
Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Contents
x86 Network Booting: Integrating gPXE and PXELINUX 9

H. Peter Anvin

Keeping the Linux Kernel Honest 19
Kamalesh Babulal & Balbir Singh

Korset: Automated, Zero False-Alarm Intrusion Detection for Linux 31
Ohad Ben-Cohen & Avishai Wool

Suspend-to-RAM in Linux 39
Len Brown & Rafael J. Wysocki

Systems Monitoring Shootout 53
K. Buytaert, T. De Cooman, F. Descamps, & B. Verwilst

Virtualization of Linux servers 63
F.L. Camargos, G. Girard, & B. des Ligneris

MondoRescue: a GPL Disaster Recovery Solution 77
Bruno Cornec

The Corosync Cluster Engine 85
Steven C. Dake

LTTng: Tracing across execution layers, from the Hypervisor to user-space 101
Mathieu Desnoyers

Getting the Bits Out: Fedora MirrorManager 107
Matt Domsch

Applying Green Computing to clusters and the data center 113
Andre Kerstens & Steven A. DuChene

Introduction to Web Application Security Flaws 123
Jake Edge

Around the Linux File System World in 45 minutes 129
Steve French

Peace, Love, and Rockets! 135
Bdale Garbee

Secondary Arches, enabling Fedora to run everywhere 137
Dennis Gilmore

Application Testing under Realtime Linux 143
Luis Claudio R. Gonçalves & Arnaldo Carvalho de Melo

IO Containment 151
Naveen Gupta

Linux Capabilities: making them work 163
Serge E. Hallyn & Andrew G. Morgan

Issues in Linux Mirroring: Or, BitTorrent Considered Harmful 173
John Hawley

Linux, Open Source, and System Bring-up Tools 183
Tim Hockin

Audio streaming over Bluetooth 193
Marcel Holtmann

Cloud Computing: Coming out of the fog 197
Gerrit Huizenga

Introducing the Advanced XIP File System 211
Jared Hulbert

Low Power MPEG4 Player 219
J.-Y. Hwang, J.-H. Kim, & J.-H. Kim

VESPER (Virtual Embraced Space ProbER) 229
S. Kim, S. Moriya, & S. Oshima

Camcorder multimedia framework with Linux and GStreamer 239
W. Lee, E. Kim, J. Lee, S. Kim & S. Park

On submitting kernel patches 253
Andi Kleen

Ext4 block and inode allocator improvements 263
A. Kumar, M. Cao, J. Santos, & A. Dilger

Bazillions of Pages 275
Christoph Lameter

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

x86 Network Booting: Integrating gPXE and PXELINUX

H. Peter Anvin
rPath, Inc.

<hpa@zytor.com>

Marty Connor
Etherboot Project

<mdc@etherboot.org>

Abstract

On the x86 PC platform, network booting is most com-
monly done using software that follows the Preboot Ex-
ecution Environment (PXE) specification. PXELINUX

from the SYSLINUX Project and gPXE from the Ether-
boot Project are popular Open Source implementations
of key PXE components.

In this presentation, we will describe how these two
projects were able to jointly develop an integrated PXE-
compatible product that provides additional network
booting capabilities that go well beyond the PXE spec-
ification. We will also discuss some of the organiza-
tional challenges encountered during this collaboration
between two Open Source projects with different prior-
ities, design goals, and development strategies.

1 Motivation

Open Source software development by definition allows
and encourages code sharing and collaboration between
projects. There are, however, costs associated with these
endeavors, and these costs must be weighed against po-
tential benefits associated with using code developed by
another project.

In the case of improving integration between gPXE and
PXELINUX, developers from SYSLINUX and the Ether-
boot Project were motivated to collaborate because they
believed there might be significant benefits to leverag-
ing work already done by the other project. Although
the process of creating better interoperability between
products required significant communication and effort,
it was a useful and rewarding exercise for both develop-
ment teams.

To understand how these two Open Source projects
reached this point of collaboration we will examine the
history of network booting on the x86 PC platform, as
well as the development journey each project took prior
to this collaborative effort.

2 The PC Platform: Ancient History

Network booting has been implemented in various
forms for many years. To appreciate how it evolved it
is instructive to examine the early days of PC comput-
ing when standards were few, and achieving consensus
between vendors on any technical innovation was even
more difficult than it is today.

The x86 PC platform has a direct lineage to the origi-
nal IBM PC 5150 released in 1981. This machine, an
open platform, and its successors, the 1983 IBM XT
and the 1984 IBM AT, were widely copied by a num-
ber of manufacturers. The PC industry largely followed
IBM’s technical lead until the disastrous 1987 attempt
at reclaiming their initial monopoly position with the
closed platform PS/2 line erased their technical and mar-
ketplace leadership positions in the industry.

As a result, for the first half of the 1990s there was no
clear path for new standards to become accepted on the
PC platform, and PCs were becoming little more than
massively sped-up versions of the IBM AT. Thus, even
as new media such as networking and CD-ROMs be-
came available to the platform, there was little support
for booting from anything other than the initially sup-
ported floppy and hard disk, although PCs could option-
ally use an expansion card carrying proprietary booting
firmware.

TCP/IP networking, as something other than a niche
product, came late to the x86 PC platform. For many
years, memory limitations when running MS-DOS and
its derivatives meant that simpler, proprietary network
stacks were used; the primary ones being NetBIOS from
IBM and Microsoft, and IPX from Novell.

The response of early network card manufacturers, to
the extent they supported booting from networks at all,
was simply to provide a socket into which a ROM (usu-
ally an EPROM) could be inserted by the end user. This
ROM had to be preprogrammed with firmware specific

• 9 •

10 • x86 Network Booting: Integrating gPXE and PXELINUX

both to the network card and the network protocol used;
as a result, these ROMs were frequently expensive, and
few PCs were ever so equipped. To further complicate
the situation, the size of ROMs varied widely depend-
ing on the card. Some cards supported as little as 8K of
ROM space, greatly limiting the amount and complexity
of boot software that could be supplied.

In the early 1990s, as the use of TCP/IP became more
prevalent, some manufacturers provided TCP/IP-based
booting solutions using the then-standard BOOTP and
TFTP protocols, often based on downloading a floppy
image to high memory (above the 1 MB point address-
able by DOS.) These solutions generally did not pro-
vide any form of post-download access to the firmware;
the downloaded floppy image was expected to contain a
software driver for a specific network card and to access
the hardware directly.

By the mid 1990s, the PC industry, including IBM, was
seriously suffering from having outgrown IBM AT stan-
dards. In January 1995, Phoenix and IBM published the
“El Torito” standard [3] for booting PCs from CD-ROM
media. Support for this standard was initially poor, and
for the rest of the decade most operating systems that
were distributed on CD-ROM media generally shipped
with install floppies for booting PCs that lacked func-
tional CD-ROM booting support.

3 NBI and PXE: Network Booting Strategies

As the cost of network interface cards (NICs) dropped
dramatically in the early 1990s, the cost of a network
boot ROM could be a substantial fraction of the cost of
the NIC itself. The use of OS-dependent, user-installed
ROMs as the only method for network booting had be-
come a significant limitation. In the Open Source world,
this issue was further complicated by the need to supply
a physical piece of hardware, since a software-only dis-
tribution would require end users to have access to an
expensive EPROM burner to program the software into
an EPROM.

In 1993, Jamie Honan authored a document titled “Net
Boot Image Proposal” [4] which defined image formats
and methods for downloading executable images to a
client computer from a server. A key feature of Jamie’s
proposal was the specification of Network Boot Image
(NBI) file format, “a vendor independent format for boot
images.” This may have been the first attempt in the

Open Source world at specifying an OS-independent
method for network booting on the PC platform.

To keep NBI loader code uncomplicated, a utility called
mknbiwas used to convert OS specific files such as ker-
nels and initrds into NBI format for loading into mem-
ory. This simplified loader code because it only needed
to load a single, uncomplicated image format. It did,
however, require an extra step to convert OS images to
NBI format prior to booting.

NBI was never used in the closed-source OS world.
Instead, vendors continued to offer incompatible solu-
tions, usually based on their respective proprietary net-
work stacks.

In 1997, Intel et al. published the Wired for Manage-
ment Specification (WfM) [5]. It included as an ap-
pendix a specification for the Preboot Execution En-
vironment (PXE), a TCP/IP-based, vendor-neutral net-
work booting protocol for PCs, which included an appli-
cation programming interface (API) for post-download
access to the firmware driver. The specification, as well
as its current successor [6], both have numerous techni-
cal shortcomings, but it finally made it possible for NIC
and motherboard vendors to ship generic network boot-
ing firmware. Higher-end NICs began to have onboard
flash memory preprogrammed with PXE from the fac-
tory instead of providing a socket for a user-installable
ROM. Motherboards began to have PXE firmware inte-
grated into their BIOSes.

The PXE specification defines a set of software com-
ponents (Figure 1) including a PXE Base Code (BC)
stack, a Universal Network Driver Interface (UNDI)
driver—both in ROM—and a Network Boot Program
(NBP), which loads from a server. Of these compo-
nents, only the UNDI is specific to a certain NIC. Just
as with the Open System Interconnect (OSI) networking
model, this model does not completely reflect the actual
division into components, but is nevertheless useful as a
basis for discussion.

The PXE approach is significantly different from the one
taken by NBI. NBI simply loads a mknbi-prepared
bootable OS image into memory with no further ac-
cess to the ROM-resident network routines.1 In contrast,
PXE BC first loads an NBP, which then loads a target

1Some NBI-compliant ROMs would provide APIs to request ad-
ditional services, but those APIs were never standardized.

2008 Linux Symposium, Volume One • 11

Network Boot
Program (NBP)

OS loadBIOS

ROM

PXE BC

UNDI driver
UNDI API

TFTP and UDP API

Initial load via TFTP

Figure 1: The PXE concept model

OS using still-resident BC and/or UNDI stacks from the
ROM using an API defined in the PXE specification.

These differences in approach allow PXE ROMs to con-
tain simple, compact loader code while enabling more
specific and capable second-stage loader code to load
native OS image formats without pre-processing. Fur-
ther, NBP code resident on a network server can be up-
graded centrally to fix bugs or add capabilities. Added
costs to this approach versus NBI include extra time and
server load to transfer an NBP before the target OS im-
age is loaded, and the need to maintain multiple com-
ponents on the boot server. These costs have minimal
impact when using modern servers and LAN hardware.

4 The SYSLINUX Project

The SYSLINUX [1] project was started in 1994 by H. Pe-
ter Anvin as a way to allow creation of Linux boot flop-
pies without requiring Linux-specific tools. Until that
point Linux boot floppies, universally required to install
Linux on the PC platform, had been distributed as raw
images to be written to a bare floppy disk. On an MS-
DOS machine this meant using a tool called RAWRITE.
The resulting floppy was an opaque object and was con-
sidered unformatted by most non-Linux operating sys-
tems.

