts are called. If a package offers (or
needs) no such script, it inherits default group or user lo-
cation through $PATH and $LD_LIBRARY_PATH. If a
package does offer such a script, it is executed and the
changes made to the environment are propagated to the
session.

The problem with dpkg-env --setup is that it must
be called just after a user logs in and before he begins
his session, so that he can use all the available pack-
ages correctly, including packages such as window man-
agers or interface extensions, for example. Currently,
it can be done in three different ways: using PAM,
using shell-specific profile configuration files, or using
.xsession.

The Pluggable Authentication Module (PAM) is the
standard Linux user authentication mechanism. It in-
cludes modules that are capable of launching actions
when the user logs in, before shell or session scripts
are executed. However, there are currently no sim-
ple way of modifying the environment variables from
PAM. PAM uses the pam_env module that allows the
user to add variables to his environment through the
user’s .pam_environment file. However, the file
only contains a static list of environment variables and
their values, and as such, cannot be used to run the
package-specific scripts needed to configure the envi-
ronment properly. The possibility of calling scripts from
PAM might be an interesting addition to the session ini-
tialization process.

Using shell profile scripts is not universal. The scripts
are recognized and executed by Bourne compatible
shells (sh, bash, ksh, zsh, etc.) when they are invoked.
The .profile is ignored until a shell is launched, and
so is useless if the user logs in via a graphical interface
that does not invoke a shell. This can be solved by using
the system-wide X session configuration file. In both
cases, it merely suffice to append a call to dpkg-env
--setup to the files, and the program is run using the
user’s credentials with no need for special privileges.

4.4 Package-Specific Environment Setup Scripts

To support complete relocalisation, it is likely that the
package will need, in addition to a field that tags it as

2009 Linux Symposium • 119

relocatable or not, a script that prepares its environment
once installed so that it runs properly. If the package
requires nothing more than the default (relocated) loca-
tions, the script is not required, as dpkg-env would
already provide the correct values through $PATH and
other environment variables. The packages might, how-
ever, require a special setup.

While executable programs need little more than mod-
ifying $PATH to be available, it is not so with
all packages. Native libraries can be found with
$LD_LIBRARY_PATH setup so that the proper prece-
dences are respected. Manual packages can already
install manpages in alternate location, provided that
$MANPATH is set or --manpath specified. Desktop
elements, such as icons and menu items can be installed
and found through various environment variables that
hopefully complies with the Base Directory Specifica-
tion, already in use in major distributions [7, 8].

Configuration files are often expected to be found in
the /etc/ directory. Programs using absolute path to
the configuration files will need to be modified to ac-
cess them through environment variables and relative
paths. Dynamically updated data, such as logs, are usu-
ally found in /var/. Just as with configuration file,
should this directory be relocated, the packages must ac-
cess it through the environment set up by dpkg-env.
However, care must be taken to ensure that the relocated
directory grants write access only to users that are enti-
tled to use the package.

Finally, static data such as images, sound effects, etc, are
usually installed in /usr/share and do not require
much caring for. They can be relocated without harm
provided that the access rights are set up properly for
their intended users and that proper environment vari-
ables are set so that applications can find them.

4.5 Conflict Resolution

If both users and administrator install packages inde-
pendently, conflict is bound to happen sooner or later.
By conflict, we mean whenever the situation comes up
where the user’s environment is affected by a change in
the system’s environment or when the user installs con-
flicting packages. Rules must be applied to decide what
will be the course of actions should conflict arise. In the
next few paragraphs, we will present conflictual situa-
tions and how to resolve them, while ensuring the sys-
tem’s integrity as a whole, possibly to the inconvenience

of the user or group. The main conflict resolution rules
would be as follows:

1. If a package x is user-installed and subsequently
system-installed, the package manager should pro-
ceed to uninstall the package from the user’s pack-
ages while leaving his configuration files untouched.
Same would occurs if the same package x is updated
system-side and now meets the user’s version.

2. The package x is installed system-side, but a user has
a different version x ′ that depends on user-installed
package y. If x and y are incompatible, accept or deny
the removal of x ′ and y from the user’s packages and
system-side installation of x and y.

3. If a system-side package x is installed, and that x
is user-installed and is depended upon by a user-
installed package y, remove both x and y from the
user’s packages and install y server-side.

4. If a system-side package x is installed or upgraded
and the users has a package y that depends on a dif-
ferent version of package x, x ′, also user-installed,
and that y is incompatible with x, accept the removal
of x ′ and y from the user’s packages and proceed with
the system-side installation of x, or fail the install or
upgrade of x.

5. If a system-side package x is installed or upgraded
while the user has package x ′ depended upon by
user-side package y, and y is incompatible with x,
accept the removal of y from the user’s packages, or
fail the install or upgrade of x.

6. If a user-side package x is upgraded and an older
user-side package x ′ is installed, proceed with the in-
stall of x.

7. If a user-side package x is upgraded while depended
upon by user-side package y, but y (and newer ver-
sions of y) is incompatible with the new version of x,
confirm the upgrade of x and the removal of y, or fail
the upgrade of x.

8. If a user-side package x is upgraded while depended
upon user-side y, and the new version of x is incom-
patible with the current version of y but a newer ver-
sion of y that is compatible with the new version of x
exist, upgrade both packages after confirmation.

9. If a user tries to install a root package x his request is
denied and the package manager bails out.

In the previous rules, the same applies when ’user’ is
changed for ’group’.

Unsurprisingly, the rules are reminiscent of the rules
already existing in current package managers, except

120 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

that they are extended to include both system-side and
user/group-side packages. As with system-side only
package management, the administrator is proposed
choices and must accept or refuse changes to the pack-
ages based on information provided by the package
management engine. The difference is that now, the ad-
ministrator can decide to forgo upgrade of a package be-
cause it breaks a user-side install, and if he does break
user-side packages, he does so knowingly.

4.6 Policies

Currently, neither dpkg nor apt provide for policies. As
discussed earlier in Section 2.2, it may be wise to pre-
vent users from adding repositories and install certain
types of packages, regardless of their origin. Prevent-
ing users from adding repositories greatly reduces secu-
rity risks, as one cannot ascertain the trustworthiness of
these new repositories. The same applies when the user
tries to install a package from one of his directories.

If adding repositories is allowed, the data must be stored
in a configuration file in the user’s home directory, pre-
venting effects on the system as a whole. Adding a
repository asks for authentication, and this can be done
using a white/black list system, where trusted reposito-
ries are listed. Such lists would be distribution-specific.

Filtering by package type (either categories, sections or
tags), or even by repository, may help the administrators
to ensure efficient usage of facilities. Software likely
to disrupt work environment, such as games, BitTor-
rent software, resource-hungry applications, or software
with unwanted licenses, may be blocked by administra-
tor fiat. The granularity of the policies could be very
coarse (repository level), coarse (package class level, tag
sets), or even fine (a specific package with a specific ver-
sion).

This limited type of policy management can be imple-
mented by adding a separate module to offer the admin-
istrator the possibility of editing policies. Categories
would include policies for all unprivileged users, for
specific unprivileged users, for all groups, for specific
groups. The package manager would simply access the
policies database to determine whether or not a given
operation can proceed. We think that the modifications
to the package manager are minimal since it suffice to
verify if the operation can be performed by checking
against policies.

In Section 2.2, we also noted that the disk space us-
age problem can be mitigated (or even eliminated) by
the standard quota facilities, and so we believe that it is
unnecessary to modify the package manager to track a
user’s disk space usage. It would however need to test
if sufficient space is left to perform the desired opera-
tions.

4.7 Modifications to existing Package Management
Software

Let us pursue with dpkg as an example package man-
ager and present the modifications needed to make un-
privileged user package management possible.

The first step would be to modify the tools used to pro-
duce packages. In the case of debhelper (the main tool
used for the creation of packages for dpkg, which pro-
vides a set of scripts to handle various repetitive tasks),
for example, most of the modifications are contained
within the default behavior of environment setup scripts.
For the vast majority of packages, it will suffice for the
setup script to add the package’s file locations to $PATH
and $LD_LIBRARY_PATH through a helper script API
that provides sh-like functions to ensure correctness
and avoid multiplicities. One would then simply re-
build the package with the added setup script, provided
that the software contained in the package is relocation-
aware.

The dpkg command line needs to be extended to support
multiple database paths. By default, dpkg would be able
to locate the system and the invoking user databases.
How operations are performed would depend on the ac-
cess rights provided on invocation: root access would
affect the system database while unprivileged invocation
would affect the user’s database. Of course, it must be
possible to specify explicitly operation mode regardless
of current privilege level.

The most important internal change to dpkg will be to
include install location to the package name and version
to the database. Multiple versions of the same pack-
age can exist simultaneously in different locations and
dpkg must be able to manage them correctly and inde-
pendently.

Conflict resolution must obey the resolution rules pre-
sented in Section 4.5, with the effect that system-
side packages have higher priority than user or group-
installed packages, as the goal is to keep the system con-
sistent, even if it means breaking a user’s environment.

2009 Linux Symposium • 121

Therefore, to apply system-side conflict resolution rules
as stated, dpkg must access and read all databases. By
doing so, conflicts can be resolved, correct updates of
users environments can be performed, and ensure the
system is left in a stable configuration, even if it means
that some users may have some of their packages up-
graded or removed. Ideally, package removal due to
conflicts must be notified to users. To apply user-side
conflict resolution, only the system and the invoking
user’s database must be read and verified.

Maintainer scripts that allow correct package reloca-
tion can be instructed of the new location via an envi-
ronment variable or a direct argument; in either case
dpkg must be modified to provide the correct value to
the maintainer scripts for install, updates or removals.
The current version of dpkg uses the chroot() sys-
tem call before calling a maintainer script to provide it
with the correct relative location and while this feature
is useful by itself, it would be activated only through the
explicit use of the --root command line option.

Apt would need to behave correctly when called by a
non privileged user. This means it would access the call-
ing user’s database or bail out elegantly if this is not pos-
sible. This is needed to ensure that invoking apt-get
install functions correctly, installing packages in
the user’s environment. Apt must locate automatically
the relevant databases, searching into user-configured
or standard locations. User-configured locations could
reside in $HOME/.apt.conf, which would be read
each time apt is invoked. A personal source.list
must also be locally stored and checked by apt to allow
a user to maintain his personal repository list (while sub-
ject to system’s policies). This file should use the same
syntax as the global source.list file.

To test for a relocatable package, it suffice to add a
boolean field that indicates whether or not the pack-
age is relocatable, allowing apt to bail out gracefully
if a non-relocatable package is installed with insuffi-
cient privileges. Since in Debian-like repositories meta-
information about packages can be copied in the repos-
itory index, it would be easy to make apt warn the user
about the non-relocatable nature of a package even be-
fore downloading. This functionality must therefore be
included in GUI-based front-ends like Synaptic to help
users manage their packages.

Policies for repositories and packages available to the
user also have to be included at this level. There already

is a configuration file, /etc/apt/preferences,
that enables the system administrator to pin particu-
lar packages to inhibit changes. This configuration
file could be extended with similar syntax to include
information about the prioritization and exclusion of
repositories. For example, fields such as Rep and
Rep-Priority.

The package manager (and its front-ends) must also be
able to prevent the installation of a package with un-
trusted origins. A user should not be able to install a
package, should the administrators decide so, from a
non authenticated location such as one of his directory.
In most distributions, the repositories already contains
the quasi-totality of safe packages, so the need to use
untrusted packages is quite lowered—the only possible
exception would be development tarballs corresponding
to packages too recent to have made their way to the
trusted repository.

5 Conclusion

In this paper, we have presented the problem of non
privileged user package management. In Section 2 we
presented the proposed use cases and possible objec-
tions. The use case we stressed most is when the user
shares workstations in a work or school environment
and he does not have sufficient privileges to install pack-
ages he needs and therefore has to rely entirely on the
system’s administrators, which may lead to unaccept-
able delays or even plain refusal. We presented, in Sec-
tion 3, the existing solutions to the problems and why
they were not quite satisfactory. In particular, we dis-
cussed the current package manager and how they fail
at providing all the tools necessary to make non privi-
leged user package managing possible.

Finally, in Section 4 we outlined the various modifica-
tion to be brought to package managers to make non
privileged user package management possible, in par-
ticular conflict resolution rules and how dpkg, taken as
an example of package manager, should be modified to
accommodate our proposal. We discussed policies that
would be needed to ensure the system’s stability as a
whole. We also showed that setting up the user environ-
ments at login would be rather simple despite the lack
of standard initialisation procedure across Linux distri-
bution. Finally, we think that we made clear that not
only non privileged user package management would be
beneficent to users, it is also quite possible to implement

122 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

using relatively little effort compared to what one might
have thought initially. Having shown the feasibility of
non privileged user package management, the next log-
ical step is to proceed to implementation, which is the
object of future work.

References

[1] The PackageKit Package Management Front-End,
http://www.packagekit.org

[2] The PackageKit Source Repository, http:
//www.packagekit.org/pk-faq.html

[3] Edward C. Bailey, Taking the Red Hat Package
Manager to the Limit, Red Hat Inc, 2000. Chapter
15, http://rpm.org/max-rpm/
ch-rpm-reloc.html

[4] Kenneth Arnold, Relocatable Package
Development proposal, Dpkg’s Wiki post,
http://www.dpkg.org/dpkg/
RelocatablePackages

[5] Daniel Burrows, Re: Non-privileged user
package management, Gmane forum message,
http://permalink.gmane.org/gmane.
linux.debian.apt.devel/15021

[6] Rusty Russell, Daniel Quinlan, Christopher Yeoh
(eds), The File Hierarchy Standard, V2.3,
http://www.pathname.com/fhs/pub/
fhs-2.3.html

[7] Waldo Bastian, Francois Gouget, Alex Graveley,
George Lebl, Havoc Pennington, Heinrich
Wendel, Desktop Menu Specification, V1.0,
http://standards.freedesktop.org/
menu-spec/menu-spec-1.0.html

[8] Waldo Bastian, Base Directory Specification,
V0.6, http://standards.freedesktop.
org/basedir-spec/basedir-spec-0.
6.html

GeoDNS—Geographically-aware, protocol-agnostic load balancing at
the DNS level

John Hawley
Linux Foundation / Kernel.org
warthog9@eaglescrag.net

Abstract

The Open Source community has grown from a series
of small projects hosted from anywhere that was con-
venient, to a globally distributed set of mirrors provid-
ing content to every region of the planet. While there
has been an outpouring of support in providing mirrors
to every possible facet of the Open Source community
by independent entities, a problem has arisen in how to
efficiently load-balance across this global infrastructure,
not only for the benefit of the mirrors, but for the users as
well. There are a multitude of solutions currently avail-
able to try and cope with the issues of load-balancing
including physical load-balancers like squid, protocol-
specific redirection like mod_geoip in Apache, and full-
scale commercial content distribution like Akamai. For
most situations, the commercial solutions are far out-
side of reach and may necessitate the removal of exist-
ing infrastructure. Things like squid require, for prac-
ticality, all of the machines to be in a single location
or for a single location to provide the sum total of the
bandwidth available. Lastly, the protocol-specific solu-
tions like mod_geoip work well for their own protocol,
but leave other services like rsync, ftp, git, and svn to
fend for themselves—assuming that the protocol even
supports redirection. Most do not.

GeoDNS is the idea of taking an incoming DNS request,
doing the geographic look-up at the request time, and
returning different results based on the incoming IP ad-
dress. This particular approach, taken by several DNS
servers including bind-geodns, powerdns, and tinydns
(with patches), allows geographically diverse mirror-
ing infrastructures like Kernel.org, Wikipedia, and
many other sites to direct users seamlessly to an ap-
propriate server. This helps distribute the system loads
across the entirety of their mirroring infrastructure. This
protocol-agnostic approach is more universal and sim-
pler for end users to handle by making seemingly hard
choices transparent to them.

1 Internet—20th Century tech solving 21st
Century problems

The Internet has existed for four decades. It has evolved,
grown, changed, and adapted from its humble begin-
nings as Arpanet to what it looks like today, with
TCP/IP, IPv4, and IPv6. Though it has changed rad-
ically from where it started, the Internet’s fundamen-
tal building blocks, TCP/IP and DNS, have changed
very little and they continue to serve the Internet well.
Though while they are the bedrock of the Internet, and
are serving the needs of billions, small changes can be
made to them to greatly extend their usefulness and con-
tinue to serve the Internet for several more decades.

1.1 International Growth

The Internet started as a small research project out of
the Advanced Research Projects Agency (ARPA) of
the United States Department of Defense. It initially
spanned two nodes on the California Seaboard, and has
grown to include on the order of 1.596 billion users1

worldwide. The United States boasted, for a number
of years after the inception of the Internet, the largest
amount of capacity to host sites and projects connected
to the Internet. This meant that a great deal of the con-
tent of the Internet was accessed by going to a single
point, likely in the US, where the servers would be the
best connected and provide the most good to all.

However, this single-point-of-connectivity model was
unsustainable with the amount of growth outside of the
United States. This growth far outstripped the capacity
of intercontinental links, including satellite relays and
undersea cables, as well as having significant cost and
performance considerations. A growing pressure exter-
nally from a growing Internet population drove the need

1http://www.internetworldstats.com/stats.
htm

• 123 •

124 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

for content to move from a centralized single provider
to a more distributed localized content distribution, with
mirrors of data forming all over the world and content
distribution companies such as Akamai2 stepping up to
help fill this demand.

1.2 Mirrors, Mirrors everywhere, but not a drop to
drink

As with many solutions to a problem, you may solve
what is immediately needed, but it in turn creates a new
problem that needs to be solved. This new-found infras-
tructure for mirroring and content distribution provided
one such situation. Originally the Internet was intended
to provide a good means of dealing with content as it
existed in its centralized locations. When you went in
search of content based on a URL, it was expected that
the look-up would only involve a single unique system,
whether this was a individual server or a group of them
within close proximity to each other, providing the con-
tent. However with both the explosion of the Internet
and the subsequent need for mirrors to become more lo-
calized to the users seeking the data, the need for chang-
ing this philosophy became apparent.

A simple approach initially was, and predominantly still
is, employed by providing a user with a listing of the
mirrors available, usually grouped by the server’s coun-
try of origin. While this works, it makes the user inter-
faces difficult and requires that the user make an edu-
cated guess as to which mirror is likely closest to them
and will provide the fastest service. These decisions can
be quite difficult; it has been found for many Canadian
users that it is faster to go to a mirror based in the United
States as opposed to a Canadian one due to the existing
backbone and routing infrastructure present in much of
Canada.

Additionally, load-balancers are available to help act as
a director to content. Typically, however, load-balancers
act as a man in the middle (so to speak), providing a sin-
gle point of entry and exit for a cluster of machines. This
cluster typically resides in a single geographic location,
and the load-balancer itself is a limiting factor in how
much content can be distributed from these machines, as
the load-balancer acts as a bottleneck to the cluster. This
works particularly well for single sites, but it does not
work when the machines that need to be load-balanced

2http://www.akami.com

are geographically disjoint, though this provides high-
availability with its load-balancing.

To help both high-availability and physically disjoint
systems, things like round-robining in DNS can be used.
This helps—in particular this alleviates a need for a user
to make an explicit choice in server; however, it has a
downside in that it is highly dependent on the imple-
mentation of the DNS look-up engine at the client. This
dependency, unfortunately, is known to have some seri-
ous flaws in certain implementations—in extreme cases,
even going so far as to sort the list of returned IP ad-
dresses in numeric order and to always use the lowest
numerical address, instead of randomly cycling the list.
Despite these issues and dependencies, there are a num-
ber of implementations that do the correct procedure and
this particular approach does indeed help with load dis-
tribution.

With the issues inherent in round-robin DNS and the
lack of geographic diversity in normal load-balancers,
an additional approach is protocol-specific extensions.
Protocols like HTTP have the ability to respond to
clients with a redirect, pointing the client to a new server
to acquire the content it is seeking. While this works,
each implementation is inherently tied to a specific pro-
tocol and requires both client- and server-side support.
If the option of redirection is not already available in a
protocol, adding it would be difficult and would leave
many clients unable to take advantage of the new fea-
ture. So while HTTP supports this option of redirec-
tion, many other protocols do not. This includes ftp and
rsync, which are both heavily used in content distribu-
tion.

None of these solutions solves the problem of geograph-
ically diverse load-distribution universally; at best, these
solve the problem for a particular niche. A global dis-
tribution system made up of independent entities needs
to be transparent to the end users, as it’s difficult for
them to make good decisions as they lack information
needed to make them. It needs to be versatile, able to
expand and contract, resilient to changes, and most of
all be protocol-agnostic so that existing and any future
protocols can be easily or trivially supported.

2 GeoDNS—Knight in Dingy Armor

GeoDNS is an attempt to solve the shortcomings in-
herent in the predominant and existing load-balancing

2009 Linux Symposium • 125

schemes. It targets this by making a small, server-side-
only change to a DNS server to allow it to respond to
requests in a slightly different way, depending on the
origin of the DNS request. This particular approach
solves many of the issues inherent in round-robin DNS,
centralized load-balancers, and protocol-specific redi-
rection; however, it comes with its own set of quirks and
issues that are equally inherent in its implementation.

2.1 Basic ideas

GeoDNS itself is a rather innocuous change to the way
DNS handles requests, but gives the basic ability to
do wide-scale, simple load-balancing without the need
for changes to clients or custom protocols. DNS is
a fundamental building block of the Internet. Every
client that is attached to this global network already has
a the ability to make a DNS query, converting a tex-
tual string like example.com into a numeric address,
208.77.188.166. GeoDNS, like DNS views, differs
slightly from a normal DNS query in that the response
is altered based on additional criteria.

In the case of DNS views, it checks the incoming IP
address, looking for matches in a range, and returns a
different address based on each defined range. This is
typically done to deal with the proliferation of Network
Address Translation (NAT), where the IP address exter-
nally may be a routable IP, but is inaccessible to internal
NATed machines. The DNS server returns the routable
IP externally, and a non-routable IP internally based on
the view criteria.

Strictly speaking, returning different data based to any
query, according to RFC, would be the result of an over-
lapping tree and thus a “non-fatal error.” However, since
a client is unlikely to ever get into a situation where it
would get multiple incompatible responses to an indi-
vidual query, this doesn’t actually cause any unexpected
behavior to the client.

It does, however, break the idea of transparency across
the Internet, where everything on the Internet is globally
viewable and a DNS query will return the same result
set no matter where you are. But this is no more broken
than the idea of NAT, which currently has a huge prolif-
eration and is arguably the reason that the IPv4 address
space has not yet been completely exhausted. However,
while this lack of transparency and consistency is not
ideal from a DNS perspective, it is an effective means of

solving a distribution problem and should be used on an
as-needed basis and not be considered a standard prac-
tice for all queries.

2.2 GeoDNS: DNS View with a twist

GeoDNS comes into play to solve the same fundamental
problem that a DNS view was introduced for: to return
a more local resource for usage. Though where a DNS
view is more likely to be solving the problem of routable
vs. non-routable IP addresses, GeoDNS is more targeted
at giving a user a more appropriate resource based on
physical location.

GeoDNS functions very similar to a DNS view, whether
it’s implemented as one or not. The requesting client’s
IP is checked against a database, which determines a
general geographic location for the requesting IP. Using
this geographic identifier, a response is generated that is
specific for that location, and sent back to the requesting
client.

2.3 So it seems to work, but who uses it?

GeoDNS has a limited set of interested parties, which is
one of the reasons that GeoDNS has not become stan-
dard in most DNS servers. Most users have their ma-
chines in a single location, on a single subnet, and not
scattered across the globe. There are, however, installa-
tions that are making use of GeoDNS successfully.

For instance, this paper is focused on kernel.org
and its usage of GeoDNS and that it works for the
specific setup that kernel.org has. Kernel.org
makes use of a modified set of patches that origi-
nate from caraytech. This patch set has been up-
dated a couple of times, with the last being in 2008
by kernel.org.3 However, despite kernel.org’s
popularity within the Linux community, it is a relatively
small distribution system, with only 4 locations in three
countries serving the worldwide populace. Larger in-
stallations of GeoDNS servers that affect far more users
exist. In particular, the largest known user of GeoDNS
is Wikipedia.

Wikipedia and Wikimedia, for instance, moved to using
a combination of Bind and PowerDNS4 for their DNS

3It should be noted that this patch series makes use of MaxMind’s
GeoCountry look-up database.

4PowerDNS first introduced its geobackend in 2004.

126 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

servers in 2005.5 Bind handles the primary zones them-
selves, while PowerDNS with the geobackend powers
the distribution of users to a local Wikipedia server. A
more complete description and an implementation that
mirrors the Wikimedia setup can be found on the Blitzed
IRC (Internet Relay Chat) network.6

A similar system using pgeodns (perl geo DNS server)
serves cpan.org and perl.org, and has done so
since 2001. CPAN is the primary locus of the Perl
module development community. The pgeodns server
is specifically attached to search.cpan.org to give
to give a user a transparent local mirror for searching the
CPAN archive, thus distributing the search load across
multiple machines worldwide.

While kernel.org, Wikimedia, and CPAN are mak-
ing use of the GeoDNS servers to act as load balancers,
there are companies such as Server4Sale7 that use a
modified tinydns server, and are using it as a protec-
tion mechanism for their network and clients. Specif-
ically, Server4Sale has made it available under the name
Veridns, with the specific intention of using it to help
deal with the problems of Denial Of Service (DOS) and
Distributed Denial of Service (DDOS) attacks.

There are a number of other, primarily open source com-
munities using GeoDNS-based services, from Apache8,
to Mozilla9,10 to solve the same fundamental mirroring
and load-balancing problem that many worldwide distri-
bution systems are facing: how to get the data that users
are seeking to them using the fastest possible system,
and to load-balance these users across the world.

2.4 Where’s the catch?

The art of attaching a geographic location to an IP does
not come without some downsides. The databases are
guaranteed to be inaccurate, require constant updates

5http://en.wikipedia.org/wiki/PowerDNS#
PowerDNS_and_Wikimedia

6http://blitzed.org/DNS_balancing
7http://pub.mud.ro/wiki/Geoipdns
8http://mail-archives.apache.org/mod_

mbox/www-infrastructure-dev/200904.mbox/
<4239a4320904011536x5726d0eraae7065967ac1b77@
mail.gmail.com>

9http://blog.mozilla.org/mrz/2008/05/28/
geo-dns-getting-the-bits-closer-to-you/

10http://blog.mozilla.org/mrz/2008/06/11/
geodns-one-week-later/

due to a shifting reality, and currently they are anything
but future-proof.

Each database—whether it’s being maintained by a cor-
porate entity like MaxMind, which has a vested inter-
est in its accuracy, or being kept up by a small open
source project—faces the same challenge: the Internet
is constantly shifting, and no one is required to publish
geographically accurate information. So the collective
maintainers are forced to go and mine public sources
like Regional Internet Registries like RIPE, ARIN, and
APNIC for information, but at best that gets them a
broad brush-stroke of information. It does not, how-
ever, get the more subtle differences or weirdness that
are sometimes used on the Internet, such as a US-based
company using a subset of its IP addresses at a Euro-
pean facility. To become more accurate, further min-
ing based on more data is needed, but even the best
available databases are only claiming 99.8% accuracy,11

which means that out of a potential 4.2 billion addresses,
roughly 8.5 million addresses are incorrect.

These databases, while already trying to play catch-up
with the ever shifting sands of the Internet, are facing
another daunting and more complicated task ahead of
them: creating and maintaining an additional database
mapping IPv6 addresses to geographic locations. Cur-
rently all of the available databases only support IPv4,
the dominant address scheme for the Internet since its
first proposal in RFC 791 in September of 1981. IPv4
is running out of usable address space. (Though it has
been predicted repeatedly that it should be exhausted al-
ready, usage of NATed networks has kept IPv4 domi-
nant.) It will eventually run out of address space, and the
Internet will be forced to make the long, arduous, and
painful move over to IPv6—and in the process, go from
a possible 4.2 billion addresses to 340 undecillion ad-
dresses. Currently most users of IPv6 are going through
various tunnels and gateways, which will mask an ad-
dress’s actual location. Couple that with a low penetra-
tion of IPv6, and there is no current incentive to solve
this particular problem by the open source community,
and especially not by a for-profit entity.

So while things like GeoIP are working in their current
form, they are not a perfect solution: the databases are
inherently inaccurate and they currently lack support for

11MaxMind’s commercially available GeoIP Country Database
claims an accuracy of 99.8% – http://www.maxmind.com/
app/country

2009 Linux Symposium • 127

the next generation of the Internet. Despite these prob-
lems, GeoIP is quite useful. Even a database that is 80%
accurate will work for a majority of the world’s popula-
tion as they would expect.

3 What to expect from GeoDNS

GeoDNS on the whole is an incredibly powerful and
useful tool for administrators and world wide distribu-
tors. It can transparently deal with simple distribution
across the entire globe and provide a simple interface
for users to work with and use.

3.1 Production Zone Implementation

<Root Domain>

mirrors IN CNAME mirrors.geo

mirrors.US IN A 192.168.0.1
mirrors.EU IN A 192.168.1.0
mirrors.AS IN A 192.168.1.1
mirrors.ALL IN A 192.168.0.1
IN A 192.168.1.0
IN A 192.168.1.1

mirrors.geo
Views:

<USA mirrors>

mirrors.geo IN CNAME mirrors.US

<European mirrors>

mirrors.geo IN CNAME mirrors.EU

<Asian mirrors>

mirrors.geo IN CNAME mirrors.AS

<Default - All - Round Robin>

mirrors.geo IN CNAME mirrors.ALL

Remote Client / User DNS Server

Figure 1: Suggested Flow request for a GeoDNS DNS
request

GeoDNS is nothing more then a DNS answering system,
and as such has a huge amount of flexibility and infras-
tructure that can take advantage of it. However, there
are some implementation details that should be taken
into account.

Since a GeoDNS-based server does not respond in the
same manner as a normal DNS server, special care
should be taken in choosing slaves. Slave DNS servers
for your zone are going to need to be running the same
GeoDNS server that your master is running, assum-
ing that your GeoDNS server implementation supports
replication at all. The best option would be to run both
the master and the slaves. While this is a cumbersome
proposition to some, it does solve the problem of com-
patibility and simplifies the fact that that zone is unex-
pected for most DNS servers.

In the case of Bind + GeoIP, it has some simplifica-
tions that make it appealing. For instance it leverages
the existing view infrastructure, giving it the full ability
to replicate each view independently12 and all the other
advantages of views. PowerDNS with the geobackend
unfortunately does not have the ability to act as the mas-
ter or slave for DNS purposes,13 however, the basic im-
plementation of the zone structures are similar.

A basic and scalable configuration is two-fold. There
will be two different servers, one authoritative for the
actual IP addresses that you are using, and one that
is authoritative for your GeoIP zone. While Bind can
handle these both in a single instance, common pieces
that would be available in all zones (like the non-geoip
hosts) would need to be copied multiple times and
maintained independently. This copy-and-paste struc-
ture can lead to errors and make it difficult to main-
tain. For convention, example.com will be the pri-
mary static zone with all the IP addresses in it, while
geo.example.com will be the zone handling all of
the geographic look-ups.

The request for a domain that will be served via
GeoDNS should come in to a common disambigua-
tion point, something like mirrors.example.com,
which should be present in the primary static zone.
This would be a CNAME that that would point to
mirrors.geo.example.com, which is in the ge-
ographically aware zone. When the DNS client requests
the next hop for mirrors.geo.example.com,
GeoIP look-up would occur on the server. It would
match the incoming request’s IP address and select the
appropriate zone’s view to return. The response, as all

12How Can I Make A Server A Slave For Both An Internal And
An External View At The Same Time? When I Tried, Both Views
On The Slave Were Transferred From The Same View On The Mas-
ter. http://www.isc.org/node/282

13http://doc.powerdns.com/geo.html

128 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

(a) mirrors1 (b) mirrors2

(c) mirrors3 (d) mirrors4

Figure 2: Load graphs of mirrors.kernel.org

entries in the geo.example.com zone, should likely
be CNAMEs that point back to the primary zone of
example.com. This final CNAME look-up would
point to an IP address, or a round robin of addresses
to further add distribution. Figure 1 illustrates the basic
request and response structure that this would entail.

Breaking the zones up into GeoIP vs. non-GeoIP zones
has several advantages. It allows you to trivially mi-
grate between GeoDNS solutions, as the zone handling
those look-ups is independent. Master and slave rela-
tionships are not limited to other GeoDNS servers in
the non-GeoIP address space, meaning you can use any
combination of DNS servers. Breaking this relationship
up also means that requests are only being performed
for only those items that require it, like a mirroring in-
frastructure as opposed to the mail (MX) records for a
domain.

3.2 GeoDNS: Case study—kernel.org

To give some basis for a real-world example,
kernel.org is a worldwide distribution system with
equipment in three countries and five separate data cen-
ters. Its content includes the primary download location
for the Linux kernel source code, and it acts as a tier-
1 mirror for many of the distributions based on Linux.
It boasts a user community that spans the globe, with
users accessing its content on every continent, including
Antarctica. With such a large user base, and a historical

issue of only having servers based in the United States,
kernel.org was looking to simplify the problem of
mirror distribution without causing undue confusion to
its user base.

A simple solution was first implemented using a
country- or region-specific domain. New equipment
was brought online in Europe, the Netherlands, and
Sweden respectively, so mirrors.eu.kernel.org
and www.eu.kernel.org were set up. This solved
the basic problem of getting user-recognizable con-
nectivity to the European mirrors. However, because
mirrors.kernel.org and www.kernel.org
have been more or less ingrained in the mindsets of
users, the machines did not see quite the pick-up in us-
age we had hoped for, and it was clear that users in Eu-
rope were still coming back to the US mirrors to get
their content.

Several different solutions were considered to
more transparently direct users to a closer mirror.
Kernel.org had a simple set of requirements:

1. The need to deal with a geographically diverse set
of machines. This generally rules out things like
normal load balancers.

2. Be protocol agnostic, as kernel.org serves data
over ftp, HTTP, rsync, and git. It could not be
subject to protocol-specific load balancing, so this
rules out things like mod_geoip for Apache.

2009 Linux Symposium • 129

3. Be transparent to end users. Many of
kernel.org’s users are automated scripts
and programs, so having a disambiguation page to
direct users to the closest mirror is not a solution
that would work.

A DNS server based on the BGP (Border Gateway Pro-
tocol) as its determination mechanism was considered.
BGP is, however, notoriously difficult to gain access to
with the need to acquire an autonomous system (AS) ID
from ICANN. Coupled with the difficulty in getting an
AS, many larger backbone providers are uninterested in
peering and sharing their routing table information with
smaller entities sometimes having requirements to con-
trol upwards of seven hundred unique and routable IP
addresses. Once peered, the problem becomes one of
completeness of the routing table provided, with many
instances of partial views of the entire routing table
which would be difficult to make good decisions based
on. This particular approach was abandoned for these
reasons.

A GeoIP approach was then investigated, with specific
emphasis on GeoIP coupled to a DNS server. It was
decided to work with the Bind-based patches and to
go with an organization similar to what is described
in Section 3.1. The entire setup was flipped over on
September 19th, 2008. Figure 2 shows the loads of the
kernel.org machines before and after the switch to
using GeoDNS. Prior to the middle of September, the
two US machines, mirrors1 and mirrors2, had a
high and periodic load with long and consistently high
loads. This is particularly evident in the summer months
of 2008, with loads consistently above 50 and easily
peaking above 200 in instances. It is also clear that dur-
ing this same timeframe, the loads on mirrors3 and
mirrors4, the European machines, was virtually non-
existent. The loads were barely even high enough to
register on the graphs. After September 19th, the graphs
take on a much different outlook, and in fact the change
was noticeable within hours of the DNS change.

Saying that the GeoDNS server’s activation was a suc-
cess would be an understatement. After the September
19th switchover, the graphs for the two US-based ma-
chines drop dramatically. Over the course of 7 months,
they’ve maintained a relatively consistent load well be-
low 100, with occasional spikes above 100. The loads
on the European based machines have risen as a result
of the higher traffic. Though the change is a noticeable,

the machines are still coping with the new load without
issue. So, in this specific circumstance, GeoDNS has
been an unequivocal success and has helped to extend
and better the services that kernel.org offers.

130 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

Porting to Linux the Right Way
Migrating data between kernel and user space

Neil Horman
Red Hat

nhorman@redhat.com

Abstract

Linux has grown to be a major development platform
over the last decade, often becoming the primary target
for many new applications and appliances. Of course,
businesses always wanting to stay current; the rate at
which software has been ported to Linux has also gone
on the rise. Often this is a trivial matter, especially in
environments in which the development model is sim-
ilar (AIX to Linux, Solaris to Linux, even Windows to
Linux). However, there are environments (particularly
in the embedded space) in which porting often becomes
difficult. A stronger coupling of application and driver,
coupled with a “just get it working fast” mentality, in-
variably leads to substandard porting efforts which re-
sult in products with degraded performance that leave
developers and consumers alike with a bad taste in their
mouths. This paper seeks to ease some of that porting
effort by focusing on what has been one of the most of-
ten mis-ported areas of code: the user space / kernel
space boundary, specifically the movement of data be-
tween these domains. This paper will discuss in gen-
eral terms: the common monolithic application model
most often associated with embedded systems develop-
ment; its refactoring when porting to Linux; the model-
ing and description of data that must be passed between
the refactored components when porting to Linux; and
the selection of an appropriate mechanism for moving
that data back and forth between user and kernel space.
In so doing, the reader will be exposed to several mech-
anisms which can be leveraged to achieve a superiorly
ported software product that provides both a better cus-
tomer experience and a greater confidence in Linux as a
future development platform.

1 Introduction

Linux has seen an almost meteoric rise in popularity
over the past several years. Rather by definition, this

increase in popularity has drawn developers to consider
Linux as a target platform in many market segments,
from servers to appliances, to small embedded solutions.
Of course, along with the interest in new development
on Linux comes the desire to bring older software to
Linux, in an effort to leverage already existing products
in potential new market spaces at reduced costs. This
paper focuses on some of the pitfalls that befall devel-
opers seeking to port applications to Linux from alterna-
tive operating systems. In particular, it seeks to address
the difficulties faced by embedded developers seeking to
formalize the user space / kernel space split in applica-
tions which formerly were more tightly coupled in that
respect. It seeks to do this by providing an overview
of how the user / kernel space boundary is defined, and
how to move data safely and efficiently between the two
domains.

2 Defining the user / kernel space boundary

Prior to discussing the mintuae of moving data back and
forth across the user / kernel space boundary, it is useful
to better understand what the user / kernel space bound-
ary is. Nominally, when discussing this particular sepa-
ration, many people encounter this high level diagram:

User Space

Kernel Space

Figure 1: The most seen & worst overview of user /
kernel separation

This is the sort of visual aid that is understood best
by people who already understand how this separation

• 131 •

132 • Porting to Linux the Right Way

works, and consequently have no need for a visual aid.
For everyone else, however, this is a rather lackluster
description of how the two execution domains are sep-
arated. The separation of user and kernel space can be
best described as having the following characteristics:

• A separation of accessible address spaces, except
where granted by appropriate system calls.

• A mechanism which allows access to the func-
tionality of kernel space code, preferably without
granting the user space context direct access to the
memory holding the code for that functionality.

Different architectures provide various mechanisms for
enforcing the above points to various degrees, but the
end result remains the same: the user / kernel space
boundary enforces the isolation of an application from
operating system services, forcing applications to make
use of those services only in the ways defined by the
operating system. This provides both stability and con-
sistency of use.

3 Mapping strongly coupled applications to
user / kernel space

Often, especially in the embedded space, the operating
system is treated as a convenience library, rather than a
environment to target. The application is paramount, en-
joying complete or near complete control over the sys-
tem’s resources. In such designs, the software architec-
ture can often be characterized as such:

return

call

return

call

return

call

return

call

Application Code

Hardware Access Code

Figure 2: A common design approach to a tightly cou-
pled embedded application

Strongly coupled applications, to whatever degree
they manage to separate true application code from
hardware-specific access code, interface the two with an

API that can be difficult to separate. The API is often
characterized by some of the following aspects:

• Customized for use by an application;

• Assumes shared memory space with application;

• Assumes common system behavioral characteris-
tics on both sides of the API.

While some designs attempt to adhere to some level of
compliance to a standard API, many do not, and the re-
sulting temptation to speed the design cycle by taking
various shortcuts invariably leads to porting difficulties
when an operating system more strictly enforces the use
of a pre-defined API. This leads to the inevitable ques-
tion: How does one convert a system with application
code and hardware access code that is tightly coupled
into a system that is capable of operating in separate
memory contexts using an enforced set of access meth-
ods? The answer is less difficult than many think. Gen-
erally speaking, one can accomplish this goal by:

1. Selecting/creating an API to use as a user / kernel
shuttle;

2. Modeling the data that needs to cross that bound-
ary;

3. Selecting the appropriate kernel APIs to implement
that transport.

Note this will not provide the most efficient interface
possible, but it will provide the most stable interface
possible for the system being ported, which is really the
goal here. With the time saved on avoidance of future
bugs, one can focus on efficiency improvements later
on.

3.1 Selecting/creating an API to use as a user / ker-
nel shuttle

The first step in adapting an application from an strongly
coupled environment is to select a good location within
the system to segment it. There are many factors which
can affect this decision, and will vary largely depen-
dent on the system in question. Systems which honor
their defined APIs will be more conducive to separation

2009 Linux Symposium • 133

than those which do not. “Thinner” APIs will make for
quicker work than those with larger sets of functions.
There are many facets to selecting an appropriate API
for splitting an application during a porting effort, but
the items below should be focused on first and foremost:

1. Cleanliness. Above all else, a candidate API
should provide a boundary through which data can
pass only in narrowly defined channels, and at ap-
proved times. APIs which provide or use informa-
tion that exists external to the API implementation
should not be considered unless such uses may be
corrected. For instance, the use of a global variable
or resource within an API’s implementation is bad,
simply because external access to such a variable
will no longer be possible from outside the API af-
ter the port.

2. Complexity. The simpler an API is, the better, as
migrating its implementation to one which exists
across memory domains will become much easier.
APIs which embody a significant amount of state-
ful information are difficult to manage, as that state
may potentially need to be tracked, replicated, and
kept in sync in both kernel and user space. Con-
versely, APIs which are simple, pass less data, and
have fewer return codes will make for an easier
split.

3. Functional Requirements. Be careful to closely
examine an API’s implementation when select-
ing it for use as the point where an application
is separated from its hardware-dependent compo-
nents. Sections within an API (and its dependen-
cies) may require behaviors or resources that may
not be available in either kernel or user space with-
out additional work. Selecting an API that leaves
a bit of code in the application that blocks while
waiting for an interrupt to fire will require ad-
ditional retrofitting to function properly after the
port. Likewise, consider an API implementation
which creates a thread that spins, polling for data.
Moving it into kernel space will result in horrible
inefficiencies resulting from differing scheduling
behavior down in the kernel under various condi-
tions.

4. Size. The more functions an API implements, the
more difficult it will be to port. Quite simply, there
is a quanta of work to be done for each function

call implemented in an API; therefore there is a
corresponding increase in the porting effort when
a larger API is selected for this split. Hence, while
not always possible, “thinner” APIs typically result
in easier porting efforts.

5. Volume. Keep in mind how heavily a given API
is used by an application, and under what circum-
stances. APIs containing very few and simple func-
tion calls are tempting to select as a candidates for
a split point, but if the application must call func-
tions in this API thousands of times to complete
a given task, there will be a performance impact.
Bear in mind that transitions between user and ker-
nel space have a cost in terms of pipeline flushes,
TLB and L2 cache flushes, etc. (which varies from
architecture to architecture). The number of times
you need to make that transition will have a signif-
icant impact on your system’s performance.

While clearly one will have to make compromises when
selecting a point at which to separate a software sys-
tem, the above are the most important aspects to keep in
mind. Neglecting any one of these aspects, while per-
haps further minimizing your time to complete a port,
will result in a system with stability and performance
which will be at best an approximation of the original
system on the original OS.

3.2 Modeling data transfers across the user / kernel
space boundary

Having selected a point at which to segment the soft-
ware system into a user space component and kernel
space component, a developer must now re-implement
the internals of that API such that data is transparently
sent from user space to kernel space and back at appro-
priate times, and with previously provided guarantees
on the data’s integrity, format, etc. In most use cases,
understanding the data transfers profile is fairly straight-
forward, but modeling data transfers in some cases can
be non-obvious. All data transfers can be described in
three aspects: Timing, Quantization, and Access.

3.2.1 Timing

The timing of a data transfer here refers to when data
transferred across an API is acted upon by either a user
of the data or the implementation of the API.

134 • Porting to Linux the Right Way

1. Asynchronous application to driver. These are
message-based transactions. Data is accumulated
into a discrete bundle of arbitrary size and passed
to the driver. The return code to the submission
of this transaction typically provides status of the
submission effort, but not the result of the action
which the data submitted embodies. Any action
which the driver may take on the submitted data
is deferred to an arbitrary later time, and results of
those operations may or may not reported back to
the application via a separate data transfer.

2. Asynchronous driver to application. These are
the inverse of the the previous transfers. They send
similarly formatted messages, only in the reverse
direction. Messages generated by the driver code
are queued for reception by the application through
various APIs. It is interesting to note that the vari-
ous APIs available for these transactions have var-
ious restrictions which do not exist in their coun-
terparts. Those limitations will be noted in the
next section. Such transactions may be driven by
the previous transaction type, or may be gener-
ated independently by any number of conditions or
events.

3. Synchronous. These are transfers which are, as
the name implies, synchronous. Data passed via
this profile is handed to the driver, operated on, and
released at the conclusion of the API call. Return
codes typically embody the result of whatever op-
erations the driver performed on the passed data.

3.2.2 Quantization

The quantization of a data transfer refers to how the
data is viewed by the API user or the API implementa-
tion. Some APIs handle data transfers as distinct units,
atomic in their transfers, while others treat data as an ar-
bitrarily sized sequence of bytes, re-segmenting the data
in whatever manner is convenient.

1. Stream data. Stream data is unbounded. While it
may contain a begin, end or other control marker,
it does not normally distinguish data record bound-
aries. A transfer of data may contain an arbitrary
number of bytes; users of the API or the implemen-
tation are not guaranteed to receive any particular

amount of data during any typical transfer. Nom-
inally, however, stream-type data is guaranteed to
maintain its order (all bytes transferred in a stream
are handled in the same order they are sent).

2. Packet data. Packet data is bounded and quan-
tized. While the size may not remain constant from
one API call to the next, packet-style data is always
treated as an atomic unit. Packet data may or may
not guarantee ordering of data.

3.2.3 Access

Access describes how an API makes data transfers avail-
able to either its implementation or its users. These
methods are well known and well understood by all de-
velopers, but it is useful to provide a reference here so
that the different methods are kept in mind when model-
ing your data transfers and selecting an API to use dur-
ing your porting effort.

1. Value. Data is passed into the API and a copy is
made for use internal to the API. Changes to the
data made internal to the API are not visible to the
user of the API.

2. Reference. Data itself is not passed into the API
directly, but rather by a memory reference to the
data’s location. The user of the API and its imple-
mentation share access to the data and may need to
co-ordinate that access to avoid corruption.

Using these three aspects in all their combinations, it
is possible to completely model how data is moved be-
tween a user of API and its implementation. Once that
is determined, the task of selecting an pre-defined kernel
interface API to act as a transport for splitting a legacy
software project into kernel and user space segments be-
comes much easier.

3.3 Selecting the appropriate kernel APIs for data
transport

Now that we have described how data can be passed
through APIs in general terms, we can describe the vari-
ous available kernel interface in those same terms so that
we can select an appropriate interface to better adapt to
our existing model to optimize our porting effort. There

2009 Linux Symposium • 135

are several kernel interfaces to choose from, each of
which offers a different set of data transfer character-
istics. Each kernel interface is documented here. There
are only three major interfaces from kernel space to user
space: the character driver interface, the socket inter-
face, and the signal interface. Each provides an API that
allows a developer to implement various different data
transfer models. Note that there are other APIs which
allow for various types of data transfer (the file system
interface, the block driver interface, etc.); however, the
three aforementioned interfaces cover completely the
types of data transfer listed in Section 3.2. While the
other interfaces provide excellent mechanisms to design
various types of systems, the above listed interfaces pro-
vide generic data transfer resources that allow for any
application to be relatively easily split between user and
kernel space.

3.3.1 Character Driver Interface

The character driver interface is seemly the de-facto in-
terface that developers select—a transport API when
segmenting a monolithic application during a porting ef-
fort. It offers several data transfer models, and as such
is reasonably flexible, is fairly well understood when
coming from other operating environments, and is fairly
easy to implement. The user space API consists of the
following elements:

1. open
int open(const char *pathname, int flags)
This is the well known and understood call to es-
tablish access to a filesystem object. Nominally,
this call is used to open a regular file. However,
under the Linux design model, this function can
also be used to obtain access to a device through
a device special file (created with the mknod util-
ity or through the udev system). Special device
files contain a major and minor number, which are
used to resolve which device driver will handle op-
erations issued to the device. Open accepts a path
(nominally for the porting purposes here) to a de-
vice special file, and a set of flags which define var-
ious characteristics of the communication to the de-
vice (read/write permissions, auto close properties,
etc.). It returns a descriptor to the opening process;
this descriptor is used in later calls below.

2. read
ssize_t read(int fd, void *buf, size_t count)
The read call provides a synchronous, stream-
oriented byte sequence passed by value to the
user. Kernel modules that implement the charac-
ter driver interface are notified immediately when
a user space process issues a read request, and is
required to return either an error code, or a data
buffer (which will be copied into the process con-
text) of a size equal to or less than the size passed
in during the request.

3. write
ssize_t write(int fd, const void *buf, size_t
count)
The write call provides the converse operation
of the read call. It similarly provides an syn-
chronous interface for passing stream-oriented byte
sequences by value. The difference of course is that
write calls allow a user process to pass data from a
process to a kernel module. Unlike read, however,
a return code is the only thing returned to the user.
The conditions for success or failure in this call are
dependent on the kernel module implementing the
driver the data is passed to, as it what is done with
the data when it arrives at the driver.

4. ioctl
int ioctl(int d, int request, ...)
Ioctl is the Swiss army knife of the character
driver interface. It allows an arbitrary-length list
of data items to be passed by value down to the
driver associated with the descriptor passed in as
the first argument. The flexibility and open format
in the amount of data that can be transferred in this
API call makes this a very attractive interface to
implement the segmentation of application during
porting, but it should in fact be used sparingly. Be-
cause the remaining arguments on the function are
variable, only weak or non-existent type checking
abilities ensue; the only way to properly interpret
the arguments is via the request argument, which
shares name space with every other driver layer be-
tween the application and the driver itself. While
this call can be very useful, it can also introduce
subtle and difficult to detect errors, and as such
should be used carefully.

5. mmap
void *mmap(void *start, size_t length, int prot,
int flags, inf fd, off_t offset)

136 • Porting to Linux the Right Way

The mmap call is far more useful than developers
normally give it credit for. The mmap call allows
a user-space process to specify an address space
‘hint’ along with an open file descriptor and off-
set from that descriptor. In response, the object
associated with that descriptor will map the speci-
fied length of data into the requested address range.
This allows the mmap call to be categorized as
an asynchronous kernel-to-user-space data trans-
fer, passing packet data by reference. This call is
nominally associated with regular files, in which
the files contained data is mapped into process ad-
dress space, allowing for direct access. What is
not nominally recognized, however, is that mmap
can be used equally well for any arbitrary device.
The offset argument is passed directly to a driver,
and used as an arbitrary handle, in which the driver
passes back whatever data is required. For exam-
ple, a character driver can be implemented to pass
a stream of handles to a process via the read call,
which can then be used in a sequence of mmap
calls to access other out-of-band data. This pro-
vides a more efficient transfer mechanism for large
volumes of data by only passing handles by value
(which are much smaller than the requisite data
they reference).

6. munmap
int munmap(void *start, sizei_t length)
This is of course the inverse of the previous call.
It allows a block of data previously passed by ref-
erence to be released by an application. The mem-
ory referenced becomes inaccessible to the process,
and the driver is informed of the release operation
so that any needed clean up can be performed.

7. close
int close(int fd)
This ends a connection to a device driver/kernel
module, and provides the driver the opportunity to
clean up any remaining resources associated with
that process connection.

The kernel space API consists of a registration and
de-registration function, and several ancillary functions
which map one-to-one to the user space API, each called
directly in response to a user space call of the same type:

1. register_chrdev
int register_chrdev(unsigned int major, const

char *name, const struct file_operations *fops)
This is the major kernel hook which allows you to
register a special character device file to the ker-
nel. The major parameter allows you to specify
a major value that is matched against any special
character mode device file opened in user space.
A file opened containing a matching major num-
ber will be directed to this module via the function
pointers passed in to the registration routine via the
file_operations structure.

2. unregister_chrdev
void unregister_chrdev(unsigned int major,
const char *name)
This is of course the converse of the above func-
tion. It allows kernel code to disconnect an associ-
ation between a driver module and a major device
number.

3.3.2 Socket Interface

The socket interface is far less often considered for use
as an API with which to shuttle data between kernel
and user space, but it should be. Highly flexible, and
fairly well understood from an application standpoint,
the socket API allows a developer to move data between
user and kernel space in a variety of ways and formats,
using both custom built protocols, and (perhaps more
notably) using already existing protocols. While not of-
ten suggested, the infrastructure to create and manage
sockets with the kernel has been in place for some time,
making it possible to write a kernel module which can
simply open a TCP, UDP, or other protocol socket, and
accept incoming data from user space by sending to the
opened port via the localhost address. Likewise, the
Netlink protocol family has existed for some time (ar-
guably in relative obscurity), for the sole purpose of con-
necting user space processes with kernel space services.
Netlink also provides the added capability of dynamic
sub-protocol registration (via the generic Netlink infras-
tructure), which allows for dynamic service discovery,
making porting efforts even easier.

The API for working with sockets in user space is very
mature and well known. While this list is not exhaustive,
it enumerates the core functionality of the API:

1. socket
int socket(int domain, int type, int protocol)

2009 Linux Symposium • 137

The socket call, like the open call, allocates a
communication channel to a peer. Depending on
the use of the subsequent calls, the peer could be
a remote host, another process on the local host,
or a service in the kernel. The domain argument
specifies the address family (which specifies the
format in which the peer to which you will con-
nect is addressed). The type generally specifies
whether the connection to the peer will be pass-
ing stream-oriented data or packet-oriented data,
and the protocol specifies the transport layer pro-
tocol that the connection will use. While it is pos-
sible to create your own protocol (which this call
can then provide access to user space to), given
that the effort here is to simply migrate data be-
tween user and kernel space, it is far more efficient
to simply use IPv4 (The AF_INET family), IPv6
(the AF_INET6 family), or the netlink protocol
(AF_NETLINK). Any one of these protocols will
allow a user-space application to take full advan-
tage of all the features of this API for the purpose
of data transfer to kernel space.

The socket call either returns a negative error mes-
sage, or a positive value that represents a handle to
use in subsequent socket API calls.

2. bind
int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen)
The bind call operation is somewhat specific to
the address family, type, and protocol specified in
the socket call. Generally speaking, the bind
call associates a socket with an input filter. The
format of the filter is specific to the protocol se-
lected. For example, the AF_INET family allows
you to bind your socket to an input address and
port, so that you will only receive frames on a cer-
tain interface. AF_NETLINK, in contrast, allows
you to specify a bitmask of multicast groups that
you might receive frames on, in addition to mes-
sages directed at your specific process ID. This fil-
ter is passed in via the addr pointer.

3. connect
int connect(int sockfd, const struct sockaddr
*serv_addr, socklen_t addrlen)
The connect call associates a socket with a peer
address. Like bind associates a socket with a lo-
cal endpoint, connect establishes the peer that
the socket communicates with. This operation is

specific to the address family and protocol which
were specified in the call to socket above. Some
protocols, like TCP, communicate with the remote
endpoint to establish a connection, while others
simply record the address of the remote endpoint.

4. send/sendmsg/sendto
ssize_t send(int s, const void *buf, size_t len, int
flags)
ssize_t sendto(int s, const void *buf, size_t len,
int flags, const struct sockaddr *to, socklen_t
tolen)
ssize_t sendmsg(int s, const struct msghdr *msg,
int flags)
These functions provide various methods for the
asynchronous transfer of data from user space to
kernel space, passed by value, in either a stream-
or packet-oriented format. There are three variants
of the send routine, as different connections find
different implementations more useful than others.
Note that the send routine omits a remote address,
which means the remote peer was specified with a
prior call to connect. Conversely, the sendto
operation allows for data to be sent on an uncon-
nected socket, with each call specifying the recipi-
ent address (allowing one socket to communicate
with multiple peers). Sendmsg is a variant of
sendto, but uses a msghdr structure, which al-
lows for a series of non-contiguous data pointers to
be sent at once. Interestingly, all three calls may be
used to send either packet data or stream data. The
ability to re-segment data to split or merge data as it
was sent from user space is encoded in the specific
protocol as selected in the socket call.

5. recv/recvmsg/recvfrom
ssize_t recv(int s, void *buf, size_t len, int flags)
ssize_t recvfrom(int s, void *buf, sizei_t len,
int flags, struct sockaddr *from, socklen_t
*fromlen)
ssize_t recvmsg(int s, struct msghdr *msg, int
flags)
These functions are the counterparts of the above
send routines. They allow an application to poll
a socket to see if any data is available from the
peer(s) which the socket might be communicating
with. Data transfer is asynchronous with its ar-
rival at the protocol implementation in the kernel,
is passed by value, and can be either stream- or
packet-oriented. Overall, the operation is identical

138 • Porting to Linux the Right Way

to the send counterparts.

6. setsockopt/getsockopt int getsockopt(int s, int
level, int optname, void *optval, socklen_t
*optlen);
int setsockopt(int s, int level, int optname, const
void *optval, socklen_t optlen);

These two calls allow for a user application to fine
tune the operation of the selected communication
protocol. As noted a socket can have behavior
tuned at various levels (generic socket, protocol-
specific, transport-specific, etc). If you are writing
a custom protocol, these settings can adjust any-
thing the developer would like (the level param-
eter name-space is global, but by defining a new
level, the optname parameter becomes unique, so
any number of options may be defined, unlike the
ioctl call). Any amount of data may be passed
by value via the optval pointer, but its interface
is limited and inefficient.

7. close int close(int fd)
Like the close call in the character driver, this
call simply disconnects the descriptor in the user
space application from its peer.

The kernel interface operates much like the character de-
vice kernel interface, with some enhanced abilities for
fine tuning. There are two main registration and dereg-
istration functions which allow one to add both an ad-
dress family and a protocol, allowing for a larger set of
communication methods. Nominally, however, the use
of sockets as a data transfer mechanism doesn’t require
the creation of a new protocol. Developers looking to
port applications to Linux and split their software into
a kernel and a user space component are highly encour-
aged, for the sake of simplicity, to simply utilize an ex-
iting protocol for communication, such as UDP, TCP, or
netlink.

3.3.3 Signal Interface

The signal interface rounds out our kernel / user space
data transfer methods. The signal interface provides a
data transfer model that provides one thing that the other
interfaces do not. The other interfaces may provide data
asynchronously or synchronously, but all require polling

to retrieve that data (via the read or recvmsg fam-
ily of calls). The signal interface provides true asyn-
chronous data delivery, requiring no additional action
to receive data beyond registering a reception function.
Also, the signal interface is normally not used alone, but
rather in conjunction with one of the other interfaces to
provide a complete data transfer system when splitting a
legacy application between user space and kernel space.

The signal interface is enumerated below:

1. signal/sigaction
sighandler_t signal(int signum, sighandler_t
handler)
int sigaction(int signum, const struct sigaction
*act, struct sigaction *oldact)
The sigaction and signal calls both asso-
ciate a signal value with an action, as defined by
the handler pointer. The handler pointer contains
a function pointer which is defined within the ap-
plication, which is called each time a signal is de-
livered to the application process. The two calls
are effectively identical; the sigaction call sim-
ply provides a few more options for fine-tuning
signal delivery behavior. The signum parameter
enumerates the signal value with which the action
is associated. Some signal values are predefined
(SIGINT, SIGSTOP, SIGKILL, etc.), and may have
actions which are pre-defined. Other signals are
generic and can have actions which are specific to
the application being run (SIGUSR, etc.). Some
signals have at-most-once semantics (multiple sig-
nal deliveries result in only one call to the action
handler between certain delimiting events. Others
ranges can queue their events creating a call-per-
event model.

2. sigpending
int sigpending(sigset_t *set)
This call allows a user to determine which sig-
nals may be pending for delivery to the application.
During periods when the application may block the
delivery of signals, this calls provides a window
to see what the application may be missing, so to
speak.

3. sigsuspend
int sigsuspend(const sigset_t *mask)
The sigsuspend call provides an interface for
the user-space application to temporarily block sig-
nals from being delivered.

2009 Linux Symposium • 139

4. kill
int kill(pid_t pid, int sig) This call completes the
signal API. It allows a user-space process to deliver
a signal to another process, as identified by the pid
parameter. The kernel also contains a variant of this
call which allows kernel code communicate via the
signal API to an application.

4 Conclusions

Legacy applications offer a mature stable code base
which should not be discarded lightly. Most, if not all,
applications can be ported to Linux with a minimum of
effort, if proper care is taken to both segment the ap-
plication properly to a kernel and a user space compo-
nent and appropriate APIs are used to efficiently and
correctly transfer data between the two.

140 • Porting to Linux the Right Way

Tracing the HA Cluster of Guests with VESPER
(Virtual Embraced Space ProbER)

Sungho Kim
Hitachi, Ltd., Systems Development Lab

sungho.kim.zd@hitachi.com

Satoru Moriya
Hitachi, Ltd., Systems Development Lab
satoru.moriya.br@hitachi.com

Satoshi Oshima
Hitachi, Ltd., Systems Development Lab
satoshi.oshima.fk@hitachi.com

Abstract

Recently, many tracing infrastructures, like kprobes, tra-
cepoints, ftrace, etc. have been merged into the main-
line kernel. They seem useful to tell what is going on
inside the kernel in the physical machine. So, it is natu-
ral that we tend to question if can we use them to trace
virtual machines.

In this paper, we introduce VESPER, the framework to
trace guest kernel states from the host utilizing in-tree
tracing stuff in the just same manner as host kernel trac-
ing. In particular, the mechanism of injecting probes to
guest and splicing guest tracing reports onto host to alle-
viate data copy overhead will be focused upon. To ver-
ify the efficiency of VESPER, we take HA cluster with
guests on in-tree hypervisors, KVM, for test cases. By
combining tracepoints with kprobes to monitor guests,
VESPER shows the improvement on fail-over response
latency caused by application-bound as well as system-
wide failure, against conventional heartbeat.

1 Introduction

Tracing issues have recently been focused on Linux ker-
nel community. Kernel Markers and trace points have
already merged into the mainline kernel and various
Ftrace engines have been introduced at the LKML [1].
Those tracing facilities can provide lightweight mecha-
nism to understand the behavior of the kernel compared
to dynamic tracing facilities such as Kprobes which uti-
lize breakpoint. It seems to be reasonable to use the
tracing facilities to debug the kernel. However, we have
been thinking about other use cases for the facilities than
the debugging. Our suggestion is applying the kernel

tracing to the decision maker of fail-over or migration
in the clustering of virtual machines in enterprise server
systems requiring efficient resource utilization and sys-
tem dependability. In a certain system, fail-over re-
sponse latency is the bottleneck for the high availabil-
ity of service, which comes from the polling-way of
heartbeating between cluster nodes. Even in a virtu-
alized environment, a cluster manager such as Heart-
beat [2][3] software delivers messages between cluster
nodes to check their health through network periodically
(known as heartbeat). If any node fails to reply in a cer-
tain time, the manager will assign the service which the
faulty node was providing to another node. This amount
of time before switching to another node is called the
deadtime, key to ascertaining node death in Heartbeat.
With this approach, however, the manager cannot im-
mediately determine faults, nor get detailed information
about faulty nodes; this results in fail-over response la-
tency. But what if the tracing technology is applied to
the heartbeat? This allows the cluster manager to have:

• Prompt notification when corresponding events
happen around a probe.

• Dynamic probe insertion to guarantee service
availability while inserting a probe when using
Kprobes.

• Arbitrary probe insertion to any process address to
hold its versatile probing capability when using tra-
cepoints and etc.

Utilizing this featured technology to examine the health
of a virtual cluster member machine could lead to faster
and more efficient evaluation criteria for system switch-
ing or migration than a simple, periodic message de-

142 • Tracing the HA Cluster of Guests with VESPER

livery mechanism. Therefore, we have proposed VES-
PER (Virtual Embraced Space Prober)[4] which gathers
guest information effectively in a virtualized environ-
ment, taking advantage of the full features of the tracing
facilities. VESPER simply transfers probes generated in
the host to the targeted guest. The transferred probes do
all the necessary probing work themselves in the guest,
and then VESPER simultaneously obtains the result of
probes through shared memory built across the host and
guest. However, VESPER was only available for the
paravirtualized guests on Xen [5] because it utilized the
Xenbus for the communication between the host and the
guest. To make VESPER more available for the vari-
ous virtualization technology we adopt Virtio [6] pro-
posed as the standard of virtual I/O mechanism in the
Linux community. In this paper, we will describe how
to port VESPER to Virtio and how to inject the probes
into hardware-virtualized guest on KVM [7], which is a
in-tree hypervisor supporting Virtio.

Section 2 briefly describes the mechanism of QEMU [8]
and KVM using Virtio to implement virtual I/O devices.
Section 3 presents the brief description of VESPER ar-
chitecture and implementation of VESPER as a virtual
I/O device in QEMU, while Section 4 discusses trace is-
sues using VESPER. Finally, we conclude this paper in
Section 5.

2 Overview of Virtio in QEMU

Before getting into the porting issue, we briefly describe
how QEMU and KVM works for virtual I/O devices
(called virtio devised hereafter) such as virtio_blk
and virtio_net.

In Virtio, all virtio devices are treated as pci devices
under virtio_pci in the guest. So, virtio devices
need to invoke pci emulator in QEMU. Fortunately,
virtio_init_pci in qemu/hw/virtio.c in
QEMU does necessary works for them. In the pro-
cess of initializing virtual machine hardware, virtio de-
vices invoke virtio_init_pci to register them as
pci devices in QEMU. Then virtio_init_pci allo-
cates VirtQueue, the control block for the shared mem-
ory between the host and the guest in Virtio, for the
devices and invokes pci_register_io_region to
store the configuration information of the devices just
like native pci devices. The different thing from the
native PCI devices is to register callback functions to
each configuration area other than specific data. The

callback functions are the key components to share vir-
tio devices between the host and the guest. Especially
in KVM, I/O accessing of the guest to those io re-
gions occurs VM_EXIT to switch cpu context from the
guest to the host and QEMU at last. As a matter of
fact, virtqueue_ops.kick of virtio_pci, the
communication method in Virtio, in the guest invokes
iowrite16. In the cpu context switch between the
host and guest in KVM, callback functions registered
in the specific area invoke service routines for each de-
vices. Accessing other features data of the device fol-
lows the same processing below.

1. Register Device in QEMU.

Register the device in the PCI bus in QEMU.

2. Register IO Region in QEMU.

Map the allocated IO Region with proper call-
backs.

3. Register VirtQueue in QEMU.

Allocate VirtQueue to handle the shared memory
prepared by the guest in QEMU.

4. Retrieve Device Configuration.

Registered virtio device driver probed in the guest,
the driver executes I/O access to retrieve the device
features.

5. Set virtqueue.

Virtio device driver in the guest allocates
virtqueue and vring memory, the control
block for vring and the shared memory between
the host and the guest, respectively. Then it ex-
ecutes I/O access to the IO Region in QEMU and
sets vring physical address of the guest. In this pro-
cedures, the host and the guest finally establish the
shared memory with vring.

6. Send Request.

Virtio device driver in the guest sends requests
written on the vring by I/O accessing to the IO
Region.

7. Send Response in QEMU.

Callbacks in the IO Region do serve and send back
the result by inject interrupt to the guest via KVM.

In the next section, we describe the detailed implemen-
tation of the VESPER for the Virtio in QEMU and
KVM.

2009 Linux Symposium • 143

Probing Module

kernel

kernelVESPER-UI

user land user land

Probe
Loader
Host Part

Probe
Loader
Guest Part

Probe
Listener
Guest Part

Probe
Listener
Host Part

host guest

VMM Load Probing Module

Share Probed Dfata

Figure 1: Architecture of VESPER

3 Implementation of VESPER

For probing the guest, VESPER uses the tracing fa-
cilities to hook into the guest Linux kernel, and uses
relayfs to record probed data in the probe handler of
the tracing facilities. In this section, we take a brief look
at the VESPER architecture and its semantics. Then we
present the implementation of Virtio support in VES-
PER.

3.1 VESPER Architecture

As mentioned before, VESPER uses the tracing facil-
ities to hook into the guest kernel. However, because
they are the probing interface for the local system, they
cannot implant probes into the remote system directly.
Besides, in the typical use case of them, the probe han-
dler in them comes in the form of a kernel module.
Therefore, in using them to hook into the guest kernel,
VESPER should be able to load probing kernel modules,
on which the handlers to probe are implemented, from
the host to the guest. This loading capability of VES-
PER is implemented as split drivers and named Probe
Loader.

In addition, in VESPER, the probing modules use re-
lay buffers to record data in the probe handlers. At this
point, probing modules are in the guest; thus, VESPER
needs to transfer the buffer data from the guest to the
host. This relayed data transfer capability is also imple-
mented as split drivers and named Probe Listener.

Figure 1 is the block diagram of the VESPER compo-
nent.

Communication Layer

Action Layer

Probing Module

Communication Layer

Action Layer

UI Layer user space

kernel space

Host Guest

Figure 2: Layer of VESPER

As just described, VESPER contains two pairs of split
drivers. These drivers are implemented for each VMM
because they strongly depend on the underlying VMM.
So, we divide VESPER into three layers (shown in Fig-
ure 2): UI Layer, Action Layer, and Communication
Layer, in order to localize VMM-dependent code. This
structure lets VESPER run on Xen and KVM by replac-
ing only the VMM architecture-dependent layer—the
Communication Layer.

3.2 VESPER Semantics

In order to implant probes into the guest, VESPER
should load probing modules from the host to the guest.
And then, VESPER sends probed data from the guest to
the host.

Figure 3 illustrates the semantics overview of VESPER.

3.2.1 Module Loading

The first step to probe the guest kernel is to load the
probing module onto the guest.

0. Make Module

First of all, one should make a probing module
which uses the tracing facilities and relayfs.

A1. Module Load Command

Execute the probing module insertion via inter-
faces provided by the probe loader. One can also
specify module parameters, if needed.

A2. Obtain Module Information

On the host-side Action Layer of the probe loader,
from user space, VESPER obtains the module in-
formation to insert such as the module’s name, its

144 • Tracing the HA Cluster of Guests with VESPER

Com:(A3)(C3)

Act:(A4)(C4)(C8)

Probe Loader

Frontend

Com:(A6)(B3)(C6)

Act:(A5)(B2)(C5)

Probe Listener

Frontend

guest

Com:(A6)(B3)(C6)

Act:(A7)(B4)(C7)

UI:(A8)

Probe Listener

Backend

Com:(A3)(C3)

Act:(A2)(C2)

UI:(A1)(C1)

Probe Loader

Backend

host

Module:(B1)

user
space

kernel
space

VMM

Figure 3: Process Flow of VESPER.

size, and its address with others related to module
parameters, if any.

A3. Send/Receive Request

Through the interface provided by the VMM or
Virtio, the probe loader transfers the probing mod-
ule’s information between the host and guest.

A4. Load Module

In the Action Layer, the probe loader on the guest
side loads the module without userspace help.

A5. Share Relay Buffer

In the Action Layer, the guest’s probe listener gets
relayfs buffer information such as the read index,
buffer ID, etc., from the probe modules; it then ex-
ports the buffer to the host.

A6. Send/Receive Buffer Information

Communication layer of guest probe listener trans-
fer the shared buffer information to host via VMM
interface, if any, or Virtio, and then, host probe lis-
tener receives it.

A7. Setup Relayfs Structure

The Action Layer of the host’s probe listener builds
the relayfs structure based on the information re-
ceived from the guest.

A8. Analyze/Offer Probed Data

One can read probed data through the UI Layer of
the probe listener.

3.2.2 Probing

After finishing the procedures in Section 3.2.1, the host
and guest probe listeners share relay buffers of the prob-
ing module. Consequently, it is not necessary to transfer
all the recorded data from guest to host, but it is nec-
essary to transfer index information about shared relay
buffers, where the data is, to get the start index for the
actual access to relay buffers by host.

B1. Gather Guest Kernel Data

Once loaded, the probing module puts data into the
relay buffer in the probe handler.

B2. Get Index Information

When change occurs in the relay sub-buffer, the ac-
tion layer of the guest probe listener gets the index
information and creates a message to notify host.

B3. Send/Receive Message

Through the communication layer, the host probe
listener is notified of the index data from the guest.

B4. Update Index

The action layer function of the host probe listener
updates the index of relayfs in the host, based on
the received message.

2009 Linux Symposium • 145

3.2.3 Module Unloading

Basically, unloading a probing module below is similar
to loading a module. The significant difference is that
it takes two steps in the unloading module process, be-
cause before removing the relay buffer in the handler in
the guest, the exported user interface for the buffer in
host should be dropped.

C1. Module Unload Command

C2. Obtain Module Information

C3. Send/Receive Request

C4. Unload Module (step1)

C5. Stop Sharing Relay Buffer

C6. Send/Receive Buffer Information

C7. Destroy Relayfs Buffer

C8. Unload Module (step2)

In the next section, we describe the detailed implemen-
tation of the probe loader and listener.

3.3 Implementation of VESPER supporting Virtio

As previously described, VESPER consists of two com-
ponents named probe loader and probe listener. Each
component is split into three parts, UI Layer, Action
Layer, and Communication Layer, to confine the de-
pendency on the underlying VMM. In this section, we
present the implementation of VESPER from the view-
point of the Communication Layer supporting Virtio.

3.3.1 Probe Loader

In order to implant the probing module from the host
into the guest memory space, VESPER needs to be able
to transfer the module image somehow. Usually, the
guest sends request. However, in this case, the host
should send the module image and request to implant
it to the guest memory. Therefore, the loader utilizes the
event mechanism of QEMU. Like virtio_console,
the loader attaches the watcher, to poll UI layer, to
QEMU. When the module image is written to UI layer,

QEMU sends the event notification to the loader. Then
the loader dumps the image to vring, established be-
tween the host and the guest, and injects interrupt to the
guest.

In writing the image to the vring, struct iovec
and struct scatterlist translation is needed to
use Virtio facilities. In QEMU, VirtQueueElement
and virtqueue_push in qemu/hw/virtio.c
helpers are prepared for the needs. On the other
hand, the loader in the guest uses sg_set_buf and
sg_init_one to prepare the memory where the host
writes the image. To load the module into the kernel, the
name of module and the size of module are needed in in-
voking load_module in the kernel. So, the header
of the request, struct virtio_loader_inhdr
is attached to inform the guest of the related informa-
tion of the module. From the viewpoint of the guest,
the guest is not able to find out how much memory is
needed to accomplish the the request. So, the guest
prepares only one page for the request and notify the
memory size per request in the header of struct
virtio_loader_outhdr. Then the host sets the
left length of the module onto the header as well. Figure
4 depicts the details.

3.3.2 Probe Listener

The Probe Listener should retrieve the probed data from
the guest and make it available to user-space applica-
tions in the host. Probing modules use relayfs to record
the probed data which describes the behavior of the
guest kernel around the probe points.

Relayfs in the guest tends to allocate its buffers by
pages, and the listener sets their physical address to
vring to share them with the host. So, the listener in
QEMU can see the all data on the buffers. However,
those data should be copied to the relayfs in the host
kernel to keep user interface to the relayfs for user appli-
cation utilizing the probed data on the host. In addition,
even QEMU and the relayfs can share the buffers, they
should share the control information such as the read
index and padding value to access proper data as well.
Our design decision to tackle these problems is :

1. QEMU mmaps the buffers pages notified by
vring into the action layer of the listener in the
host. The action layer creates relayfs rchan with
the buffers.

146 • Tracing the HA Cluster of Guests with VESPER

typedef struct VirtIOLoader
{

VirtIODevice vdev;
VirtQueue *vq;

};

typedef struct VirtIOLoaderReq
{

VirtIOVsp *dev;
VirtQueueElement elem;
struct virtio_loader_inhdr *in;
struct virtio_loader_outhdr *out;

};

struct virtio_loader_outhdr
{

uint32_t type;
uint8_t max_size_per_req;
uint8_t status;

};

struct virtio_loader_inhdr
{

uint32_t type;
uint8_t mod_name[];
uint64_t mod_size;
uint64_t left_len;

};

Figure 4: Prototype of the device of ProbeLoader

2. Every time the relayfs in the guest updates the read
index, the guest will notify the index via Virtio.
QEMU will access the action layer in the host to
inform it. Then the action layer updates its index
of the rchan.

As a result, Probe Listener consists of two components,
which are a buffer share function and an index update
function, and it is implemented as split drivers, just like
Probe Loader.

3.3.3 Buffer Share Function

As mentioned before, because the probing module
records probed data into relay buffers, Probe Listener
shares them between the host and the guest. Sharing the
buffers is implemented by using Virtio like the module
transfer function in Probe Loader. Similarly, informa-
tion about which buffers need to be shared is provided
from the guest to the host by using Virtio.

Once the relay buffers are exported by the guest and
their information is received by the host, the relayfs
structure is built on the host to provide probed data in the
buffers to user-space applications. At this time, Probe
Listener in the host does not call relay_open to cre-
ate a rchan structure, which is a control structure of
relayfs. This is because Probe Listener does not need
to newly allocate the pages for the relay buffers, but
should just map the pages exported by the guest through
QEMU. Therefore, Probe Listener sets up the rchan
structure manually. After rchan is set up, the interface
to read this relay buffers is created on /sys/kernel/

debug/vesper/domid/modname/ like other subsys-
tems which use relayfs. User applications can read this
interface directly.

Finally, to stop sharing the buffer, the probe listener ex-
ecutes the above process in reverse. Removing the relay
structure is done at first, and then exporting relay buffers
is stopped.

3.3.4 Index Update Function

When the probe listener shares the relay buffers between
the host and the guest, it must synchronize some buffer
information such as the read index between both rchan
structures. If it does not, the user application on the host
cannot read the probed data correctly. Probe Listener
uses Virtio for the information transfer. The guest’s
probe listener creates a message including the informa-
tion, pushes it to vring, and then notifies the host’s
probe listener in QEMU. The host’s probe listener gets
the message from vring and accesses the action layer
in the host to update its own relay buffer information
with the message.

Ideally, probe listener should update that information
immediately whenever the guest rchan is changed.
However, message passing by vring is too expensive
to update each time due to the intervention of the inter-
rupt mechanism to notify host of the existence of pend-
ing messages. Hence, Probe Listener updates the buffer
information when switching to sub-buffer occurs. In do-
ing so, probe listener updates the buffer control infor-
mation, and the user application can get the latest data
probed from the guest.

Figure 5 depicts the definition of the device for Probe
Listener.

2009 Linux Symposium • 147

host

user space

Heartbeat

LRM

resource

kernel space

VM1

user space

kernel space

web
server

VM2

user space

kernel space

Xen

Hardware

P1

host

user space

Heartbeat

LRM

resource

kernel space

VM1

user space

kernel space

web
server

VM2

user space

kernel space

Xen

Hardware

P2

VESPER
probes probes

Figure 6: Test environment to demonstrate the usability of VESPER.

4 Tracing and evaluation

We have two different tracing facilities. one is for static
tracing technology, tracepoints representatively and the
other is for dynamic tracing technology, Kprobes. each
technology has advantages and disadvantages compared
to each other. The static tracing tends to show lower
overhead than the dynamic tracing. However, the static
tracing requires the kernel recompiling. So, we choose
the proper tracing technology case by case. In our test
environment, Figure 6, we use trace points to monitor
system-wide figures like memory pressures, scheduling
and etc. On the other hand, we use Kprobes to monitor
application-specific figures like "signal" to the specific
application.

In the environment, we prepare two physical machines.
We set up two guests as resources managed by the LRM
(Local Resource Manager) of Heartbeat on each physi-
cal machine. On each physical machine, the webserver
is on the one guest, we say VM1; it is actively perform-
ing web service. On the other hand, the webserver in the
other guest, we say VM2, is inactive.

When something wrong happens to VM1, Heartbeat
lets VM2 take over all of roles which VM1 was per-
forming. However, one physical machine, P1, has
Heartbeat’s LRM without involvement of VESPER to
show how Heartbeat works in the usual way. However,
the other physical machine, P2, has LRM cooperating
with VESPER. To evaluate VESPER, we insert Kprobes
around send_sigal and trace points probe around
out_of_memory. Then, we send SIGTERM to the

webserver at first. Kprobes thus inserted will put clues
like the callstack to the SIGTERM on the relayfs. Then,
we measure the recovery time on P1 and P2. We can
easily expect that P2 will recognize what happened to
VM1 of P2 as soon as the webserver is gone, because of
the prompt notification done by VESPER. For the next,
we execute a test program allocating a huge memory to
occur OOM. Also, we measure the recovery time on P1
and P2. In this case, P1 did not recognize OOM because
the test program is killed.

Through the experiment, we could verify better perfor-
mance on response latency with VESPER.

However, special care should be taken with two issues
regarding probes. One is what probe points are suitable
for proper monitoring. If the targeted, necessary probe
points miss, no more improvement over usual Heart-
beat can be expected. Actually, the problem on where
probe points should be inserted seems very tricky to
handle, because highly experienced developers or sys-
tem administrators on kernel context and applications
running on the server are required to select optimal
probe points. The other is about overhead produced by
the execution of probes especially in dynamic tracing
tracing technology. One should adjust the overhead ac-
cording to the required service performance. Both is-
sues exclude each other. More probes inserted to hit
fine-grained events cause more overhead in probing, ob-
viously. Some mechanism to help one select optimal
probes could be needed. Some suggestions for these is-
sues will be mentioned as future works of VESPER in
the next section.

148 • Tracing the HA Cluster of Guests with VESPER

typedef struct VirtIOListener
{

VirtIODevice vdev;
VirtQueue *vq;

};

typedef struct VirtIOListenerReq
{

VirtIOVsp *dev;
VirtQueueElement elem;
struct virtio_listener_inhdr *in;
struct virtio_listener_outhdr *out;

};

struct virtio_listener_outhdr
{

uint32_t type;
unit8_t guestid;
target_phys_addr_t buf_addr;
uint8_t mod_name[];
uint64_t buf_size;

};

struct virtio_listener_inhdr
{

uint8_t status;
};

Figure 5: Prototype of the device of ProbeListener

5 Conclusion and future works

In this paper, we expanded VESPER to Virtio on KVM
as a framework to insert probes in virtualized environ-
ments and discussed what topics VESPER can solve
in clustering computing. After that, we described the
design and the implementation of VESPER. Then we
suggested a test bed to show the performance improve-
ment on fail-over response latency. Finally we discussed
some considerations on places and overhead of probing.
To address these considerations, we have some plans for
future VESPER developments.

5.1 Probing aid subsystem

For the ease use of cluster manager or other applications,
we plan to develop a probing aid subsystem. Probing
points could be classified into several groups based on
their functionality. The subsystem thus can pre-define
several groups of probe points and abstract them to
its clients or application—like memory group, network
group, block-io group, etc. The clients just select one

of groups, and the subsystem will generate all needed
probes relayed to VESPER. Also, fine-grained selection
from several groups will be supported by the subsystem.

5.2 Precaution capability on collapse of the host

If the host collapsed, all services running on the guests
would be lost. It is obviously a big problem. Therefore,
VESPER should probe the host simultaneously to check
whether the host is in good condition. When VESPER
catches a sign of the host’s collapse, the cluster manager
notified by VESPER could take necessary action, such
as live migration to other host.

6 Acknowledgements

We would like to thank our colleagues for reviewing this
paper.

7 Legal Statements

Linux is a registered trademark of Linus Torvalds. Other
company, product, and service names may be trademarks or
service marks of others.

References

[1] LKML, http://lkml.org

[2] Alan Robertson, “Linux-HA Heartbeat Design,”
In Proceedings of the 4th International Linux
Showcase and Conference, 2000.

[3] Heartbeat, http://linux-ha.org.

[4] VESPER,
http://vesper.sourceforge.net/.

[5] The Xen vitual machine monitor,
http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/.

[6] Virtio,
http://lwn.net/Articles/239238.

[7] KVM, http://kvm.qumranet.com/.

[8] QEMU, http://www.qemu.org

Hardware Breakpoint (or watchpoint) usage in Linux Kernel

Prasad Krishnan
IBM Linux Technology Centre

prasad@linux.vnet.ibm.com

Abstract

The Hardware Breakpoint (also known as watchpoint or
debug) registers, hitherto was a frugally used resource
in the Linux Kernel (ptrace and in-kernel debuggers
being the users), with little co-operation between the
users. The role of these debug registers is best exem-
plified in a) Nailing down the cause of memory cor-
ruption, which be tricky considering that the symptoms
manifest long after the actual problem has occurred
and have serious consequences—the worst being a sys-
tem/application crash. b) Gain better knowledge of data
access patterns to hint the compiler to generate better
performing code. These debug registers can trigger ex-
ceptions upon events (memory read/write/execute ac-
cesses) performed on monitored address locations to
aid diagnosis of memory corruption and generation of
profile data.

This paper will introduce the new generic interfaces and
the underlying features of the abstraction layer for HW
Breakpoint registers in Linux Kernel. The audience will
also be introduced to some of the design challenges
in developing interfaces over a highly diverse resource
such as HW Breakpoint registers, along with a note on
the future enhancements to the infrastructure.

1 Introduction

Hardware Breakpoint interfaces introduced to the Linux
kernel provide an elegant mechanism to monitor mem-
ory access or instruction executions. Such monitoring
is very vital when debugging the system for data cor-
ruption. It can also be done to with a view to understand
memory access patterns and fine-tune the system for op-
timal performance.

The hardware breakpoint registers in several processors
provide a mechanism to interrupt the programmed ex-
ecution path to notify the user through of a hardware

breakpoint exception. We shall examine the details of
such an operation in the subsequent sections.

Possibly, the biggest convenience of using the hardware
debug registers is that it causes no alteration in the nor-
mal execution of the kernel or user-space when unused,
and has no run-time impact. The most notable limitation
of this facility is the fewer number of debug registers on
most processors.

2 Hardware Breakpoint basics

A hardware breakpoint register’s primary (and only)
task is to raise an exception when the monitored loca-
tion is accessed. However these registers are processor
specific and their diversity manifests in several forms—
layout of the registers, modes of triggering the break-
point exception (such as exception being triggered ei-
ther before or after the memory access operation) and
types of memory accesses that can be monitored by the
processor (such as read, write or execute).

2.1 Hardware breakpoint basics—An overview of
x86, PPC64 and S390

Table 1 provides a quick overview of the breakpoint fea-
ture in various processors and compares them against
each other [1, 2].

3 Design Overview of Hardware Breakpoint
infrastructure

3.1 Register allocation for kernel and user-space
requests

While debug registers would treat every breakpoint ad-
dress in the same way, there is a fundamental dif-
ference in the way kernel and user-space breakpoint

• 149 •

150 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

Features /
Processor

Register Name Number of
Breakpoints

Data(D) / In-
structions(I)

Breakpoint lengths (length
in Bytes)

x86/x86_64 Debug register (DR) 4 D / I 1, 2, 4 and 8 (x86_64 only)
PPC64 Data(Instruction) Address Break-

point register (DABR / IABR)
1 D / I (on

selected
processors
only)

8

S390 Program Event Recording (PER) 1 D / I Varied length. Can monitor
range of addresses

Table 1: Processor Support Matrix

requests are effected. A user-space breakpoint be-
longing to one thread (and hence stored in struct
thread_struct) will be active only on one proces-
sor at any given point of time. The kernel-space break-
points, on the other hand should remain active on all
processors of the system to remain effective since each
of them can potentially run kernel code any time. This
necessitates the propagation of kernel-space requests for
(un)registration to all processors and is done through
inter-processor interrupts (IPI). The per-thread user-
space breakpoint takes effect only just before the thread
is scheduled. This means that a system at run-time
can have as many breakpoint requests as the number
of threads running and the number of free (i.e., not in
use by kernel) breakpoint registers put together (number
of threads x number of available breakpoint registers)
since they can be active simultaneously without inter-
fering with each other.

On architectures (such as x86) containing more than one
debug register per processor, the infrastructure arbitrates
between requests from multiple sources. To achieve
this, the implementation submitted to the Linux commu-
nity (refer [3]) makes certain assumptions about the na-
ture of requests for breakpoint registers from user-space
through ptrace syscall, and simplifies the design based
on them.

The register allocation is done on a first-come, first-
serve basis with the kernel-space requests being accom-
modated starting from the highest numbered debug reg-
ister growing towards the lowest; while user-space re-
quests are granted debug registers starting from the low-
est numbered register. Thus in case of x86, the infras-
tructure begins looking out for free registers beginning
from DR0 while for kernel-space requests it will begin
with DR3 thus reducing the scope for conflict of re-
quests.

In order to avoid fragmentation of debug registers upon
an unregistration operation, all kernel-space breakpoints
are “compacted” by shifting the debug register values by
one-level although this is not possible for user-space re-
quests as it would break the semantics of existing ptrace
implementation. This implies that even if a user-thread
downgraded its usage of breakpoints from n to n - 1,
the breakpoint infrastructure will continue to reserve n
debug registers. A solution for this has been proposed
in Section 8.1.

3.2 Register Bookkeeping

Accounting of free and used debug registers is essential
for effective arbitration of requests, and allows multiple
users to exist concurrently. Debug register bookkeeping
is done with the help of following variables and struc-
tures.

hbp_kernel[] – An array containing the list of
kernel-space breakpoint structures

this_hbp_kernel[] – A per-cpu copy of hbp_
kernel maintained to mitigate the problem discussed
in Section 7.2.

hbp_kernel_pos – Variable denoting the next avail-
able debug register number past the last kernel break-
point. It is equal to HBP_NUM at the time of initialisa-
tion.

hbp_user_refcount[] – An array containing re-
fcount of threads using a given debug register number.
Thus a value x in any element of index n will indicate
that there are x number of threads in user-space that cur-
rently use n number of breakpoints, and so on.

A system can accommodate new requests for break-
points as long as the kernel-space breakpoints and those

2009 Linux Symposium • 151

of any given thread (after accounting for the new re-
quest) in the system can be fit into the available debug
registers. In essence,

Debug registers >= Kernel Breakpoints
+ Max(Breakpoints in use by any given
thread)

3.3 Optimisation through lazy debug register
switching

The removal of user-space breakpoint, happens not im-
mediately when it is context switched-out of the proces-
sor but only upon scheduling another thread that uses
the debug register in what we term as lazy debug regis-
ter switching. It is a minor optimisation that reduces
the overhead associated with storing/restoring break-
points associated with each thread during context switch
between various threads or processes. A thread that
uses debug registers is flagged with TIF_DEBUG in the
flag member in struct thread_info, and such
threads are usually sparse in the system. If we must clear
the user-space requests from the debug registers at the
time of context-switch (in __switch_to() itself), it
could be done either

• unconditionally on all debug registers not used by
the kernel or

• only if the thread exiting the CPU had TIF_
DEBUG flag set (which is false for a majority of
the threads in the system).

In both the cases, we would add a constant overhead
to the context-switching code irrespective of any thread
using the debug register.

4 The Hardware Breakpoint interface

4.1 Hardware Breakpoint registration

The interfaces for hardware breakpoint registration for
kernel and user space addresses have signatures as noted
in Figure 2.

A call to register a breakpoint is accompanied by a
pointer to the breakpoint structure populated with cer-
tain attributes of which some are architecture-specific.

int register_kernel_hw_breakpoint(struct hw_breakpoint *bp);

int register_user_hw_breakpoint(struct task_struct *tsk,

 struct hw_breakpoint *bp);

Figure 2: Hardware Breakpoint interfaces for registra-
tion of kernel and user space addresses

struct hw_breakpoint {

 void (*triggered)(struct hw_breakpoint *,

 struct pt_regs *);

 struct arch_hw_breakpoint info;

};

Figure 3: Hardware Breakpoint structure

The generic breakpoint structure in the Linux kernel of
-tip git tree presently looks as seen in Figure 3.

The triggered points to the call-back routine to be
invoked from the exception context, while info con-
tains architecture-specific attributes such as breakpoint
length, type and address.

A breakpoint register request through these interfaces
does not guarantee the allocation of a debug register and
it is important to check its return value to determine suc-
cess.

Unavailability of free hardware breakpoint registers can
be most common reason since hardware breakpoint reg-
isters are a scarce resource on most processors. The re-
turn code in this case is -ENOSPC.

The breakpoint request can be treated as invalid if one
of the following is true.

• Unsupported breakpoint length

• Unaligned addresses

• Incorrect specification of monitored variable name

• Limitations of register allocation mechanism

4.1.1 Unsupported breakpoint length

While the breakpoint register can usually store one ad-
dress, the processor can be configured to monitor ac-
cesses for a range of addresses (using the stored address

152 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

User-space debuggers

(GDB)

ptrace()

register_user_hw_breakpoint() register_kernel_hw_breakpoint()

CPU 0 CPU 1 CPU 2

CPU (NR_CPUS -1)

In-kernel debuggers
(ksym_tracer)

struct thread_struct {

...

...

Hardware breakpoint regs

struct hw_breakpoint *hbp[HBP_NUM]

...

...

}

arch_update_kernel_hw_breakpoint() arch_update_kernel_hw_breakpoint() arch_update_kernel_hw_breakpoint()

IPI

arch_update_kernel_hw_breakpoint()

HBKPT HBKPT HBKPT HBKPT

IPI IPI IPI

on_each_cpu(arch_update_kernel_hw_breakpoint)

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

Context Switch - switch_to() Context Switch - switch_to() Context Switch - switch_to() Context Switch - switch_to()

USER-SPACE

KERNEL-SPACE

USER-SPACE BREAKPOINTSKEY KERNEL-SPACE BREAKPOINTS
IPI - Inter Processor Interrupts

HBKPT - Hardware Breakpoint registers

NR_CPUS - Number of CPUs in the system

arch_update_user_hw_breakpoint()

Figure 1: This figure illustrates the handling of requests from kernel and user-space by the breakpoint infrastructure

as a base). For instance, in certain x86_64 processor
types, up to four different byte ranges of addresses can
be monitored depending upon the configuration. They
are byte length of 1, 2, 4, and 8. However on PPC64 ar-
chitectures, this is always a constant of 8 bytes. Thus a
given breakpoint request can be treated as valid or oth-
erwise depending upon the host processor. The arch-
specific structure is designed to contain only those fields
that are essential for proper initiation of a breakpoint re-
quest and all constant values are hard-wired inside the
architecture code itself.

4.1.2 Unaligned addresses

Certain processors have register layouts that impose
alignment requirements on the breakpoint address. The
alignment requirements are in consonance with the
breakpoint lengths supported on these processors. For
instance, in x86 processors the supported lengths as we
know are 1, 2, 4, and 8 bytes which in turn dictates that
the addresses must be aligned to 0, 1, 3, and 7 bytes.

2009 Linux Symposium • 153

4.1.3 Incorrect specification of monitored variable
name

The breakpoint interface is designed to accept kernel
symbol names directly as input for the location to be
monitored by the breakpoint registers. Invalid values
can be the result of incorrect symbol name. Since user-
space symbols cannot be resolved to their addresses in
the kernel, their breakpoint requests would fail if accom-
panied by a symbol name. As a means to resolve a con-
flict, that may arise when incoherent kernel symbol and
address are mentioned, the address is considered valid
and the supersedes the kernel symbol name.

4.1.4 Limitations of register allocation mechanism

The register allocation mechanism (as discussed in the
Design overview section above) may also result in fail-
ure of registration due to lack of debug registers despite
availability of a different numbered physical register.
This is identified as a limitation of the present debug
register allocation scheme, and virtualisation of debug
registers is planned as a solution for the same.

At the end of a successful registration request the user
can assume that the request for breakpoints are effected
by storing kernel-space request on all CPUs and user-
space requests only when the process is scheduled.

4.2 Hardware Breakpoint handler execution

Almost all of the hardware breakpoint exception han-
dling code is in architecture specific code. This is due
to the fact that each architecture handles the breakpoint
exception in its handler code differently.

However a few operations are common to the han-
dlers designed for x86 and PPC64. The primary ob-
jective of the exception handler is to trigger the func-
tion registered as a callback during breakpoint regis-
tration, which requires access to the correct instance
of struct hw_breakpoint that was provided to
the breakpoint interface during registration. The correct
breakpoint structure has to be deciphered from a set of
user-space and kernel-space breakpoint requests.

4.2.1 Identification of stray exceptions

But before that, the handler execution code must be re-
silient to recognise stray exceptions and ignore them.
Such stray exceptions can be the result of one of causes
detailed below.

Memory access operations on addresses that are outside
the monitored variable’s address range but within the
breakpoint length. For instance, on PPC64 processors
the DABR always monitors for memory access opera-
tions (as specified in the last two bits of DABR) in the
double word (8 bytes) starting from the address in the
register. However the user’s request would be limited to
only a given kernel variable (whose size is smaller than
a double-word). Hence any accesses in the memory re-
gion adjacent to the monitored variable falling within
the breakpoint length’s scope causes the breakpoint ex-
ception to trigger.

Lazy debug register switching causes stale data to be
present in debug registers (as discussed above in Sec-
tion 3.3) and can give rise to spurious exceptions. This
typically happens when a process accesses memory lo-
cations that were monitored previously by a different
process but are not reset due to lazy switching.

4.2.2 Identification of breakpoint structure for in-
vocation of callback function

The user-space breakpoint requests are thread-specific
and so, stored in the struct thread_struct,
while kernel-space breakpoints being universal are
stored in global kernel data structures, namely hbp_
kernel as noted above in Section 3.2.

On x86 processors, which provide four debug registers it
is more challenging to identify the corresponding break-
point structure, when compared to architectures that al-
low only one breakpoint at any point in time. Upon
encountering a breakpoint exception, the bit settings in
the status register for debugging DR6 is looked upon.
Based on the bits that are set, the appropriate breakpoint
address register (DR0-DR3) is understood to have been
the cause for the exception. Depending upon whether
the register was used by the kernel or user-space the
breakpoint structure is retrieved from either the kernel’s
global data structure or the process’ instance of the per-
thread structure respectively.

154 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

void unregister_kernel_hw_breakpoint(struct hw_breakpoint *);

void unregister_user_hw_breakpoint(struct hw_breakpoint *,

 struct task_struct *);

Figure 4: Hardware Breakpoint interfaces for unregis-
tration of kernel and user space addresses

Using such architecture-specific methods to identify the
appropriate breakpoint structure, the user-defined call-
back function is invoked.

This will be followed by post processing, which may
include single-stepping of the causative instruction in
architectures where the breakpoint exception is taken
when the impending instruction will cause the memory
operation monitored by the debug register.

Since the breakpoint handler is invoked through a noti-
fier call chain, the return code is used to decide if the
remaining handlers have to be invoked further. Detec-
tion of multiple causes for the exception will then be
required to choose the appropriate return code and will
form part of the post processing code.

4.3 Hardware Breakpoint unregistration

Hardware breakpoint unregistration is done by invoking
the appropriate kernel or user interface with a pointer to
the instance of breakpoint structure. An invocation to
the interface always results in successful removal of the
breakpoint and hence doesn’t return any value to indi-
cate success or failure. The interfaces are as shown in
4.

4.3.1 Need for per-cpu kernel breakpoint struc-
tures

It is much safer and easier to remove user-space break-
points, compared to kernel-space requests (refer to 7
section for a related issue). It requires updating of
the appropriate bookkeeping counters and per-thread
data structures containing breakpoint information (apart
from clearing the physical debug registers). While pro-
cessing user-space unregistration requests, if the break-
point removal causes the any member of hbp_user_
refcount[] to turn into zero (i.e., result in a state
where there are no threads using the debug register cor-
responding to the array index of the member that turned

Sample output from ksym tracer
tracer: ksym_tracer
#
TASK-PID CPU# Symbol Type Function
| | | | |
bash 30897 3 pid_max RW .do_proc_dointvec_minmax_conv+0x78/0x10c
bash 30897 3 pid_max RW .do_proc_dointvec_minmax_conv+0xa0/0x10c
bash 30897 3 pid_max RW .alloc_pid+0x8c/0x4a4
bash 30897 1 pid_max RW .alloc_pid+0x8c/0x4a4

Figure 5: Sample output from ksym tracer collected
when tracing pid_max kernel variable for read and write
operations

zero), it indicates the availability of one new free debug
register since the last user of that debug register has re-
leased the resource.

Kernel-space breakpoints are loaded onto all debug reg-
isters to the obvious fact that the kernel-code may be
executed on any and all processors at any given point
of time unlike the thread-specific breakpoints which run
only on one processor at any given instant.

Thus a removal request for kernel-space breakpoints
should be propagated to all processors (in the same fash-
ion as a registration request) through inter-processor in-
terrupts. The process of unregistration is complete only
when the callbacks through the IPI in each of the CPU
returns.

5 Beyond debugging of memory corruption—
Ftrace, memory access tracing and data pro-
filing

The ksym tracer is a plugin to the ftrace framework that
allows a user to quickly trace a kernel variable for cer-
tain memory access operations and collect information
about the initiator of the access.

It provides an easy-to-use interface to the user to accept
the kernel variable and a set of memory operations for
which the variable will be monitored. While, it is cur-
rently restricted to trace only in-kernel global variables,
the ksym_tracer’s parser can be extended to accept mod-
ule variables and kernel-space addresses as input.

These traces can help in profiling memory access oper-
ations over data locations such as read-mostly or write-
mostly.

2009 Linux Symposium • 155

Operation / Machine register_kernel unregister_kernel
System A System B System A System B

Trial 1 5066 5770 244 24
Trial 2 5319 6279 204 21
Trial 3 5309 6193 228 20
Trial 4 6068 6092 206 18

Table 2: Time taken for (un)register_kernel operation in
micro-seconds

6 Overhead measurements of triggering
breakpoints

Readings of the following measurements have been tab-
ulated.

• Table 2 – Contains overhead measurements for reg-
ister and unregister requests on two systems.

• Table 3 – Average time taken for the breakpoint
handler execution with a dummy trigger in four dif-
ferent trials on two systems.

The trials were conducted on two machines, System A
and B whose specifications are as below.

System A – 24 CPU x86_64 machine Intel(R) Xeon(R)
MP 4000 MHz

System B – 2 CPU i386 Intel(R) Pentium(R) 4 CPU
3.20GHz

These systems, chosen for tests are sufficiently diverse
in the number of CPUs in them to expose the overhead
caused by of IPIs in the (un)register_kernel_
hw_breakpoint() operations. The readings were
taken without any true workload on the systems.

While the overhead for unregister operations is greater
in System A (with many CPUs), interestingly this be-
haviour does not manifest during the register operations
(Refer to Table 2).

7 Challenges

Among the the goals set during the design of the hard-
ware breakpoint infrastructure, a few to mention are:

• provide a generic interface that abstracts out
the arch-specific variations in breakpoint facility
and allowing the end-user to harness this facility
through a consistent interface

Operation / Machine Breakpoint handler
System A System B

Trial 1 2230 4677
Trial 2 1980 4255
Trial 3 1805 4224
Trial 4 1644 4035

Table 3: Time taken for breakpoint handler with a
dummy callback function (in nano-seconds)

• provide a well-defined breakpoint execution han-
dler behaviour despite the nuances in such
as trigger-before-execute and trigger-after-execute
(which are dependant on the type of breakpoint and
the host processor)

• balance between the the need for a uniform be-
haviour and exploitation of unique processor fea-
tures

The implementation of such goals gave rise to chal-
lenges, some of which are discussed here.

7.1 Ptrace integration

The user-space has been the most common user of hard-
ware breakpoints through the ptrace system call. Ptrace
interface’s ability to read or write from/into any phys-
ical register has been exploited to enable breakpoints
for user-space addresses. While it required little or no
knowledge about the host architecture’s debug registers,
it remained the responsibility of the application invoking
ptrace (such as GNU Debugger GDB) to be a knowl-
edgeable user and activate/disable them through appro-
priate control information.

For instance, on x86 processors containing multiple de-
bug registers and dedicated control and status registers
(unlike in PPC64 where the control and debug address
registers are composite), operations such as read and
write become non-trivial—i.e., every request for a new
breakpoint must require one write operation on the de-
bug address register (DR0 - DR3) and one for the control
register.

Since ptrace is exposed to the user-space as a system
call it is important to preserve its error return behaviour.
Achieving this becomes complicated because of the fact
that ptrace and its user in the user-space assumes exclu-
sive availability of the debug registers and are ignorant

156 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

of any kernel space users. Hence, the number of avail-
able registers may be lesser than the ptrace user’s as-
sumption and may result in failure of request when not
expected.

On architectures like x86 where the status of multiple
breakpoint requests can be modified through one ptrace
call (using a write operation on debug control register
DR7), care is taken to avoid a partially fulfilled request
to prevent the debug registers from gaining a set of val-
ues that is different from the ptrace’s requested values
and its past state. Consider a case where, among the
four debug registers, one was active and the remaining
three were disabled in the initial state. If the new re-
quest through ptrace was to de-activate the single active
breakpoint and enable the rest of them, then we do not
effect the breakpoint unregistration first but begin with
the registration requests and this is done for a reason.

Supposing that one of the breakpoint register operation
fails (due to one of the reasons noted above in Section
4.1) and if it was preceded by the unregister operation
the result of the ptrace call is still considered a failure.
The state of the debug registers must now be restored to
its previous one which implies that the breakpoint un-
registration operation must be reversed. Under certain
conditions this may not be possible leaving the debug
registers with an altogether new set of values.

Thus all breakpoint disable requests in ptrace for x86 is
processed only after successful registration requests if
any. This prevents a window of opportunity for debug
register grabbing by other requests thereafter leading to
a problem as described above.

7.2 Synchronised removal of kernel breakpoints

A kernel breakpoint unregistration request would re-
quire updating of the global kernel breakpoint structure
and debug registers of all CPUs in the system (similar
to the process of registration). However every processor
is susceptible to receive a breakpoint exception from the
breakpoint that is pending removal although the related
global data structures may be cleared by then causing
indeterminate behaviour.

This potential issue was circumvented by storing a per-
cpu copy of the global kernel breakpoint structures
which would be updated in the context of IPI process-
ing. It enables every processor to continue to receive and

handle exceptions through its own copy of the break-
point data until removed. Although this generates mul-
tiple copies of the same global data, it is much preferred
over the alternatives such as global disabling of break-
points (through IPIs) before every unregister operation,
due to the overhead associated with processing the IPIs
(Refer Table 2 for data containing turnaround time for
register/unregister operations).

8 Future enhancements

Enhanced abstraction of the interface to include defini-
tions of attributes that are common to several architec-
tures (such as read/write breakpoint types), widening the
support for more processors, improvements to the ca-
pabilities, interface and output of ksym_tracer; cre-
ation of more end-users to support the breakpoint infras-
tructure such as “perfcounters” and SystemTap in inno-
vative ways are just a few enhancements contemplated
at the moment for this feature.

Virtualised debug registers was a feature in one of the
versions of the patchset submitted to the Linux commu-
nity but was eventually dropped in favour of a simplified
approach to register allocation. The details of the feature
and benefits are detailed below.

8.1 Virtualisation of Debug registers

In processors having multiple registers such as x86, re-
quests for breakpoint from ptrace are targeted for spe-
cific numbered debug register and is not a generic re-
quest. While this mechanism works well in the absence
of any register allocation mechanism and when requests
from user-space have exclusive access to the debug reg-
isters, their inter-operability with other users is affected.

The hardware breakpoint infrastructure discussed here,
mitigates this problem to a certain extent by using the
fact that requests from ptrace tend to grow upwards—
i.e., starting from the lower numbered register to the
higher ones.

A true solution to this problem lies in creating a thin
layer that maps the physical debug registers to those re-
quested by ptrace and allow the any free debug regis-
ter to be allocated irrespective of the requested regis-
ter number. The ptrace request can continue to access
through the virtual debug register thus allo-
cated.

2009 Linux Symposium • 157

8.2 Prioritisation of breakpoint requests

Allow the user to specify the priority for breakpoint re-
quests to be handled. If a breakpoint request with a
higher priority arrives, the existing breakpoint yields the
debug register to accommodate the former. An accom-
paniment to this feature would be the callback routines
that are invoked whenever a breakpoint request is pre-
empted or regains the debug registers on the processor.
This is done at the time of every new registration to bal-
ance the requests and accommodate requests based on
their priorities.

This feature was a part of the original patchset but was
subsequently removed based on community feedback
[4].

9 Conclusions

The Hardware Breakpoint infrastructure and the as-
sociated consumers of the infrastructure such as
ksym_tracer makes available a hitherto scarcely
used hardware resource to good use in newer ways such
as profiling and tracing apart from their vital roles in de-
bugging. The overhead in taking a breakpoint, as our
results in Section 6 show are tolerable even in produc-
tion environments and if any would be the result of the
user-defined callback function. It is hoped that when
the patches head into the mainline kernel, a wider user-
feedback and testing will help evolve the infrastructure
into a more powerful and robust one than the proposed.

10 Acknowledgements

The author wishes to thank his team at Linux Technol-
ogy Centre, IBM and the management for their encour-
agement and support during the creation of the hardware
breakpoint patchset and the paper.

The profound work done by Alan Stern, whose patch-
set and ideas were the foundation for the present code in
-tip tree, and an earlier patchset from Prasanna S Pan-
chamukhi need a mention of thanks from the author.

The design of this feature is heavily influenced by sug-
gestions from Ingo Molnar and code was vetted by
Ananth N Mavinakayanahalli, Frederic Weisbecker and
Maneesh Soni; also benefiting from the in-depth review

of the patches by Alan Stern. The author gratefully ac-
knowledges their contribution.

Special thanks to Balbir Singh for initiating the author
into the creation of this paper and being a great source
of encouragement throughout.

The author wishes to thank Naren A Devaiah and the
IBM management who generously provided an oppor-
tunity to work on this feature and paper, without which
its presentation at the Linux Symposium 2009 wouldn’t
have been possible.

11 Legal Statements

c© International Business Machines Corporation 2007. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM logo, ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

158 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

References

[1] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2008.
www.intel.com/Assets/PDF/manual/
253669.pdf.

[2] International Business Machines Corporation.
Power ISATMVersion 2.05, 2007.
http://www.power.org/resources/
reading/PowerISA_V2.05.pdf.

[3] K. Prasad. Hardware breakpoint interfaces, June
2009.
http://lkml.org/lkml/2009/6/1/282.

[4] K. Prasad. Introducing generic hardware
breakpoint handler interfaces, March 2009. http:
//lkml.org/lkml/2009/3/10/183.

Shoot first and stop the OS noise
Dealing with microsecond latency requirements

Christopher Lameter
Linux Foundation

cl@linux-foundation.org

Abstract

Latency requirements for Linux software can be ex-
treme. One example is the financial industry: Who-
ever can create an order first in response to a change
in market conditions has an advantage. In the high
performance computing area a huge number of calcu-
lations must occur consistently with low latencies on
large number of processors in order to make it possi-
ble for rendezvous to occur with sufficient frequency.
Games are another case where low latency is important.
In games it is a matter of survival. Whoever shoots first
will win.

An operating system causes some interference with user
space processing through scheduling, interrupts, timers,
and other events. The application code sees execution
being delayed for no discernible reason and a variance
in execution time due to cache pollution by the operat-
ing system. Low latency applications are impacted in a
significant way by OS noise.

We will investigate issues in software and hardware for
low latency applications and show how the OS noise has
been increasing in recent kernel versions.

1 Introduction

Operating system noise is something of a mystery to
most user space programmers. The expectation by those
writing the application is that the operating system is
simply letting the application run. Users see the main
function of the Operating System to provide resources
for the program to run effectively. In the case of OS
noise the Operating System itself becomes a problem
because the OS is interfering with the application by
making uses of the processor for maintenance tasks or
operating system threads that also have to run on the

processor. Running OS code may impact the applica-
tion which will not perform as expected. The execution
times of critical code segments in the application may
vary a lot without any discernible reason. One hears
complaints from users that the OS should just get out
of the way. The problem becomes more severe as the
number processors increases and as interconnects be-
come faster.1 The timing requirements for critical sec-
tions move from milliseconds to microseconds. Modern
processors can perform a significant amount of work in
a microsecond provided that there are no latencies asso-
ciated with the data needed for processing. Therefore,
processor caches have a significant effect on the laten-
cies of critical code segments. The OS code causes dis-
turbances in the processor caches that has an effect long
after the application continues execution.

The problem was first noticed first in High Performance
Computing.2 HPC applications typically go through a
highly parallel calculation phase and then a rendezvous
phase in which the results of the calculations are ex-
changed. It was noted that the calculation phase was
rarely performing within the boundaries expected. The
problem became worse as the number of processor in-
creased. The investigation found that the rendezvous
phase will be delayed if any one of the processes is held
up due to OS interference (like for example a timer in-
terrupt). The more processors exist the more likely the
chance that OS interference will cause a delay. This is
especially severe on Linux due to the staggering of the
timer interrupts over all processors in the system. As
a result the timer interrupts will not run all at the same
time (which would potentially overload the interconnect
between the processors). The more processors a sys-
tem has the shorter the period that no timer interrupt is
running on any processor and the more likely that the

1Infiniband hardware can f.e. perform transfers between machine
in 1-3 microseconds!

2See especially Petrini, 2003

• 159 •

160 • Shoot first and stop the OS noise

rendezvous phases are delayed due to a single proces-
sor being hit with OS interference. This can lead to se-
vere performance regressions so that some vendors have
started to modify the scheduler to have special synchro-
nized periods dedicated to OS processing in order to be
able to execute concurrently on all processors without
OS interference during other times.3

In the financial industry we see a arms race to lower
latencies.4

Latencies for the exchange of financial data and for trad-
ing used to be measured in milliseconds but that has now
come to focus on microseconds. Whoever can react in
the fastest way to changing market conditions may take
advantage of a favorable trade opportunity. The latency
requirements in the financial sector focus more on net-
working and on the need of fast processing of huge and
complex sets of data. The classic decision support sys-
tem (DSS) paradigm is taken to extremes there. Stop-
ping the noise results in concrete market advantages.

A similar move is seen in the gaming industry. There
also a growing focus on smaller and smaller intervals
for critical processing develops. If interactive computer
games are played over the Internet then the focus is
mostly on millisecond latencies since the WAN links
do not allow smaller latencies. This limits the rich-
ness of interactivity of computer games. Recently there
has been an increased move towards putting interactive
games on LANs where players are in local proximity
(LAN parties). Gaming software can exchange large
sets of information in sub millisecond time frames in
such configurations. There it is likely that we will also
facing issues with microsecond latency demands in the
future and therefore OS noise is also becoming factor.
OS noise there can determine whoever will be able to
shoot first. One side effect of latency in shooter games
is that the bullet of the slower machine seems to hit the
target (since the slower machine was not able to acquire
the updated position of the enemy) but the enemy takes
no damage since the person has already moved on in the
game servers reckoning and the game server determined
that the shot missed the target. The enemy is hit, it dies
a horrible death on the screen of the shooter and then
suddenly continues running down the corridor.5

3See Beckman 2008, 5. Tsafir 2008, section 4. Petrini 2003, 10
4F.e. 29West–a major player for middleware in the financial

area–recently announced a vision for zero latency.
5See http://en.wikipedia.org/wiki/Multiplayer

2 What is Operating System Noise

What exactly is Operating System noise? The common
definition in use is any disturbance caused by the OS
making use of a processor. I would like to extend that
definition to cover everything not under the control of
the application that has a negative impact on perfor-
mance and latencies observed by code running in user
mode. This goes beyond the strict notion of OS noise
and more towards a notion of general noise (maybe bet-
ter called system noise) that impact on an applications
performance. Noise is not only the result of interrup-
tion of code execution (be it the periodic timer interrupt,
device interrupts, software interrupts, faults and so on)
but also memory subsystem disturbances due to the Op-
erating Systems putting pressure on the cache subsys-
tems of the processor which causes application cache
line refetches.6

The use of on chip resources of a CPU by an OS or an-
other application are important. Resources commonly
available are the processor caches, the TLB entries, page
tables and various register copies. Contention on all
these levels can reduce the performance of the appli-
cation. If the OS scans through a large list of objects
in a regular way7 then a large number of TLB entries
may be evicted that have to be re fetched from mem-
ory later. If memory becomes scarce and the OS evicts
pages from memory then the eviction may have a signif-
icant latency effect since the evicted pages will have to
be re-read from secondary storage (such as a hard disk)
when it is needed again.

Processors are also not isolated from each others. The
notion of “CPU” that the Linux OS has is basically a
hardware managed execution context. These can share
caches with other “CPUs” on various levels. If cache
sharing occurs between multiple of the CPUs then a
process on another processor can cause cache lines of
the application to be evicted, can use TLB lines and
other processor resources that cause latencies for the ap-
plication. The most significant effects occurs if multi-
ple execution context share all resources of the proces-
sor like for example in hyper-threading. Operating sys-
tem schedulers (like the Linux scheduler) currently only
have simple handling of these dependencies and rely

6According to Beckman cache line eviction is the major effect
increasing the latency of critical sections. But that may depend on
the type of load running.

7Like for example done by the SLAB allocator in Linux

2009 Linux Symposium • 161

mainly on heuristics. This leads to a situation in which
increasing load customarily leads to a general slowdown
of all processes running on the machine once all cpus are
actively processing data.

3 Latency Overview

In order to talk in a meaningful way about latencies it is
important to know what these time frames represent in
reality. One thing that is often forgotten is that telecom-
munication or general signal latencies are limited by the
speed of light (300.000km/sec). The relativistic limits
become significant when signals have to run over long
distances. Whenever signals must travel across a WAN
link latencies in the range of milliseconds become un-
avoidable. Signals travel over fiber optic or copper links
at the speed of around 200.000km/sec. Since the earth
has a circumference of 40.000km: A signal that is sup-
posed to reach any point on the earth (the earth is round
so we can reach any point within 20.000km) must ac-
count for a minimal latency of 1/10th of a second.

Here is a list of latencies and how they apply to network-
ing and OS events. Each latency includes the notion of
a distance that a signal can have traveled in that latency
period:

3.1 1 second

• Time needed for light to reach the moon.

3.2 100 milliseconds

• A signal can reach all of the earths surface.

• Minimum human reaction speed.

• Timer interrupt interval for Linux systems config-
ured with 100 HZ.

• Half of the TCP retry interval and SYNACK inter-
val

• Typical Internet latency for high speed consumer
grade links

3.3 10 milliseconds

• 2000km distance. Reach surrounding metropolitan
areas.

• Timer interrupt interval for systems configured
with 1000 HZ.

• Major fault (page needs to be read in from disk).

• Rescheduling to a different process on the same
CPU.

3.4 1 millisecond

• 200km distance. Reaches systems in your city.

• Sound travels 34 centimeters. A signal from a
speaker reaches your ear.

• Average seek time of a hard disk.

• Camera shutter speed.

3.5 100 microseconds

• 20km. Signal confined to local LAN or building.

• Maximum tolerable interrupt hold off.

• Best Ethernet ping pong times on 1G between
neighboring systems.

3.6 10 microseconds

• 2km. Signal confined to local LAN.

• Minor page fault (Copy on write after fork).

• Duration of time interrupt.

• Duration of typical hardware interrupt.

• Typical IRQ hold off period if kernel disables in-
terrupts.

• Duration of a system call.

• Context switch.

• Relativistic time distortion in GPS systems that
needs to be compensated for.

162 • Shoot first and stop the OS noise

3.7 1 microsecond

• 200m. Local LAN.

• Resolution of gettimeofday() system call.

• Duration of a vsyscall

• PTE miss and reloading of TLB

• Start of hardware interrupt processing

3.8 100 nanoseconds

• 20m. Within your room.

• Cache miss. Time needed to fetch data from mem-
ory.

• TLB miss.

Signalling latencies are currently a major restriction for
building large supercomputers. The latency of memory
subsystems can only be reduced if the subsystems are
packed in a dense way. If the memory is over 20m away
from the processor (even less in reality) then the time it
takes the signal to travel across the wire will take up a
major portion of the latency. It really does not matter
how fast the memory is if its physically too far away.

Similarly one has to be careful of offers of “faster” DSL
lines or network connections. “Faster” not mean that the
speed of the data going across the wire is increased. It
means that the number of bytes that can be transmitted
at one time is increased. “Faster” DSL means a higher
capacity link not that there will be any real increase in
transmission speed. For gamers the distance to the game
server is really important. If you live far away from the
population centers then one is usually at a severe disad-
vantage due to signal run latencies. Others will shoot
first and you will shoot and hit them but they wont get
killed. The only solution for gamers to be able to shoot
first is to figure out where the game serves are located
and move nearer to them.

I keep getting questions about how to make things faster
in terms of latency but the laws of physics are squarely
in the way here. There is no solution in sight. Maybe
someone can rework physics to show us how its done?
Then maybe we can quantum tunnel signals, use warp
drive bend time and space to fix this issue. If we can do
that then we can likely also do all the other nice stuff
that shows up in space fiction movies.

4 Characteristics of Noise

There are a couple of way to characterize noise. Noise
can be seen as an interruption of the execution of the
application. Noise in this form is a simple DoC (Denial
of CPU) by the OS and can be measured by repeatedly
taking time stamps. If the difference is higher than usual
then some outside influence interrupted the process and
stole processing time. It is typical to set some limitation
of a boundary over which a delay is long enough to be
considered a notable noise event. The important charac-
teristics of noise that emerge from this method are the
noise duration and their frequency.

Noise also has an influence on the execution speed of
code through additional cache misses, TLB misses and
internal processing within the processor. It is far more
difficult to measure these effects. If the execution speed
of a given segment of code is known then the devia-
tion can be determined by also measuring the execution
speed of a segment. However, that is only possible for
code segments that can be executed repeatedly with the
same data. The noise can then be quantified in the per-
centage of slowdown in the code segment due to noise
interference.8

Noise interacts with the application in various ways.
There are applications that are sensitive to certain types
or noise and can tolerate others. Typically one assumes
a linear correlation of the noise due to application per-
formance. However the noise can resonate with process-
ing intervals of the application which can then lead to a
butterfly effect that amplifies the delays in the applica-
tions. The intervals of communication of the application
are of importance. If the application does not frequently
exchange information with other processes then the im-
pact of fine grained noise (as usually presented by an
OS) is minimal. However, if information exchanges oc-
cur frequently then the final grained noise can affect the
critical communication paths and significant effects can
develop.9

Some researchers have found that noise below the 1 mi-
crosecond boundary usually does not cause significant
harm.10 In the following surveys we will adopt 1 mi-
crosecond as a boundary for an OS event that is consid-
ered significant for our investigations.

8The measuring points will add additional latencies and cause
more disturbance of processor resources in addition to the OS noise

9Petrini, 2003
10Tsafir 2008, under section 3.2 Granularity

2009 Linux Symposium • 163

4.1 Sources of noise

• The Linux scheduler is a prime cause for OS noise.
Even if a process runs on an otherwise idle sys-
tem: The scheduler will reschedule another pro-
cess on any processor at least once a second (invol-
untary context switches). These context switches
can be avoided by setting a real time priority
(SCHED_RR or SCHED_FIFO). But real time pri-
orities still do not stop the OS from processing
maintenance code on the same processor. Espe-
cially the scheduler softirq will still be executed
from the timer interrupt to keep statistics and check
if other processes should be run on the processors.
The scheduler is currently not designed to leave a
running process alone.

• The Linux timer interrupt occurs with HZ fre-
quency every second. Typically kernels are run
with 1000 HZ meaning that a noise event occurs
every millisecond. The timer interrupt in turn may
run various regular maintenance tasks that increase
the length of the events impacting the application.

The kernel has an option to enable a tickless system
(CONFIG_NO_HZ) but the tick is only switched
off if a processor is idle. A busy processor will in-
variably get hit by the timer tick. The description of
CONFIG_NO_HZ as enabling a “tickless system”
is a bit misleading.

There are other options for how to schedule OS
maintenance events. Solaris only has a timer in-
terrupt on processor 0. All other processors are
left alone. The scheduler executing on processor
0 schedules the processes running on the other pro-
cessors. On Solaris it is important to run processes
on other processors in order to reduce OS noise.11

• Cache disturbances

If multiple cpus (hardware execution context) share
the same caches then another executing process on
other cpus has access to processor resources nec-
essary for execution. This is particularly signifi-
cant if the processor supports hyper threading. All
caches are shared then. L2 and L3 caches are also
frequently shared between multiple processors.

• TLB miss

TLB misses occur when the cache of virtual to
physical mappings of the processors get exhausted.

11Radojkovic 2007, 5

This is common if a threads memory accesses are
sparse or are randomly covering large memory ar-
eas. Pointer chasing is a typical application that
creates TLB misses. If the working set of a process
becomes larger than the TLB coverage then it is
possible that every memory access requires a new
TLB fetch. If the TLB use of an application is high
then OS processing may cause key TLB entries to
be evicted.

TLB resources are typically shared between multi-
ple cpus meaning that the full TLB coverage is not
available for single processor.

• Major page fault

Major page faults involve bringing in a page from
secondary storage (usually a hard disk). These are
also a major causes of latency. Major faults are
avoided by read ahead functionality of the file sys-
tem. If the system detects linear reads from a disk
device then multiple of pages are read in anticipat-
ing future faults. If read ahead has been performed
for a page then only a minor fault will be generated.

Major faults can accumulate if the OS starts to evict
pages from memory that have been rarely used. If
the pages that are missing from the process are rela-
tively sparsely spread over large areas of secondary
storage then the read ahead logic will be ineffec-
tive and each page fault may cause long latencies.
From the application perspective these are not dis-
cernible from OS noise. The application accesses
a memory location which results in an unexpected
major delay.

• Minor page fault

A minor fault is making a page visible to a process
that has never accessed it before. If another pro-
cess or read ahead has already brought a page into
memory then a minor fault involves settings up the
page tables so that the page becomes visible in the
address space of a process.

A minor fault can also occur when writing to the
memory of a page. In that case we may have to
copy the page (Copy-On-Write = COW) or update
page dirty statistics.

• System threads

The Linux kernel itself creates threads that are used
for scheduling background write out, event han-
dling and so on. File systems and other kernel

164 • Shoot first and stop the OS noise

subsystems create their own background processes.
These are usually fixed to a specific processor. The
way to keep these quiet is not do perform actions
that require background activities on a processor.
The activities of these threads will shut down after
some idle time of the subsystems.

It is fairly typical for these threads to only cause
minor delays. However, the scheduler has to per-
form a context switch to the threads and back. The
overhead increases significantly if large lists have
to be processed (LRU expiration of inodes, slab ob-
ject expiration).

• User space background daemons

The user space background daemons are mostly
created during boot up and have various adminis-
trative functions. It is possible to bind these pro-
cesses to specific processors through the taskset
tool. These background daemons can cause partic-
ularly long hold offs. Notorious examples are log-
ging daemons that can issue fsync() system calls to
force the log messages onto disk which may cause
long delays due to synchronous write outs to disk.

5 Utilities to measure noise

I found no tools to measure noise under Linux
so I created a series of test programs available at
http://gentwo.org/ll. A small introduction to some of
their features.

5.1 Low latency library

The low latency library (ll) contains basic function to
obtain time stamps in a variety of magnitudes in an in-
expensive way via the time stamp counts. Logic is in-
cluded to determine the processors characteristics and
the cache layouts from user space. These are basic ne-
cessities for measuring intervals in an accurate way with
the least impact on a user space program and for tuning
a user space application to the cache size or number of
cores available.

5.2 latencytest

latencytest is a tool that continually retrieves the value
of the time stamp counter and compares with the last

time stamp obtained before. If a certain threshold (de-
fault 1 microsecond) is reached then the event is regis-
tered as a noise event. Latencytest produces a histogram
and prints out statistics regarding the intervals observed.
Latencytest monitors various scheduler statistics about
itself and will note if the scheduler moves the process
to another processor or performs a context switch away
from the process.

Latencytest is a test load that can be run while other sys-
tem activity is going on or with special scheduler param-
eters to see how the scheduler would change the treat-
ment of a process.

The code used to determine how scheduling can affect
the test load can be used as sample code to instrument
a user space program. Typically these would be used to
determine characteristics of key critical code segments.

5.3 latencystat

latencystat is able to display latency statistics of any
process in the system via the /proc/<pid>/schedstat in-
formation. It is comparable to vmstat and displays con-
tinually how long a process ran without another process
having been scheduled and determines the average wait
time from the point that a process became runnable until
the scheduler gave the processor to the process.

5.4 trashcache

trashcache is a program that runs forever and does ran-
dom memory accesses in order to trash the processor
caches. Running trashcache on a sibling CPU can be
used to gauge the impact of CPU cache thrashing on a
user space process.

5.5 OS diagnostics

The operating system itself has counters for scheduler
events that one can query f.e. via the getrusage() system
call. Example code can be found in the source code for
the latencytest tool.

5.6 udpping

udpping is another tool to measure OS noise by sending
network packets back and forth between two systems.
The UDP ping pong is the fastest time to communicate
between two hosts using the IP stack. Noise shows up
as variances of transfer times between both system.

2009 Linux Symposium • 165

6 Some OS noise measurements under Linux

The tools above can be used to measure the OS noise
characteristics under Linux. Here we measured a com-
pletely idle system and see what the effect of the OS has
on a simple test load (latencytest tool). It is important to
note that this is the best scenario that can ever happen for
the given kernel version. There will be numerous addi-
tional disturbances through cross-cache effects, system
and user space daemons and so on if the system would
be running a realistic load. What we measure here is a
best case scenario. Everything else is guaranteed to be
worse than what we measure.12

First a test running latencytest for various kernel ver-
sions. The tests are run for 10 seconds each and we
record events longer than 1 microsecond. Most of the
events recorded are timer interrupts of a duration longer
than 1 microsecond. Timer interrupts may occur that are
less of one microsecond in duration but these low laten-
cies are only reached during favorable conditions when
not much work is to be done from the timer interrupt
and if the queue of functions to call is small. The test
load does not have a large cache footprint (fits nicely
into the L1 cache) meaning that most of the cache lines
used for the timer interrupt will remain in memory. The
processor in use here is a Penryn, dual quad core (Xeon
X5460) at 3.16Ghz.

Version Test 1 Test 2 Test 3 Sum
2.6.22 383 540 667 1590
2.6.23 2738 2019 2303 7060
2.6.24 2503 573 583 3659
2.6.25 302 359 241 902
2.6.26 2503 2501 2503 7507
2.6.27 2502 2503 2478 7483
2.6.28 2502 2504 2502 7508
2.6.29 2502 2490 2503 7495
2.6.30 2504 2503 2502 7509

Table 1: Latency events >1 microseconds for a number
of kernel versions

The number of noise events was initially quite low. With
2.6.23 (which introduced a new scheduler) we see a sig-
nificantly higher number of noise events. Things im-
proved with 2.6.24. In 2.6.25 we had a significant reduc-
tion of the OS noise to the smallest value seen. However,
that was lost in 2.6.26.

12For a worse case run a latencytest during a kernel compile

The tests were run on a “tickless” system (CON-
FIG_NO_HZ is set) because the description for a “tick-
less” system given was that the timer interrupt only oc-
curs as necessary. However, as seen here: The timer
interrupt seems to occur regularly.

Each test run 10 seconds and in those 10 seconds 2500
time 1 HZ intervals occur since the kernel was config-
ured with 250 HZ. Therefore what we see here are must
be timer interrupts causing noise. The timer interrupt
in 2.6.22 and 2.6.25 ran less than 1 microseconds other-
wise the latencytest tool would have registered them.

The next test shows the average length of the noise
events registered.

Version Test 1 Test 2 Test 3 Average
2.6.22 2.55 2.61 1.92 2.36
2.6.23 1.33 1.38 1.34 1.35
2.6.24 1.97 1.86 1.87 1.90
2.6.25 2.09 2.29 2.09 2.16
2.6.26 1.49 1.22 1.22 1.31
2.6.27 1.67 1.28 1.18 1.38
2.6.28 1.27 1.21 1.14 1.21
2.6.29 1.44 1.33 1.54 1.44
2.6.30 2.06 1.49 1.24 1.60

Table 2: Duration of Latency events >1 microseconds
for a number of kernel versions

The tests shows that the time spend in the timer in-
terrupts gradually increases. Interestingly 2.6.22 and
2.6.25 have much longer noise durations. The long du-
rations may be a consequence of the OS batching mul-
tiple events in fewer timer events. The remaining timer
events have less processing to do and therefore their pro-
cessing time may under the 1 microsecond boundary. A
significant portion of timer events in 2.6.22 and 2.6.25
took less than 1 microsecond.

We see the effect of kernel bloat in 2.6.28, 2.6.29 and
2.6.30. The average time spend in the timer interrupt
gradually increases. This causes more and more regres-
sions for latency sensitive applications. The question
is what is worse: Batching events to have fewer noise
above 1 microsecond of longer duration or having more
events with a smaller duration.

The above results suggests a simple way to reduce the
frequency of OS noise in the Linux kernel: Reduce
the frequency of the timer interrupts. In the follow-
ing measurements we let latencytest run for 60 seconds

166 • Shoot first and stop the OS noise

and measure the number of noise events: Once with
SCHED_OTHER which allows the scheduler to sched-
ule other processes on the processor (although there is
nothing else running on the system). And the second
time with a real time priority SCHED_FIFO which does
not allow the scheduler to take away the processor and
give it to another process (but the kernel can still execute
any of its threads and thereby create OS noise).

HZ Events Duration CSw RT RT
events dur.

18 1088 2.76 76 893 2.41
60 6042 2.62 95 6013 2.43

100 6012 2.47 103 6011 2.60
250 15024 2.52 94 15012 2.56
300 18022 2.16 65 18021 2.31

1000 60047 2.10 63 60043 2.20
4000 240139 2.00 61 240145 2.12

Table 3: Kernel Latency events depending on the timer
interrupt frequency

The kernel supports timer interrupt frequencies (HZ)
from 16 HZ to 4000 HZ. The arch specific configura-
tion on x86 only allowed for 100-1000 HZ. A patch was
used to extend the range of timer interrupt rates.

The effect of RT priorities is a bit disappointing. RT
priorities do not significantly reduce the OS noise. RT
scheduling prohibits context switches but these have a
minor impact here. Pretty worrying is that in ranges
higher than 250 HZ the overhead for RT scheduling in-
creases and the timer interrupts become longer for RT
scheduling despite the additional context switches that
occur for SCHED_OTHER.

The duration of the timer events slightly decreases as
the number of timer interrupts per second is increased.
However, the change in duration does not seem to be that
significant. This suggests that it may be best to reduce
HZ as much as possible especially since high resolution
timers are used in various places in the kernel now were
accurate reaction to timeouts is important.

Since we saw that CONFIG_NO_HZ does not eliminate
the HZ frequency interrupts while a process is executing
it is interesting to see how a kernel would behave with-
out CONFIG_NO_HZ. Surprisingly OS noise is signifi-
cantly reduced by switching CONFIG_NO_HZ off. The
number of involuntary context switches is reduced. Av-
erage durations are significantly reduced. The number
of events over 1 microseconds drops by half for 1000

HZ Events Duration CSw
18 1084 7.37 62
60 6016 2.02 63

100 6037 1.46 98
250 15016 1.87 61
300 18018 1.40 62
1000 34597 1.30 79
4000 151744 1.25 92

Table 4: Kernel Latency events for a system with ticks
during 60 seconds

HZ and 4000 HZ. Switching off idle processor seems
to be a very scheduler intensive activity. It is good for
power consumption but it does not reduce the system
noise as one would have expected.

7 Conclusion

The noise is there in the Linux kernel and it is gradually
increasing as the kernel gets bloated with new features.
I think it is necessary to keep an eye on the latencies
created by the OS since we are seeing regressions when
using newer kernels for latency sensitive applications.

In order to reduce the noise created in the Linux kernel
we need to go beyond the real time scheduling policies
(SCHED_RR and SCHED_FIFO). The following mea-
sures may be useful:

• Not running a timer interrupt if not necessary.
Could we have a true tickless system? Currently
Linux claims to be tickless but the truth is that a
tick still is used when a process is running. A tick
makes sense if multiple processes are contending
for time on the same processor. If there is no other
process at the same or higher priority contending
then there is no need for a timer interrupt until the
processor voluntarily gives up the time slice or un-
til another process is created that can contend for
the processor. We already have high res timers. Is
it not possible to calculate how long a process is
allowed to run and have the scheduler processing
only occur when we reach that point?

If multiple processors are contending for a proces-
sor and we assign a time slice to a processor then
there still is no reason to run an timer interrupt be-
fore the end of that time slice. The OS needs to
have a concept of an on demand timer interrupt that
is only enabled on request.

2009 Linux Symposium • 167

• The scheduler needs to be more aware of the cache
relationships between multiple “CPU”s that the OS
knows about. The chance is good that threads of
the same process will share data and therefore it is
essential that the scheduler put threads of the same
process on cpus that share CPU caches. If a process
is running on one CPU and is marked as latency
sensitive (using SCHED_RR and SCHED_FIFO)
then scheduling on a sibling needs to be avoided
as much as possible to leave the CPU cache undis-
turbed.

• It may be useful to make processor 0 a special pro-
cessor that is used for system tasks. It could have
a special role that the scheduler is aware of (com-
parable to Solaris). Processor 0 is already special
because it is running a timer interrupt that is tasked
with keeping system time. Therefore the noise cre-
ated by processor 0 is already increased. Non la-
tency sensitive tasks could be scheduled on proces-
sor 0 to keep needless noise away from the other
cores. High priority tasks can then be scheduled on
the other processors as needed whereas lower pri-
ority user space tasks (such as the regular daemons)
could be mostly scheduled on processor 0.

• Processor 0 could take over tasks from other pro-
cessors (like scheduling for idle processors). If a
processor is busy and no CPU specific events are
scheduled on a processor then processor 0 could
take over managing the run queue and interrupting
the target CPU as the need arises.

8 References

Beckman, P., Iskra, K., Yoshii, K., and Coghlan, S.
2006. “Operating system issues for petascale systems.”
SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006), 29–33.

Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., and
Nataraj, A. 2008. “Benchmarking the effects of
operating system interference on extreme-scale parallel
machines.” Cluster Computing 11, 1 (Mar. 2008), 3–16.

Ferreira, K.B., Bridges, P., and Brightwell, R. 2008.
“Characterizing application sensitivity to OS
interference using kernel-level noise injection.” In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (Austin, Texas, November 15–21,
2008).

Van Hensbergen, E. 2006. “P.R.O.S.E.: partitioned
reliable operating system environment.” SIGOPS Oper.
Syst. Rev. 40, 2 (Apr. 2006), 12–15.

E. V. Hensbergen. “The effect of virtualization on OS
interference.” In Proceedings of the 1st Annual
Workshop on Operating System Interference in High
Performance Applications, August 2005.

Petrini, F., Kerbyson, D.J., and Pakin, S. 2003. “The
Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192
Processors of ASCI Q.” In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing (November
15–21, 2003). Conference on High Performance
Networking and Computing. IEEE Computer Society,
Washington, DC, 55.

Radojkovic, P., Cakarevic, V., Verdu Pajuelo, A.,
Gioiosa, R., Cazorla, F.J., Nemirovsky, M., and Valero,
M. 2008. “Measuring Operating System Overhead on
CMT Processors.” In Proceedings of the 2008 20th
international Symposium on Computer Architecture
and High Performance Computing (October
29—November 01, 2008).

Tsafrir, D., Etsion, Y., Feitelson, D.G., and Kirkpatrick,
S. 2005. “System noise, OS clock ticks, and
fine-grained parallel applications.” In Proceedings of
the 19th Annual international Conference on
Supercomputing (Cambridge, Massachusetts, June
20–22, 2005).

168 • Shoot first and stop the OS noise

Tuning 10Gb network cards on Linux
A basic introduction to concepts used to tune fast network cards

Breno Henrique Leitao
IBM

leitao@linux.vnet.ibm.com

Abstract

The growth of Ethernet from 10 Mbit/s to 10 Gbit/s has
surpassed the growth of microprocessor performance in
mainstream servers and computers. A fundamental ob-
stacle to improving network performance is that servers
were designed for computing rather than input and out-
put.

The processing of TCP/IP over Ethernet is traditionally
accomplished by a software running on the central pro-
cessor of the server. As network connections scale be-
yond Gigabit Ethernet speeds, the CPU becomes bur-
dened with the large amount of TCP/IP protocol pro-
cessing required by the current network speed. Re-
assembling out-of-order packets, handling the protocols
headers, resource-intensive memory copies, and inter-
rupts put a tremendous load on the system CPU, result-
ing in a CPU doing almost I/O traffic instead of running
applications.

During the network evolution, each generation of new
cards presents a lot of features that increase the perfor-
mance of the network, and when not properly config-
ured, can harm the overall system and network perfor-
mance.

Linux, on the other side, is an operating system that runs
from embedded system to super computers, and its de-
fault configuration is not tuned to run 10 Gbit/s network
cards on wire speed, and it possibly will limit the total
available throughput artificially. Hence, some modifi-
cations in the system is required to achieve good per-
formance. Most of these performance modifications are
easy to do, and doesn’t require a deep knowledge of the
kernel code in order to see the results.

This paper will describe most of the basic settings that
should be set in a Linux environment in order to get
the maximum speed when using fast network adapters.

Since this is a vast topic, this paper will focus on the
basic concepts.

1 Terminology

This section will cover basic terminology used in the
article. For other terminologies, RFC2647[1] is a good
place to start looking for.

Throughput

The term throughput basically has the same meaning as
data transfer rate or digital bandwidth consumption, and
denotes the achieved average useful bit rate in a com-
puter network over a physical communication link. The
throughput is basically measured with little overhead,
and for reference, it is measured below the network layer
and above the physical layer. In this way, throughput in-
cludes some protocol overhead and retransmissions.

When talking about network terminology, it is worth
to remember that one Kbit/s means 1,000 bit/s and not
1,024 bit/s.

Round trip time

Round trip time (RTT) is the total amount of time that a
packet takes to reach the target destination and get back
to the source address.

Bandwidth delay product

Bandwidth Delay Product (BDP) is an approximation
for the amount of data that can be in flow in the network
during a time slice. Its formula is simply a product of the
link bandwidth and the Round Trif Time. To compute
the BDP, it is required to know the speed of the slowest
link in the path and the Round Trip Time (RTT) for the
same path, where the bandwidth of a link is expressed
in Gbit/s and the round-trip delay is typically between 1

• 169 •

170 • Tuning 10Gb network cards on Linux

msec and 100 msec, which can be measured using ping
or traceroute.1

In TCP/IP, the BDP is very important to tune the buffers
in the receive and sender side. Both side need to have
an available buffer bigger than the BDP in order to allow
the maximum available throughput, otherwise a packet
overflow can happen because of out of free space.

1.1 Jumbo Frames

Jumbo frames are Ethernet frames that can carry more
than the standard 1500 bytes of payload. It was defined
that jumbo frames can carry up to 9000 bytes, but some
devices can support up to 16128 bytes per frame. In this
case, these super big packets are referenced as Super
Jumbo Frames. The size of the frame is directly related
to how much information is transmitted in a slot,2 and is
one of the major factors to increase the performance on
the network, once the amount of overhead is smaller.

Almost all 10 Gbit/s switches support jumbo frames,
and new switches supports super jumbo frames. Thus,
checking if the network switches support these frames
is a requirement before tuning this feature on.

Frame size is directly related to the interface Maximum
Transfer Unit (MTU), and it is a specific adapter con-
figuration that must be set for each node in a network.
Moreover, all interfaces in the same network should
have the same MTU in work to communicate properly,
a different MTU on a specific node could cause awful
issues.

Setting the MTU size uses the following command
ifconfig <interface> mtu <size>.

It is important to note that setting the MTU to a high
number, does not mean that all your traffic would use
jumbo packets. For example, a normal ssh session is al-
most insensible to a MTU change, once almost all SSH
packets are sent using small frames.

Once you the jumbo frames are enabled on an interface,
the software application should start using it, otherwise
the performance will not be as good as expected.

1Although there are better ways to measure the packet RTT, these
tools are enough for the purpose of this paper.

2As referenced on 802.3.

It is also observed that TCP responsiveness is improved
by larger MTUs. Jumbo frames accelerate the conges-
tion window increase by a factor of six compared to the
standard MTU. Jumbo frames not only reduce I/O over-
head on end-hosts, they also improve the responsiveness
of TCP.

1.2 Multi streams

The network throughput is heavily dependent on the
type of traffic that is flowing in the wire. An impor-
tant point is the number of streams, also viewed as a
socket, opened during a time slice. It involves creating
and opening more than one socket and parallelizing the
data transfer among these sockets. The link usage is bet-
ter depending on how many streams are flowing. Even
if the system is well tuned, it is not easy to achieve the
wire speed using just a single stream.

The rule of thumb says that multi stream applications are
preferred instead of an application that has just a con-
nection and try to send all the data through it. Actually
a lot of software, as application servers, allows setting
the number of opened sockets, mainly when the appli-
cation is trying to connect to a database.

As practical case, the Netperf tool provides a more accu-
rate result when using multi stream mode with 8 actives
streams.

1.3 Transmission queue size

The transmission queue is the buffer that holds packets
that is scheduled to be sent to the card. Tuning the size
of this buffer is necessary in order to avoid that packet
descriptors are lost because of no available space in the
memory.

Depending on the type of the network, the default 1000
packets value could not be enough and should be raised.
Actually, a good number is around 3000 depending of
the network characteristics.

1.4 SMP IRQ affinity

The main way that a CPU and a I/O device communi-
cates is through interrupts. Interrupt means that when
a device wants attention, it raises an interruption, and
the CPU handles it, going to the device and checking

2009 Linux Symposium • 171

CPU0 CPU1 CPU2 CPU3
16: 832 1848 1483 2288 XICS Level IPI
17: 0 0 0 0 XICS Level hvc_console
18: 0 0 0 0 XICS Level RAS_EPOW
53: 53 0 1006570 0 XICS Level eth0-TxRx-0
54: 28 0 0 159907 XICS Level eth0-TxRx-1
55: 2105871 0 0 0 XICS Level eth0-TxRx-2
56: 1421839 0 0 0 XICS Level eth0-TxRx-3
57: 13 888 0 0 XICS Level eth0-tx-0
58: 13 0 888 0 XICS Level eth0-tx-1
59: 13 0 0 888 XICS Level eth0-tx-2
60: 4 0 0 0 XICS Level eth0:lsc
256: 1 0 0 0 XICS Level ehea_neq
261: 0 0 0 0 XICS Level eth1-aff
262: 119 5290 0 0 XICS Level eth1-queue0
273: 7506 0 0 1341 XICS Level ipr

Figure 1: Which CPU is handling which device IRQ

what are the devices needs. On an SMP system, the spe-
cific CPU handling your interruption is very important
for performance.

Network devices usually has from one to a few in-
terrupt line to communicate with the CPU. On multi-
ple CPU system, each CPU call handles an interrup-
tion request. Usually the round robin algorithm is used
to choose the CPU that will handle a specific inter-
ruption for a specific card. In order to check which
CPU handled the device interruption, the pseudo-file
/proc/interrupts will display all the interrupts
lines, and which CPU handled the interruptions gener-
ated for each interrupt line. Figure 1 is an example of
the content of /proc/interrupts pseudo-file.

In order to achieve the best performance, it is recom-
mended that all the interruptions generated by a device
queue is handled by the same CPU, instead of IRQ bal-
ancing. Although it is not expected, round robin IRQ
distribution is not good for performance because when
the interruption go to another fresh CPU, the new CPU
probably will not have the interrupt handler function in
the cache, and a long time will be required to get the
properly interrupt handler from the main memory and
run it. On the other hand, if the same CPU handles the
same IRQ almost all the time, the IRQ handler function
will unlikely leave the CPU cache, boosting the kernel
performance.

In this manner, no IRQ balancing should be done for

networking device interrupts, once it destroys perfor-
mance. It is also important that TX affinity matches RX
affinity, so the TX completion runs on the same CPU as
RX. Don’t mapping RX completion to RX completion
causes some performance penalty dues cache misses.

Almost all current distros comes with a daemon that bal-
ance the IRQs, which is very undesirable, and should be
disable. In order to disable the irqbalance tool, the
following command should stop it.

service irqbalance stop

If disabling this daemon is a very drastic change, then
it is possible to disable irqbalance only for those
CPUs that has an IRQ bound, and leave the IRQ balance
enabled on all other CPUs. This can be done by edit-
ing the file /etc/sysconfig/irqbalance, and
changing the IRQBALANCE_BANNED_CPUS option.
So, all the CPUs that are bound to an interface queue,
must be set as banned in the irqbalance configura-
tion file.

Once the irqbalance daemon is disabled or config-
ured, the next step is to configure which CPU will han-
dle each device interruption.

In order to bind an interrupt line to a CPU, kernel 2.4
or superior provides scheme on the /proc interface
which was created to allow the user to choose which

172 • Tuning 10Gb network cards on Linux

group of processors will handle a specific interrupt line.
This configuration lives at /proc/<IRQ number>
/smp_affinity, and can be changed any time on-
the-fly. The content of the smp_affinity is a hex-
adecimal value that represents a group of CPU, as for
example, ff representing all eight CPUs available. So,
each field in the bit mask corresponds to a processor,
and to manipulate it properly, a binary to hexadecimal
transformation will be required.

Each digit in ff represents a group of four CPUs, with
the rightmost group being the least significant. The let-
ter f is the hexadecimal representation for the decimal
number 15 and represent 1111 in binary, and each of
the places in the binary representation corresponds to a
CPU.

CPU Binary Hex
0 0001 0x1
1 0010 0x2
2 0100 0x4
3 1000 0x8

By combining these bit patterns (basically, just adding
the Hex values), it is possible to a group of processors.
For example, a representation of a group of two CPUs,
for instance CPU0 (0x1) and CPU2 (0x4), is the sum of
both individually, which means 0x1 + 0x4 = 0x5.

1.5 Taskset affinity

On a multi stream setup, it is possible to see some tasks
that are transmitting and receiving the packets, and de-
pending on the schedule policy, the task can migrate
from one CPU to other from time to time. Since task mi-
gration is a huge penalty for performance, it is advised
that a task is bound to one or few CPUs, as described
above for IRQ. Since disabling the receive and sent task
from being floating in all the CPUs, the cache misses
rate is decreased, and the performance improved.

In order to bind a task to a CPU, the command
taskset should be used as follows.

$ taskset -p 0x1 4767
pid 4767’s current affinity mask: 1
pid 4767’s new affinity mask: 1

1.6 Interrupt coalescence

Most modern NICs provide interruption moderation or
interruption coalescing mechanisms to reduce the num-
ber of IRQs generated when receiving frames. As Ether-
net frames arrive, the NIC saves them in memory, but the
NIC will wait a receive delay before generating an inter-
ruption to indicate that one or more frames have been re-
ceived. This moderation reduces the number of context
switches made by the kernel to service the interruptions,
but adds extra latency to frame reception.

Using interruption coalescence doesn’t allow the system
to suffer from IRQ storms generated during high traf-
fic load, improving CPU efficiency if properly tuned for
specific network traffic.

Enabling interruption coalescence could be done using
the tool ethtool together with parameter -C. There
are some modules that do not honor the ethtool
method of changing the coalescence setting and imple-
ments its own method. In this case, where this option
is specific to the device driver, using modinfo to dis-
cover the module parameter that enables it is the best
option.

NAPI

“New API” (NAPI) is a feature that solves the same is-
sue that Interrupt coalescence solved without hurting la-
tency too much. NAPI was created in the linux kernel
aiming to improve the performance of high-speed net-
working, and avoid interrupt storms. NAPI basically
creates a mixture of interrupts and polling, called “adap-
tive interrupt coalescing.” It means that in high traffic
the device interruptions are disabled and packets are col-
lected by polling, decreasing the system load. When the
traffic is not high, then the interrupt scheme takes place,
avoiding long latencies because of the pooling scheme.
Also, NAPI-compliant drivers are able to drop packets
in NIC (even before it reaches the kernel) when neces-
sary, improving the system overall performance.

NAPI was first incorporated in the 2.6 kernel and was
also backported to the 2.4.20 kernel. In general, run-
ning an NAPI enabled driver is a plus to get good per-
formance numbers.

2 Offload features

Originally TCP was designed for unreliable low speed
networks, but the networks changed a lot, link speed be-

2009 Linux Symposium • 173

comes more aggressive and quality of service is now a
strict requirement for a lot of applications. Although
these huge changes is still happening, the TCP protocol
is almost the same as it was designed. As the link speed
grows, more CPU cycle is required to be able to han-
dle all the traffic. Even the more current CPUs waste a
considerable amount of cycle in order to process all the
CPU communication.