The SYSLINUX installer (named by analogy to the MS-
DOS SYS command) ran directly under MS-DOS and all
data was stored in conventional files on an MS-DOS FAT
filesystem. Since it was designed for running on flop-
pies it had to be small (the 18K overhead from the FAT

filesystem itself was a point of criticism in the early
days): as of version 1.30 (November 3, 1996) the SYS-
LINUX binary was 4.5K in size. Even so, it contained a
reasonably flexible configuration system and support for
displaying online help; the latter was particularly impor-
tant for install disks.

In 1999 Chris DiBona, then of VA Linux Systems, pro-
vided an early PXE-equipped system as a development
platform for a PXE loader. Since the Intel PXE specifi-
cation at the time specified that only 32K was available
to the NBP it was decided that basing the PXE loader
code on SYSLINUX—an existing, compact, configurable
loader—would make sense. Thus, SYSLINUX 1.46, re-
leased September 17, 1999, included PXELINUX, a PXE
network bootstrap program with a SYSLINUX-based
user interface. Subsequently SYSLINUX acquired sup-
port for other media, specifically ISO 9660 CD-ROMs
in El Torito “native mode” and hard disks with standard
Linux ext2/ext3 filesystems.

As support for CD-ROM booting—and later, USB
booting—on PCs became more universal, pressure to
keep code size minimal waned since storage capacities
were less restrictive. At the same time network adminis-
trators in particular requested a more configurable user
interface. To avoid burdening the SYSLINUX core (writ-
ten in assembly language and challenging to maintain)
with additional user interface features, an API was de-
veloped to allow user interfaces to be implemented as
independent, loadable modules. The first such interface
was a very sophisticated system written by Murali Kr-
ishna Ganapathy, based on a text-mode windowing in-
terface. Though very advanced and capable of almost

12 • x86 Network Booting: Integrating gPXE and PXELINUX

Figure 2: The SYSLINUX simple menu system

infinite customization, it turned out to be too difficult
for most users to configure. To address this issue, the
“simple menu system” (Figure 2) was implemented and
is now used by most SYSLINUX users.

The API also allows support for new binary formats to
be written as well as “decision modules” (boot selection
based on non-user input, such as hardware detection).
An 88,000-line library, derived from klibc, is avail-
able to developers to make module development easier
and as similar to standard applications-level C program-
ming as possible.

Historically SYSLINUX has focused on the PC BIOS
platform, but as the bulk of the code has been migrated
from the core into modules and from assembly language
into C, the feature set of the core has become bounded.
The intent is for the core to become a “microkernel”
with all essential functionality in (possibly integrated)
modules; this would permit the core to be rewritten to
support other platforms such as EFI.

PXELINUX has not, however, implemented any proto-
cols other than TFTP. The PXE APIs only permit access
at one of three levels: TFTP file download, UDP, or raw
link layer frames. No method to access the firmware
stack at the IP layer is provided. This means that to
support TCP-based protocols, such as HTTP, a full re-
placement IP stack is required.

It is worth noting that although a large number of peo-
ple have contributed to SYSLINUX over the years, it has
largely remained a one-person project. As of this writ-
ing there is a serious effort underway to grow the SYS-
LINUX project developer base. To facilitate this process

the SYSLINUX project will participate in Google Sum-
mer of Code for the first time in 2008.

5 The Etherboot Project

In 1995 Markus Gutschke ported a network bootloader,
Netboot, from FreeBSD. Netboot followed Jamie Ho-
nan’s 1993 “Net Boot Image Proposal.” Since the first
OS targeted for loading was Linux, mknbi was used to
combine kernel and initrd images into a single NBI file
before loading.

Since Netboot did not support his network card and Net-
boot drivers at the time had to be written in assembly
language, Markus implemented a new driver interface
allowing drivers to be written in C. He called his code
Etherboot.

Markus released Etherboot 1.0 in 1995 and it proved to
be popular enough that a small community called the
“Etherboot Project” [2] formed to support and improve
it with additional functionality and drivers. In late 1996
one of the group’s more active contributors, Ken Yap,
took over leadership of the project.

In 1997, when Intel published the PXE specification,
Ken began work on NILO, a first attempt at an Open
Source PXE implementation. In 1998 Rob Savoye, with
funding from NLnet Foundation, took over NILO de-
velopment. For various reasons the project was unsuc-
cessful, and development of NILO officially ceased in
2000 [7].

Etherboot development continued, however, and in 1999
Marty Connor became involved with the project, having
discovered it through conversation with Jim McQuillan
of LTSP (Linux Terminal Server Project). Marty ported
several of Donald Becker’s Linux NIC drivers to Ether-
boot to provide support in Etherboot for popular cards
of the day.

In 2000, Marty created rom-o-matic.net [8], a
web-based Etherboot image generator that created cus-
tomized Etherboot images on demand. This made it
much easier for people to create and test Etherboot be-
cause no specific build environment or command line
expertise was required. Usage and testing of Etherboot
increased dramatically.

Another boost to Etherboot use came in 2001 when the
Etherboot Project first exhibited in the .ORG Pavilion

2008 Linux Symposium, Volume One • 13

at the IDG LinuxWorld Expo and invited LTSP to share
their booth. Live demos of Etherboot network booting
and LTSP thin clients sparked the interest of many po-
tential users.

In 2002 Michael Brown first encountered Etherboot
while trying to find a solution for booting wireless thin
clients. He developed and submitted an Etherboot driver
to support Prism II-based wireless cards, and became a
regular contributor to the project.

About this time Marty became concerned that PXE was
fast becoming a de facto standard for network boot-
ing since it was being included in a significant num-
ber of motherboards and mid-to-high-end NICs. Al-
though there was strong opposition within the project
to supporting PXE for technical reasons, he felt that un-
less Etherboot supported the PXE specification Ether-
boot would quickly become irrelevant for most users.

Added incentive to support PXE came in 2004 when
Marty and H. Peter Anvin spoke about creating a com-
plete, compliant Open Source PXE implementation to
support PXELINUX. Later in 2004 Michael added par-
tial PXE support to Etherboot, which was then capa-
ble of supporting PXELINUX though it lacked full PXE
functionality.

In 2005 Marty and Michael created gPXE, a major
rewrite of Etherboot with PXE compatibility as a key
design goal. Soon after, Marty became the third Ether-
boot Project Leader and Michael became the project’s
Lead Developer. Primary development energy was then
redirected from Etherboot to gPXE.

In 2006 Michael, with help from Google Summer of
Code student Nikhil C. Rao, added more robust and
compliant TCP support to gPXE. This enabled Michael
to add TCP-based protocols such as iSCSI, which in turn
allowed gPXE to network-boot exotic operating systems
such as Windows Server 2003.

In 2007 the Etherboot Project exhibited in the Linux-
World Expo .ORG Pavilion for the 12th time, this time
demonstrating gPXE booting of various OSes via HTTP,
iSCSI, AoE, and other protocols. Michael and Peter cre-
ated, coded, and demonstrated a first API for gPXE to
PXELINUX integration.

As of 2008 rom-o-matic.net had generated over
two million Etherboot and gPXE images, with a typical
size of 40K for a ROM image containing support for

DHCP, DNS, TFTP, HTTP, iSCSI, AoE, and multiple
image formats including PXE, bzImage, Multiboot, and
gPXE scripts.

A large number of people have generously contributed
to the success of the Etherboot Project over the years.
Many of their names can be found on the project’s ac-
knowledgments web page [9]. There are also many
users who contribute on the project’s mailing lists and
IRC channel. Their help with documentation, testing,
and support greatly contributes to the quality and popu-
larity of Etherboot and gPXE.

6 The Strengths of Each Project

Given the primary focuses of the projects it is not sur-
prising that each brings different strengths to the col-
laboration. gPXE supports a wide range of protocols,
can be integrated in ROM rather than relying on shipped
firmware, and supports other architectures; however, its
user interface is limited. PXELINUX has advanced user
interfaces and, because it is a part of the SYSLINUX

suite, has cross-media support, but its protocol support
is limited to TFTP.

Within the PXE concept model PXELINUX strictly acts
as the NBP, whereas gPXE can act either as NBP, BC,
or BC and UNDI combined depending on how it is con-
figured and compiled. gPXE configured to function as
BC and UNDI is most common when it is used in ROM
or loaded from disk.

gPXE is also able to be loaded from a server as an NBP
and then take over the functions of either the BC only,
or the BC and UNDI combined, and then load another
NBP such as PXELINUX to perform a target OS load.
This configuration, referred to as “chainloading,” can be
used either to substitute functionality from a partially
working PXE stack or to get the enhanced capabilities
of gPXE, either way without having to actually modify
the ROM on the device.

7 Choosing a Strategy for Collaboration

Collaborative projects carry significant risks and re-
wards over single-team development. Because of this,
potential costs and benefits should to be considered
carefully before embarking on such a journey.

14 • x86 Network Booting: Integrating gPXE and PXELINUX

Rather than seeking to collaborate with the Etherboot
Project, the SYSLINUX project could have implemented
its own TCP/IP stack, HTTP client, and iSCSI and AoE
initiators for PXELINUX. Alternatively, it could have re-
used the code from gPXE or used another Open Source
TCP/IP stack, such as lwIP [10].

Collaboration, though requiring some additional devel-
opment effort, had several potential advantages:

• Using gPXE’s protocol support would mean that
SYSLINUX maintainers would not have to integrate
and support additional code to support new proto-
cols.

• Code improvements to either project could be of
benefit to users of both projects.

• Users of both gPXE and PXELINUX could share a
single user interface for accessing features.

In light of these potential advantages, the developers of
both projects decided to explore ways of working to-
gether.

Popular strategies for collaboration between Open
Source projects differ primarily based on whether it is
the intention of one project to take over maintenance
of code produced by another project or whether the
projects intend to maintain separate code bases which
interoperate based on well-defined interfaces.

Some common strategies for collaboration between
projects are:

• Componentization, where one project’s code and
development team simply becomes part of another
project. The second project then ceases to exist as
an independent project.

• Aggregation, where one project includes the other’s
code as a component, possibly in modified form,
but the second project’s code continues to be de-
veloped as a separately maintained project. In this
model, the first project can be considered a con-
sumer of the second project. This is particularly
common with application programs that depend on
libraries that are not widely available.

• Cooperation, where the two projects mutually
agree on a set of APIs and independently imple-
ment their respective parts. The projects are main-
tained separately, and aggregation into a combined
product is performed by the distributor or end user.

• Stacking, in which one project independently de-
fines an interface available to all potential users of
the code, which is completely sufficient (without
modification) for the needs of the second project.
In this case, the combination is strictly a case of
the second project being a consumer of the first,
and final aggregation is typically performed by the
distributor or end user; this strategy is typified by
widely used libraries.