A generally accepted rule of thumb3 is that one hertz of
CPU is required to send or receive one bit of TCP/IP[2].
For example a five gigabit per second of traffic in a net-
work requires around five GHz of CPU for handling
this traffic. This implies that two entire cores of a 2.5
GHz multi-core processor will be required to handle the
TCP/IP processing associated with five gigabit per sec-
ond of TCP/IP traffic. Since Ethernet is bidirectional, it
means that it is possible to send and receive 10 Gbit/s.
Following the 1 Hz per bit rule, it would need around
eight 2.5 GHz cores to drive a 10 Gbit/s Ethernet net-
work link.

Looking into this scenario, the network manufacturers
started to offload a lot of repetitive tasks to the network
card itself. It leaves the CPU not so busy executing the
usual networking tasks, as computing the checksum and
copying memory around.

The manufactures classify offload features in two types,
those that are stateful and those that are stateless, where
a state references the TCP state. This section will cover
only the stateless features, and the stateful feature will
be briefly described in Section 5.8.

Almost all offload features are configured using the
ethtool tool. In order to check which features are
set, run ethtool using the -k parameter, as follows:

ethtool -k eth2

Offload parameters for eth2:
rx-checksumming: off
tx-checksumming: off
scatter-gather: off
tcp segmentation offload: off
udp fragmentation offload: off
generic segmentation offload: off

3This general rule of thumb was first stated by PC Magazine
around 1995, and is still used as an approximation nowadays.

In order to enable or disable any feature, the parameter
-K should be used with on to enable the feature, and
off to disable it. The following example enables TX
checksum feature for interface eth2.

ethtool -K eth2 tx on

2.1 RX Checksum

The TCP RX checksum offload option enables the net-
work adapter to compute the TCP checksum when a
packet is received, and only send it to the kernel if the
checksum is correct. This feature saves the host CPU
from having to compute the checksum, once the card
guaranteed that the checksum is correct.

Enabling RX checksum offload can be done using
ethtool -K ethX rx on4

Note that if receive checksum offload is disabled, then it
is not possible to enable large receive offload (LRO).

2.2 TX Checksum

TX Checksum works almost as RX checksum, but it
asks the card to compute the segment checksum before
sending it. When enabling this option, the kernel just fill
a random value in the checksum field of the TCP header
and trust that the network adapter will fill it correctly,
before putting the packet into the wire.

In order to enable TX checksum offload, the command
ethtool -K ethX tx on should be run.

When the TX and RX offload are enabled, the amount
of CPU saved depends on the packet size. Small pack-
ets have little or no savings with this option, while
large packets have larger savings. On the PCI-X gigabit
adapters, it is possible to save around five percent in the
CPU utilization when using a 1500 MTU. On the other
hand, when using a 9000 MTU the savings is approxi-
mately around 15%.

It is important to note that disabling transmission check-
sum offload also disables scatter and gather offload since
they are dependent.

4Replace ethX to the target interface

174 • Tuning 10Gb network cards on Linux

2.3 Scatter and Gather

Scatter and Gather, also known as Vectored I/O, is a
concept that was primarily used in hard disks[3]. It ba-
sically enhance large I/O request performance, if sup-
ported by the hardware. Scatter reading is the ability
to deliver data blocks stored at consecutive hardware
address to non-consecutive memory addresses. Gather
writing is the ability to deliver blocks of data stored at
non-consecutive memory addresses to consecutively ad-
dressed hardware blocks.

One of the constraints that happens to DMA is that the
physical memory buffer should be contiguous in order
to receive the data. On the other hand, a device that
supports scatter and gather capability allows the kernel
to allocate smaller buffers at various memory locations
for DMA. Allocating smaller buffers is much easier and
faster than finding for a huge buffer to place the packet.

When scatter and Gather is enable, it is also possible to
do a concept called page flip. This basically allows the
transport and other headers to be separated from the pay-
load. Splitting header from payload is useful for copy
avoidance because a virtual memory system may map
the payload to an possible application buffer, only ma-
nipulating the virtual memory page to point to the pay-
load, instead of copying the payload from one place to
another.

The advantage of Scatter and Gather is to reduce over-
head allocating memory and copying data, also as hav-
ing a better memory footprint.

In order to enable Scatter and gather, the command
ethtool -K ethX sg on should be run.

2.4 TCP Segmentation Offload

TCP segmentation offload (TSO), also called Large Seg-
ment Offload (LSO), is feature used to reduce the CPU
overhead when running TCP/IP. TSO is a network card
feature designed to break down large groups of data sent
over a network into smaller segments that pass through
all the network elements between the source and desti-
nation. This type of offload relies on the network inter-
face controller to segment the data and then add the TCP,
IP and data link layer protocol headers to each segment.

The performance improvement comes from the fact that
the upper layers deliver a huge packet, as 64K, to the

card and the card splits the this packet in small frames
which honor the MTU size.

Some studies suggests that enabling TSO saves around
10% in the CPU when using a 1500 MTU.

In order too enable TCP segmentation offload, the com-
mand ethtool -K ethX tso on should be run.

2.5 Large Receive Offload

Large Receive Offload (LRO) is a technique that in-
creases inbound throughput of high-bandwidth network
connections by reducing CPU overhead. It works by ag-
gregating, in the card, multiple incoming packets from a
single stream into a larger buffer before they are passed
to the network stack, thus reducing the number of pack-
ets that have to be processed, and all headers overhead.
This concept is basically the opposite of TSO. LRO
combines multiple Ethernet frames into a single receive,
thereby decreasing CPU utilization when the system is
receiving multiple small packets.

There are two types of LRO, one that are just a change in
the network structure that is usually enabled by default
in new drivers. This one aggregates frames in the device
driver rather than in the card itself. The other one is a
hardware feature that aggregate the frames into the card
itself and provides much better results. The last one is
specific for each device driver and it is usually enabled
using a module parameter, as lro_enable for s2io
driver.

2.6 Generic Segmentation Offload

After TSO was implemented, It was observed that a lot
of the savings in TSO come from traversing the ker-
nel networking stack once instead than many times for
each packet. Since this concept was not dependent of
the hardware support, the Generic Segmentation Offload
(GSO) was implemented to postpone the segmentation
as late as possible. Once this is a general concept, it can
be applied to other protocols such as version 6 of TCP,
UDP, or even DCCP.

GSO like TSO is only effective if the MTU is signifi-
cantly less than the maximum value of 64K.

In order to enable generic segmentation offload, the
command ethtool -K ethX gso on should be
run.

2009 Linux Symposium • 175

3 Kernel settings

The Linux kernel and the distributions that package it
typically provides very conservative defaults to certain
network kernel settings that affect networking parame-
ters. These settings can be set via the /proc filesystem
or using the sysctl command. Using sysctl is usu-
ally better, as it reads the contents of /etc/sysctl.
conf or any other selected chosen config script, which
allows to keep the setting even after the machine restart.
Hereafter only the modifications using the sysctl will be
covered.

In order to change a simple configuration, a command as
sysctl -w net.core.rmem_max=16777216
should be run. In this case, the parameter -w
want to set the value 16777216 into the variable
net.core.rmem_max. Note that this is a temporary
setting, and it will be lost after the system is restart.
However most of the configuration should hold after a
system restart, and in this case a modification in the file
/etc/sysctl.conf will be necessary.

Also, it is possible to create a file with a lot of config-
uration, which can be called using the command that
follows.

sysctl -p /script/path

It’s also possible to see all the parameters related to net-
work using the following parameter.

sysctl -a | grep net

On other hand, checking just a option can be done as
follows.

sysctl net.ipv4.tcp_window_scaling

3.1 TCP Windows Scaling

The TCP/IP protocol has a header field called window.
This field specifies how much data the system which
sent the packet is willing and able to receive from the
other end. In other words, it is the buffer space required
at sender and receiver to save the unacknowledged data
that TCP must handle in order to keep the pipeline full.

In this way, the throughput of a communication is lim-
ited by two windows: congestion window and receive
window. The first one tries not to exceed the capacity
of the network (congestion control) and the second one

tries not to exceed the capacity of the receiver to process
data (flow control). The receiver may be overwhelmed
by data if for example it is very busy (such as a Web
server). As an example, each TCP segment contains the
current value of the receive window. So, if the sender re-
ceives an ACK which acknowledge byte 4000 and spec-
ifies a receive window of 10000 (bytes), the sender will
not send packets after byte 14000, even if the congestion
window allows it.

Since TCP/IP was designed in the very far past, the win-
dow field is only 16 bits wide, therefore the maximum
window size that can be used is 64KB. As it’s known,
64KB is not even close to what is required by 10Gbit/s
networks. The solution found by the protocol engineer
was windows scaling describer in RFC 1323, where it
creates a new TCP option field which left-shift the cur-
rent window value to be able to represent a much larger
value. This option defines an implicit scale factor, which
is used to multiply the window size value found in a reg-
ular TCP header to obtain the true window size.

Most kernels enables this option by default, as could
be seen running the command sysctl net.ipv4.
tcp_window_scaling.

3.2 TCP Timestamp

TCP timestamp is a feature also described by RFC 1323
that allow a more precise round trip time measurement.
Although timestamp is a nice feature, it includes an
eight bytes to the TCP header, and this overhead affects
the throughput and CPU usage. In order to reach the
wire speed, it is advised to disable the timestamp fea-
ture, setting running sysctl -w net.ipv4.tcp_
timestamps=0

3.3 TCP fin timeout setting

When TCP is finishing a connection, it gets into a state
called FIN-WAIT-2, which still wasting some memory
resources. If the client side doesn’t finish the connec-
tion, the system needs to wait a timeout to close it by
itself. On Linux, it is possible to determine the time that
must elapse before TCP/IP can release the resources for
a closed connection and reuse them. By reducing the
value of this entry, TCP/IP can release closed connec-
tions faster, making more resources available for new
connections. So, when running on a server that has a big

176 • Tuning 10Gb network cards on Linux

amount of closed socket, this adjust saves some system
resources. In order to adjust this value, the parameter
net.ipv4.tcp_fin_timeout should be changed
to a smaller number than the default. Around 15 and 30
seconds seem to be a good value for moderate servers.

3.4 TCP SACK and Nagle

TCP Sack is a TCP/IP feature that means TCP Se-
lective Acknowledgement and was described by RFC
2018, It was aimed for networks that have big windows
and usually lose packets. It consists in sending explicit
ACK for the segments of the stream has arrived cor-
rectly, in a non-contiguous manner, instead of the tra-
ditional TCP/IP algorithm that implements cumulative
acknowledgement, which just acknowledges contiguous
segments.

As most of the 10 Gbit/s network are reliable and usu-
ally losing packets is not the common case, disabling
SACK will improve the network throughput. It is impor-
tant to note that if the network is unreliable, and usually
lose packets, then this option should be turned on.

In order to disable it, set 0 into the net.ipv4.tcp_
sack parameter.

On the other side, Nagle algorithm should be turned
on. Nagle is a TCP/IP feature described by RFC 896
and works by grouping small outgoing messages into a
bigger segment, increasing bandwidth and also latency.
Usually Nagle algorithm is enabled on standard sockets,
and to disable it, the socket should set TCP_NODELAY
in its option.

3.5 Memory options

Linux supports global setting to limit the amount of sys-
tem memory that can be used by any one TCP connec-
tion. It also supports separate per connection send and
receive buffer limits that can be tuned by the system ad-
ministrator.

After kernel 2.6.17, buffers are calculated automatically
and usually works very well for the general case. There-
fore, unless very high RTT, loss or performance require-
ment is present, buffer settings may not need to be tuned.
If kernel memory auto tuning is not present (Linux 2.4
before 2.4.27 or Linux 2.6 before 2.6.7), then replacing
the kernel is highly recommended.

In order to ensure that the auto tuning is present and
it is properly set, the parameter net.ipv4.tcp_
moderate_rcvbuf should be set to 1.

Once the auto tuning feature is on, the limits of memory
used by the auto tuner should be adjusted, since most
of the network memory options have the value that need
to be set. The value is an array of 3 values that rep-
resents the minimum, the initial and maximum buffer
size as exemplified above. These values are used to set
the bounds on auto tuning and balance memory usage.
Note that these are controls on the actual memory usage
(not just TCP window size) and include memory used
by the socket data structures as well as memory wasted
by short packets in large buffers.

net.ipv4.tcp_rmem = 4096 87380 3526656

There are basically three settings that define how TCP
memory is managed that need a special care and will be
described hereafter. They are net.ipv4.tcp_rmem,
which define the size (in bytes) of receive buffer used
by TCP sockets, net.ipv4.tcp_wmem which de-
fine the amount of memory (in bytes) reserved for send
buffers, and the net.ipv4.tcp_mem, which define
the total TCP buffer-space allocatable in units of page
(usually 4k on x86 and 64k on PPC). So, tuning these
settings depends on the type of the Ethernet traffic and
the amount of memory that the server has.

All of those value should be changed so that the maxi-
mum size is bigger than the BDP, otherwise packets can
be dropped because of buffer overflow. Also, setting
net.ipv4.tcp_mem to be twice the delay bandwidth
delay product of the path is a good idea.

Secondarily, there are a lot of configurations that need to
be tuned depending on the how network is working, and
if the performance requirement was met. The impor-
tant ones are net.core.rmem_max, net.core.
wmem_max, net.core.rmem_default, net.
core.wmem_default, and net.core.optmem_
max. The kernel file Documentation/network/
ip-sysctl.txt has a description for almost all of
these parameters and should be consulted whenever nec-
essary.

Another useful setting that deserves a check is net.
core.netdev_max_backlog. This parameter de-
fines the maximum number of packets queued on the

2009 Linux Symposium • 177

input side, when the interface receives packets faster
than kernel can process them, which is usual on 10
Gbit/s network interface. This option is opposite for the
txqueuelen, that define the length of the queue in the
transmission side. As the value for the maximum back-
log depends on the speed of the system, it should be fine
tuned. Usually a value near 300000 packets is a good
start point.

4 Bus

One important aspect of tuning a system is assuring
that the system is able to support the desired needs, as
throughput and latency. In order to ensure that a system
is able to run on the desired speed, a brief overview of
common the bus subsystem will be described. Since 10
Gbit/s network cards are only available on PCI extended
(PCI-X) and PCI Express (PCI-E), this article will focus
on these buses.

PCI is the most common bus for network cards, and it is
very known for its inefficiency when transferring small
bursts of data across the PCI bus to the network interface
card, although its efficiency improves as the data burst
size increases. When using the standard TCP protocol,
it is usual to transfer a large number of small packets as
acknowledgement and as these are typically built on the
host CPU and transmitted across the PCI bus and out the
network physical interface, this impacts the host overall
throughput.

In order to compare what is required to run a 10 Gbit/s
card on full speed, some bus performance will be dis-
played. A typical PCI bus running at 66 MHz, has an
effective bandwidth of around 350 MByte/s.5 The more
recent PCI-X bus runs at 133 MHz and has an effective
bus bandwidth of around 800 MByte/s. In order to fill a
10 Gigabit Ethernet link running in full-duplex, the or-
der of 1.25GByte/s of bandwidth is required in each di-
rection, or a total of 2.5 GByte/s, more than three times
the PCI-X implementations, and nearly seven times the
bandwidth of a legacy PCI bus. So, in order to get the
best performance of the card, a PCI-E network card is
highly recommended.

Also, usually most of the network traffic is written or
read from the disk. Since the disk controller usually
shares the same bus with network cards, a special con-
sideration should be taken in order to avoid bus stress.

5PCI Encoding overhead is two bits in 10.

4.1 PCI Express bandwidth

PCI Express version 1.0 raw signaling is 250 MByte/s
lane, while PCI Express version 2.0 doubles the
bus standard’s bandwidth from 250 MByte/s to
500MByte/s, meaning a x32 connector can transfer data
at up to 16 GByte/s

PCI Express version 3.0 that is already in development
and is scheduled to be released in 2010, will be able to
deliver 1 GByte/s per lane.

4.2 Message-Signalled Interrupt

One important PCI-E advantage is that interrupts are
transferred in-line instead of out-of-band. This feature
is called Message-signalled Interrupt (MSI). MSI en-
ables a better interrupt handling since it allows multiple
queueable interrupts.

Using MSI can lower interrupt latency, by giving every
kind of interruption its own handler. When the kernel
receives a message, it will directly call the interrupt han-
dler for that service routine associated with the address.
For example, there are many types of interrupts, one for
link status change, one for packet transmitted status, one
for packet received, etc. On the legacy interrupt system,
the kernel is required to read a card register in order to
discover why the card is interrupting the CPU, and to
call the proper interrupt handler. This long path causes
a delay that doesn’t happen when the system is using
MSI interrupts.

MSI-X is an extension to MSI to enable support for
more vectors and other advantages. MSI can support
at most 32 vectors while MSI-X can up to 2048. Also,
when using MSI, each interrupt must go to the same ad-
dress and the data written to that address are consecu-
tive. On MSI-X, it allows each interrupt to be separately
targeted to individual processors, causing a great bene-
fit, as a high cache hit rate, and improving the quality of
service.

In order to ensure that MSI or MSI-X are enabled
on a system, the lspci command should be used to
display the PCI device capabilities. The capabilities
that describe these features and should be enabled are
Message Signalled Interrupts or MSI-X as
described by Figure 2.

178 • Tuning 10Gb network cards on Linux

lspci | grep "10 Giga"
0002:01:00.0 Ethernet controller: Intel Corporation 82598EB 10 Gigabit AF

Network Connection (rev 01)

lspci -vv -s 0002:01:00.0 | grep Message
Capabilities: [50] Message Signalled Interrupts: 64bit+ Queue=0/0 Enable+

Figure 2: lspci output

4.3 Memory bus

Memory bus might not be as fast as required to run a full
duplex 10 Gbit/s network traffic. One important point is
ensure that the system memory bandwidth is able to sup-
port the traffic requirement. In order to prove that the
memory bandwidth is enough for the desired through-
put, a practical test using Netperf can be run. This test
displays the maximum throughput that the system mem-
ory can support.

Running a Netperf test against the localhost is enough
to discover the maximum performance the machine can
support. The test is simple, and consist of starting the
netserver application on the machine and running
the test, binding the client and the server in the same
processor, as shown by Figure 3. If the shown band-
width is more than the required throughput, then the
memory bus is enough to allow a high load traffic. This
example uses the -c and -C options to enable CPU
utilization reporting and shows the asymmetry in CPU
loading.

netperf -T0,0 -C -c
Utilization
Send Recv

... Throughput local remote ...
10^6bits/s % S % S

13813.70 88.85 88.85

Figure 3: Test for memory bandwidth

4.4 TCP Congestion protocols

It is a very important function of TCP to properly match
the transmission rate of the sender and receiver over the

network condition[4]. It is important for the transmis-
sion to run at high enough rate in order to achieve good
performance and also to protect against congestion and
packet losses. Congestion occurs when the traffic of-
fered to a communication network exceeds its available
transmission capacity.

This is implemented in TCP using a concept called win-
dows. The window size advertised by the receiver tells
the sender how much data, starting from the current po-
sition in the TCP data byte stream can be sent without
waiting for further acknowledgements. As data is sent
by the sender and then acknowledged by the receiver,
the window slides forward to cover more data in the byte
stream. This is usually called sliding window.

Some usual congestion avoidance algorithm has a prop-
erty to handle with the window size called “additive in-
crease and multiplicative decrease” (AIMD). This prop-
erty is proven to not be adequate for exploring large
bandwidth delay product network, once general TCP
performance is dependent of the Congestion control al-
gorithm[5]. And the congestion control algorithm is ba-
sically dependent of network bandwidth, round trip time
and packet loss rate. Therefore, depending on the char-
acteristics of your network, an algorithm fits better than
another.

On Linux it is possible to change the congestion avoid-
ance algorithm on the fly, without even restarting your
connections. To do so, a file called /proc/sys/net/
ipv4/tcp_available_congestion_control
lists all the algorithms available to the system, as
follows:

cat /proc/sys/net/ipv4/tcp_available_
congestion_control
cubic reno

2009 Linux Symposium • 179

Also, it is possible to see what algorithm the system is
currently using, looking into file /proc/sys/net/
ipv4/tcp_congestion_control. To set a new
algorithm, just echo one of those available algorithm
name into this file, as follows:

echo cubic > /proc/sys/net/ipv4/tcp
_congestion_control

This article will outline some of the most common
TCP/IP collision avoidance algorithms.

4.5 RENO

TCP Reno was created to improve and old algorithm
called Tahoe[6]. Its major change was the way in which
it reacts when detect a loss through duplicate acknowl-
edgements. The idea is that the only way for a loss to
be detected via a timeout and not via the receipt of a
dupack is when the flow of packets and acks has com-
pletely stopped. Reno is reactive, rather than proactive,
in this respect. Reno needs to create losses to find the
available bandwidth of the connection.

Reno is probably the most common algorithm and was
used as default by Linux until kernel 2.6.19.

When using Reno on fast networks, it can eventually
underutilize the bandwidth and cause some variation in
the bandwidth usage from time to time[7]. For example,
in slow start, window increases exponentially, but may
not be enough for this scenario. On a scenario when
using 10Gbit/s network with a 200ms RTT, 1460B pay-
load and assuming no loss, and initial time to fill pipe
is around 18 round trips, which result in a delay of 3.6
seconds. If one packet is lost during this phase, this time
can be much higher.

Also, to sustain high data rates, low loss probabilities
are required. If the connection loose one packet then
the algorithm gets into AIMD, which can cause severe
cut to the window size, degrading the general network
performance.

On the other hand, Reno in general is more TCP-
friendly than FAST and CUBIC.

4.6 CUBIC

CUBIC is an evolution of BIC. BIC is algorithm that
has a pretty good scalability, fairness, and stability dur-
ing the current high speed environments, but the BIC’s
growth function can still be too aggressive for TCP, es-
pecially under short RTT or low speed networks, so CU-
BIC was created in order to simply its window control
and improve its TCP-friendliness. Also, CUBIC im-
plements an optimized congestion control algorithm for
high speed networks with high latency

In general, CUBIC is on the best algorithm to get the
best throughput and TCP-fairness. That is why it is im-
plemented and used by default in Linux kernels since
version 2.6.19.

4.7 FAST

FAST (FAST AQM Scalable TCP) was an algorithm
created with high-speed and long-distance links in mind.

A FAST TCP flow seeks to maintain a constant number
of packets in queues throughout the network. FAST is
a delay-based algorithm that try to maintain a constant
number of packets in queue, and a constant window
size, avoiding the oscillations inherent in loss-based al-
gorithms, as Reno. Also, it also detects congestion ear-
lier than loss-based algorithms. Based on it, if it shares
a network with loss-based “protocol,” the FAST algo-
rithms tend to be less aggressive. In this way, FAST has
the better Friendliness than CUBIC and Reno.

5 Benchmark Tools

There are vast number of tools that can be used to
benchmark the network performance. In this section,
only Netperf, Mpstat and Pktgen will be covered.
These are tools that generate specifics kind of traffic and
then shows how fast the network transmitted it.

5.1 Netperf

Netperf6 is a tool to measure various aspects of network-
ing performance. It is primarily focus is on data transfer
using either TCP or UDP. Netperf has also a vast num-
ber of tests like stream of data and file transfer among
others.

6http://www.netperf.org

180 • Tuning 10Gb network cards on Linux

netperf -t TCP_STREAM -H 192.168.200.2 -l 10
TCP STREAM TEST from 0.0.0.0 port 0 AF_INET to 192.168.200.2 port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 7859.85

Figure 4: Netperf running for 10 seconds

netperf -H 192.168.200.2 -t TCP_RR -l 10
TCP REQUEST/RESPONSE TEST from 0.0.0.0 port 0 AF_INET to

192.168.200.2 port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 42393.23

Figure 5: Netperf running with TCP_RR

It is easy to benchmark with Netperf. An installation of
the tool is required in the client and server. On the server
side, a daemon called netserver should be started
before the tests begin, so that the Netperf client could
connect to it. Netperf usually is listening on port 12865.

In order to ensure that the Netperf setup is working prop-
erly, a simple test as netperf -H <hostname> is
enough to prove that the communication is good be-
tween the client and the server.

Netperf tests are easier when considering to use the set
of scripts files provided with the Netperf distribution.
These scripts are usually located at /usr/share/
doc/netperf/examples. These scripts has a set
of features and configuration that is used on those test
cases. Since these scripts are heavily configurable, it is
not required to read the entire Netperf manual in order
to run more complex tests.

Netperf supports a lot of tests cases, but in this paper
only TCP/UDP streams and transaction will be covered.

Streams

On streams test, Netperf supports a vast number of test-
cases, but only three are widely used, they are TCP_
STREAM, TCP_MAERTS7 and UDP_STREAM. The dif-
ference between TCP_STREAM and TCP_MAERTS, is
that on first, the traffic flows from the client to the server,
and on TCP_MAERTS, the traffic flows from the server
to the client. Thus running both TCP_STREAM and
TCP_MAERTS in parallel generate a full-duplex test.

Figure 4 shows a simple example of TCP_STREAM test
case running against IP 192.168.200.2 for ten sec-
onds.

Transactions

Transaction is another area to investigate and tune in or-
der to improve the quality of the network, and to do so,
Netperf provides a testcase to measure request/response
benchmark. A transaction is defined as a single reply for
a single request. In this case, request/response perfor-
mance is quoted as “transactions/s” for a given request
and response size.

7MAERTS is an anagram of STREAM

2009 Linux Symposium • 181

#!/bin/bash

NUMBER=8
TMPFILE=‘mktemp‘
PORT=12895

for i in ‘seq $NUMBER‘
do

netperf -H $PEER -p $PORT -t TCP_MAERTS -P 0 -c -l $DURATION
-- -m 32K -M 32K -s 256K -S 256K >> $TMPFILE &

netperf -H $PEER -p $PORT -t TCP_STREAM -P 0 -c -l $DURATION
-- -m 32K -M 32K -s 256K -S 256K >> $TMPFILE &

done

sleep $DURATION

echo -n "Total result: "

cat $TMPFILE | awk ’{sum += $5} END{print sum}’

Figure 6: Script to run Netperf using multistream

In order to measure transactions performance, the test
type should be TCP_RR or UDP_RR, as shown by Fig-
ure 5.

In order to do some complex benchmark using transac-
tion, a script called tcp_rr_script is also available
and can be configured to accomplish the user’s needed.

Since Netperf uses common sockets to transmit the data,
it is possible to set the socket parameters used by a test.
Also, it is possible to configure some details of the spe-
cific test case that is being used. To do so, the parame-
ter −− -h should be appended in the end of the Net-
perf line, as netperf -t TCP_RR −− -h for the
request performance test case.

5.2 Netperf multi stream

Netperf supports multi stream in version four only,
which may not be available to some distro distro. Net-
perf version two is the mostly distributed and used ver-
sion. The script described in Figure 6 simulates a multi
stream Netperf, and is widely used in the network per-
formance community.

5.3 Pktgen

Pktgen is a high performance testing tool, which is in-
cluded in the Linux kernel as a module. Pktgen is cur-
rently one of the best tools available to test the transmis-
sion flow of network device driver. It can also be used to
generate ordinary packets to test other network devices.
Especially of interest is the use of pktgen to test routers
or bridges which often also use the Linux network stack.
Pktgen can generate high bandwidth traffic specially be-
cause it is a kernel space application. Hence it is useful
to guarantee that the network will work properly on high
load traffic.

It is important to note that pktgen is not a Netperf re-
placement, pktgen cannot execute any TCP/IP test. It is
just used to help Netperf in some specific transmission
test cases.

Pktgen can generate highly traffic rates due a very nice
kernel trick. The trick is based on cloning ready-to-
transmit packets and transmitting the original packet and
the cloned ones, avoiding the packet construction phase.
This idea basically bypass almost all the protocol ker-
nel layers, generating a high bandwidth traffic without
burdening the CPU.

182 • Tuning 10Gb network cards on Linux

Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60
frags: 0 delay: 0 clone_skb: 1000000 ifname: eth3
flows: 0 flowlen: 0
dst_min: 10.1.1.2 dst_max:
src_min: src_max:
src_mac: 00:C0:DD:12:05:4D dst_mac: 00:C0:DD:12:05:75
udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9
udp_dst_max:
src_mac_count: 0 dst_mac_count: 0
Flags:

Current:
pkts-sofar: 10000000 errors: 16723
started: 1240429745811343us

stopped: 1240429768195855us idle: 1954836us
seq_num: 10000011 cur_dst_mac_offset: 0

cur_src_mac_offset: 0
cur_saddr: 0xa010101 cur_daddr: 0xa010102
cur_udp_dst: 9 cur_udp_src: 9
flows: 0

Result: OK: 22384512(c20429676+d1954836) usec,
10000000 (60byte,0frags)
446737pps 214Mb/sec (214433760bps) errors: 16723

Figure 7: pktgen output example

Figure 7 shows a typical example of the output after run-
ning a test with pktgen.

It is easy but not trivial to run a pktgen example and the
steps will not be covered in this article. For more infor-
mation, the file Documentation/networking/
pktgen.txt at the kernel code is a good source.

5.4 Mpstat

Mpstat is a tool provided by sysstat8 package that
is probably the most used tool to verify the processors
load during a network performance test. Mpstat mon-
itors SMP CPUs usage and it is a very helpful tool to
discover if a CPU is overloaded and which process is
burdening each CPU.

Mpstat can also display statistics with the amount of
IRQs that were raised in a time frame and which CPU
handled them, as it is shown on Figure 8. This is a

8http://pagesperso-orange.fr/sebastien.
godard/

very useful test to guarantee that the IRQ affinity, dis-
cussed earlier, is working properly. In order to discover
which IRQ number represents which device line, the file
/proc/interrupts contains the map between the
IRQ number and the device that holds the IRQ line.

5.5 Other technologies

This section intends to briefly describe some other tech-
nologies that help to get a better network utilization.

5.6 I/OAT

Intel I/OAT is a feature that improves network applica-
tion responsiveness by moving network data more ef-
ficiently through Dual-Core and Quad-Core Intel Xeon
processor-based servers when using Intel network cards.
This feature improves the overall network speed.

In order to enable the Intel I/OAT network accelerations
the driver named ioatdma should be loaded in the ker-
nel.

2009 Linux Symposium • 183

12:12:25 CPU 18/s 59/s 182/s 216/s 338/s 471/s BAD/s
12:12:25 0 0.09 0.88 0.01 0.00 0.00 0.00 2.23
12:12:25 1 0.13 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 2 0.15 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 3 0.19 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 4 0.10 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 5 0.13 0.88 0.00 0.00 0.00 0.00 0.00
12:12:25 6 0.08 0.88 0.01 0.00 0.00 0.00 0.00
12:12:25 7 0.20 0.88 0.00 0.00 0.00 0.00 0.00

Figure 8: Mpstat output

modprobe ioatdma

It is not recommended to remove the ioatdma module
after it was loaded, once TCP holds a reference to the
ioatdma driver when offloading receive traffic.

5.7 Remote DMA

Remote Direct Memory Access (RDMA) is an exten-
sion of DMA where it allows data to move, bypassing
the kernel, from the memory of one computer into an-
other computer’s memory. Using RDMA permits high-
throughput, low-latency networking, which is a great
improvement in many areas. The performance is visi-
ble mainly when the communication happens between
two near computers, where the RTT is small.

For security reasons, it is undesirable to allow the re-
mote card to read or write arbitrary memory on the
server. So RDMA scheme prevents any unauthorized
memory accesses. In this case, the remote card is only
allowed to read and write into buffers that the receiver
has explicitly identified to the NIC as valid RDMA tar-
gets. This process is called registration.

On Linux there is a project called OpenRDMA that
provides an implementation of RDMA service layers.
RDMA layer is already implemented by common appli-
cations such as NFS. NFS over RDMA is already being
used and the performance was proved to be much better
than the standard NFS.

5.8 TCP Offload Engine

TCP Offload Engine (TOE) is a feature that most net-
work cards support in order to offload the TCP engine

to the card. It means that the card has the TCP states for
an established connection. TOE usually help the ker-
nel, doing trivial steps in the card as fragmentation, ac-
knowledges, etc.

This feature usually improve the CPU usage and re-
duces the PCI traffic, but creates issues that are hard
to manage, mainly when talking about security aspects
and proprietary implementations. Based on these facts,
Linux doesn’t support TOE by default, and a vendor
patch should be applied in the network driver in order
to enable this feature.

6 References

[1] D. Newman, RFC2647—Benchmarking
Terminology for Firewall Performance,
http://www.faqs.org/rfcs/rfc2647.html

[2] Annie P. Foong, Thomas R. Huff, Herbert H. Hum,
Jaidev P. Patwardhan, Greg J. Regnier, TCP
Performance Re-Visited http://www.cs.duke.
edu/~jaidev/papers/ispass03.pdf

[3] Amber D. Huffman, Knut S. Grimsurd, Method and
apparatus for reducing the disk drive data transfer
interrupt service latency penaltyr US Patent 6640274

[4] Van Jacobson, Michael J. Karels, Congestion
Avoidance and Control, http:
//ee.lbl.gov/papers/congavoid.pdf

[5] Chunmei Liu, Eytan Modiano, On the performance
of additive increase multiplicative decrease (AIMD)
protocols in hybrid space-terrestrial networks,
http://portal.acm.org/citation.cfm?
id=1071427

184 • Tuning 10Gb network cards on Linux

[6] Kevin Fall, Sally Floyd, Comparisons of Tahoe,
Reno, and Sack TCP http:
//www.icir.org/floyd/papers/sacks.pdf

[7] Jeonghoon Mo, Richard J. La, Venkat Anantharam,
and Jean Walrand Analysis and Comparison of TCP
Reno and Vegas, http:
//netlab.caltech.edu/FAST/references/
Mo_comparisonwithTCPReno.pdf

A day in the life of a Linux kernel hacker. . .
Why who does what when and how!

John W. Linville
Red Hat, Inc.

linville@redhat.com

Abstract

The Linux kernel is a huge project with contributors
spanning the globe. Its usefulness and other advantages
continue to draw new users on a daily basis. But some
users will discover problems with the code, and others
will eventually find a need to add their own features to
Linux. Whether you are a user in need of support or
a developer trying to enhance the kernel, it is good to
know something about who is in the community and
how they work together.

This topic will introduce the newcomer to some of the
characters in the Linux community and some of the roles
they play. It will highlight some of the tasks Linux hack-
ers perform on a day-to-day basis, and give a general
overview of how work gets done within the community.

1 Introduction

Have you ever wondered how Linux kernel hackers
spend their days? I am sure that many people have a
picture in their mind: a pale-faced, shaggy, sandal-clad
man basking in the glow of his LCD in a corner of his
mother’s basement while C code for drivers, schedulers,
and memory allocators oozes from his fingertips. That
image is, of course, not entirely inaccurate. However,
there is much more to the community than that stereo-
type. Not only is there a wide diversity amongst the
participants, there are far more roles to play than merely
that of sunlight-deprived developer!

1.1 Why is this interesting?

You might ask, “So what?” Many might be satisfied to
use Linux (either directly or indirectly) without know-
ing any details about how it came to be or how it con-
tinues to evolve. But one must realize that the Linux

kernel is a huge software project with literally millions
of lines of code, thousands of adjunct developers, hun-
dreds of regular developers, and dozens of core develop-
ers. The Linux kernel is a study in management of com-
plex projects, and there are many lessons to be drawn
from observing how Linux is developed.

Beyond one’s own intellectual expansion, there are more
practical reasons why one might want to understand how
Linux is developed. A direct user of Linux (or any other
system) is bound to encounter a problem eventually, and
that user will probably want to see that problem fixed.
Also, many systems are now developed using Linux as
a component. Developers working on such systems will
want to understand how the community works, not only
to help themselves get problems fixed, but also to under-
stand how to get their own code incorporated into Linux
in order to reap the benefits of community maintenance.
Finally, one may wish to become an active member of
the Linux community. In fact there are many reasons for
joining the community. These include “scratching your
own itch,” making the world a better place, or simply
building your own public profile.

1.2 What is so different?

Of course, lots of software is developed behind closed
doors in any number of companies around the world.
Surely there are any number of people who know how
to develop software? That is true, but there are some key
differences between those practices and how software is
developed in the open source community. Some impor-
tant differences exist in terms of the role of profit, the
hierarchy of authority, and how technical decisions are
made.

One of the more obvious points about the open source
community is the role of financial profit. Such profit is
not necessarily the main motivator for participation in

• 185 •

186 • A day in the life of a Linux kernel hacker. . .

the community. Many people participate solely as hob-
byists, while others have specific needs and participate
in order to “scratch their own itch.” Still others honestly
believe that they are making the world a better place.
The presence of such players in the community creates
a far different dynamic than one finds in a traditional
closed software shop.

Another poignant difference between traditional soft-
ware development and the open source community is the
lack of central authority figures. Even Linus Torvalds
himself has no inherent authority beyond his own skill
and participation. If Linus were to make irrational de-
cisions or were simply to lose interest in the Linux ker-
nel project, the community would simply reform around
one or more other leaders. The need to recruit and re-
tain contributors through the merit of the leadership is
another key difference between traditional software de-
velopment and the open source community.

A final difference worth noting is the notion of meri-
tocracy. In a traditional software development shop, a
project of any considerable size will quickly be subdi-
vided into component parts and each part will be as-
signed to an individual or team. Those teams will typi-
cally toil in isolation until they have something working,
then they will submit that to the final product with little
or no external review. In the open source community,
open review is part of the process both during develop-
ment and before the final merge. In many cases, alter-
native implementations compete with one another and
the community chooses between them based on tech-
nical merit and individual needs. Such “wasted” effort
would not be tolerated in most traditional software de-
velopment shops, but the open source community is big
enough to afford it and is stronger for it.

1.3 Let’s explore!

Hopefully the point has been made that the open source
community in general and the Linux community in par-
ticular is worth studying. Below is a discussion of what
types of people are involved in that community and what
roles they play. Also discussed are some of the tools
they use and how they spend their time. Finally, some
time is spent discussing the actual processes used for de-
velopment and how they interact with one another. By
the end, the reader should have a good idea of who in
the community does what, when they do it, why they do
so, and how.

2 Why who does what. . .

People from all over the world become involved in the
Linux community for any number of reasons. These
people apply their diversity of talents to a number of dif-
ferent roles within the community, many of which are
not directly related to writing software. A number of
tools facilitate this cooperation. An overview of these
topics will guide the reader’s understanding of the com-
munity.

2.1 Motivations

It is probably impossible to enumerate every possible
motivation for becoming a Linux contributor. Still, most
motivations fall into a few loosely defined categories.
These motivations run the gamut from commercialism
to volunteerism, and span from self-interest to altruism.

The most well-known reason and most commonly cited
one for getting involved with Linux is “scratching an
itch.” Nearly everyone needs software for something
nowadays, and many people and organizations need
software either that is unavailable or that those people
and organizations cannot afford to obtain from a ven-
dor. In many such situations, this software is developed
and deployed internally by those organizations.

The nature of software is such that once it exists, the
cost of duplicating and distributing that software is neg-
ligible. This is especially true when that distribution is
done electronically and done by others at their own ex-
pense. Such distribution also allows those with simi-
lar software needs to find and support each other, shar-
ing resources to develop and improve software for the
widest possible audience. As the audience widens, so
increases the potential benefits of such sharing. Since
the kernel is the central component of a Linux-based
system, “scratch your own itch” contributors are quite
common in the Linux community.

A large number of Linux contributors are working on
commercial software development projects that use the
Linux kernel. Those employed by distribution vendors
such as Red Hat are obvious examples of this. But there
are any number of smaller software vendors develop-
ing embedded systems or other specialized products and
making contributions to the kernel. These contributions
are often small bug fixes or specialized device drivers,

2009 Linux Symposium • 187

but can be more generic components such as filesys-
tems, compression algorithms, networking subsystems,
etc. Just like “scratch your own itch” contributors, com-
mercial developers recognize the value of community
software development and maintenance of kernel com-
ponents.

A few other motivations are commonly found within
the community. Some number of community contribu-
tors make their living doing contract development work.
This typically involves short-term work on behalf of
product-focused companies that need specific features
developed for the Linux kernel. Some other contributors
are fortunate enough to be sponsored to do Linux kernel
work under their own direction due to the good graces of
some company or other benefactor. Finally, some num-
ber of contributors work on Linux because they believe
they are making the world a better place or for some
other similarly altruistic reason.1

2.2 Roles

In a community-based software development project, it
is important to recognize that not everyone is writing
code for the project. While this is certainly an impor-
tant and necessary skill, it is generally insufficient for
a successful project. People are needed to test the soft-
ware and to report bugs, to write and review the code, to
manage the code, and to document and write about the
code. Each of these roles plays an important part within
the community.

2.2.1 Bug Reporter

One of the most important roles in the community is
the bug reporter. While many people will run new ker-
nels and many of those will experience one problem or
another, few will bother to report those problems and
fewer still will not only provide useful information but
also remain engaged long enough to find fixes. Those in-
dividuals are invaluable in the creation and maintenance
of high quality software.

1In any case, the author suspects that the sum of these groups is
dwarfed by the number of commercial and “scratch your own itch”
contributors.

2.2.2 Tester

In a sense, every user is also a tester. But in reality most
users exercise little more than the core functionality of a
given piece of software. True testing requires repetition,
documentation, and skill as well as the dedication to ap-
ply those resources. Testers not only find problems but
also assist in analysis by finding the boundaries of the
problems they identify. Testers are highly valued mem-
bers of the community.

2.2.3 Coder

The coder is the most celebrated member of the commu-
nity. The coder tackles the problem of producing source
code changes to fix a problem or implement a new fea-
ture. Coders provide the raw material for the Linux ker-
nel. Obviously, without coders the project would not
exist.

2.2.4 Reviewer

An often overlooked person in the community is the re-
viewer. When the coder does his job, he posts his prod-
uct (i.e., a patch) to a mailing list. The reviewer eval-
uates the change, comments upon its form and impact,
and often makes suggestions for changes or refinements.
The reviewer has one of the most important roles in en-
suring initial code quality.

2.2.5 Maintainer

The maintainers are the “old men”2 in the commu-
nity. The maintainers are responsible for taking what
the coders produce, deciding when the reviewers have
added enough value, and merging the results into the up-
stream kernel tree. They also communicate with testers,
bug reporters, and others to ensure that code quality is
maintained at a good level and that good processes are
being followed. Maintainers perform a role similar to a
manager or team leader in a traditional software devel-
opment shop.

2Of course, they are not all old and not all men. . .

188 • A day in the life of a Linux kernel hacker. . .

2.2.6 Technical Writer

A technical writer is one who produces documentation
of technical details surrounding the kernel. This pri-
marily includes documenting both those APIs for inter-
nal use within the kernel and those for communicating
with userland programs. Without such documentation,
it would be difficult to sustain the development commu-
nity.

2.2.7 Journalist

An important aspect of maintaining a community is
keeping contributors aware of what else is happening
within that community. The Linux kernel is a huge
project, and it can be difficult to know what new devel-
opments are in progress and what old components are
being revamped or removed. Following all of the rele-
vant mailing lists is a daunting task by itself, much less
if one is trying to write code or run tests. The journal-
ists in the community keep everyone abreast of what is
happening now and what is coming next.

2.3 Tools

It should not be surprising that a software development
community uses a number of software tools to keep it-
self running smoothly. Still, it is worthwhile to enu-
merate some of them and discuss how they are used.
Important tools include both those for communications
and those specific to software development.

2.3.1 Email

Email is the single most important tool within the com-
munity. The Linux kernel community is diverse and
spread across the globe. It is generally difficult to as-
semble people in one place or even to gather for a conve-
niently timed teleconference. Consequently discussions
are held on mailing lists. This has the added benefits of
documenting and archiving such discussions as well as
generally keeping such discussions short and direct.

2.3.2 Bugzilla, etc.

Bugzilla and other bug-tracking tools are often used for
their intended purpose. The kernel has its own Bugzilla

instance,3 but the bug trackers of distributions and other
kernel-related projects are often used as well. Such tools
help to organize bug report information and to segre-
gate one bug’s information from reports of other bugs,
as well as from other discussions that would otherwise
clutter a mailing list.

2.3.3 IRC

IRC is commonly used by active kernel contributors for
real-time communications. Chat bridges the gap be-
tween email and telephony, allowing precise communi-
cations in a timely and direct fashion.

2.3.4 Wikis

A wiki is the documentary analog of open source devel-
opment. As such, it fits nicely with the general mind-
set of the Linux kernel development community. Many
parts of the project use wikis to document designs, user
interfaces, API changes, and other information pertinent
to users and/or other developers.

2.3.5 Code Analyzers

Policing large bodies of code can be daunting, and line-
by-line analysis of code for trivial or subtle coding er-
rors can be tedious and error prone. Fortunately, many
such problems can be identified algorithmically. The
kernel includes checkpatch.pl which can be used
to find many simple problems, especially those relating
to coding style. Tools such as Sparse4 are often used for
deeper code analysis.

2.3.6 Git

No discussion of tools used in the Linux kernel commu-
nity would be complete without mentioning git, the
primary revision control tool used within the commu-
nity. Unlike traditional revision control tools, git uses

3http://bugzilla.kernel.org
4http://www.kernel.org/pub/software/devel/

sparse/

2009 Linux Symposium • 189

a distributed development model. Among other ramifi-
cations, this means that every copy of the git reposi-
tory can operate independently. Further, formerly inde-
pendent repositories can be merged at any time, allow-
ing for development efforts to proceed according to their
own schedules without requiring lots of work to resyn-
chronize with the upstream kernel tree. Git is probably
the single most important tool in use by the community
today.

2.4 Patches

An important point must be made regarding patches. A
patch is a unit of change to source code.5 Typically
patches are sent in email for review and then later ap-
plied to a tree in git to form the basis of future devel-
opment. Patches contain limited context used to iden-
tify affected pieces of source code files. This helps to
make them resilient against unrelated changes in the
same files.

The great thing about a patch is that it focuses attention
just on those pieces of code that are being changed. This
allows for direct review of a proposed change without
lots of effort in locating or identifying that change. The
alternative6 is to pass around changed versions of com-
plete files. These files are awkward to handle and their
use makes identifying changes difficult and error prone.
The use of the simple patch is an elegant enabling tech-
nology for distributed development on a large scale.

3 When and How. . .

Now that we have identified the motivations of the play-
ers, the roles they play, and the tools they use, we should
look at the processes used to coordinate their efforts. We
will discuss how development needs are identified, what
process is used to vet patches, and the route patches fol-
low on their way to the “official” Linux kernel.

5While the word “patch” can connote something shoddy or tem-
porary to a native English speaker, in the context of Linux kernel
development it has no such connotations. Instead, the term patch
derives from the name of the non-interactive editor used to apply the
changes to the source code.

6The author’s experience suggests that this code review alter-
native is used all too often in the traditional software development
world.

3.1 Identify a Need

Perhaps it goes without saying, but the first step in any
development process is to identify a need. In many
cases, the need will originate with a bug report. This
might be in Bugzilla or another bug tracker, or it might
come via email or IRC. In other cases, the need will
derive from an external project requirement such as the
need for a driver for a new device or a new network-
ing subsystem for a certain application. In other cases
the “need” is because some other operating system has
a feature that is deemed desirable for Linux. Finally, in
many cases the development need originates with some-
one saying “wouldn’t it be cool if. . . ?” In any case, once
a need is identified, the next step is to write some code
and post a patch.

3.2 Development Cycle

Many people find the Linux development process to be
daunting. In reality it is quite simple, although person-
alities can make the process a bit humbling. The basic
process begins with creating and posting a patch to an
appropriate mailing list. With any luck this provokes
someone to review the patch and make appropriate com-
ments. Or, reviewers may simply indicate their approval
with an “ACK.”7 In many cases it will be necessary to
make revisions to the patch and post a new version to
the same mailing list. This process should be repeated
until the patch is accepted by the maintainer.

Often new contributors are either intimidated by the
above process or they simply do not believe it to be
the best use of their time. The temptation is to develop
in solitude until the developer is completely confident
in the soundness of a patch. Do not make this mis-
take! Inevitably someone will find legitimate problems
with any significant patch series. Trying to avoid the
review-revise-repost cycle will only waste a developer’s
time and create frustration between the developer and
the community when the patch is finally posted for re-
view.

3.3 Path Through the Trees

The first stop for an accepted patch is in a maintainer’s
tree. A variety of maintainers’ trees exist for subsystems

7ACK is short for acknowledged.

190 • A day in the life of a Linux kernel hacker. . .

like networking and SCSI, features like SELinux and re-
altime, and architectures like ARM, MIPS, SPARC, etc.
Maintainers’ trees are usually limited to usage by inter-
ested parties such as developers and users with specific
needs or interests.

To expand test coverage and community exposure,
other trees aggregate input from the various maintain-
ers’ trees. In the past this role was primarily filled
by Andrew Morton’s -mm tree, but more recently the
linux-next tree has become more popular. The
linux-next tree pulls the current versions of many
(probably most) maintainers’ trees to create a preview
of what will soon be available in the “official” Linux
kernel.

Periodically Linus will pronounce a kernel ready for re-
lease. Prior to that time, maintainers will have been
staging changes for the next Linux release and mak-
ing them available through the linux-next tree. Af-
ter the release, Linus spends two weeks merging the
patches the maintainers have been staging. Between the
end of that period and the next release, only necessary
bug fixes are merged into the “official” tree by Linus.
Any changes that are not necessary bug fixes are again
staged by the maintainers for the following release. This
period lasts several weeks as the kernel is exposed to
more testing and as bugs are uncovered and fixed. After
2–3 months, Linus will pronounce the kernel ready for
another release, and then the cycle begins again.

4 Conclusion

The reader has been provided with an overview of how
the Linux kernel is developed. We have discussed why
the contributors are involved, and what jobs they per-
form. We discussed many of the tools the community
uses to manage itself, and specifically discussed the im-
portance of the patch as a unit of work.

With all that background information, we went on to dis-
cuss the development cycle for the kernel. We touched
on how development needs are identified, and discussed
how patches are proposed, reviewed, and accepted into
the kernel. Finally we discussed the various trees a patch
has to traverse before making its way to Linus.

The author hopes this information has been useful. The
community needs to sustain itself with contributors. A
variety of roles need to be filled—no special training is

required. The author hopes that the reader will be in-
spired to find a way to join us! A well informed and
active community continues to be the force behind the
continued success of Linux and the open source com-
munity in general.

Transcendent Memory and Linux

Dan Magenheimer, Chris Mason, Dave McCracken, Kurt Hackel
Oracle Corp.

first.last@oracle.com

Abstract

Managing a fixed amount of memory (RAM) optimally
is a long-solved problem in the Linux kernel. Man-
aging RAM optimally in a virtual environment, how-
ever, is still a challenging problem because: (1) each
guest kernel focuses solely on optimizing its entire
fixed RAM allocation oblivious to the needs of other
guests, and (2) very little information is exposed to the
virtual machine manager (VMM) to enable it to de-
cide if one guest needs RAM more than another guest.
Mechanisms such as ballooning and hot-plug memory
(Schopp, OLS’2006) allow RAM to be taken from a
selfish guest and given to a needy guest, but these have
significant known issues and, in any case, don’t solve
the hard problem: Which guests are selfish and which
are needy? IBM’s Collaborative Memory Management
(Schwidefsky, OLS’2006) attempts to collect informa-
tion from each guest and provide it to the VMM, but
was deemed far too complex and attempts to upstream
it have been mostly stymied.

Transcendent Memory (tmem for short) is a new ap-
proach to optimize RAM utilization in a virtual envi-
ronment. Underutilized RAM from each guest, plus
RAM unassigned to any guest (fallow memory), is col-
lected into a central pool. Indirect access to that RAM is
then provided by the VMM through a carefully crafted,
page-copy-based interface. Linux kernel changes are
required but are relatively small and not only provide
valuable information to the VMM, but also furnish ad-
ditional “magic” memory to the kernel, provide perfor-
mance benefits in the form of reduced I/O, and mitigate
some of the issues that arise from ballooning/hotplug.

1 Introduction

RAM is cheap. So, if a Linux system is running a work-
load that sometimes runs out of memory, common wis-
dom says to add more RAM. As a result, in any given

system at any given time, a large percentage of RAM is
sitting unused or idle. But this RAM is not really empty;
Linux—and any modern operating system—uses other-
wise idle RAM as a page cache, to store pages from
disk that might be used at some point in the future. But
the choice of which pages to retain in the page cache is
a guess as to what the future holds—a guess which is
often wrong. So even though this RAM is holding real
data from the disk, much of it is essentially still idle. But
that’s OK; in a physical system, there’s nothing else to
do with that memory anyway, so if the guess is wrong,
no big loss, and if the guess is right, the data need not
be read from the disk, saving an I/O.

The whole point of virtualization is to improve utiliza-
tion of resources. The CPUs and I/O bandwidth on
many physical servers are lightly utilized and so virtu-
alization promises to consolidate these physical servers
as virtual servers on the same physical machine, to bet-
ter utilize these precious CPUs and I/O devices. Sta-
tistically, these virtual servers rarely all simultaneously
assert demand for the same resources, so the physical
resources can be multiplexed, thus allowing even more
virtual machines to share the same physical machine.

But what about RAM? RAM is harder to statistically
multiplex and so is becoming a bottleneck in many vir-
tualized systems. One solution is always to just add
more RAM, but as CPUs and I/O devices are more effi-
ciently utilized, RAM is becoming a significant percent-
age of the cost of a data center, both at time-of-purchase
and as a sink for energy. As a result, RAM is increas-
ingly not cheap, and so we would like to improve the
utilization of RAM as a first-class resource.

Why can’t we apply the same techniques for sharing
CPUs and I/O devices to memory? In short, it is be-
cause memory is a non-renewable resource. Every sec-
ond there is a fresh new second of CPU time to divide
between virtual machines. But memory is assumed to
be persistent; memory containing important data for one
virtual machine during one second cannot be randomly

192 • Transcendent Memory and Linux

given to another virtual machine at the next second. This
is complicated in all modern operating systems by RAM
utilization techniques such as page caching. Linux has
a reason to hoard RAM, because the more RAM it has,
the more likely its page cache will contain pages it needs
in the future, thus saving costly I/Os.

To be sure, mechanisms exist to take memory away
from one virtual machine and give it to another. Bal-
looning, for example, cleverly does this by creating
a dynamically-loadable pseudo-driver which resides in
each virtual machine and requests pages of memory
from the kernel, secretly passing them to the virtual ma-
chine manager (VMM) where they can be reassigned to
another virtual machine, and later returned if needed.
And hot-plug memory techniques can similarly be used
to surrender and reclaim memory, albeit at a much
coarser granularity. Both of these mechanisms have
known weaknesses, not the least of which is they don’t
solve the thorniest problem: How can it be determined
how much memory each virtual machine really needs?
That is, which ones are truly “needy” and which ones
are selfishly hoarding memory?

IBM’s Collaborative Memory Management deeply in-
trudes into the Linux memory management code and
maintains a sophisticated state machine to track pages
of memory and communicate status to the VMM. But if
changes are being made to the kernel anyway, why not
create a true collaboration between the kernel and the
VMM?

This is the goal of Transcendent Memory, or tmem. Un-
derutilized and unassigned (fallow) RAM is collected
by the VMM into a central pool. Indirect access to
that RAM is then provided by the VMM through a
carefully- crafted, page-copy-based interface. Linux
kernel changes are required but are relatively small and
not only provide valuable information to the VMM, but
also furnish additional “magic” memory to the kernel,
provide performance benefits in the form of reduced I/O,
and mitigate some of the issues that arise from balloon-
ing/hotplug.

In the remaining sections, we will first provide an
overview of how tmem works. We will then describe
some Linux changes necessary to utilize some of the
capabilities of tmem, implementing useful features that
we call precache and preswap. Finally, we will suggest
some future directions and conclude.

2 Transcendent Memory Overview

We refer to a tmem-modified kernel as a tmem client
and to the underlying tmem code as a tmem implemen-
tation or just as tmem. The well-specified interface be-
tween the two is the tmem API. Xen provides a tmem
implementation, and the code is structured to be easily
portable. A Linux client patch is available for 2.6.30 and
we will discuss that shortly. But first, we will describe
the operational basics of tmem.

2.1 Tmem pool creation

In order to access tmem memory, the kernel must first
create a tmem pool using the tmem_new_pool call.
The tmem_new_pool call has a number of parameters
which will be described in more detail later, but an im-
portant one is whether the memory in the pool is needed
to be persistent or non-persistent (ephemeral). While
it might seem a no-brainer to always request persistent
memory, we shall see that, due to certain restrictions im-
posed by tmem, this is not the case.

If tmem successfully creates the pool, it returns a small
non-negative integer, called a pool_id. Tmem may limit
the number of pools that can be created by a tmem
client—the Xen implementation uses a limit of 16—so
pool creation may fail, in which case tmem_new_pool
returns a negative errno.

Once a tmem pool is successfully created, the kernel can
use the pool_id to perform operations on the pool. These
operations are page-based and the individual pages are
identified using a three-element tuple called a handle.
The handle consists of a pool_id, a 64-bit object iden-
tifier (obj_id), and a 32-bit page identifier (index). The
tmem client is responsible for choosing the handle and
ensuring a one-to-one mapping between handles and
pages of data.

Though they need not be used as such, the three handle
components can be considered analogous to a filesys-
tem, a file (or inode number) within the filesystem, and
a page offset within the file. More generically, the han-
dle can be thought of as a non-linear address referring
to a page of data.

A created pool may be shared between clients and
shared pools may be either ephemeral or persistent.
Clients need only share a 128-bit secret and provide it

2009 Linux Symposium • 193

at pool creation. This is useful, for example, when mul-
tiple virtual nodes of a cluster reside on the same phys-
ical machine, or as an inter-VM shared memory mech-
anism. For the purposes of this paper, we will assume
that created pools are private, not shared, unless other-
wise noted.

2.2 Tmem basic operations

The two primary operations performed on a tmem pool
are tmem_put_page (or put) and tmem_get_page (or
get). The parameters to tmem_put_page consist of a
handle and a physical page frame, and the call indicates
a request from the kernel for tmem to copy that page
into a tmem pool. Similarly, the parameters to tmem_

get_page consist of an empty physical page frame and
a handle, and the call indicates a request to find a page
matching that handle and copy it into the kernel’s empty
page frame.

If tmem elects to perform the copy, it returns the integer
value 1. If it elects to NOT perform the copy, it returns
the integer value 0. If it is unable to perform the copy for
a reason that might be useful information to the client,
it returns a negative errno.

In general, a put to an ephemeral pool will rarely fail but
a get to an ephemeral pool will often fail. For a persis-
tent pool, a put may frequently fail but, once success-
fully put, a get will always succeed. Success vs failure
may appear random to the kernel because it is governed
by factors that are not visible to the kernel.

Note that both get and put perform a true copy of the
data. Some memory utilization techniques manipulate
virtual mappings to achieve a similar result with pre-
sumably less cost. Such techniques often create aliasing
issues and suffer significant overhead in TLB flushes.
Also, true copy avoids certain corner cases as we shall
see.

2.3 Tmem coherency

The kernel is responsible for ensuring coherency be-
tween its own internal data structures, the disk, and any
data put to a tmem pool. Two tmem operations are
provided to assist in ensuring this consistency: tmem_

flush_page takes a handle and the call ensures that a
subsequent get with that handle will fail; tmem_flush_
object takes a pool_id and an obj_id and ensures that a

get to ANY page matching that pool_id and obj_id will
fail.

In addition, tmem provides certain coherency guaran-
tees that apply to sequences of operations using the same
handle: First, put-put-get coherency promises that a du-
plicate put may never silently fail; that is in a put-put-get
sequence, the get will never return the stale data from
the first put. Second, get-get coherency promises that if
the first get fails, the second one will fail also.

Note also that a get to a private ephemeral pool is de-
fined to be destructive, that is, if a get is successful, a
subsequent get will fail, as if the successful get were
immediately followed by a flush. This implements ex-
clusive cache semantics.

2.4 Tmem concurrency

In an SMP environment, tmem provides concurrent ac-
cess to tmem pools but provides no ordering guarantees,
so the kernel must provide its own synchronization to
avoid races. However, a tmem implementation may op-
tionally serialize operations within the same object. So
to maximize concurrency, it is unwise to restrict usage
of tmem handles to a single object or a very small set of
objects.

2.5 Tmem miscellaneous

Tmem has additional capabilities that are beyond the
scope of this paper, but we mention several briefly here:

• A tmem implementation may transparently com-
press pages, trading off cpu time spent compress-
ing and decompressing data to provide more appar-
ent memory space to a client.

• Extensive instrumentation records frequency and
performance (cycle count) data for the various
tmem operations for each pool and each client; and
a tool is available to obtain, parse, and display the
data.

• A pagesize other than 4KB can be specified to en-
sure portability to non-x86 architectures.

• Pool creation provides versioning to allow for-
wards and backwards compatibility as the tmem
API evolves over time.

194 • Transcendent Memory and Linux

• Subpage reads, writes and exchange operations are
provided.

• Pools can be explicitly destroyed, if necessary, to
allow reuse of the limited number of pool_ids.

More information on tmem can be found at http://
oss.oracle.com/projects/tmem

3 Linux and tmem

From the perspective of the Linux kernel, tmem can
be thought of as somewhere between a somewhat slow
memory device and a very fast disk device. In either
case, some quirks must be accommodated. The tmem
“device”:

• has an unknown and constantly varying size

• may be synchronously and concurrently accessed

• uses object-oriented addressing, where each object
is a page of data

• can be configured as persistent or non-persistent

Although these quirks may seem strange to kernel de-
velopers, they provide a great deal of flexibility, essen-
tially turning large portions of RAM into a renewable
resource. And although a kernel design for using tmem
that properly accommodates these quirks might seem
mind-boggling, tmem actually maps very nicely to as-
sist Linux memory management code with two thorny
problems: page cache refaults [vanRiel, OLS’2006] and
RAM-based swapping. We call these new tmem-based
features precache and preswap. We will describe both,
but first, to illustrate that they are not very intrusive, Fig-
ure 1 shows the diffstat for a well-commented example
patch against Linux 2.6.30.

This patch not only supports both precache and preswap
but:

• can be configured on or off at compile-time

• if configured off, all code added to existing Linux
routines compiles into no-ops

• if configured on but Linux is running native, has
very low overhead

• if configured on and running on Xen, has very low
overhead if tmem is not present (e.g. an older ver-
sion of Xen) or not enabled

• is nicely-layered for retargeting to other possible
future (non-Xen) tmem implementations

3.1 Precache

Precache essentially provides a layer in the memory hi-
erarchy between RAM and disk. In tmem terminology,
it is a private-ephemeral pool. Private means that data
placed into precache can only be accessed by the ker-
nel that puts it there; ephemeral means that data placed
there is non-persistent and may disappear at any time.
This non-persistence means that only data that can be re-
generated should be placed into it which makes it well-
suited to be a “second-chance” cache for clean page
cache pages.

When Linux is under memory pressure, pages in the
page cache must be replaced by more urgently needed
data. If the page is dirty, it must first be written to disk.
Once written to disk—or if the page was clean to start
with—the pageframe is taken from the page cache to be
used for another purpose. We call this an eviction. Af-
ter a page is evicted, if the kernel decides that it needs
the page after all (and in certain workloads, it frequently
does), it must fetch the page from disk, an unfortunate
occurrence which is sometimes referred to as a refault.
With precache, when a page is evicted, the contents of
the page are copied, or put, to tmem. If the page must be
refaulted, a get is issued to tmem, and if successful, the
contents of the page has been recovered. If unsuccess-
ful, it must be fetched from disk and we are no worse
off than before.

Let’s now go over the precache mechanism in more de-
tail.

When a tmem-capable filesystem1 is mounted, a
precache_init is issued with a pointer to the filesys-
tem’s superblock as a parameter. The precache_init
performs a tmem_new_pool call. If pool creation is
successful, the returned pool_id is saved in a (new) field
of the filesystem superblock.

When the filesystem is accessed to fetch a page
from disk, it first issues a precache_get, providing

1Currently, ext3 is supported; ocfs2 and btrfs are in progress.

2009 Linux Symposium • 195

Changed files:

fs/buffer.c | 5
fs/ext3/super.c | 2
fs/mpage.c | 8 +
fs/ocfs2/super.c | 2
fs/super.c | 5
include/linux/fs.h | 7
include/linux/swap.h | 57 +++++++
include/linux/sysctl.h | 1
kernel/sysctl.c | 12 +
mm/Kconfig | 26 +++
mm/Makefile | 3
mm/filemap.c | 11 +
mm/page_io.c | 12 +
mm/swapfile.c | 46 +++++
mm/truncate.c | 10 +
drivers/xen/Makefile | 1
include/xen/interface/xen.h | 22 ++
arch/x86/include/asm/xen/hypercall.h | 8 +

Newly added files:

mm/tmem.c | 62 +++++++
include/linux/tmem.h | 88 +++++++++++
include/linux/precache.h | 55 +++++++
mm/precache.c | 145 ++++++++++++++++++
mm/preswap.c | 273 +++++++++++++++++++++++++++++++++++
drivers/xen/tmem.c | 97 ++++++++++++
include/xen/interface/tmem.h | 43 +++++

Figure 1: Diffstat for linux-2.6.30 tmem patch, supporting both precache and preswap
(From http://oss.oracle.com/projects/tmem/files/linux-2.6.30)

an empty struct page, a struct address_space

mapping pointer, and a page index. The precache_

get extracts from the mapping pointer the pool_id
from the superblock and the inode number, combines
these with the page index to build a handle, performs a
tmem_get_page call, passing the handle and the phys-
ical frame number of the empty pageframe, and returns
the result of the tmem_get_page call. Clearly, the first
time each page is needed, the get will fail and the filesys-
tem continues as normal, reading the page from the disk
(using the same empty pageframe, inode number, and
page index). On subsequent calls, however, the get may
succeed, thus eliminating a disk read.

When a page is about to be evicted from page
cache, a call to precache_put is first performed,
passing the struct page containing the data, a
struct address_spacemapping pointer, and a page

index. The precache_put extracts from the mapping
pointer the pool_id from the superblock and the inode
number, combines these with the page index to build a
handle, performs a tmem_put_page call, passing the
handle and the physical frame number of the data page,
and returns the result of the tmem_put_page call. In
all but the most unusual cases, the put will be success-
ful. However, since the data is ephemeral, there’s no
guarantee that the data will be available to even an im-
mediately subsequent get, so success or failure, the re-
turn value can be ignored.

Now, regardless of guarantee (but depending on the de-
lay and the volume of pages put to the precache), there’s
a high probability that if the filesystem needs to refault
the page, a precache_get will be successful. Every
successful precache_get eliminates a disk read!

196 • Transcendent Memory and Linux

One of the challenges for precache is providing co-
herency. Like any cache, cached data may become
stale and must be eliminated. Files that are overwritten,
removed, or truncated must be ensured consistent be-
tween the page cache, the precache, and the disk. This
must be accomplished via careful placement of calls
to precache_flush and precache_flush_inode,
the placement of which may differ from filesystem to
filesystem. Inadequate placement can lead to data cor-
ruption; overzealous placement results in not only a po-
tentially large quantity of unnecessary calls to tmem_

flush_page and tmem_flush_object, but also the
removal of pages from precache that might have been
the target of a successful get in the near future. Since
the flushes are relatively inexpensive and corruption is
very costly, better safe than sorry! Optimal placement
is not an objective of the initial patch and will require
more careful analysis.

Note that one of the unique advantages of precache is
that the memory utilized is not directly addressible. This
has several useful consequences for the kernel: First,
memory that doesn’t belong to this kernel can still be
used by this kernel. If, for example, a tmem-modified
VM has been assigned a maximum of 4GB of RAM,
but it is running on a physical machine with 64GB of
RAM, precache can use part of the remaining, otherwise
invisible, 60GB to cache pages (assuming of course that
the memory is fallow, meaning other VMs on the phys-
ical machine are not presently using it). This “magic”
memory greatly extends the kernel’s page cache. Sec-
ond, memory space that belongs to the kernel but has
been temporarily surrendered through ballooning or hot-
plug activity may be re-acquired synchronously, with-
out waiting for the balloon driver to asynchronously re-
cover it from the VMM (which may require the mem-
ory to be obtained, in turn, from a balloon driver of an-
other VM). Third, no struct page is required to map
precache pages. In the previous 4GB-64GB example,
a VM that might periodically need to balloon upwards
to 64GB might simply be initially configured with that
much memory (e.g. using the “maxmem” parameter to
xen). But if that is the case, all pages in the 64GB must
have a struct page, absorbing a significant fraction
of 1GB just for kernel data structures that will almost
never be used.

The benefits for the virtualized environment may not be
as obvious but are significant: Every page placed in pre-
cache is now a renewable resource! If a balloon driver in

VM A requests a page, it can be synchronously delivered
simply by removing the page from the precache of VM
B without waiting for the kernel and/or balloon driver
in VM B to decide what page can be surrendered. And
if a new VM C is to be created, the memory needed to
provision it can be obtained by draining the precache of
VM A and VM B. Further, pages placed in precache may
be transparently compressed, thus magically expanding
the memory available for precached pages by approxi-
mately a factor of two vs if the same memory were ex-
plicitly assigned to individual VMs.

Of course precache has costs too. Pages will be put to
precache that are never used again; and every disk read
is now preceded by a get that will often fail; and the
flush calls necessary for coherency are also a require-
ment. Precache is just another form of cache and caches
are not free; for any cache, a benchmark can be synthe-
sized that shows cache usage to be disadvantageous. But
caches generally prove to be a good thing. For precache,
the proof will be, er, in the put’ing.

3.2 Preswap

Preswap essentially provides a layer in the swap sub-
system between the swap cache and disk. In tmem ter-
minology, it is a private-persistent pool. Again, private
means that data placed into preswap can only be ac-
cessed by the kernel that put it there; persistent means
that data placed there is permanent and can be fetched at
will... but only for the life of the kernel that put it there.
This semi-permanence precludes the use of preswap as
a truly persistent device like a disk, but maps very nicely
to the requirements of a swap disk.

In a physical system, sometimes the memory require-
ments of the application load running on a Linux sys-
tem exceed available physical memory. To accommo-
date the possibility that this may occur, most Linux sys-
tems are configured with one or more swap devices; usu-
ally these are disks or partitions on disks. These swap
devices act as overflow for RAM. Since disk access is
orders of magnitude slower than RAM, a swap device
is used as a last resort; if heavy use is unavoidable, a
swapstorm may result, resulting in abysmal system per-
formance. The consequences are sufficiently dire that
system administrators will buy additional servers and/or
purchase enough RAM in an attempt to guarantee that a
swapstorm will never happen.

2009 Linux Symposium • 197

In a virtualized environment, however, a mechanism
such as ballooning is often employed to reduce the
amount of RAM available to a lightly-loaded VM in an
attempt to overcommit memory. But if the light load is
transient and the memory requirements of the workload
on the VM suddenly exceed the reduced RAM avail-
able, ballooning is insufficiently responsive to instan-
taneously increase RAM to the needed level. The un-
fortunate result is that swapping may become more fre-
quent in a virtualized environment. Worse, in a fully-
virtualized data center, the swap device may be on the
other end of a shared SAN/NAS rather than on a local
disk.

Preswap reduces swapping by using a tmem pool to
store swap data in memory that would otherwise be writ-
ten to disk. Since tmem prioritizes a persistent pool
higher than an ephemeral pool, precache pages—from
this kernel or from another—can be instantly and trans-
parently reprovisioned as preswap pages. However, in
order to ensure that a malicious or defective kernel can’t
absorb all tmem memory for its own nefarious purposes,
tmem enforces a policy that the sum of RAM directly
available to a VM and the memory in the VM’s per-
sistent tmem pools may not exceed the maximum al-
location specified for the VM. In other words, a well-
behaved kernel that shares RAM when it is not needed
can use preswap; a selfish kernel that never surrenders
RAM will be unable to benefit from preswap. Even bet-
ter, preswap pages may be optionally and transparently
compressed, potentially doubling the data that can be
put into tmem.

Now that we understand some of preswap’s benefits,
let’s take a closer look at the mechanism.

When a swap device is first configured (via sys_

swapon, often at system initialization resulting from
an entry in /etc/fstab), preswap_init is called,
which in turn calls tmem_new_pool, specifying that a
persistent pool is to be created. The resulting pool_id is
saved in a global variable in the swap subsystem. (Only
one pool is created even if more than one swap device is
configured.) Part of the responsibility of sys_swapon
is to allocate a set of data structures to track swapped
pages, including a 16-bit-per-page array called swap_

map. Preswap pages also must be tracked, but a sin-
gle “present” bit is sufficient and so the tmem-modified
sys_swapon allocates a 1-bit-per-page preswap_map
array.

When a page must be swapped out, a block I/O write
request must be passed to the block I/O subsystem. The
routine that submits this request first makes a call to
preswap_put, passing only the struct page as a
parameter. The preswap_put call extracts the swap
device number and page index (called type and offset
in the language of Linux swap code), combines it with
the saved preswap_poolid to create a handle, and passes
the handle along with the physical frame number of the
page to tmem_put_page. If the put was successful,
preswap_put then records the fact by setting the cor-
responding bit in the preswap_map and returns suc-
cess (the integer 1). Otherwise, the integer 0 is re-
turned. If preswap_put returns success, the page has
been placed in preswap, the block I/O write is circum-
vented, and the struct page is marked to indicate that
the page has been successfully written.

A similar process occurs when a page is to be swapped
in, but two important points are worth noting. First,
if the bit in the preswap_map corresponding to the
page to be swapped in is set, the tmem_get_page

will always succeed—it is a bug in tmem if it does
not! Second, unlike an ephemeral pool, a get from a
persistent pool is non-destructive; thus, the bit in the
preswap_map is not cleared on a successful get. This
behavioral difference is required as a swapped page is
reference counted by the swap subsystem because mul-
tiple processes might have access to the page and, fur-
ther, might concurrently issue requests to read the same
page from disk!

However, this behavior leads to some complications in
the implementation of preswap. First, an explicit flush
is required to remove a page from preswap. Fortunately,
there is precisely one place in the swap code which de-
termines when the reference count to a swap page goes
to zero, and so a preswap_flush can be placed here.
Second, data from rarely used init-launched processes
may swap out pages and then never swap them back in.
This uses precious tmem pool space for rarely used data.

This latter point drives the need for a mechanism to
shrink pages out of preswap and back into main mem-
ory. This preswap_shrink mechanism needs to be in-
voked asynchronously when memory pressure has sub-
sided. To accomplish this, sys_swapoff-related rou-
tines have been modified to alternately try_to_unuse

preswap pages instead of swap pages. In the current
patch, the mechanism is invoked by writing a sysfs file,

198 • Transcendent Memory and Linux

/sys/proc/vm/preswap2. In the future, this should
be automated, perhaps by kswapd.

One interesting preswap corner case worth mentioning
is related to the tmem-enforced put-put-get coherency.
Since a preswap get is non-destructive, duplicate puts
are not uncommon. However, it is remotely possible
that the second put might fail. (This can only occur if
preswap pages are being compressed AND the data in
the second put does not compress as well as the first
put AND tmem memory is completely exhausted. But
it does happen!) If this occurs, an implicit preswap_
flush is executed, eliminating the data from the first
put from the tmem pool. Both preswap_put and the
routine that calls it must be able to recover from this,
e.g. by clearing the corresponding preswap_map bit
and by ensuring the page is successfully written to the
swap disk.

4 Future directions

Tmem is a brand new approach to physical memory
management in a virtualized environment. As such, we
believe we are only beginning to see its potential.

We have done some investigation into shared tmem
pools. A shared-ephemeral pool can serve nicely as a
server-side cache for a cluster filesystem, or perhaps for
a network-based filesystem. Like precache, this shared
precache would reduce the cost of refaults but, in the
case of virtual cluster nodes co-residing on the same
physical node, a page evicted by one node might be
found by a get performed by another node. A prototype
of this has been implemented targeting the ocfs2 filesys-
tem, using the 128-bit ocfs2 UUID as the shared secret
that must be specified by both nodes when the shared
pool is created.

With three quadrants of the private vs shared / persistent
vs ephemeral matrix implemented, the fourth, a shared-
persistent pool falls out easily. A shared-persistent pool
looks like a fine foundation for inter-VM shared mem-
ory, and shared memory can be used as a basis for inter-
VM communication or other capabilities. Several re-
search projects implementing inter-VM messaging have
been published. To our knowledge, none is yet available
commercially.

2Reading this same sysfs file provides the number of pages writ-
ten to preswap instead of to disk

Benchmarking is needed. But since nearly all virtualiza-
tion deployments are implemented around assumptions
and constraints that tmem intends to shatter, using yes-
terday’s static benchmarks to approximate tomorrow’s
highly-dynamic utility data center workloads does a dis-
service to everyone.