Each of these strategies has advantages and pitfalls,
based on the nature of the projects, the development
teams, and any corporate entities that may be involved.
The tradeoffs between these strategies can be quite dif-
ferent in the Open Source world over what they might
be in analogous corporate environments.

8 Integration, so Far

Initial steps toward integrating gPXE and PXELINUX

were taken in 2004 when Etherboot first became capa-
ble of acting as a PXE ROM (BC and UNDI combined).
This allowed Etherboot to replace defective vendor PXE
implementations, either by replacing the ROM or by
chainloading, but did not provide any additional capa-
bilities. Nevertheless, this approach has been widely
used, especially with SiS900 series NICs, a briefly pop-
ular NIC with a notoriously buggy vendor PXE stack.

PXELINUX users had been requesting additional proto-
col support for quite some time, especially the ability to
download via HTTP. Not only is HTTP, a TCP-based
protocol, faster and more reliable than TFTP (based on
UDP), but HTTP servers have better support for dy-
namic content, which is frequently desired for generat-
ing configuration files.

At LinuxWorld Expo San Francisco in 2006, SYSLINUX

and Etherboot Project developers met to discuss the sit-
uation. At that meeting, the following constraints were
established:

• The primary focus of gPXE is as ROM firmware.
The continued utility of gPXE in ROM must be
maintained.

2008 Linux Symposium, Volume One • 15

• Extended protocol support must work in PX-
ELINUX when it is loaded from a vendor PXE
stack. Supporting extended protocols only with
gPXE in ROM is not acceptable.

• Although gPXE already had support for extended
protocols by accepting a URL via the PXE API’s
TFTP (PXENV_TFTP_OPEN) routine, the PXE
TFTP interface is inadequate for PXELINUX; a new
API is necessary for PXELINUX to access function-
ality beyond what standard PXE APIs permit.

In electronic discussions afterwards, the following high-
level plan was agreed to by both development teams:

• An extended PXE API for PXELINUX will be de-
veloped.

• A technique will be developed to aggregate gPXE
and PXELINUX into a single binary to simplify de-
ployment in existing PXE environments.

Unfortunately around this time both projects became
distracted by other priorities: the Etherboot Project fo-
cused on providing new and improved network drivers,
support for SAN protocols (iSCSI and AoE), and com-
pleting an initial gPXE release; the SYSLINUX project
on user interface and module API improvements. A test
version without the aggregate binary (and certainly not
stable enough to be deployed in a real environment) was
demonstrated at IDG LinuxWorld Expo 2007, but after
that the collaboration languished for months.

Toward the end of 2007 improved protocol support was
becoming a high priority for the SYSLINUX project,
while Etherboot developers were pushing toward a mid-
February initial release (gPXE 0.9.3). Over the holi-
days developers from both projects conducted a sizable
joint development and debugging effort, implementing
binary encapsulation support and tracking down a num-
ber of issues that occurred when gPXE was chainloaded
from a network server, as opposed to running from
ROM. Having more developers testing the code helped
find bugs that only manifested on certain hardware and
particular PXE implementations. Fortunately (for some
meaning thereof), the combined team had access to to a
large and eclectic collection of troublesome hardware.

After the initial beta release of gPXE 0.9.3 on February
14, 2008, the original plan was reviewed by both devel-
opment teams. As there had been significant changes in
both code bases, the plan was revised as follows:

Figure 3: gpxelinux.0 loading its config file via
HTTP

• An initial implementation will be based on the al-
ready implemented extended PXE API, plus any
additions necessary.

• This API will be considered private and not guar-
anteed to be stable between revisions. Thus, the
only supported use will be between gPXE and an
an embedded PXELINUX; if gPXE is used in ROM
it should still chain-load the combined image.

• As SYSLINUX code has increasingly moved to-
ward having most of its code in modules, with
a well-defined application binary interface (ABI),
the projects will eventually migrate to a model
where gPXE implements the SYSLINUX module
ABI directly; at that time the private API will be
deprecated.

The third item on this list was accepted as a Google
Summer of Code project under Etherboot Project men-
torship for 2008.

More powerful functionality is possible when gPXE
is also used in ROM (or provided on CD-ROM, USB
stick, or floppy). gPXE can either be used as the na-
tive PXE stack on the system using its own network de-
vice drivers, or it can use the UNDI driver from the ven-
dor PXE stack. With suitable configuration gPXE can
download an initial NBP image from a specific URL set
at compile time or saved in nonvolatile storage. This ca-
pability can be used to invoke a service facility with a
very small investment in ROM; the only local network
resources required are working DHCP and DNS. If the
downloaded image is gpxelinux.0, a full range of
PXELINUX modular functionality becomes available.

16 • x86 Network Booting: Integrating gPXE and PXELINUX

UI module

Format module

OS load

Vendor UNDI

gPXE
PXELINUX

gpxelinux.0

gPXE

OS native loader

BIOS

SAN bootROM

Figure 4: gPXE loading gpxelinux.0, using a vendor UNDI driver

Ultimately SYSLINUX and the Etherboot Project de-
cided not to combine code or development teams but
rather to modify both of their code bases to support
a jointly developed API (a cooperation). However, to
make it easier for end users, the SYSLINUX distribution
now contains a snapshot of gPXE sources so that the
combined image can be built from a single download;
in this sense, it is also an aggregation. However, the
intent or the projects to emphasize the cooperative as-
pects of supporting a common API and to have the SYS-
LINUX combined source code tree have minimal differ-
ences from the primary gPXE distribution.

It is the desire of both projects that this will permit each
project to retain its particular focus and identity, while
giving end users access to functionally contained in both
code bases.

As of April 15, 2008, the combined product is avail-
able in beta form as part of SYSLINUX 3.70-pre9. This
distribution includes a slightly modified snapshot of the
gPXE git repository (containing a few changes neces-
sary for the usage model, but in need of cleanup before
being fed upstream into the gPXE tree). When built,
this produces gpxelinux.0, a combined binary, in
addition to the conventional pxelinux.0. If loaded
from a standard vendor PXE stack, gpxelinux.0 can
be redirected to non-TFTP protocols via the PXELINUX

Path Prefix DHCP option [11] or via explicit URL syn-
tax in the configuration file. A DHCP option, in par-
ticular, allows even the PXELINUX configuration file to
be acquired through non-TFTP protocols such as HTTP,
making it much easier to generate configuration files dy-
namically.

As of the SYSLINUX 3.70-pre9 release, gpxelinux.0
is not yet a drop-in replacement for pxelinux.0 in all
situations because some issues relating to chainloading
another NBP remain. It is expected that these issues will
be relatively easy to resolve.

9 Next Steps

At the time of this writing the primary collaborative
development focus of the projects is to resolve a few
remaining interoperability issues and to clean up SYS-
LINUX-local modifications to gPXE so that they may be
integrated into the official gPXE source base.

The combined gpxelinux.0 image using the current
approach is expected to be released with SYSLINUX

3.70. Over the summer of 2008 considerable progress
on implementing the SYSLINUX module API in gPXE
will hopefully be made. This effort will also serve as a
trailblazing project for the “microkernelized” rewrite of
the SYSLINUX core across all media.

10 Lessons Learned Along the Way

When integrating Open Source projects, especially ones
developed outside the influence of a corporate or spon-
sorship structure, one must consider at least the follow-
ing pitfalls and concerns:

• Motivation: For collaboration between two
projects to succeed it is important that there be in-
centives for both of their user communities and de-

2008 Linux Symposium, Volume One • 17

velopment teams. Without a shared sense of pur-
pose, enthusiasm for the project may quickly wane
on the part of one or both projects.

In the case of the SYSLINUX-Etherboot collabora-
tion, both projects recognized the opportunity to
leverage each others work and both were moti-
vated to explore how they might productively work
together. Understanding the motivations of other
project participants was an important part of keep-
ing the collaboration moving forward.

• Focus: The primary reason for combining two
projects is that each brings different strengths to
the table. It is likely that each project has develop-
ment goals aimed toward improving its respective
strengths. A goal related to facilitating code com-
bination might therefore be relatively low on the
priority of either one or both the parent projects!
A good working relationship is likely to improve
joint focus, but other driving forces may still pre-
vail, such as funding issues.

Focus differences were a significant issue early
in the SYSLINUX-Etherboot collaboration. Rather
than completely executing the original project plan,
each project ended up working more on other pri-
orities, especially SAN support for gPXE and im-
proved user interfaces for SYSLINUX. Not until
late 2007 discussions did both projects agree on the
priority of the joint development effort and commit
to the shared goal of producing a test release in the
March 2008 timeframe.

• Culture: Every Open Source project has a unique
culture that generally depends on the preferences
of the original or principal developers or admin-
istrators. Just as in a corporate collaboration or
merger, culture clashes can manifest themselves as
subtle but significant roadblocks to progress. In
Open Source projects, such issues may include fre-
quency and style of developer communication, re-
view and commit policies, and coding style. In
large projects, these processes are often more for-
malized than in smaller projects. Nevertheless, it
is important to recognize, respect, and address dif-
ferences between collaborative partners as they can
significantly affect the success of the joint effort.

Whereas the SYSLINUX project has a single cen-
tral maintainer responsible for all technical direc-
tion, Etherboot Project decision making is some-
what more distributed. This difference complicated

some early discussions until it became clear that
for actionable agreement to be achieved, all rele-
vant Etherboot Project team members needed to be
included in technical discussions.

• Credit where credit is due: These days many, if
not most Open Source software developers are de-
riving their income either directly or indirectly
from Open Source work. Others, such as stu-
dents, may be concerned about future marketabil-
ity. Still others may consider recognition a ma-
jor driver for their Open Source involvement. Ac-
cordingly, recognition is very valuable currency in
the Open Source world. A perception, true or not,
that one project is trying to usurp credit for another
project’s work is likely to create ill will and poor
relations.

Discussions of credit can be sensitive, as some
people may feel their concerns aren’t appropri-
ate or valid. In the particular case of the SYS-
LINUX-Etherboot Project collaboration, both sides
had concerns, but some went unvoiced for a long
time. Although both sides had good intentions,
these unresolved concerns slowed the collabora-
tion considerably, until they were discussed and ad-
dressed as legitimate issues.

By recognizing that with the best intentions such issues
can and do occur—even in a collaboration involving rel-
atively small projects—one can significantly improve
the chances for a successful and timely joint project.

Learning to work together benefited the code bases and
development teams of both projects. Code changes
needed to support jointly developed interfaces required
optimization and auditing of critical code sections. In
addition, communication, confidence, and trust between
developers significantly improved during the process of
working together to achieve a shared goal.

References

[1] SYSLINUX project web site,
http://syslinux.zytor.com/

[2] Etherboot Project web site,
http://www.etherboot.org/

[3] C. Stevens and S. Merkin, “El Torito” Bootable
CD-ROM Format Specification, Version 1.0,

18 • x86 Network Booting: Integrating gPXE and PXELINUX

January 25, 1995,
http://www.phoenix.com/NR/rdonlyres/

98D3219C-9CC9-4DF5-B496-A286D893E36A/

0/specscdrom.pdf or
http://tinyurl.com/99c5f

[4] J. Honan and G. Kuhlmann, “Draft Net Boot
Image Proposal,” Version 0.3, June 1997, http:
//www.nilo.org/docs/netboot.html

[5] Intel Corporation et al., Network PC System
Design Guidelines, Version 1.0b, August 5, 1997,
http://www.intel.com/design/
archives/wfm/

[6] Intel Corporation, Preboot Execution
Environment (PXE) Specification, Version 2.1,
September 20, 1999, http://download.
intel.com/design/archives/wfm/
downloads/pxespec.pdf

[7] K. Yap, “NILO; organization and status,” May
2000, http://www.nlnet.nl/project/
nilo/how.html

[8] Etherboot project, rom-o-matic.net,
http://www.rom-o-matic.net/

[9] Etherboot project, Acknowledgements,
http://etherboot.org/wiki/
acknowledgements

[10] A. Dunkels et al., The lwIP TCP/IP Stack,
http://lwip.scribblewiki.com/

[11] D. Hankins, Dynamic Host Configuration
Protocol Options Used by PXELINUX
(RFC 5071), December 2007, http:
//www.ietf.org/rfc/rfc5071.txt

Keeping the Linux Kernel Honest
Testing Kernel.org kernels

Kamalesh Babulal
IBM

kamalesh@linux.vnet.ibm.com

Balbir Singh
IBM

balbir@linux.vnet.ibm.com

Abstract

The LinuxTM Kernel release cycle has been short
with various intermediate releases and with the lack
of a separate kernel development tree. There have
been many challenges with this rapid development
such as early bug reporting, regression tracking, func-
tional/performance testing, and test coverage by dif-
ferent individuals and projects. Many kernel develop-
ers/testers have been working to keep the quality of the
kernel high, by testing as many possible subsystems as
they can.

In this paper, we present our kernel testing methodology,
infrastructure, and results used for the v2.6 kernels. We
summarize the bug reporting statistics based on the dif-
ferent kernel subsystems, trends, and observations. We
will also present code coverage analysis by subsystem
for different test suites.

1 Introduction

The Linux kernel has been growing with every release
as a result of the sheer number of new features being
merged. These changes are being released at a very high
rate, with each release containing a very large number
of changes and new features. The time latency at which
these changes are made is very short between every re-
lease cycle. All of this is occurring across many dis-
parate hardware architectures.

This presents unique problems for a tester who must
take all of the following into account:

• Lines of code added,

• Time interval between each release,

• Number of intermediate releases,

 6000000

 6500000

 7000000

 7500000

 8000000

 8500000

 9000000

 9500000

 10000000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Li
ne

s
of

 C
od

e

Days of Development

v2.6.11
v2.6.12

v2.6.13
v2.6.14

v2.6.15
v2.6.16

v2.6.17
v2.6.18

v2.6.19
v2.6.20

v2.6.21

v2.6.22
v2.6.23

v2.6.24

Figure 1: Size of the kernel with every release

• Testing on wide range of architectures and plat-
forms,

• Regressions carried from previous release,

• Different development trees, and

• Various configurations and boot options to be
tested.

In Section 2 we briefly explain the challenges. Section 3
outlines our methodology to meet the challenges. Sec-
tion 4 presents the results of code coverage analysis, in-
cluding the fault injection coverage results for the stan-
dard test cases and we discuss our future plans in Sec-
tion 5.

2 Challenges

2.1 Different Trees

In the past, Linux kernel development had separate de-
velopment and stable trees. The stable trees had an even
number and the development trees had an odd number

• 19 •

20 • Keeping the Linux Kernel Honest

as their second release number. As an example 2.5 was
development release, while 2.4 was stable release. With
the 2.6 kernel development, there are no separate devel-
opment and stable trees. All the development is based
upon the current stable tree and once the current devel-
opment tree is marked as stable, it is released as the next
mainline release.

There are intermediate development releases between
major releases of a 2.6 kernels, each having its own
significance. Figure 2 shows the different development
trees and the flow of patches from development trees to
the mainline kernel.

The -stable tree contains critical fixes for security
problems or significant regressions identified for the
mainline tree it is based upon. Once the mainline tree
is released, the developers start contributing to the new
features to be included in the next release. The new fea-
tures are accepted for the inclusion during the first two
weeks of development following the mainline release.
After two weeks the merge window closes and the ker-
nel is in feature freeze; no further features will be ac-
cepted into this release. This is released as -rc1. After
-rc1 the features are tested well and stabilized. During
this period roughly weekly release candidates, -rc, are
produced, as well as intermediate snapshots of Linus’s
git tree.

The -rc releases are a set of patches for the bug fixes
and other important security fixes, based on the previous
-rc release. For example, 2.6.25-rc3 will have the fixes
for the bugs identified in 2.6.25-rc2.

In addition to the mainline releases, we have a number
of testing trees for less stable features, as well as sub-
system specific trees. The -mm tree has experimental
patches and critical fixes that are planned to be pushed
to the mainline kernel. For a new feature it is recom-
mended that it be tested in -mm, since that tree under-
goes rigorous testing, which in-turn helps in stabilizing
the feature. -mm is rebased often to development re-
leases to test the patch set against the development tree.

The -next release was introduced with the 2.6.24
development series. The -next tree has the patch
changesets from different maintainers, intended to be
merged into the next release. Changesets are rebased
to the current development tree, which helps to resolve
the merge conflicts and bugs before they get introduced
in the next release. Resolving the conflicts and bugs on

a regular basis would allow the development and stable
releases to be based on the -next tree in the future (re-
fer to [5] for more information on kernel trees).

maintainers tree -mm -stable

-rc1

-next

distributions

-gits

users-rcN release

mainline release

Bug Fixes Features Rebase Releases

Figure 2: Linux Kernel Development Cycle

2.2 Release Frequency

Testing is essential to deliver high quality software and
testing every phase of development is important if we
are to catch bugs early. This is especially true for
projects like Linux where the source is growing by
2.32% [1] with every release, as represented in Figure 1.
These numbers are pretty high for any project. Starting
from 2.6 kernel development series, there is no sepa-
rate stable and development tree, which means that more
code is being added and it needs to be tested thoroughly.

Bugs caught and fixed early in the cycle helps to main-
tain the kernel quality by:

• Providing a pleasant user experience,

• Avoiding building on top of buggy code, and

• Easier debugging, since the code is fresh in the au-
thors mind.

The stable kernel releases are made approximately ev-
ery 2-3 months, during which time an average of 3.18

2008 Linux Symposium, Volume One • 21

v2.6 kernels
versions .20 .21 .22 .23 .24 Total
stable 22 8 20 18 5 73
stable-git 16 18 18 26 22 100
stable-mm 2 2 0 1 1 4
stable-mm
+hotfixe(s) 0 0 0 3 6 9
rc 7 7 11 8 8 41
rc-git 59 52 57 70 47 285
rc-mm 12 6 10 7 4 41
rc-mm
+hotfixe(s) 0 10 18 14 3 45
next 0 0 0 0 35 35
Total 118 103 134 147 131 633

Table 1: Summary of releases between kernel versions

changes are being accepted every hour. This has been
the trend for the past 1 1

2 years.

Table 1 shows the data of various intermediate releases
made for past 1 1

2 years. These incremental changes to
the kernel source ensure that any code changes made
to the kernel are well tested before they accepted into
mainline.

With the average of 126 kernels (refer to Table 1) be-
ing released between two sequential major releases, we
have at least one kernel per day being released. Devel-
opers end up limiting their testing to unit testing for the
changes they make and start concentrating on new de-
velopment. It is not practical for most of the developers
to test their changes across all architectures supported
by Linux. A significant amount of testing is being done
by others from the community, which includes testers,
developers, and vendors (including distribution compa-
nies).

2.3 Test Case Availability

There is a significant testing effort in the community by
various individual testers, developers, distribution com-
panies, and Independent Software Vendors. They con-
tribute to the effort with combinations of testing meth-
ods such as:

• Compile and Boot test (including the cross com-
piler tests),

• Regression Testing,

• Stress Testing,

• Performance Testing, and

• Functional Testing.

These efforts are not being captured completely because
most of these efforts are not visible. We will not be able
to account for any testing done unless it is being pub-
lished or shared. Many features are accepted into the
mainline after stringent code reviews and ample testing
in the development releases. But not many developers
provide the test cases or guidelines to test their func-
tionality even though it is in the interest of developers to
keep the quality of their code high.

Over the years there have been many test projects and
suites with a primary focus to improve the quality of
Linux. They are constantly undergoing lots of changes
between every release. They have been adding new test
cases to test the new features getting merged into the
kernel, but the updating is not fast enough to catch those
early bugs and for some features we do not have test
cases available.

Any person who is interested in testing the kernel has no
single, nor even a small number, of test projects which
can cover most of the kernel subsystems. We do have
a large number of test projects, but each is independent
requiring installation and configuration; the test setup is
a huge effort for a tester. Not all the testers have the
harness infrastructure in place for testing due to the lim-
itations of the hardware they own.

Most of the test projects act at best as regression, stress,
performance test suites, or combinations thereof, but we
do not have tests which can be used for functional test-
ing of the new features being merged into the kernel.
It is very critical for new code to be tested thoroughly,
even before it gets merged in to the mainline.

In the existing scenario there are many valuable test
cases/scripts available from individuals, which could
expose bugs on other environments untested by them.
Sharing these test cases and scripts with the community
through one of the test projects will help in improving
the testing much more by:

• Enabling the code to be tested on a variety of hard-
ware,

22 • Keeping the Linux Kernel Honest

• Improving the test coverage on executing all possi-
ble code paths,

• Avoiding duplication of test case development, and

• Making reproduction of bugs easier.

2.4 Kernel options

The Linux kernel is highly configurable, which allows
specific features to be enabled as required. This means
that to test the kernel fully we would have to test with
each combination of these options. Testing kernels com-
piled only with the best known1 configurations cannot
expose any bugs hidden under the untried combinations.
As an example the kernel can be configured to use any
one of the following different memory models:

CONFIG_FLATMEM
CONFIG_DISCONTIGMEM
CONFIG_SPARSEMEM
CONFIG_SPARSEMEM_EXTREME
CONFIG_SPARSEMEM_VMEMMAP

They are mutually exclusive, which means the kernel
can be compiled with only one of these options. Testing
all combinations of memory models would require five
different build and test cycles. Some of the combina-
tions should be tested to improve the testing coverage of
the kernel.