With a well-defined API in place, additional implemen-
tations both above and below the API boundary are fea-
sible. A native Linux implementation has been pro-
posed, using standard kernel memory allocation to pro-
vision tmem pools. This might seem silly, but could
serve as an effective API for compressing otherwise
evicted or swapped pages to improve memory utiliza-
tion when memory pressure increases—something like
the compcache in the linux-mm project list, but with
the capability of compressing page cache pages as well
as swap pages. The API might also prove useful for lim-
iting persistence requirements on or restricting access to
new memory technologies, such as solid-state disks or
blocks of memory marked for hot-delete.

Should tmem prove sufficiently advantageous in opti-
mizing memory utilization across a data center, new
tmem clients might be implemented to ensure that, for
example, BSD VM’s can play nice with Linux VMs.
Or proprietary Unix versions in virtual appliance stacks.
Or even Windows might be “enlightened” (or binary-
patched).

Some argue that tmem-like features are redundant on
KVM. Some believe otherwise. It will take a full KVM
tmem implementation to decide.

Elevating memory to a full first-class resource opens
new avenues for new research and new tools. VMM
schedulers are smart enough to take into account CPU-
bound VM’s vs I/O-bound VMs. But how much of that
I/O is refaulting/swapping due to insufficient memory?
And can metrics obtained from tracking tmem put/get
successes and failures be fed back to improve native
Linux page replacement algorithms? Or to help Linux
directly self-manage its own memory size without the
obfuscations of a balloon driver?

Even further out, might ephemeral memory influence
future system design? Does a memory node or memory
blade make more sense for memory that is a renewable
resource?

2009 Linux Symposium • 199

5 Acknowledgements

The authors thank Jeremy Fitzhardinge, Keir Fraser, Ian
Pratt, Jan Beulich, Sunil Mushran, and Joel Becker for
valuable feedback and Zhigang Wang for assistance in
implementing the Xen control plane tools for the Xen
tmem implementation.

6 References

R. van Riel, Measuring Resource Demand on Linux
Proceedings of the Ottawa Linux Symposium 2006.

M. Schwidefsky et al., Collaborative Memory
Management in Hosted Linux Environments
Proceedings of the Ottawa Linux Symposium 2006.

J. Schopp, K Fraser, and M. Silbermann, Resizing
Memory with Balloons and Hotplug

Transcendent Memory home page,
http://oss.oracle.com/projects/tmem

200 • Transcendent Memory and Linux

Incremental Checkpointing for Grids

John Mehnert-Spahn, Eugen Feller, Michael Schoettner
Heinrich Heine University of Duesseldorf, Duesseldorf, NRW, Germany

{John.Mehnert-Spahn, Eugen.Feller, Michael.Schoettner}@uni-duesseldorf.de

Abstract

The EU-funded project XtreemOS implements an open-
source Linux-based grid operating system. Here, check-
pointing (CP) is used to implement fault tolerance and
process migration. We have developed an incremental
CP solution for saving only memory pages that have
been changed since the last CP. We present how we
keep track of memory page modifications between CPs
using Linux-native radix trees and how we handle vir-
tual memory area changes. We also discuss experiment
results with selected examples. Finally, we present a
custom memory event connector transparently reporting
page write-protection fault of processes to a user mode
grid service to adaptively control incremental CP at grid
level.

1 Introduction

Secure and efficient resource sharing between institutes
and companies is increasingly required by research, en-
gineering and industry. Both is provided by grid tech-
nologies implementing distributed computing platforms
e.g. middleware-approaches like Globus [4] or grid-
functionality integrated into native operating systems
such as XtreemOS [3].

Grid-inherent dynamicity as well as the unpredictable
application behaviour require to transparently move
applications from heavily-loaded or close-to-fail grid
nodes to idle and healthy ones. Coping with grid fault
tolerance is an ongoing research topic. Our approach
is based on using existing kernel checkpointers, includ-
ing the latest Linux checkpointer. In this paper we fo-
cus on developing incremental checkpointing in Linux
to speed-up checkpoint time. Once, a grid service is
able to switch between full and incremental checkpoint-
ing, based on monitoring information provided by the
kernel, the best-suited strategy can be applied.

Recent Linux innovations allow applications, running
on one node, to be isolated from each other regarding
resources such as cpus, pids, network, ipcs, file system,
etc. Container concept [12] implementations such as
cgroups [1] allow the same resource identifier to be used
by multiple applications residing in a separate cgroup
container. The container concept pushes server consol-
idation. Furthermore, it is significant for fault toler-
ance to avoid potential resource conflicts at restart. A
checkpointing mechanism is about to be developed and
can be used for process migration and fault tolerance.
Linux container and checkpointer implementations are
required by grid computing in order to support load bal-
ancing and fault tolerance.

This paper is structured as follows: Section 2 provides a
short overview of the XtreemOS project, Section 3 gives
a detailed insight into our concepts and implementation
of incremental checkpointing in Linux including a short
overview of related work, Section 4 presents evaluation
results followed by conclusions and outlook.

2 XtreemOS

The EU funded project XtreemOS aims at providing a
Linux-based open source Grid operating system com-
ing in three flavours for: single PCs, Single System
Images (SSI) cluster and mobile devices. Fundamental
XtreemOS functionalities include native Virtual Organ-
isation (VO) support and fault tolerance that have been
implemented by extending the native operating system.

Basically, applications can transparently exploit re-
sources distributed in the grid spread across adminis-
trative domains. Besides state-of-the-art grid applica-
tions, legacy applications can be run in the grid un-
modified by relying on the POSIX interface provided
by XtreemOS. Developers can easily create new grid
applications, using the functionality provided by dis-
tributed grid services through the XOSAGA API pro-
viding access to security, resource and process manage-

• 201 •

202 • Incremental Checkpointing for Grids

ment. Users are organised in VOs, VO policies can be
created to provide fine grained resource access control.
Furthermore, XtreemOS comes with a grid file system
called XtreemFS [10], allowing for location transparent
file access, file replication and file striping.

XtreemOS ships with an integrated grid checkpoint-
ing mechanism. The components of the XtreemOS
grid checkpointing architecture [13] are shown in Fig-
ure 1. The main concept is to rely on existing ker-
nel checkpointer packages, e.g. Berkeley Labs Check-
point Restart (BLCR) [8], OpenVZ [11], the Linux-
native checkpointer for a single PC [1] and the LinuxSSI
checkpointer [14] for a SSI cluster.

Figure 1: XtreemOS grid checkpointing architecture

The job checkpointer service at the top is responsible
for checkpointing/restarting a job consisting of one or
multiple job-units. A job-unit checkpointer focuses on
saving and restoring a single job-unit. Therefore, it uni-
formly addresses an underlying kernel checkpointer us-
ing the so-called common kernel checkpointer API. This
API is implemented per checkpointer in a separate trans-
lation library. It bridges semantic differences, e.g. each
kernel checkpointer distinguishes from another one by
an individual calling semantic. Furthermore, there are
different process group types supported by the check-
pointers. The translation library must check a process
group precisely matches a job-unit’s processes in order
to enforce checkpoint/restart consistency. The library
is responsible for providing a uniform interface to de-
velopers to transparently register checkpoint/restart call-
backs. The API supports the retrieval of a matching ker-
nel checkpointer for an application at job submission,
because most kernel checkpointers are incapable of sav-
ing and restoring all possible kernel resources. Besides
grid-to-kernel level semantic translations, the API also
provides inter-kernel checkpointer translation regarding
saving/restoring reliable channels by a generic channel

flushing protocol.

3 Incremental Checkpointing in Linux

3.1 Memory page modification detection

Checkpointing overhead can be dramatically reduced by
saving only content that has changed since the previous
checkpoint. The major challenge here is to detect these
content modifications. Generally, there are page-based
and variable based approaches.

Detection of content changes at variable-granularity-
level is described in [7] where a compiler is manually
modified to detect variable changes. Thus, the compiler
is enabled to insert incremental state saving calls before
a variable is changed. In [15] detection of changes vari-
ables is enabled without manual intervention, but via an
executable editing library. Furthermore, special mem-
ory hardware exists that incrementally state saves con-
tained variables [5].

Detection of modified pages can be realised by taking
existing page table entry bits, namely the dirty bit or the
write bit, into account.

The dirty bit is of high importance for the Linux in-
ternal memory management components, especially for
the Page Cache. A set dirty bit indicates to synchronize
cache contained pages with those versions on disk and
the swap partition. Just reading the dirty bit does not
always indicate changed content. After modified cache
contained data are written back to disk, the bit is reset,
thus, a past modification is not visible anymore. Book-
keeping of modified pages includes resetting the dirty
bit to detect new modifications after a taken snapshot,
which is dangerous since it affects Page Cache consis-
tency. In [6] page modification detection is done based
on the dirty bit being mirrored into one of the reserved
entry bits.

Our approach to detect modified pages is write bit fo-
cused. Each time a write-protection page-fault occurs,
the write bit is set. Such exceptions are detected by
the memory management unit. An exception handler
is called and resolves the exception by removing the
write-protection (write bit set to 1). Based on the detec-
tion we record modified pages in a bookkeeping control
structure. At the initial checkpoint all pages of a pro-
gram address space are saved. After each checkpointing

2009 Linux Symposium • 203

operation all writable pages are explicitly made write-
protected (write bit is reset to 0). In case an applica-
tion attempts to write on such a page within a check-
point interval, the triggered page-fault handler removes
the write-protection. Thus, detection of modified pages
is enabled during the next checkpointing operation. De-
pending on the application behaviour, generally just a
subset of all application pages needs to be saved. In or-
der to detect future write attempts in subsequent check-
point intervals, the write-protection will be reactivated
by explicitly resetting the page write bit. Special han-
dling of newly added read-only pages and partially writ-
ten pages after a checkpointing operation is detailed un-
der Section 3.3.

During restart the last version of a physical page needs
to be localized out of multiple checkpoint images.
Therefore, a dedicated bookkeeping control structure is
required that keeps track of the last page’s file location
and offset within the checkpoint image file, described in
the following section.

We are conscious about TLB entries, which must be
flushed explicitly after each incremental checkpoint,
since they are not updated with our write bit modifica-
tion. The latter could result in inconsistency. However,
each process context switch anyway results in flushing
the TLB. Taking multiple checkpoints within one sched-
uler time slice is hard to achieve due to its shortness.

3.2 Bookkeeping of modified pages

Physical page content of an application address space
may be spread across multiple incremental checkpoint
images each potentially storing all or just a subset of all
pages. At restart the complete content and its consistent
versions must be loaded.

We use a bookkeeping control structure that keeps track
of page locations and is based on the Linux-native radix
tree. The radix tree provides fast lookup and insertion
operations (O(1)) which are needed to keep the struc-
ture in sync with the process memory structure. In Fig-
ure 2 the localisation of a virtual address-related physi-
cal page is shown.

Each tree node is identified by a virtual address. A
node entry stores the version of a dedicated incremen-
tal checkpoint image file (e.g., pages_5.bin for the fifth
incremental checkpoint) containing the latest version of

Figure 2: Bookkeeping control structure for modified
pages

the page, and the offset in this file, since more than one
page may be modified between two incremental check-
points. The incremental checkpoint image file stores
data blocks each containing a virtual address, page pro-
tection flags and the page content itself. Of course, all
node entries are also saved to disk at each incremental
checkpoint.

During a checkpointing operation the bookkeeping con-
trol structure is updated. That means, bookkeeping en-
tries targeting not yet referenced pages are added, file
locations and offsets of pages that are present and modi-
fied and already referenced are being updated and saved
to disk.

At restart the bookkeeping control structure is read from
disk. Its data is used to localize memory pages out of
multiple incremental checkpoint files to restore a pro-
cess’ address space.

The mere write-bit based page modification approach
alone is not able to keep the bookkeeping control struc-
ture in sync with the process memory structure, espe-
cially if memory pages have been removed. A require-
ment is to delete such structure entries to avoid wasting
memory. Reading from and writing structure content to
disk decreases checkpointing performance.Another is-
sue is the unawareness of newly mapped read-only data
that cannot be detected and will lead to inconsistency
at restart because the appropriate page content is miss-
ing. The solution for both cases is detailed in the next
section.

3.3 Challenge: memory region changes

Virtual pages belong to a bigger logical unit called mem-
ory region or virtual memory area (VMA). Memory re-
gions can be seen as an overlay structure of continuous
virtual pages. At one time one virtual address belongs
to exactly on memory region. Over time one virtual ad-
dress may be reassigned to a new memory region. They

204 • Incremental Checkpointing for Grids

are implicitly created from user space (e.g. mmap sys-
tem call) and are created/managed by internal memory
management mechanisms.

Memory region changes in connection with read-only
and writable pages must be taken into account when
managing the book keeping control structure. Two
criteria must be fulfilled, proper assignment of pages
to memory regions, which can be influenced by dy-
namic region creation/removal, and clean management
of bookkeeping control structure entries, outdated en-
tries must be deleted. If the later contains inappropriate
content, a restart may fail or result in inconsistency. Ac-
cording to Linux memory region management [2] four
cases of memory region changes can occur:

Rule 1 (region extension): if a new range of addresses
is to be added to a process, the kernel first tries to en-
large an existing memory region. This requires virtual
address holes or free address blocks in the process’ ad-
dress space and access rights of the existing region and
the additional addresses being equal.

Rule 2 (region creation): if a new memory region is
created and attached to the process’ address space, the
kernel tries to merge neighbouring regions, as far as they
share the same access rights.

Rule 3 (region shortening): a certain address block can
be removed from a region. If this address block resides
at the beginning or end of a region, the region is short-
ened.

Rule 4 (region splitting): if the address block to be
removed resides within an existing region, the region is
split into two smaller regions.

The following examples demonstrate the need for an ad-
ditional criteria than only checking the write bit in order
to detect memory region changes, and thus page content
changes.

Case 1: An application maps file A in a separate mem-
ory region 2. The application gets checkpointed, after-
wards file A gets unmapped, memory region 2 vanishes.
The application maps file B, accidentally having same
size and using the virtual address block of former region
2. A new memory region 2 will be created.

In case file B has been mapped as read-only a new in-
cremental checkpoint does not include the new memory
region 2 content, since no write bit has been set (see

Figure 3: Region2 content with fileB has never been
saved, restore old content of fileA

Figure 3). At restart memory region 2 will be recreated
containing file A (old memory region 2) content which
is wrong.

Figure 4: fileB was partially written to, restore mix of
old and new content

In case file B has been mapped as writable and if it has
been partially written to, a new incremental checkpoint
results in saving just the pages of region 2 with the write
bit being set (see Figure 4). After restart memory region
2 represents a mixture of file A and file B content which
is wrong.

Case 2: this scenario is similar to the first one of case 1.
However, a smaller file B is mapped, and thus a smaller
memory region 2 will be created, resulting in a hole of
the virtual addresses between new region 2 and region
3.

Figure 5: Region2 content with fileB has never been
saved, restore part of fileA

In case file B is mapped read-only, no content of re-
gion 2 will be saved because no write bit is set (see
Figure 5). The reduction of virtual addresses of new
memory region 2 is not reflected in the bookkeeping
control structure. At restart parts of old memory region
2 will be recreated in the new address range of region

2009 Linux Symposium • 205

2. These bookkeeping control structure contains more
entries than supposed to be which may result in wasted
memory space.

Figure 6: FileB was partially written to, restore mix of
old and new content

In case file B has been mapped as writable, and if it
has been partially written to, a mixture of old and new
region 2 content will be reestablished at restart (see Fig-
ure 6). Furthermore, the bookkeeping contains out-of-
date data, since it does not reflect a memory region
shrinkage.

Case 3: three regions exist, a memory hole exists be-
tween region 2 and three. At checkpoint time the com-
plete content of all regions is saved. Afterwards, re-
gion 2, which maps file A, gets unmapped, a new file B,
which is bigger than the previous file A is mapped. New
region 2 is placed between region 1 and 3, no memory
hole between 1 and 2, as well as 2 and 3 exists.

Figure 7: Region2 content with fileB has never been
saved, restore fileA and unassigned space

In case file B is mapped read-only, no new region 2 re-
lated content is saved at an incremental checkpoint. Es-
pecially the additional virtual addresses of new region
2 opposite to old region 2, are not taken into account,
since no write bit is set. At restart, region 2 contains file
A (old region 2) content. Since the bookkeeping control
structure is not aware of additional virtual addresses of
new region 2 restart is likely to fail or causes inconsis-
tency.

In case file B is mapped writable, and if it has been par-
tially written to, a mixture of old and new content will
be reestablished at restart for the address block covered
by old region 2. Regarding the additional addresses of

Figure 8: fileB was partially written to, restore mix of
old and new content and unassigned space

new region 2, the same effects are expected as explained
shortly before.

Case 4: in the center of memory region 1 an address
block is being write-protected having different access
rights than the surrounding region 1 parts. Conse-
quently, the Linux memory management enforces re-
gion 1 to be split into three parts. Region 1, 2 and 3,
with region 2 containing the pages the mprotect call has
been applied to.

In case the write-protected region 2 is not written to,
or is partially written to, the same effects as described
under Case 1 occur.

Case 5: region 1 contains an address block at the end
or at the beginning which gets removed. The region
got shortened. In case region 2 is read-only, the ap-
propriate bookkeeping control structure entries of the
removed address block are not removed. Then, a new
region gets created partially or fully covering the previ-
ously removed address block.

In case the new region is read-only, or has been partially
written to, effects as detailed under Case 1 occur.

3.4 Solution: Memory region modification monitor

The special cases mentioned under Section 3.3 occur
in combination of memory region modifications with
read-only and writable content, e.g. such as shared seg-
ments, or anonymous memory region content or mem-
ory mapped files.

To tackle these issues we introduce an additional logical
layer of modification detection—a memory region mod-
ification monitor. This monitor keeps track of memory
region changes and thus complements the mere write-bit
focused approach of memory page modification detec-
tion. Based on monitor data the bookkeeping control
structure can be kept in sync with the actual memory
structure of a process at checkpoint time. It is sufficient

206 • Incremental Checkpointing for Grids

to update the corresponding book keeping structure en-
tries once, at checkpoint time, instead at each region
modification event.

The monitor records region removals and additions. Af-
ter each checkpoint, monitor data will be flushed. At
checkpoint time the monitor entries are used to manage
the bookkeeping control structure. Its entries are com-
pared to control structures entries. In case a region has
been removed, the start and end address of each moni-
tor entry is used to delete appropriate bookkeeping con-
trol structure entries. This ensures control structure effi-
ciency and consistency. In case a region has been added,
relevant bookkeeping control structure entries are added
and/or updated to reference appropriate checkpoint im-
age contained pages. This allows whole new regions to
be saved initially at the first incremental checkpoint af-
ter their creation.

Our monitor supports detection of mmap and mun-
map calls. Therefore, we insert a monitor notifica-
tion function into the kernel functions do_mmap and
do_munmap. Per mmap call the start and end address of
an affected memory region are inserted into the memory
region modification monitor. A detected munmap call
results in deleting the appropriate entry of the monitor.

For example, region creation detection, via the mmap
call, results in initially saving the whole physical page
content at the next checkpoint. Issues as listed under
Section 3.3 can be avoided.

The memory region modification monitor has a similar
structure as the bookkeeping structure.

Figure 9: Memory region monitor structure

Its entries are organised in a radix tree providing fast
access for entry removal, addition and retrieval. Each
entry contains the memory regions start and end address
of the covered virtual address range. The structure is
shown in Figure 9.

4 Incremental grid checkpointing

In order to realise one flavour of adaptive checkpointing,
our incremental checkpointing enhanced kernel check-
pointer has been integrated into the XtreemOS grid
checkpointing architecture.

For the job checkpointer service to know when it is best
to use a full or incremental checkpointing, the number
of modified pages of an application must be computed.
Therefore, the job checkpointer service has been en-
abled to detect page modifications in a transparent man-
ner for a given set of processes. Without modifying ap-
plications, the service can self-decide which checkpoint
approach to be used by keeping efficiency.

Reporting page modifications from the kernel space to
the user space domain has been achieved by setting up a
new Linux Connector [9]. The service registers at a so-
called memory event connector (MEC) at kernel-level to
be informed about do_page_fault calls triggered by se-
lected processes. The service receives MEC messages
at user space and performs accounting on page faults on
a per process base. In case the collected data exceed a
certain threshold, the job checkpointing service enforces
full checkpointing. Otherwise, incremental checkpoint-
ing is used.

5 Measurements

The testbed consists of 2 nodes with Intel Core 2 Duo
E6850 processors (3 GHz) with 2048 MB DDR2-RAM
and being interconnected with gigabit network. A mas-
ter node runs a tftpboot and a NFS server providing a
LinuxSSI image and a Linux environment including the
directory for checkpoint image storage to a client node.

Our test application allocates 1 MB of RAM and writes
integer values to random locations in 1 millisecond in-
tervals.

Figure 10 shows the checkpoint duration of full and in-
cremental checkpointing if checkpoints are issued in one
second intervals.

Both data sets indicate incremental checkpointing tak-
ing shorter time especially after the initial checkpoint.
Figure 11 shows the resulting image size of full and in-
cremental checkpoints. It appears that one incremen-
tal checkpoint image file is smaller than a full check-
point image, especially after the initial checkpoint. Effi-
ciency of incremental checkpointing relies on the write

2009 Linux Symposium • 207

Figure 10: Full and incremental checkpointing duration

Figure 11: Image size of full and incremental check-
pointing

behaviour of an application. Since an additional control
structure and a region monitor need to be maintained,
incremental checkpointing may become inappropriate,
especially the more pages have been changed per check-
point interval. It is the task of the grid service to figure
out the best-suited strategy.

Furthermore, restarting from an incremental checkpoint
may result in accessing more than one image file oppo-
site to just one file with full checkpointing. Increased
I/O overhead, caused by reading from multiple files, is
likely decrease restart performance.

6 Conclusion and Outlook

We described the integration of incremental checkpoint-
ing into a Linux-based kernel checkpointer. Our basic

approach to detect modified pages, which is the most
significant prerequisite to be met for incremental check-
pointing, is write bit based. We use the write bit of pages
to detect whether pages have been modified and thus
need to be saved. Modification of the write bit does not
interfere with other Linux memory management func-
tionality, e.g. the Page Cache.

Furthermore, we classified five generic and common
scenarios of Linux memory region behaviour, where
page content modifications cannot be detected with a
mere write bit focused approach. Basically, combina-
tions of memory region creation and removal in con-
nection with read-only and writable content can lead to
inconsistency and failure at restart.

We implemented a memory region modification monitor
that takes region changes into account in order to save
appropriate content at each incremental checkpoint and
avoid the scenarios described under Section 3.3.

Efficient Linux native structures, such as a radix tree,
have been used to implement a page-modification book-
keeping control structure and the memory region modi-
fication monitor enabling fast management of incremen-
tal checkpointing-specific data at checkpoint and restart.

We profit from recent innovations, namely the generic
connector concept. A custom memory event connector
(MEC) informs a user-space component of page modi-
fications, which improves the symbiosis of kernel- and
grid-level checkpointing components.

We are conscious of further events to be monitored re-
garding region resizings, e.g. caused by do_mremap.
Besides, we will focus on saving pages contained in
the swap area as well. Additionally, we plan to re-
alise concurrent checkpointing to provide more kernel-
based functionalities that support adaptive checkpoint-
ing at grid level.

References

[1] Sukadev Bhattiprolu, Eric W. Biederman, Serge
Hallyn, and Daniel Lezcano. Virtual servers and
checkpoint/restart in mainstream linux. SIGOPS
Oper. Syst. Rev., 42(5):104–113, 2008.

[2] D. Bovet and M. Cesati. Understanding the Linux
Kernel, Third Edition. O’Reilly, 2006.

208 • Incremental Checkpointing for Grids

[3] XtreemOS Consortium. Annex 1 - description of
work. Contract funded by the European
Commission, April 2006. XtreemOS Integrated
Project, IST-033576.

[4] I. Foster and C. Kesselman. The globus project: a
status report. Future Gener. Comput. Syst.,
15(5-6):607–621, 1999.

[5] R. M. Fujimoto, J.-J. Tsai, and
G. Gopalakrishnan. Design and performance of
special purpose hardware for time warp. In ISCA
’88: Proceedings of the 15th Annual International
Symposium on Computer architecture, pages
401–409, Los Alamitos, CA, USA, 1988. IEEE
Computer Society Press.

[6] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang,
and Fabrizio Petrini. Transparent, incremental
checkpointing at kernel level: a foundation for
fault tolerance for parallel computers. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 9, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] F. Gomes and A. F. Bosco. Optimizing
incremental state-saving and restoration. PhD
thesis, University of Calgary, Calgary, Alta.,
Canada, Canada, 1996. A.-U. Brian.

[8] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (blcr) for linux clusters. In In
Proceedings of SciDAC 2006, June 2006.

[9] M. Helsey. Process event connector. 2005.

[10] F. Hupfeld, T. Cortes, B. Kolbeck, E. Focht,
M. Hess, J. Malo, J. Marti, J. Stender, and
E. Cesario. Xtreemfs - a case for object-based file
systems in grids. Concurrency and Computation:
Practice and Experience, 20(8), 2008.

[11] K. Kolyshkin. Virtualisation in linux. 2006.

[12] D. Lezcano. lxc. 2008.

[13] J. Mehnert-Spahn, T. Ropars, M. schoettner, and
C. Morin. Xtreemos grid checkpointing service
architecture. 2008.

[14] J. Mehnert-Spahn and M. Schoettner. Design and
implementation of basic checkpoint/restart
mechanisms in linuxssi d2.2.3. 2007.

[15] Darrin West and Kiran Panesar. Automatic
incremental state saving. In Proc. 10th Workshop
on Parallel and Distributed Simulation (PADS 96,
pages 78–85, 1996.

Putting LTP to test—Validating both the Linux kernel and Test-cases

Subrata Modak
Linux Technology Center, IBM INDIA,
subrata@linux.vnet.ibm.com

Balbir Singh
Linux Technology Center, IBM INDIA,
balbir@linux.vnet.ibm.com

Masatake YAMATO
Red Hat Inc.,

yamato@redhat.com

Abstract

The Linux Test Project (LTP)[5] is receiving renewed
interest, and attention due to increased focus on test-
ing, and integration of Linux components from several
projects in the Linux Ecosystem. LTP has not only dis-
covered bugs in the Linux kernel, but also inconsisten-
cies between other components such as libraries, the
man pages, and the kernel.

In this paper, we will cover our experience in this area
and delve into the details of benefits being brought to
LTP because of closer interaction with the Linux ecosys-
tem. We will also discuss the adoption of newer tech-
nologies for static and dynamic analysis of existing test
cases, and show that we can use this approach to reduce
any errors in test cases (leading to better end automa-
tion of Linux testing). We will also analyze the new
LTP code using various test metrics, and look at the re-
quirements for allowing the test cases to handle errors
introduced by Fault Injection. We finally propose inte-
gration of all such technologies to LTP infrastructure.

1 Introduction

The surge in growth of LTP[7] in the last couple of years
has also brought along with it a host of issues that needs
to be addressed immediately. While numerous patches
flow in to create new test cases for the ever-expanding
new features of the kernel, as well as fixing the exist-
ing ones to adapt to the enhancements of existing ker-
nel features; one immediate and dire problem that has
cropped up is to validate the quality of the test cases
themselves—those of which will in turn validate the
quality of the kernel code.

While the kernel code can be validated through the dis-
covery of new bugs, but, the very question of the test

case quality needs to be found and answered. Contrary
to the belief that the effectiveness of a test case is limited
to only finding bugs, the importance of the test case is
repeatedly established when it continuously proves the
stability of the same code. However, doubts on the qual-
ity of test cases are often raised when they fail to expose
bugs for too long. There can be different reasons for
this. One—the code that it is supposed to test has sta-
bilized enough, and until somebody changes something
dramatically; regression will not be discovered soon. In
this scenario, although nothing can be done to the test
case itself, it still retains the ability to find any regres-
sions in future.

Another reason could be that the test cases themselves
are not written as good programs. They have loopholes
in the way of becoming good quality code. This is some-
thing which can be addressed effectively by analyzing
the test code through various static and dynamic analy-
sis tools available to the Open Source Community. In
this paper we discuss many of them. Major issues found
would be highlighted, along with the remedy to make
LTP a much better project.

2 Benefits of The Linux Ecosystem

The biggest common misunderstanding about LTP may
be that the relationship between LTP and other projects
is one-way; LTP just tests the Linux kernel. Another
misunderstanding is that the test cases in LTP can be
written easily based on man pages as specification. One
of the authors (YAMATO) also believed the same, be-
fore joining LTP. In reality the relationship between LTP
and other projects is complimentary. This fact came
to his cognizance gradually through various stages, and
surprises while contributing to LTP. He has already ex-

• 209 •

210 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Figure 1: Linux ecosystem around test

pressed the extent of such relationship at Linux Ecosys-
tem Around Test[14].

Figure 1 shows the concept of The Linux Ecosystem.
The projects in the ecosystem contribute mutually. De-
velopment efforts and/or by-products in a project are re-
used in other projects of the ecosystem.

2.1 Lessons learned while working on LTP

In the majority of circumstances, test cases were writ-
ten based on man pages. In most instances they report
SUCCESS. This fact leads to misunderstanding among
test developers. The real worry starts only when a test
case reports FAILURE. When FAILURE is reported
for the first time, a programing error in the test case is
suspected. The test case developer wonders misreading
man page, and/or misusing the helper libraries of LTP.
The test case FAILURE generates a series of investi-
gation to find out the root cause of such a failure. And
the hunt for the flaw in any component of the ecosystem
starts only then.

2.1.1 Suspecting run time bug

If the error could not be found in the test case, the de-
veloper moves to the next stage. Armed with the only
understanding that LTP tests just the Linux kernel, the

developer suspects bug in the Linux kernel. At this point
one may choose reporting the error to Linux Kernel
Mailing List(LKML)[4] or examining the kernel source
code. But this understanding alone is not enough. C
language level wrapper exists between the test case and
the kernel. For many system calls theses wrappers are
implemented as really thin layer, and are part of GNU
libc[1]. But, wrappers for some system calls do some
other work, and belong to libraries other than GNU libc.
These library wrapping system calls are called system
libraries. Therefore before suspecting and examining
Linux kernel, one must also suspect and examine the
system library related to the test cases. Here, both the
Linux kernel, and the system libraries as a whole are
called run time entities.

The example in this section is based on author’s working
on a test case for posix_fadvise() system call[8].

When the author was working on it, the test case calls
the system call with a wrong argument, and expects
EINVAL error. The test case ran successfully on the
author’s PC but failed on the system used by the bug
reporter[12].

The difference of test result came from the build con-
figuration of kernel; The function sys_fadvise64_
64 was implemented for the system call and
treated CONFIG_EXT2_FS_XIP configuration in
wrong way[15]. CONFIG_EXT2_FS_XIP was turned
off in the kernel running on the author’s PC but might
have been turned on in the kernel running on the system
used by the bug reporter.1

Only few lines were needed to fix the bug by chang-
ing the KERNEL_CONFIG option before building the de-
sired kernel, however the inspection had taken rather
long time. The author had inspected from upper layer:
GNU libc first, and then the Linux kernel. Histor-
ically posix_fadvise has two variants; posix_
fadvise64 and posix_fadvise64_64. Their
implementation look complex because many #ifdefs
were used to share the code for the variants. Therefore
the author had suspected a programming error in those
#ifdefs causing the bug, and hence the delay.

1The author found “Machine Architecture: armv6l” in the bug
report.

2009 Linux Symposium • 211

2.1.2 Suspecting man pages

With expectation that a test case for a system call can
be easily based on the man pages, one may easily sus-
pect only the run time environment, kernel and system
libraries. But one would rarely suspect the man page.
The activity defining the specification of new system
call, and the code implementing it are not separate. In
other words the system call is not implemented after its
man page is written. The maintainer of man pages joins
the testing[13] of the implementation of newer system
call, and writes the man page only after that. Like the
run time, the man pages must also be suspected.

The previous paragraph has also a real example. When
the author reviewed a test case for io_cancel sys-
tem call written by his colleague, he found strange code
in it. The test case expects an error number to return
when invalid arguments are passed to io_cancel.
The strange thing was that the returned value from
io_cancel was compared with a negative number:

io_cancel(ctx,NULL,NULL)==-EFAULT

In kernel space, negative integer is used to represent an
error. But in user space, generally positive integer is
used to represent an error. The test case ran successfully,
but man page said the system call is expected to return
positive integer when an error occurs.

There is an inconsistency between the run time and the
man page for io_cancel. While inspecting this is-
sue the author found (1) that the C language wrapper
for io_cancel is not part of GNU libc, but, is part
of libaio library. And (2) returning negative integer
to represent an error is libaio’s own convention. The
author sent a bug report for the man pages to the man
pages maintainer. As the result, the latest man pages for
system calls wrapped by libaio have following NOTES:

“GNU libc does not provide a wrapper
function for this system call. The wrapper
provided in libaio for io_cancel does not
follow the usual C library conventions for in-
dicating error: on error it returns a negated er-
ror number.”

Simply to say, LTP developer has to suspect everything
when test case reports FAILURE till it is fixed. The
fix may go anywhere. And when it happens, it validates

LTP’s contribution to The Linux Ecosystem. Good soft-
ware in the “Open Source World” is the outcome of
greater collaboration among various OSS projects. It is
sometimes true for LTP that the test cases themselves
are the outcome. Different from other projects, the de-
velopment process itself is another outcome: finding in-
consistency between run time and the man pages being
a prime factor.

2.2 Role Reversal (From other projects to LTP)

The test cases for utimensat system call in LTP was
submitted by the man pages maintainer[13]. The man
pages maintainer participates in kernel development by
testing and verifying newer kernel code, before the code
is shipped as part of official release version of kernel. He
reflects such experience when he writes man pages for
them. The test code is mainly utilized three times: once
for stabilizing the easy development of kernel code, an-
other time for verifying the description of man pages,
and last time for LTP. As part of LTP, the test case is run
again and again on many different environments.

These days some test cases are written by kernel devel-
opers and system library developers; the original authors
themselves are the test targets. The number of such test
cases have increased. Some of them are imported to
LTP by LTP maintainer. Some of them are directly con-
tributed to LTP by the original authors. This is really a
good trend. To write test cases, one has to understand
the test target. The cost to understand the test target is
the most expensive stage to write a test case. Such cost
can be reduced if the original author of the test target
writes test case for it.

On the other hand, writing test cases by the third person
is extremely valuable; such person can have very dif-
ferent view to the test targets from the original authors.
And this may be the strongest reason why LTP exists
as a project independent from the Linux kernel, system
libraries and man pages.

3 Dynamic Analysis

In the above 2 sections we explained the relationship be-
tween LTP and other projects; and introduced the pro-
posal that we can fix bugs in the run time(the Linux
kernel and support libraries) and the specification(man
pages) through developing LTP test cases. However,

212 • Putting LTP to test—Validating both the Linux kernel and Test-cases

such kind of bug fixing can be done because LTP takes
efforts to make test cases of higher quality. Any action
to other projects/proposals starts from reliable test cases.
Here after we will describe efforts on how we can bring
more reliability to our existing test cases, by analyzing
them using run time analysis tools and via static analysis
tools.

3.1 Memory Leak Analysis

While there has been numerous issues reported dur-
ing testing/analyzing through Valgrind’s memcheck
tool[11], here we look into some of the most signifi-
cant ones. The following generated error clearly demon-
strates that the program has been handling memory al-
location/deallocation incorrectly. There has been many
such instances found inside LTP, a reflection that all of
them needs to be fixed to better handling of memory us-
age during program execution:

3.1.1 Pure Leakage Issues

A memory leak detection on the hackbench2 tool shows

valgrind --leak-check=full
--show-reachable=yes
./hackbench 20 process 1000
LEAK SUMMARY:
definitely lost: 9,840 bytes in 420 blocks.
possibly lost: 0 bytes in 0 blocks.
still reachable: 3,200 bytes in
1 blocks. suppressed:
0 bytes in 0 blocks.

The problem could be addressed as shown below:

if(p) { free(p); (p)=NULL; }

at the end of every memory usage, or, before program
exit would help solve such problems. And, it indeed
helped. Following is the analysis post fix:

ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 3 from 1)
malloc/free: in use at exit:
0 bytes in 0 blocks.
malloc/free:
423 allocs, 423 frees,
14,720 bytes allocated.
All heap blocks were freed
-- no leaks are possible.

2Hackbench is a part of the LTP test suite.

3.1.2 Invalid Read Instances

Invalid read of size 8 at 0x401428:
main (clone07.c:141)
Address 0xfffffffffffffff8
is not stack’d, malloc’d or (recently) free’d.
More than 10000000 total errors detected.
I’m not reporting any more.

The example above illustrates the example of a test case
trying to reference memory, it never owned as the mes-
sage shows. The run-time has been tolerant of these er-
rors, but they are a sign of code that needs to be revisited
and needs our attention.

3.1.3 Jump to Invalid Addresses

Jump to the invalid address stated on
the next line at 0xFFFFFFFFFF600800: ???
by 0x401650: main (getcpu01.c:125)
Address 0xffffffffff600800 is not stack’d,
malloc’d or (recently) free’d

Process terminating with default action
of signal 11 (SIGSEGV)
Bad permissions for mapped region at
address 0xFFFFFFFFFF600800
at 0xFFFFFFFFFF600800: ???
by 0x401650:
main (getcpu01.c:125)

3.2 Checking Race Conditions

There are two types of tests in LTP which required to be
investigated on this point. On one hand the thread tests
needed analysis to see if proper synchronization exists
between them, and on the other side we also wanted to
see if multiple instances of the same test program(which
has a single thread of execution) do not fall into the
trap of deadlocks, or, race conditions over commonly
accessed system resources.

3.2.1 Tests Creating Multiple Threads

This threw up some more surprises. Most of the tests
falling under this category revealed that none of them
has proper locking code between threads. And follow-
ing output is common for all of them when analyzed
through valgrind’s helgrind:

Possible data race during
write of size 8 at 0x421E508
Location 0x421E508 has never
been protected by any lock

2009 Linux Symposium • 213

Dynamic analysis shows that there is a potential race
condition in the test. Submitting test results based on
this test case would require further scrutiny and intro-
spection. There is an urgent need to fix all these issues.

3.2.2 Concurrent Test Execution

Users of LTP reported that many tests inside LTP are
not concurrency safe. They pointed out to various such
issues and fixes for them were also proposed. We point
to few of those.

• Reserving same Port
The following code:

sin1.sin_port
= htons(((getpid() * TST_TOTAL) % 32768)\
+ 11000 + count);

is safer than the below one:

sin1.sin_port
= htons((getpid() % 32768) +\
11000 + count);

if more than one process is trying to bind to the
same port simultaneously, then the following error
can be avoided:

sendfile02 2 BROK : call to bind() failed:
Address already in use
sendfile02 3 BROK : Remaining cases broken

• Generating Keys for Shared Memory Segments

The following comment and code snippet ad-
dresses concerns in concurrent processes who are
trying to create shared memory segments concur-
rently.
/* Get a new IPC resource key. Since there is a
small chance the getipckey() function returns the
same key as the previous one, loop until we have a
different key */

do {
shmkey2 = getipckey();
}while (shmkey2 == shmkey);

• Using sleep() Family to Synchronize

Many tests use sleep() family of functions to syn-
chronize between the parent and the child, with the
hope that after a specified period of time, one will
be able to have a clean access to the resource with

the basic assumption that the other has already ac-
cessed it. But, this is a common programming er-
ror, and many of our old tests are victims to it. It
has already been proved that such mechanism is
faulty and do not provide foolproof mechanism.

Many such instances were discovered and fixed
using the mechanism of pipes to establish proper
communication between parent and child and then
going ahead with the desired operation.

• The ever-famous Reader/Writer problem
Since most of these tests were not initially designed
keeping concurrent execution in mind, they suffer
from this usual design drawback. In one such in-
stance we found test cases seem to fail when multi-
ple instances are run concurrently. The failures oc-
cur because the file(they are trying to access) sizes
don’t match, or, because the number of bytes read
don’t match the file size. This can be attributed to
one parallel instance reading a file before the other
instance’s write to it has completed. In such situa-
tions, either the file size has not been updated in the
inode header, or, the file size has been updated, but,
the file’s write operation has not been updated com-
pletely. To fix this concurrency problem, we agreed
to check for an existing instance and wait for it to
finish before starting another instance. Any other
concurrency resolution technique would compli-
cate matters further. A message to the console in-
dicating such a decision in scheduling policy can
clarify matters cleanly.

3.3 Avoiding Segmentation faults

Certain sections of code try to access memory be-
yond their scope resulting in segfaults. Proper memory
bounds checking before accessing/de-referencing mem-
ory will help to avoid such segmentation faults during
run time. We encountered some instances of segmenta-
tion fault with LTP’s provisioning engine ltp-pan.c. The
following instance of code creates segmentation fault if
coll is not initialized properly. De-referencing creates
the problem further:

coll = get_collection(
filename, optind, argc, argv);
if (coll->cnt == 0) {

A properly written code with checks and balances re-
moves such faults:

coll = get_collection(
filename, optind, argc, argv);
if(!coll) exit(1);
if (coll->cnt == 0)

214 • Putting LTP to test—Validating both the Linux kernel and Test-cases

3.4 Proper Exit Code

Many tests were written without proper exit code. Ze-
roing on all of them and fixing with appropriate return
code is a big challenge given the volume of tests that ex-
ist in LTP today. Following is an excerpt of build warn-
ing generated during one such compilation:

hackbench.c: In function ’main’:
hackbench.c:350: warning: control reaches end
of non-void function

A simple exit(RETURN_CODE) would solve such is-
sues and promote to better program development.

4 Static Analysis

The code that initially gave life to LTP is pretty old, and
we were certain that we would hit issues that does not
adhere to the latest ANSI C or good coding standards.
Even if the code is to follow ANSI C Coding guidelines,
still, we were faced with the dilemma of which coding
pattern to follow. Being directly responsible to test the
Linux kernel, we decided to go ahead with the prevalent
standard in the Linux kernel community.

As a means to measure all the violations, we decided
to check LTP’s health with the most popular Open
Source Static Analysis tools like the SPARSE[9] and
SPLINT[10].

4.1 SPARSE

A single round of compilation through the code exhib-
ited the anomalies in the program development. We
would highlight few of them and probably say/decide
how we can fix them.

4.1.1 Non-ANSI definitions

Numerous instances of non-ANSI definitions for vari-
ous identifiers like the functions/variables were found.
For example, the following definition:

int dataasciichk(
listofchars, buffer, bsize,
offset, errmsg)
char *listofchars;
char *buffer;
int bsize;
int offset;
char **errmsg) {

should be replaced with:

int dataasciichk(
char *listofchars,
char *buffer,
int bsize,
int offset,
char **errmsg) {

4.1.2 Non-Static Symbol Declaration

This arose from situations where the functions and other
identifiers were not defined as static although they were
never used outside the contours of the concerned source
files. The code:

int databinchk(...)

should be replaced with:

static int databinchk(...)

to avoid all such warnings. Given the volume of such
messages thrown during compilation, we can definitely
say that it is going to be a tough task to fix them all.

4.1.3 Symbol ’XYZ’ re-declared with different type

In older style programming as prevalent code in LTP,
the general style is to declare the function prototype at
the beginning of the source code, use them in different
places, and then finally the definition follows at the end
of the source file. Though the compilers can handle for-
ward references well, still Sparse complains about it,
and directs you to combine the prototype declaration
and definitions together before the symbols are being
referred at any point in the program.

4.1.4 Using plain integer as NULL pointer

In many places of our code, integers were directly used
instead of referring them through appropriate pointers.
The following code snippet:

sigprocmask(SIG_UNBLOCK, &newset, 0);

should be replaced with:

sigprocmask(SIG_UNBLOCK, &newset, NULL);

to avoid and fix such warnings.

2009 Linux Symposium • 215

4.1.5 Uninitialized Identifiers

This is probably the most common type of warning gen-
erated by all compilers. The safest bet would be proba-
bly to initialize them with proper values, before the un-
desired bug starts creeping into your program.

4.1.6 Missing type declaration for parameter ’P’

We found some typical instances of code where a func-
tion prototype was just declared:

int mkname(char*, int, int);

But, when it came to defining that function, the type
declarations for certain parameters were missing:

int mkname(name, me, idx)
register char *name;
{

The declarations for me and idx are missing above.

4.1.7 Incompatible types for operation

These types of errors/warnings are thrown when various
data types are mixed up, or, they are not properly type-
caste in their respective operations. The following piece
of code tries to compare whether void * is less then
an integer:

if ((shmptr = shmat (shmid, 0, 0)) < 0)

4.2 SPLINT Analysis

We also found few more static cases through the SPLINT
tool. They are really interesting enough and showed us
how important programming mistakes were made dur-
ing test case coding. Though many of them are safe to
be ignored, still the question remains whether we should
just keep ignoring them for their nature being non-fatal.
This actually would reflect the concept that we were
not clear about when we designed the test, leave aside
a proper way to write it.

4.2.1 Return value ignored

These warnings were generated when certain sections of
code were found using function calls without collecting
the return value of it. The situation is inconsistent, as
many other instances of code were seen collecting the
function’s value. The fundamental flaw is the ambiguity
in designing and writing such function prototypes, when
the author was not sure what to do with the function ?
whether to make it return something, or, just execute a
bunch of instructions.

4.2.2 Result returned by function call is not used

If there was no need for the return value of a function,
why was it collected in the first place? Moreover, if the
purpose is just to execute a function without the need for
a return value, then the prototype could have been well
defined as void.

4.2.3 Path with no return in function declared to
return void *

Even there is something interesting. There is a path
through a function declared to return a value (interest-
ingly a void *) on which there is no return statement.
This means the execution may fall through without re-
turning a meaningful result to the caller.

4.2.4 Format string parameter not compile-time
constant

The following piece of code should have been written
like this

fprintf (stdout,"%s %s\n",
global_progname, VERSION);

rather than this

char *mesg = "%s %s\n";
fprintf (stdout, mesg,
global_progname, VERSION);

If format string parameter is not a constant at com-
pile time, then, this can lead to security vulnerabilities
because the arguments cannot be type checked during
compile time.

216 • Putting LTP to test—Validating both the Linux kernel and Test-cases

4.2.5 Possibility of buffer overflow

It is a commonly know fact that use of sprintf()
has been deprecated, and/or advised to avoid.
snprintf() is recommended instead as use of
function sprintf() may lead to buffer overflows.
However, our code base contains plenty of them and
removing them would really turn out to be challenging.

4.2.6 Suspected infinite loop

Observe the following code:

while (child_signal_counter < num_pgrps) {
alarm(1);
if (debug_flag >= 2)
printf("%d: Master\
pausing for done (%d/%d)\n", mypid,\
child_signal_counter, num_pgrps);
pause();
}

No value used in loop test (child_signal_

counter,num_pgrps) is modified by test or loop
body. Hence this appears to be an infinite loop. Nothing
in the body of the loop, or, the loop test modifies
the value of child_signal_counter. Perhaps the
specification of a function called in the loop body
is missing a modification. Probably the only way of
coming out of this loop, and hence this program is to
get a signal; as probably specified by alarm(1).

4.2.7 Function parameter values declared as mani-
fest array

Though the following type of declaration is harmless

... compute_median (unsigned long
values[MAX_ITERATIONS],
unsigned long max_value);

as size constant is meaningless here. The size of the
array is ignored in this context, since the array formal
parameter is treated as a pointer. A more hassle free
declaration could be just this

... compute_median (unsigned long
values, unsigned long max_value);

5 Fault Injection Impact

The ability to alter the course of execution in the kernel
through a fault induced path has long been known. The
Linux kernel also have the necessary infrastructure to in-
duce random faults in to the various parts of the kernel;
thus forcing applications to expect an undesired behav-
ior. The major advantage of using Fault Injection is to
traverse those error paths of the kernel, which in normal
circumstances (stable) would not have been touched.

The immediate fallout of such a scenario is an increase
in the measurement of the code coverage of the kernel,
as, it would guarantee to traverse the faulty path besides
the actual execution path. The other advantage would
directly go to the developers, who would like to test their
kernel code under such varied scenarios.

Though, all these facts are well known, and has been
proved by many projects in the Open Source Space, still,
such an exercise has never been attempted by the LTP
developers. However, even before we started to see the
fall out of Kernel Fault Injection while executing LTP,
we were sure that such an exercise will help us in two
different ways:

• Increase Kernel Code Coverage[2]

• Help Test Engineers to validate their test code
under varied circumstances

While writing test cases for certain kernel function-
alities, an engineer may test his test cases, by run-
ning it over:

– Stable kernel, and

– Fault Injected kernel:
This would give him a bigger insight into
his/her test behavior, and would in-fact help
him to create a better test case/scenario de-
scription by uncovering bugs, if any, in
his/her test code.

5.1 Experimenting with Fault Injection

We decided to use all the infrastructure provided in
linux-2.6.29 kernel[3], namely:

• fail_io_timeout

2009 Linux Symposium • 217

• fail_make_request

• fail_page_alloc &

• failslab

and use the following parameters of each of these
infrastructure[3]:

• probability

• interval

• times &

• space

With space as 0, times as -1 and interval greater
than 1, we varied the probability parameter for all
the fail* subsystems. The following algorithm reflects
the way the experiment was carried out:

start_code_coverage()
loop (for each testcase)
begin
execute_testcase(inside_stable_kernel)
begin
insert_fault_into_kernel()
loop X Times
begin
execute_testcase(inside_fault_kernel)
end

restore_kernel_to_normal()
end

end
end_code_coverage()

The results observed at varied probability values were
amazing:

• probability=100%

Our test provisioning engine never took off with
probability value set at this level(100%). We
knew that we cannot generate any useful data with
such a system. We did not generate any code cov-
erage data for this.

• probability=30%

With probability value set to this level(30%),
we indeed saw our tests running, but with some
major flaws:

– Failure of many tests
Many tests failed which otherwise pass under
normal circumstances. We traced the reasons
for such failures owing to the fault in the ker-
nel. A small snippet of dmesg output justified
our observation. The following failure types

<<<test_output>>>
sh: /bin/mktemp: Cannot allocate memory
Usage:
mmapstress07 filename holesize e_pageskip
sparseoff

*holesize should be a multiple of
pagesize

*e_pageskip should be 1 always

*sparseoff should be a multiple of
pagesize
Example: mmapstress07 myfile 4096 1 8192
mmapstress07 1 FAIL : Test failed
mmapstress07 0 WARN : tst_rmdir():

TESTDIR was NULL; no removal attempted

were accompanied by dmesg entries like
FAULT_INJECTION: forcing a failure
Pid: 30589, comm: ltp-pan Not tainted

2.6.29-gcov #1
Call Trace:
[<c0698374>]should_fail+0x31f/0x3e0
[<c0698266>]?should_fail+0x211/0x3e0
[<c0514e5c>]?should_failslab+0x60/0x73
[<c05123ca>]?slab_should_failslab+0x35/0x48

– Long hours of execution
Many tests took exceptionally long hours of
execution time. But, otherwise, they take sec-
onds to execute. Since, many tests in the
bucket started reflecting such abnormal be-
havior, we had to terminate the experiment
owing to the fact that the experiment cannot
be continued till infinity.

• probability=10%

We found this particular value more interesting;
that it allowed us to run our test bucket for fi-
nite time, and simultaneously allowed us to mea-
sure the differences in the code coverage of test
runs between the stable and fault environments.
Though many tests exhibited the earlier scenar-
ios (probability=30%), still they did not hinder in
completing the tests in finite time frame. However,
we chose a very small set of tests, namely the LTP
Syscall tests [6].

Figure 2 shows the code coverage obtained when
the tests were run under stable kernel conditions.
Out of accounted TOTAL_CODE=377538, cover-
age is 16.4%, and of TOTAL_FUNCTIONS=29852,
the tests has touched 21.9% functions.

218 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Figure 2: Code Coverage without Fault Injection

And Figure 3 depicts code coverage when the tests
were executed under situation which is a union of
stable and fault injection. Out of TOTAL_CODE=
377538, coverage is 17.0%, and of TOTAL_

FUNCTIONS=29852, the tests has touched 22.6%
functions.

For sake of visibility and compactness, we highlight
only those kernel directories and sub-directories for
which significant code coverage increase has happened.
Few interesting figures are:

• 3.9% increase in block

• 6.2% increase in fs/debugfs

• 4.5% increase in fs/sysfs

• 1.2% increase in mm

Though the overall increase in CODE_COVERAGE of
0.6%, and FUNCTION_COVERAGE of 0.7% is not sig-
nificant, but it drives home a point that Code Coverage is
bound to increase with Fault Injection. The above
results are based in minimal set of LTP test cases run,
and definitely the figure would be impressive, if the en-
tire test suite is run.

Figure 3: Code Coverage with Fault Injection

6 Conclusion

The usage of Static and Dynamic Analysis tools to test
LTP’s health has opened up a new plethora of opportu-
nities. These tools would be put to use more in future to
validate old/new test cases. We look towards integrat-
ing them with LTP infrastructure, and they themselves
becoming yardsticks for quality control. Some of the
LTP test cases are beginning to show their age, they
have helped identify bugs, but with newer technology
and tools, it is time to revisit the test cases and shake
off the bugs hiding in them, which our regular runtime
execution did not expose.

Integration of Fault-Injection creation framework in
LTP would be immensely beneficial to developers, who
can then design robust testcases to handle these faults
better. LTP also looks forward to strengthen its posi-
tion in the Linux Ecosystem, integrate itself with other
players in the same ecosystem, so that it can continue
to deliver and evolve into better test suite to Relentlessly
Pursue a Better Kernel.

Acknowledgement

We would like to thank many of our colleagues and team
mates for their inputs to, and, review of drafts of this

2009 Linux Symposium • 219

paper. And a special thanks to all those LTP developers
whose immense contribution keeps this project growing.

Legal Statement

Copyright c© 2009 International Business Machines Corpora-
tion and Red Hat, Inc. International Business Machines Cor-
poration (“IBM”) and Red Hat, Inc. (“Red Hat”) retain the
copyright to the submitted paper, but have granted unlimited
redistribution rights to all as a condition of submission. This
work represents the view of the authors and does not nec-
essarily represent the view of IBM or Red Hat. IBM, IBM
logo, ibm.com, and WebSphere, are trademarks of Interna-
tional Business Machines Corporation in the United States,
other countries, or both. RED HAT and the Shadowman
logo are trademarks of Red Hat, Inc., registered in the United
States and other countries. Linux R© is the registered trade-
mark of Linus Torvalds in the U.S. and other countries. Other
company, product, and service names may be trademarks or
service marks of others. References in this publication to
IBM products or services do not imply that IBM intends to
make them available in all countries in which IBM oper-
ates. INTERNATIONAL BUSINESS MACHINES CORPO-
RATION AND RED HAT, INC. PROVIDE THIS PUBLICA-
TION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FIT-
NESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors.

References

[1] Gnu c library.
http://www.gnu.org/software/libc/.

[2] Lcov - the ltp gcov extension. http://ltp.
sourceforge.net/coverage/lcov.php.

[3] Linux kernel documentation.
http://www.mjmwired.net/kernel/
Documentation/fault-injection/.

[4] Linux kernel mailing list subscription url.
http://vger.kernel.org/
vger-lists.html#linux-kernel.

[5] Linux test project home page.
http://ltp.sourceforge.net/.

[6] Ltp source code repository.
http://ltp.cvs.sourceforge.net/
viewvc/ltp/ltp/runtest/syscalls.

[7] Ltp technical papers - what is ltp, how to use ltp,
etc. http://ltp.sourceforge.net/
documentation/technical_papers/.

[8] Man pages entry for posix_fadvise().
http://www.kernel.org/doc/
man-pages/online/pages/man2/
posix_fadvise.2.h%tml.

[9] Sparse - a semantic parser for c.
http://www.kernel.org/pub/
software/devel/sparse/.

[10] Splint - tool for statically checking c programs for
security vulnerabilities and coding mistakes.
http://www.splint.org/.

[11] Valgrind. http://valgrind.org/.

[12] Pramod Gurav. [LTP] ltp tests failing.
http://www.mail-archive.com/
ltp-list@lists.sourceforge.net/
msg00965.htm%l.

[13] Michael Kerrisk. Linux Foundation fellowship, 6
months in. http://linux-man-pages.
blogspot.com/2008/12/
linux-foundation-fellowship%
-6-months-in.html.

[14] Masatake YAMATO. Linux ecosystem around
test. http://people.redhat.com/
yamato/talks/around-test.pdf.

[15] Masatake YAMATO. [PATCH] checking
ADVICE of fadvice64_64 even if get_xip_page is
given.
http://lkml.org/lkml/2008/1/9/75.

220 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Linux-based virtualization for HPC clusters

Lucas Nussbaum
INRIA - UCB Lyon 1 - ENS Lyon - CNRS
lucas.nussbaum@ens-lyon.fr

Fabienne Anhalt
INRIA - UCB Lyon 1 - ENS Lyon - CNRS
fabienne.anhalt@ens-lyon.fr

Olivier Mornard
INRIA - UCB Lyon 1 - ENS Lyon - CNRS
olivier.mornard@ens-lyon.fr

Jean-Patrick Gelas
INRIA - UCB Lyon 1 - ENS Lyon - CNRS

jpgelas@ens-lyon.fr

Abstract

There has been an increasing interest into virtualiza-
tion in the HPC community, as it would allow to eas-
ily and efficiently share computing resources between
users, and provide a simple solution to checkpointing.
However, virtualization raises a number of interesting
questions, on performance and overhead, of course, but
also on the fairness of the sharing. In this work, we eval-
uate the suitability of KVM virtual machines in this con-
text, by comparing them with solutions based on Xen.
We also outline areas where improvements are needed
to provide directions for future works.

1 Introduction and motivations

Operating System Virtualization, and all its variants, al-
ready largely proved their usefulness in the context of
traditional servers. However, in the area of High Per-
formance Computing (HPC), for computing clusters or,
on a larger scale, grid or cloud computing, virtualization
still has to convince most end users and system admin-
istrators of its benefits. The use of virtualization in the
context of HPC offers several immediate advantages.

First, any computing center or large scale computing
infrastructure under-uses a non-negligible number of
physical resources. This is for example due to the fact
that all the computing applications are not perfectly
embarassingly-parallel. Using virtualization would al-
low to dynamically allocate resources to jobs, allowing
to match their exact performance needs.

Next, many processing jobs do not take full advantage
of the multicore architecture available on processing
nodes. Deploying several Virtual Machines (VM) per

node (e.g., 1 VM per core) would provide an easy way
to share physical resources among several jobs.

On most computing grids, a user books a number of re-
sources for a given period of time (also called lease).
This period of time is generally a rough estimation made
by the user of the time required for his application to
complete. When the lease expires, results will be lost
if the job did not have enough time to finish, and if
no checkpointing mechanism is implemented. Good
checkpointing mechanisms are difficult to implement,
and virtualization provides an easy way to implement it,
by freezing and migrating virtual machines.

Finally, the software configuration of computing plat-
forms is generally static, which might be a problem for
users with specific needs. Virtualization could allow to
deploy customized user environments on the computing
nodes, thus allowing users with specific software needs
to customize the operating system on which their appli-
cation will be executed.

Given the arguments listed above, virtualization seems
to be an attractive solution for the HPC community.
However, using virtualization in this context also has
drawbacks.

Indeed, the overhead caused by the additional layers is
not well known and controlled, mainly due to a lack
of understanding of the underlying virtualization infras-
tructure.

Another issue is the physical resource sharing. Virtual
machines need to access concurrently the physical de-
vices, and it is possible that this sharing mechanism im-
pacts the performance. This raises also the question of
the scalability of the number of VMs it is possible to
host on a physical machine.

• 221 •

222 • Linux-based virtualization for HPC clusters

The following section proposes a reminder about the
common virtualization solutions currently available. It
may help readers to set up the vocabulary in this do-
main and get familiar with Xen [3] and KVM [9]. Sec-
tion 3 details our experimental testbed. This section is
followed by an evaluation with several micro benchmark
(CPU, disk, network) (Section 4) and then with classic
HPC benchmarks (Section 5). Finally, before conclud-
ing (Section 7) we propose a brief state of the art (Sec-
tion 6).

2 Virtualization

In this section, we describe the different virtualization
techniques, and then introduce more specifically Xen [3]
and KVM [9].

2.1 Virtualization approaches

The goal of virtualization is to partition one physi-
cal node (or system) into several independent virtual
machines. Common applications of virtualization are
server consolidation, and testing and development envi-
ronments.

One common technique is OS-level virtualization where
a single kernel is shared by containers which represent
the VMs (e.g. VServer). An other approach would be to
allow several OS with distinct kernels to run on a sin-
gle physical machine inside the VMs to give the user a
maxium reconfiguration facility.

To manage several of these reconfigurable VM running
on a physical node and sharing de facto the same hard-
ware, we need a layer acting as a supervisor (a sort of
arbiter to access hardware resources). However, as VM
include already a supervisor, we call this layer a hyper-
visor (i.e., a supervisor of supervisors) also called VMM
(Virtual Machine Monitor).

The hypervisor manages the requests of VMs and their
access to the resources (i.e., IRQ routing, time keeping
and message passing between VMs).

Hypervisor virtualization can be divided in two types,
Full Virtualization (FV) and Paravirtualization (PV),
which can be both combined with hardware-assisted vir-
tualization.

2.1.1 Full virtualization

Full virtualization (FV) allows the execution of unmod-
ified guest operating systems by emulating the real sys-
tem’s resources. This is especially useful to run pro-
prietary systems. One pioneer was VMware providing
a full virtualization solution. However, providing the
guest system with a complete real system interface has
an important cost. This cost can be mitigated by us-
ing Hardware-assisted virtualization discussed in sec-
tion 2.1.3. KVM takes advantage of this evolution. Cur-
rently, in the x86 architecture, the hardware assistance
is available in the CPU only, not in the other parts of the
computer (like network or video adapters). The gap is
then filled by emulation, having an impact on the per-
formance. An alternative solution called hybrid [12] ap-
proach consists in using specific paravirtualized drivers
which is more efficient than emulation (in terms of CPU
consumption) and reaches better performances.

2.1.2 Paravirtualization

Paravirtualization (PV) is also based on a hypervisor,
but the devices are not emulated. Instead, devices are ac-
cessed through lightweight virtual drivers offering better
performance.

The drawback is that guest kernels must be upgraded
to provide new system calls for the new services. At
the lowest level the syscalls are interrupts (0x80) with a
function number, which allows to switch from the user
mode to the privileged mode in former Linux system
call. The newest Linux system uses now a faster method
with the syscall/sysenter opcodes (in x86 architecture).
In the same way in Xen [3], the OS executes hypercalls
with the interrupt 0x82. Like in the Linux system, the
use of interrupts is deprecated and replaced by the use
of hypercall pages [18], a similar mechanism in Linux
called vDSO used to optimize the system call interface.1

vDSO chooses between int 0x80, sysenter or syscall op-
codes (the choice is made by the kernel at boot time).

2.1.3 Adding hardware virtualization support

Virtualization software techniques consisting in do-
ing binary translation to trap and virtualize the execu-

1http://www.trilithium.com/johan/2005/08/
linux-gate/

2009 Linux Symposium • 223

tion of some instructions are very cost inefficient (ex:
VMware). Running a VM on a common architecture
(ex: IA32 PC) for which it has not been designed is dif-
ficult. The original x86 architecture does not comply
with the base conditions for being virtualized (equiva-
lence, resource control (safety), efficiency) [15]. In par-
ticular, there are some unprivileged instructions chang-
ing the state of the processor that can not be trapped.

In 2007, Intel and AMD designed (independently) some
virtualization extensions for the x86 architecture [13]
(VMX for Intel, Virtual Machine eXtension; and AMD-
V/Pacifica for AMD). Each one allows the execution of
a hypervisor in order to run an unmodified operating
system while minimizing the overhead due to emulation
operations.

The kernels can run in privileged mode on the processor,
which means on ring 0. Ring 0 is the most privileged
level. On a standard system (i.e, not virtualized) this is
where the operating system is running. The rings strictly
over 0 run instructions in a processor mode called un-
protected. Without specific hardware virtualization sup-
port, the hypervisor is running in ring 0, but the VM’s
operating system can not reach this level of privilege
(they access ring 1, at best). Thus, in full-virtualization,
privileged instructions are emulated, and in paravirtu-
alization the kernel is modified in order to allow those
instructions to access ring 0. The hardware assisted vir-
tualization not only proposes new instructions, but also a
new privileged access level, called “ring -1”, where the
hypervisor can run. Thus, guest virtual machines can
run in ring 0.

Despite these advantages, using an untouched/
unmodified operating system means a lot of VM traps
and then a high CPU consumption used by the emula-
tion of hardware (network manager, video adapter, . . .).
An alternative solution, called hybrid [12], consists in
using paravirtualized drivers in combination with the
hardware-assisted virtualization.

2.2 Introducing Xen and KVM

In this article, we limit our study to free and open
source virtualization solutions. Thus, we chose to study
and evaluate exclusively the latest releases of Xen and
KVM [9] at the time of writing, that are Xen 3.3.1 and
KVM 84.

2.2.1 Xen

Xen started as a research project by Ian Pratt at Cam-
bridge University. The very first public release of Xen
was delivered in October 2003. Then, Ian Pratt created
the XenSource company, which develops the project in
an open source fashion and distributes customized Xen
versions (Xen Enterprise). Major releases 2.0 and 3.0
were delivered respectively in 2004 and 2005. The lat-
est current release available is 3.3.1 (2009). Xen is
compatible with x86 processors (Intel or AMD), x86_64
since 3.0, SMP architectures, HyperThreading technol-
ogy, IA64, PPC. ARM support should also be available
soon.

Xen is a hypervisor and has the ability to run guest op-
erating systems, called domains. There are two types
of domains. Unprivileged domains (called DomU) are
the guest systems, while the privileged domain (called
Dom0) is a special guest with extended capabilities, that
contains the applications to control the other guests.
Dom0 is running above the Xen hypervisor when the
physical machine starts. It runs a modified Linux kernel,
and is generally the only domain able to interact directly
with the hardware through the linux kernel drivers. It
also allows DomUs to communicate with hardware de-
vices using their virtual drivers.

When a virtual machine hosted in a domU previously
described wants to use hardware devices, e.g. the net-
work interface or the block device, the data has to go
to dom0 which is than in charge of transmitting it to
the physical device. Several mechanisms are invoked to
make the transfer between domU and dom0 and to min-
imize overhead. However, the data path is longer than
without virtualization, as shown in Figure 1.

Figure 1: Network path in Xen.

224 • Linux-based virtualization for HPC clusters

In this example where domU uses the physical network
interface to send packets to a remote physical station,
packets go through the domU TCP/IP stack, then are
transferred to dom0. To make this transfer, dom0 in-
vokes a grant to domU’s memory page to fetch the data
by page flipping. The other way around, during packet
reception on domU, dom0 copies the data into a shared
memory segment so that domU can get it [6]. This
copy and page flipping mechanisms offer security but
are heavy for the performance.

From a technical point of view, on the x86 architecture
(with no hardware support), the Xen hypervisor is run-
ning in ring 0, kernels in ring 1 and finally applications
in ring 3. On the x86_64 architecture, the hypervisor
is running in ring 0, and guest domains (Dom0 and do-
mUs) and applications run in ring 3 (i.e., rings 1 and 2
have been removed).

Moreover, the x86 Intel architecture proposes two levels
of memory protection. One is based on a segmentation
mechanism and the other on page management. Each
of these protections may be used to isolate virtualized
systems. (NB: Two modes are currently available on
x86 architectures: 32 bit mode and 64 bit mode. Only
x86 64 bit system architectures (a.k.a IA32e or AMD64)
may use both modes). In the 32 bit mode, segment man-
agement is fully operational and is used for the memory
protection.

In 64 bit mode, segment management almost disappears
(for example there is no more segment base and limit
management), memory protection through segments is
not possible anymore, thus protection through memory
page management is used (via the MMU unit)[7]. How-
ever, with this mechanism, there are only two levels
of protection called normal mode and supervisor mode.
Xen must then manage protection through the page level
which is the most CPU intensive. Without forgetting
that context switching introduced by virtualization is
time consuming and so impacts the guest systems per-
formances.

Finally, the inclusion of different parts of Xen in the
Linux kernel has been the subject of animated discus-
sions. DomU support is already included, but the in-
clusion of Dom0 support faced a lot of opposition. In
addition to that, Linux distributions use the XenSource-
provided patch for 2.6.18, and forward-port this patch
to the kernel releases they want to ship in their stable
release. The process of forward-porting those patches

is difficult, and not supported by the upstream author,
leading some distributions to choose to stop supporting
Xen recently.

2.2.2 KVM

KVM (Kernel based Virtual Machine) is an open source
Linux kernel virtualization infrastructure2 which relies
on the hardware virtualization technologies, fully in-
tegrated in the Linux kernel. Its first version was
introduced in the 2.6.20 Linux kernel tree (released
in February 2007). KVM developers are primarily
funded by a technology startup called Qumranet, now
owned by RedHat. Developers had an original ap-
proach. Instead of creating major portions of an op-
erating system kernel themselves, they choose to use
the Linux kernel itself as a basis for a hypervisor.
Thus, KVM is currently implemented as loadable ker-
nel modules. kvm.ko, that provides the core virtual-
ization infrastructure and a processor specific module,
kvm-intel.ko or kvm-amd.ko. The code is rela-
tively small (about 10,000 lines) and simple. This orig-
inal approach has several benefits. The virtualized envi-
ronment takes advantage of all the ongoing work made
on the Linux kernel itself.

Figure 2: Path of I/O requests in KVM

KVM makes use of hardware virtualization to virtual-
ize processor states (an Intel processor with VT (vir-
tualization technology) extensions, or an AMD proces-
sor with SVM extensions (also called AMD-V)). With
KVM, each virtual machine is a regular Linux process,
scheduled by a standard Linux scheduler. Memory man-
agement of the VM is handled from within the kernel
but I/O in the current version is handled in user space

2http://www.linux-kvm.org

2009 Linux Symposium • 225

through a userspace component also used to instanti-
ate the virtual machines. This component is actually
a modified version of QEMU handling I/O hardware
emulation: as shown in figure 2, when a process in a
guest system issues an I/O request, the request is trapped
by KVM, then forwarded to the QEMU instance in the
host system’s userspace, that issues the real I/O request.
KVM emulates virtual devices, such as network inter-
faces or hard disks. In order to improve performance,
recent KVM versions propose a hybrid approach called
virtio [16]. Virtio is a kernel API that improves the
performance of communications between guest systems
and the host system by providing a simpler and faster in-
terface than the emulated devices from QEMU. Virtio-
based devices exist both for network interfaces and hard
disks.

2.2.3 Conclusion

Hardware Assisted Full Virtualization (FV) is of-
ten believed to be the best virtualization solution,
performance-wise. However, this is not true: paravir-
tualization approaches may be much better in terms of
performance, especially in the context of the IO. In the
following sections, we perform several benchmarks out-
lining the performance differences of the different vir-
tualization techniques and explain why there are such
differences.

3 Evaluation

In the following experiments, we compare four different
virtualization solutions:

Xen FV : Xen using full hardware-assisted virtualiza-
tion (also called Xen HVM for Hardware Virtual
Machine)

Xen PV : Xen using paravirtualization

KVM FV : standard KVM, using the I/O devices emu-
lated by QEMU

KVM PV : KVM using the virtio I/O devices

All the experiments were performed on a cluster of Dell
PowerEdges 1950 with two dual-core Intel Xeon 5148
LV processors with 8 GB of memory, 300 GB Raid0 /

SATA disks and interconnected by 1 Gb/s network links.
We used Xen 3.3.1 and KVM 84 for all tests, except
when specified otherwise.

We first evaluate all solutions with a set of micro-
benchmarks, to evaluate the CPU, the disk accesses and
the network separately, then use the HPC Challenge
benchmarks, a set of HPC-specific benchmarks.

4 Evaluation with micro-benchmarks

In this section, we evaluate the different virtualization
solutions with a set of micro-benchmarks.

4.1 CPU

In our first experiment, we focused on CPU-intensive
applications. We evaluated the overhead caused by us-
ing a virtualization solution for such applications, which
are obviously crucial for HPC.

Both Xen and KVM support SMP guests, that is, giving
the ability to a guest system to use several of the host’s
processors. We executed a simple application scaling
linearly on hosts with four CPUs, then inside guests to
which four CPUs had been allocated.

Figure 3: Influence of virtualization on CPU-intensive
applications: the same application is executed on a 4-
CPU system, then on guests allocated with 4 CPUs.

Figure 3 shows the difference between our host system
running Linux 2.6.29, used for KVM, and several other
configurations. In all cases, the overhead was minimal
(lower than 2%). However, it is worth noting that run-
ning the application in the Xen dom0 is slightly slower

226 • Linux-based virtualization for HPC clusters

than on Linux 2.6.29 (maybe because of improvements
in Linux since the 2.6.18 kernel used as Dom0), and that
both KVM and Xen guests suffer from a small slow-
down.

4.2 Disk

While disks can now be considered slow devices (com-
pared to high-speed NICs, for example), it can still be
difficult to fully exploit their performance for virtualiza-
tion solutions.

In this experiment, we compare the different solutions
by writing large files using dd, using different block
sizes. This allows to measure both the influence of
per-I/O overhead (for small block sizes) and available
I/O bandwidth. We also confirmed our results using
bonnie++.

Figure 4: Disk write performance

Results are presented in Figure 4. Each test was run 10
times, and the vertical bars indicate the 95% confidence
interval. We used file-backed virtual machines for all
tests. Our test systems allowed a maximum write speed
of about 120 MB/s on the host system, thanks to the
RAID-0 disks setup.

In our tests, Xen PV reported write speeds much higher
than the write speed that we obtained from the host sys-
tem, with a very high variability. While we were not
able to confirm that, it seems that Xen reports write com-
pletions before they are actually completely committed
to disk.

While KVM provided good performance (close to the
host system) in full virtualization mode, virtio provided

more disappointing results. In fact, we identified with
blktrace that a lot of additional data was written to
disk with virtio: writing a 1 GB-file resulted in about
1 GB of data written to disk without virtio, versus
1.7 GB of data written with virtio. This is very likely to
be a bug. Since our tests were originally performed with
KVM 84, we also re-ran the tests with a version from the
KVM git tree, very close to the KVM 85 release date.
This more recent version provided better performance,
but still far from the one obtained with the other config-
urations.

It is also worth noting that, while the size of block sizes
clearly affects the resulting performance (because of the
influence of latency on the performance), it affects all
solutions in a similar way.

4.3 Network

In this section, the network performance in virtual ma-
chines with KVM is compared to Xen network per-
formance using either hardware virtualization or para-
virtualization techniques.

To measure throughput, the iperf [17] benchmark is
used sending TCP flows of 16 kByte messages on the
virtual machines. The corresponding CPU cost is mea-
sured with the Linux sar utility on KVMs and with
xentop on Xen. Each result is the average of 10 runs
of 60 seconds of each test. To each virtual machine, one
of the 4 physical CPUs is attributed. The different do-
mains are scheduled in Xen to use the CPUs with default
credit-scheduler [19]. In KVM, virtual machines use
the emulated e1000 driver for hardware virtualization
and virtio for paravirtualization. The virtual machines
communicate using virtual tap interfaces and a soft-
ware bridge interconnecting all virtual machines and the
physical network interface. Xen virtual machines under
paravirtualization use the virtual split device driver and
Xen HVMs use the emulated Realtek 8139 driver. They
communicate also using a software bridge in host do-
main 0.

4.3.1 Inter virtual machine communication

In this first experiment, network performance between
virtual machines hosted on the same physical machine
is evaluated not invoking the use of the physical network

2009 Linux Symposium • 227

interface and allowing to evaluate the network speed al-
lowed by the CPU under the virtualization mechanisms.
This setup is represented on Figure 5.

Figure 5: Test setup with two communicating virtual
machines hosted on the same physical machine.

The two virtual machines communicate using different
mechanisms according to the virtualization technique.
In Xen, packets go to the virtual or emulated driver to
reach dom0, than to dom0’s backend driver to reach the
destination virtual machine. On KVM, the packets use
also an emulated or virtual interface and are than han-
dled by the kvm module to be sent to the destination
virtual machine.

The results in terms of TCP throughput in the four con-
figurations are represented in Table 1.

FV PV
KVM 648.3 813.2
Xen 96.05 4451

Table 1: Average TCP throughput in Mbit/s between
two virtual machines hosted on a single physical ma-
chine under full virtualization (FV) or paravirtualization
(PV).