Many of the new features getting merged into the kernel
are not tested by all individuals because their existence
is not known to the tester. The example above shows
how quickly permutations and combinations can grow.
Usually what gets tested is the defaults on each architec-
ture and the defaults that depend on the machine (testers
do not deviate from a configuration that works for them).

It is important to test the responsiveness of the kernel
with different boot options (refer to [10] for more avail-
able kernel parameters). For example, booting with less
memory by passing mem=<less memory> as a boot
parameter could test kernel behaviour when booted on a
system with less memory. An extensive testing of this
kind could take lots of kernel testing cycles, with total
number of test combinations = number of boot param-
eter combinations x number of kernel configurations x
number of releases.

1the configuration with which the kernel builds and boots without
any issues

2.5 Existing Test Projects

There are many existing test projects used by the indi-
vidual test contributors. We summarize some of them
along with their key features:

LTP (Linux Test Project)2 is a Regression/Functional
test suite. It contains 3000+ test cases to test the ba-
sic functionality of the kernel. It is capable of test-
ing/stressing filesystem, memory, scheduler, disk I/O,
network, and system calls. It also provides some ad-
ditional test suites such as pounder, kdump, open-hpi,
open-posix, code coverage, and others.

It is ideal for running the basic functionality verification,
with sufficient stress generated from the test cases. LTP
does not support the kernel build test. LTP results can
be formatted as HTML pages. It lacks the support for
machine parseable logs. The test case results are either
PASS or FAIL, which makes it complex for a tester to
understand the reason behind test failure.

IBM autobench is a client harness project which sup-
ports setting up the test execution environment, execu-
tion of the test suites, and capturing the logs with envi-
ronmental statics. It supports a kernel build test along
with support for profiling. It is capable of executing test
cases in parallel. The job control support is basic, allow-
ing user to have minimal control over the way the tests
are executed. The tool is written using bash/perl scripts.

Autotest3 is an open source based client/server harness
capable of running as a standalone client or is easily
plugged into an existing server harness. Test cases in-
cluded are capable of regression, functionality, stress,
performance, kernel build tests, and they support vari-
ous profilers. Autotest is written in python which al-
lows the user to take more control of job execution by
including python syntax in the job control file. Its object
oriented and has a cleaner design.

Autotest has built-in error handling support. The logs
are machine parseable with consistent exit status of the
test executed as well as providing a descriptive message
of the status. Parse4 is built into the server harness.
It summarizes the job execution results from different

2http://ltp.sourceforge.net/
3http://test.kernel.org/autotest/
4Parser used by the autotest to parse the test results http://

test.kernel.org/autotest/Parse

2008 Linux Symposium, Volume One • 23

testers5 and formats them in query-able fashion for the
tester to interpret them better.

3 How is the kernel being tested?

3.1 Methodology

Release early, release often[7] is the Linux kernel de-
velopment philosophy. The development branches are
released very frequently. As an example we have two
-git releases per day, typically one -next release
along with regular -rc and -mm releases (Different de-
velopment releases have been explained in section 2.1).
Testing development releases earlier and more often
helps in identifying the patches that break the kernel.
This allows fixing them earlier in the cycle. Before
merging the patches, they should have been tested across
all supported architectures, but it is not practical to ex-
pect all developers to test their patches that widely be-
fore merging.

Ideally we do the Build test on all releases on various
hardware6, with different configuration options. Build
test is focused on build errors and warnings while build-
ing the kernel. This is followed by the Regression test
suite. This helps uncover bugs introduced as side effects
of new kernel changes. In order to ensure a regression
free kernel, the suite is bundled with test suites from
different test projects to test the filesystems, disk I/O,
memory, scheduler, IPC, commands functional verifica-
tion, and system calls with little stress.

The more thoroughly the development releases are
tested, the better the Linux kernel quality is. Testing
thoroughly requires two or more machine days based
on the tests run on the releases. We selectively pick up
development releases for a complete round of testing.
Testing all releases with more than just build and regres-
sion tests would take too long and the important releases
would be tested much later, after the release.

We do build and regression testing on all of the Linux
kernel releases, which includes -stable, -rc,
-git, -mm, -next. The focus is on certain de-
velopment releases, which are tested more with stress
tests and functionality tests along with some profile in-
formation extraction. As an example we focus more

5TKO (test.kernel.org) database is used to populate the results
6we cover the x86, Power

TM
and s390x architectures

on -majorrelease, -rc1, and -mm releases.
The debug options are tested on the major releases. -mm
is one of the important development releases with bleed-
ing edge features incorporated in it, so we test rounds of
-mm + hotfixes if available. The Filesystem stress
tests are executed over:

• Ext2/3 Filesystem

• Reiserfs Filesystem

• XFS Filesystem

• JFS Filesystem

• CIFS Filesystem

• NFS3/4 Filesystem

Comparing kernel performance under certain workloads
on the machine to historical measures verifies the per-
formance improvement or degradation. Performance
Testing results are captured for almost all of the kernel
releases. Results of workloads such as dbench, kern-
bench, and tbench are captured on the same machines,
consistently validating the performance with every ker-
nel release.

3.2 Infrastructure

Human hours are costlier in comparison to machine
hours. Given the frequency of kernel releases, machine
hours can be better used for setting up test environments
and execution. Human hours can be best utilized in an-
alyzing test results and debugging any bugs found. Fig-
ure 3 explains how the infrastructure works.

Mirror/Trigger: kernels are rsync’d to the local mirror,
within a few minutes of the releases. Once the mirroring
is complete, it acts as a trigger to test the newly down-
loaded kernel image. The trigger is initiated by any of
the kernel releases mentioned in Section 2.1.

Test Selection/Job Queues: based on the kernel release,
the predefined test cases are queued to the server for test
execution. Section 3.1 explains the selection criteria of
different predefined set of test cases to be queued, based
upon the kernel release.

IBM’s ABAT7 server schedules the queued jobs from
users based upon the availability of machine and does

7Automated Build And Test

24 • Keeping the Linux Kernel Honest

New Release

Jobs Trigger

Selective KernelsAll Kernels

Jobs Queues

Client Harness

Results Collation

Results Analysis

Results Publication

Found Problem

Additional TestcasesBuild + Regression
+

Patch

Manual Job

Figure 3: Infrastructure of kernel.org testing

more than just a simple queuing system. ABAT test
framework is not open source, but the results are
published to the community through http://test.
kernel.org8

Client harness: both IBM autobench and autotest are
supported as the client harness tools though their control
file syntax is different. The client starts the test execu-
tion reading the job control file that is passed over when
the job gets scheduled. It is responsible for building the
appropriate kernel, running the tests, capturing the logs
and other information, and making the results available.
Section 2.5 explains more about these clients.

Results Collation: results are gathered asynchronously
as the jobs complete and are pushed to test.
kernel.org. They are grouped relevantly by TKO
before publishing them. Kernel binaries and other sys-
tem information dumps are stripped off the results. Re-
sults published at TKO are of a standard set of test cases
that are used for testing.

8In collaboration between development and test team at IBM
Linux Technology Center

Results Analysis: tests produce large amount of logs
and other information. Analyzing the test information
collected is time consuming. Relevant information is
extracted and displayed as status using colour combi-
nations each representing the percentage of test cases
completed successfully. Results can be viewed in differ-
ent layouts.9 Performance data is analysed on selective
benchmarks to provide historical performance graphs.

Results Publication: after automated analysis, the re-
sults are made available on the TKO website. Human
monitoring is needed to take action on test failures or
performance regressions. The problems are reported to
the community (mostly via email) with the links to the
test results.

Found Problem: when a test failure or performance re-
gression is noticed, it is reported back to the community
(mostly via email) by the person monitoring the results.
Depending on the kernel release, another round of jobs
are queued with the additional patches received for the
problem reported. Currently only IBM engineers can
manually submit the jobs on ABAT though the results
and performance graphs are published as is done for reg-
ular jobs.

4 Results Analysis

The test procedure attempts to execute as many as pos-
sible code paths in the Linux kernel using different test
projects. When combined together, the various tests
tend to cover most of the kernel, but there has always
been a gap between tested and untested code. Code cov-
erage helps us to quantify this gap.

In this section we compare the code coverage re-
sults of 2.6.20, 2.6.21, 2.6.22, 2.6.23
and 2.6.24 for x86 and PowerTMarchitecture. We
also look at the results of executing some of these tests
using the fault injection framework.

4.1 Code Coverage Setup

The gcov kernel patch10 and lcov package11 from LTP
were used for the code coverage. Table 2 shows

9user selects the row and column heads. Condition based views
are available.

10http://ltp.sourceforge.net/coverage/gcov.
php

11http://ltp.sourceforge.net/coverage/lcov.
php

2008 Linux Symposium, Volume One • 25

Benchmarks Description
runltp A collection of tools for testing

the Linux kernel and related fea-
tures.

dbench Filesystem benchmark that gen-
erates good filesystem load.

aio-stress Filesystem benchmark that gen-
erates asynchronous I/O stress
load.

aio-cp Testing tool that copies files by
using async I/O state machine.

hackbench A benchmark for measuring the
performance, overhead, and scal-
ability of the Linux scheduler.

vmmstress Performs general stress with
memory race condtions between
simultaneous read fault write
fault, copy on write (COW) fault.

kernbench A CPU throughput benchmark. It
is designed to compare kernels on
the same machine, or to compare
hardware.

ltp-stress Stresses the system using the LTP
test suite.

hugepage-tests Perform basic functional and
stress tests for large pages

ramsnake Allocate 1/8 of the system RAM
and kick off threads to use them
for 3600 seconds.

random_syscall Pounds on syscall interface and
does random syscalls

reaim A multiuser benchmark that tests
and measures the performance of
open system multiuser comput-
ers.

sdet Workload created by parallel ex-
ecution of common UNIX com-
mands.

libhugetlbfs Interacts with the Linux hugetlbfs
to make large pages available to
applications in a transparent man-
ner.

Others Tested NFS, CIFS and the autofs
filesystem.

Table 2: Benchmarks used for Code Coverage

the benchmarks used. Coverage was run on x86 and
PowerTM architectures, with following configurations:

8P Intel R© XEONTM , 10GB Memory
2P IBM R© POWER5+TM , 7GB Memory

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

2.6.20 2.6.21 2.6.22 2.6.23 2.6.24

Li
ne

s
of

 c
od

e

Kernel versions

Lines Instrumented
Lines Executed

Figure 4: Code coverage on x86 architecture

Kernels Lines Instrumented Lines Executed
2.6.20 380,333 133,718
2.6.21 383,800 134,800
2.6.22 386,868 136,653
2.6.23 395,520 137,472
2.6.24 401,802 139,052

Table 3: Lines Instrumented Vs Executed on x86 archi-
tecture

Figure 4 and Table 3 show number of lines instrumented
and the code covered of the various kernels mentioned
for the x86 architecture. The figure shows the following
trends:

• The number of lines instrumented shows a modest
increase of 5.64%. When compared to the rate of
change of the kernel, it does not seem significant.
The code coverage data above fails to show that
changed lines are also covered as the kernel version
changes.

• The code coverage shows a modest increase of
3.98%. It is very encouraging to see code cover-
age increase as the number of lines in the kernel
increase.

• Versions 2.6.23 and 2.6.24 show a trend of de-
cline in code coverage percentage. The coverage

26 • Keeping the Linux Kernel Honest

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

2.6.20 2.6.21 2.6.22 2.6.23 2.6.24

Li
ne

s
of

 c
od

e

Kernel versions

Lines Instrumented
Lines Executed

Figure 5: Code coverage on PowerTM architecture

Kernels Lines Instrumented Lines Executed
2.6.20 388,019 116,736
2.6.21 382,552 115,242
2.6.22 385,853 116,010
2.6.23 391,993 117,168
2.6.24 407,194 122,431

Table 4: Lines Instrumented Vs Executed on Power
TM

architecture

of 2.6.20 kernel was 35.15%, where as for 2.6.24 it
is 34.6%.

Figure 5 and Table 4 show the coverage of the various
kernels mentioned for the PowerTM architecture. The fig-
ure shows the following trends:

• The number of lines of instrumented code show a
trend similar to the ones for the x86 architecture.

• The code coverage has increased with increasing
kernel versions.

• The code coverage percentage however is less than
that of the x86 architecture, close to 30%.

• There is no decline in the code coverage percentage
as seen on the x86 architecture, indicating that x86
is growing rapidly.12

Figures 6,7 and Tables 5,6 show the component-wise
break up for the code coverage obtained for the 2.6.24

12which might be true, due to the x86 and x86-64 merge.

 0

 20000

 40000

 60000

 80000

 100000

 120000

mm net kernel lib arch driver include

Li
ne

s
of

 c
od

e

Instrumented Lines
Executed Lines

Figure 6: Component-wise code coverage on 2.6.24 ker-
nel with x86 architecture

Directories Lines Instrumented Lines Executed
mm 1,3147 8,597
net 63,802 20,855
kernel 23,633 10,962
lib 5,152 2,785
arch 14,836 4,810
driver 116,623 30,031
include 7,751 4,707

Table 5: Lines Instrumented Vs Executed on 2.6.24 ker-
nel with x86 architecture

Directories Lines Instrumented Lines Executed
mm 14,585 9,133
net 65,441 20,749
kernel 23,407 10,916
lib 5,062 2,799
arch 24,954 5,700
driver 88,195 8,930
include 7,638 4,434

Table 6: Lines Instrumented Vs Executed on 2.6.24 ker-
nel with Power

TM
architecture

2008 Linux Symposium, Volume One • 27

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

mm net kernel lib arch driver include

Li
ne

s
of

 c
od

e
Instrumented Lines

Executed Lines

Figure 7: Component-wise code coverage on 2.6.24 ker-
nel with PowerTM architecture

 0

 20000

 40000

 60000

 80000

 100000

 120000

mm net kernel lib arch driver include

Li
ne

s
of

 c
od

e

Instrumented Lines
Executed Lines

Executed Lines With Fault Injection

Figure 8: Fault injection code coverage on 2.6.24 kernel
with x86 architecture

kernel on the x86 and PowerTM architectures respec-
tively. The component-wise break up shows some in-
teresting trends as well:

• The mm, kernel, lib, and include subdirec-
tories are among those that have the highest code
coverage.

• The subsystem with highest coverage is mm, with
close to 65% coverage

• drivers and arch subdirectories are among
those that have the least code coverage, The main
focus of our testing is not to test architecture or
platform-specific code.

Directories Lines Instrumented Lines Executed
Disabled Forced

mm 13,147 8,597 8,688
net 63,802 20,855 21,306
kernel 23,633 10,962 11,431
lib 5,152 2,785 2,853
arch 14,836 4,810 4,918
driver 116,623 30,031 30,552
include 7,751 4,707 4,777

Table 7: Fault Injection code coverage on 2.6.24 kernel
with x86 architecture

We used the Fault Injection framework13 to get more
coverage of the error handling path. The kernel was con-
figured with:

N > /debug/fail_page_alloc/task-filter
20 > /debug/fail_page_alloc/probability
2000 > /debug/fail_page_alloc/interval
-1 > /debug/fail_page_alloc/times
0 > /debug/fail_page_alloc/space
1 > /debug/fail_page_alloc/verbose
N > /debug/fail_page_alloc/ignore-gfp-wait

N > /debug/fail_make_request/task-filter
20 > /debug/fail_make_request/probability
2000 > /debug/fail_make_request/interval
-1 > /debug/fail_make_request/times
0 > /debug/fail_make_request/space
1 > /debug/fail_make_request/verbose
N > /debug/fail_make_request/ignore-gfp-wait

(refer to [9] for more configuration details) The results
of the coverage are shown in Figure 8. Getting cover-
age results with fault injection enabled turned out to be
very challenging, since most applications are not ready
to deal with failures. The test applications we saw would
fail and abort their operation on error. We had to man-
ually make changes to get coverage data with fault in-
jection and we were forced to keep the failure rate very
low. Due to these factors, we did not see a significant
improvement in code coverage with the fault injection
framework enabled, it was just 0.6% improvement. The
test cases and infrastructure need to be enhanced to deal
with the failures forced from the fault injection frame-
work.

13injects errors at various kernel layers, helping to test error han-
dling

28 • Keeping the Linux Kernel Honest

5 Future Plans

We plan to extend our testing by adopting and updat-
ing test cases from various test projects and test scripts
published on the mailing list to improve the coverage of
untested code. We intend to test the practically possible
permutations of kernel configurations and boot options
with selective releases. We intend to build tests with the
a cross-compiler setup will help us in finding the build
errors over various platforms. Testing the kernel error
path is very critical to avoiding surprises under certain
situations. We could perform error handling path testing
on selective kernels using the fault injection framework
available in the kernel.

6 Conclusion

Testing kernel releases earlier and often, helps in fix-
ing the bugs earlier in the cycle. The earlier the prob-
lem gets fixed, the lower the costs involved in fix-
ing it. Our infrastructure tests various kernels across
different hardware, using many benchmarks and test
suites performing build, regression, stress, functional,
and performance testing. Benchmarks are run selec-
tively depending upon the kernel release. Testing re-
sults are contributed back to the community through
test.kernel.org. We discussed some of the har-
nesses commonly used by the projects.

Code coverage results explain the gap between the lines
of code being added and tested. For better and more
complete testing of the kernel, we need test cases that
can help us better test existing and new features. For
these we require developers to share their tests and test-
ing methodology. The fault injection framework helps
testing the error handling part of the kernel, so improve-
ments made to the framework could result in better ker-
nel coverage.

7 Acknowledgments

We would like to thank Andy Whitcroft for his input to
and review of drafts of this paper.

We also owe lot of thanks to Sudarshan Rao, Premalatha
Nair, and our teammates for their active support and en-
thusiasm.

8 Legal Statement

c©International Business Machines Corporation 2008. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo and ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESSMACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] Greg Kroah-Hartman, Jonathan Corbet, and
Amanda McPherson, How Fast it is Going, Who
is Doing It, What They are Doing, and Who is
Sponsoring It, http://www.
linux-foundation.org/publications/

linuxkerneldevelopment.php, April 2008.

[2] Fully Automated Testing of the Linux Kernel,
Martin Bligh and Andy P. Whitcroft. In
Proceedings of the Linux Symposium 2006.

[3] Linux Test Project,
http://ltp.sourceforge.net/

2008 Linux Symposium, Volume One • 29

[4] Autotest,
http://test.kernel.org/autotest

[5] Kernelsource/Documentation/HOWTO.

[6] Linux Kernel Mailing List.
linux-kernel@vger.kernel.org,
http://lkml.org/

[7] Linux Test Project - Test Tools Matrix. http://
ltp.sourceforge.net/tooltable.php

[8] The Cathedral and the Bazaar, Eric Steven
Raymond.

[9] kernelsource/Documentation/
fault-injection/fault-injection.
txt

[10] kernelsource/Documentation/
kernel-parameters.txt

30 • Keeping the Linux Kernel Honest

Korset: Automated, Zero False-Alarm Intrusion Detection for Linux

Ohad Ben-Cohen
Tel-Aviv University

ohad@bencohen.org

Avishai Wool
Tel-Aviv University
yash@acm.org

Abstract

Host-based Intrusion Detection Systems traditionally
compare observable data to pre-constructed models of
normal behavior. Such models can either be automati-
cally learnt during a training session, or manually writ-
ten by the user. Alas, the former technique suffers from
false positives, and therefore repeatedly requires user in-
tervention, while the latter technique is tedious and de-
manding.

In this paper we discuss how static analysis can be
used to automatically construct a model of application
behavior. We show that the derived model can pre-
vent future or unknown code injection attacks (such as
buffer overflows) with guaranteed zero false alarms. We
present Korset, a Linux prototype that implements this
approach, and focus on its Kernel implementation and
performance.

1 Motivation

The battle between attackers and defenders has been on-
going throughout the course of computer history. At-
tackers expose and exploit application vulnerabilities on
a daily basis, and as a result, software vendors regularly
apply fixes to close breaches and mitigate attacks. Alas,
it’s a seemingly endless cycle that has attackers on the
upper hand, as defenders are mostly responding.

Since even fully patched applications may have un-
known security flaws, defenders commonly use a Host-
based Intrusion Detection System (HIDS), or even mul-
tiple HIDSs, in order to augment security. The advan-
tage of using HIDSs relies on the fact that they may
stop attacks which exploits an application vulnerability
that is still publicly unknown (a.k.a. zero-day exploit) or
against which a patch is not yet provided.

HIDSs identify malicious activity typically by compar-
ing a variety of observable data to a pre-constructed

model of normal application behavior. When a running
process deviates from its model of behavior, it is as-
sumed to be subverted by an attacker. In such an event
the HIDS can take actions to prevent the attacker from
damaging the system, e.g., by terminating the hijacked
process.

There are two classic methodologies for constructing an
application’s model of normal behavior. One prevalent
methodology infers the model from statistical data: the
model is constructed over a period of time, called “train-
ing,” which is assumed to be attack-free (and hopefully
typical). During the training period, the behavior of the
application is observed, collected and transformed into
a representative model. After the model is constructed
and the training period is over, the HIDS monitors the
process, and any deviation from the constructed model
is considered an attack and may result in the termina-
tion of the process. This methodology is highly auto-
mated and capable of detecting a wide range of attacks,
but since it is based on statistical data, it has the inherent
problem of false positives. Recently developed methods
have yielded lower rates of false positives; however, in
practice, it is still a major problem.