The best throughput is obtained on Xen paravirtualized
guests which can communicate in a very lightweight
way achieving nearly native Linux loopback through-
put (4530 Mb/s) to the cost of an overall system CPU
use of around 180% while native Linux CPU cost is
about 120%. However with hardware assisted virtual-
ization, Xen has very poor throughput with even more
CPU overhead (about 250% of CPU use) due to the net-
work driver emulation. KVM achieves a throughput be-
tween 14 and 18% of native Linux loopback throughput
generating a CPU cost between about 150 and 200%.

4.3.2 Communication with a remote host

For communications between virtual machines hosted
by distinct physical servers, the packets need to use the

physical network interfaces of the hosts. This exper-
iment evaluates the resulting performance. As sending
and receiving do not invoke the same mechanisms, send-
ing throughput is evaluated separately from receiving
throughput as represent the two configurations on Fig-
ure 6.

Figure 6: Test setup with a virtual machine communi-
cating with a remote physical host.

Figure 7 shows the throughput obtained on the different
types of virtual machines.

Figure 7: TCP throughput on a virtual machine sending
to or receiving from a remote host.

Para-virtualization shows much better results in terms
of throughput than hardware virtualization like in the
previous experiment, with KVM and Xen. While with
Xen para-virtualization, the theoretical TCP throughput
of 941 Mb/s is reached, with KVM and the paravirtual-
ized driver, throughput reaches only about 80% of native
Linux throughput. In Xen, the network interface is the
bottleneck as loopback throughput reaches 4451 Mb/s.
In KVM paravirtualization, the virtualization mecha-
nism is the bottleneck, as the same throughput is ob-
tained, whether the network interface card is used or
not. With hardware-virtualization, the network perfor-
mance is very poor, especially with Xen HVM and in
the case of sending. This shows that the sending mech-
anism from the Xen HVM is obviously the bottleneck
also in the previous experiment. KVM FV uses about
100% of the CPU, which is assigned to it and can not
achieve better throughput, needing more CPU capacity.
In the case of paravirtualization with virtio, KVM needs

228 • Linux-based virtualization for HPC clusters

less CPU, about 76% for sending and 60% for receiving
while the physical host system is performing a part of
the work to access the physical NIC. The overall sys-
tem CPU usage is still about 100% of one CPU, but the
resulting bandwidth more than doubles in the case of
sending.

4.3.3 Scalability

This experiment evaluates the impact on throughput
while scaling up to either 2, 4 or 8 virtual machines
hosted on a single physical host. Figure 8 shows an ex-
ample with 4 VMs.

Figure 8: Test setup with 4 virtual machines communi-
cating with 4 remote physical host.

As in the previous experiment, sending an receiving
throughput is evaluated separately.

The aggregated TCP throughput obtained on the virtual
machines for sending and receiving is represented re-
spectively on Figures 9 and 10 in each configuration
(KVM and Xen, with para- or full-virtualization).

Figure 9: TCP sending throughput on a set of up to 8
VMs.

In both configurations, KVM and Xen, paravirtualiza-
tion achieves better throughput, like before. Observ-
ing the evolution of the aggregate throughput with an

Figure 10: TCP receiving throughput on a set of up to 8
VMs.

increasing number of virtual machines, it can be seen
that a bigger number of VMs achieve a better overall
throughput than a single virtual machine. In the case of
KVM, this might be related to an important CPU over-
head necessary for networking. With a single virtual
machine sending a single TCP flow, KVM consumes
the capacity of an entire CPU whether it uses the em-
ulated e1000 driver or virtio. Using two virtual ma-
chines sending two flows, they can each one use one
CPU which actually happens for KVM full virtualiza-
tion where throughput still not reaches the maximum
value allowed by the NIC. Paravirtualization needs less
instructions making KVM use only between 130 and
165% of the 4 CPU cores and achieving nearly maxi-
mum TCP throughput.

Xen HVM has the most important CPU overhead, es-
pecially with 4 or 8 virtual machines, and achieves the
poorest throughput. Only dom0 uses almost 250% of the
CPUs to forward the traffic of 4 virtual machines. This
means that it uses at least 3 CPUs simultaneously and
need to share them with the domUs. This sharing needs
more context switches. With Xen paravirtualization the
overall system CPU utilization does not exceed 160%
for dom0 and 8 domUs, allowing to achieve maximum
TCP throughput.

In each experiment, the different virtual machines
achieve almost the same individual throughput. For this
reason, only the aggregated throughput is represented.
Per virtual machine throughput corresponds to the ag-
gregated throughput to the number of VMs. This means
that the resource sharing is fair between the different vir-
tual machines.

For inter-VM communications on a same physical host

2009 Linux Symposium • 229

and also for communications using the physical inter-
face, despite its virtualization overhead, Xen paravirtu-
alization achieved the best network throughput having
the lowest CPU overhead compared to hardware vir-
tualization and KVM. However, KVM with the virtio
API and the paravirtualized drivers can achieve similar
throughput if it has enough CPU capacity. This solu-
tion could be a good tradeoff between performance and
isolation of virtual machines.

5 Evaluation with classical HPC benchmarks

In this section, we report on the evaluation of the var-
ious virtualization solutions using the HPC Challenge
benchmarks [10]. Those benchmarks consist in 7 dif-
ferent tools evaluating the computation speed, the com-
munication performance, or both, like the famous LIN-
PACK/HPL benchmark used to rank the computers for
the Top500.3

The following results were obtained with HPCC 1.3.1
on a cluster of 32 identical Dell PowerEdge 1950 nodes,
with two dual-core Intel Xeon 5148 LV CPUs and 8 GB
of RAM. The nodes are connected together using a Gi-
gabit ethernet network. The benchmarks were run on
several configurations:

• the host system used to run KVM virtual machines
(using Linux 2.6.29);

• the host system used to run Xen virtual machines
(Xen dom0, using Linux 2.6.18);

• 32 KVM virtual machines allocated to 4 CPUs
each, using virtio for network and the classic emu-
lated driver for disk;

• 128 KVM virtual machines allocated to 1 CPU
each, using virtio for network and the classic emu-
lated driver for disk;

• 32 Xen paravirtualized virtual machines allocated
to 4 CPUs each;

• 128 Xen paravirtualized virtual machines allocated
to 1 CPU each;

• 32 Xen virtual machines using full virtualization,
allocated to 4 CPUs each;

• 128 Xen virtual machines using full virtualization,
allocated to 1 CPU each.

3http://www.top500.org

Figure 11: PTRANS benchmark: aggregate network
bandwidth

5.1 PTRANS benchmark

PTRANS (parallel matrix transpose) excercises the
communication network by exchanging large messages
between pairs of processors. It is a useful test of the
total communications capacity of the interconnect. Re-
sults shown in Figure 11 indicate that:

• The setup using four KVM VMs per node per-
forms better than the one using 1 VM per node, and
provides performance that is close to native. This
might be explained by the fact that having several
virtual machines allows the load to be better spread
across CPUs;

• Xen setups perform very poorly in that benchmark.

5.2 STREAM benchmark

STREAM is a simple benchmark that measures the per-
node sustainable memory bandwidth. As shown in Fig-
ure 12, all configurations perform in the same way (dif-
ferences are likely to be caused by measurement arti-
facts).

5.3 Latency and Bandwidth Benchmark

The latency and bandwidth benchmark organizes pro-
cesses in a randomly-ordered ring. Then, each process
receives a message from its predecessor node, then send

230 • Linux-based virtualization for HPC clusters

Figure 12: STREAM benchmark: per-node memory
bandwidth

Figure 13: Average node-to-node latency

Figure 14: Average node-to-node bandwidth

Figure 15: LINPACK benchmark: overall performance

a message to its successor, in a ping-pong manner. 8-
byte and 2-MB long messages are used.

Figure 13 presents the latency results. Results for Xen
with full virtualization are not included, as the average
is 11 ms (1 VM with 4 CPU case) or 8 ms (4 VM with
1 CPU), probably because of the much lower available
bandwidth. Xen with paravirtualization performs much
better than KVM (146 or 130 µsvs 286 µs).

Figure 14 presents the bandwidth results, which are sim-
ilar to those of the PTRANS benchmark.

5.4 LINPACK/HPL Benchmark

The LINPACK benchmark combines computation and
communications. It is used to determine the annual
Top500 ranking of supercomputers. Figure 15 shows the
LINPACK results (in GFlop/s) for our configurations.

The best configuration is the Xen setup with 4 virtual
machines per node, which reaches 235 GFlops, com-
pared to 222 for the host system. This might be caused
by the fact that splitting a physical host into four vir-
tual machines allows for better scalability, compared to
when the same kernel is used for the four processes.
Also, as we showed in Section 4.3.1, the inter-VM band-
width is 4.4 Gbps, leading to no performance degrada-
tion compared to the host system case.

KVM results show more overhead, likely to be caused
by the important communication latency between vir-
tual machines (Section 5.3), which is not compensated
by the inter-VM bandwidth. Contrary to what happens

2009 Linux Symposium • 231

with Xen, both KVM configurations (4 VMs with 1
CPU, and 1 VM with 4 CPU per node) give similar per-
formance.

6 Related work

I/O performance is a critical point in virtual machines,
and it depends on the kind of virtualization. Previ-
ous evaluations compared para-virtualization and full-
virtualization like Xen and VMware to OS-level virtu-
alization like VServer4 and UML.5 This showed best
network and disk access performance for Xen and
VServer [5].

Between these two solutions, oftenly VServer perform-
ing only control plane virtualization is preferred as in
VINI [4] in order to maximise performance. However
this offers less isolation, security and reconfigurability,
virtualizing at the OS level and so sharing a single OS,
while our goal is to have completely isolated systems
for more flexibility and security. This lead to concen-
trate on full- or para-virtualization solutions rather than
container based ones.

Xen is probably the most evaluated virtualization so-
lution. Since its appearance in 2003, Xen I/O and es-
pecially network virtualization has been constantly im-
proved achieving growing network performance with
its successive versions [2] to reach today native Linux
throughput on para-virtual machines. Offloading fea-
tures have been added to virtual NICs in Xen 2.0
and page flipping has been changed to copying to
lightweight the operations [11]. Unfairness problems
have been corrected in the Credit-Scheduler and the
event channel management [14].

Detailed Xen I/O performance has been examined [8]
rejecting the Xen data-plane paravirtualization for its
performance overhead but proposing Xen virtualization
as a viable solution on commodity servers when using
direct hardware mapped virtual machines. However,
this would not offer the same flexibility requiring ded-
icated hardware for each virtual machine. Having this
isolation and flexibility goal in mind, this paper shows
that Xen data-plane virtualization achieves better perfor-
mance compared to other techniques. In fact, it seems
that KVM did not yet reach the same maturity than Xen
in I/O management with paravirtualization.

4http://linux-vserver.org
5http://user-mode-linux.sourceforge.net

Studies on Xen para-virtualization in the HPC context
showed that Xen performs well for HPC in terms of
memory acces, and disk I/O [21] and communication
and computation [20]. To know if it was due to the
paravirtualized driver or to specific Xen implementa-
tions, we also compared Xen performance ton KVM
performance which is a very recent KVM solutions of-
fering the same isolation features (data-plane virtualiza-
tion and full isolation) offering also full and paravirtual-
ization.

7 Conclusion and future work

In this work, we evaluated different aspects of KVM and
Xen, focusing on their adequacy for High Performance
Computing. KVM and Xen provide different perfor-
mance characteristics, and each of them outperforms the
other solution in some areas. The only virtualization
solution that consistently provided bad performance is
Xen with full virtualization. But both Xen with paravir-
tualization, and the KVM approach (with paravirtualiza-
tion for the most important devices) clearly have their
merits.

We encountered problems when setting up both solu-
tions. Our choice to use Xen 3.3 implied that we had to
use the XenSource-provided 2.6.18 kernel, and couldn’t
rely on an easier-to-use and up-to-date distribution ker-
nel. This brought the usual issues that one encounters
when compiling one’s own kernel and building software
from source. KVM proved to still be a relatively young
project (especially its virtio support) and also brought
some issues, like the unsolved problem with virtio_disk.

Finally, while we aimed at providing an overview of
Xen and KVM performance, we voluntarily ignored
some aspects. The first one is Xen’s and KVM’s sup-
port for exporting PCI devices to virtual machines (PCI
passthrough). This is important in the context of HPC
to give virtual machines access to high-performance net-
works (Infiniband, Myrinet), but also raises questions on
how those devices will be shared by several virtual ma-
chines. Another aspect that can be useful in the field of
HPC is VM migration, to be able to change the mapping
between tasks and compute nodes. In our performance
results, we ignored the problem of fairness between sev-
eral virtual machines: the execution of a task in one VM
could have consequences on the other VM of the same
physical machine.

232 • Linux-based virtualization for HPC clusters

Finally, it would be interesting to explore the new vir-
tualization possibilities known as Linux Containers [1].
By providing a more lightweight approach, they could
provide a valuable alternative to Xen and KVM.

Acknowledgements

We would like to thank Pascale Vicat-Blanc Primet for
her support and leadership.

References

[1] Linux containers. http://lxc.sourceforge.net/.

[2] Fabienne Anhalt and Pascale Vicat-Blanc Primet.
Analysis and experimental evaluation of data
plane virtualization with Xen. In ICNS 09 :
International Conference on Networking and
Services, Valencia, Spain, April 2009.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA,
2003. ACM.

[4] Andy Bavier, Nick Feamster, Mark Huang, Larry
Peterson, and Jennifer Rexford. In vini veritas:
realistic and controlled network experimentation.
In SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 3–14. ACM, 2006.

[5] Franck Cappello Benjamin Quetier, Vincent Neri.
Scalability comparison of four host virtualization
tools. Journal of Grid Computing, 2006.

[6] David Chisnall. The Definitive Guide to the Xen
Hypervisor. Prentice Hall, 2007.

[7] Intel Corporation, editor. Intel 64 and IA-32
Architectures Software Developer’s Manual. Intel
Corporation, 2008.

[8] Norbert Egi, Adam Greenhalgh, Mark Handley,
Mickael Hoerdt, Felipe Huici, and Laurent Mathy.
Fairness issues in software virtual routers. In
PRESTO ’08, pages 33–38. ACM, 2008.

[9] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,
and Anthony Liguori. kvm: the Linux Virtual
Machine Monitor. In Linux Symposium, 2007.

[10] Piotr R Luszczek, David H Bailey, Jack J
Dongarra, Jeremy Kepner, Robert F Lucas, Rolf
Rabenseifner, and Daisuke Takahashi. The hpc
challenge (hpcc) benchmark suite. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 213, New York, NY,
USA, 2006. ACM.

[11] Aravind Menon, Alan L. Cox, and Willy
Zwaenepoel. Optimizing network virtualization
in xen. In ATEC ’06: Proceedings of the annual
conference on USENIX ’06 Annual Technical
Conference, pages 2–2. USENIX Association,
2006.

[12] Jun Nakajima and Asit K. Mallick. Hybrid
-virtualization–enhanced virtualization for linux.
Ottawa Linux Symposium, June 2007.

[13] Gil Neiger, Amy Santoni, Felix Leung, Dion
Rodgers, and Rich Uhlig. Intel virtualization
technology: Hardware support for efficient
processor virtualization. Technical report, Intel
Technology Journal, 2006.

[14] Diego Ongaro, Alan L. Cox, and Scott Rixner.
Scheduling i/o in virtual machine monitors. In
VEE ’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 1–10.
ACM, 2008.

[15] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation
architectures. In Communications of the ACM 17
(7), pages 412–421, July 1974.

[16] Rusty Russell. virtio: towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, 2008.

[17] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and
K. Gibbs. iperf : testing the limits of your
network. http://dast.nlanr.net/Projects/Iperf.

[18] Willam von Hagen. Professional Xen
Virtualization. Wiley Publishing, Inc., 2008.

2009 Linux Symposium • 233

[19] Yaron. Creditscheduler - xen wiki.
http://wiki.xensource.com/xenwiki/CreditScheduler,
2007.

[20] Lamia Youseff, Rich Wolski, Brent Gorda, and
Chandra Krintz. Evaluating the performance
impact of xen on mpi and process execution for
hpc systems. In Virtualization Technology in
Distributed Computing, 2006. VTDC 2006. First
International Workshop on, 2006.

[21] Lamia Youseff, Rich Wolski, Brent Gorda, and
Chandra Krintz. Paravirtualization for hpc
systems. In In Proc. Workshop on Xen in
High-Performance Cluster and Grid Computing,
pages 474–486. Springer, 2006.

234 • Linux-based virtualization for HPC clusters

I/O Topology

Martin K. Petersen
Oracle

martin.petersen@oracle.com

Abstract

The smallest atomic unit a storage device can access is
called a sector. With very few exceptions, a sector size
of 512 bytes has been akin to a mathematical constant
in the storage industry for decades. That picture is now
rapidly changing with hard drives moving to 4KB sec-
tors. Flash-based solid state drives and enterprise RAID
arrays also have alignment and block size requirements
above and beyond what we have traditionally been hon-
oring.

This paper will present a set of changes that expose the
characteristics of the underlying storage to the Linux
kernel. This information can be used by partitioning
tools and filesystem formatters to lay out data in an op-
timal fashion.

1 Disk Drives and Block Sizes

Until recently what has been commonly referred to as
sector size has been both the unit used by the program-
ming interface to address a location on disk as well as
the size used internally by the drive firmware to organize
user data.

In the never-ending quest for increased capacity, disk
drive manufacturers are now switching to a 4KB sector
size, or physical block size. This allows them to increase
yield due to less overhead per sector (see Figure 1). I.e.
more of the physical capacity can be used for user data
as opposed to sync marks, error correction and other
fields used internally by the drive firmware.

The industry migration to bigger sectors is just begin-
ning and is scheduled to complete in 2011. Enterprise
drives are expected to switch directly to 4KB sectors but
can be formatted down to 512-byte blocks at a slight loss
in user-visible capacity.

For compatibility with legacy operating systems such as
Windows XP, desktop and laptop class disks will con-
tinue to present 512-byte sectors to the operating system
despite using 4KB blocks internally. This means that we
will continue to use increments of 512 bytes to address
data on disk. In protocol parlance this is referred to as
the logical block size. We refer to a sector offset on disk
as the logical block address or LBA.

The backwards compatibility comes at a cost. If the op-
erating system submits a request smaller than 4KB, or
if the request submitted is misaligned and straddles two
physical blocks, the drive firmware will have to perform
a read-modify-write cycle. This incurs a significant per-
formance penalty as the drive will have to perform an
extra platter rotation. First the partial sector needs to
be read into a buffer, then new data added, and then the
same location will need to come back under the head to
get written.

For large sequential writes the impact of the read-
modify-write cycle is fairly small as only the first and
last physical block will be affected. However, small ran-
dom write workloads are significantly slowed down so
it is imperative to prevent misalignment.

2 Partitions

Linux normally uses 4KB filesystem blocks and conse-
quently writes smaller than the physical block size are
rare. However, we need to make sure that the filesys-
tem is layed out so that the filesystem blocks are aligned
with the physical blocks of the underlying disk. Align-
ing on a 4KB boundary may seem like a trivial task at
first but once again backwards compatibility considera-
tions mean that special care must be taken.

Traditionally Linux, like Windows, has been using the
DOS partition table format. This format defaults to
putting the first partition at sector 63 which is not on

• 235 •

236 • I/O Topology

ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S

ECCG S 4096 bytes of data

Format Efficien
Improvement: 6-13%

Figure 1: Top line illustrates how 512-byte sectors are stored on disk: Gap, Sync & Address Mark fields, followed
by 512 bytes of data and finally an ECC. 8 sectors are required to store 4KB of user data. On the bottom line: A
drive with 4KB sectors causes much less overhead.

a 4KB boundary. And consequently all I/O to that parti-
tion would be misaligned causing a performance degra-
dation.

Because it is impossible to retroactively change Win-
dows XP to align on something other than sector 63, the
drive manufacturers instead opted to ensure that LBA 63
is aligned on the physical block size boundary. This in
turn means that the lowest naturally aligned LBA is 7.

There is no guarantee that any subsequent partitions will
be aligned on a 4KB boundary, neither from the begin-
ning of the drive, nor from the beginning of the first par-
tition. This means that drive firmware artificially align-
ing LBA 63 only helps Windows users as XP rarely uses
more than one partition. With Linux, however, the first
partition is usually used for the /boot filesystem where
performance is less important.

To make things even more complicated, enterprise class
drives are as mentioned above switching to 4KB sectors
as well. SAS and Fibre Channel drives will use 4KB
logical and physical block sizes. SATA Nearline drives
will use 4KB physical and 512-byte logical blocks. In
both cases LBA 0 will be naturally aligned, so we can
not simply assume that LBA 63 is always aligned on a
physical block boundary.

3 Alignment and Block Size Reporting

To remedy this both the SCSI and ATA protocols have
been expanded with fields that inform us of the drive’s
alignment. For SCSI drives physical block size and
alignment are reported in the READ CAPACITY(16)

command. And for ATA the same values can be found
in IDENTIFY words 106 and 209 respectively.

Until now the Linux block layer has used the queue
parameter hardsect_size to indicate the sector size
for an underlying device. In 2.6.31 this value has

been deprecated in favor of logical_block_size

and physical_block_size respectively. Both values
are exported to user applications via sysfs.

Alignment is also reported, both for the whole block de-
vice as well as for each partition. The byte offset from
the underlying drive’s physical block alignment can be
found in sysfs’ alignment_offset parameter.

These three values enable tools such as fdisk and
parted to align properties on a natural boundary, pre-
venting the read-modify-write cycle and the resulting
performance degradation.

4 Virtual Block Devices

A significant amount of Linux deployments use either
software RAID via the MD driver or logical volume
management via the DM driver. In both cases it is cru-
cial to ensure that the virtual block devices exported by
the drivers will have their first LBA naturally aligned to
the underlying storage.

Virtual block device drivers have traditionally used a
stacking function provided by the block layer to ensure
that various limits such as the sector size were compat-
ible with the underlying storage. This stacking func-
tion has been extended so that alignment and physical
block size are taken into account when devices are lay-
ered. The drivers can pass in an offset to the stacking
function to compensate for space used by their internal
superblocks.

The stacking function will make sure that all component
devices use compatible alignment and physical block
sizes. It even handles corner cases such as combining
mismatched devices for example a 512-byte sector drive
and a 4KB ditto in a RAID1 setup. In this case the align-
ment of the 512-byte drive will be scaled up to match
that of the 4KB drive.

2009 Linux Symposium • 237

As it is the case with low-level block devices, both MD
and DM will expose the block size and alignment_

offset parameters in sysfs, meaning that filesystem
utilities no longer have to have special cases for extract-
ing this type of information for MD and DM devices.
All block devices now export exactly the same set of
characteristics.

5 Performance Hints

Filesystems such as XFS are designed to be aware of
the topology of the underlying storage. When an XFS
filesystem is created on top of an MD or LVM device it
will query the device to figure out the stripe chunk size
as well as the stripe width. XFS will then lay out its
important data structures on stripe boundaries.

So far topology reporting has been done using either
ioctl calls or by wrapping LVM command line tools
and parsing their output. However, these approaches are
quite inflexible and restricted to virtual block devices.

Hardware RAID arrays have provided means to extract
this type of information as well but in a vendor-specific,
proprietary fashion. As such it has been up to the system
administrator to query the storage device and pass the
appropriate layout parameters to the mkfs utility.

To remedy this a recent addition to the SCSI Block
Commands specification permits devices to export per-
formance characteristics using a common mechanism
known as the Block Limits VPD page. Support for this
VPD has been added to the SCSI disk driver in 2.6.31
and Linux will now export the values in sysfs if the stor-
age device reports them.

The MD and DM drivers have also been updated and ex-
port their respective stripe chunk and stripe width sizes
using the same sysfs files. This means that filesystem
utilities can gain access to the device performance hints
without employing MD and DM specific code.

The first hint is minimum_io_size which is the opti-
mal request size granularity for the device, typically the
RAID chunk size. A properly aligned multiple of this
value is the preferred request size for workloads where
a high number of I/O operations per second are desired.

The other hint is optimal_io_size which corre-
sponds to the optimal unit of sustained I/O. Typically
this is the stripe width for RAID arrays. A properly
aligned multiple of this value is the preferred request
size for workloads where a high throughput is desired.

6 Solid State Drives

Hard drive performance is heavily constricted by the
speed at which the read/write heads can be moved across
the platter as well as rotational latency. Low-end disk
drives spin at 5400 or 7200rpm, whereas enterprise
drives spin at 10000 or 15000 rotations per minute, but
despite this, a contemporary drive can usually only ser-
vice between 100 and 250 IOPS (I/O operations per sec-
ond). Once the head is correctly positioned and the plat-
ter lined up, however, a modern drive can stream data
at a rate in excess of 100 MBps. Consequently, a lot of
work has gone into optimizing filesystems and the entire
I/O stack to minimize head movement and to place data
sequentially on disk.

Flash-based solid state drives are now commonplace in
the market. While they look and act like hard drives
from a programming perspective they have very differ-
ent performance characteristics. Because there are no
heads to move and no platters to rotate it is possible
to achieve a very high degree of parallelism inside the
drive. Therefore, an SSD drive has the potential to de-
liver several orders of magnitude more IOPS than a disk
drive.

Internally, flash drives often use page sizes bigger than
512 bytes to organize data, typically 4KB. That makes
them similar to harddrives with 512-byte logical, 4KB
physical block size. SSD drives can use the same ATA
protocol parameters as regular drives to communicate
their alignment and block sizes to the kernel.

7 Conclusion

Until now the Linux kernel has only been aware of one
characteristic of the underlying storage, namely the sec-
tor size. Other parameters, such as stripe size and width,
have been relegated to special case code in filesystem
utilities.

Starting with 2.6.31, the Linux kernel is now aware of
more of the hardware capabilities such as physical block
size and alignment as well as the extra performance
hints exported by some devices. All these characteristics
are exported in a common fashion regardless of whether
the device is a piece of hardware or a virtual disk ex-
ported by MD or DM. The common interface makes
it easy for partitioning and filesystem tools, as well as
mdadm and dmsetup to ensure that filesystems and data

238 • I/O Topology

are layed out in a way that ensures optimal performance
and correctness.

Step two in DCCP adoption: The Libraries

Leandro Melo de Sales, Hyggo Oliveira, Angelo Perkusich
Embedded Systems and Pervasive Computing Lab

{leandro,hyggo,perkusic}@embedded.ufcg.edu.br

Arnaldo Carvalho de Melo
Red Hat, Inc.

acme@redhat.com

Abstract

Multimedia applications are very popular in the Internet.
The use of UDP in most of them may result in network
collapse due to lack of congestion control. DCCP [4]
is a new protocol to deliver multimedia in congestion
controlled unreliable datagrams.

This paper presents discussions and results in enabling
DCCP in open source libraries, as part of our efforts in
disseminating the DCCP protocol to developers.

At OLS’08 we presented experimental results [9] using
the DCCP implementation in the Linux kernel, where
it was shown that DCCP behaves better than UDP in
congested environments, while being fair with respect
to TCP. This is a work in progress and nowadays DCCP
is supported in libraries such as GNU CommonCPP,
CCRTP, GNU uCommon, in the GStreamer framework
and on Farsight 2.

1 Introduction

The Datagram Congestion Control Protocol (DCCP) is
a message-oriented Transport Layer protocol that imple-
ments reliable connection setup, teardown, ECN, con-
gestion control, and feature negotiation [11]. It was pub-
lished as RFC 4340 [4] in March of 2006 by Internet En-
gineering Task Force (IETF) with the main propose of
be an Internet protocol for transport multimedia content.
In the Linux kernel, the first DCCP implementation was
released in version 2.6.14.

The firstly versions of DCCP in the Linux kernel, con-
sidering the application developers point of view, was
implemented to be used by a very small set of appli-
cations, simplest ones based on DCCP socket and not
for that advanced multimedia applications. For instance,
it was possible to use the socket API to implement a
DCCP application to send characters between two hosts.

The developers was able to use the common socket func-
tions such as connect, bind and accept in a very similar
TCP fashion. By the end of 2007, the DCCP implemen-
tation in the Linux kernel became stable and developers
began to required DCCP in real development libraries
and frameworks.

In the OLS’08 we published a paper and gave a talk dis-
cussing about experimental results on the performance
of DCCP against UDP and TCP over a wireless net-
work [2]. In that year, we presented that DCCP data
flows are fair with respect to others TCP flows, while
UDP was very aggressive in terms of network conges-
tion, where in some situations both TCP and DCCP
could not transmit any data. This occurs because TCP
and DCCP implements congestion control, while UDP
does not.

Considering the multimedia application developers re-
quests for providing DCCP in the user space, we have
concentrated our efforts on enabling it in a set of se-
lected well-known open source multimedia frameworks.
In this paper we present the experiences on enabling
DCCP in these frameworks with two goals:

• enable DCCP in the user space to provide the de-
velopers an alternative for UDP;

• provide feedback to DCCP developers to improve
the DCCP implementation in the Linux kernel.

It is a work in progress and for the first phase we have
selected the following libraries: GNU CommonCPP,
CCRTP, GNU uCommon, GStreamer framework and
Farsight 2. By providing DCCP on these libraries, we
aim at disseminating DCCP and making it useful in
any Internet applications, while effectively make use of
DCCP implementation provided in the kernel – it does
not make sense provide DCCP in the Linux kernel and
nobody use it.

• 239 •

240 • Step two in DCCP adoption: The Libraries

This paper is organized as follow: in Section 2 are pre-
sented overview and background as a base for the rest of
the paper. In Section 3 are provided an overview about
DCCP and its main features. In Section 4, it is discussed
our efforts on enabling DCCP in a set of open source li-
braries. The current and future works about enabling
DCCP in these libraries are described in the Section 7.
In Section 8, the conclusions are presented.

2 Overview and Background

The motivation for DCCP is based on the growth of
Multimedia applications over the Internet in the last few
years. The multimedia applications have receive spe-
cial attention due to the popularization of high-speed
residential Internet access and wireless connections,
considering also new standards such as IEEE 802.16
(WiMax). This enables network applications that trans-
mit and receive multimedia contents through the Inter-
net to become feasible once developers and industry
invest money and software development efforts in this
area.

Industry and the open source community have devel-
oped specialized multimedia applications based on tech-
nologies such as Voice over IP (e.g., Skype, GoogleTalk,
Gizmo), Internet Radio (e.g., SHOUTcast, Rhapsody),
online games (e.g., Half Life, World of Warcraft), video
conferencing. These applications offer sophisticated so-
lutions that can approximate a face-to-face dialog for
people, although they can be physically separated by
hundreds or thousands of miles in distance.

These applications have different requirements when
compared with application such as HTTP and E-Mail
(connection oriented applications). The multimedia ap-
plications are delay sensitive, while they make a inten-
sive use of the network bandwidth and tolerate occa-
sional packet loss. Based on the behaviour of the multi-
media data flows, this may lead to changes on the design
principles of the multimedia application development.

Non-functional requirements such as end-to-end delay
(latency) and the variation of the delay (jitter) must
be taken into account, regardless the network topology
considered [7]. Usually, multimedia applications use
TCP and UDP as their transport protocol, but they may
present many drawbacks regarding these non-functional
requirements, and hence decrease the quality of the mul-
timedia content transmitted.

The developers of multimedia applications usually
choose to use the UDP protocol for transport the mul-
timedia data. The massive choice for UDP by the mul-
timedia application developers are explained by the fact
that UDP introduces less delay in the data transmission
in comparison with TCP, for example.

TCP is a connection oriented protocol that provides flow
control, congestion control and retransmission of lost
packets, which make the protocol appropriate for appli-
cations that require reliability during that transmission.
Together, these TCP features increase the end-to-end de-
lay during data transmission. Depends on the level of
the delay, use TCP is not a best choice.

On the other hand, UDP is a very simple protocol, it
does not provide any kind of congestion control, con-
nection hand-shake and packet retransmission in case a
packet is lost during the transmission. Together, these
features – or the absence of them – in UDP can lead to
high levels of network congestion. As a consequence,
the network can collapse. In this circumstance, even
those TCP (reliable) transmission can become imprac-
ticable.

In order to deal with those types of requirements, IETF
standardized the Datagram Congestion Control Protocol
(DCCP) [4], which appears as an alternative to transport
congestion controlled flows of multimedia data, mainly
for those applications focusing on the Internet. DCCP
provides a way to gain access to congestion control
mechanisms without having to implement them at the
Application Layer. It allows for flow-based semantics
like in TCP, but does not provide reliable in-order deliv-
ery.

3 A Bit About DCCP

DCCP was first introduced by Kohler [4] in July,
2001, at the IETF transport group. It provides spe-
cific features designed to fulfil the gap between TCP
and UDP protocols for multimedia application require-
ments. It provides a connection-oriented transport layer
for congestion-controlled, but unreliable data transmis-
sion. DCCP provides a framework that enables addition
of new congestion control mechanism, which may be
used and specified during the connection handshake, or
even negotiated in already established connections. In
addition, DCCP provides a mechanism to get connec-
tion statistics, which contain useful information about

2009 Linux Symposium • 241

packet loss, a congestion control mechanism with Ex-
plicit Congestion Notification (ECN) support, and Path
Maximum Transmission Unit (PMTU) discovery [4].

From TCP, DCCP provides the connection-oriented and
congestion-controlled features, and from UDP, DCCP
provides an unreliable data transmission. The main rea-
sons to specify a connection-oriented protocol is to fa-
cilitate the implementation of congestion control algo-
rithms and enable firewall traversal. This is a UDP
limitation that motivated network researchers to specify
the STUN [8] (Simple Traversal of UDP through NATs
(Network Address Translation)). STUN is a mechanism
that helps UDP applications to work over firewalled net-
works. An important feature of DCCP is the modular
congestion control framework. The congestion control
framework was designed to allow extending the conges-
tion control mechanism, as well as to load and unload
new congestion control algorithms based on the appli-
cation requirements. Each congestion control algorithm
has an identifier called Congestion Control Identifier
(CCID). Nowadays there are two standardized conges-
tion control algorithms: CCID 2 [5] and CCID 3 [6].

DCCP is useful for applications with timing constraints
on the delivery of data that may become useless to the
receiver if reliable in-order delivery combined with con-
gestion avoidance is used. Such applications include
streaming media, multiparty online games and Inter-
net telephony. Primary feature of these applications is
that old messages quickly become stale, so that getting
new messages is preferred than resending lost messages.
Currently, such applications have often either settled for
TCP or used UDP and implemented their own conges-
tion control mechanisms.

While being useful for these applications, DCCP can
also be positioned as a general congestion control
mechanism for UDP-based applications, by adding, as
needed, a mechanism for reliable and/or in-order deliv-
ery on the top of UDP/DCCP. In this context, DCCP
allows the use of different – but generally TCP-friendly
– congestion control mechanisms [10].

4 Libraries

Libraries is a collection of programming functions that
can be used to develop a software. A software invokes
these functions and, as a result, they provide to the soft-
ware a return value or take an action. One of the main

characteristic of a library is that it provides generic func-
tions that can be shared by a set of software, and each of
them combines the library functions with its functions
to take actions. By allowing sharing of source code, the
use of libraries avoid source code duplication.

In the context of what it is discussed in this paper, the
Twinkle [20] soft-phone and Telepathy are two exam-
ples of software that adopted the concept explained be-
fore. Both projects are free software, one for Voice over
IP and the other a library for developing videoconfer-
ence applications. In the case of Twinkle, it provides
many features for communicating: peer-to-peer, confer-
ence calls, call redirection, voice mail and instant mes-
saging, all provided by the SIP protocol. The last Twin-
kle version available provides support for both TCP and
UDP, while using Real-Time Protocol (RTP) [3] for sig-
naling audio and video contents. The Figure 1 illus-
trates two examples of the library sharing. On the top of
the stack the Twinkle uses CCRTP, that uses Common-
CPP2 and Telepathy, that uses Farsight2 and GStreamer.
Both uses the common file socket.h, the standard socket
library provided by the operating system. It is the
main socket header, where it is found the prototype for
the well-known socket functions such as connect, bind,
send, recv and accept.

Telepathy is a framework that can be used to develop
communication software, such as VoIP, instant messag-
ing, chat or videoconferencing. It is an open source
software, applications use it as a library to simplify the
process of developing multimedia applications. Empa-
thy [14], Ekiga [13] and Tapioca [19] are examples of
applications that use Telepathy on some of its multime-
dia service.

The Figure 1 shows a hierarchy of libraries that are used
by applications Twinkle and Telepathy. The stack is di-
vided in groups comprising the libraries according to
the functionality. Despite the Twinkle and Telepathy are
different applications in purpose and use of different li-
braries, they are at the top of the stack, indicating that
they are classified at the highest level for transmitting
media streams. The second level of the stack presents
the libraries responsible for effectively process the ap-
plication data, passed though Twinkle or Telepathy, and
wrapper them into specific packets based on the protocol
used to transport the data.

242 • Step two in DCCP adoption: The Libraries

CommonCPP 2

CCRTP

Twinkle

Linux Socket API (socket.h)

GStreamer

Farsight 2

Telepathy

Figure 1: Library usage/sharing between Twinkle and
Telepathy

5 Enabling DCCP on Libraries

After evaluating the performance of DCCP and pre-
sented the results in the OLS’ 08, we have started the use
of DCCP in the multimedia applications, where Twinkle
and Telepathy being considered our starting point. Both
of them have a set of libraries dependency and also we
also had to change somehow these dependency libraries
to accommodate DCCP.

We decided to start the changes in order to enabling
DCCP in the selected applications considering the
bottom-up approach. In this way, considering the pyra-
mid illustrated in Figure 1, we started from the closest
library from the pyramid base to the top of the pyra-
mid. After finishing the work in a specific library, we
started to implement DCCP support in the library imme-
diately above and the process was repeated until there is
no Twinkle or Telepathy dependencies without DCCP
available.

For each libraries modified to make it support DCCP,
we have implemented a corresponding example appli-
cation to test and exploit the features of data transmis-
sion using DCCP between pairs. In addition to guide
our implementation of DCCP for a given library, this
application can be used as a documentation for enabling
developer to understand the concepts of the library be-
ing used. The example developed in each step was a
implementation of a ‘’hello world” application, where
the sender application sends the ‘’hello world” message
and the receiver application receives it.

During the process of changing a certain library, the
example application to test the progress of the imple-

mentation was continuously executed. This character-
ized a kind of test-driven development. Once the nec-
essary changes to the libraries were applied, we run the
example application and use wireshark [21] to investi-
gate the DCCP traffic transmitted in the network. The
Figure 2 shows an example of the DCCP traffic while
using DCCP with CommonCPP2. By verifying this, it
was possible to certify the the application, through the
library that we have provided DCCP support, was in-
deed transmitting DCCP flows.

5.1 Sockets Libraries—First Layer of the Stack

The libraries GStreamer and Commoncpp2, that are in
the first layer considering the base stack shown in Fig-
ure 1, invokes operating system socket functions. They
offer basic functionalities for transmitting data through
the connected sockets between a client and a server. In
this case, both libraries had to be changed in order to
support DCCP, once these libraries only supported TCP
and UDP sockets.

The strategy adopted was to add a structure for the
DCCP client and server, so that define a connection-
oriented sockets. Since GStreamer and CommonCPP
uses TCP sockets, we started by coping the TCP im-
plementation, since DCCP and TCP shares the same
concept of connection-oriented sockets. Based on
TCP implementation, we adapt the code to DCCP pa-
rameters passed to the socket functions, such as the
socket function provided by the operating system. In
the next section, we show by using some parts of
the code added how we implemented DCCP support
in GStreamer and in CommonCPP. Between lines 1-
7 of Listing 1, it is shown a set of definitions used
to provide DCCP support in the CommonCPP and
GStreamer. Between lines 4-7 of Listing 1, it is the
constants to read or write DCCP parameters defined by
the DCCP implementation in the Linux Kernel. This
values are read or written through the functions get-
sockopt and setsockopt. For example, the constant
DCCP_SOCKOPT_AVAILABLE_CCIDS is passed to
getsockopt to get the list of CCIDs available in the Linux
Kernel. The constant DCCP_SOCKOPT_TX_CCID
can be passed either to getsockopt or to setsockopt to
get or set the current CCID, respectively.

In the line 9, it is illustrated how to create a new DCCP
socket. Note, IPPROTO_DCCP assumes value 33 be-
cause it is the id defined by IANA [18] to DCCP. This

2009 Linux Symposium • 243

Figure 2: Wireshark filtering DCCP traffic and outputting DCCP packets details.

value is used in the IP packet header to specify which
protocol is being used in the transport layer. The com-
mon values for this field are 1, 6 and 17 for ICMP, TCP
and UDP, respectively. For a complete list of protocol
identifier consult reference [17].

1 # d e f i n e SOCK_DCCP 6
2 # d e f i n e IPPROTO_DCCP 33
3 # d e f i n e SOL_DCCP 269
4 # d e f i n e DCCP_SOCKOPT_AVAILABLE_CCIDS 12
5 # d e f i n e DCCP_SOCKOPT_CCID 13
6 # d e f i n e DCCP_SOCKOPT_TX_CCID 14
7 # d e f i n e DCCP_SOCKOPT_RX_CCID 15
8

9 s o c k e t (AF_INET , SOCK_DCCP, IPPROTO_DCCP)

Listing 1: Definition for DCCP

Before discuss each library that was modified to sup-
port DCCP, consider a basic example of DCCP socket
shown in the Listing 2. The example was implemented
in Python programming language.

1 import s o c k e t
2

3 s o c k e t . SOCK_DCCP = 6
4 s o c k e t . IPPROTO_DCCP = 33
5 a d d r e s s = (s o c k e t . g e t h o s t n a m e () , 1 2 3 4 5)

6 s e r v e r = s o c k e t . s o c k e t (s o c k e t . AF_INET ,
7 s o c k e t . SOCK_DCCP,
8 s o c k e t . IPPROTO_DCCP)
9 s e r v e r . b ind (a d d r e s s)

10 s e r v e r . l i s t e n (1)
11 s , a = s e r v e r . a c c e p t ()
12 p r i n t s . r e c v (1 0 2 4)

Listing 2: DCCP Server Socket in Python

1 import s o c k e t
2

3 s o c k e t . SOCK_DCCP = 6
4 s o c k e t . IPPROTO_DCCP = 33
5 a d d r e s s = (s o c k e t . g e t h o s t n a m e () , 1 2 3 4 5)
6 s e r v e r = s o c k e t . s o c k e t (s o c k e t . AF_INET ,
7 s o c k e t . SOCK_DCCP,
8 s o c k e t . IPPROTO_DCCP)
9 s e r v e r . b ind (a d d r e s s)

10 s e r v e r . l i s t e n (1)
11 s , a = s e r v e r . a c c e p t ()
12 p r i n t s . r e c v (1 0 2 4)

Listing 3: DCCP Client Socket in Python

Listing 3 shows the corresponding DCCP client in
Python. As it is possible to verify in both client and
server examples written in Python, the DCCP socket
programming is very simple as TCP socket program-
ming. Basically the unique difference is socket func-

244 • Step two in DCCP adoption: The Libraries

tion parameters, where it is necessary to specify IP-
PROTO=33 (DCCP), as explained before.

The example illustrated in Listing 2 implements a
DCCP server that accept a DCCP client connection on
port 12345. After connecting, the DCCP server reads
1024 bytes from the DCCP client and exit.

5.1.1 GNU CommonCPP 2

In order to provide DCCP support in CommonCPP, we
started by implementing a TCP application to under-
stand CommonCPP API. After making the test appli-
cation and understand how the CommonCPP works,
we investigated the code of the library and located the
source codes responsible of handling the sockets by in-
voking the kernel socket functions. Once located, the
TCP implementation code was copied, basically a class
named TCPSocket, and modified to create the DCCP-
Socket class. Listing 4 shows fragments of the DCCP-
Socket class implemented in the file src/socket.cpp of
CommonCPP 2 library. The complete code can be found
in the CommonCPP repository referred in [15].

After implementing DCCP support for CommonCPP,
we have modified the TCP application to make it a
DCCP application. Next, we ran the test application and
by using wireshark we have validated the implementa-
tion by filtering DCCP data packets sent by the test ap-
plication using the DCCPSocket class.

1 \ \ So ck e t c l a s s i m p l e m e n t a t i o n
2 (. . .)
3 \ \ TCPSocket c l a s s i m p l e m e n t a t i o n
4 (. . .)
5 DCCPSocket : : DCCPSocket (c o n s t IPV4Address
6 &ia ,
7 t p p o r t _ t p o r t ,
8 unsigned b a c k l o g) :
9 So ck e t (AF_INET , SOCK_DCCP, IPPROTO_DCCP) {

10 s t r u c t s o c k a d d r _ i n add r ;
11

12 memset(& addr , 0 , s i z e o f (add r)) ;
13 add r . s i n _ f a m i l y = AF_INET ;
14 add r . s i n _ a d d r = g e t a d d r e s s (i a) ;
15 add r . s i n _ p o r t = h t o n s (p o r t) ;
16 f a m i l y = IPV4 ;
17 (. . .)
18 bool DCCPSocket : : setCCID (i n t c c i d) {
19 (. . .)
20 re turn (s e t s o c k o p t (so , SOL_DCCP ,
21 DCCP_SOCKOPT_CCID ,
22 (char ∗)& cc id ,
23 s i z e o f (c c i d)) >= 0) ;

24 }
25

26 i n t DCCPSocket : : getTxCCID () {
27 i n t cc id , r e t ;
28 s o c k l e n _ t c c i d l e n ;
29

30 c c i d l e n = s i z e o f (c c i d) ;
31 r e t = g e t s o c k o p t (so , SOL_DCCP ,
32 DCCP_SOCKOPT_TX_CCID ,
33 (char ∗)& cc id ,
34 &c c i d l e n) ;
35 i f (r e t < 0) re turn −1;
36 re turn c c i d ;
37 }
38

39 i n t DCCPSocket : : getRxCCID () {
40 i n t cc id , r e t ;
41 s o c k l e n _ t c c i d l e n ;
42

43 c c i d l e n = s i z e o f (c c i d) ;
44 r e t = g e t s o c k o p t (so , SOL_DCCP ,
45 DCCP_SOCKOPT_RX_CCID ,
46 (char ∗)& cc id ,
47 &c c i d l e n) ;
48 i f (r e t < 0) re turn −1;
49 re turn c c i d ;
50 }
51 (. . .)

Listing 4: Fragments of DCCPSocket class imple-
mented in CommonCPP 2 (src/socket.cpp)

5.1.2 Gstreamer

GStreamer [16] is an open source multimedia frame-
work that allows the programmer to write many types
of streaming multimedia applications. Many well-know
applications use GStreamer, such as Kaffeine, Amarok,
Phonon, Rhythmbox, and Totem. The GStreamer
framework facilitates the process of writing multimedia
applications, ranging from audio and video playback to
streaming multimedia content.

The work initiated by studying the mechanism of data
transmission implemented in GStreamer and its con-
cept of plugin-based framework. GStreamer is a plugin-
based framework, where each plugin contains elements.
Each of these elements provides a specific function –
such as encoding, displaying, or rendering data – as well
as the ability to read from or write to files. By combining
and linking those elements, the programmer can build a
pipeline for performing more complex functions. For
example, it is possible to create a pipeline for reading

2009 Linux Symposium • 245

MP3 parser DCCP transmitter

Figure 3: GStreamer Pipeline with three elements: a file
reader, an MP3 encoder, and a DCCP transmitter.

from an MP3 file, decoding its contents, and playing the
MP3.

Figure 3 represents a GStreamer pipeline composed by
three elements. Data flows from Element 1 to Element
2 and finally to Element 3. Element 1 is the source el-
ement, which is responsible for providing data to the
pipeline, whereas Element 3 is responsible for consum-
ing data from the pipeline. Between the source ele-
ment and the sink element, the pipeline is permitted to
use other elements, such as Element 2 (shown in Fig-
ure 3). These intermediary elements are responsible for
processing and modifying the content as the data passes
along the pipeline.

Based on similar methodology adopted while imple-
menting DCCP support for CommonCPP, we developed
the DCCP plugin [9] for GStreamer to deal with data
transmission using the DCCP protocol. This plugin
has four elements: dccpserversrc, dccpserversink, dccp-
clientsrc, and dccpclientsink. The source elements (dc-
cpserversrc and dccpclientsrc) are responsible for read-
ing data from a DCCP socket and pushing it into the
pipeline, and the sink elements (dccpserversink and dc-
cpclientsink) are responsible for receiving data from the
pipeline and writing it to a DCCP socket.

The dccpserversrc and the dccpserversink elements be-
have as the server, but only dccpserversink can trans-
mit and only dccpserversrc can receive data. When the
server element is initialized, it stays in a wait mode,
which means the plugin is able to accept a new con-
nection from a client element. The dccpclientsink el-
ement can connect to dccpserversrc, and dccpclientsrc
can connect to dccpserversink.

If a developer wants to send data from the server to the
client, you need to use dccpclientsrc and dccpserversink
elements. To send data from the client to server, you
need to use the dccpclientsink and dccpserversrc ele-
ments. GStreamer’s gst-launch command supports the
creation of pipelines, and it is also used to debug plug-
ins.

1 g s t−l a u n c h [! < e lement > < e l e m e n t params >]+

Listing 5: GStreamer gst-launch syntax

Listing 5 illustrates the basic syntax for gst-launch. The
gst-launch command get a list of GStreamer elements
with its parameters separated by a exclamation charac-
ter. Note the ! character, it links the plugin elements,
which is similar to the pipe character (“|”) very used in
the Linux shell prompt. This means that the output of an
element is the input to the next specified plugin element.

As an example of the gst-launch command, consider two
pipelines to transmit an MP3 stream over the network
with DCCP: One works as a DCCP server that streams
an MP3 audio file, and the second pipeline is associated
with a DCCP client that connects to the remote DCCP
server and reproduces the audio content transmitted by
the server. To make the example work, you must install
GStreamer. In this case, you need the GStreamer-Core,
Gst-Base-Plugins, and Gst-Ugly-Plugins packages. Do
not worry about the GStreamer installation; GStreamer
is a widely used framework available in many Linux
package systems for a variety of distributions, such as
Debian, Gentoo, Mandriva, Red Hat, and Ubuntu. Once
you perform the GStreamer installation, the last step is
to compile and install the DCCP Plugin for GStreamer.
The Listing 6 shows the command that you can run to
install DCCP Plugin for GStreamer, after download it
from [12].

1 . / a u t o g e n −−p r e f i x = / u s r
2 make
3 make i n s t a l l

Listing 6: Installing DCCP Plugin for GStreamer

Listing 7 shows a gst-launch example that runs a server
accepting DCCP connections. Once a client connects,
the server starts to stream the audio file named your-
music.mp3. Note that you can specify the CCID with
the ccid parameter. This pipeline initializes the server
in DCCP port 9011. The server will be waiting for a
client to connect to it. When the connection occurs, the
server starts to transmit the MP3 stream using CCID-2.
The mp3parse element is responsible for transmitting a
stream. To see more information about mp3parse and
the other parameters that are available, run gst-inspect
dccpserversink.

1 g s t−l a u n c h f i l e s r c \
2 l o c a t i o n = yourmus ic . mp3 ! \

246 • Step two in DCCP adoption: The Libraries

3 mp3parse ! d c c p s e r v e r s i n k p o r t =9011 \
4 c c i d =2

Listing 7: Gst-Launch example starting a DCCP server
to stream an mp3 file

Next, start the corresponding client as shown in List-
ing 8. This GStreamer pipeline initializes the client and
connects to the host localhost in port 9011. Once con-
nected, the client starts to receive the MP3 stream, de-
codes the stream using the decodebin element, and pipes
the stream to the alsasink element, which reproduces the
multimedia content in the default audio output device.

1 g s t−l a u n c h −v d c c p c l i e n t s r c h o s t = l o c a l h o s t
2 p o r t =9011 c c i d =2 ! d e c o d e b i n ! a l s a s i n k

Listing 8: Gst-Launch example starting a DCCP client
to receive an mp3 stream

After implementing the DCCP GStreamer plugin by us-
ing socket programming in a similar way done for Com-
monCPP and validate it using gst-launch and wireshark,
we developed a set of example applications, where
client and server applications can stream multimedia
content reading from several data sources. For instance,
we implemented an application that capture audio from
the microphone or from a mp3 file and stream the con-
tent to a remote host using DCCP sockets.

The next example shows how to use the GStreamer API
to embed DCCP plugin into applications. The appli-
cation will do the same example explained using gst-
launch, but this time through the C programming lan-
guage and GObject, a programming library available for
GStreamer application and plugin development. The ap-
plication creates the same pipeline of the previous exam-
ples.

Start by initializing the GStreamer settings, as shown in
Listing 9. Note that Listing 9 also defines GstElements
filesrc, mp3parse, and dccpserversink.

1 # i n c l u d e < s t r i n g . h>
2 # i n c l u d e <math . h>
3 # i n c l u d e < g s t / g s t . h>
4

5 i n t main (i n t argc , char ∗∗ a rgv) {
6 GMainLoop ∗ l oop ;
7 GstElement ∗ p i p e l i n e , ∗ f i l e s r c ;
8 GstElement ∗mp3parse , ∗ d c c p s e r v e r s i n k ;
9 GstBus ∗bus ;

10

11 g s t _ i n i t (& argc , &argv) ;

12 l oop = g_main_loop_new (NULL, FALSE) ;
13

14 i f (a r g c != 3) {
15 g _ p r i n t (" Usage : %s p o r t m p 3 _ l o c a t i o n " ,
16 a rgv [0]) ;
17 re turn −1;
18 }
19 re turn 0 ;
20 }

Listing 9: Initializing GStreamer Pipeline

The next step is to instantiate a bus callback function to
listen to GStreamer pipeline events. A bus is a system
that takes care of forwarding messages from the pipeline
to the application. The idea is to set up a message han-
dler on the bus that leads the application to control the
pipeline when necessary. Put the function shown in List-
ing 10 above the main function defined in Listing 9.

1 s t a t i c g b o o l e a n b u s _ e v e n t _ c a l l b a c k (
2 GstBus ∗bus , GstMessage ∗msg ,
3 g p o i n t e r d a t a) {
4

5 GMainLoop ∗ l oop = (GMainLoop ∗) d a t a ;
6 sw i t ch (GST_MESSAGE_TYPE (msg)) {
7 case GST_MESSAGE_EOS :
8 g _ p r i n t (" End−of−s t r e a m \ n ") ;
9 g _ m a i n _ l o o p _ q u i t (l oop) ;

10 break ;
11 case GST_MESSAGE_ERROR:
12 g c h a r ∗debug ;
13 GError ∗ e r r ;
14 g s t _ m e s s a g e _ p a r s e _ e r r o r (msg , &e r r ,
15 &debug) ;
16 g _ f r e e (debug) ;
17 g _ p r i n t (" E r r o r : %s \ n " ,
18 e r r −>message) ;
19 g _ e r r o r _ f r e e (e r r) ;
20 g _ m a i n _ l o o p _ q u i t (l oop) ;
21 break ;
22 d e f a u l t :
23 break ;
24 }
25 re turn TRUE;
26 }

Listing 10: Defining GStreamer Bus Event Callback

Every time an event occurs in the pipeline, GStreamer
calls the gboolean bus_call function. For example, if
you implement a GUI interface for your application, you
can show a message announcing the end of the stream
or deactivate the GUI stop button when the type of
the GStreamer bus message is GST_MESSAGE_EOS.
Now comes the most important part of this example—
defining the elements and building the GStreamer

2009 Linux Symposium • 247

pipeline. Insert the code shown in Listing 11 into the
main function, after checking the parameter count.

1 p i p e l i n e = g s t _ p i p e l i n e _ n e w
2 (" dccp−audio−s e n d e r ") ;
3 f i l e s r c = g s t _ e l e m e n t _ f a c t o r y _ m a k e
4 (" f i l e s r c " , " f i l e −s o u r c e ") ;
5 mp3parse = g s t _ e l e m e n t _ f a c t o r y _ m a k e
6 (" mp3parse " , " mp3parse ") ;
7 d c c p s e r v e r s i n k = g s t _ e l e m e n t _ f a c t o r y _ m a k e
8 (" d c c p s e r v e r s i n k " ,
9 " s e r v e r−s i n k ") ;

Listing 11: Defining GStreamer Elements

Listing 11 first instantiates a new pipeline, dccp-audio-
sender, which can be used for future references in the
code. Then the code instantiates the filesrc element with
the name file-source. This element will be used to read
the specified MP3 file as an argument of the applica-
tion. Use the same process to instantiate the elements
mp3parse and dccpserversink. Once all the necessary
elements are instantiated, certify that all are properly
loaded. For this case, proceed as shown in Listing 12.

1 i f (! p i p e l i n e | | ! f i l e s r c | |
2 ! mp3parse | | ! d c c p s e r v e r s i n k) {
3 g _ p r i n t (" Element (s) n o t i n s t a n t i a t e d ") ;
4 re turn −1;
5 }

Listing 12: Checking GStreamer Elements

The next step is to set the respective element parameters,
as shown in Listing 13. For this application, we need
to set two parameters: the port, where the server will
listen and accept client connection from, and the audio
file path represented by the parameter location.

1 g _ o b j e c t _ s e t (G_OBJECT (d c c p s e r v e r s i n k) ,
2 " p o r t " , a t o i (a rgv [1]) , NULL) ;
3 g _ o b j e c t _ s e t (G_OBJECT (f i l e s r c) ,
4 " l o c a t i o n " , a rgv [2] , NULL) ;

Listing 13: Setting Elements Parameters

Once all the elements are instantiated and the parame-
ters are defined, it is time to attach the bus callback de-
fined in Listing 10 to the bus of the pipeline. Also, it is
need to add the elements to the pipeline and link them,
as shown in Listing 14.

1 bus = g s t _ p i p e l i n e _ g e t _ b u s
2 (GST_PIPELINE (p i p e l i n e)) ;
3 g s t _ b u s _ a d d _ w a t c h (bus ,
4 b u s _ e v e n t _ c a l l b a c k , l oop) ;

5 g s t _ o b j e c t _ u n r e f (bus) ;
6 gs t_b in_add_many (GST_BIN (p i p e l i n e) ,
7 f i l e s r c , mp3parse , d c c p s e r v e r s i n k ,
8 NULL) ;
9 g s t _ e l e m e n t _ l i n k _ m a n y (f i l e s r c , mp3parse ,

10 d c c p s e r v e r s i n k , NULL) ;

Listing 14: Linking GStreamer Elements (Server)

Listing 15 shows how to execute the pipeline. Note that
GStreamer runs in a main loop (line 5). This means that
when this main loop finishes—for example, when the
user types Ctrl+C—it is necessary to do some clean up
(lines 6 and 10).

1 g _ p r i n t (" S e t t i n g t o PLAYING \ n ") ;
2 g s t _ e l e m e n t _ s e t _ s t a t e
3 (p i p e l i n e , GST_STATE_PLAYING) ;
4 g _ p r i n t (" Running \ n ") ;
5 g_main_ loop_run (loop) ;
6 g _ p r i n t (" Returned , s t o p p i n g p l a y b a c k \ n ") ;
7 g s t _ e l e m e n t _ s e t _ s t a t e
8 (p i p e l i n e , GST_STATE_NULL) ;
9 g _ p r i n t (" D e l e t i n g p i p e l i n e \ n ") ;

10 g s t _ o b j e c t _ u n r e f (GST_OBJECT (p i p e l i n e)) ;

Listing 15: Executing the GStreamer Pipeline (Server)

The easiest part is to compile the server application—
just run the command, which will link the GStreamer
libs with the example application, that is in Listing 16.
To run the DCCP GStreamer Server execute the com-
mand in the line 4 of the Listing 16.

1 $ gcc −Wall $ (pkg−c o n f i g −−c f l a g s \
2 −− l i b s g s t r e a m e r −0.10) \
3 −o g s t _ d c c p _ s e r v e r g s t _ d c c p _ s e r v e r . c
4 $. / g s t _ d c c p _ s e r v e r 9011 yourmus ic . mp3
5

6 $ gcc −Wall $ (pkg−c o n f i g −−c f l a g s
7 −− l i b s g s t r e a m e r −0.10)
8 g s t _ d c c p _ c l i e n t . c −o g s t _ d c c p _ c l i e n t
9 $. / g s t _ d c c p _ c l i e n t l o c a l h o s t 9011

Listing 16: Compile and run server and client examples

Note that the example uses port 9011, which the server
will use to open the DCCP socket and transmit the
stream through the network to the remote DCCP client.
Now it is time to build a corresponding client application
that acts just like the gst-launch client command dis-
cussed previously. The DCCP client application is sim-
ilar to the server application (Listing 17). Basically, you
must initialize GStreamer, check command-line param-
eters, instantiate the necessary elements, and link them
to build the GStreamer pipeline. Finally, to compile and

248 • Step two in DCCP adoption: The Libraries

run the client application, execute the commands of the
line 6 and 9 of the Listing 16.

1 # i n c l u d e < s t r i n g . h>
2 # i n c l u d e <math . h>
3 # i n c l u d e < g s t / g s t . h>
4

5 s t a t i c g b o o l e a n b u s _ e v e n t _ c a l l b a c k
6 (GstBus ∗bus , GstMessage ∗msg ,
7 g p o i n t e r d a t a) {
8 GMainLoop ∗ l oop = (GMainLoop ∗) d a t a ;
9 sw i t ch (GST_MESSAGE_TYPE(msg)) {

10 case GST_MESSAGE_EOS :
11 g _ p r i n t (" End−of−s t r e a m \ n ") ;
12 g _ m a i n _ l o o p _ q u i t (l oop) ;
13 break ;
14 case GST_MESSAGE_ERROR:
15 g c h a r ∗debug ;
16 GError ∗ e r r ;
17 g s t _ m e s s a g e _ p a r s e _ e r r o r (msg , &e r r ,
18 &debug) ;
19 g _ f r e e (debug) ;
20 g _ p r i n t (" E r r o r : %s \ n " ,
21 e r r −>message) ;
22 g _ e r r o r _ f r e e (e r r) ;
23 g _ m a i n _ l o o p _ q u i t (l oop) ;
24 break ;
25 d e f a u l t :
26 break ;
27 }
28 re turn TRUE;
29 }
30

31 i n t main (i n t argc , char ∗ a rgv) {
32 GMainLoop ∗ l oop ;
33 GstElement ∗ p i p e l i n e , ∗ d c c p c l i e n t s r c ;
34 GstElement ∗ decodeb in , ∗ a l s a s i n k ;
35 GstBus ∗bus ;
36

37 g s t _ i n i t (& argc , &argv) ;
38 l oop = g_main_loop_new (NULL, FALSE) ;
39 i f (a r g c != 3) {
40 g _ p r i n t (" Usage : %s h o s t P o r t \ n " ,
41 a rgv [0]) ;
42 re turn −1;
43 }
44

45 p i p e l i n e = g s t _ p i p e l i n e _ n e w (
46 " audio−s e n d e r ") ;
47 d c c p c l i e n t s r c = g s t _ e l e m e n t _ f a c t o r y _ m a k e
48 (" d c c p c l i e n t s r c " ,
49 " c l i e n t −s o u r c e ") ;
50 d e c o d e b i n = g s t _ e l e m e n t _ f a c t o r y _ m a k e
51 (" d e c o d e b i n " , " d e c o d e b i n ") ;
52 a l s a s i n k = g s t _ e l e m e n t _ f a c t o r y _ m a k e
53 (" a l s a s i n k " , " a l s a−s i n k ") ;
54 i f (! p i p e l i n e | | ! a l s a s i n k | |
55 ! d e c o d e b i n | | ! d c c p c l i e n t s r c) {
56 g _ p r i n t (
57 " Element (s) n o t i n s t a n t i a t e d \ n ") ;
58 re turn −1;

59 }
60

61 g _ o b j e c t _ s e t (G_OBJECT(d c c p c l i e n t s r c) ,
62 " h o s t " , a rgv [1] , NULL) ;
63 g _ o b j e c t _ s e t (G_OBJECT(d c c p c l i e n t s r c) ,
64 " p o r t " , a t o i (a rgv [2]) , NULL) ;
65 gs t_b in_add_many (GST_BIN (p i p e l i n e) ,
66 d c c p c l i e n t s r c , decodeb in ,
67 a l s a s i n k , NULL) ;
68 g s t _ e l e m e n t _ l i n k _ m a n y (d c c p c l i e n t s r c ,
69 decodeb in , a l s a s i n k , NULL) ;
70 bus = g s t _ p i p e l i n e _ g e t _ b u s
71 (GST_PIPELINE (p i p e l i n e)) ;
72 g s t _ b u s _ a d d _ w a t c h (bus ,
73 b u s _ e v e n t _ c a l l b a c k , l oop) ;
74 g s t _ o b j e c t _ u n r e f (bus) ;
75

76 g _ p r i n t (" S e t t i n g t o PLAYING \ n ") ;
77 g s t _ e l e m e n t _ s e t _ s t a t e (p i p e l i n e ,
78 GST_STATE_PLAYING) ;
79 g _ p r i n t (" Running \ n ") ;
80 g_main_ loop_run (loop) ;
81 g _ p r i n t (
82 " Returned , s t o p p i n g p l a y b a c k \ n ") ;
83 g s t _ e l e m e n t _ s e t _ s t a t e (p i p e l i n e ,
84 GST_STATE_NULL) ;
85 g _ p r i n t (" D e l e t i n g p i p e l i n e \ n ") ;
86 g s t _ o b j e c t _ u n r e f (GST_OBJECT (p i p e l i n e)) ;
87 re turn 0 ;
88 }

Listing 17: DCCP Client source code

6 Contributions with the Open Source

In addition to the implementation of DCCP support in
the libraries mentioned before, we have also provided
some additional contributions while developing the sup-
port for DCCP in that libraries. For example, during the
development of the DCCP GStreamer plugin, we have
noticed that DCCP implementation in the Linux ker-
nel did not provide a mechanism for reading how much
bytes is available in the receiving buffer in a given mo-
ment of the DCCP connection. We have reported this
missing to the DCCP developers, while we contribute
with them by implementing and testing this feature in
the Linux Kernel. The summary of the patch and the
patch itself is available from [1].

We have also contributed to the GStreamer and Com-
monCPP projects by providing DCCP support patches.
Nowadays, both projects officially support DCCP pro-
tocol.

2009 Linux Symposium • 249

7 Current and Future works

Nowadays we are in a working in progress to provide
DCCP support in Farsigh2 and CCRTP. We are develop-
ing a testing application for video conferencing between
hosts. For both APIs we have started the process of
adding the DCCP support for connection-oriented ser-
vices. We are in constant contact with the Farsight2 and
CCRTP developers. They are helping us to implement
DCCP support on them.

For future works, we will provide DCCP support in
MPlayer and finalize DCCP support in the Twinkle soft-
phone.

8 Conclusion

We have presented the basic concepts of DCCP, the
process of enabling DCCP in CommonCPP and in the
GStreamer and how to build a DCCP-based applica-
tion using the GStreamer DCCP plugin. The way how
DCCP was implemented in the Linux kernel allowed us
to rapidly implement DCCP support in the user-space
API, like GStreamer and CommonCPP. The contribu-
tions that we have provided in this work will enable new
DCCP applications, enabling alternatives for UDP pro-
tocol based applications.

Network analysis and testing applications, such as
TTCP, tcpdump, and Wireshark already provide support
for the DCCP protocol, and multimedia tools such as the
open source VLC player accommodate DCCP stream-
ing. As multimedia developers become aware of its ben-
efits, it can expect to hear more about DCCP in the com-
ing years.

References

[1] Arnaldo Carvalho de Melo, Leandro Melo
de Sales, Ian McDonald, and David S. Miller.
Implement siocinq/fionread.
http://git.kernel.org/?p=linux/
kernel/git/davem/net-2.6.git;a=
commitdif%f;h=
6273172e1772bf5ce8697bcae145f0f2954fd159.
Last access on July 2009.

[2] Leandro Melo de Sales, Hyggo Oliveira
de Almeida, Angelo Perkusich, and
Arnaldo Carvalho de Melo. Measuring DCCP for

Linux Against TCP and UDP With Wireless
Mobile Devices. In Ottawa Linux Symposium
2008, volume 1, pages 163–177, 7 2008.

[3] J. Du, D. Putzolu, L. Cline, D. Newell, M. Clark,
and D. Ryan. An Extensible Framework for
RTP-based Multimedia Applications. In
Proceedings do 7th International Workshop on
Network and Operating System Support for
Digital Audio and Video, volume 1, pages 53–60,
1997.

[4] Eddie Kohler, Mark Handley, and Sally Floyd.
Datagram Congestion Control Protocol (DCCP),
3 2006. http://www.ietf.org/rfc/rfc4340.txt. Last
access on July 2009.

[5] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 2: TCP-like
Congestion Control, 3 2006.
http://www.ietf.org/rfc/rfc4341.txt. Last access on
July 2009.

[6] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 3: TCP-Friendly
Rate Control (TFRC), 3 2006.
http://www.ietf.org/rfc/rfc4342.txt. Last access on
July 2009.

[7] James F. Kurose and Keith W. Ross. Computer
Networks and the Internet: A New Approach.
Addison Wesley, 2 edition, 9 2005.

[8] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. STUN - Simple Traversal of User
Datagram Protocol (UDP) through Network
Address Translators (NATs), 3 2003.
http://www.ietf.org/rfc/rfc3489.txt. Last access on
July 2009.

[9] Leandro Sales, Hyggo Almeida, and Angelo
Perkusich. The DCCP Protocol in Three Steps.
Linux Magazine, (92):56–62, 12 2008.

[10] Leandro M. Sales, Hyggo O. Almeida, Angelo
Perkusich, and Marcello Sales Jr. An
Experimental Evaluation of DCCP Transport
Protocol: A Focus on the Fairness and Hand-off
over 802.11g Networks. In Consumer
Communications and Networking Conference
Proceedings, pages 1149–1153, 1 2008.

250 • Step two in DCCP adoption: The Libraries

[11] Leandro M. Sales, Hyggo O. Almeida, Angelo
Perkusich, and Marcello Sales Jr. On the
Performance of TCP, UDP and DCCP over
802.11g Networks. In In Proceedings of the SAC
2008 23rd ACM Symposium on Applied
Computing Fortaleza, CE, pages 2074–2080, 1
2008.

[12] E-Phone Team. Dccp plugin for gstreamer.
https://garage.maemo.org/
projects/ephone. Last access on July 2009.

[13] Ekiga Team. Ekiga - open source voip and video
conferencing application.
http://ekiga.org/. Last access on July
2009.

[14] Empathy Team. Empathy - instant-messaging.
http://live.gnome.org/Empathy. Last
access on June, 2009.

[15] GNU CommonCPP Team. Commoncpp source
code repository. http://savannah.gnu.
org/projects/commoncpp. Last access on
July 2009.

[16] GStreamer Team. Gstreamer - library for
constructing graphs of media-handling
components.
http://www.gstreamer.net/. Last access
on July 2009.

[17] IANA Team. Iana - assigned internet protocol
numbers. http://www.iana.org/
assignments/protocol-numbers/. Last
access on July 2009.

[18] IANA Team. Iana - internet assigned numbers
authority. http://www.iana.org/. Last
access on July 2009.

[19] Tapioca Team. Tapioca - provides a set of
convenience libraries to easily integrate voip and
im.
http://tapioca-voip.sourceforge.
net/wiki/index.php/Tapioca. Last
access on July 2009.

[20] Twinkle Team. Twinkle - softphone for your
voice over ip and instant messaging
communcations using the sip protocol.
http://www.twinklephone.com/. Last
access on July 2009.

[21] Wireshark Team. Wireshark - the worldś foremost
network protocol analyzer.
http://www.wireshark.org/. Last access
on July 2009.

Programmatic Kernel Dump Analysis On Linux

Alex Sidorenko
Hewlett-Packard
asid@hp.com

Abstract

Companies providing Linux support rely heavily on ker-
nel dumps created on customers’ hosts. Kernel dump
analysis is an art and it is impossible to make it fully
automatic. The standard tool used for dump-analysis,
’crash’, provides a number of useful commands. But
when we need to enhance it or to analyze several thou-
sand similar structures, we need programmatic API.

In this paper we describe Python bindings to crash1

and compare it to C-like SIAL extension language. Af-
ter a general framework discussion we look at some
practical tools developed on top of PyKdump, such as
xportshow. This tool works on kernels 2.4.21-2.6.28
and provides many useful features, such as printing rout-
ing tables, emulating netstat and summarizing net-
working system status.

1 Why Do We Need Programmatic API?

• adding new features and enhancing functionality
quickly

• there are have too many structures to look through
all of them ourselves

• running a number of useful tests — each of them
can be executed manually, but there are many of
them

• running programs on a customer’s site if for some
reason he cannot send us vmcores

• we can use an already developed tool on live ker-
nels instead of writing new DLKM or Systemtap
script

An ability to run scripted tests quickly is extremely im-
portant for support organizations. Even though in theory

1http://sourceforge.net/projects/pykdump

customers should provide a detailed description of the
problem, in reality it is not unusual to get vmcore with
just the generic description of “the host is unresponsive.”

It can mean many different things, for example:

• a critical userspace application (e.g. Oracle)
stopped responding

• network connectivity is lost

• the system is just overloaded

• the system is out of memory

• there is a bug in the kernel leading to CPUs execut-
ing kernel code forever, with interrupts disabled

In such cases it makes sense to run a number of standard
tests to narrow down the problem. For example:

• how much memory is used and whether it is frag-
mented

• check load averages and runqueues (e.g. are there
any RT processes)

• when was the last time NICs transmitted and re-
ceived data

• is syslogd hanging (this will make all processes do-
ing syslog() unresponsive)

It makes sense to run all such tests programmatically
to save time and effort. Furthermore, even those lacking
the proper skills to do dump analysis themselves can run
automated tasks.

• 251 •

252 • Programmatic Kernel Dump Analysis On Linux

1.1 Extensions Available for Crash

Crash [1] is a standard tool used for dump analysis.
There is similar another tool, lcrash but we will not dis-
cuss it here.

Crash can be dynamically extended by writing pro-
grams in C and linking them in a special way. Af-
ter that the extensions can be loaded/unloaded by us-
ing builtin extend command. But developing in C is
rather time-consuming and unpractical, especially if we
need to write a custom code quickly. It is much better
to use special extensions providing bindings of crash to
higher-level languages. Using such an “extension lan-
guage,” we can develop new programs quickly without
a need to compile/link every time we need to modify our
script. Here are some known extension languages:

• SIAL–C-like language. Very handy for writing
small tools, but problematic for big projects. Is in-
cluded as part of crash distribution

• Alicia–Perl wrapper driving crash via stdin, re-
trieving results from stdout. Quite slow, as a re-
sult. There was no activity for this project on SF
site during last 3 years

• PyKdump–Python bindings to GDB/crash inter-
nals

From these three frameworks, SIAL is probably the eas-
iest to use for kernel hackers as they already know C.
However, PyKdump provides a number of features that
makes it better than SIAL for big projects:

• better scalability–a program can be split into many
files and/or libraries and loading/execution time is
reasonable even for huge programs

• Python standard library is extremely powerful

• Python is a high-level language with efficient lists,
dictionaries and other useful classes

• error processing is easier because of exception
mechanism

• more features for making runtime decisions based
on symbolic info from vmlinux

• an ability to run crash commands and parse their
output efficiently

1.2 Writing Programs That Work With Different
Kernel Revisions

Linux kernel is a moving target. The definitions of ker-
nel structures, global variables and algorithms are dif-
ferent from version to version. If we want to write a
program that works for kernel dumps obtained from dif-
ferent kernels, this needs to be taken into account. Some
possible approaches are:

• check for kernel version explicitly, use a different
code for different versions

• check whether certain global variables exist

• check whether a structure has a specific fieldname

This means that we need to make runtime decisions. C is
a strongly typed language:the variable type needs to be
explicitly declared and cannot be changed afterwards.
Let us consider the following case. There is a global
variable. In an older kernel it was declared as

struct one var;

In a newer kernel the name of the struct has been
changed even though its definition is the same:

struct two var;

We want to access var.field

In C-like languages (e.g. SIAL) a possible approach is
the following:

{"LINUX_2_2_16",
"(LINUX_RELEASE==0x020210)"},

{"LINUX_2_2_17",
"(LINUX_RELEASE==0x020211)"},

{"LINUX_2_4_0",
"(LINUX_RELEASE==0x020400)"},

...