A second common HIDS methodology for constructing
an application model of normal behavior is based on
generating application policies. Such policies define the
allowed behavior of the program, using rules that pre-
cisely specify which system resources a process can ac-
cess and in what way. The policies can be written either
by the developer himself or by a knowledgeable user,
because writing them requires a precise understanding
of the expected behavior of the application. The advan-
tage of using program policies relies on the fact that they
can describe the program’s behavior as accurately as the
program code itself, and thus can completely eliminate
false alarms. Alas, manually writing accurate program
policies is not for the faint of heart as it is a tedious and
demanding task.

A HIDS capable of automatically deriving accurate pro-

• 31 •

32 • Korset: Automated, Zero False-Alarm Intrusion Detection for Linux

Figure 1: Korset’s system architecture. On the left an application is compiled. Korset’s static analyzer observe the
building process, and creates a corresponding Korset graph. On the right, Korset’s in-kernel monitoring agent loads
the application’s graph when it is executed, and then monitor the issued system calls by simulating the automaton.
For simplicity, there is no notion of a process in the figure.

gram policies would enjoy both worlds of zero false pos-
itives and automation. This can be achieved using static
analysis methods as explained in Section 2.

2 The General Idea

Korset’s model of application behavior is Control Flow
Graphs (CFG) induced from the source code and object
files of the program. Assuming that the most practical
ways for an attacker to inflict damage involve system
calls, Korset prunes the CFGs from the nodes that do
not represent system calls. The resulting model is an
automaton that represents the legitimate order of system
calls that an application may issue. This automaton is
then enforced by Korset’s monitoring agent, which is
built into the Linux kernel, by simulating every emitted
system call. When a divergence from the automaton is
encountered, the running process is terminated.

Assuming that the program was written with benign in-
tent, and isn’t self-modifying, then its source code re-
flects the full extent of the legitimate application behav-
ior, and nothing else. Every possible path of execution
is obviously represented in the source, and as a result,
also in the induced automaton. Every sequence of sys-
tem calls not matching the derived automaton couldn’t
have been issued by the program itself, and therefore can

be safely regarded as an intrusion. This leads to Korset
guaranting zero false positives.

3 Architecture

Korset has two main subsystems (see Figure 1), de-
scribed in the following subsections.

3.1 The static analyzer

The static analyzer is a user space subsystem that is re-
sponsible for creating the final application CFG. When
the static analyzer is enabled, the application CFG is au-
tomatically created as part of the compilation process.
When the user builds an application (by running make,
or compiling a random source file), the static analyzer
also creates the CFG. This is achieved by wrapping the
GNU build tools (gcc, ld, as, ar) in a way that is trans-
parent to the build system. As a result, a CFG is con-
structed for every built object file, executable or library
(currently only static libraries are supported). The CFGs
of C programs are initially derived using GCC’s capabil-
ity to dump a representation of the program’s CFG dur-
ing compilation, and the CFGs of Assembly programs
are derived by analysing their object code (see Figure 2).

After the CFGs of the application’s functions are cre-
ated, they are linked together to create a unified CFG

2008 Linux Symposium, Volume One • 33

Figure 2: Three simple functions and their representa-
tive control flow graphs, as constructed by Korset. Note
that write, which belongs to glibc, is a simple wrapper
around a direct system call (Korset does not yet support
the x86’s sysenter facility).

Figure 3: The CFGs are linked together in order to con-
struct the final CFG of the program’s executable.

Figure 4: The resulting CFG is very simple since Korset
prunes away all graph nodes that do not add relevant
information.

that corresponds with the executable of the application
(see Figure 3). Along the way, the graphs are simpli-
fied by tossing away CFG nodes that don’t add relevant
information, and as a result the final CFG consists ex-
clusively of system calls nodes (see Figure 4).

The CFG simplification is a lengthy process which in-
cludes numerous steps of graph determinizing and au-
tomaton manipulations. The complete theory and al-
gorithms behind this process is described in length in
our companion paper [BW08]. The end result, shown
in Figures 5 and 6, is designed to achieve minimum run-
time overhead: the final CFG is consisted of only system
calls nodes and is actually a completely deterministic
automaton. It is then transformed to a binary represen-
tation, which is designed to achieve maximum perfor-
mance by placing the possible emitted system calls of
each graph node closely after the location of the node
itself (see Figure 7).

open() syscall 5

read() syscall 3

write() syscall 4

execve() syscall 11

Figure 5: The CFGs of glibc’s execve(), write(), read()
and open(). These library routines are simple wrappers
around the relevant system call, as reflected in the CFGs.
The system calls involved are read(3), write(4), open(5)
and execve(11).

34 • Korset: Automated, Zero False-Alarm Intrusion Detection for Linux

fwrite()

syscall 90

syscall 140

syscall 197

syscall 108

syscall 4

syscall 45

syscall 125

syscall 91

syscall 54

Figure 6: The CFG of glibc’s fwrite(). The system calls involved are write(4), brk(45), ioctl(54), mmap(90), mun-
map(91), fstat(108), mprotect(125), _llseek(140) and fstat64(197).

Figure 7: The binary representation of Korset’s graphs is geared towards run-time efficiency.

2008 Linux Symposium, Volume One • 35

3.2 The Monitoring Agent

Korset’s monitoring agent is built natively into the Linux
kernel. When a monitored program is executed, the
monitoring agent loads its CFG, observes the issued sys-
tem calls by the process, and then validates their legiti-
macy by simulating them on the induced automaton.

Following is a description of the components that the
monitoring agent is built of.

Note: Support for the changes described in Subsec-
tion 3.2.1 is added only if the kernel’s build variable
CONFIG_SECURITY_SYSCALL is enabled. Likewise,
support for all other changes described in Subsections
3.2.2-3.2.5 is added only if the kernel’s build variable
CONFIG_SECURITY_KORSET is enabled.

3.2.1 Linux Security Modules changes

Linux Security Modules (LSM) is a Linux kernel secu-
rity framework that provides, among other things, a set
of security hooks that are used to perform access con-
trol. These hooks can be used by security modules to
implement any desired model of security. In order to
support the monitoring of system calls, we have added
a new LSM hook, called security_system_call,
into the security_operations structure (defined
by include/linux/security.h). This new hook
function is called every time user space makes a request
to execute a system call, by a handful of assembly in-
structions that we have added to the system_call
handler (no support yet for the x86’s sysenter facility
and in general only the x86 architecture is currently sup-
ported). The security_system_call hook func-
tion is given two arguments:

1. The location of the struct thread_info of
the current process (which have just made a request
to execute a system call), retrieved from the pro-
cess’ kernel stack using the GET_THREAD_INFO
macro. The struct thread_info can be
used to access the process’ task_struct struc-
ture (the Linux process descriptor), where process
security state is maintained by Korset.

2. The requested system call number, as given in
%eax from user space.

Any security module that registers the security_
system_call hook should use these two arguments
to decide whether or not to allow the execution of the de-
sired system call. The hook function should return zero
if permission to execute the system call is granted. If
zero is returned, the system call handler continues with
normal execution of the system call. Otherwise, the sys-
tem call handler immediately returns to user space with
an EACCES error (permission denied).

As with other LSM hooks, a security module
who wishes to use the security_system_call
hook should call register_security to set
security_ops to refer to its own hook function.

3.2.2 task_struct changes

In order to maintain a per-process automaton in the
kernel, we have added the following new fields to the
task_struct structure:

• korset_graph: The location, in memory, of the
automaton. When a process is not monitored, this
field holds a NULL.

• korset_node: An offset that, together with
korset_graph, yields the location in memory
of the automaton node that the current process is
at.

• korset_size: The size, in bytes, of the automa-
ton that is pointed to by korset_graph. Used
by automaton sanity checks.

3.2.3 CFG Loader

When app is executed, Korset looks for the file app.
korset, which, if it exists, holds the CFG of app. This
is done in fs/exec.c by the do_execve function,
in almost exactly the same manner as the kernel looks
for app’s executable itself (with the exception that only
READ permissions/flags are needed instead of the usual
EXEC ones). If the file app.korset exists, Korset
loads it from disk. This is done in fs/binfmt_elf.c

by the load_elf_binary function (currently only
ELF executables are supported by Korset), again in a
very similar way to how the kernel loads the executable
itself. After app’s graph is successfully read from disk,

36 • Korset: Automated, Zero False-Alarm Intrusion Detection for Linux

its location in memory is put in the korset_graph
field of the current process, the korset_size field is
updated with the graph’s size and the korset_node
field is set to point to the graph’s root node. (The offset
to the root node is taken from app.korset, as seen in
Figure 7.)

3.2.4 CFG Enforcer

Whenever a process issues a system call a, Korset’s
security_system_call LSM hook function is
called. If korset_graph == NULL then the cur-
rent process is not monitored, and a is immediately
approved. Otherwise, if korset_graph != NULL,
then the current process is monitored, and then Korset
validates the legitimacy of a by simulating one step of
the automaton. This is accomplished by checking the
outgoing edges of the current node, one by one, looking
for an edge that is carrying a. If such an edge is found,
the korset_node field of the current process is up-
dated to point to the destination node of the found edge,
and a is executed. If such an edge is not found, the cur-
rent process is terminated, and security_system_
call returns -1 to the system_call handler. As a
result, the system_call handler does not execute the
requested system call. Instead, it immediately returns to
user space as explained in 3.2.1.

In some cases, after an edge carrying the requested sys-
tem call is found, it is also desired to manipulate its lo-
cation in the graph for performance reasons. This ma-
nipulation is done within the enforcing code. For more
information, see Section 4.

3.2.5 CFG Dumper

As mentioned in the previous subsection, sometimes the
application CFG is manipulated while it is enforced.
This may happen for run-time optimization reasons, as
described in section 4. In those cases, it might be de-
sired that the graph file app.korset itself will be up-
dated to reflect the changes. This is where Korset’s CFG
Dumper kicks in. When a process terminates, and the
conditions described in Section 4 are met, the updated
CFG is dumped to disk. This is done in the do_exit
function, defined by kernel/exit.c, in a manner
that resembles the way the kernel dumps a core file.

4 Runtime Optimization via Frequent Edges
First

Validating a system call a involves matching a against
each of the outgoing edges of the current node v, until
either a match is found or all outgoing edges have been
traversed. The time complexity of this operation is ob-
viously O(d), where d is the number of outgoing edges
v has. The actual overhead is obviously dependent on
the position, in memory, of the more frequent edges. If
a system call a is carried by the first edge in memory,
only one matching iteration will be performed to locate
it, and the run-time overhead will be minimal. Based
on that simple observation, we added the following Fre-
quent Edges First (FEF) algorithm to Korset’s monitor-
ing agent:

1. Every time a system call match is made to an out-
going edge e of node v, e is moved-to-front, i.e.,
it is removed from its i-th location in memory, the
i−1 edges that are located in positions 1..i−1 are
shifted to positions 2..i, and e is placed in position
1.