Then in some include file crossSupport.h:

#if LINUX_2_6_X
#define TYPEX struct one

#else
#define TYPEX struct two

#endif

2009 Linux Symposium • 253

Then in the code:

#include <crossSupport.h>
void func(...)
{
TYPEX *s=(TYPEX *)var;

if(var->field ...) {

}
}

This is not very elegant and is rather unreliable. Most
commercial distributions base their major release on
a specific kernel and then backport bugfixes/features
from recent kernels as needed. As a result, variables
and structures definition on 2.6.9-based RHEL4 might
change even though the kernel is still reported as 2.6.9.
A better approach would be to retrieve variable types
from vmlinux and use them as they are. In PyKdump
we can do the following:

var = readSymbol("var")
f = var.field

Another approach is to base runtime decisions on ex-
plicit type information. That is, to check whether a
struct has a specific member or what its type is. At this
moment SIAL lacks this functionality but it might be
added in the future.

2 PyKdump Design

Python is a very powerful and extremely popular pro-
gramming language, at least among userspace appli-
cation developers. Unfortunately, many kernel hack-
ers only know well C and assembler. There are ex-
cellent books available and outstanding documentation
provided on Python website [2]. But the syntax of
Python operators is close enough to C, so there should
be no problem in understanding all examples provided
in this paper even for those who know nothing about
Python.

2.1 Mapping C-structures To Python Objects

The Linux kernel is written in C (plus a bit of assembly).
To be able to write useful dump-analysis scripts easily,
we need as a minimum:

• to be able to read memory, global variables and
struct/union contents

• to be able to write Python code easily looking at
related C-sources

For example, if we want to write a program printing
routing tables from a dump, we start by looking at
its kernel implementation of related /proc routines. It
would be convenient to be able to copy and paste pieces
of related C-sources to our script, but even with SIAL
(using C-like syntax) this does not always work.

While developing Python bindings to crash internals we
used the following approach:

• we map C struct and union by creating Python
objects with attributes matching the respective C
field names

• we map other C types to Python types that are
close, e.g. C int to Python integer

• we map C operators to similar Python operators

Python passes everything by reference, there are no
pointers. As a result, there are no *, ->, and & oper-
ators. It is easy to mimic reading and accessing fields of
C struct/union in Python as both C and Python have the
dot . operator:

struct blk_major_name {
struct blk_major_name *next;
int major;
char name[16];

} svar;

s = readSU(’struct blk_major_name’, addr)
major = s.major
print "%3d %-11s" % (major, s.name)

Here we read struct blk_major_name from a
given address and print the major field. Python has
many built-in data types, including integers, floating-
point numbers and strings. We return properly typed
values automatically, without specifying the type ex-
plicitly every time. There is no special pointer type in
Python but we can represent pointers by integers. In the
example above we expect to get

254 • Programmatic Kernel Dump Analysis On Linux

• s.next as an integer

• s.major as an integer

• s.name as a string

There are some problems with this approach. If we
meet char name[10] declaration, how do we know
whether it is intended to be used as a string or an array
of 1-byte integers? We cannot know this from the sym-
bolic information available in vmcore. To work around
this, we introduce a special ’SmartString’ type which
mimics null-terminated strings but lets you access info
as if it was a normal array. So if name is a SmartString,
printing it will result in truncation on NULL byte but we
still be able to access any byte using array access:

name="abc\0\5\6\7\8\9\10"
print s.name # will print abc
print s.name[5] # will print 5

In most cases you can work with these SmartStrings just
like with normal Python strings, but sometimes Python
library functions check type explicitly (e.g. you can-
not pass SmartString to regular expressions functions).
You can convert SmartString s.name to a normal
string using str() function, e.g.

str(s.name)

By default, struct/union members that are defined as
char pointers or char arrays, are returned as SmartString
type. If they have explicit signed or unsigned specifiers,
they are returned as integer arrays.

2.2 Dereferencing Pointers in Structs and Unions
(Emulating * and -> Operators)

What if we want to follow the ’next’ pointer in the exam-
ple above? The attribute dereference operator -> in C
is really just a syntax sugar that combines pointer deref-
erence with attribute access:

/* The same as (*svar).next */
svar->next;
/* The same as (*(*svar).next).next */
svar->next->next;

There is neither * nor -> operators in Python but
we still can dereference using alternative approaches.
For example, for a pointer dereference we can use
Deref() function. In C:

struct blk_major_name *sptr;
int major = (*sptr).major;
in major1 = sptr->major;

In Python (assuming that sptr is an object representing a
pointer to structure):

major = Deref(sptr).major # Approach 1
major1 = sptr.major # Approach 2

Please note how we used the dot operator without deref-
erencing first. In C, it would have failed at the compi-
lation stage. In PyKdump, the framework finds that an
object is a pointer to a structure, so obviously the dot
operator is not a simple field dereference. Consequently
it interprets it as ->. That is, you can use the dot opera-
tor in both cases and it will be used in whatever way is
needed automatically. For example:

/* in C */
s->f1.f2->f3.f4-f5

In Python
s.f1.f2.f3.f4.f5

In C, using dot operator on a pointer would trigger a
compilation error. In Python, we make life easier by
trying to interpret the dot operator either as . or ->,
depending on the object type.

More than that, in PyKdump pointers to structures and
structures themselves have the same object type. It is
similar to Java’s approach where we have just references
and no pointers.

Please note that the description above is correct only for
pointers to structures. Pointers to any other type are rep-
resented with a different object class. In particular:

2009 Linux Symposium • 255

/* in C */
struct test *sptr;
struct test **pptr;

in Python
sptr is the same as Deref(sptr)
(the same type), so you can write
sptr.f1

pptr is completely different,
Deref(pptr) is not the same as pptr
Deref(pptr).f1

To emulate the missing features we can define special
attributes (usually called “properties” in OOP). Access-
ing such an attribute triggers a function call. A potential
problem exists in the shape of name collision between
internal object attributes and C-attributes as mapped to
Python. Luckily, this is a highly improbable event for
kernel structures. The “Linux Coding Style” document
[3] says: “mixed-case names are frowned upon” so us-
ing mixed-case attributes for our own purposes should
be safe enough. The “internal” methods of Python
classes are all named like __aname__ and, to reiterate,
we have never seen name collision between field names
of Linux kernel structures and Python internals.

2.3 Emulating & Operator

We can get the address of a global variable using
sym2addr() function, e.g.

addr = sym2addr("init_task")

In other cases we start from a struct/union and need to
find the address of its member. For example, we have a
field which is defined as a struct (not a pointer), e.g.

type = struct task_struct {

volatile long int state;

...

struct list_head tasks;

}

When we access tasks attribute, we obtain an object
representing a structure. For such objects we can use
Addr(obj) function to obtain the associated address, e.g.

init_task = readSymbol(’init_task’)
init_task_saddr = Addr(init_task.tasks)

This works for objects representing aggregates, strings
or pointers as they store the needed address internally.
However, for integer/floating type the objects are just
native Python integers/floats, there is no address. At this
moment the only way to get the address of such a field
is to compute it manually using low-level functions, e.g.

dev_base = readSymbol("dev_base")
off = member_offset("struct net_device",

"next")
addr_next = Addr(dev_base) + off

In the future we might wrap integers and floats so that
Addr() will work for them as well - but this is not
implemented yet. (The main reason for this is that we
still need to evaluate the impact of these extra wrappers
on performance).

2.4 Some Special Types

We map all C integer types to Python native
long integer type and we map C struct/union in-
stances to class StructResult instances. Point-
ers and arrays are normally represented by Python inte-
gers and lists. But in some cases we would like to pre-
serve additional information while returning values. As
a result, we wrap integers and strings in Python classes.
Please note that usually you do not construct objects of
these types yourself, as they will be initialized and re-
turned as needed when using readSymbol and similar
functions. Two most important cases are tPtr (to repre-
sent pointers to different C-types) and SmartString (used
for C char * pointers and char arrays). When you ob-
tain these objects from readSymbol, they internally store
additional useful information.

2.4.1 StructResult

This type represents struct/union and a pointer to
struct/union. In kernel sources we usually don’t need
to “read” structures as they are already in memory. So if
we want to access a structure at a given address, we just
use the cast operator, e.g.

256 • Programmatic Kernel Dump Analysis On Linux

struct sock *s = (struct sock *)addr;

In PyKdump we read them (ultimately reading bytes
from vmcore file...):

read from address addr
s = readSU("struct sock", addr)
similar to C s.socket
socket = s.socket
similar to C &s
addr = Addr(s)

2.4.2 tPtr - A Typed Pointer

When a variable is a pointer, it is an integer (address)
plus type information.

tPtr class inherits from long so it can be used as a normal
long integer. For example, it’s OK to use it in arithmeti-
cal expressions. In some rare cases the library functions
check for type of passed object explicitly. You can al-
ways convert tPtr to a plain long integer by doing con-
version explicitly,

i = long(tptr)

Please note that at this moment this class is intended
mainly for internal use. Objects of this type are returned
as needed, but you should not attempt to create them
yourself.

The main reason for needing this special type is preserv-
ing information while reading global variables (see the
description of readSymbol).

2.4.3 SmartString

This type is used to represent variables and structure
fields declared in C as char * or char []. This
is a subclass of the standard Python string, with addi-
tional data attached and some methods redefined. We
subclass to preserve the pointer value and address of the
variable. We might need this to access the pointer it-
self if char * is used as a generic pointer instead of
more correct void *. Another use for it is mapping
char arrays where they are used to store byte values, not
to represent an ASCII string. For example, in sources a
variable declared like this:

char *testvar;

If the first 7 bytes of it are abc\0def it probably makes
sense to interpret it as an ASCII string abc. In most
cases this would be acceptable, but sometimes we need
to access other bytes. We’ll be able to do the following
in Python:

Read the variable, return
SmartString object
s = readSymbol("testvar")
Print this string using C
NULL-terminated convention (i.e."abc")
print s
print 2 chars after NULL
print s[4:6]
Print the address of testvar
print Addr(testvar)
print the pointer value
print long(testvar)

By default, readSymbol() reads and stores just the
first 256 chars. If you need to read more, you can use
the pointer value (retrieved as shown above).

2.4.4 Supporting Different Kernels

We have already discussed this briefly in 1.2. Now let
us revise it by looking at some examples from real pro-
gram.

Each object representing a struct/union has a number
of attributes, mapped from C. In addition to those at-
tributes, we can add our own. This is usually a sensi-
ble approach to isolate the dependencies on a specific
kernel. For example, in some kernels spinlock_t is
declared as

typedef struct {
volatile unsigned int lock;

#ifdef CONFIG_DEBUG_SPINLOCK
unsigned magic;

#endif
} spinlock_t;

but in others the access to a field similar to lock is more
complicated:

2009 Linux Symposium • 257

typedef struct {
unsigned int slock;
} raw_spinlock_t;

typedef struct {
raw_spinlock_t raw_lock;

#ifdef CONFIG_GENERIC_LOCKBREAK
unsigned int break_lock;

#endif
#ifdef CONFIG_DEBUG_SPINLOCK

unsigned int magic, owner_cpu;
void *owner;

#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC

struct lockdep_map dep_map;
#endif
} spinlock_t;

We can declare a new attribute that will be equivalent
to lck.lock for the first kernel but to lck.raw_
lock.slock for the second kernel. We do this in the
following way:

sn = "spinlock_t"
structSetAttr(sn, "Slock",

["raw_lock.slock", "lock"])

This should be called only once. At the moment
when this is executed, the framework traverses the
list ["raw_lock.slock", "lock"] and verifies
whether the needed structures/fields exist, that is — does
a dereference chain specified in a list element make
sense? As soon as we find a match, we add this at-
tribute (implemented as a “property” to the class to be
used to represent this typedef). If no match was found,
structSetProcAttr returns False. In case of
success, later we can do the following:

sl = lck.Slock

The result will be the value of the function associated
with that attribute—there will be no runtime overhead
for checking structure definitions. The default function
returns the value for the dereference chain that matched.
In addition to this, we can specify an alternative func-
tion, for example:

Programmatic attrs
def getSrc6(tw):

Some code...
#
which returns this
return val

sn = "struct tcp_timewait_sock"
structSetProcAttr(sn, "Src6", getSrc6)

In this case every time we use tw.Src6 where tw is
a result of the type struct tcp_timewait_sock,
the function getSrc6 will be used

2.5 Performance

The performance of Python language itself is more than
adequate for our purpose. Python uses two-stage pro-
cess:

• compile to pseudocode (and write results to files)

• execute pseudocode using a virtual machine

This is similar to Java. There are two JIT compilers to
further increase the performance but they are still rather
experimental and not ready for production. Still, the
performance is excellent — summing 10 million inte-
gers in a loop takes less than 3s on a 2-year old lap-
top. The main performance bottleneck is due to the fact
that PyKdump sources are compiled without any knowl-
edge about symbolic information from the kernel. This
is good as everything is compiled in advance. Even if we
write a huge (> 100,000 lines) program, it will be com-
piled once for all kernels and start time in crash will be
reasonably small.

SIAL uses a different approach: the compilation to
pseudocode is done while loading the script. This means
that if SIAL script is huge (and it is unclear how scalable
is SIAL), loading it will take significant time.

With PyKdump programs, loading is very fast. After
starting crash we load a rather small extension. This ex-
tension (written in C) consists of an embedded Python
interpreter and subroutines to interface crash. Then,
when we want to execute a program, the interpreter
loads it from files that are already compiled to pseu-
docode.

258 • Programmatic Kernel Dump Analysis On Linux

Accessing symbolic information from vmlinux is rather
slow. We do it only once for each type, after which this
information stays in memory until we exit crash. This
means that if we need to run several programs using the
same structures, they will share this information.

A problem specific to PyKdump implementation is that
traversing the dereference chain is a rather expensive op-
eration. Here is what happens when we do s.a:

• we check the type information for object s and ver-
ify that it has a member s

• we find the address of member a and its type

• we create and return a new object of the needed
type

If we have a longer dereference chain such as s.a.b.c
this process is repeated. This is much longer than in C or
SIAL where all type analysis is made at the compilation
stage and not during runtime. To improve the perfor-
mance, we use a number of tricks:

• using efficient functions (“readers”) to dereference
specific member

• metaclasses to build new classes on the fly to rep-
resent specific C-type

• using pseudoattributes for long dereference
chains—they analyze all needed symbolic info and
generate an efficient function to return the result
quickly

As a result of all these optimizations, the performance
for dereference chains is on par (but still somewhat
lower) with SIAL. Arithmetical/logical operations on
base types are much faster than those for SIAL.

The performance of real tools is more than adequate.
The first run is always slower than subsequent runs. For
example, running xportshow on a live kernel and emu-
lating “netstat -an”:

• first run 1.06s (real) 1.00s (CPU)

• second run 0.15s (real) 0.13s (CPU)

2.6 Packaging And Usage

Building PyKdump from sources is described at
http://pykdump.wiki.sourceforge.net/
Building. It is recommended to build from SVN
using the “testing” branch instead of “trunk”. “testing”
is where we copy recent versions when they are more or
less tested; “trunk” is much more experimental. There
are some prebuilt packages on SF site (they are rather
old).

To use PyKdump, you need just a single extension file.
It usually has a name mpykdump64.so on 64-bit hosts
but you can rename it as you wish. You start your crash
session as usual and after that load the extension by do-
ing

crash32> extend /tmp/mpykdump32.so
/tmp/mpykdump32.so: shared object loaded

The extension file contains all needed components:

• embedded Python interpreter

• an interface module to crash internals

• a subset of Python Standard Library

• some standard tools built on top if PyKdump, such
as xportshow and crashinfo

The extension file is constructed as a shared library with
ZIP-archive appended. It is acceptable to to add your
own programs directly to the extension file by using
zip command. This is mainly useful for distribution;
normally you develop and run programs directly from
Python files. For example:

-----------hello.py--------------
This is a basic PyKdump program
from pykdump.API import *

print "Hello PyKdump"

crash32> epython hello.py
Hello PyKdump
crash32> epython hello
Hello PyKdump

2009 Linux Symposium • 259

3 XPORTSHOW

xportshow is a tool written using PyKdump. It is in-
teresting that in addition to using it for general trou-
bleshooting (e.g. HP Linux support organizations) it has
been deployed by computer security experts such as
“Volatile Systems.”

The tool uses short options similar to those of netstat
plus many long options. You can use multiple ’-v’ to
increase the verbosity, up to ’-vvv’. xportshow -h
lists all options and there is additional documenta-
tion at http://pykdump.wiki.sourceforge.
net/xportshow

You can find some examples of xportshow outputs at the
end of this paper.

References

[1] http:
//people.redhat.com/anderson/

[2] http://www.python.org

[3] http://www.llnl.gov/linux/slurm/
coding_style.pdf

260 • Programmatic Kernel Dump Analysis On Linux

crash32> xportshow -at
tcp 0.0.0.0:42691 0.0.0.0:* LISTEN
tcp 127.0.0.1:9161 0.0.0.0:* LISTEN
tcp 0.0.0.0:8010 0.0.0.0:* LISTEN
tcp 127.0.0.1:9165 0.0.0.0:* LISTEN
tcp 0.0.0.0:111 0.0.0.0:* LISTEN
tcp6 :::22 :::* LISTEN
tcp 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 15.236.177.25:52414 16.236.16.79:5223 ESTABLISHED
tcp 15.236.177.25:53004 69.159.122.174:22 ESTABLISHED
tcp 15.236.177.25:35015 15.37.113.20:143 ESTABLISHED
tcp 127.0.0.1:47939 127.0.0.1:9165 ESTABLISHED
tcp 127.0.0.1:9165 127.0.0.1:47939 ESTABLISHED
tcp 127.0.0.1:9161 127.0.0.1:54388 TIME_WAIT
tcp 127.0.0.1:9161 127.0.0.1:54387 TIME_WAIT

crash32> xportshow -atv
--
<struct tcp_sock 0xf62c8000> TCP
tcp 0.0.0.0:42691 0.0.0.0:* LISTEN
family=PF_INET
backlog=0(16)
max_qlen_log=5 qlen=0 qlen_young=0
--
<struct tcp_sock 0xf7580980> TCP
tcp 15.236.177.171:51095 16.236.16.79:5223 ESTABLISHED
windows: rcv=63480, snd=32767 advmss=1398 rcv_ws=0 snd_ws=0
nonagle=0 sack_ok=0 tstamp_ok=0
rmem_alloc=0, wmem_alloc=0
rx_queue=0, tx_queue=0
rcvbuf=87380, sndbuf=16384
rcv_tstamp=7.8 s, lsndtime=10.2 s ago
--
<struct tcp_sock 0xf7954e40> TCP
tcp 127.0.0.1:9161 127.0.0.1:54393 TIME_WAIT
tw_timeout=15000, ttd=1730

crash32> xportshow -ltvv
<struct sock 0xd5c6c600> TCP
tcp 0.0.0.0:7778 0.0.0.0:* LISTEN

family=PF_INET
backlog=129(128)
max_qlen_log=10 qlen=69 qlen_young=1

--- Accept Queue <struct open_request 0xf001e600>
laddr=128.8.61.4 raddr=10.148.6.13
laddr=128.8.61.4 raddr=10.148.2.101
laddr=128.8.61.4 raddr=10.149.6.7

--- SYN-Queue
laddr=128.8.61.4 raddr=128.8.11.24
laddr=128.8.61.4 raddr=10.148.16.12
laddr=128.8.61.4 raddr=10.152.0.45
laddr=128.8.61.4 raddr=10.149.4.8

Figure 1: TCP Connections Info

2009 Linux Symposium • 261

crash32> xportshow -uav
--
<struct udp_sock 0xf791b280> UDP
udp6 ::1:123 :::* st=7

rx_queue=0, tx_queue=0
rcvbuf=110592, sndbuf=110592
pending=0, corkflag=0, len=0

--
<struct udp_sock 0xf791b000> UDP
udp6 :::123 :::* st=7

rx_queue=0, tx_queue=0
rcvbuf=110592, sndbuf=110592
pending=0, corkflag=0, len=0

--

crash32> xportshow -ax
unix State I-node Path

unix LISTEN 17667 /var/run/acpid.socket
unix LISTEN 17996 @/var/run/hald/dbus-eYQQ7ZQwSxe
unix LISTEN 17928 /var/run/dbus/system_bus_socket
unix LISTEN 19733 /dev/gpmctl

crash32> xportshow -awv
--
<struct raw_sock 0xe7678600> RAW
raw 0.0.0.0:1 0.0.0.0:* st=7

rx_queue=0, tx_queue=0
rcvbuf=131072, sndbuf=2048

Figure 2: Other Protocols Info

crash32> xportshow --summary
TCP Connection Info

ESTABLISHED 7
TIME_WAIT 2

LISTEN 7
NAGLE disabled (TCP_NODELAY): 1

UDP Connection Info

13 UDP sockets, 0 in ESTABLISHED

Unix Connection Info

ESTABLISHED 331
CLOSE 12

LISTEN 21
Raw sockets info

CLOSE 1
Interfaces Info

How long ago (in seconds) interfaces trasmitted/received?

Name RX TX
---- ---------- ---------
lo 1.9 7467.3

eth0 4.2 7.2
wmaster0 7467.3 57.3
eth1 7467.3 7467.3
tun0 7.2 7.2

Figure 3: Summary

262 • Programmatic Kernel Dump Analysis On Linux

Online Hierarchical Storage Manager

Sandeep K Sinha
NetApp, India

sandeepksinha@gmail.com

Rishi B Agrawal
Symantec, India

rishi.b.agarwal@gmail.com

Vineet Agarwal
checkout.vineet@gmail.com

Rohit Vashist
rohit.k.vashist@gmail.com

Rohit K Sharma
mailboxrohit19@gmail.com

Sneha Hendre
sneha.hendre@gmail.com

Abstract

Intel, Sandisk, and Samsung are investing billions of
dollars into Solid State Drive technology and manufac-
turing capacity. Unfortunately due to the extreme cost
of building the manufacturing facilities, SSD manufac-
turing capacity is not likely to exceed HDD manufac-
turing capability in the near future. Most data centre
applications heavily lean toward database applications
which use random read/write disk activity. For random
read/write activity, the performance of SSDs is 10x to
100x that of a single rotational disk. Unfortunately, the
cost is also 10x to 100x that of a single rotational disk.
Due to the limited manufacturing capability of SSD,
most applications are going to remain on rotational disk
for the foreseeable future. Online Hierarchical Storage
Manager has been developed to allow SSD and tradi-
tional HDD (including RAID) to be seamlessly merged
into a single operational environment thus leveraging
SSD while using only a modest amount of SSD capacity.

In an OHSM enabled environment, data is migrated to
and from the high performing SSD storage to traditional
storage based on various user defined policies. Thus,
if widely deployed, OHSM has the ability to improve
computer performance in a significant way without a
commiserate increase in cost. OHSM being developed
as open source software also abolishes the licensing is-
sues and the costs involved in using storage solution
software. OHSM being “online” signifies the complete
abolishment of the downtime and any changes to the ex-
isting namespace.

1 Introduction

Hierarchical Storage Management is a data management
technique that uses devices in an economically efficient
manner, thus reducing the storage space and administra-
tive costs associated with managing data.

OHSM is an online hierarchical storage manager for
Linux which offers policy based transparent movement
of data from one class of storage to another. Being the
first attempt towards an open source data manager, it
provides a base platform for all further developments in
similar areas. It supports policy based migration of files
i.e. it defines a set of policies which decide the correct
placement tier for a file during its initial creation, as well
as block allocation and relocation of the file from one
placement tier to another. A placement tier is basically
a storage class, which consist of a collection of storage
devices with similar properties defined in the policy file
based on its speed, cost or any other attribute. These
placement tiers can be priority-ordered and can be over-
lapping as well. These policies are enforced on a OHSM
enabled file system through an XML based placement
policy file. A placement policy file contains a collection
of rules which decides both, the initial file location and
the circumstances under which existing files are relo-
cated. Therefore, placement policies have been broadly
categorized into placement and relocation policies.

Whenever a file is created it will be allocated in accor-
dance to the placement policy which has been enforced
on the file system. If the file fails to match any of the
rules specified in the policy file, it falls into the default
allocation method that is used by the underlying file sys-
tem. Similarly for relocation, whenever a file matches
any of the relocation policy, it is relocated from the

• 263 •

264 • Online Hierarchical Storage Manager

source tier to destination tier as specified in the reloca-
tion policy file. The migration of data is non disruptive
and completely transparent to the placement tiers. The
placement policy file also contains the mapping infor-
mation between the storage devices and the respective
placement tiers to which they belong. OHSM does not
impose constraints on the placement tiers as far as ca-
pacity, performance and availability are concerned.

OHSM also provides functionality to remove files on
certain events which can be specified through the policy
file. Defragmentation of the relocating files could also
be achieved by enabling defragmentation at the time of
triggering relocation. Though OHSM doesn’t guarantee
complete defragmentation of data blocks, it does a best-
effort attempt. Relocation is an event triggered opera-
tion based on single or multiple policies selected from
the set of relocation policies aiming to provide greater
flexibility and usability to system administrators.

2 Design

The idea here is to leverage the underlying device topol-
ogy of the block-device logical volume and use this in-
formation to optimize the block allocation methodolo-
gies used by the file system, thus achieving storage effi-
ciency. OHSM provides a framework to implement hi-
erarchy based storage in the existing environment us-
ing support from the device mapper. This requires some
modifications to the file system’s file creation and block
allocation routines.

The overall design of the system is composed of a group
of inter-operating modules implemented as shared li-
braries, daemons and kernel modules. OHSM has var-
ious components including the user interface, an XML
parser, OHSM Admin and the Kernel Driver with each
of them offering different functionality to support the
various services offered by OHSM.

2.1 User interface

Another key component of the OHSM system from an
administrator’s perspective is the administrative inter-
face. It is comprised of both a graphical as well as a
command line interface. Apart from the basic function-
ality like enabling, disabling and querying the state of
the OHSM system, it also provides the administrator an
opportunity to generate, modify and validate the XML

policy file through a graphical interface. The graphical
interface also provides various other statistical data in-
cluding state of tiers, space utilization, number of files
relocated and various other information related to the
each placement tier. Apart from these facilities both the
interfaces have a lot of services to offer such as getting
and setting various OHSM runtime tuneable features,
enforcing of placement and relocation policies on file
systems and many more. In all, both the GUI and CLI
offer a simple and easy to use interface to the adminis-
trators.

2.2 XML Parser

OHSM is a policy based hierarchical storage manager
and it uses an XML based policy file for defining all the
placement and relocation policies. The XML parser is
responsible not just for parsing the administrator defined
XML policy file but also for validating the information
provided. The XML parser takes the policy files as input
and further parses it to extract various information from
it like the tier-device mapping, placement and reloca-
tion policies. Then it validates that information against
the device topology map and checks for any conflict-
ing policies. In case of any errors or conflicts it either
reports back or else it transforms the parsed policy in-
formation into relevant data structures and passes it to
the OHSM Admin module for further processing.

2.3 OHSM Administrator

This is the central communication hub which differen-
tiates and communicates with all other components of
the OHSM system. It also helps keep the design mod-
ular and simpler. It is also responsible for all the re-
quired communications between the user space and ker-
nel driver to facilitate all the requests through the user
interface. Most of the error handling is done by the
OHSM Admin. All the communication with the user-
space device mapper library to get the device topology
mapping also goes through the OHSM Admin. The er-
rors received from the parser and the device mapper
library are processed and converted into user readable
strings and passed to the user interface.

2.4 Device Mapper API

OHSM uses the user space device mapper library in or-
der to extract the device topology beneath the logical

2009 Linux Symposium • 265

Figure 1: OHSM Architecture

volume on which the file system is already mounted.
This helps the file system to optimize its data block al-
location to provide better storage efficiency. The device
topology along with the tier-device mapping informa-
tion helps OHSM build its complete internal mapping
data structures. The final mapping information resides
in OHSM kernel driver. The library also offers certain
other callbacks providing data regarding the underly-
ing devices which can be used in later implementations
of OHSM. This will help provide a more administrator
friendly solution. This information can also be utilized
to derive certain heuristics and statistical information re-
garding the placement tiers.

2.5 OHSM Kernel Driver

OHSM kernel driver is the most important component
of the OHSM system. This is the core of the system
and helps service all the requests from the user space. It
stores various metadata and service routines associated
with OHSM. It also holds the tier-device mapping table,
placement and relocation policies associated with the

file systems. The file system scanner and the complete
mechanism of relocation have also been implemented as
a part of the kernel driver. Apart from these, it also im-
plements the various ioctl service routines. The kernel
driver is loaded in the memory during boot time, so that
the required information and functionality is available to
the file system soon after mounting. Any problem with
the kernel driver can lead to a complete freeze of the
working OHSM. Hence special care has been taken to
handle most of the error conditions gracefully. The ker-
nel driver is the core of OHSM. However, it is the file
system implementation that gives it its power. Keep-
ing the two independent allows the file system changes
to be minimally invasive and not require major OHSM
specific patches to address inode updates and preferred
data block allocation needs. The driver comes into pic-
ture once the administrator triggers relocation on the file
system.

266 • Online Hierarchical Storage Manager

2.6 File System

OHSM system can work with most of the GNU/Linux
file systems with some basic modifications to the way
a file is created and extended. OHSM broadly divides
those changes into two sub categories:

2.6.1 Inode Updater

As the name signifies, the changes revolve around the
inode allocation mechanism for a file system. In an
OHSM enabled environment, it is expected that the ini-
tial file creation be governed through some file creation
policy. OHSM changes the way the normal file cre-
ation works and imposes an additional check of the file’s
physical characteristics against the placement policies
specified. In case of any match, the home tier id is set
for that file, eventually directing the file system to serve
all the data blocks requests for that file from the pool of
blocks belonging to its home tier.

2.6.2 Preferred Block Allocator

In an OHSM enabled environment, all the data block
requests for a file are restricted to its home tier. This
might lead to a situation wherein there is no free space
left on the specified tier. In order to overcome such cir-
cumstances, OHSM offers an option for administrators
to provide the tiers in a prioritized order, with the most
desirable destination listed first. This change overrides
the normal block allocation policy of the file system and
makes sure that it follows the policies specified by the
administrator, if any. Those files that don’t qualify to
any of the file placement criteria follow the usual se-
mantics of file creation offered by the file system. Also,
all further data block requests of such files are serviced
from blocks spanning over the complete file system.

3 OHSM Value Proposition

The most broadly applicable benefit of the Online Hier-
archical Storage Manager is to reduce the average on-
line storage cost by migrating inactive files to a less-
expensive placement tier in a hierarchical based storage
environment. It should be assumed that the lower place-
ment tiers have a significantly lower per-byte cost than
storage in next higher placement tier. In most of the

Figure 2: Value Proposition

cases, the cost differential between different types of on-
line storage creates the economic justification for such
hierarchical storage environment. If the highest place-
ment tier storage costs around $5 per gigabyte and mid
range placement tier storage costs around $2 per giga-
byte, an enterprise whose online data is 50% inactive
could save around 30% of its storage acquisition cost by
moving the inactive files to mid range placement tiers.
Larger percentages of inactive files result in higher sav-
ings.

For enterprises that keep a significant amount of non-
critical data online, a multi-tier storage strategy can of-
fer substantial cost savings without adverse effects on
business operations. The challenge in attaining the ben-
efits of multi-tier storage is to get the right files on the
right storage tier at the right time. OHSM achieves it
very efficiently with the help of policy based allocation
and relocation. The purpose of OHSM is to eliminate
any administrative cost and complexity in a hierarchi-
cal storage environment by automating the relocation of
files as levels of I/O activity against them rise and fall,
as well as when their sizes, owners, or logical positions
in the file system hierarchy change.

4 Working with OHSM

Information Lifecycle Management provides effective
management of information throughout its useful lifecy-
cle. ILM also provides strategies to allow a computing
device to administer the storage systems. These strate-
gies consist of policies which differentiate and admin-
ister data based on its usage and priority. In order to
work with the Online Hierarchical Storage Manager the
administrator needs to be quite aware of the various file

2009 Linux Symposium • 267

placement and relocation policies supported by OHSM.
The administrator needs to put together all this infor-
mation along with the tier device mapping information
into a XML file. This file is passed to OHSM to enable
and enforce these policies on a file system. It should not
be forgotten that OHSM also offers a graphical user in-
terface to generate the XML policy file. The user can
either use the graphical interface or the command line
interface in order to enable OHSM. Below we examine
various file placement and relocation policies with their
respective sample XML policy grammar as supported
by OHSM.

4.1 Tier Device Map

The tier device mapping information is required in or-
der to define the set of devices that belong to a partic-
ular placement tier. Both the file placement and relo-
cation policies are validated against the tier device map
information specified in this section. All the informa-
tion provided in the tier-device map section is also val-
idated against the configuration of the system. Some
of the validations involve checks for making sure that
the specified devices exist on the system, all the devices
are part of the same logical volume over which the file
system is mounted, etc. A simple tier device mapping
information:

<DEVICES>

<DEV_TIER_INFO>
<NR_TIERS>3</NR_TIERS>
<NR_DEVICES>6</NR_DEVICES>

</DEV_TIER_INFO>

<DEV_TIER>
<TIER>1</TIER>

<DEVICE>/dev/md4</DEVICE>
<DEVICE>/dev/md5</DEVICE>

<TIER>2</TIER>
<DEVICE>/dev/md3</DEVICE>

<TIER>3</TIER>
<DEVICE>/dev/md1</DEVICE>
<DEVICE>/dev/md2</DEVICE>
<DEVICE>/dev/md6</DEVICE>

</DEV_TIER>

</DEVICES>

4.2 File Placement

Transparent and non disruptive relocation of data across
various placement tiers is undoubtedly the most obvious
use of the OHSM but it is not restricted to that. OHSM

also offers various functionality to give targeted files a
preferential placement at the time of file creation. We
have seen an enterprise using database management sys-
tem to manage their most critical data and provide that
critical data a preference over all other data. OHSM cur-
rently supports four file placement policies which can be
used individually or can be combined together to form
various new rules. If a file qualifies for multiple place-
ment policies then the first match prevails over all oth-
ers.

For special situations where the target placement tier
might run out of free blocks, the administrators have
the facility to provide the preferential order of tiers for
each such rule. This directs the file system to allocate
blocks from a lower tier in case the target placement
tier is already full. This feature is optional and can be
enabled/disabled as per administrator’s discretion. Cur-
rently OHSM supports a very primitive set of file place-
ment criterion including file type, user ID, group ID and
the logical placement of files in the file system hierar-
chy, directory name. Allocation policy based on direc-
tory name can be both recursive and non-recursive. The
file placement policy can be based on the following:

4.2.1 File Type (FTYP)

In today’s time, there is a strong likelihood that applica-
tions follow a pattern in the file name extension to de-
termine the kind of data that the file holds. This pattern
can be utilized to differentiate between different types
of files like database files, media files and log files etc.
Using the file extension we can also associate the file
with different applications most of the time and derive
its criticality based upon that. This information can be
used to provide preferential placement to various type
of files. We can also dedicate placement tiers to specific
file types based on its type.

4.2.2 User ID (UID)

In a large server environment the file systems are mostly
organized based more on the users rather than the ap-
plications. Consider the case of an enterprise, where
different users have their home directory on the same
shared file system. In such situations there can always
be reasons to allot higher placement tiers to various
users while restricting others to have a mid range or a
lower one.

268 • Online Hierarchical Storage Manager

4.2.3 Group ID (GID)

Similar to file placements based on users, various groups
in an organization can share a placement tier. This can
be based on the criticality of data they operate on and at
times the speed of data retrieval. Consider the case of
an engineering team and a marketing group; it may be
desirable to have the engineering data on a more reliable
placement tier as compared to the marketing team. The
accounting group can have opted for a separate place-
ment tier for various other reasons.

4.2.4 Directory Name (DIR)

Often we create directories based on the current time
or date. This helps us in keeping the data in a more
structured manner. For instance, if someone keeps its
reports for the last couple of years, there will be a num-
ber of directories present on the file system, for example,
report-2007, report-2008 and report-2009 and so on. It
is expected that the latest reports will be the most fre-
quently accessed one. Though it is just an assumption,
this can be used to provide placement tiers to various
structured data classified on the basis of their age. File
placement based on directory names can be recursive
and non-recursive depending on the specification in the
policy file. A simple file placement policy:

<ALLOCATION>

<ALLOC_INFO>
<NR_USERS>1</NR_USERS>
<NR_GROUPS>2</NR_GROUPS>
<NR_TYPES>1</NR_TYPES>
<NR_DIRS>1</NR_DIRS>

</ALLOC_INFO>

<USER_TIER>
<USER>0</USER> <TIER>1</TIER>

</USER_TIER>

<GROUP_TIER>
<GROUP>0</GROUP> <TIER>1</TIER>
<GROUP>501</GROUP> <TIER>3</TIER>

</GROUP_TIER>

<TYPE_TIER>
<TYPE>ora</TYPE> <TIER>1</TIER>

</TYPE_TIER>

<DIR_TIER>
<DIR>/foo</DIR> <REC>1</REC> <TIER>1</TIER>

</DIR_TIER>

</ALLOCATION>

4.3 File Relocation

One of the most desirable things to have is to store in-
active files on placement tiers of lesser quality so that it
does not affect the applications adversely. If you look
at it from the I/O performance perspective, if the file
is accessed rarely and it is mostly inactive, the perfor-
mance of the storage device underneath that holds it is
irrelevant. This makes the ability to relocate files across
placement tiers very critical and important. Also, there
are situations where you have thousands of small files in
a file system. It is seen that under such circumstances
most of these files soon become inactive. Some of the
scenarios are a document management system, a mail
server or any database application using opaque data ob-
jects stored as small files. It would be highly desirable
to have the ability to relocate data across placement tiers
under such circumstances. OHSM currently has support
for the following file relocation policy criteria.

4.3.1 File Access Age (FAA)

It signifies the time since the last access to the file which
can be one of the most appropriate qualifiers for a down-
ward relocation. Based on the time of last access to the
file, it could easily be relocated to a lower placement tier.
This can be useful in a search engines or mail server en-
vironment, where the files access rates go down as the
time increases. This would not be a good candidate as a
qualifier for relocation from lower to higher placement
tier as this can be misleading at times. There can be files
which are just accessed to know that it’s not of use and
the data is stale. Still, because of the file’s access age
being quite small, it can get relocated to a higher tier,
which would be highly undesirable. The recent intro-
duction to realtime in the kernel really changes how the
last access time is managed in a significant way. And
use of such a feature might eliminate most of the value
of FAA.

4.3.2 File Modification Age (FMA)

This is a true qualifier for a relocation to happen from
a lower to a higher placement tier. It can be fairly as-
sumed that a file which has recently been modified or
which has a smaller modification age would surely be
accessed more frequently in the near future. Hence, this

2009 Linux Symposium • 269

can be used for deciding upon the conditions for reloca-
tion from lower to higher placement tiers. Most of the
stub based implementations for HSM also use modifica-
tion age as one of the primary qualifier to bring back the
data from their archival storage to their actual placement
tier.

4.3.3 File Size (FSZ)

There may be various situations where it would be desir-
able to allow a certain size of file to reside on a specific
placement tier. The reason is the limited size constraints
of the higher placement tiers due to their higher costs.
We move the file to a lower placement tier if the file
size exceeds a specific threshold. This threshold can be
based upon the amount of space that a higher placement
tier has. So, the file size qualifier can be easily used to
prevent situations where the higher placement tiers don’t
run out of space.

4.3.4 File I/O Temp (FIOT)

File I/O temperature is defined as the average number of
bytes transferred to or from a file over a period of time.
This is independent of the file size and is one of the more
powerful qualifiers which can be used to automate the
process of relocation.

4.3.5 File Access Temp (FAT)

File access temperature is defined as the ratio of the
number of times the file has been accessed over a pe-
riod of time. This helps us to determine the average I/O
activity that is taking place on a file against all other
files in the file system. Such a measure can be useful to
find suitable candidates for relocation from both lower
to higher placement tier and vice versa.

4.3.6 FTYP, UID and GID

Relocation policies can also be based on the file type,
user ID and group ID qualifiers. Since, the initial allo-
cation can be based on these qualifiers, there is a great
chance that when these are combined with other reloca-
tion qualifiers, form a finer granularity relocation crite-
rion. A simple file relocation policy:

<RELOCATION>
<NR_RULES>1</NR_RULES>
<RULE>

<INFO>1</INFO>
<RELOCATE>

<FROM>1</FROM>
<TO>2</TO>

<WHEN>
<FSIZE>50</FSIZE> <REL>LT</REL>
<FAA>50</FAA> <REL>LT</REL>

</WHEN>
</RELOCATE>

</RULE>
</RELOCATION>

5 Prototype Implementation for ext2/ext3

The prototype of OHSM involves basic implementation
of the idea presented in the previous sections. The gen-
eral concept of OHSM involves various modules and
their relationship with the file system. OHSM consists
of roughly four components, namely the User Interface,
OHSM Admin, Kernel Driver and File system. Our pro-
totype provides functionality for creating policy files,
enabling and disabling of OHSM, and triggering relo-
cation manually. The User interface provides a set of
commands to control and monitor the various function-
ality offered. It also allows the user to create XML
based policy files and logical volumes at the same time.
In the prototype implementation the user is required to
create separate policy files for allocation, relocation and
tier device mapping. These policy files were required
to be specified at the time of enabling OHSM on a file
system. Before OHSM could be enabled, these policy
files are required to be parsed and validated for any con-
flicts. After verifying the policy files, the information is
stored in internal data structures. The OHSM Adminis-
trator uses the ioctl interface provided by OHSM kernel
driver to control and administer the system. On receipt
of the data structures the kernel driver replicates these
data structures in the kernel, and acknowledges back to
the administrator module success or errors if any. On
success, EXT3_OHSM_ENABLE flag is set inside the
file system’s super block. When OHSM is disabled all
the data structures are cleared and the flag is reset. In or-
der to achieve this, minor changes were made to struct
ext3_inode and a new flag was introduced to be used
within struct ext3_super_block.

270 • Online Hierarchical Storage Manager

struct ext3_inode {
...
...
__u8 ohsm_home_tid;
__u8 ohsm_dest_tid;
};

/*
* Misc. file system flags

*/

#define EXT3_OHSM_ENABLE 0x0008 /* OHSM enabled */

When a file is created it is intercepted by the OHSM in-
ode updater and an additional check is made against the
allocation policy enforced on the file system. In case
a file qualifies, its ohsm_home_tid is set to the corre-
sponding tier id. Otherwise, it remains zero. Later,
for any data block requests for files having a non-zero
ohsm_home_tid, the call to the block allocation rou-
tine is diverted to OHSM’s block allocation routine, if
OHSM is enabled on the file system. This implementa-
tion requires variations in the existing file system struc-
tures and its block allocation strategy also known as
ranged block allocation. Ranged block allocation im-
proves proficiency of file system in restricting alloca-
tion of data blocks to a range of block groups. A ta-
ble containing the map of tier against the block group
ranges is maintained by OHSM kernel driver. Ranged
block allocation also uses this information to allocate
new data blocks for the file in a specific tier. This block
group range table is used by the block allocation rou-
tine to identify the block group ranges of device hierar-
chy. This table is created at the time of enabling OHSM
and remains active in memory until the file system re-
mains mounted or OHSM stays enabled. At the time of
unmounting or disabling of OHSM this information is
dumped on disk to /etc/ohsm. This information is used
later to reconstruct this table back when the file system
is mounted back or OHSM is re-enabled on a file sys-
tem.

In user space, the OHSM Admin uses libdevmapper to
get the device topology and passes the extents of de-
vices to the kernel driver. The driver later maps these
extents to file system specific block group ranges. The
ohsm_home_tid field of inode is used as an index in this
table to get the specific block group range. The alloca-
tion routine bounds the data block allocation within the
selected range. Figure 3 illustrates two scenarios. The
left half of it illustrates the scenario when a file is cre-
ated. It shows that initially the ohsm_home_tid is set
to zero, which later gets updated by the inode updater

where it is qualified against the various file placement
policies. If qualified, the files ohsm_home_tid is up-
dated accordingly with the specific tier id. On the right
side, it shows the later scenario where there is block al-
location request for a file. The block allocator checks
for a non-zero ohsm_home_tid and extracts the rele-
vant block group ranges for the same. For a file having
ohsm_home_tid equal to zero, the block group range
spans the complete file system. The call to the block
allocation routine is diverted to Range block allocation
in place of file systems normal block allocation routine,
which eventually serves the purpose. In case the tier is
full, the file’s ohsm_home_tid is set to zero and the file
system’s normal block allocation routine is invoked.

Relocation currently is a triggered event and has to be
started manually by the administrator. When relocation
is triggered, OHSM kernel driver scans all the inodes
in the file system and pushes each qualifying inode to
the work queue for relocation. Prior to adding each in-
ode to the work queue, the ohsm_dest_tid is set to the
relevant tier for that inode. The workqueue handler rou-
tine is implemented in the OHSM kernel driver which
picks and does the task of relocation. After the reloca-
tion is completed, the ohsm_dest_tid becomes the new
ohsm_home_tid for the file. As an optimization, OHSM
uses a Tricky copy and swap algorithm to complete re-
location as fast as possible.

Tricky copy and swap algorithm starts by allocating a
new ghost inode and reading the source inode in mem-
ory. It then takes a lock on the source inode to stop any
further modifications to the inode in the course of re-
location. Later, it reads the data blocks for the source
inode and copies them to the destination inode’s blocks,
block by block. The reading of source block data is done
through block buffers and they are then copied to desti-
nation buffer. The destination buffer is marked dirty. Fi-
nally, when all the data is copied to the ghost inode, the
source inode is re-assigned with the contents of destina-
tion inode’s data blocks by swapping them with that of
the ghost inode. The source inode now contains point-
ers to new data blocks. At this point, the source inode
is unlocked, synced and destination inode is released.
OHSM Administrator is acknowledged of the comple-
tion of these event. See Figure 4 which illustrates the
process of relocation.

2009 Linux Symposium • 271

Figure 3: File placement and Block allocation mechanism

6 Issues and Concerns

During the course of OHSM’s prototype implementa-
tion which was done primarily for ext2/ext3 file system,
the process revealed several issues. Some of the major
ones include the following:

6.1 struct ext3_super_block

Currently both the tier-block group range map and the
allocation policies reside in OHSM kernel drivers. This
enforces a dependency of the file system on OHSM ker-
nel driver. We ensure to handle this situation currently
by starting the OHSM services before any local file sys-
tem is mounted. It required some modification to the
system startup script. Since, this information is per file
system this information should ideally reside in the su-
per block of the file system. OHSM still struggles to
find an easy way out of this. Since, this table can be
huge and number of policies can be quite high, keeping
such information in the super block is undesirable.

6.2 struct ext3_inode

Allocation and relocation are the key components of
OHSM and as the object on which OHSM operates is

a file, it is very tightly coupled with the inode structure.
So, it was required to make on-disk changes in the struct
ext3_inode in order to support allocation and relocation.
We added "ohsm_home_tid" which stores the tier ID
assigned upon allocation of a file and "ohsm_dest_tid"
which stores the tier ID assigned during relocation of a
file. Furthermore, to support different criteria of relo-
cation like File Access Temp (FAT) and File Input Out-
put Temp (FIOT) respective fields are to be added to
the inode structure of the file system. These changes
make the compact inode structure slightly bulky. These
changes might also disturb any existing file system par-
titions present on the current system. OHSM plans to
use extended attributes in order to avoid this problem
and currently lacks a concrete way to handle this.

6.3 Exporting internal functions

The complete working of Online Hierarchical Storage
Manager requires support from the file system on which
it operates. In order to provide support to OHSM a few
static functions residing inside the file system are re-
quired to be exported. This compromises the integrity of
the file system code. For recent file systems like ext4 the
required functionality (EXT4_IOC_MOVE_VICTIM)
is soon going to be present which will help OHSM to
not violate such integrity issues in the future. We are

272 • Online Hierarchical Storage Manager

Figure 4: File relocation mechanism

trying to make OHSM completely functional with the
ext4 file system during the writing of this paper. We
are also monitoring and reviewing the implementation
of the patches from Akira Fujita for restricted block al-
location.

6.4 Crash during relocation

Currently OHSM uses a temporary inode in order to re-
locate an inode’s data blocks from one tier to another. In
case, if the system crashes during this relocation, there
can be a chance of data loss. Currently we only release
the original blocks after the complete relocation is com-
pleted. This reserves some space for the time during
which relocation is going on. OHSM still needs a bet-
ter way to handle this. Journaling may be required to
overcome this problem.

6.5 Inode lock contention

During the process of relocation the inode is locked un-
til all the data blocks attached with the inode are suc-
cessfully relocated to a new destination tier. The time
taken during relocation is file size dependent. This time
would be more for large files, so any I/O pending on it
will have to wait for that period of time and the requests
may even time out. We are in the process of dividing this
whole relocation into chunks of 64K in order to reduce
this lock contention period.

7 One step Further

OHSM looks forward to a list of enhancements in-order
to make it complete and stable. Here are a couple of

them to start with:

7.1 User space implementation

The most desirable aspect with OHSM is to move as
much as possible of its implementation into user space.
This helps us remove the kernel components and other
dependencies of the file system. It will also help main-
tain the source code integrity for the file system. Such
an implementation would surely require a lot of support
from the file system. Going ahead with an ioctl based
interface would be one of the best options. Eventually
the file system would need to support the OHSM based
file creation and ranged block allocation. To achieve
this without breaking the integrity and consistency of
the code is a big challenge.

7.2 Automatic Relocation Engine

Currently relocation is a triggered event which in most
of the server based environments will not be a pleasant
experience for the administrators. Going a step further
and designing an automatic relocation engine would be
one of the most fascinating features OHSM can offer.
The most important challenge in designing such an en-
gine would be to derive the heuristics which would drive
such an engine. A very frequent invocation to reloca-
tion can damage the file systems performance to a great
extent. Also, a long interval between relocations can
affect the storage efficiency adversely. So, we need an
intelligent mechanism which could be based on the I/O
and activities on the file system. Using FAA and FMA
as criteria can impose hard restrictions with their values

2009 Linux Symposium • 273

being constant, which might not always yield optimum
results. FIOT and FAT can be the most efficient candi-
date as they are softer and can be based truly on the file
activities in real time. OHSM is still looking forward to
good heuristics and measures which would provide an
optimum and efficient methods for making relocation a
dynamic event.

7.3 Optimize mdraid Support

OHSM uses a new block allocation strategy for the file
system and also has the underlying device topology. If
OHSM is used over mdraid array, OHSM’s block al-
location strategies can be further optimized to leverage
the underlying device layout. This may enhance the I/O
speed over the devices in the mdraid array.

8 Conclusion

Online Hierarchical Storage Manager for GNU/Linux
creates a platform and opens up various opportunities
for further work in the area of Hierarchical storage for a
Linux based environment. OHSM sets up the basic in-
frastructure where we can think of systematically merg-
ing traditional and SSD based storage devices to reduce
the overall cost of the system administration and also
attaining a degree of storage efficiency. Moreover due
to the support for policy based migration of data, the
administrative cost of managing data also reduces. The
idea is to effectively reduce the cost of storage admin-
istration and at the same time keep the system efficient
and consistent. OHSM with some changes to the file
systems file creation and block allocation algorithms can
achieve its goal of implementing a complete open source
storage software solution.

9 Acknowledgment

We would like to sincerely thank all the people who
helped us in this project, especially Greg Freemyer and
Manish Katiyar for providing us their valuable time and
support on various technical and design issues. Also we
would like to thank Bharti Alatgi and Uma Nagaraj for
their keen interest in OHSM from the early beginning
and motivating us in the overall course of development.

10 References

1 Retrieving Multimedia Objects From Hierarchical
Storage Systems, Eighteenth IEEE Symposium on
Mass Storage Systems and Technologies, 2001.

2 Planned Extensions to the Linux Ext2Ext3 Filesystem,
Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference.

3 On Configuring Hierarchical Storage Structures
(1998), Ali Esmail Dashti, Shahram Gh. In
Proceedings of the Joint NASA/IEEE Mass Storage
Conference.

4 Ensuring Performance in Activity-Based File
Relocation, Wu, J.C. Bo Hong Brandt, S.A. Dept. of
Comput. Sci., California Univ., Santa Cruz, CA.

5 DHIS: discriminating hierarchical storage,
Proceedings of SYSTOR 2009: The Israeli
Experimental Systems.

274 • Online Hierarchical Storage Manager

Effect of readahead and file system block reallocation for LBCAS
(LoopBack Content Addressable Storage)

Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh Quynh,
Yoshihito Watanabe

National Institute of Advanced Industrial Science and Technology
Alpha Systems Inc.

{k.suzaki,yagi-toshiki,k-iijima,nguyen.anhquynh}@aist.go.jp
watanays@alpha.co.jp

Abstract

Disk pre-fetching, known as “readahead” of Linux ker-
nel, arranges its coverage size by the rate of cache hit.
Fewer readaheads of large window can hide the slow
I/O, especially it is effective for virtual block device of
virtual machine. High cache hit ratio is achieved by in-
creasing locality of reference, namely, file system block
reallocation based on an access profile.

We have developed a data block reallocation tool for
ext2/3, called “ext2/3optimizer”. The relocation is ap-
plied to Linux booting on KVM virtual machine with
a virtual disk called LBCAS (LoopBack Content Ad-
dressable Storage). We compared the effect with the
Linux system call “readahead” which populates the
page cache with data of a file in advance. From
the experiment, we confirmed that the reallocation of
ext2/3optimizer kept larger coverage of readahead and
fewer I/O requests than the system call readahead. The
reallocation also reduced the overhead of LBCAS and
made quick boot.

1 Introduction

We have developed a framework of Internet Disk Im-
age Distributor for anonymous operating systems, called
“OS Circular[1, 2, 3]”. It enables to boot anonymous OS
on any real/virtual machines without installation. The
disk image is distributed by LBCAS (LoopBack Content
Addressable Storage) which manages the virtual disk ef-
ficiently. The transferred OS is maintained periodically

on the server and fixed vulnerable applications. The par-
tial update is managed by LBCAS efficiently and the
user can rollback to old OS.

LBCAS is a kind of loopback block device managed
by CAS (Content Addressable Storage) [4, 5, 6]. CAS
retrieves a data-block with the hash value of its con-
tent. Thus, CAS is a kind of indirect access manage-
ment of physical address. It is used for permanently
information archive because CAS distinguishes every
data-block with hash value and reserves old blocks, al-
though direct physical access overwrites the previous
data. When block contents are same, they are held to-
gether with same hash value and reduce total volume.

Unfortunately, CAS is known as an archive method
which behavior is affected by feature of stored data and
access patterns [5, 6]. The characteristics differ from a
real device and require careful handling. A performance
gap is caused by the coordination of disk pre-fetching
(i.e., page cache) of existing OS. For example, Linux
kernel has the function called “readahead [7, 8]” which
pre-fetches some extra blocks from block device. The
coverage of readahead is changed by heuristics of page
cache. LBCAS should be optimized for the access pat-
terns, namely locality of reference.

In order to increase the locality of reference, we have
developed “ext2/3optimizer [9]” to reallocate the data
block of ext2/3 file system. The reallocation follows the
access profile. The accessed data blocks are arranged
to be in line. In this paper we compare the effect of
ext2/3optimizer with the Linux system call “readahead”
which populates the page cache with data of a file in

• 275 •

276 • Effect of readahead and file system block reallocation for LBCAS

advance.

The remainder of this paper is organized in six sections.
In section 2 the detail of LBCAS is described. Reada-
head and its relation to LBCAS are described in section
3. Section 4 reallocation method is described. The per-
formance is evaluated in section 5. Some related topics
are discussed in section 6 and conclusion is mentioned
in section 7.

2 LBCAS: LoopBack Content Addressable
Storage

LBCAS is made from an existing block device. The
block device is divided by a fixed block size and saved to
each small block file. Saved data are also compressed.
Each block file has a name of SHA-1 of its contents.
The address of block files is managed by mapping ta-
ble. The mapping table has the relation information of
physical address and SHA-1 file name. A virtual block
device is reconstructed with the mapping table file on
a client. Figure 1 shows the creation of block files and
mapping table file “map01.idx”.

Block files are treated as network transparent between
local and remote. Local storage acts as a cache. The
files are measured with SHA-1 hash value of its con-
tents when they are mapped to virtual disk. It keeps the
integrity for Internet block device.

Figure 1: Creation of block files from OS image.

Figure 2 shows the diagram of LBCAS structure. A
loopback file is re-constructed with downloaded block
files on a client. The main program is implemented as
a part of FUSE (File system in USEr space [10]) wrap-
per program. LBCAS has two level of cache to pre-
vent redundant download and uncompression, which is

Figure 2: Creation of block files from OS image.

called “storage cache” and “memory cache”. The detail
of cache is described in next subsection.

A client has to obtain a mapping table file in security.
The mapping table file is used to setup LBCAS. When a
read request is issued, LBCAS driver searches a relevant
block file with the mapping table. If a relevant file ex-
ists on a storage cache, the file is used. If not, the file is
downloaded from a HTTP server with “libcurl”. Each
downloaded file is uncompressed by “libz” and mea-
sured with the SHA-1 value by “libcrypto”. The mea-
surement of SHA-1 value of block file is logged. Even
if a block file is broken or falsified, the block is detected.
Figure 3 shows the case to detect a falsified block file.

2.1 Two level of Cache

Current LBCAS has two level of cache, which is called
“storage cache” and “memory cache”.

Storage cache saves the downloaded block files at a lo-
cal storage. It eliminates the download of same block
file. If the necessary block files are saved at storage
cache, the LBCAS works without network connection.
The volume of storage cache is managed by water mark
algorithm of LIFO in current implementation. The latest
downloaded block files are removed when the volume is
over the water mark, because aged block files might be
used for boot time.

Memory cache saves the uncompressed block file at the
memory of LBCAS driver. It eliminates uncompression

2009 Linux Symposium • 277

Figure 3: Log of LBCAS. The upper shows the correct
downloading of block files and the lower shows a falsi-
fied block file is detected. “missed” indicates download-
ing a block file. “hits” indicated finding a block file at
local storage.

when same block file is accessed in succession. Memory
cache saves 1 block file and the coverage is the size of
block file. It should be coordinated with the page cache
of existing OS.

2.2 Partial Update by Adding Block Files

The update of LBCAS is achieved by adding block files
and renewing the mapping table file. The rest block files
are reusable. To achieve this function, the file system
on LBCAS has to treat block-unit update as ext2/3 file
system. ISO9660 file system is not suitable because par-
tial update of ISO9660 changes the location of following
blocks.

The updated block is saved to a file with new file name
of SHA-1. Collision of file name will be rarely hap-
pened. Even if a collision happens, we can check and
fix it before uploading the block files on the servers. We
can rollback to the previous file system if the old map-
ping table and block files exist.

2.3 Issues of Performance and Behavior on LBCAS

The behavior of CAS is affected by feature of stored
data and access patterns [5, 6].

The block size of CAS causes problems of fragmenta-
tion and boundary. One problem comes from the size

mismatch of the block size of file system. Most file sys-
tem assumes their block size is 4KB but LBCAS uses
larger block size because of efficiency of loopback de-
vice and network download. It results in low occupancy
rate, redundant download and unnecessary uncompres-
sion.

When the occupancy, which is a ratio of effective data in
a block file, is low, the overhead of LBCAS is not neg-
ligible. The block size of LBCAS should be considered
the occupancy. The problem is closely related to locality
of reference on transferred OS.

When a read request crosses over the boundary of CAS,
CAS requires multiple blocks. If the block size of CAS
is too small and requires many blocks for an I/O request,
performance gap stands out. The block size of CAS
must be balanced to I/O request size. The problem is
related to the window size of pre-fetching.

3 Readahead(Disk Pre-fetching)

Figure 4: Behavior of readahead on LBCAS

Most operating systems have the function of page cache
to reduce I/O operation. When a read request is issued,
the kernel reads extra data and saves them to main mem-
ory (page cache). It reduces the number of I/O operation
and hides the I/O delay. The function in Linux kernel
is called “readahead [7, 8]”. The coverage of reada-
head is extended or shrank by the profile of cache hit
and miss-hit. Figure 4 shows the action of readahead on
LBCAS. When a readahead operation is issued, some
block files are downloaded and mapped to the loopback
device. When a same block file is required sequentially,

278 • Effect of readahead and file system block reallocation for LBCAS

the block file is stored on the memory cache of LBCAS
and the uncompression is eliminated. When page cache
does not hit, the next readahead shrink the coverage size.
The suitable size of coverage achieves efficient usage of
cache memory and I/O request.

The readahead causes performance gaps on LBCAS,
when the extra coverage crosses over the boundary of
LBCAS block (Figure 5). The third read request in the
figure crosses over the boundary, and extra block file
is downloaded which is never used. It causes big per-
formance penalty compared to real block device. The
problem is cased by un-contiguous of necessary blocks.

The un-contiguous blocks are improved by
ext2/3optimizer described in next subsection. High hit
ratio of page cache and large coverage of readahead
means the less I/O requests. The access pattern will be
efficient on the LBCAS.

Figure 5: Behavior of readahead on LBCAS

3.1 system call “readahead”

Linux kernel has the system call “readahead” from
2.4.13. The system call populates the page cache with
data of a file. It is not directly related to the disk
pre-fetching but it can achieve the same function from
user space, because subsequent reads from that file
will not block on disk I/O. Linux distributions have
a tool to utilize the readahead system call to make
quick boot. The files opened at boot time are listed at
“/etc/readahead/boot” and the data of the files are popu-
lated on the page cache in advance at boot time.

Unfortunately it requires much memory and has no dy-
namic flow control. The speed-up depends on individual

machine. In this paper we confirm the effect on a virtual
machine.

4 Block reallocation of File System

Most file systems have defragmentation tools to reallo-
cate blocks of file system. For examples, defrag and
ext2resize are tools for ext2. The tools however real-
locate blocks from the view of continuation of file and
expansion of spare space. Quick access is a side effect
of continuation of file.

Figure 6: Access profiling and reallocation which in-
crease cache hit ratio and coverage of readahead.

In order to solve the problem, we developed
“ext2/3optimizer” [9], which was called ext2optimizer.
Ext2/3optimizer takes the profile of accessed blocks of
ext2/3 and reallocates the blocks in line. Figure 6 shows
the image of profiling and reallocation. The reallocation
increases the cache hit ratio and expands the coverage
size of readahead. The effect is described in next sec-
tion.

Ext2/3optimizer change pointers of data blocks of i-
node only. It aggregates the data blocks at the head
of device and increase locality of reference. The other
structure of ext2/3, namely meta-data of ext2/3, is re-
served. Figure 7 shows the image of reallocation of
ext2/3optimizer.

Block size mismatch problem between file system and
LBCAS is reduced by the aggregation of data blocks,
because it increases the occupancy of effective data in
a block file. Figure 7 shows the higher occupancy re-
duces the necessary block files. In this case the data on
3 block files is aggregated in 1 block file. The effect is
also described in next section.

2009 Linux Symposium • 279

Figure 7: Reallocation of ext2/3optimizer.

5 Performance of ext2/3optimizer and user-
level readahead on LBCAS

We compared the effect of ext2/3optimizer and user-
level readahead (system call readahead) on LBCAS was
evaluated. We applied both of them to the gust OS on
KVM virtual machine [11] (version 60) with LBCAS,
which shows the feasibility of OS migration. Ubuntu
9.04 (Linux kernel 2.6.28) was used for the transferred
OS. Ubuntu was installed on 8GB loopback file with
ext3 file system on KVM using normal installer. The
total volume was 1.98GB. The block files of LBCAS
were made from the loopback file.

The access pattern of boot procedure is random and does
not read whole contents in a file. Sparse access will be
increased, and the coverage of readahead will be nar-
row. As a consequence, the occupancy of block file will
be low and the efficiency of LBCAS becomes worse.
In this section we confirmed the characteristics and ap-
plied optimizations for it. From after we refer user-level
readahead as “u-readahead” in order to distinguish the
disk pre-fetch readahead.

5.1 Block Reallocation: ext2/3optimizer

Figure 8 shows the data allocation on ext3, which
is visualized by DAVL (Disk Allocation Viewer for
Linux) [12]. The left figure shows the original data al-
location, and right figure shows the data allocation opti-
mized by ext2/3 optimizer.

The green plots in the figure indicate the allocation of
meta data of ext3 which was arranged at the right edge.
We confirmed that ext2/3optimizer keeps the structure

Figure 8: Visualization of data-allocation on ext3 (left
is normal and right is ext2/3optimizer) by DAVL.

of ext3. The blue plots indicate the contiguous allo-
cation of data block of file and the yellow plots indi-
cate the non-contiguous allocation. We confirmed that
ext2/3optimizer reallocates non-contiguous data at the
head of disk. It was the result that ext2/3optimizer ex-
ploited the profiled data blocks and aggregated them
to the head of the disk. As the result, ext2/3optimizer
increased fragmentation from the view of file. DVAL
showed that normal ext3 had 0.21% fragmentation but
the ext3 optimized by ext2/3optimizer had 1.11%. The
relocation however was good for page cache. The cov-
erage of readahead was expected to keep large and oc-
cupancy of block file of LBCAS would be high.

Figure 9 shows the access trace of the boot procedure.
The x axis indicates the physical address and y axis indi-
cates the elapsed time. The red “+” plots indicate the ac-
cess on the normal ext3 and the blue “X” plots indicate
the access on the ext3 optimized by ext2/3optimizer.
The figure showed that the accesses to the normal were
scattered. The locality of reference was not good and the
effect of page cache and the occupancy of block file of
LBCAS would be low. On the other hand, the access to
the ext2/3optimizer increased the locality of reference,
because the most accesses were the head of disk. The
rest spread accesses were the meta data and the volume
was little.

280 • Effect of readahead and file system block reallocation for LBCAS

Figure 9: Access trace of boot procedure (RED “+” indi-
cates normal and BLUE “X” indicates ext2/3optimizer.)

5.2 User level readahead: system call “readahead”

Ubuntu has the mechanism to populate the page cache
with files required at boot time. The files are described
at “/etc/readahead/boot” and “/etc/readahead/desktop”.
The former file listed 937 files and the total volume
was 54.1MB. The latter file listed 281 files and the to-
tal volume was 25.0MB. the listed files are not all files
required boot time. Ubuntu 9.04 requires 2,250 files
(203MB) and the half of them are populated on the page
cache before they are truly required.

Figure 10 shows the log of bootchart [13], which visu-
alizes the behavior of CPU, I/O, and creation of pro-
cess at boot time. We confirmed that the same processes
were executed at boot time on normal, u-readahead and
ext2/3optimizer. The result of u-readahead shows the
utilization of I/O increased when u-readahead started. It
caused the spike of I/O but the subsequent I/O was little.
On the other hand, the I/O was issued on-demand on the
normal and ext2/3optimizer. The I/O of ext2/3optimizer
was less than the normal. The detail is described in Sec-
tion 5.3.

Table 1 shows the utilization of CPU and I/O on normal,
u-readahead and ext2/3optimizer on 64KB, 128KB,
256KB and 512KB LBCAS. The results shows the u-
readahead had higher I/O utilization. It was caused
by the redundant read request, because u-readahead
read the whole data of files. The I/O utilization of u-
readahead was 5-2 times higher than ext2/3optimizer.

The results of 512KB LBCAS showed bad I/O utiliza-
tion on any case. It was caused by the slow response of
512KB LBCAS.

5.3 Effect of readahead

Figure 11 shows the Frequency for each readahead cov-
erage size on normal, u-readahead, and ext2/3optimizer.

The figure shows that ext2/3optimizer reduced the small
I/O requests. As the result, the frequency of I/O request
was reduced to 2,129 from 6,379 and the coverage of
readahead was changed to 67KB from 33KB. The to-
tal I/O was 140MB and 208MB on ext2/3optimizer and
normal respectively. The I/O request is 2 times wider
and the frequency of I/O request is 1/3. The effect of
frequency is not the inverse of magnification of I/O. The
results indicated that the locality of reference is much
improved.

On the other hand, u-readahead showed same tendency
with normal. The small requests were reduced and the
big request were increased a little bit. The total I/O of
u-readahead was increased to 231MB from 208MB of
the normal. The coverage of readahead was expanded
to 41KB but it was small than ext2/3optimizer. The re-
sult came from that the u-readahead could not decrease
the small I/O, which was cased by the locality of refer-
ence. The frequency of I/O was 5,827, which was less
than normal 6,379, although the total I/O was increased.
The results indicated that ext2/3optimizer was much ef-
fective than u-readahead from the view of disk pre-fetch
readahead.

5.4 Total performance

Figure 12 shows the detail of Ubuntu boot time on KVM
from LBCAS. The upper figure shows the ratio of time
consumed by LBCAS for each block size. The lower
figure shows the consumed time in LBCAS, which was
consisted of download time, file read time from storage
cache, uncompression time, and time for others.

From the upper figure, we confirmed that
ext2/3optimizer was effective for LBCAS at any
block size. The LBCAS consuming time was more than
20% on normal, but it was reduced to less than 14% on
ext2/3 optimizer. Although the total I/O on u-readahead
was more than the normal, the boot time on u-readahead

2009 Linux Symposium • 281

Figure 11: Frequency for each readahead coverage size.

was almost same result on normal, The result indicated
the page cache populated by u-readahead but it was not
effective on KVM.

The lower figure shows the time consuming components
of LBCAS. The result shows the most time was con-
sumed by download and uncompression. The download
time was longer than the uncompression time at small
LBCAS but it was changed at large LBCAS. It was
caused by the locality of reference because the small
LBCAS was effective from the view of occupancy but
it required many block files. On large LBCAS the time
of uncompression was increased because of low occu-
pancy in a block file, but the time of download became
short because the number of download was fewer and
cached on the storage cache. On the 512KB LBCAS the
time of uncompression was increased and the total time
of LBCAS was the worst.

Table 2 shows the volume transitions at each processing
level. The upper table shows the total volume requested
from transferred OS: the volume of files which opened
by the boot procedure, the block volume which is purely
required by the boot procedure, the volume accessed to
LBCAS (it includes redundant data covered by reada-
head). The bottom table shows the status of LBCAS for
each block size: the volume of downloaded block files,
the volume of uncompressed block files, and the occu-
pancy of effective data in the LBCAS.

From the result, we know that the purely used block was
63% (127MB/203MB) of volume of opened files at boot

Figure 12: The ratio of consumed time. Upper indicates
the ratio of LBCAS in boot procedure. Lower indicates
the contents ratio of LBCAS.

time. It meant that 37% was not used and it caused in-
efficient access request of readahead. The readahead for
normal ext2 required 208MB access to the LBCAS. The
result shows the 81MB (208MB - 127MB) was redun-
dant access. The u-readahead made much worse and
104MB was redundant access. The problem was solved
by ext2/3optimizer significantly. The readahead for
ext2/3optimize required 140MB. The ext2/3optimizer
made 67% better than the normal.

The bottom table shows the status of LBCAS. We con-
firmed that downloaded files were less than 56MB at any
LBCAS size on ext2/3optimizer. However, the normal
of 512KB LBCAS requires 144MB, which is 1.67 much
larger than 64KB LBCAS (86.1MB). It was caused by
bad locality of reference. On ext2/3optimize, the oc-
cupancy was almost same on any LBCAS size but it
was decreased from 51.5% at 64KB LBCAS to 26.9%
at 512KB LBCAS on normal. The result indicated that
block reallocation was necessary for LBCAS.

Table 3 shows the frequency of each function of LB-
CAS for normal, u-readahead, and ext2/3optimizer. I/O
requests were issued by guest OS and the frequency was
independent of LBCAS. The rest columns indicated the
function of LBCAS. The number of uncompress is sum-
mation of the number of download and storage cache.
The summation of uncompress and memory cache is the
total used files on the LBCAS.

282 • Effect of readahead and file system block reallocation for LBCAS

The results showed storage cache and memory cache
worked well. Especially the two caches were effec-
tive on large LBCAS size. The frequency of storage
cache and memory cache were more than the frequency
of download and uncompression.

The uncompression of ext2/3optimizer was less than
half of normal case at each LBCAS size. The result cor-
responds to time of uncompression at the Figure 12. The
decrease affected the performance of LBCAS.

Figure 13 shows the amount of downloaded block file
at boot time. The LBCAS size was 256KB. The result
shows the ext2/3optimizer reduced the amount of down-
load and made quick boot. The u-readahead downloads
many block files around 15 second because it populated
the page cache with listed files. It increased the total
download but made quick boot. However the boot time
of u-readahead was slower than ext2/3optimizer.

Figure 13: Amount of Downloaded Block File (256KB)
at boot time.

6 Discussions

The data blocks are reallocated in order to be in line ac-
cording to the access profile. It results in keeping large
coverage of readahead at the boot procedure. It makes
quick boot but the data blocks are fragmented from the
view of file. The optimization is too tight and it would
not fit to another access pattern. If the reallocated data
blocks are used in another application, the access pattern
can not get large coverage of readahead. However, boot
procedure is special and several files are used at boot
procedure only. We have to estimate the special files
and its ratio, which are not used for other applications.

Most reallocation tools aim to reduce fragmentation and
quick access is side effect. Unfortunately the effect of
quick access looks to be insufficient, even if the File
System has no fragmentation. The original disk image
used in section 5 was first install image and there are few
fragmentation. The trace of boot procedure, however,
showed discrete access. In order to make quick access
we should reallocate blocks based on access profile.

A feature of CAS is sharing of block with same hash
value. It reduces the total volume of contents. The shar-
ing is not effective on a single OS image but it is ef-
fective on some Linux distributions [14] and multi user
environment [15]. [14] told the CAS block sharing on
Fedora, Ubuntu, and OpenSuse was 10% - 30%. Al-
though our paper does not describe the effect of sharing,
the ext2/3optimizer will reduce the effect because it re-
allocates most of data blocks in ext2/3 file system. If
the sharing is important factor, the reallocation tool has
to consider the sharing as far as possible.

7 Conclusions

We offered an virtual block device called “LBCAS”,
which manages each block by indirect mapping of SHA-
1 value of its contents. The performance was affected by
the number of I/O request which is issued by readahead
of disk pre-fetching. The number of I/O request is re-
lated to the coverage size of readahead. The coverage is
expanded by high hit ratio of page cache The hit ratio is
increased by locality of reference.

We developed ext2/3optimizer to reallocate the data
block of ext2/3 according to the access profile. We
applied ext2/3optimizer on Ubuntu 9.04 according to
the access profile of boot procedure. We compared the
effect with the user-land readahead which uses Linux
system call “readahead” and populates the page cache
with data of files in advance. As the result, the cov-
erage of readahead expanded to double and the I/O re-
quests reduced in half on ext2/3optimizer. The user-land
readahead could also expand the coverage of readahead
and reduce the I/O requests but the effect was less than
ext2/3optimizer.

The key was the locality of reference which is improved
by ext2/3optimizer. The effect of locality of reference
also reduced the necessary block files on LBCAS at
boot time. The result showed that the optimization was
necessary for the OS migration with LBCAS, which is
aimed of the OS Circular project.

2009 Linux Symposium • 283

The source code of tools are available at the project
home page.

References

[1] http://openlab.jp/oscircular/

[2] K. Suzaki, OS Circular: Internet bootable OS
Archive, LinuxConf.Australia, January, 2009.

[3] K. Suzaki, T. Yagi, K. Iijima, and N.A. Quynh,
OS Circular: Internet Client for Reference,
Proceedings of the 21st Large Installation System
Administration Conference, pp. 105–116, Dallas
TX, November, 2007.

[4] S. Quinlan and S. Dorward, Venti: A New
Approach to Archival Storage, Proceedings of the
1st USENIX Conference on File and Storage
Technologies, Monterey CA, January, 2002.

[5] N. Tolia, M. Kozuch, M. Satyanarayanan,
B. Karp, T. Bressoud, and A. Perrig,
Opportunistic use of content addressable storage
for distributed file systems, Proceedings on
USENIX Annual Technical Conference, pages
127–140, San Antonio, TX, June 2003.

[6] Mechiel Lukkein, Venti analysis and memventi
implementation, Master’s thesis of University of
Twente, 2008.

[7] WU. Fengguang, XI. Hongsheng, and
XU. Chenfeng, On the design of a new Linux
readahead framework, ACM SIGOPS Operating
Systems Review, Volume 42, Issue 5, pp. 75–84,
July, 2008.

[8] WU. Fengguang, XI. Hongsheng, J. Li, and
N. Zou, Linux readahead: less tricks for more,
Proceedings of the Linux Symposium, Vol.2,
pages 273–284, 2007.

[9] K. Kitagawa, H. Tan, D. Abe, D. Chiba,
K. Suzaki, K. Iijima, and T. Yagi, File System
(Ext2) Optimization for Compressed Loopback
Device, 13th International Linux System
Technology Conference, pp. 25–33, Nurnberg
Germany, September, 2006.

[10] http://fuse.sourceforge.net/

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori, kvm: the Linux Virtual Machine
Monitor, Proceedings of Linux Symposium 2007,
Volume 1, pages 225–230, June 2007.

[12] http:
//sourceforge.net/projects/davl/

[13] http://www.bootchart.org/

[14] A. Liguori, E.V. Hensbergen, Experiences with
Content Addressable Storage and Virtual Disks,
First Workshop on I/O Virtualization (WIOV),
December, 2008.

[15] P. Nath, M.A. Kozuch, D.R. O’Hallaron,
J. Harkes, M. Satyanarayanan, N. Tolia, and
M. Toups, Design Tradeoffs in Applying Content
Addressable Storage to Enterprise-scale Systems
Based on Virtual Machines, USENIX Annual
Technical Conference, pp. 71–84, Boston MA,
2006.

284 • Effect of readahead and file system block reallocation for LBCAS

Figure 10: BootChart. The visualization of CPU utilization, I/O utilization and created processes at boot time. The
left is normal, the middle is u-readahead, and the right is ext2/3optimizer.

2009 Linux Symposium • 285

LBCAS size normal u-readahead ext2/3opt
CPU (%) I/O (%) CPU (%) I/O (%) CPU (%) I/O (%)

64KB 87.8 12.2 74.1 25.9 94.9 5.1
128KB 84.9 15.1 81.1 18.9 94.4 5.6
256KB 86.0 14.0 79.4 20.6 93.7 6.3
512KB 78.7 21.3 74.3 25.7 89.0 11.0

Table 1: Utilization of CPU and I/O, which was taken by BootChart.

Normal u-readahead ext2/3optimizer
Volume of files (number, average) 203MB (2248 Av:92KB)
Volume of requested blocks 127MB
Volume of required access which includes the
coverage of Readahead (average number of ac-
cess and size of readahead)

208MB (6,379
Av:33KB)

231MB(5,827 Av:41KB) 140MB(2,129 Av:67KB)

LBCAS size Downloaded size MB (Uncompressed size MB), Occupancy %
64KB 86.1(247), 51.5% 93.4(272), 46.9% 55.3(144), 88.7%
128KB 96.8(290), 43.9% 104(315), 40.3% 55.3(149), 85.3%
256KB 114(358), 35.5% 123(386), 35.0% 55.6(159), 80.0%
512KB 144(474), 26.9% 153(508), 25.1% 55.6(176), 71.8%

Table 2: Volume transitions at each processing level. The upper table indicates the volume transition on guest OS.
The bottom table indicates the volume transition on LBCAS.

286 • Effect of readahead and file system block reallocation for LBCAS

Normal Requests Download Storage Cache Uncompress Memory Cache Files per request
(Av. size 33KB) (D) (S) (U)=(D)+(S) (M) (R)=(1)+(2)+(3)
(R) (U)+(M)=(1)+(2)*2+(3)*3

64K 6,338 3,958 1,663 5,621 3,647 (1) 4,148
(2) 1,450
(3) 740

128K 6,381 2,321 1,729 4,050 3,793 (1) 4,919
(2) 1,462

256K 6,379 1,435 1,748 3,183 3,908 (1) 5,667
(2) 712

512K 6,395 948 1,769 2,717 4,019 (1) 6,054
(2) 341

u-readahead (Av: size 41KB)
64K 5,825 4,344 1,172 5,516 3,626 (1) 3,537

(2) 1,259
(3) 1029

128K 5,834 2,526 1,200 3,726 3,761 (1)4,181
(2) 1,653

256K 5,827 1,544 1,179 2,723 3,908 (1) 5,023
(2) 804

512K 5,822 1,015 1,172 2,187 4,023 (1) 5,434
(2) 388

ext2/3opt (Av: size 67KB)
64K 2,165 2,296 626 2,922 1,311 (1) 941

(2) 380
(3) 844

128K 2,148 1,189 593 1,782 1,398 (1) 1,116
(2) 1,032

256K 2,129 634 576 1,210 1,409 (1) 1,639
(2) 490

512K 2,132 353 517 870 1,520 (1) 1,874
(2) 258

Table 3: Frequency of function of LBCAS. Upper table shows the normal case. Lower table shows the
ext2/3optimizer case. “Requests” indicates the number of I/O issued by guest OS. The rest columns show the
frequency of each function of LBCAS. “Files per request” indicates the frequency of downloads for files per a
request.

Scaling software on multi-core through co-scheduling of related tasks

Srivatsa Vaddagiri Bharata B Rao Vaidyanathan Srinivasan Anithra P Janakiraman

Balbir Singh Vijay K Sukthankar

IBM India Software Labs, Bangalore
{vatsa, bharata, svaidy, janithra, balbir, vksuktha}@in.ibm.com

Abstract

Ever increasing demand for more processing power,
coupled with problems in designing higher frequency
chips are forcing CPU vendors to take the multi-core
route. IBM R© introduced the first multi-core processor
with its POWER4 R© in 2001, that had two cores in a
chip and also 4 chips in a package. Other CPU vendors
have followed the trend with dual and quad-core pro-
cessors becoming increasingly common. It is estimated
that by year 2021, there will be chips with 1024 cores
on them [6]. Such platforms pose huge challenge on
how software effectively utilizes so many cores. One
problem of interest is how tasks are scheduled on such
platforms. The existing Linux scheduler attempts to dis-
tribute tasks equally among all CPU chips. It does not
optimize this task placement, taking into consideration
that all tasks need not be equal with respect to their use
of shared CPU resources (like L2 cache). In this pa-
per, we look at how misplacement of tasks across CPU
chips can significantly affect performance and how ex-
isting Linux interface to solve that problem is inflexible.
We present a new interface which can be used by appli-
cations to hint which threads share data closely and thus
should be co-scheduled on neighbouring1 CPUs to the
extent possible by OS scheduler. We present several re-
sults showing the inflexibility of existing interface and
how the suggested interface solves those problems.

1 Trends in modern system architecture

Modern multi-core processors have innovative and com-
plex cache hierarchy design in order to hide memory
access latency and optimize bandwidth on various intra-
chip and inter-chip interconnect buses. With faster

1Neighbouring CPUs are those that share some or all of a cache
hierarchy.

CPUs, application performance is now becoming bound
on the availability of its working data set in local CPU
cache.

Table 1 aptly illustrates this point using c2cbench [1],
a benchmark that measures the cost of data transfer be-
tween two caches. The benchmark was used to mea-
sure throughput for transferring 256KB of data between
a producer and consumer thread.2,3 By controlling the
CPUs on which two threads run, the benchmarks mea-
sures cost of cache-to-cache transfer. Best throughput
is seen when both threads are co-scheduled on sibling
cores (which share the same L2/L3 cache). The through-
put drops by a factor of 4-6 when the threads are forced
to run on cores that don’t share the cache hierarchy. An
interesting data point from Table 1 that represent typ-
ical system cache topology is that co-scheduling pro-
ducer/consumer tasks on sibling hardware threads gives
best performance since they share most of the cache hi-
erarchy. The benefit of cache sharing is outweighing the
cost of contention for shared execution resources in the
core.

Although memory and inter-chip interconnect band-
width has been increasing in each generation of proces-
sors, the trend seems to indicate that the ratio of access
latency between remote and local cache will continue to
be significant. Thus we can conclude that task place-
ment can significantly affect performance, especially
for scenarios where two or more tasks work closely
on shared data.4 Co-scheduling such related tasks on
neighbouring CPUs can improve performance by mak-
ing best use of shared cache hierarchy.

2c2cbench -P0 -C1 -prw -crd -d4096 -b256 -s8 -k1 -K0 -I1000
3The terms thread and task are used interchangeably throughout

the paper.
4The term thread cluster is used to refer to a group of tasks that

work closely on some shared data.

• 287 •

288 • Scaling software on multi-core through co-scheduling of related tasks

Relative throughput for Sibling hardware On-chip cores Off-chip cores
data sharing (GB/sec) threads
IBM POWER5 R© 3.9a 4.3a 1a
IBM POWER6 R© 6.4b 1.4b 1b
Intel R© Xeon Quad Core N/A 6.5c 1c
Intel Core i7 4.1d 2.1d 1d

Table 1: Producer-consumer throughput for 256KB transfer

Scenario No-co-scheduling case Co-scheduling case Impact of co-scheduling
(million records/sec) (million records/sec)

Two instances 8.76 9.71 +10.84%
Single instance 15.73 9.74 -38%

Table 2: Co-scheduling ebizzy instances

Scenario No-co-scheduling case Co-scheduling case Impact of co-scheduling
(seconds) (seconds)

Two instances 209.44 207.79 +0.78%
Single instance 107.42 203.92 -89.8%

Table 3: Co-scheduling kernbench instances

Metric No co-scheduling Co-scheduling Impact of co-scheduling
(million records/sec) (million records/sec)

VM1 Throughput 5.85 5.95 +1.7%
VM2 Throughput 3.64 5.65 +55.22%
VM3 Throughput 7.67 7.27 -5.22%

Table 4: Co-scheduling KVM VMs

Scenario No co-scheduling Co-scheduling Impact of co-scheduling
(seconds) (seconds)

Two instances 1x 0.8846x +11.54%
Single instance 1x 1.2339x -23.39%

Table 5: Co-scheduling Trade6 application

2009 Linux Symposium • 289

2 Co-scheduling opportunities

In this section, we look at few opportunities that exist in
real world where we can co-schedule related threads on
neighbouring CPUs for improving performance.

2.1 Multiple instances of same applications

In many cases, multiple instances of the same applica-
tion are launched. For example, multiple users launch-
ing same compiler program to compile their program,
multiple application servers launched on the same ma-
chine as a vertical cluster [2] etc. Probability of data
sharing between threads of an instance is higher than be-
tween threads across instances. Co-scheduling threads
of an instance on neighbouring CPUs could potentially
yield better performance, provided the opportunity ex-
ists to utilize remaining CPUs for other work.

Table 2 shows the results of co-scheduling for ebizzy
[3] benchmark, a workload resembling web applica-
tion server. The benchmark creates several threads that
search for a random key from the same memory region.
The memory region thus is shared between all threads
of the benchmark.

In first scenario, two instances of ebizzy are launched si-
multaneously on a machine having two dual-core Intel
Xeon R© CPUs (with 4MB shared L2 cache). In no-co-
scheduling case, they were not bound to any CPU and in
co-scheduling case, each instance was bound to a sepa-
rate dual-core CPU. Co-scheduling gives good results
in this scenario. In the second scenario, only one in-
stance is launched. Co-scheduling that single instance,
which means binding that instance to a single dual-core
CPU, does not give good results in this scenario. This is
because the single instance, being hard-bound to single
dual-core CPU, is not effectively making use of all the
available (idle) CPUs in the system.

Table 3 shows the results of co-scheduling for kern-
bench, a Linux kernel compilation benchmark. On
the same machine described above, two instances of
kernbench are launched simultaneously in first scenario.
Each instance spawns 11 threads for compiling differ-
ent source files in parallel. Each of those 11 threads
will compile its own source file and hence there is very
little data sharing between threads of an instance. Co-
scheduling in this scenario will not give any benefit and
in the second scenario of single instance is actually hurt-
ing performance.

2.2 Virtualization

Power, cooling and real-estate constraints in data cen-
ters are forcing customers to consolidate their applica-
tions on fewer and powerful machines. Advanced vir-
tualization capabilities of modern processors are being
fully utilized to carve several virtual machines (VM) out
of a single machine. Each VM gets the illusion as if it
has its own set of hardware resources (CPUs, memory
etc). The mapping of virtual resources of a VM to un-
derlying physical resources is managed by a hypervisor
software. For example, in case of CPUs, the hypervi-
sor will schedule the different virtual CPUs (VCPU) of
a VM on different physical CPUs.

Typically each VM hosts a single application, say a
database server or webserver. In such a case, data shar-
ing is more likely to occur between threads belonging
to the same VM rather than between threads of different
VMs. Thus it makes sense to consider co-scheduling
different VCPUs of a VM on neighbouring CPUs, pro-
vided the opportunity exists to utilize remaining CPUs
for other work.

In an experiment involving KVM based virtualization,
3 VMs, VM1, VM2 and VM3, were launched on a
machine having 2 quad-core Intel Xeon CPUs. ebizzy
benchmark was started simultaneously on all three
VMs. In the first case, VMs were not bound to any
CPU. In the next case, VM1 and VM2 were bound to
two different quad-core CPUs and VM3 was not bound
to any CPU. The results shown in Table 4 shows that
co-scheduling helps improve the performance of ebizzy
benchmark running inside VM1 and VM2.

2.3 Application Server

Java application servers like WebSphere R© Application
Server (WAS) are used to host business applications
written in J2EE. The same application server can host
multiple applications or multiple application instances
on the same node. Probability of data sharing is higher
between threads of the same application (instance) and
hence an application (instance) could form the basis
for co-scheduling threads. In case of applications like
YouTube or online gaming, it is possible to group
threads at a even much finer granularity. For example,
all threads serving the same video/photo-album or all
threads serving players of the same game instance could
be grouped together to form a cluster.

290 • Scaling software on multi-core through co-scheduling of related tasks

Table 5 shows the result of co-scheduling for Trade6
application on a server with two dual-core Intel Xeon
CPUs. Time taken to complete the benchmark is shown
on a relative scale, with the No co-scheduling case form-
ing the baseline to compare against. In first scenario,
two Trade6 instances are launched. Co-scheduling each
instance on a separate dual-core CPU results in bet-
ter performance compared to not co-scheduling any in-
stance. In the second scenario, a single instance is
launched. Co-scheduling that single instance (which
mean hard-binding it to a single dual-core CPU) is ac-
tually hurting performance in this case, as it does not
utilize fully all the available CPU resources.

The key observations from these experiments are:

1. Co-scheduling helps improve performance for cer-
tain workloads, where high degree of data sharing
exists between threads.

2. Co-scheduling should not be at the cost of idling
CPUs. In other words, its better to break co-
scheduling in favor of utilizing as many required
(idle) CPUs.

3 Detecting co-scheduling opportunities

In Section 2, we saw that opportunities exists in real-
world for improving performance on multi-core sys-
tems by co-scheduling related threads. How do we
detect such opportunities? In most cases, it is done
with manual intervention—after carefully studying the
workload and the platform behavior. Co-scheduling is
achieved using existing interfaces like sched_setaffinity
and cpuset. Beyond providing the raw support to co-
schedule tasks, Linux doesn’t have any capability to au-
tomatically detect co-scheduling opportunities and co-
schedule selective tasks based on that.

3.1 Automatic detection

[8] describes one mechanism to automatically deter-
mine co-scheduling opportunities on IBM Power5-
based multi-core platform, based on observing cer-
tain HPCs (Hardware Performance Counter) related to
cache-miss events. The algorithm described is however
quite complex and it remains to be seen how easily it
can be adapted to a general purpose operating system
like Linux.

 1
 2

 3
 4

 5
 6

 7
 8 1

 2
 3

 4
 5

 6
 7

 8

 90000

 100000

 110000

 120000

 130000

 140000

 150000
lock count

Warehouse lock acquisition and contention view

"./vaddagiri/lockingstats"

warehouse id

warehouse id

lock count

Figure 1: Warehouse lock acquisition and contention
view

We present below a more simpler approach which could
form the basis of automatic co-scheduling. The ap-
proach is based on the fact that data sharing between
threads generally involves them acquiring the same
locks guarding shared data access. Analyzing lock ac-
quisitions can give us a clue on threads that are closely
working on shared data. Once such threads groups
are detected, we could automatically co-schedule them
on neighbouring CPUs using the interface described in
Section 4.2.

3.2 Workload

We ran SPECjbb2000 [4] and modified the default con-
figuration of SPECjbb so that multiple threads (termi-
nals) can simultaneously access the warehouse. In our
experiments we used 8 warehouses with 4 threads per
warehouse. We instrumented the benchmark to collect
information about threads and which warehouse they
belonged to.

3.3 Results

Figure 1 shows a plot depicting the lock acquisition and
contention count for each of the threads by their ware-
house ID. The same data is show in numerical tabular
form below, Table 3.1.

As can be seen from Table 3.1, the highest locking was
seen between the threads belonging to the same ware-
house. Figure 1 displays the same graphically. The
data was obtained by instrumenting the mutual exclu-
sion paths on a per thread and a per mutex basis. This

2009 Linux Symposium • 291

Warehouse Id 1 2 3 4 5 6 7 8
1 136774 103674 91826 109088 98283 99615 105770 103254
2 103674 143964 109358 109848 96172 100722 106946 98890
3 91826 109358 136828 106294 108150 101856 107154 94878
4 109088 109848 106294 145206 109430 104000 100534 107342
5 98283 96172 108150 109430 131296 95266 102882 94316
6 99615 100722 101856 104000 95266 135796 104676 101312
7 105770 106946 107154 100534 102882 104676 149144 100070
8 103254 98890 94878 107342 94316 101312 100070 134370

Table 6: Warehouse to warehouse lock acquisition and contention count

data was then summed to extract thread to thread lock-
ing statistics by summing lock acquisition counts for
each mutex and thread pairs. The warehouse data was
obtained by summing the lock statistics for all threads
belong to the warehouse.

3.4 Observations

The results obtained from the experiments above indi-
cate that

1. Although all threads in a process share the same
address space, the working data set could be be dif-
ferent for each thread.

2. A group of threads could share the same working
set to form a thread cluster.

3. Co-scheduling such thread clusters on neighbour-
ing CPUs should help improve performance (as
proven in this case by Figure 6 and Figure 7).

4 Co-scheduling interface

Once co-scheduling opportunities are determined, either
manually or automatically, co-scheduling related tasks
together on neighbouring CPUs is accomplished using
interfaces such as sched_setaffinity or cpuset.

4.1 Hard affinity interface

Both sched_setaffinity and cpuset provide the ability to
control where tasks execute. Using these interfaces it
is possible to co-schedule threads of a cluster on neigh-
bouring CPUs. The biggest drawback with these inter-
faces is the hard-affinity it creates between tasks and

CPUs, because of which it can actually hurt perfor-
mance sometimes (as highlighted by Single instance
scenario of Table 2). What would be better is a soft-
affinity interface, which would allow threads to be soft-
bound to CPUs.

4.2 soft affinity interface

The soft-affinity interface allows applications or admin-
istrators to register thread clusters. The CPU scheduler
would then automatically co-schedule threads of a clus-
ter on neighbouring CPUs, provided other CPUs can be
used for executing other work. In case no other work
exists, then scheduler would break co-scheduling of a
thread cluster in favor of utilizing all required CPUs for
the cluster.

The interface to register thread clusters is built on top
of the cgroup process-grouping feature of Linux ker-
nel [7]. A new cgroup subsystem, called co-scheduler,
was written to mediate between user space and sched-
uler (Figure 2). The co-scheduler subsystem provides
a filesystem based API (with help of cgroup subsys-
tem) for thread clusters to be registered. The API al-
lows creation/deletion of thread clusters or movement
of threads from one cluster to another (Figure 3). The
co-scheduler subsystem closely tracks the load of each
cluster across various CPUs (Figure 4), based on which
it will automatically co-schedule threads of few clusters
on neighbouring CPUs. Co-scheduling of threads is ac-
complished by manipulating their CPU affinity. A high-
level flowchart for the working of co-scheduler subsys-
tem is shown in Figure 5.

292 • Scaling software on multi-core through co-scheduling of related tasks

cgroups Kernel Space

User spaceatt
ac

h t
as

k t
o a

 cl
us

ter

cre
ate

 th
rea

d c
lus

ter

de
let

e t
hr

ea
d c

lus
ter

register subsystem

Scheduler

Co−scheduler subsystem

Figure 2: Co-scheduler subsystem

mount −t cgroup −o coscheduler none /cgroup

mkdir cluster2

mkdir cluster1

cd /cgroup

mkdir /cgroup

/bin/echo pid1 > cluster1/tasks

/bin/echo pid2 > cluster2/tasks

Figure 3: Registering thread clusters

Increment per−cpu load of

thread cluster to which the

task belongs

timer tick

decay cpu load of all

clusters on this cpu

enqueue task on a cpu dequeue task on a cpu

Decrement per−cpu load of

thread cluster to which the

task belongs

Figure 4: Tracking cluster load

calculate load of all cluster across all cpus

Calculate per−chip load

Sleep for sometime

Unbind thread clusters which cannot be

coscheduled, but which was previously bound

Start kernel thread

Terminate kernel thread?

End kernel thread

Y

N

Y

N

Y

N

Number of registered clusters < 1

Number of clusters with

non−zero load < 2

Bind various thread cluster to chips taking into

account per−chip load and each cluster load

Figure 5: Co-scheduler operation

2009 Linux Symposium • 293

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pt

Number of threads/warehouses

SPECJbb throughput vs number of threads/warehouse

No binding
Hard Binding
Soft binding

Figure 6: SPECJbb2000—Absolute throughput

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64

R
el

at
iv

e
T

hr
ou

gh
pu

t

no
hard
soft

Figure 7: SPECJbb2000—relative throughput

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pt

Number of threads/warehouses

SPECJbb throughput vs number of threads/warehouse

No binding
Hard Binding
Soft binding

Figure 8: SPECJbb2000—Two warehouses with vary-
ing number of threads

4.2.1 Results

Some results comparing hard- and soft-affinity are pro-
vided below:

1. SPECJbb
SPECJbb [4] is a Java benchmark used to evalu-
ate Java performance. The benchmark creates sev-
eral warehouses and several threads (or terminals)
per warehouse. Threads associated with the same
warehouse will very likely access the same data
that is associated with the warehouse. The bench-
mark was modified to bind threads using both the
hard- and soft-affinity interfaces. Figure 6 shows
the results of using the interfaces on a system hav-
ing two dual-core Intel Xeon CPUs. Two ware-
houses were created and the number of threads per
warehouse was varied from 1 to 64. In case of
hard-affinity, threads belonging to first warehouse
were bound (using sched_setaffinity) to first dual-
core CPU while threads belonging to second ware-
house were bound to the second dual-core CPU.
In case of soft-affinity, threads of the both ware-
houses were registered as separate clusters. The re-
sults show that binding, through either soft-affinity
or hard-affinity, provides better results. Also soft-
affinity is giving equally good results as hard-
affinity. Figure 7 shows the same results on a rel-
ative scale (with reference to the results obtained
without binding any threads).

Figure 8 shows some results which exposes the
weakness with hard-affinity. In this case, the num-
ber of warehouse was kept constant at 2, while the
number of threads/warehouse was varied from 1 to
64. For the hard-affinity case, threads of both ware-
houses were bound to first dual-core CPU, which
causes a gross under-utilization of resources. For
the soft-affinity case, threads of each warehouse
were registered as a separate cluster. The results
show that hard-affinity gives poorer results com-
pared to not binding any threads. Also soft-affinity
is giving best performance compared to no-binding
or hard-affinity by deciding to schedule threads of
two warehouses on separate dual-core CPUs.

2. Java application server
IBM Trade Performance Benchmark Sample [5]
for WebSphere Application Server or Trade6 is the
fourth generation of WebSphere end-to-end bench-
mark and performance sample application, which

294 • Scaling software on multi-core through co-scheduling of related tasks

simulates a real-world workload. To study the im-
pact of co-scheduling threads of the same JVM in-
stance, we used up to 5 WebSphere Application
Server profiles each running its own installation
of Trade6 on a machine having two dual-core In-
tel Xeon CPUs. Each of the Trade6 instances was
configured to use its own DB2 instance as the back-
end. The Trade6 application was stressed using
the WebSphere Studio Workload Simulator engine
(iwlengine) which generates a set of requests con-
tinuously till a particular runtime is reached.

For the purpose of this experiment the iwlengine
script was modified to generate a fixed number of
requests.The number of clients was fixed at 50.
The results were first collected for 2 instances of
Trade6 that were stressed simultaneously. Perfor-
mance was measured using the iwlengine in terms
of throughput and time taken. The threads of
each WebSphere instance are likely to access the
same data that is associated with the that Web-
Sphere/Trade6 instance. This was exploited using
both the hard- and soft- affinity interfaces. In case
of hard-affinity, threads belonging to the first in-
stance were bound (using sched_setaffinity) to the
first dual-core CPU while threads belonging to sec-
ond instance were bound to the second dual-core
CPU. In case of soft-affinity, threads of both in-
stances were registered as separate clusters.This
experiment was repeated for 3, 4 and 5 application
server instances.

Figure 9 shows the results of binding on a relative
scale (with reference to the results obtained without
binding any threads). The results shows that bind-
ing improves the throughput significantly. In some
cases soft- affinity gives better results which could
be attributed to the fact that soft- affinity gives pri-
ority to CPU utilization over co-scheduling.

5 Acknowledgments

The authors thank IBM management (Premalatha M
Nair, Naren A Devaiah, Naveen Kamat, Thomas Domin,
Kalpana Margabandhu) for being supportive of this
work. A special thanks goes to Manish Gupta (Asso-
ciate Director, IBM India Research Labs) for prodding
the authors to think about multi-core issues and who was
instrumental in driving the idea of using lock-contention
to form thread-clusters.

 0

 50

 100

 150

 200

2 AppServers 3 AppServers 4 AppServers 5 AppServers

A
vg

T
ra

ns
ac

tio
n

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
)

No of Websphere Application Server Instances

No Binding
Manual Binding

Soft Binding

Figure 9: Trade6—Relative throughput

6 Legal Statement

c©International Business Machines Corporation 2009.

Permission to redistribute in accordance with Linux Sympo-
sium submission guidelines is granted; all other rights re-
served.

This work represents the view of the authors and does not nec-
essarily represent the view of IBM. IBM, IBM logo, ibm.com,
and WebSphere, are trademarks of International Business
Machines Corporation in the United States, other countries,
or both. Intel is a trademark or registered trademark of In-
tel Corporation or its subsidiaries in the United States and
other countries. Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or both. Other
company, product, and service names may be trademarks or
service marks of others.

References in this publication to IBM products or ser-
vices do not imply that IBM intends to make them avail-
able in all countries in which IBM operates. INTERNA-
TIONAL BUSINESS MACHINES CORPORATION PRO-
VIDES THIS PUBLICATION “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF NON-INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of ex-
press or implied warranties in certain transactions, there-
fore, this statement may not apply to you. This information
could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the pub-
lication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication
at any time without notice.

2009 Linux Symposium • 295

References

[1] Cache to cache producer-consumer benchmark.
http://sourceforge.net/projects/
c2cbench.

[2] Clustering with vertical cluster members.
http://publib.boulder.ibm.com/
infocenter/wchelp/v6r0m0/index.
jsp?topic=%/com.ibm.commerce.
admin.doc/tasks/tigvertcluster.
htm.

[3] Ebizzy benchmark. http://sourceforge.
net/projects/ebizzy/.

[4] Specjbb benchmark. http://www.spec.org/
jbb2005/docs/WhitePaper.html.

[5] Trade performance benchmark for websphere
application server. http:
//www.ibm.com/software/webservers/
appserv/was/performance.html.

[6] F. Allen. Fran Allen talk on parallel computing.
http://www.windley.com/archives/
2008/02/fran_allen_compilers_and_
parall%el_computing_systems.shtml.

[7] P. B. Menage. Resource control and isolation:
Adding generic process containers to the linux
kernel. http://ols.108.redhat.com/
2007/Reprints/menage-Reprint.pdf.

[8] D. Tam, R. Azimi, and M. Stumm. Thread
clustering: Sharing-aware scheduling on
smp-cmp-smt multiprocessors. In in EuroSys,
2007.

296 • Scaling software on multi-core through co-scheduling of related tasks

Converged Networking in the Data Center

Peter P. Waskiewicz Jr.
LAN Access Division, Intel Corp.

peter.p.waskiewicz.jr@intel.com

Abstract

The networking world in Linux has undergone some sig-
nificant changes in the past two years. With the expan-
sion of multiqueue networking, coupled with the grow-
ing abundance of multi-core computers with 10 Gigabit
Ethernet, the concept of efficiently converging different
network flows becomes a real possibility.

This paper presents the concepts behind network con-
vergence. Using the IEEE 802.1Qaz Priority Group-
ing and Data Center Bridging concepts to group mul-
tiple traffic flows, this paper will demonstrate how dif-
ferent types of traffic, such as storage and LAN traf-
fic, can efficiently coexist on the same physical connec-
tion. With the support of multi-core systems and MSI-
X, these different traffic flows can achieve latency and
throughput comparable to the same traffic types’ spe-
cialized adapters.

1 Introduction

Ethernet continues to march forward in today’s comput-
ing environment. It has now reached a point where PCI
Express devices running at 10GbE are becoming more
common and more affordable. The question is, what do
we do with all the bandwidth? Is it too much for today’s
workloads? Fortunately, the adage of "if you build it,
they will come" provides answers to these questions.

Data centers have a host of operational costs and upkeep
associated with them. Cooling and power costs are the
two main areas that data center managers continue to an-
alyze to reduce cost. The reality is as machines become
faster and more energy efficient, the cost to power and
cool these machines is also reduced. The next question
to ask is, how can we push the envelope of efficiency
even more?

Converged Networking, also known as Unified Net-
working, is designed to increase the efficiency of the

data center as a whole. In addition to the general power
and cooling costs, other areas of focus are the physical
amount of servers and their associated cabling that re-
side in a typical data center. Servers very often have
multiple network connections to various network seg-
ments, plus they’re usually connected to a SAN: ei-
ther a Fiber Channel fabric or an iSCSI infrastructure.
These multiple network and SAN connections mean
large amounts of cabling being laid down to attach a
server. Converged Networking takes a 10GbE device
that is capable of Data Center Bridging in hardware,
and consolidates all of those network connections and
SAN connections into a single, physical device and ca-
ble. The rest of this paper will illustrate the different
aspects of Data Center Bridging, which is the network-
ing feature allowing the coexistence of multiple flows
on a single physical port. It will first define and describe
the different components of DCB. It then will show how
DCB consolidates network connections while keeping
traffic segregated, and how this can be done in an effi-
cient manner.

2 Priority Grouping and Bandwidth Control

2.1 Quality of Service

Quality of Service is not a stranger to networking setups
today. The QoS layer is composed of three main com-
ponents: queuing disciplines, or qdiscs (packet sched-
ulers), classifiers (filter engines), and filters [1]. In
the Linux kernel, there are many QoS options that can
be deployed: One qdisc provides packet-level filter-
ing into different priority-based queues (sch_prio); An-
other can make bandwidth allocation decisions based
on other criteria (sch_htb and sch_cbq). All of these
built-in schedulers run in the kernel, as part of the
dev_queue_xmit() routine in the core networking
layer (qdisc_run()). While these pieces of the QoS
layer can separate traffic flows into different priority
queues in the kernel, the priority is isolated to the packet

• 297 •

298 • Converged Networking in the Data Center

QoS Layer

dev_queue_xmit()

sch_prio

sch_multiq cls_u32

sch_cbq

Network device driver (invoked
via hard_start_xmit())

Figure 1: QoS Layer in the Linux kernel

scheduler within the kernel itself. The priorities, along
with any bandwidth throttling, are completely isolated
to the kernel, and are not propagated to the network.
This highlights an issue where these kernel-based prior-
ity queues in the qdisc can cause head-of-line-blocking
in the network device. For example, if a high priority
packet is dequeued from the sch_prio qdisc and sent to
the driver, it can still be blocked in the network device
by a low priority, bulk data packet that was previously
dequeued.

Converged Networking makes use of the QoS layer of
the kernel to help identify its network flows. This identi-
fication is used by the network driver to decide on which
Tx queue to place the outbound packets. Since this
model is going to be enforcing a network-wide prioriti-
zation of network flows (discussed later), the QoS layer
should not enforce any priority when dequeuing pack-
ets to the network driver. In other words, Converged
Networking will not make use of the sch_prio qdisc.
Rather, Converged Networking uses the sch_multiq
qdisc, which is a round-robin based queuing discipline.
The importance of this is discussed in Section 2.2.

2.2 Priority Tagging

Data Center Bridging (DCB) takes the QoS mechanism
into hardware. It also defines the network-wide infras-
tructure for a QoS policy across all switches and end-

stations. This allows bandwidth allocations plus priori-
tization for specific network flows to be honored across
all nodes of a network.

The mechanism used to tag packets for prioritization
is the 3-bit priority field of the 802.1P/Q tag. This
field offers 8 possible priorities into which traffic can be
grouped. When a base network driver implements DCB
(assuming the device supports DCB in hardware), the
driver is expected to insert the VLAN tag, including the
priority, before it posts the packet to the transmit DMA
engine. One example of a driver that implements this is
ixgbe, the Intel R© 10GbE PCI Express driver. Both de-
vices supported by this driver, 82598 and 82599, have
DCB capabilities in hardware.

The priority tag in the VLAN header is utilized by both
the Linux kernel and network infrastructure. In the ker-
nel, vconfig, used to configure VLANs, can modify the
priority tag field. Network switches can be configured to
modify their switching policies based on the priority tag.
In DCB though, it is not required for DCB packets to
belong to a traditional VLAN. All that needs to be con-
figured is the priority tag field, and whatever VLAN that
was already in the header is preserved. When no VLAN
is present, VLAN group 0 is used, meaning the lack of
a VLAN. This mechanism allows non-VLAN networks
to work with DCB alongside VLAN networks, while
maintaining the priority tags for each network flow. The
expectation is that the switches being used are DCB-
capable, which will guarantee that network scheduling
in the switch fabric will be based on the 802.1P tag
found in the VLAN header of the packet.

Certain packet types are not tagged though. All of
the inter-switch and inter-router frames being passed
through the network are not tagged. DCB uses a pro-
tocol, LLDP (Link Layer Discovery Protocol), for its
DCBx protocol. These frames are not tagged in a DCB
network. LLDP and DCBx are discussed in more detail
later in this paper.

2.3 Bandwidth Groups

Once flows are identified by a priority tag, they are allo-
cated bandwidth on the physical link. DCB uses band-
width groups to multiplex the prioritized flows. Each
bandwidth group is given a percentage of the over-
all bandwidth on the network device. The bandwidth
group can further enforce bandwidth sharing within it-
self among the priority flows already added to it.

2009 Linux Symposium • 299

Priority 1
30%

of BWG

Priority 3
40%

of BWG

Priority 6
10%

of BWG

Priority 7
20%

of BWG

Bandwidth Group 2:
 60% of link bandwidth

Priority 2
70%

of BWG

Priority 4
30%

of BWG

Bandwidth Group 3:
30% of link bandwidth

Bandwidth Group Layout

Priority 5
80% of BWG

Priority 8
20% of BWG

Bandwidth Group 1:
10% of link bandwidth

Figure 2: Example Bandwidth Group Layout

Each bandwidth group can be configured to use certain
methods of dequeuing packets during a Tx arbitration
cycle. The first is group strict priority: It will allow a
single priority flow within the bandwidth group to grow
its bandwidth consumption to the total of the bandwidth
group. This allows a single flow within the group to
consume all the bandwidth allocated to the group. This
would normally be applied to flows that would run off-
hours, and would be in groups that ran on-hours. An ex-
ample of such a flow is a network backup. The second
configuration is link strict priority: This allows any flow
from any bandwidth group to grow to the maximum link
bandwidth. Obviously this configuration can be danger-
ous if misconfigured, which could result in the starva-
tion of other flows. However, this mode is necessary to
guarantee flows that require maximum bandwidth to get
the maximum bandwidth, without needing to reconfig-
ure all bandwidth group layouts [2]. Refer to Figure 2
to see an example Bandwidth Group Layout.

2.4 Using TC filters to identify traffic

Now that all the priority flows are distributed into band-
width groups, traffic flowing down from userspace must
be filtered into the underlying queues. There are a few
mechanisms that can be used to filter traffic into differ-
ent queues.

• select_queue The network stack in recent ker-
nels (2.6.27 and beyond) has a function pointer
called select_queue(). It is part of the net_
device struct, and can be overridden by a net-
work driver if desired. A driver would do this if
there is a special need to control the Tx queueing
specific to an underlying technology. DCB is one
of those cases. However, if a network driver hasn’t
overridden it (which is normal), then a hash is com-
puted by the core network stack. This hash gener-
ates a value which is assigned to skb->queue_
mapping. The skb is then passed to the driver for
transmit. The driver then uses this value to select
one of its Tx queues to transmit the packet onto the
wire.

• tc filters The userspace tool, tc, can be used
to program filters into the qdisc layer. tc is part of
the iproute2 package. The filters can match essen-
tially anything in the skb headers from layer 2 and
up. The filters use classifiers, such as u32 match-
ing, to match different pieces of the skbs. Once
a filter matches, it has an action part of the filter.
Most common for qdiscs such as sch_multiq is the
skbedit action, which will allow the tc filter to mod-
ify the skb->queue_mapping in the skb.

DCB needs to make use of both of these mechanisms to
properly filter traffic into the priority flows. First, the
network driver must override the select_queue()
function to return queue 0 for all traffic. DCB requires
that all unfiltered traffic (i.e. traffic not matching a
tc filter) be placed in priority flow 0. The select_
queue() call is executed prior to the qdisc tc filter sec-
tion in the core network stack, so if no filter is matched,
then the value of select_queue() is retained.

tc filters are then added for each network flow that needs
to be filtered into a specific priority flow Tx queue.

3 Priority Flow Control

In a converged network, various traffic types that nor-
mally wouldn’t be on an Ethernet-based network are
now present. Some of these traffic types are not toler-
ant of packet loss. Fiber Channel is a good example,
and is added to a converged network using Fiber Chan-
nel over Ethernet [4]. Fiber Channel is not as tolerant of
congestion and packet loss as Internet protocols. There-
fore, it must have some form of flow control present to

300 • Converged Networking in the Data Center

ensure the frames can be paused, prior to some overrun
causing dropped frames.

Using traditional Ethernet flow control is a viable option
for these traffic flows. However, the point of Converged
Networking is to provide separate, independent network
pipes to traffic flows, and not allow one pipe to affect
another pipe. Link-based flow control would cause all
traffic flows to stop. This is not desired for DCB and
Converged Networking.

Priority Flow Control (also known as per-priority pause
or PFC) was designed to solve this issue by utilizing uti-
lizes a different packet type from the traditional Ethernet
pause. It passes a bitmap of all eight priorities to the link
partner, indicating which priorities are currently paused.
This way an XOFF/XON pair can be sent for each indi-
vidual priority flow, while all other flows can continue
transmitting and receiving data [3].

4 MSI-X and interrupt throttling for latency

4.1 Latency requirements

Each priority flow in a DCB network most likely has dif-
ferent latency considerations for the traffic in that flow.
For example, high-availability management traffic re-
quire very low latency to operate correctly. On the other
hand, bulk data transfers, like an FTP transfer, do not
require low latency. Other examples of network traf-
fic that have varying latency requirements include Voice
Over IP, computer gaming, web surfing, audio stream-
ing, p2p networks, etc. Each of these traffic types treat
latency differently, where it either negatively effects the
traffic, or doesn’t make much difference whatsoever.

4.2 Interrupt rates vs. latency

The easiest way to affect the latency of a network de-
vice’s traffic is to change the interrupt rate of the receive
flow interrupt. For example, receive processing running
at 8,000 interrupts per second will have a much higher
latency than a device running at 100,000 interrupts per
second. The trade-off is that the more interrupts a de-
vice generates, the higher your CPU utilization will be.
Interrupt rates should be tuned to meet the target flow’s
latency considerations, and will vary based on the con-
tents of that flow.

Rx
Priority

Q0

Rx
Priority

Q1

Rx
Priority

Q2

Rx
Priority

Q3

CPU 0 CPU 1 CPU 2 CPU 3

MSI-X V1
Rate 8k int/sec

MSI-X V0
Rate 100k int/sec

MSI-X V2
Rate 50k int/sec

MSI-X V3
Rate 2k int/sec

Figure 3: Example MSI-X mapping with variable inter-
rupt rates

4.3 MSI-X interrupts

Each traffic flow in DCB may require a unique latency
target, therefore requiring a unique interrupt rate. On de-
vices that only support legacy pin interrupts, this cannot
be achieved. Rather, the lowest latency must be chosen,
and that interrupt rate must be used for the device. This
will cause much more CPU overhead than is required
for the other flows in your converged network.

MSI-X interrupts (Messaged Signaled Interrupts, Ex-
tended) provide the ability to have separate interrupt
vectors for each traffic flow. Each vector can be assigned
to a receive queue and transmit queue on the network
device. Each of those vectors can then be assigned a
different interrupt rate, which allows separate traffic la-
tencies for each flow. Refer to Figure 3 to see a sample
MSI-X layout with variable interrupt rates.

For another example, the ixgbe’s EITR (Extended Inter-
rupt Throttle Rate) registers control the interrupt rates
for each interrupt vector. When the device is in MSI-
X mode, the device enables an individual EITR register
for each MSI-X vector [5]. The driver can then program
each EITR separately, accomplishing the need to have
fully independent interrupt rates among flows.

5 Data Center Bridging Exchange Protocol

DCB has a number of parameters that define how the
link operates. The priority group configuration, the

2009 Linux Symposium • 301

bandwidth allocations, and the priority flow control set-
tings are all part of the overall DCB configuration.
Since DCB is a network-wide configuration, there needs
to be a mechanism between link partners to negotiate
these configuration settings. Data Center Bridging Ex-
change Protocol, or DCBx, is the protocol that defines
how DCB configuration parameters are negotiated on a
link. This is a very similar mechanism used to nego-
tiate link parameters, such as auto-negotiated speed, or
auto-negotiated flow control settings [6].

5.1 LLDP vehicle

DCBx uses the Link Layer Discovery Protocol, or
LLDP, to transfer the DCBx configuration frames be-
tween link partners. The LLDP frames carry the config-
uration required to successfully negotiate a DCB link.
The protocol also requires that a DCBx negotiation that
cannot be resolved (i.e. configuration mismatch) mark
the link as failed to negotiate, and disable DCB on the
port.

LLDP also carries an application TLV (meaning type,
length, and value [6]). This includes information re-
quired for applications needing to negotiate parameters
with DCBx outside of the stack DCBx parameters. An
example is FCoE: FCoE needs to find on which prior-
ity it will be resident in DCB. This way, FCoE knows
which queues to configure in the base network driver,
plus it can make software stack adjustments to properly
feed the underlying network driver.

5.2 dcbd userspace tools

Linux has a set of userspace tools that implements the
DCBx protocol. These tools also push the DCB config-
uration parameters into the registered network drivers.
These tools are part of the dcbd package, which include
the dcbd daemon and the dcbtool command line util-
ity. dcbd runs in the background and listens for rtnetlink
events on devices that it is managing.

rtnetlink is a Linux kernel interface that allows
userspace tools to send messages to kernel components.
It is similar to traditional ioctls. Other implementations
of rtnetlink interfaces include network interface con-
trol (ifconfig commands), VLAN control (vconfig), and
Qdisc manipulation (tc).

dcbd learns about network devices when it starts, and
when any new device is brought online by listening to
link up events from rtnetlink. dcbtool can be used to dis-
play the current DCB configuration of a device, manage
the configuration of a device, and also toggle DCB mode
on and off on a device. The dcbd userspace tools are
available on Source Forge at http://e1000.sf.
net.

6 DCB support in the Linux kernel

Data Center Bridging is fully supported in the Linux
kernel as of 2.6.29. To date, the only driver making
use of DCB features is ixgbe, using the DCB support
found in the 82598 and 82599 devices. The main piece
of DCB that is resident in the kernel is the configuration
API used by dcbd utilities. The layer is called dcbnl,
and is an rtnetlink interface. The interface has a full
complement of get/set commands to configure each pa-
rameter of a DCB device. dcbd uses this interface to pull
all DCB-related configuration to feed the DCBx negoti-
ation, and in turn uses the interface to reprogram the
device with any new DCB configuration returning from
DCBx.

The other portion that DCB makes use of in the kernel
is the QoS layer, which was previously discussed. The
sch_multiq qdisc is the main workhorse, along with the
tc filter act_skbedit action mechanism. These two QoS
pieces help filter skbs into their proper priority flows in
the underlying base driver.

7 Typical DCB deployment model

Now that DCB components have been defined, it’s time
to take a look at what a DCB deployment model looks
like in the data center. The typical deployment today is a
composed of two flows, one being storage traffic (FCoE)
and the other being all LAN traffic. The LAN traffic
can be spread across the other seven priority flows, if
the traffic patterns warrant that many prioritized flows
in your network. This is a network-dependent setting.
Refer to Figure 4 for the order of startup. The steps are
numbered.

From here, the FCoE instance will query dcbd through
DCBx, using the application TLV, requesting which
802.1P priority it needs to use. Once the priority is pro-
vided (default of priority 3), the FCoE tools create tc

302 • Converged Networking in the Data Center

Userspace

Kernel Space

dcbd

Network device driver:
DCB enabled

FCoE userspace
tools

QoS Layer / TC filters

DCBx TLV exchange querying priority (4)

DCBx TLV exchange returning priority (5)

dcbnl rtnetlink interface

DCB
configuration (1)

DCB configuration
commands (2)

Apply DCBx no
tag TC filters (3)

Assign FCoE Ethertype TC filter:
Use priority from DCBx (6)

Filter skb flow from the
network stack (8)

Core Networking Layer
(dev_queue_xmit())

Transmits (7)

Figure 4: Typical DCB Deployment Model

filters that filter the FCoE ethertype (0x8906) [4]. These
filters use the skbedit action to direct the matched flows
into flow id 3. The base driver will then use the value
of skb->queue_mapping, which is set by the skbe-
dit action, to select which transmit queue the base driver
allocated for that priority.

On the LAN side, other tc filters can be added by ei-
ther dcbd or by the system administrator. A typical fil-
ter that is added is to match LLDP traffic, and skbedit
the skb->priority field to be a control frame. That
way the base driver can look for that setting, and not set
a priority tag on the frame. LLDP frames should not be
tagged with priorities within DCB, since they’re control
traffic.

Once the DCBx negotiation is finished with the switch
or link partner, the DCB hardware is ready to use. If
all the tc filters are in place, then DCB networking is
running.

8 Conclusion

Ethernet networks will continue to push the speed en-
velope. As more 10GbE (and beyond) devices continue
to pour into the market, these Ethernet networks will be
cheaper to deploy. With data centers pushing the enve-
lope to lower cost of operation with increased comput-

ing power and efficiency, Converged Networking will
help realize these goals.

References

[1] Bert Hubert, Thomas Graf, et al. Linux advanced
Routing and Traffic Control
http://lartc.org

[2] Manoj Wadekar, Mike Ko, Ravi Shenoy, Mukund
Chavan Priority Groups, Traffic Differentiation
over converged link (802.1Qaz)

[3] Hugh Barrass Definition for new PAUSE function
(802.1Qbb)

[4] Open-FCoE team Open-FCoE.org homepage
http://www.open-fcoe.org

[5] Intel Corp. Intel 82598 10GbE Ethernet
Controller Datasheet

[6] Intel Corp., Cisco Systems, Nuova Systems DCB
Capability Exchange Protocol Specification

How to (Not) Lose Your Data
Linux as a Reliable Storage Platform

Ric Wheeler
Red Hat

rwheeler@redhat.com

Abstract

Increasingly, Linux is the platform that major vendors
use to implement everything from consumer grade NAS
devices that you can buy at your local electronics store
up to expensive, enterprise grade storage systems. This
paper aims to present a high level overview of how some
of these systems are put together, how to tune Linux for
storage applications and what functionality is either on
the horizon or yet to be started in the open source space
that will enhance Linux as a storage system. The tech-
niques presented are are also applicable to normal home
users who would like to enhance data integrity.

1 Why Care about Data Integrity

Taking care of digital data used to be the worry of sys-
tem administrators. If a computer went down without
a backup, few people would ever notice any disrup-
tion. Today, the sheer mass of digital data that normal
people have makes this a problem for just about any-
one with a digital camera or a collection of digital mu-
sic. Many commercial businesses use Linux-based sys-
tems for storing data about their customers like bank-
ing records, airline tickets and other critical data. Home
users who turn to online sites for storing their photos,
music and email on the web also, more than likely, end
up using Linux-based systems indirectly.

Linux strives to maintain a unified version of its code,
which means that there is just one storage and file sys-
tem stack that is used by both casual end users and for
servers at corporate data centers. The challenge is to
provide a system that can leverage high-end storage and
its features when possible, without imposing complexity
and performance penalties for non-data critical applica-
tions. Given the deeply personal nature of the types of
data that people store today on Linux, like digital pho-
tographs, it is really critical to give users a framework
for how to store data reliably.

When designing a reliable storage system, enterprises
usually invest in both reliable local storage and a way to
replicate their data to storage at a remote site which must
also be reliable. This paper aims to provide Linux devel-
opers a framework for thinking about how to provide re-
liable components for people building Linux based stor-
age systems and weigh the trade offs appropriately. The
conclusion presents a brief overview of key research in
storage systems and a summary of upcoming features in
the Linux storage and file system stack that will enhance
both enterprise and end user’s data integrity.

2 Common Causes of Data Loss in Systems

Anyone who deals with storage of digital data, espe-
cially long-term storage, understands that even the best
storage systems can and will suffer data loss occasion-
ally. This section gives a very high level overview of the
most common causes of data loss.

2.1 User Errors

The most common errors are typically user errors; for
example, accidentally deleting a file, forgetting where
you put a specific file, upgrading your system or refor-
matting a whole disk. Rather than write off this class
of data loss as “stupid human errors,” the challenge is
to design systems that are easy to use, have safe default
settings and do not require expensive infrastructure like
UPS backup for the servers’ power needs.

At the system level, there are a few basic techniques that
Linux provides which help mitigate against these types
of user errors. A common practice in enterprise data
centers is to create periodic snapshots of a file system,
say once a day. Snapshots do not protect against storage
failure at the block level, but they do give you a point in
time picture of the state of your file system that can be

• 303 •

304 • How to (Not) Lose Your Data

referenced if you accidentally delete a file or do some
other regrettable action to your data. In addition, users
can create a snapshot of a live file system and use that
snapshot as the basis for a local backup or to kick off a
consistent remote copy.

2.2 Confusing Semantics for Key System Calls

Application writers need to have crisp and clear seman-
tics for basic operations like fsync() and rename() sys-
tem calls and clear documentation and guidance about
how to use them to provide their users reliable data stor-
age. How does an application know with absolute cer-
tainty that data that it writes or a new file that it has
renamed will survive a power outage or system reboot?
To make the challenge more interesting, different appli-
cations need different levels of granularity.

At one end of the spectrum, a database typically wants
to have this type of clear promise after each commit of
a transaction. At the other end of the extreme, it would
usually be sufficient for an application like rsync to pro-
vide this promise that all of the data is safely stored
on the remote system at the end of its execution which
would allow the system to flush caches and so on only
once for the entire set of files. In the rsync case, the user
would be able to simply redo the rsync if the something
fails during the initial run without being exposed to any
data loss.

Somewhere in the middle of this spectrum are com-
mon tools like editors which want to provide atomic
updates to files being processed. The rename() system
call has long been used to provide this level of atomic-
ity for updating files. For example, an editor that wants
to overwrite all or part of file “foo” can do this safely
by first creating a temporary copy of the contents of
“foo” to a separate file, say “foo.temp.” All changes are
written to the temporary copy until the editor is ready
to persist its changes to disk. At this point, it calls
rename("foo.temp", "foo") with the expecta-
tion that, even in the face of a system crash or power
outage, the rename will be atomic. Specifically, after a
crash, the user will see either the new contents in file
“foo” or the old contents, not some random mix of old
and new data or an empty file.

To make this sequence really robust in a generic way,
the application should issue one fsync() system call for
the new “foo.temp” file and potentially a second fsync()

system call on the directory that “foo” lives in to insure
that the changes in the name space survive. File systems
could automatically insert the appropriate fsync() calls
internally, but this could degrade performance for appli-
cations that are less concerned about data integrity. How
to get the balance right between data integrity and per-
formance is an active debate in the file system developer
community.

Clearly, using “fsync()” and “rename()” on every indi-
vidual file while doing batch updates like the rsync ex-
ample mentioned above, or when using tar to extract a
large number of files, will have a large impact on per-
formance. For some popular file systems like ext3, an
effective way to avoid the performance impact of the
fsync() per file technique is to have applications break
up the extraction into a writing phase in which each file
is written to disk without any special promises, and then
a second fsync() phase in which the application iterates
back over all of the files written and fsync()’s each one
in turn in the reverse order that the files were written
originally. This technique mitigates the heavy fsync()
performance impact since the first fsync() in that second
phase will push out the data for all of the preceding files
that have just been written.

Different types of storage will show vastly different re-
sults since the performance is directly tied to how ex-
pensive seek operations are and whether or not the de-
vice has a volatile write cache. Testing the various meth-
ods on a common 1TB S-ATA disk can give the reader a
sense of the impact using common hardware today. Us-
ing Fedora10 on a quad core desktop system and ext4,
the best rate for writing 40KB files without doing any
fsync() calls is around 2,600 files/second. Note that this
test basically measures how quickly the file system can
write to the page cache and is highly variable.

With the barrier support properly enabled on ext4,
the slowest, most cautious method writes only 25
files/second by doing an open, write and and fsync on
each file in turn. This rate is roughly half the rate that
the drive’s seek latency dictates, which corresponds well
to the two cache flush operations per fsync that the fsync
calls produce when running with barriers.

Finally, using the two phase technique, first writing all
of the files in a batch and then iterating back over the
batch of files in the reverse order to fsync them one at a
time, the rate returns back up to around 143 files/second.
If this is not convoluted enough, issuing a sync() system

2009 Linux Symposium • 305

call before doing the fsync() phase will bring the rate up
to around 900 files/second. Looking at the twists and
turns required to get reasonable performance and data
integrity clearly shows that we need to provide some-
thing better if we would like to get application program-
mers to improve their code.

Clearly, there is a lot of room for reducing the com-
plexity, and giving application writers more intuitive
and powerful tools. Over the past few years, file sys-
tems developers have been debating several possibilities
ranging from some complex mechanisms like expos-
ing transactional semantics to user space applications or
providing a robust asynchronous fsync primitive. Like
other async calls, the application would use the async
fsync interface on each file in a fairly straight forward
way and then have a second interface to use when it
needs to wait for completion. The advantages of this
async approach would be that the file system could op-
timize the fsync calls internally over a larger set of files.

2.3 IO Stack Bugs and Configuration Errors

System software, like the file system or the IO stack,
can also be a common cause of data loss when it fails
to persist data correctly before a power outage or sys-
tem crash. Modern file systems and data bases often
use journaled transactions as a way to provide robust
storage. Transaction based systems need to be able to
have a few promises from storage in order to make their
transactions robust including the ability to store some
information, like a transaction commit block, in a reli-
able way. Storage devices, including disk drives, have
large, volatile write caches which is typically tens of
megabytes in size. On power loss, the data stored in
that cache will be lost.

To provide robust support for transactions, Linux has
supported a fairly brute force mechanism called “write
barriers” which effectively give the file system the abil-
ity to flush the target device write cache before sending
a write with the commit block. A second flush is then
initiated in order to make sure that the commit block
itself is safe on persistent storage. This technique has a
clear performance impact for applications that cause lots
of transactions. Most file systems have mount options
which enable the barriers correctly, but work is ongo-
ing to make sure that all of the various bits of the block
layer like device mapper and the more advanced RAID

levels supported by MD will correctly handle barriers
operations.

If the system has one of the configurations that do not
support barriers properly and it has storage devices with
volatile write cache devices, the only safe option is to
disable the write cache on the storage devices which can
be done with the hdparm command.

Note that external storage arrays typically have large,
non-volatile write caches which do not require these
barrier operations.Some of these arrays will silently ig-
nore the cache flush commands issued by the Linux bar-
rier operations, but others will honor them by flushing
their potentially very large caches which is a gigantic
performance hit. To prevent this overhead, file systems
mounted on this class of device should be mounted with
the barriers disabled.

The preceding set of considerations makes doing the
right thing extremely confusing. If a system is using
device mapper, the barrier operations will log an error
and be disabled which leaves users exposed to poten-
tial data loss on power loss. The same story happens
with RAID5 or RAID6 and MD devices. Several things
need to be fixed in order to reduce the confusion. One
very promising set of patches, recently posted by Mar-
tin Petersen, exports several characteristics of devices
through /sys interfaces. Unfortunately, the nature of the
write cache is not currently one of these characteristics,
but this is a positive first step. Also, work is ongoing in
the device mapper community to properly handle bar-
rier operations. For MD users who use anything but the
basic MD1 RAID, the only safe option is to disable the
write cache on the individual component devices cur-
rently.

2.4 Hardware Failures

Hardware failures, specifically disk failures, are what
most users would associate with data loss. Single disk
drives are relatively reliable components, but can suf-
fer from both hard failures when all data is lost or par-
tial failures where only a portion of data is lost. Other
types of hardware failure, like bad memory components,
can cause data loss as well. RAID schemes, discussed
briefly below, reduce the exposure to data loss by stor-
ing the data on multiple components which are assumed
to have independent failures. New types of devices, like
the increasingly popular SSDs, are largely immune from

306 • How to (Not) Lose Your Data

some of the causes of failure of traditional drives, but
bring their own unique ways of failing that system de-
signers and users will learn more about as the devices
increase in number and age.

3 Data Loss Timeline

One useful way to think about keeping data safe is as
a timeline. Assuming the application has figured out
how to properly navigate the confusing maze detailed
previously and has correctly stored the data on a stor-
age device, a clock starts counting down for each hard-
ware component in your system. Time runs out when
the component actually sustains an error or fails com-
pletely. Designing a reliable storage device requires un-
derstanding the expected failure rates of the components
used to make a system and being able to balance the cost
of those components against other considerations like
cost, performance and power consumption.

The high level overview of this timeline is:

Data Creation The application performs a write of data:
for example, the “cp” application is used to create a copy
of a file but has not called fsync(). The data is not pro-
tected against a power outage or system failure at this
point in time.

Persistently Stored The data is stored and acknowl-
edged by the storage subsystem: the data is moved from
the page cache out to the storage system and the trans-
action is acknowledged back to the server. At this point,
all is right with the data and the storage system has all
of the redundant copies it needs to overcome a partial
failure.

Component Failure A component of the storage sys-
tem fails partially or completely: failures could be par-
tial failures like a single bad sector on a drive, total fail-
ure of a drive or possibly a software or user error that
corrupts a file. This error alone might not cause data loss
or data unavailability to a user if the data is protected in
a RAID group, but it does expose the user to permanent
data loss if not repaired before a second failure in the
same data stripe. The key consideration in building a
robust storage system is to minimize the amount of time
spent in this state.

Failure Detection The failure is detected by the sys-
tem: an application tries to read a file back or the RAID

software detects a partial or total failure. In RAID ar-
rays, these errors are often detected by the firmware
which will continually scan the surface of the individu-
als drives, searching for partial errors. The critical trade
off here is that over aggressive scanning, while reduc-
ing the window of time that the system is exposed to
a potential data loss, has a negative impact on the per-
formance of the system’s normal workload, can prema-
turely age the components and can consume more power
since the devices are kept from entering an idle state.

Data Repair Initiated Examples include a new drive
is inserted into the RAID group, a file system repair is
initiated or a file is restored from tape. Note that there is
a potential lag between the detection of the partial error
and being able to initiate a repair. In the worst case, if
you are repairing a RAID group with one completely
failed drive and no spare, this repair phase is blocked
until a new drive is physically inserted into the array to
replace the failed component.

Data repair completed The original file is back and us-
able by the user. Just like the fourth stage above, there
is a trade off here between completing the repair in an
aggressive way by consuming the full bandwidth of the
device and impacting the foreground workload.

Note that a related class of problem is data unavailabil-
ity which can be caused by something as common as a
power outage or by a long running, offline repair like an
invocation of fsck. For time critical data, this can be as
critical as permanent data loss.

The next section gives some details about common com-
ponents used to build storage and gives some measure of
how they rate in the time line sketched out here.

4 Reliability Building Blocks

A general principle of design for reliable systems is to
build systems that tolerate a given number of failures. If
you have a system with one drive, your data stands to
disappear whenever that single drive fails. If you have
two disks in a RAID1 mirror, your system can tolerate
the failure of one disk but would still suffer failure if
your CPU or DRAM fail. For this reason, enterprise
class arrays have redundancy for all critical components:
no single failure of a power supply, CPU, DRAM or disk
would cause data loss but might cause degraded perfor-
mance.

2009 Linux Symposium • 307

In a similar way, a single location like your home of-
fice or a data center is a single failure component which
could be destroyed by a fire or other disaster. In order
to reduce data loss for these catastrophic events, busi-
nesses commonly use long distance replication to store
data on a remote site.

This section presents a summary of common features in
storage and reviews the status of these features in Linux
today.

4.1 RAID Level Tradeoffs

RAID is the most common form of data protection used
today. RAID is normally done at the level of a block de-
vice, for example, a file system will send a write down
to the block level which will do the appropriate RAID
computations transparently. A simple, robust and ineffi-
cient RAID level is RAID1—all data is written to each
member of the RAID group. For example, a system with
four storage devices will write to each of the four de-
vices on every IO. This gives the storage system great
fault tolerance since the system could have as many as
three of the four drives fail without incurring data loss.
The down side of this scheme is that it is horribly ineffi-
cient with only 25% of the total capacity of the storage
components available for storing user data. This ratio
will be referred to as effective capacity.

Other RAID levels, with the same number of drives, im-
prove the effective capacity. For example, RAID5 will
break each IO into fragments, three data fragments and a
fragment which contains parity information. Any single
drive can fail and the other disks can be used to regen-
erate the data from the failed component. In this 4 drive
system, a RAID5 scheme provides the user an effective
capacity of 75%. In a similar way, RAID6 computes two
different parity computations and will be able to survive
any dual failure of storage devices, but decreases the ef-
fective capacity to 50% in our four drive example above.

Commercial RAID arrays offer a wide range of config-
urations. Low end systems aimed at consumers start
with as few as 2 drives configured into a RAID1 de-
vice. Higher end consumer devices move up to a 4 drive
RAID5 configuration. Enterprise class RAID arrays
provide shelves full of disks. A typical mid-range stor-
age system would have 12 to 15 drives per storage shelf
with high-end systems ranging up to a couple thousand
drives per array. Clearly, these larger systems present
more than one RAID set out to hosts.

One type of failure that can foil any RAID system is an
undetected partial failure. The above examples used the
common assumption that a storage device would either
work correctly or fail completely. While complete fail-
ures are not uncommon, it is also relatively common to
have storage get corruption that impacts only a few sec-
tors of storage. For example, rotational storage might
have localized loss of data due to contamination like
dust or lubricant on the platter while SSD devices might
have localized data loss due to overuse. Regardless of
the cause, the problem is the same—these partial fail-
ures can lie undetected for a very long time. In the worst
case, they are detected only when a second total failure
happens to a different storage device in the same RAID
group. As the system tries to rebuild the RAID group,
it needs to read data from all of the other components
and will invariably detect all latent errors. Each of these
latent errors will cause the RAID rebuild to fail for one
stripe. In this case, the basic assumption about having
independent failures does not protect the user since we
notice the latent errors concurrently with the total failure
of the other device.

The way to reduce the likelihood of failure during criti-
cal times like a RAID rebuild is to do periodic scans of
the individual storage devices. For example, once ev-
ery two weeks, the system will do a full surface scan of
each storage device in a RAID group. If you detect an
error during the scan, you can attempt to repair the data
immediately by recomputing the data from the other de-
vices in the RAID group and attempting to overwrite
the failed sector. In many cases, this write will work by
either correcting the data in place or by remapping the
failed sectors to a pool of extra sectors kept for failures.
If the data cannot be recovered, it is time to replace the
failed device. In current Linux MD RAID, we have the
capability to do this period scan for example.

There are some techniques used by high-end storage
systems to make their RAID systems more robust. A
very common technique is to have a spare device that
is not an active participant in any RAID group. When
a drive fails fully, the spare can be used to immediately
start rebuild the contents of the missing storage compo-
nent which decreases the window of time that the RAID
group needs to be exposed to a possible second failure.
A second trick is to suck as much data as possible from
the failed component if it is still partially readable, since
it allows the RAID rebuild only the data for stripes that
cannot be read.

308 • How to (Not) Lose Your Data

If the system needs to tolerate more than two compo-
nent failures, there is a generic set of techniques called
erasure encodings that can tolerate k failed components
out of the n devices in your system. An example for
the mid-level arrays might be an encoding that would
survive any 4 failures in a 15-device system.

4.2 Remote Replication

Remote replication is another important tool for data
protection and provides a remote copy of data that
would survive any catastrophic event like a fire or a
flood that would destroy any local storage. This section
details several varieties of remote replication.

Block level replication can be built using something as
simple as a RAID1 device, where one of the components
is a remote device like an iSCSI target. Each write will
be sent synchronously to the remote site which, depend-
ing on distance, can introduce substantial performance
hurdles. A more sophisticated scheme could use LVM
snapshots to avoid this performance penalty: snapshot
a volume and then do the replication to the far site of
the snapshot copy while local file system IO is left un-
hindered. Block level replication is also a feature that
is frequently implemented inside of storage arrays that
can use either dedicated storage links to the remote sites
or direct the replication over normal connections. Block
level replication is fairly common in high end data cen-
ters but can be a bit challenging to use in an intuitive
way.

A more pedestrian way to replicate data is by replication
at the file system layer. For anyone who is familiar with
rsync, the technique is fairly intuitive: iterate over the
entire file system and send the files that have changed
to a remote server which will store it on disk. From the
point of view of the source file system, the operation
should be a fairly straight forward sequence of calls to
getdents() in order to build a list of files followed by the
application reading and then transmitting the file over
the network to the target system. Unfortunately, there
are several complications that get in the way of doing
this in a straight forward manner.

Some file systems, specifically ext3, can return the file
names via getdents() calls in an arbitrary order which,
in turn, causes a lot of seeking as the application reads a
series of small files in non-sequential order with regards
to the disk layout. To improve this performance, appli-
cations can sort the list of file names by the inode order.

Using a similar test, putting 1 million 40KB files in one
directory results give a rate of 55 files/second when read
in getdents() order and a rate of 1,381 files/second when
read in sorted by inode number. Given that applications
can write new files at a rate of 1277 files/second, the
sorted remote replication is the only way to keep pace
with ingest. Other file systems, like XFS, do a good job
of returning the file names in a reasonable order. For
these file systems there is no benefit from this technique
but the cost of using it is not high. All of this complexity
just continues to make the life of application program-
mers miserable. Note that doing full file system level
iteration at full speed for any file system depends on
minimizing head movement for traditional disk drives,
so any other file system activity can have a severe im-
pact on the performance of the replication.

4.3 Data Migration

Data migration is a special form of remote replication in
which the intention is to decommission the source stor-
age system once the data is successfully replicated at the
target system. Data migration might involve a local mi-
gration from a single disk drive which has started to fail
to a new drive, or be done from one high end storage
array to a second one over a long distance link. It is a
fairly common operation both for consumers who rou-
tinely replace or upgrade their personal systems and for
data centers where high end storage is often rotated out
of service after a fixed period, say every three years.

Key points of this class of replication include making
absolutely certain that the remote system has a full and
persistently stored copy of the data since the source will
be taken offline. In the earlier rsync example, it is criti-
cal to make sure that the data is not just stored in the re-
mote page cache. One other key consideration is that the
source system is typically not new and can be in fairly
rough shape, so the iteration can encounter more IO er-
rors than a normal system would encounter. To migrate
from an unhealthy source, the IO stack needs to be tuned
properly to handle IO errors in a quick and deterministic
way and avoid excessive retries. Applications doing the
migration need to be able to be equally robust in face of
errors: log any failures and keep moving good data to
the new system.

Cloud storage can be thought of as another variation on
remote replication at the file system layer. The differ-
ence is that the target system is normally not a typical

2009 Linux Symposium • 309

file system or block device that users can access directly.
Rather, for each file a user stores in the cloud, that user
gets back a object reference that can be used to retrieve
the file when needed.

5 Research in Reliable Storage Systems

File and storage system research has become one of the
more active areas of academic research. One of the
highlights of the year for researchers engaged in this
area is the USENIX Association’s annual FAST con-
ference, where open source, industrial, and academic
researchers meet to present key results. The USENIX
Association has all of its papers online and freely avail-
able, along with recordings and videos of recent presen-
tations. This section presents a very brief summary of
key results presented recently.

Some key areas for storage are the analysis of what
really fails and how frequent those failures are. For
many years, storage companies have collected that data
for their own deployed products and guarded that infor-
mation as an important part of their intellectual prop-
erty which made it extremely difficult to build either
research or real systems based on facts. Two ground-
breaking works were presented in FAST in 2007. The
first paper was presented by Bianca Schroeder and Garth
Gibson from Carnegie Mellon’s Parallel Data Labora-
tory and presented the first large-scale analysis of real-
world disk failures [6]. The second work at FAST that
year was from Eduardo Pinheiro and his coauthors from
Google [2] who shared similar data collected from the
huge number of systems in Google’s data centers. These
works were followed in proceeding years by significant
contributions by NetApp [1] and others.

For those interested in coding open source RAID6, or
more robust erasure encoded systems, James Plank from
the University of Tennessee and his coauthors presented
an overview of open source friendly RAID6 [3] and gen-
eral erasure encoding [4] algorithms. He took careful
note of which algorithms he believed to be free of the
known patents.

File systems also have received a fair amount of atten-
tion from the academic world, with notable contribu-
tions to Linux file systems reliability coming from the
University of Wisconsin’s group, which did an analy-
sis of failures in commodity file systems and produced
the prototype code used in ext4’s journal checksum-
ming [5]. Several other universities have active Linux

based research projects, including Erez Zadok’s group
and their work on stacking file systems and the scalable
file system work being done at the University of Cali-
fornia, Santa Cruz.

6 Conclusion

The scale of storage systems is increasingly dramati-
cally, both for home consumers and certainly for high
end data centers. Current capacity for a single S-ATA
drive is 2TB.In the examples used previously in this pa-
per, this single drive will hold over 50 million 40KB
files. Migration from a 2TB drive at 25 files/second
would take close to 600 hours as compared to just under
12 hours running at the sorted rate of 1,300 files/second.
The author has recently been testing Linux file sys-
tems on a relatively “small” 80TB LUN exported from
EMC’s newest Symmetrix, which can hold over two
thousand drives. Clearly, scale makes using and improv-
ing the techniques discussed above an important chal-
lenge.

7 References

References

[1] Weihang Jiang, Chongfeng Hu, and Yuanyuan
Zhou. Are Disks the Dominant Contributor for
Storage Failures? A Comprehensive Study of
Storage Subsystem Failure Characteristics. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies, February 2008.

[2] E. Pinheiro, W. D. Weber, and L. A. Barroso.
Failure trends in a large disk drive population. In
FAST-2007: 5th Usenix Conference on File and
Storage Technologies, February 2007.

[3] J. S. Plank. The RAID-6 Liberation Codes. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies, February 2008.

[4] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. Wilcox-O’Hearn. A Performance Evaluation
and Examination of Open-Source Erasure Coding
Libraries For Storage. In FAST-2009: 7th Usenix
Conference on File and Storage Technologies,
February 2009.

310 • How to (Not) Lose Your Data

[5] Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pages
206–220, Brighton, United Kingdom, October
2005.

[6] Bianca Schroeder and Garth Gibson. Disk failures
in the real world: What does an MTTF of
1,000,000 hours mean too you? In FAST-2007: 5th
Usenix Conference on File and Storage
Technologies, February 2007.

Testing and verification of cluster filesystems

Steven Whitehouse
Red Hat, UK

swhiteho@redhat.com

Abstract

Although software testing can never prove a program
is correct, it can catch many errors early and plays an
important part in the process of declaring a program
“stable” and ready for release. Cluster filesystems (e.g.,
GFS2), by their very nature require hardware-intensive
test environments, and are thus also expensive to test.
This tends to limit test coverage compared with their
simpler, single-node counterparts (ext2/3/4, xfs, etc).

Since reliability is a key feature of any filesystem, this
paper considers a number of techniques which may be
used to help simulate a cluster on a single node, reduc-
ing the cost of testing and increasing the coverage in the
process. Although GFS2 is taken as the example filesys-
tem, the techniques described are generic and apply to
any similar filesystem.

1 Introduction

There is a catch-22 situation in filesystem development
where users are unsure of trusting their data to a new
filesystem until its been in use by other people for a pe-
riod of time. Software verification and testing is one
way to try and break this cycle and to help build confi-
dence.

Testing cluster filesystems is particularly problematic
because they, by definition, require clusters to test on,
and since these are expensive to run it is often difficult
to get enough testing time, particularly on larger config-
urations.

In addition, it is often those running larger clusters who
are the most sensitive to downtime, and thus reliability
is often at the top of the list of requirements.

When supporting filesystems in the field, things will oc-
casionally go wrong, and in that case it is imperative to
identify the cause of the failure as quickly as possible,

and thus to be able to rectify it. Filesystems therefore
should be designed with this consideration in mind.

This paper considers the possible methods by which a
cluster filesystem (taking GFS2 as the example) can be
tested and debugged. We consider some of the more
recent developments based around the Linux tracing in-
frastructure. We include performance testing as well as
testing in order to verify functional correctness.

1.1 Proof

In an ideal world, it would be possible to prove the cor-
rectness of software. In reality, it is impossible to prove
the correctness of anything but the simplest software;
the main difficulty is that the combination of all the pos-
sible inputs to the system and all the possible states is
so large that it is impossible to prove the system cor-
rect within a reasonable amount of time. This prevents
exhaustive testing, but even with techniques to try and
cut down on the total number of states which need to
be tested, it is still usually too difficult even for fairly
simple systems.

A further complication arises from the possibility that
there is an error in the original specification, and in that
case a system maybe provably correct, but still fail due
to some unforeseen circumstance.

1.2 Source analysis

By carefully annotating the source, some errors can be
removed at compile time. The sparse tool can de-
tect a number of issues relating to endian conversion,
arithmetic with invalid types (e.g., bitwise) and similar
issues. It isn’t able to detect a huge range of errors, but it
does catch a number of basic issues, given a disciplined
to annotation of the source code.

gcc can also assist in this, of course, as more tests are
built in as can careful use of const etc. in the source
files.

• 311 •

312 • Testing and verification of cluster filesystems

1.3 Not quite exhaustive testing

In this category are methods like lockdep. The idea is to
run a “normal” workload on the filesystem under test
and then to monitor the operations performed for in-
valid sequences. The advantage of this method is that it
will catch potential deadlocks even when the code paths
didn’t happen to run (in the test) at the same time, but
where it is possible that they might cause a deadlock in
the future.

Occasionally this will cause false positives, but those
can be removed by suitable annotation or reordering
of operations. One example of that is the configfs
mkdir() issue where the locking is correct, but done
in a different way to that expected by lockdep.

1.4 Feature & regression testing

As features are added to GFS2 [1, 2], new tests are
added or adapted from other filesystems. In addition,
Red Hat’s QE department perform regular regression
tests over each release of Red Hat Enterprise Linux be-
fore release.

Although this prevents previous issues from reappearing
and helps to ensure that the basic functionality is work-
ing, the total state space is so much larger that it will
never be able to catch all the issues.

1.5 Early exposure to users

One of the core philosophies of Open Source is that code
should be released early and often. This can be a very
successful strategy for projects which have a large audi-
ence. However, people who have clusters don’t usually
have them sitting idle just waiting for a new release of
software to test on them.

As a result, the benefit of this form of testing is less
than with the more common features, such as single
node filesystems. There is still a substantial benefit to
be gained from people building GFS2 in a variety of
different configurations, but most of the bugs reported
have related to build issues.

1.6 Performance testing

Once all the functionality has been tested, the next aim
is to be able to narrow down any performance issues,

at least to the section of code where they occur. At that
point more targeted methods can then be used to identify
bottlenecks.

One example of performance testing is Askant [3] (in
the contrib section of the gfs2-utils git tree), which uses
a combination of static analysis to annotate blktrace out-
put with the details of the on-disk structures being writ-
ten.

1.7 Testing issues

The main issue raised above is that it is tricky to test a
cluster file system without a cluster, which makes test-
ing long-winded and expensive. As a result of that, we
plan to try and simulate the effect of being in a cluster
as closely as possible, but only using a single node.

2 Glocks

Since glocks are the core of GFS2, they are also the ini-
tial target of the verification and testing effort. Experi-
ence has shown that many different issues in the cluster
can result in a deadlock which is first encountered at the
glock level.

A glock is a caching mechanism, both for locks and also
for the data and metadata associated with them. Each
glock can have a number of “holders” associated with
it, each of which represents one lock request from the
higher layers. System calls relating to GFS2 queue and
dequeue holders from the glock to protect the critical
section of code.

Each glock corresponds exactly to one DLM lock. The
glock state machine provides a local locking mecha-
nism which is designed to reduce the number of remote
locking calls made by caching the locks in a particular
state until a remote node requires the lock, or until the
VM reclaims the glock from the glock LRU list via the
shrinker.

The glock state machine is based on a work queue. For
performance reasons, we would prefer to use tasklets,
however in the current implementation we need to sub-
mit I/O from that context which prohibits their use. One
of the objectives of the performance tests in this area is
to try and work out just how efficient this code is, and
whether any improvements can reasonably be made.

2009 Linux Symposium • 313

The glock debugfs interface allows the visualisation of
the internal state of the glocks, the holders and it also
includes some summary details of the objects being
locked in some cases. Each line of the file either be-
gins G: with no indentation (which refers to the glock
itself) or it begins with a different letter, indented with a
single space, and refers to the structures (H: is a holder,
I: an inode, and R: a resource group) associated with
the glock immediately above it in the file.

An example is shown in figure 1 which is a series
of excerpts (from an approx 18M file) generated
by cat /sys/kernel/debug/gfs2/unity:
myfs/glocks >my.lock during a run of the
postmark benchmark on a single node GFS2 filesys-
tem. The glocks in the figure have been selected in
order to show some of the more interesting features of
the glock dumps.

The glock states are either EX (exclusive), DF (de-
ferred), SH (shared) or UN (unlocked). These states cor-
respond directly with DLM lock modes except for UN
which may represent either the DLM null lock state, or
that GFS2 doesn’t hold a DLM lock. The s: field of
the glock indicates the current state of the lock and the
same field in the holder indicates the requested mode. If
the lock is granted, the holder will have the H bit set in
its flags (f: field) otherwise it will have the W wait bit
set.

The full listing of all the flags for both the holder and
the glock are set out in the two tables 3 and 2.

In the current upstream GFS2, once a DLM lock has
been taken out it is only ever demoted to the null state
(and never unlocked) unless the glock has reached the
end of its life and is being freed. This means that holding
a reference on a glock that has been promoted to any
mode other than NL will also result in a reference on the
associated DLM lock and thus preserve the content of
the lock value block (LVB).

The content of lock value blocks is not currently avail-
able via the glock debugfs interface, although we may
well add this in the future.

The n: field (number) indicates the number associated
with each item. For glocks that is the type number
followed by the glock number so that, as seen in Fig-
ure 1, the first glock is n:5/75320—i.e., an iopen
glock which relates to inode 75320. In the case of inode

Type Number Lock type Use
1 Trans Transaction lock
2 Inode Inode metadata & data
3 Rgrp Resource group metadata
4 Meta The superblock
5 Iopen Inode last closer detection
6 Flock flock(2) syscall
8 Quota Quota operations
9 Journal Journal mutex

Table 1: Glock types

and iopen glocks, the glock number is always identical
to the inode’s disk block number.

One of the more important glock flags, is the l (locked)
flag. This is the bit lock which is used to arbitrate access
to the glock state when a state change is to be performed.
It is set when the state machine is about to send a re-
mote lock request via the DLM, and only cleared when
the complete operation has been performed. Sometimes
this can mean that more than one lock request will have
been sent, with various invalidations occurring between
times.

When a remote callback is received from a node which
wants to get a lock in a mode which conflicts with that
being held on the local node, then one or other of the two
flags D (demote) or d (demote pending) is set. In order
to prevent starvation conditions when there is contention
on a particular lock, each lock is assigned a minimum
hold time. A node which has not yet had the lock for the
minimum hold time is allowed to retain that lock until
the time interval has expired.

If the time interval has expired, then the D (demote) flag
will be set and the state required will be recorded. In
that case the next time there are no granted locks on the
holders queue, the lock will be demoted.

If the time interval has not expired, then the d (demote
pending) flag is set instead. This also schedules the state
machine to clear d (demote pending) and set D (demote)
when the minimum hold time has expired.

The I (initial) flag is set when the glock has been as-
signed a DLM lock. This happens when the glock is first
used and the I flag will then remain set until the glock
is finally freed (which the DLM lock is unlocked).

The most important holder flags are H (holder) and W
(wait), as mentioned earlier, since they are set on granted

314 • Testing and verification of cluster filesystems

G: s:SH n:5/75320 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:EX n:3/258028 f:yI t:EX d:EX/0 a:3 r:4
H: s:EX f:tH e:0 p:4466 [postmark] gfs2_inplace_reserve_i+0x177/0x780 [gfs2]
R: n:258028 f:05 b:22256/22256 i:16800

G: s:EX n:2/219916 f:yfI t:EX d:EX/0 a:0 r:3
I: n:75661/219916 t:8 f:0x10 d:0x00000000 s:7522/7522

G: s:SH n:5/127205 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:EX n:2/50382 f:yfI t:EX d:EX/0 a:0 r:2
G: s:SH n:5/302519 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/313874 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/271916 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/312732 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

Figure 1: Example glock dump from debugsfs (edited for size)

Table 2: Glock flags
Flag Name Meaning

l Locked The glock is in the process of changing state
D Demote A demote request (local or remote)
d Pending demote A deferred (remote) demote request
p Demote in progress The glock is in the process of responding to a demote request
y Dirty Data needs flushing to disk before releasing this glock
f Log flush The log needs to be committed before releasing this glock
i Invalidate in progress In the process of invalidating pages under this glock
r Reply pending Reply received from remote node is awaiting processing
I Initial Set when DLM lock is associated with this glock
F Frozen Replies from remote nodes ignored - recovery is in progress

Table 3: Glock holder flags
Flag Name Meaning

t Try A “try” lock
T Try 1CB A “try” lock which sends a callback
e No expire Ignore subsequent lock cancel requests
A Any Any compatible lock mode is acceptable
p Priority Enqueue holder at the head of the queue
a Async Don’t wait for glock result (will poll for result later)
E Exact Must have exact lock mode
c No cache When unlocked, demote DLM lock immediately
H Holder Indicates that requested lock is granted
W Wait Set while waiting for request to complete
F First Set when holder is the first to be granted for this lock

2009 Linux Symposium • 315

lock requests and queued lock requests respectively.
The ordering of the holders in the list is important; if
there are any granted holders, they will always be at the
head of the queue, followed by any queued holders.

If there are no granted holders, then the first holder in the
list will be the one which triggers the next state change.
Since demote requests are always considered higher pri-
ority than requests from the filesystem, that might not
always directly result in a change to the state requested.

The glock subsystem supports two kinds of “try” locks.
These are useful both because they allow the taking of
locks out of the normal order (with suitable back-off and
retry) and because they can be used to help avoid re-
sources in use by other nodes. The normal t (try) lock
is basically just that; the so called T (try 1CB) is identi-
cal, except that the DLM will send a single callback to
current incompatible lock holders.

One uses of the T (try 1CB) is with the iopen locks
which are used to arbitrate among the nodes when an
inode’s n_link count is zero, as to which of the nodes
will be responsible for deallocating the inode. The iopen
glock is normally held in the shared state, but when
the n_link count becomes zero and ->delete_
inode() is called, it will request an exclusive lock
with T (try 1CB) set. It will continue to deallocate the
inode if the lock is granted. If the lock is not granted
it will result in the node(s) which was/were preventing
the grant of the lock marking their glock(s) with the D
(demote) flag which is checked at ->drop_inode()
time in order to ensure that the deallocation is not for-
gotten.

This means that inodes which have zero link count, but
are still open, will be deallocated by the node on which
the final close() occurs. Also, at the same time as
the inode’s link count is decremented to zero, the inode
is marked as being in the special state of having zero
link count, but still in use in the resource group bitmap.
This functions like ext3’s orphan list in that it allows
any subsequent reader of the bitmap to know that there
is potentially space which might be reclaimed, and to
have a go at reclaiming it.

2.1 Callback injection

In recent kernels, there is a sysfs interface which allows
the injection of demote requests from user space. Since

GFS2 has no communication with other nodes, except
for the callbacks issued in response to DLM lock re-
quests, this provides a way to simulate, on a single node
the same callbacks as if it was part of a cluster.

In combination with the GFS2 trace points and blktrace,
it becomes possible to check that the correct locks are
being held when the block requests I/O are issued and
completed. Also, the overhead of doing this is small
enough that it can be left running during normal system
operation without slowing it significantly (given a not
too unreasonable rate of simulated callbacks).

It is generally safe to inject callbacks for inode glocks
(type 2) however, for reasons which should be clear
from the discussion in the previous section, injecting
callbacks for iopen glocks (type 5) is likely to result in
a corrupted filesystem.

Callback injection is intended for testing in carefully de-
signed test environments, and is not something that we
would encourage general use of.

3 Trace points

Linux has an event tracing subsystem which provides a
high-performance method of tracking certain operations
which are switchable at run time, can be filtered and pro-
vided to user space either as a series of human readable
ASCII messages or via a binary output format.

The goal in placing trace points in GFS2 was to find
a minimum possible number of trace points which can
elicit the maximum possible amount of information
about the correctness and performance of GFS2 whilst
at the same time ensuring that they are generic enough
that they will not need to be altered during future devel-
opments.

With that in mind, the trace points in GFS2 have been
put into three major categories reflecting the main func-
tions of the filesystem.

3.1 glock subsystem

For some time there has been a debugfs file available
which gives a static view of the glock state as described
above. It has been extremely useful in debugging dead-
lock issues, however although it shows what state the

316 • Testing and verification of cluster filesystems

cluster is currently in, its main failing is that it doesn’t
always show how it got into that state.

The trace points have also been designed with a view
to being able to confirm the correctness of the cache
control by combining them with the blktrace output and
with knowledge of the on-disk layout. It is then pos-
sible to check that any given I/O has been issued and
completed under the correct lock, and that no races are
present.

The on-disk layout could be parsed in a static manner
before the test starts, and then updated can be gained by
using the block map trace points.

On the performance side, there are specific questions
which we want to be able to answer relating to laten-
cies of performing the various cache control operations.
With the current set of trace points it is possible to mea-
sure the latencies of granting a new or cached glock, and
receiving a callback and flushing the cache.

Information gathered from this will be then used to help
target our efforts in improving the scalability of the
filesystem.

In the initial implementation of the glock tracing patch,
it was an extension to blktrace rather than the event
tracer that it is currently. There was only one trace
point at that time, which was gfs2_glock_state_
change right in the heart of the glock layer.

Due to the way in which the glock layer is designed, it is
only valid to read data or metadata relating to an inode
when the glock is in the shared, deferred or exclusive
states. It is only valid to write data or metadata when
the glock is in the deferred or exclusive states.

Given knowledge of which disk blocks belong to
which inode, a task made much easier by the FIEMAP
ioctl() it should be possible to take the combined
information from blktrace and gfs2_glock_
state_change and check that this is indeed the case.

Since the scope of the tracing in GFS2 has been ex-
panded, it is also possible to use the bmap trace points
to elicit the same information. Also, due to some fur-
ther recent patches, GFS2 also tags all of its metadata
I/O with the metadata flag so that any violations should
be easier to spot.

The gfs2_glock_put trace point was introduced so
that tracing applications would be able to reduce the

amount of state that they needed to remember, and also
to allow dynamic tracking of the numbers of allocated
glocks.

In order to keep track of demote requests the gfs2_
demote_rq provides enough information to know
when a request has been received and its source (local
or remote). The plan is to use this to help measure per-
formance.

Also of interest in the performance area is the time
taken from a lock request being submitted to it be-
ing granted. This can be derived from the trace points
gfs2_glock_queue and gfs2_promote.

3.2 Block map subsystem

Block mapping is a task central to any filesystem. GFS2
uses a traditional bitmap based system with two bits per
block. The main aim of the trace points in this subsys-
tem is to allow monitoring of the time taken to allocate
and map blocks.

Additionally, with knowledge of the blocks being
mapped into inodes, it is possible to keep track of the
filesystem layout dynamically and extend tools to take
advantage of this.

The gfs2_bmap trace point is called twice for each
bmap operation. Once at the start to display the bmap
request, and once at the end to display the result.

To keep track of allocated blocks, gfs2_block_
alloc is called not only on allocations, but also on
freeing of blocks.

3.3 Journal/log subsystem

The trace points in this subsystem track blocks being
added to and removed from the journal (gfs2_pin),
as well as the time taken to commit the transactions to
the log (gfs2_log_flush). This can be very useful
when trying to balance the memory usage of a large log
against filesystem performance.

The gfs2_log_blocks keeps track of the reserved
blocks in the log, which can help show if the log is too
small for the workload, for example.

2009 Linux Symposium • 317

References

[1] “The GFS2 Filesystem,” Steven Whitehouse, Pro-
ceedings of the Linux Symposium, Ottawa, Canada,
June, 2007.

[2] “Global File System,” Steven Whitehouse et al.,
Wikipedia, http://en.wikipedia.org/
wiki/Global_File_System

[3] “Askant: A Linux file system performance anal-
ysis tool,” Andrew Price, Final year project,
Swansea University, Summer 2008.

318 • Testing and verification of cluster filesystems

Fixing PCI Suspend and Resume

Rafael J. Wysocki
University of Warsaw, Faculty of Physics, Hoża 69, 00-681 Warsaw

rjw@sisk.pl

Abstract

Interrupt handlers implemented by some PCI device
drivers can misbehave if the device they are supposed
to handle is not in the state they expect it to be in. If this
happens, interrupt storm may occur, potentially leading
to a system lockup. Unfortunately, if the device in ques-
tion uses shared interrupts, this can easily happen during
suspend to RAM, after the device has been put into a low
power state. It is even more likely that this will happen
at resume time, before the device is brought back to the
state it was in before the suspend. On some machines
this leads to intermittent resume failures that are very
difficult to diagnose.

In Linux kernels prior to 2.6.29-rc3 the power manage-
ment core did not do anything to prevent such failures
from happening, but during the 2.6.29 development cy-
cle we started to address the issue. Still, the solution
finally implemented in the 2.6.29 kernel is partial, be-
cause it only covers the devices that support the na-
tive PCI power management and it only affects the re-
sume part of the code. The complete solution, which
has been included into 2.6.30 and which is described
in the present paper, required us to make some rad-
ical changes, including a rearrangement of the major
steps performed by the kernel during suspend and re-
sume. However, not only should it make suspend and
resume much more reliable on a number of systems, but
it should also allow the writers of PCI device drivers to
simplify their code, because some standard PCI device
power management operations will now be carried out
by the core.

1 Introduction

From a computer user’s point of view suspend to RAM
appears to be a relatively simple operation. There is an
event that triggers it, for example a button is pressed
or a laptop lid is closed, and in a few seconds the ma-
chine is put into a state in which power is only provided

to its memory chips in order to preserve their contents.
This state will further be referred to as the memory sleep
state.

Analogously, during resume, after a specific event
which may be pressing of a button, opening a laptop
lid or receiving a magic packet from a network, the sys-
tem is brought from the memory sleep state back to the
working state in a few seconds. The whole operation
does not seem to be very complicated, but at the kernel
level it involves the execution of large amount of code
that is not run in any other circumstances. Moreover, if
one part of this code fails, it usually means that the sys-
tem will not reach the working state again or, even if it
does, its functionality will be adversely affected.

It usually is hard to diagnose such failures, especially
if they happen sufficiently late during suspend or suf-
ficiently early during resume, since in that cases there
is no practical way to get any useful debugging infor-
mation out of the failing machine. Quite often the only
chance to get some insight into the problem is when it
appears as a regression and we are able to identify the
exact change that caused it to appear.

Something like this happened during the 2.6.28 devel-
opment cycle, when resume started to break on one of
the author’s test machines in a reproducible way and it
seemed to be a result of a change of the PCI core code
responsible for allocating PCI resources. It was confus-
ing, because the change in question should not have af-
fected suspend and resume in any way, but in the process
of debugging it Linus Torvalds suggested that it might
be a result of mishandling shared PCI interrupts during
resume. Namely, due to the way in which the major-
ity of PCI device drivers handled suspend and resume,
there was a time window in which an interrupt could ar-
rive before the devices were put into the states they had
been in before the suspend. Then, if one of the involved
interrupt handlers could not cope with this situation, the
system would crash [LINUS1].

• 319 •

320 • Fixing PCI Suspend and Resume

Following this suggestion, we created a patch that made
the PCI power management core code put all devices
supporting the native PCI power management into the
full power state (D0) and restore their standard configu-
ration registers to the pre-suspend state before enabling
the CPU to receive hardware interrupts [PATCH1]. That
indeed made the problem go away on the affected sys-
tem and it was confirmed to fix resume on Linus’ own
machine, so it has been included into the 2.6.29 ker-
nel. Still, the devices that do not support the native PCI
power management might also be affected by the issue
with shared interrupts during resume, and the patch did
not cover the suspend part of the code at all. Thus, we
had to do more to fix the problem completely, but that
turned out to be quite difficult [LINUS2].

The main obstacle was the need to use platform hooks
for changing the power state of PCI devices that did not
support the native power management, because these
hooks could not be executed with interrupts disabled
on the CPU. To overcome it we had to rework the core
kernel’s suspend and resume code so that it prevented
hardware interrupts from reaching device drivers when
PCI devices might not be in the right states without dis-
abling interrupts on the CPU. Moreover, the ACPI spec-
ification1 wants us to put devices into low power states
before calling the platform firmware to prepare itself for
the system power transition and we had to take this into
account as well [ACPI-SPEC]. Consequently, to meet
all of the constraints, we rearranged the major steps
carried out by the kernel during suspend and resume,
which allowed us to develop the complete solution that
is present in 2.6.30.

In what follows we describe the problem in greater de-
tail and show a scenario in which it could manifest it-
self. For this purpose, among other things, we examine
the structure of the kernel’s suspend and resume code,
and explain how it made the observed failures possible.
Next, we present both the partial solution used in 2.6.29
and the final one recently merged into the main kernel
tree. Finally, we discuss the consequences of this for the
authors of PCI device drivers.

2 Description of the problem

To understand the problem and the approach used to fix
it, one needs to know how the kernel’s suspend and re-
sume code works, but that has been presented elsewhere

1ACPI 2.0 or later.

disable non-boot CPUs

disable interrupts

late suspend of devices

plat form enter

platform prepare

set f i rmware waking vector
_PSW (Prepare wake devices)

_PTS (Prepare to Sleep)
_SST (System indictor status)

suspend system devices

regular suspend of devices

Mishandled
interrupts
possible

Figure 1: Suspend code structure (2.6.29).

and we are not going to repeat this entire discussion
[S2RAM]. Still, we need to recall the parts of it the
problem description below is based on.

In the 2.6.29 and earlier kernels there are two phases
of suspending devices. The first of them, that fur-
ther will be referred to as the regular suspend of de-
vices, is carried out right before invoking the plat-
form .prepare() callback which executes the _PTS
global control method on ACPI systems. After
.prepare() has returned, the non-boot CPUs are put
off line2 and interrupts are disabled on the only remain-
ing active CPU. Then, the second phase of suspending
devices, that we will refer to as the late suspend of de-
vices, is performed. Next, the special system devices
called sysdevs, such as the local APIC of the boot pro-
cessor and I/O-APICs, are suspended and the platform
is called to put the system into the memory sleep state
[S2RAM]. The structure of the suspend code in the
2.6.29 and earlier kernels is schematically shown in Fig-
ure 1.

The resume part of the code is organized analogously.
First, sysdevs are resumed right after the platform
firmware has returned control to the kernel. Next, the
kernel carries out the first phase of resuming devices

2This is accomplished with the help of the CPU hotplug infras-
tructure.

2009 Linux Symposium • 321

resume at wake vector

initialize boot CPU

resume system devices

early resume of devices

enable non-boot CPUs

platform f inish

regular resume of devices

_WAK (platform wake-up)

enable interrupts

Mishandled
interrupts
possible

Figure 2: Resume code structure (2.6.29).

that we will refer to as the early resume of devices. After
that, interrupts are enabled on the only active CPU and
the other CPUs are brought back on line. Subsequently,
the platform .finish() callback is run which causes
the _WAK global control method to be executed on ACPI
systems. Then, the kernel starts the second phase of re-
suming devices, that further will be referred to as the
regular resume of devices [S2RAM]. The structure of
the resume code in the 2.6.29 and earlier kernels is
schematically illustrated in Figure 2.

Thus, in principle, every PCI device driver can imple-
ment two suspend callbacks, a regular one, to be called
before the platform .prepare() routine, and a late
one, to be executed with interrupts disabled. It can
also define two analogous resume callbacks, an early
one, to be executed with interrupts disabled, and a regu-
lar one, to be executed after the platform .finish()
callback. However, according to the ACPI specifica-
tion devices should be put into low power state before
the _PTS global control method is run [ACPI-SPEC],
so the vast majority of drivers implement the regular
suspend and resume callbacks only. The late suspend
and early resume callbacks are only provided by a few
drivers for special purposes. Accordingly, during sus-
pend and analogously during resume there is a time in-

terval in which devices may not be operational or even
accessible to their drivers, but the processors can receive
interrupts. Then, interrupt handlers may be invoked,
even if their devices do not generate any interrupts and
if they are not prepared to cope with that situation, the
consequences may be dire [LINUS3]. The time intervals
in which this is possible during suspend and resume are
marked in Figures 1 and 2, respectively, with a vertical
line on the left-hand side.

Of course, a PCI device in a low-power state cannot
generate interrupts. Yet, if that device uses shared in-
terrupts, then its driver’s interrupt handler may be in-
voked as a result of an interrupt generated by one of the
other devices sharing an interrupt vector with it. More-
over, this actually is quite probable, because the sus-
pend and resume callbacks provided by device drivers
are executed sequentially [S2RAM], so it is guaranteed
that one of the devices sharing the interrupt vector will
be suspended earlier and resumed later than the other
ones3. Therefore, if one of these devices is handled by
a driver with an interrupt handler that is not designed
to work correctly even if the device is not in the right
state, things are likely to go wrong. Namely, if the de-
vice that has not been suspended yet or that has already
been resumed generates an interrupt, the other devices’
interrupt handlers will be invoked, and if they fail, the
system is going to crash.

This generally is more likely to happen during resume.
Specifically, while during suspend the devices are ei-
ther fully operational or in low power states, so they
behave more or less in accordance with the drivers’ ex-
pectations, during resume they are usually in D0 (full
power state), but they need not have been initialized
yet. Then, before they eventually get initialized, they
may respond to the drivers’ attempts to access them in
a confusing way. Furthermore, during resume interrupts
may be generated as a result of a chipset glitch or some-
thing similar and that also may confuse interrupt han-
dlers that are not prepared to cope with devices in unex-
pected states.

Certainly, if every interrupt handler had been able to
cope with an already suspended or not yet resumed de-
vice, the problem would not have manifested itself. Un-
fortunately, this evidently is not the case and it would
not have been practical to try to fix all of the affected

3The order of resuming devices is reverse with respect to the
order of suspending them.

322 • Fixing PCI Suspend and Resume

drivers [LINUS2]. For this reason the power manage-
ment core (PM core) code had to be modified to prevent
the problem from happening.

3 Preliminary fix

To fix the problem described in Section 2, we used the
observation that it would not appear during resume if the
standard configuration registers of PCI devices were re-
stored to the pre-suspend state before enabling the CPUs
to receive hardware interrupts. Analogously, during sus-
pend the problem could not happen if devices were put
into low power states after disabling interrupts on the
boot CPU, but this turned out to be more difficult to im-
plement, so we first focused on the resume fix.

To implement it, we had to make the PM core re-
store the standard configuration registers of PCI de-
vices in the early phase of resume, before executing
the early resume callbacks provided by PCI device
drivers. Fortunately, that was not too difficult to achieve,
thanks to the organization of the device resume code.
Namely, the lowest-level resume code4 does not exe-
cute the drivers’ resume callbacks directly [S2RAM].
Instead, it invokes the resume callbacks defined by the
pci_bus_type bus type driver5, which in turn are
responsible for executing the drivers’ callbacks. More
precisely, the pci_bus_type bus type implements a
dev_pm_ops object, called pci_dev_pm_ops, that
points to a set of power management callbacks exe-
cuted by the lowest-level power management code in
various phases of suspend and resume6. In particu-
lar, the pci_pm_resume_noirq() routine is called
during the early resume of devices and it is responsi-
ble for executing the early resume callback provided
by each PCI device driver. Thus, it was sufficient to
make pci_pm_resume_noirq() restore the stan-
dard configuration registers of each PCI device before
executing the early resume callback provided by its
driver, if there was one.

For this purpose, however, we had to ensure the acces-
sibility of the device’s standard configuration registers
before attempting to restore their pre-suspend values.
Of course, in theory, the configuration space of a PCI
device should be accessible in any power state, except

4Located in drivers/base/power/main.c
5Defined in drivers/pci/pci-driver.c
6It also points to several hibernation-specific callbacks, but they

are out of the scope of the present discussion.

for D3cold [PCI-PM]; but in practice it is better to put
all devices into D0 before restoring their configuration
registers. Still, we could not use pci_set_power_
state() to do that, because this function might sleep
and therefore it would not be valid to call it with inter-
rupts disabled.

There are two reasons why pci_set_power_
state() may sleep. First, when changing the power
state of a device from D3 to D0 there is the manda-
tory 10 ms delay, necessary to allow the device to
actually enter the full power state [PCI-PM], and it
is implemented in pci_set_power_state() with
the help of msleep(). Second, pci_set_power_
state() executes a platform callback that in princi-
ple may be necessary to set up some power resources
(e.g. power planes, reference clock) required to power
up the device and this callback may sleep. Thus, dur-
ing the early resume of devices we could only use
the native PCI power management mechanism, im-
plemented in pci_raw_set_power_state(), for
putting devices into D0. Moreover, to be able to
prevent pci_raw_set_power_state() from call-
ing msleep() with interrupts disabled we had to
add a new parameter to it. Accordingly, the func-
tion called pci_restore_standard_config(),
shown in Figure 3, was introduced and pci_pm_
resume_noirq() was modified to call it before exe-
cuting the device driver’s resume callback [PATCH1].

Since the configuration spaces of PCI devices were
going to be restored during the early resume, it was
necessary to make sure that they would be saved dur-
ing suspend. For this reason pci_pm_suspend()
was modified to execute pci_save_state() be-
fore returning to the caller. However, it could not
do that unconditionally, because many device drivers
saved the PCI configuration spaces of their devices by
themselves before putting the devices into low power
states (usually D3hot). Of course, in that case, the
contents of PCI configuration registers saved by the
driver before the device was put into the low power
state should not be replaced by their contents saved
by pci_pm_suspend() when the device was al-
ready in that state. Therefore, the state_saved
flag was added to the pci_dev structure and pci_
save_state() was changed to set this flag on ev-
ery execution, so that pci_pm_suspend() could use
it do decide whether or not to save the PCI config-
uration registers of given device. This flag was also

2009 Linux Symposium • 323

int pci restore standard config(struct pci dev ∗dev)
{

pci power t prev state;
int error;

pci update current state(dev, PCI D0);

prev state = dev−>current state;
if (prev state == PCI D0)

goto Restore;

error = pci raw set power state(dev, PCI D0, false);
if (error)

return error;

/∗
∗ This assumes that we won’t get a bus in B2 or B3
∗ from the BIOS, but we’ve made this assumption
∗ forever and it appears to be universally satisfied.
∗/
switch(prev state) {
case PCI D3cold:
case PCI D3hot:

mdelay(pci pm d3 delay);
break;

case PCI D2:
udelay(PCI PM D2 DELAY);
break;

}

pci update current state(dev, PCI D0);

Restore:
return dev−>state saved ?

pci restore state(dev) : 0;
}

Figure 3: Function called during early resume to restore
configuration space of a PCI device (2.6.29).

used by pci_restore_standard_config() to
decide whether or not the device’s configuration space
ought to be restored [PATCH1].

The changes described above caused the standard con-
figuration registers of PCI devices supporting the na-
tive PCI power management to be saved during sus-
pend and restored during early resume with interrupts
disabled on the CPU. That turned out to fix the problem
described in Section 2 on a number of test machines,
but it obviously did not cover devices requiring addi-
tional power resources controlled by the platform to be
set up for putting them into D0. It also did not cover the
suspend-specific part of the problem in which interrupt
handlers might be invoked although their devices had al-
ready been put into low power states. Still, both of these
shortcomings were related to the fact that the platform
hooks necessary to change the power state of some de-
vices could not be executed with interrupts disabled and

we were not able to use pci_set_power_state()
during the late suspend and early resume of devices.
Hence, to remove the limitations, it was necessary to
either modify the platform hooks so that they could be
executed with interrupts disabled, or change the suspend
and resume code so that interrupts were enabled on the
CPU during the late and early phases of device suspend
and resume, respectively [LINUS4].

4 Complete solution

By using the approach presented in Section 3 we were
able to partially fix the problem described in Section 2
for devices that supported the PCI native power man-
agement. Still, more in-depth changes were necessary
to fix it completely and for all devices. Namely, for this
purpose we had to make it possible to execute platform
callbacks used for changing the power states of devices
during the late phase of suspend and the early phase of
resume.

There were two possible ways to achieve this goal. First,
the platform callbacks, most importantly the ACPI ones,
could be modified so that executing them with inter-
rupts disabled was valid, which would have been the
case if they had not taken any mutexes and generally if
they had avoided using functions that might sleep. This,
however, turned out to be impractical due to the com-
plexity of the ACPI code and to the fact that substantial
part of it, known as ACPICA7, was shared with some
other operating systems, like BSD [ACPICA]. Sec-
ond, the core suspend and resume code could be mod-
ified so that the CPUs were able to receive hardware
interrupts while executing the late suspend and early
resume callbacks provided by device drivers. Specif-
ically, as suggested by Linus Torvalds, instead of dis-
abling interrupts on the CPU before the late suspend of
devices, we could prevent device drivers from receiving
interrupts by running irq_disable() for all inter-
rupt vectors except for the timer ones [LINUS5]. Then,
even though the CPUs would be able to receive and
acknowledge hardware interrupts, the interrupts would
be disabled from the drivers’ point of view. More-
over, since timer interrupts would still be handled nor-
mally, it would be valid to call the potentially sleeping
functions from the device drivers’ late suspend routines
and if we did the analogous change in the resume part

7ACPI Common Architecture.

324 • Fixing PCI Suspend and Resume

of the code, we would be able to invoke these func-
tions from the drivers’ early resume callbacks and from
pci_restore_standard_config() as well.

This approach was used in the 2.6.30-rc3 and later ker-
nels. It allowed us to put PCI devices into D0 from
within pci_restore_standard_config() with
the help of pci_set_power_state() which
caused the platform callback changing the device’s
power state to be called as appropriate. Analogously,
we could use pci_set_power_state() to put PCI
devices into low power states during the late suspend
of devices. Still, at the same time we wanted to pre-
serve the suspend and resume code ordering follow-
ing from the ACPI specification8 stating that devices
ought to be put into low power states before the execu-
tion of the _PTS global control method which, in turn,
ought to happen before disabling the non-boot CPUs
[ACPI-SPEC]. Similarly, during resume we were sup-
posed to enable the non-boot CPUs before executing
the _WAK ACPI global control method which, in turn,
ought to happen before putting devices into D0. Thus,
we proposed to make device drivers’ late suspend call-
backs be executed before the platform .prepare()
callback and, analogously, their early resume callbacks
be executed after the platform .finish() callback. In
principle, this change should not matter to device drivers
and it would allow us to avoid some otherwise inevitable
complications related to reordering ACPI callbacks with
respect to one another [RJW1].

Unfortunately, it turned out that some platforms, like
for example ARM PXA, used the .prepare() and
.finish() callbacks to communicate with power
control devices over an I2C bus the controller of which
is effectively turned off and on during the late suspend
and early resume of devices, respectively [RMK]. As a
result, suspend and resume would not have worked on
these platforms if the .prepare() and .finish()
callbacks had been executed, respectively, after the late
suspend and before the early resume of devices. For
this reason we decided to introduce two additional plat-
form callbacks for suspend and resume, .prepare_
late() and .wake(), to be executed in these two
places and we used them for running the code that was
previously run in .prepare() and .finish(), re-
spectively, on ACPI systems [RJW2].

Consequently, in the 2.6.30-rc3 and later kernels the or-
dering of the suspend and resume code is different from

8ACPI 2.0 or later.

its ordering in the 2.6.29 and earlier kernels. Now, after
the first phase of suspending devices (i.e. regular sus-
pend) and the execution of the .prepare() platform
callback, device drivers are prevented from receiving
hardware interrupts which is immediately followed by
the second phase of suspending devices (i.e. late sus-
pend). Then, the platform .prepare_late() call-
back is executed, the non-boot CPUs are disabled and
interrupts are disabled on the only on-line CPU. Finally,
sysdevs are suspended and the platform is called to put
the system into the memory sleep state. Analogously,
during resume, after the platform firmware has trans-
ferred control to the kernel, sysdevs are resumed, in-
terrupts are enabled on the only on-line CPU and the
other CPUs are brought back on line. Next, the plat-
form .wake() callback is executed and device drivers’
early resume callbacks are run. Finally, device drivers
are allowed to receive hardware interrupts, the platform
.finish() callback is executed and the regular re-
sume of devices is carried out. The structure of the sus-
pend and resume code in the 2.6.30-rc3 and later kernels
is illustrated in Figure 4.

To make suspend and resume work as described in
the previous paragraph, we needed a reversible mech-
anism for preventing device drivers from receiving in-
terrupts after the regular suspend of devices. For this
purpose we had to make some changes to the generic
interrupt management code.9 Roughly, we wanted
irq_disable() to be called for every interrupt vec-
tor, except for the timer ones, right after the comple-
tion of the regular suspend of devices, but we also
needed to ensure that irq_enable() would be called
for these interrupt vectors during resume. Thus the
IRQ_SUSPENDED interrupt status flags was introduced
and used to mark the interrupt vectors disabled dur-
ing suspend, so that they could be re-enabled during
resume. Moreover, we had to take the locking and
reference counting done by the interrupt management
code into account, so we introduced the helper function
__disable_irq() complementary to __enable_
irq() and we made both of these functions take an
additional Boolean parameter specifying whether or not
they were called by the kernel’s core suspend and re-
sume code. [It calls them via suspend_device_
irqs() and resume_device_irqs() shown in
Figures 5 and 6, respectively.]

In addition, the fact that some platforms used wake-up

9Located in kernel/irq/manage.c.

2009 Linux Symposium • 325

disable non-boot CPUs

disable interrupts

late suspend of devices

plat form enter

platform prepare

set f i rmware waking vector
_PSW (Prepare wake devices)

_PTS (Prepare to Sleep)
_SST (System indictor status)

suspend system devices

regular suspend of devices

suspend_device_irqs()

platform prepare late

resume at wake vector

initialize boot CPU

resume system devices

early resume of devices

enable non-boot CPUs

platform f inish

regular resume of devices

_WAK (Platform wake-up)

enable interrupts

platform wake

resume_device_irqs()

Figure 4: Suspend (left) and resume (right) code structure (2.6.30-rc3 and later).

interrupts to abort suspend, if necessary, had to be taken
into consideration. Specifically, in the 2.6.29 and ear-
lier kernels it was possible to mark an interrupt vector
with the IRQ_WAKEUP status flag and make the plat-
form abort suspend if that interrupt was pending after
sysdevs had been suspended10. However, that might not
work any more after introducing suspend_device_
irqs() and resume_device_irqs() and rear-
ranging the core suspend and resume code as described
above, because the wake-up interrupts generated after
the late suspend of devices would be acknowledged by
one of the CPUs. In that case they would not appear
to the platform code as pending, since they had been
acknowledged by the CPU and the suspend would not
be aborted. That would have been a significant change

10The x86 architecture has never used wake-up interrupts.

of behavior relative to the 2.6.29 kernel and we had
to avoid it. For this purpose we used the observation
that the IRQ_PENDING flag was set for interrupts ac-
knowledged by the CPUs after suspend_device_
irqs() had run, so it was sufficient to check this
flag along with IRQ_WAKEUP after putting the non-
boot CPUs off line and disabling interrupts on the re-
maining active one. Therefore, we introduced the func-
tion check_wakeup_irqs() shown in Figure 7 and
made sysdev_suspend() call it and fail if the error
code was returned [RJW3].

With all of the above modifications in place we could
change pci_restore_standard_config() so
that it used pci_set_power_state() to put de-
vices into D0 before attempting to restore their stan-
dard PCI configuration registers with the help of pci_

326 • Fixing PCI Suspend and Resume

void suspend device irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc) {
unsigned long flags;

spin lock irqsave(&desc−>lock, flags);
disable irq(desc, irq, true);

spin unlock irqrestore(&desc−>lock, flags);
}

for each irq desc(irq, desc)
if (desc−>status & IRQ SUSPENDED)
synchronize irq(irq);

}

Figure 5: Function called during suspend to prevent de-
vice drivers from receiving interrupts (2.6.30-rc3 and
later)

void resume device irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc) {
unsigned long flags;

if (!(desc−>status & IRQ SUSPENDED))
continue;

spin lock irqsave(&desc−>lock, flags);
enable irq(desc, irq, true);

spin unlock irqrestore(&desc−>lock, flags);
}

}

Figure 6: Function called during resume to allow device
drivers to receive interrupts (2.6.30-rc3 and later)

restore_state() [RJW4]. As a result, it has been
substantially simplified11 as shown in Figure 8. We also
changed the suspend callbacks of the pci_bus_type
driver so that the late suspend callback saved the con-
figuration spaces of the devices for which they were
not saved by the drivers [RJW5]. This made it possi-
ble to develop a working PCI device driver supporting
power management that would not touch the standard
PCI configuration registers of the device in its suspend
and resume callbacks allowing the PCI PM core to han-
dle them as appropriate [RJW6].

11It also has been moved to drivers/pci/pci-driver.c.

int check wakeup irqs(void) {
struct irq desc ∗desc;
int irq;

for each irq desc(irq, desc)
if ((desc−>status & IRQ WAKEUP)

&& (desc−>status & IRQ PENDING))
return −EBUSY;

return 0;
}

Figure 7: Function called to check for wake-up inter-
rupts right before suspending sysdevs (2.6.30-rc3 and
later)

static int pci restore standard config(struct pci dev
∗pci dev) {

pci update current state(pci dev, PCI UNKNOWN);

if (pci dev−>current state != PCI D0) {
int error = pci set power state(pci dev, PCI D0);
if (error)
return error;

}

return pci dev−>state saved ?
pci restore state(pci dev) : 0;

}

Figure 8: Function called during early resume to re-
store configuration space of a PCI device (2.6.30-rc3
and later)

5 Consequences

Using the approach presented in Section 4 has profound
consequences for the writers of PCI device drivers want-
ing to support suspend and resume.12 Namely, it allows
them to let the PCI power management (PM) core take
care of the “ugly” details related to PCI power manage-
ment, such as the saving and restoration of the standard
configuration registers, putting the device into a low
power state during suspend and into D0 during resume,
and preparing it to wake up the system from the memory
sleep state, if desired. Since PCI device drivers have tra-
ditionally had problems with getting these things right,
allowing them to leave it all to the core appears to be a
big improvement. Of course, the drivers can still power
manage the devices by themselves, which may even be

12In our not so humble opinion, every new PCI device driver
ought to support suspend and resume.

2009 Linux Symposium • 327

necessary in some more complicated cases, but gener-
ally it is better if their authors avoid doing that, unless
they know very well what they are doing.

In general, PCI device drivers can implement suspend
and resume callbacks in two different ways. First,
they can implement the .suspend(), .suspend_
late(), .resume(), and .resume_early()
callbacks available in the pci_driver structure, as
shown in Figure 9. In that case, as indicated by the
names of the callbacks, .suspend() will be executed
in the first phase of suspending devices (regular sus-
pend), .suspend_late() will be executed in the
second phase of suspending devices (late suspend) and
analogously for the resume callbacks. Drivers do not
have to implement all of these callbacks, but if at least
one of them is implemented, the PCI PM core will re-
gard the driver as a “legacy” one and will apply spe-
cial rules to the device handled by it. In particular,
such a device will not be power managed by the PCI
PM core during suspend and it will not be prepared by
the core to wake up the system. Apart from this, the
suspend and resume callbacks defined in pci_driver
are used for hibernation as well as for suspend to RAM.
Accordingly, the suspend callbacks take an additional
argument of type pm_message_t specifying the con-
text in which they are called (suspend to RAM or hi-
bernation), but the resume callbacks do not take any
additional arguments, so it is the driver’s responsibility
to preserve the context information over the suspend-
resume (or hibernation-resume) cycle if needed.

struct pci driver {
...
int (∗suspend) (struct pci dev ∗dev, pm message t state);
int (∗suspend late) (struct pci dev ∗dev, pm message t state);
int (∗resume early) (struct pci dev ∗dev);
int (∗resume) (struct pci dev ∗dev);
...

};

Figure 9: Members of struct pci_driver used
during suspend to RAM and resume

The second way to implement suspend and resume call-
backs in a PCI device driver is to use a dev_pm_ops
object pointed to by the driver.pm member of the
pci_driver structure.13 This object, if present, con-
tains pointers to several power management callbacks
that can be implemented by a device driver. The major-
ity of them are hibernation-specific and we are not going

13The struct dev_pm_ops structure is defined in
include/linux/pm.h.

to discuss them here, but the ones shown in Figure 10
are used during suspend to RAM and resume. Still, the
first two of them, .prepare() and .complete(),
are only of interest to the authors of complicated drivers
involving the management of children devices that may
be registered and unregistered at any time, so we will
not discuss them either. The remaining four callbacks
are direct counterparts of the “legacy” ones discussed
in the previous paragraph, where the _noirq suffix in
the name means that the callback is a “late” or “early”
one. In other words, .suspend_noirq() plays the
role of .suspend_late() discussed previously and
analogously for .resume_noirq().

struct dev pm ops {
int (∗prepare)(struct device ∗dev);
void (∗complete)(struct device ∗dev);
int (∗suspend)(struct device ∗dev);
int (∗resume)(struct device ∗dev);
...
int (∗suspend noirq)(struct device ∗dev);
int (∗resume noirq)(struct device ∗dev);
...

};

Figure 10: Members of struct dev_pm_ops used
during suspend to RAM and resume

As already stated, a PCI device driver implementing the
“legacy” suspend and resume callbacks has to take care
of putting the device into a low power state and, if neces-
sary, preparing it to wake up the system during suspend,
although it need not put the device into D0 during re-
sume, since the PCI PM core is going to do that anyway
via pci_restore_standard_config(). More-
over, during suspend the device should be put into the
low power state by .suspend_late(), since other-
wise the problem described in Section 2 may appear.
In turn, a PCI device driver supporting suspend and re-
sume through a dev_pm_ops object need not power
manage the device during suspend and resume at all.
However, if its author decides to put device into a low
power state14 and prepare it for waking up the sys-
tem during suspend, these operations should be carried
out in .suspend_noirq() to avoid the problem de-
scribed in Section 2. Thus, it is possible to consider the
“late” and “early” callbacks as the ones in which the ac-
tual power management of the device takes place, while

14The standard PCI configuration registers of the device must be
saved before that happens, since otherwise the restoration of their
contents during resume may lead to undefined behavior.

328 • Fixing PCI Suspend and Resume

the remaining “regular” callbacks can be regarded as
the ones causing the driver to stop—.suspend()—or
start—.resume()—using the device without chang-
ing the power state and related properties of it. Of
course, in the kernels preceding 2.6.30-rc1 it was im-
possible to classify the suspend and resume callbacks
provided by device drivers this way.

As follows from the above discussion, it is recom-
mended and in the majority of cases more convenient to
support suspend and resume by using a dev_pm_ops
object rather then by implementing the “legacy” sus-
pend and resume callbacks. Thus, it seems reason-
able to give an example showing how to replace the
“legacy” callbacks by a dev_pm_ops object in an ex-
isting driver and clearly illustrating the benefit of do-
ing so. For this purpose consider the suspend and re-
sume callbacks implemented by the r8169 network
driver shown in Figures 11 and 12, respectively, and
observe that the PCI-specific operations carried out by
rtl8169_suspend() should in fact be moved to a
“late” suspend callback. Still, that will not be neces-
sary if the driver provides the support for suspend and
resume through a dev_pm_ops object.

static int rtl8169 suspend(struct pci dev ∗pdev, pm message t state)
{

struct net device ∗dev = pci get drvdata(pdev);
struct rtl8169 private ∗tp = netdev priv(dev);
void iomem ∗ioaddr = tp−>mmio addr;

if (!netif running(dev))
goto out pci suspend;

netif device detach(dev);
netif stop queue(dev);

spin lock irq(&tp−>lock);
rtl8169 asic down(ioaddr);
rtl8169 rx missed(dev, ioaddr);
spin unlock irq(&tp−>lock);

out pci suspend:
pci save state(pdev);
pci enable wake(pdev, pci choose state(pdev, state),

(tp−>features & RTL FEATURE WOL) ? 1 : 0);
pci set power state(pdev, pci choose state(pdev, state));

return 0;
}

Figure 11: Suspend callback of the r8169 driver
(2.6.29)

To replace the “legacy” callbacks provided by the
r8169 driver with an implementation based on a dev_
pm_ops object one can move the non-PCI part of
rtl8169_suspend() to a separate function, like the
one shown in Figure 13, and drop all of the PCI-specific

static int rtl8169 resume(struct pci dev ∗pdev) {
struct net device ∗dev = pci get drvdata(pdev);

pci set power state(pdev, PCI D0);
pci restore state(pdev);
pci enable wake(pdev, PCI D0, 0);

if (!netif running(dev))
goto out;

netif device attach(dev);

rtl8169 schedule work(dev, rtl8169 reset task);
out:

return 0;
}

Figure 12: Resume callback of the r8169 driver
(2.6.29)

operations from both the suspend and resume routines.
Of course, the dev_pm_ops object has to be defined
too, but this is really straightforward as illustrated by the
code in Figure 14 showing a possible implementation
of it for the r8169 driver15. Finally, the driver.pm
member of the driver’s pci_driver object has to be
made point to the dev_pm_ops object defined by the
driver, like the rtl8169_pm_ops object shown in
Figure 14 in this particular case.

static void rtl8169 net suspend(struct net device ∗dev) {
struct rtl8169 private ∗tp = netdev priv(dev);
void iomem ∗ioaddr = tp−>mmio addr;

if (!netif running(dev))
return;

netif device detach(dev);
netif stop queue(dev);

spin lock irq(&tp−>lock);
rtl8169 asic down(ioaddr);
rtl8169 rx missed(dev, ioaddr);
spin unlock irq(&tp−>lock);

}

Figure 13: Non-PCI part of the r8169 driver’s suspend
callback.

The benefit of implementing suspend and resume sup-
port in the new way, as illustrated in Figures 13 and
14, to the r8169 driver is that it need not worry about
the PCI-specific handling of the device during suspend

15This particular definition means that the suspend and resume
callbacks are going to be used for hibernation as well as for suspend
to RAM and the PCI PM core is supposed to take care of the PCI-
specific handling of the device in both cases.

2009 Linux Symposium • 329

static int rtl8169 suspend(struct device ∗device) {
struct pci dev ∗pdev = to pci dev(device);
struct net device ∗dev = pci get drvdata(pdev);

rtl8169 net suspend(dev);

return 0;
}

static int rtl8169 resume(struct device ∗device) {
struct pci dev ∗pdev = to pci dev(device);
struct net device ∗dev = pci get drvdata(pdev);

if (!netif running(dev))
goto out;

netif device attach(dev);

rtl8169 schedule work(dev, rtl8169 reset task);
out:

return 0;
}

static struct dev pm ops rtl8169 pm ops = {
.suspend = rtl8169 suspend,
.resume = rtl8169 resume,
.freeze = rtl8169 suspend,
.thaw = rtl8169 resume,
.poweroff = rtl8169 suspend,
.restore = rtl8169 resume,

};

Figure 14: Simplified suspend and resume support for
the r8169 driver

and resume and it need not implement any “late” and
”early” callbacks. Moreover, it can use the same simpli-
fied “regular” callbacks for both suspend to RAM and
hibernation allowing the PCI PM core to take care of
the PCI-specific operations that ought to be carried out
in any of these cases. In fact, if that implementation
of suspend and resume support is used, the driver only
needs to stop using the device during the regular sus-
pend of devices and start using it during the regular re-
sume of devices without doing anything else. This turns
out out be the case for the majority of PCI device drivers
currently in the kernel tree.

6 Conclusion

By using the approach presented in Sections 3 and 4 to
solve the problem described in Section 2 we made it pos-
sible to significantly simplify suspend and resume call-
backs provided by PCI device drivers. In particular, as
shown in Section 5, a PCI device driver’s suspend and
resume callbacks can be implemented in such a way that
all of the PCI-specific operations related to the power

management of the device will be carried out by the PCI
PM core.

Since the PCI PM core is now going to put every PCI
device into D0 and restore its standard configuration
registers during the early resume of devices, PCI de-
vice drivers need not do that any more. Therefore, it
would be reasonable to remove these operations from all
of the existing resume callbacks provided by PCI device
drivers. Moreover, the drivers that put devices into low
power states in their regular suspend callbacks should
be modified to do it in their late suspend callbacks. Still,
it may be even more beneficial to use a dev_pm_ops
object for implementing suspend and resume support,
as illustrated in Section 5, in which case the driver can
leave the PCI-specific power management of the device
to the PCI PM core.

The changes discussed in Sections 3 and 4 also made it
possible to look at the device drivers’ suspend and re-
sume callbacks from a new perspective. Namely, the
“regular” suspend callback, executed in the first phase
of suspend, can be regarded as the one that should make
the driver stop using the device, while the “late” suspend
callback can be treated as the one preparing the device
to wake up the system, if necessary, and putting it into a
low power state. Analogously, the “early” resume call-
back, executed during the early resume of devices, can
be regarded as the one that should put the device into the
full power state and restore its pre-suspend configura-
tion, while the “regular” resume callback can be treated
as the one preparing the driver to use the device again.
Of course, for PCI devices some or even all of the tasks
of the “late” suspend and “early” resume callbacks can
be completed by the PCI PM core, as described above.

7 Acknowledgements

The author thanks Linus Torvalds for his help and sup-
port of the work presented in this paper, Ingo Molnar
and Thomas Gleixner for their help with the modifica-
tions of the core interrupt management code and Jesse
Barnes for his help with the PCI part. He also thanks
everyone who commented and tested patches or con-
tributed to the work presented in this paper in any other
way.

References

[LINUS1] L. Torvalds, Re: Regression from 2.6.26:
Hibernation (possibly suspend) broken (http:

330 • Fixing PCI Suspend and Resume

//marc.info/?l=linux-kernel&m=
122852860315385&w=4).

[PATCH1] R. J. Wysocki, PCI PM: Restore standard
config registers of all devices early
(http://marc.info/?l=linux-pci&m=
123213931514157&w=2).

[LINUS2] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123360797907858&w=2).

[ACPI-SPEC] Advanced Configuration and Power
Interface Specification
(http://www.acpi.info).

[S2RAM] L. Brown, R. J. Wysocki, Suspend to RAM
in Linux (Proceedings of the Linux Symposium,
Ottawa 2008
http://ols.fedoraproject.org/OLS/
Reprints-2008/brown-reprint.pdf).

[LINUS3] L. Torvalds, Re: What should PCI core do
during suspend-resume? (http:
//marc.info/?l=linux-netdev&m=
123343922809244&w=2).

[PCI-PM] PCI Bus Power Management Interface
Specification (http://www.pcisig.com/
specifications/conventional/).

[LINUS4] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123361303317554&w=2).

[ACPICA] ACPICA project home page
(http://acpica.org).

[LINUS5] L. Torvalds, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123361270416948&w=2).

[RJW1] R. J. Wysocki, Re: PCI PM: Restore standard
config registers of all devices early (http:
//marc.info/?l=linux-kernel&m=
123365338201811&w=2).

[RMK] R. King, 900af0d breaks some embedded
suspend/resume (http:
//marc.info/?l=linux-kernel&m=
124026014415587&w=2).

[RJW2] R. J. Wysocki, PM/Suspend: Introduce two
new platform callbacks to avoid breakage
(http:
//marc.info/?l=linux-kernel&m=
124022459914679&w=2).

[RJW3] R. J. Wysocki, PM: Introduce functions for
suspending and resuming device interrupts
(http:
//marc.info/?l=linux-kernel&m=
123703066215140&w=2).

[RJW4] R. J. Wysocki, PCI PM: Use
pci_set_power_state during early resume
(http:
//marc.info/?l=linux-kernel&m=
123703114515664&w=2).

[RJW5] R. J. Wysocki, PCI PM: Put devices into low
power states during late suspend (rev. 2) (http:
//marc.info/?l=linux-kernel&m=
123703114515667&w=2).

[RJW6] R. J. Wysocki, NET/r8169: Rework suspend
and resume (http:
//marc.info/?l=linux-kernel&m=
123895686321519&w=4).

Real-Time Performance Analysis in Linux-Based Robotic Systems

Hobin Yoon, Jungmoo Song, and Jamee Lee
Advanced Software Laboratories,

Samsung Advanced Institute of Technology,
Samsung Electronics Co. Ltd.

{hobin.yoon, jmsong, jamee.lee}@samsung.com

Abstract

Mobile or humanoid robots collect environmental data
and reflect back as robotic behaviors via various sensors
and actuators. It is crucial this occurs within a specified
time. Although real-time flavored Linux has been used
to control robot arms and legs for quite a while, it has
not been reported much whether the current real-time
features in Linux could still meet this requirement for a
much more complicated system - a humanoid with about
60 servo motors and sensors with multiple algorithms
such as recognition, decision, and navigation running
simultaneously. In this paper, in order to meet such re-
quirement, adopting EtherCAT technology is introduced
and its Linux implementation is illustrated. In addition,
results of real-time experiments and timing analysis on
a multi-core processor are presented showing Linux is
a viable solution to be successfully deployed in various
robotic systems.

1 Introduction

One of the key requirements of mobile or humanoid
robot is precise control period. It is crucial in robot de-
sign in several ways. First it guarantees response time
so that robot is able to react properly from external stim-
ulus within a specified time. For example, when a robot
hits an obstacle while it walks, if a proper re-balancing
of the motion is not executed in a fraction of time, it falls
down to the ground. Second, it enables smooth control
of each joint which is controlled by a micro controller.
Each micro controller tries to compensate movement of
each servo motor if it goes too fast or slow and high jitter
brings about high current consumption and even noise.

To achieve real-time communication of distributed de-
vices, a field-bus system is used. We have se-
lected EtherCAT over other field-bus systems for

its flexible topology, simple configuration, and cost-
effectiveness [18, 2]. The technology is supported
and promoted by ETC (EtherCAT Technology Group)
and standardized by IEC (International Electrotechnical
Commission) in 2007.

Figure 1: Deployment of EtherCAT master and slave
devices

Figure 1 shows schematic diagram of EtherCAT in our
robot system. Network interface card on main board in
torso plays an EtherCAT master and all other rectangles
represent EtherCAT slave devices. They are connected
by Ethernet cables which forms various topologies such

• 331 •

332 • Real-Time Performance Analysis in Linux-Based Robotic Systems

as star, tree, and daisy chain. Each EtherCAT slave de-
vice is connected by a couple of actuators or sensors.

For EtherCAT master implementation, EtherLab was se-
lected from other master implementations for its proper
license and active community [12]. EtherCAT slave
hardware is implemented by a few vendors as low-price
ASIC. We have selected Beckhoff ET1100 [9].

Real-time scheduling is essential for precise control pe-
riod. Traditionally, RT OSes such as QNS, RTLinux,
VxWorks and Windows CE have been major players in
real-time computing. Linux has been evolved a lot for
the past few years in terms of real-time. Since in-kernel
preemption on kernel 2.4, a lot of real-time enhance-
ments has been added including thread-context interrupt
handling, preemptible mutex, priority-inheritance mu-
tex, high-resolution timer, user-space real-time mutex.
With the help of these efforts, Linux is becoming com-
parable with traditional RT OSes [11, 13].

Although many efforts have been made to enhance pre-
emption latency, there are still lots of non-preemptible
critical sections and interrupt off regions. Some of the
major sources of these latencies are disk IO and network
IO [11].

There are several clock sources on x86 architecture
such as PIT, ACPI PM, HPET, TSC. The most reliable
counter with highest priority is chosen on Linux kernel
start-up. TSC is usually chosen for its highest resolu-
tion. One shortcoming of the TSC was its inability to
adapt dynamic voltage scaling, however, it is solved by
constant TSC.

We use a multi-core processor for better efficiency in
terms of power usage. However, it has a drawback in de-
terministic timing. On SMP kernel, preemption latency
increases as more processors are added, because they
contend for shared interrupt-off region and/or preempt-
off region. Affinitizing task and interrupt handling can
reduce preemption latency to some extent [11]. To deal
more with real-time, some robotic systems use multiple
OSes and boards to separate real-time task and non real-
time task, although it adds more complexity and power
consumption to the system [8, 20].

Tuning real-time application is dependent on application
model and often underlying hardware, so it requires a lot
of experiments. We followed good real-time program-
ming guides [4, 17, 19] and the experimental result will
be presented.

This paper is organized as follows. Section 2 describes
design and implementation of RCKS (Robot Control
Kernel Subsystem). Section 3 presents real-time per-
formance analysis of our robotic system. Section 4 ad-
dresses further tunings. Finally, Section 5 presents con-
cluding remarks.

2 Design and Implementation of RCKS

Figure 2 shows software architecture of our robotic sys-
tem which especially details in kernel components. At
the bottom of the layer, modified Ethernet device driver
communicates with NIC. It has been modified to fetch
received packets without interrupt. As a controlling
task is guaranteed to be executed periodically, interrupts
from network device driver were considered redundant.
EtherCAT master which is layered on top of NIC does
EtherCAT protocol handling and monitoring slave de-
vice status [12]. ECCI (EtherCAT Control Interface) is
implemented on top of EtherCAT master as an interface
to user-space applications.

Figure 2: Software architecture of Robot Control Kernel
Subsystem

We started from adopting EtherCAT master implemen-
tation. EtherLab is implemented in kernel space for
two reasons. One is to avoid mode switching between
kernel-space and user-space and the other is to commu-
nicate directly with network device driver. The driving
application is also implemented as a kernel module [12].
Its design is optimized for performance, thereby suits
for relatively small applications. However, our robot -
as a humanoid robot - needs complex application logic
and uses many user-space libraries that makes it in-
evitable to implement these in user-space. ECCI was

2009 Linux Symposium • 333

implemented to provide interface to user-space appli-
cations while keeping EtherCAT protocol handling in-
tact in kernel-space. The interface includes configuring
slaves, controlling actuators, reading sensor data and no-
tifying slave status changes. It also presents a proc file
system interface for exporting timing statistics.

In every cycle, ECCI receives one read-write request
from the real-time task, Motion Controller. Asyn-
chronously to this request, several non real-time tasks
make read requests to ECCI. ECCI internally maintains
cache of cyclic data obtained from EtherCAT master for
efficiency and controls concurrent accesses from mul-
tiple tasks using a mutex which is enabled by FUTEX
or PREEMPT_RT. To prevent long waiting of real-time
task, ECCI employs RT-mutex [5]. RT-mutex supports
priority inheritance and priority queuing which help our
real-time task wait at most 1 non real-time task as shown
in Figure 3.

Figure 3: Concurrency control of ECCI buffer by RT-
mutex: (A) Real-time task D arrives after non real-time
task B and C. (B) Real-time task D acquires lock before
non real-time task B and C.

Data flow in each cycle is depicted in Figure 4. The
Motion Controller process sends commands which tra-
verse through several layers to reach each actuator. Sim-
ilarly, each sensor’s data go through the layers to get to
the Motion Controller. Data flow starts from the Mo-
tion Controller process. The process issues a read-write
command which, in turn, fetches sensor data from the
NIC’s (Network Interface Card) buffer and composes
and sends actuator commands. The sensor data have
been ready at the NIC’s buffer in previous cycle. The
actuator commands are packetized in Ethernet frame
which traverses through all slave devices. EtherCAT
master returns immediately without waiting for the Eth-
ernet frame and the thread of execution returns back
to the Motion Controller. Now, the Motion Controller

computes next cycle’s motion plan and goes to sleep to
keep steady control period. EtherCAT datagram which
has been encapsulated in Ethernet packet is updated as
it passes through the ESC (EtherCAT Slave Controller)
on each slave device. The ESC generates interrupt to the
micro controller which fetches new data from ESC’s in-
ternal memory, controls actuators, gathers sensor data,
and updates ESC’s memory.

Sensor data take 1.5 to 2.5 cycles to reach to the Motion
Controller depending on the time of occurrence. Com-
mand from the Motion Controller takes 1.5 cycles to be
delivered to each actuator. Therefore it takes 3 to 4 cy-
cles until our robot reacts to an external event—that is,
3 to 4 ms.

3 Real-Time Performance Analysis

The accuracy of the Motion Controller’s control period
depends on the accuracy of the sleep time in Figure 4.
If the motion planning consumes reasonable amount of
time, optimizing control period is essentially similar to
optimizing the preemption latency of Linux kernel, and
general real-time performance tunings can be applied.

3.1 General Real-Time Tunings

Linux kernel provides several tuning knobs for real-time
applications. We applied some of the typical real-time
tunings to achieve deterministic timing of the Motion
Controller.

First, the Motion Controller process should have the
highest real-time priority. It sleeps at the end of ev-
ery cycle to keep constant control period which makes
the task being moved from run queue to wait queue in
Linux kernel. When the time expires it comes back to
run queue. After that, when Linux scheduler exam-
ines the run queue, our Motion Controller should be
on the highest priority run queue. Linux system call
sched_setscheduler() provides this facility.

Second, dedicating one CPU for the Motion Controller
is desirable. CPU shielding is a strategy in multi-
processor system which dedicates one CPU to a real-
time task and other CPUs to non real-time tasks and
interrupt handlers. This is beneficial to the Motion
Controller for two reasons. First, it prevents latencies
caused by a non real-time task or interrupt handler. They

334 • Real-Time Performance Analysis in Linux-Based Robotic Systems

Figure 4: Data flow in a cycle. Data is exchanged through several layers.

may be in an interrupt-off and/or preemption-off region
when the Motion Controller is about to be executed,
thereby increasing latency. Second, high cache coher-
ence - high coherence of instruction cache, data cache,
and TLB (Translation Lookaside Buffer) - helps fast ex-
ecution of the Motion Controller. Linux provides sys-
tem call sched_setaffinity() for setting CPU affinity of
a process. For interrupt affinity, proc file system in-
terface /proc/irq/<irq_number>/smp_affinity and kernel
API set_ioapic_affinity_irq() are provided. taskset is
also a useful tool to get and set a process’s CPU affinity
from a shell. In addition, kernel can be configured to
support CPUSETS which constrains the CPU and mem-
ory placement of tasks [1]. It is desirable to setup a re-
source management policy and enforce it using a global
resource manager from which all child processes inher-

its the policy.

Last, the Motion Controller should not be paged-out to
prevent high cost of fetching the page from swap area.
Linux provides system call mlock() for locking the pro-
cess’s virtual address space into RAM.

3.2 Spinning nanosleep

RTLinux provides TIMER_ADVANCE option in its
clock_nanosleep() API to enhance accuracy of sleep
time. This mechanism wakes a task up before its dead-
line has arrived and puts it into a busy-wait loop until
the deadline has arrived. This busy-wait loop improves
latency for real-time task, but the process is in a busy-
wait loop while waiting for the deadline [6, 10]. We

2009 Linux Symposium • 335

implemented this idea in Linux and applied to the Mo-
tion Controller. Since our robotic system dedicate one
CPU core to the Motion Controller exclusively, spinning
in the Motion Controller doesn’t affect performance of
other tasks. One shortcoming of this busy-waiting is in-
creased power consumption in the core. However, this
increase would be small enough compared to the over-
all power consumption of the robot where most power
is consumed by the actuators of the joints. One word of
caution is that spinning nanosleep should really sleep for
some time or yield CPU to other higher or equal priority
tasks before spinning on CPU. Otherwise it causes the
starvation of other important kernel threads like watch-
dog, migration and timer thread which can lead to ab-
normal system behavior.

3.3 Experiment Planning

For the robot to move smoothly, it is important for the
Motion Controller to send command to ECCI at the ex-
act time of each cycle. We measured the time and gener-
ated statistics. The idea is similar to the latency analysis
of cyclictest or realfeel [21, 7, 3]. Ideal period of be-
tween each consecutive time should be 1 ms; however,
in practice, before the Motion Controller wakes up from
sleep, the kernel may be in a critical section, which re-
sults in an additional wake-up delay of the Motion Con-
troller.

To verify the effect of real-time tunings to the Motion
Controller, we tested with all the combinations of the
following options.

• Highest Priority

• CPU Shielding

• Memory Locking

In addition, spinning nanosleep is tested with all the
above options turned on. Maximum spinning time is
set to 50 us. When more sleep time is requested, it first
nanosleep()s until 50 us remains and spins for the re-
maining time.

To ensure real-time performance of an operational sys-
tem, it is advised to keep system load under 50% [16].
Nevertheless measuring performance under heavy load
is important to observe worst-case performance. Fig-
ure 5 shows the test script which generates extremely
high disk IO and network IO [14]. Figure 6 describes
test environment.

• Linux kernel version: 2.6.26.8-rt16

• CPU: x86 2.4GHz Quad-core

• RAM: 2GBytes

• Robot slave devices: 59 sensors and actuators

Figure 6: Test Environment

3.4 Experimental Results

Figure 7 and 8 shows test results on unloaded system
and on heavily loaded system respectively. Each combi-
nation of test was performed for 10 minutes.

Without any real-time tuning, measured maximum con-
trol period was 1,482 us on unloaded system and
346,148 us on heavily loaded system. The latter was
intolerable in our robotic system.

With general real-time tunings applied—with maxi-
mum priority, memory locking and CPU shielding set—
unloaded system showed average 1,017.60 us and max-
imum 1,044 us control period and heavily loaded sys-
tem showed average 1,006.12 us and maximum 1,100
us control period.

Memory locking showed little improvement compared
with other real-time tunings. It is assumed that the little
improvement was due to the enough physical memory
—which is 2GBytes—on our test environment which
might not cause many page fault and paging-out.

Spinning nanosleep, in addition to general real-time tun-
ings, showed best real-time performance. Control pe-
riod was average 1,002.77 us and maximum 1,020 us on
unloaded system and average 1,002.11 us and maximum
1,071 us on heavily loaded system which are satisfac-
tory for smooth motion control of our robot.

Maximum values are highly unpredictable and may vary
from experiment to experiment, which is because pre-
dicting longest kernel path—nested interrupt-off and
preemption-off regions—is nearly impossible on heav-
ily loaded system. For example, if the test duration is
too short, the order of performance can differ from Fig-
ure 7 and 8, however when distribution is considered—
like from low 99% range to low 99.999% range—we
could conclude that the results are easily reproducible.

336 • Real-Time Performance Analysis in Linux-Based Robotic Systems

while true; do dd if=/dev/zero of=bigfile bs=1024000 count=1024; done &
while true; do killall hackbench; sleep 5; done &
while true; do $HACK_BENCH 20; done &
ping -l 100000 -s 10 -f localhost &
while true; do du -s / > /dev/null 2>&1 ; done &

Figure 5: Stress on Testing

4 Further Enhancements

Further fine-tunings are possible depending on system.
In real-time systems, the ext2 file system is recom-
mended if journaling is not required. Runlevel should
be set to multi-user mode without the graphical interface
to avoid additional load. Out-of-memory killer could be
customized to select victim process which is least sig-
nificant in terms of a robotic system. Proper tuning of
sched_nr_migrate parameter is desired to limit the num-
ber of task that will move at a time [4, 17, 19].

Delayed locking technique can be applied to our sys-
tem which execute a real-time task at a predefined in-
terval [15]. This technique allows a non real-time task
to enter a critical section only if the operation does not
disturb the future execution of the real-time application.

5 Conclusions

Our robotic system needed a real-time OS for deter-
ministic control of actuators and sensors, and, at the
same time needed a general OS for running many
processes simultaneously and using rich user-space li-
braries. Linux with complete in-kernel preemption
patch was selected to meet the requirements and our
robot system had the benefit of exploiting plentiful
open-source software available in Linux.

Robot control kernel subsystem is implemented us-
ing EtherLab, an EtherCAT master implementation
to control various sensors and actuators in real-time.
Robot-specific application logic is implemented in user-
space, while EtherCAT-specific protocol handling stays
in kernel-space so the kernel can be robust from user-
space bugs.

On our system, 1,000 us control period was met most of
the time, with average 1,002.11 us and maximum 1,071
us on heavily loaded system which was good enough
for smooth motion control. As our robotic system is

still in development, we expect to get better real-time
performance with further fine tunings.

References

[1] CPUSETS. Linux kernel documentation:
kernel/Documentation/cpusets.txt.

[2] EtherCAT Technical Introduction and Overview.
http://www.packagingdigest.com/
contents/pdf/EtherCAT_
Introduction_en.pd%f.

[3] Linux Real Time Patch Review - Vanilla vs. RT
patch comparison.
http://www.captain.at/
howto-linux-real-time-patch.php.

[4] Real-Time Linux Wiki. Project site:
http://rt.wiki.kernel.org.

[5] RT-mutex subsystem with PI support. Linux
kernel documentation:
kernel/Documentation/rt-mutex.txt.

[6] RTLinuxPro CPU Reservation Technology.
http://www.linuxdevices.com/
articles/AT7665542109.html.

[7] Andrew Webber. Realfeel Test of the Preemptible
Kernel Patch. http://www.
linuxjournal.com/article/6405.

[8] Berthold Bäuml and Gerd Hirzinger. When hard
realtime matters: Software for complex
mechatronic systems. Robotics and Autonomous
Systems, 56(1):5–13, 2008.

[9] Beckhoff. Hardware Data Sheet ET1100
EtherCAT Slave Controller, Jan 2008.

[10] Cort Dougan and Zwane Mwaikambo. Lies,
Misdirection, and Real-Time Measurements.
http://www.ddj.com/cpp/184401780.

2009 Linux Symposium • 337

[11] S. Dietrich and D. Walker. The evolution of
real-time linux. In Proceedings of Seventh
Real-Time Linux Workshop, Nov 2005.

[12] EtherLab. IgH EtherCAT Master 1.4.0
Preliminary Documentation, Feb 2009.

[13] Thomas Gleixner and Douglas Niehaus. Hrtimers
and beyond: Transforming the linux time
subsystems. In Ottawa Linux Symposium, 2006.

[14] Ingo Molnar. dohell script. Linux kernel mailing
list: http:
//lkml.org/lkml/2005/6/22/347.

[15] Jupyung Lee and Kyu-Ho Park. Delayed locking
technique for improving real-time performance of
embedded linux by prediction of timer interrupt.
In Real Time and Embedded Technology and
Applications Symposium, 2005. RTAS 2005. 11th
IEEE, pages 487–496, March 2005.

[16] Paul E McKenny. ’real time’ vs ’real fast’: How
to choose? In Ottawa Linux Symposium, 2008.

[17] Montavista. Real-time Application Programmer’s
Guide, 2008.

[18] S. Potra and G. Sebestyen. Ethercat protocol
implementation issues on an embedded linux
platform. In Automation, Quality and Testing,
Robotics, 2006 IEEE International Conference
on, volume 1, pages 420–425, May 2006.

[19] Redhat. Red Hat Enterprise MRG 1.1 Realtime
Tuning Guide, 2008.

[20] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge,
D. Mora, D. Pinyol, J. Oliver, O. Torres,
J. Velazquez, and D. Faconti. Reem-b: An
autonomous lightweight human-size humanoid
robot. In Humanoid Robots, 2008. Humanoids
2008. 8th IEEE-RAS International Conference on,
pages 462–468, Dec. 2008.

[21] Thomas Gleixsner. Cyclictest.
http://rt.wiki.kernel.org/index.
php/Cyclictest.

338 • Real-Time Performance Analysis in Linux-Based Robotic Systems

No Tuning M C MC P PM PC PMC PMCS
min 1,005.00 1,006.00 1,005.00 1,005.00 1,005.00 1,005.00 1,004.00 1,004.00 1,001.00

Low max 1,023.00 1,032.00 1,030.00 1,028.00 1,029.00 1,030.00 1,029.00 1,032.00 1,006.00
99% avg 1,013.45 1,020.54 1,020.01 1,014.19 1,019.46 1,019.75 1,014.48 1,017.43 1,002.72

SD 5.02 4.94 4.51 5.10 4.03 4.37 5.34 4.21 0.48
Low max 1,060.00 1,061.00 1,072.00 1,062.00 1,034.00 1,035.00 1,030.00 1,037.00 1,008.00

99.9% avg 1,013.56 1,020.65 1,020.11 1,014.33 1,019.56 1,019.86 1,014.61 1,017.58 1,002.76
SD 5.17 5.06 4.65 5.33 4.15 4.50 5.50 4.48 0.65

Low max 1,351.00 1,085.00 1,355.00 1,331.00 1,038.00 1,038.00 1,034.00 1,039.00 1,013.00
99.99% avg 1,013.62 1,020.70 1,020.19 1,014.41 1,019.57 1,019.88 1,014.62 1,017.60 1,002.77

SD 5.76 5.32 5.82 6.16 4.17 4.53 5.52 4.52 0.69
Low max 1,474.00 1,394.00 1,463.00 1,444.00 1,043.00 1,040.00 1,040.00 1,041.00 1,016.00

99.999% avg 1,013.66 1,020.71 1,020.22 1,014.44 1,019.57 1,019.88 1,014.63 1,017.60 1,002.77
SD 6.96 5.59 6.86 7.08 4.18 4.53 5.52 4.52 0.70
max 1,482.00 1,464.00 1,484.00 1,477.00 1,064.00 1,044.00 1,044.00 1,044.00 1,020.00

100% avg 1,013.67 1,020.71 1,020.23 1,014.45 1,019.58 1,019.88 1,014.63 1,017.60 1,002.77
SD 7.12 5.74 7.02 7.23 4.18 4.53 5.52 4.52 0.70

Maximum value and statistics of control periods on unloaded system. 100% row shows distribution of entire range,
while other rows show data distribution without peak values. (Unit:us, P: maximum priority, M: memory locking,

C: CPU shielding, S: spinning nanosleep)

Distribution of control periods

Figure 7: Control periods on unloaded loaded system

2009 Linux Symposium • 339

No Tuning M C MC P PM PC PMC PMCS
min 1,002.00 1,003.00 1,004.00 1,004.00 1,004.00 1,004.00 1,004.00 1,004.00 1,001.00

Low max 36,967.00 37,019.00 1,249.00 1,215.00 1,020.00 1,026.00 1,027.00 1,027.00 1,004.00
99% avg 2,072.05 2,066.02 1,006.85 1,006.66 1,006.96 1,007.08 1,005.83 1,005.81 1,002.03

SD 3,935.35 3,915.51 13.03 11.83 1.85 2.11 3.28 3.23 0.20
Low max 88,376.00 87,678.00 2,004.00 2,004.00 1,050.00 1,051.00 1,048.00 1,048.00 1,019.00

99.9% avg 2,529.41 2,521.51 1,013.85 1,013.33 1,007.17 1,007.30 1,006.09 1,006.07 1,002.08
SD 6,314.70 6,283.76 78.55 76.08 2.90 3.25 4.29 4.26 0.74

Low max 156,548.00 152,964.00 16,513.00 19,003.00 1,173.00 1,160.00 1,068.00 1,071.00 1,038.00
99.99% avg 2,624.61 2,615.18 1,016.26 1,016.09 1,007.23 1,007.36 1,006.13 1,006.11 1,002.10

SD 7,081.89 7,029.08 138.80 161.27 3.57 3.84 4.52 4.51 0.99
Low max 236,548.00 228,477.00 39,079.00 33,098.00 1,387.00 1,319.00 1,081.00 1,088.00 1,055.00

99.999% avg 2,640.65 2,630.67 1,018.49 1,018.29 1,007.25 1,007.38 1,006.13 1,006.12 1,002.11
SD 7,284.39 7,219.58 280.70 285.45 4.23 4.36 4.56 4.56 1.06
max 346,148.00 284,092.00 50,158.00 56,006.00 1,510.00 1,464.00 1,098.00 1,100.00 1,071.00

100% avg 2,643.59 2,633.28 1,018.92 1,018.73 1,007.25 1,007.39 1,006.14 1,006.12 1,002.11
SD 7,341.15 7,264.35 310.66 317.71 4.46 4.53 4.57 4.57 1.08

Maximum value and statistics of control periods on heavily loaded system. 100% row shows distribution of entire
range, while other rows show data distribution without peak values. (Unit:us, P: maximum priority, M: memory

locking, C: CPU shielding, S: spinning nanosleep)

Distribution of control periods (Values greater than 1,500 us were not depicted)

Figure 8: Control periods on heavily loaded system

340 • Real-Time Performance Analysis in Linux-Based Robotic Systems