2. When a monitored process finishes its execution,
its updated CFG is dumped to disk.

This means that when the FEF is enabled, the CFG dy-
namically changes during the execution of the process.
After the process terminates, the most frequent edges
of that specific execution are positioned before the less
frequent ones. If the next execution of that application
would have a similar system call sequences, Korset’s
overhead will be substantially smaller. The FEF can be
used in two modes:

1. Always Enabled: In this mode, the CFG will al-
ways be updated during process execution accord-
ing to the FEF algorithm. The main benefit of
this mode is that a recurring sequence of sys-
tem calls will incur minimal overhead. However,
this mode introduces additional computation that is
performed per observed system call, which may ac-
tually increase Korset’s run-time overhead. There-
fore, we do not use this mode.

2. Only Once: In this mode, the FEF is used as the
final step of CFG construction—the relevant ap-
plication is executed once, in a common work-
load. Upon termination, Korset dumps the updated

2008 Linux Symposium, Volume One • 37

CFG to disk, which is then used as the applica-
tion’s newly constructed CFG. This way, when a
new CFG is constructed, the position of its out-
going edges reflect a real execution of its program
rather than a random order. This mode is obviously
cheap—it has no run-time cost. Its only cost is in
the initial phase of CFG construction. Despite the
low cost and obvious limitation of this mode, it is
quite effective. We have found that even a single
FEF adjustment of a CFG during a single execu-
tion of a program significantly improves Korset’s
performance in future executions.

The ‘Always Enabled’ mode can be further tuned to re-
duce run time cost (e.g., an outgoing edge can be ad-
vanced only if it is not in the first t locations, where t is
a tunable variable that might be different for each appli-
cation). This is a topic for further research. In contrast,
the ‘Only Once’ mode is always used, since it has no
run time cost, and was found to be notably effective.

5 Run-Time Micro Benchmarks

Figure 8 demonstrates the percentage of overhead im-
posed by Korset’s monitoring agent via micro bench-
marks for four system calls with different speeds (write
is the slowest while setuid is the fastest). For a single
system call a, the actual overhead depends on the posi-
tion in memory of the edge carrying a. We measured
three different scenarios for each of the system calls:

1. Best Case: The matching edge is in the first posi-
tion. While this is the best run-time performance
that can be achieved, high precision models (i.e.
with low branching factors), should produce simi-
lar results.

2. Bad Case: The matching edge is in the 50th posi-
tion. This overhead level can only be achieved with
models that have bad precision since a node with
50 or more outgoing edges is very limited with its
constraining effectiveness.

3. Worst Case: The matching edge is in the 325th po-
sition (there are 325 different system calls in Linux
2.6.24). Measured for comparison.

The figure shows two things:

Figure 8: Micro-benchmarks of Korset’s overhead on
four system calls with variable speed. setuid is the
fastest system call and thus has the biggest percentage
of run-time overhead incurred by Korset.

1. The overhead imposed by a small branching factor
is negligible. Achieving a small branch factor is
obviously a factor of precision, but the same per-
formance can be achieved also by placing the more
common graph edges first (which is what our Fre-
quent Edges First process does).

2. As long as the system call itself is slow, Korset’s
run-time penalty is small (in percentage) even if the
branching factor is big. As the system call is faster,
Korset’s run-time penalty is becoming more sig-
nificant (in percentage). Measuring Korset’s per-
formace on simple I/O-centric applications yielded
results similar to the best case (around 1% over-
head) [BW08].

6 Related Work

The idea of applying code-based static analysis tech-
niques to automatically construct models with zero false
alarms was introduced in a seminal work by Wagner
and Dean [WD01]. Their work covers the theory be-
hind the idea, and is a recommended read. Wagner
and Dean used a non-deterministic model which re-
sulted in big run-time overheads, and their prototype
was implemented in Java. Continuing their work, Gif-
fin et al. demonstrated static analysis of SPARC binary
code to generate system calls CFGs of Solaris appli-
cation [GJM02, HGH+04, GJM04, GDJ+05]. Giffin

38 • Korset: Automated, Zero False-Alarm Intrusion Detection for Linux

et al. have introduced numerous automaton manipula-
tion techniques and binary modification techniques to
increase model precision and reduce non-determinism.
Methods to increase the model precision were intro-
duced, based on additional observable data. More
specifically, it was suggested to add system call argu-
ments [WD01, GJM04], program counter and call stack
information [HGH+04, GJM04] and environment infor-
mation [GDJ+05]. A completely deterministic model,
which results in better run-time performance, was sug-
gested [BW08]. Lastly, the code-based static analysis
model is not foolproof. An attacker can intentionally is-
sue system calls in order to arrive to a desired automaton
node. This type of attack, called mimicry attack,
was introduced by Wagner et al. at [WD01, WS02].

7 Current Status and Future Work

Korset is still a very young prototype. It blocks real
shellcodes, and it was found to incur negligible over-
head on simple I/O-centric applications (see our com-
panion paper [BW08] for a detailed evaluation and
analysis), but it is still very far from a mature HIDS.
It does not yet support dynamically linked applica-
tions, multi-threaded applications, signals, setjmp/
longjmp, etc. In addition, there is still a lot of work re-
quired to increase the precision of the automatons, e.g.,
better assembly analysis, better indirect calls analysis,
add additional observable data to the model, improve
the automaton manipulation algorithms, etc.

Korset is hosted at http://www.korset.org.

8 Conclusion

Korset is an HIDS prototype that automatically con-
structs models of application behavior, and enforces
them from the Linux kernel with guaranteed zero false
positives. Korset is capable of stopping future, or pub-
licly unknown code injection attacks (e.g., buffer over-
flows). Although Korset is still a prototype, it demon-
strates a viable HIDS methodology with promising in-
trusion detection properties.

References

[BW08] Ohad Ben-Cohen and Avishai Wool.
Korset: Making intrusion detection via
static analysis practical. Submitted for
publication, 2008.

[GDJ+05] Jonathon T. Giffin, David Dagon, Somesh
Jha, Wenke Lee, and Barton P. Miller.
Environment-sensitive intrusion detection.
In Recent Advances in Intrusion Detection,
pages 185–206, 2005.

[GJM02] Jonathon T. Giffin, Somesh Jha, and
Barton P. Miller. Detecting manipulated
remote call streams. In Proceedings of the
11th USENIX Security Symposium, pages
61–79. USENIX Association, 2002.

[GJM04] J. Giffin, S. Jha, and B. Miller. Efficient
context-sensitive intrusion detection. In
Proc. 11th Annual Network and
Distributed Systems Security Symposium
(NDSS), 2004.

[HGH+04] H.H. Feng H.H., J.T. Giffin, Yong Huang,
S. Jha, Wenke Lee, and B.P. Miller.
Formalizing sensitivity in static analysis
for intrusion detection. In Proceedings
IEEE Symposium on Security and Privacy,
pages 194–208, 9-12 May 2004.

[WD01] David Wagner and Drew Dean. Intrusion
detection via static analysis. In SP ’01:
Proceedings of the 2001 IEEE Symposium
on Security and Privacy, page 156,
Washington, DC, USA, 2001. IEEE
Computer Society.

[WS02] David Wagner and Paolo Soto. Mimicry
attacks on host-based intrusion detection
systems. In CCS ’02: Proceedings of the
9th ACM conference on Computer and
communications security, pages 255–264,
New York, NY, USA, 2002. ACM.

Suspend-to-RAM in Linux R©

A. Leonard Brown
Intel Open Source Technology Center

len.brown@intel.com

Rafael J. Wysocki
Institute of Theoretical Physics, University of Warsaw

rjw@sisk.pl

Abstract

Mobile Linux users demand system suspend-to-RAM
(STR) capability due to its its combination of low la-
tency and high energy savings.

Here we survey the design and operation of STR in
Linux, focusing on its implementation on high-volume
x86 ACPI-compliant systems. We point out significant
weaknesses in the current design, and propose future en-
hancements.

This paper will be of interest primarily to a technical au-
dience of kernel and device driver developers, but others
in the community who deploy, support, or use system
sleep states may also find it useful.

1 Introduction

When a computer is powered on, it enters the working
state and runs applications.

When a computer powered off, it consumes (almost) no
energy, but it doesn’t run applications.

As illustrated in Figure 1, several power-saving sys-
tem sleep states are available between the working and
power-off states. System sleep states share several prop-
erties:

• Energy is saved.

• The CPUs do not execute code.

• The I/O devices are in low-power states.

• Application state is preserved.

However, system sleep states differ from each other in
two major ways:

• The size of the energy-saving benefit.

Suspend
to

RAM

Resume
from
RAM

Working State

Standby State

Suspend State

Hibernate State

Standby Resume

Hibernate Restore
from
Hibernation

Deep: maximum power sav ings

Shal low:
min imum la tency

Power Off

Figure 1: System States

• The wake-up latency cost required to return to the
working state.

Linux supports three types of system-sleep states:
standby, suspend-to-RAM, and hibernate-to-disk.

Standby is the most shallow system-sleep state. This
means that it enjoys minimal wake-up latency. How-
ever, standby also delivers the least energy savings of
the sleep states.

Suspend-to-RAM is a deeper sleep state than standby.
STR saves more energy, generally by disabling all of
the motherboard components except those necessary to
refresh main memory and handle wake-up events.

In practice, STR generally enjoys the same latency as
standby, yet saves more energy. Thus standby support
is typically of little benefit, and computer systems often
do not provide it.

• 39 •

40 • Suspend-to-RAM in Linux

struct platform_suspend_ops

platform driver

Power Management CoreGeneric:

Platform
Specific:

Figure 2: Linux PM infrastructure

Hibernate-to-disk is deeper than suspend-to-RAM. In-
deed, it shares the same (almost zero) energy consump-
tion as the power-off state. This makes hibernate valu-
able when application state needs to be preserved for a
long period. Unfortunately hibernate resume latency is
quite high, so it generally is not as useful as STR.

Here we focus on suspend-to-RAM, popular due to its
combination of relatively low latency and relatively high
energy savings. We first introduce the Linux Power
Management (PM) Core, which is responsible for con-
trolling suspend and resume operations at the kernel
level. Next we describe the role of the platform firmware
and ACPI in STR, and we provide an overview of the
operations performed by the Linux kernel during sus-
pend and resume. We examine some parts of the ker-
nel’s STR infrastructure in more detail, focusing on
the known issues with the current implementation and
planned improvements. Finally, we consider some prob-
lems related to the handling of hardware, especially
graphics adapters, their current workarounds, and future
solutions.

2 The Linux Power Management Core

STR and standby are available only on systems provid-
ing adequate hardware support for them: The system
main memory has to be powered and refreshed as ap-
propriate so that its contents are preserved in a sleep
state. Moreover, the hardware must provide a mech-
anism making it possible to wake the system up from
that state and pass control back to the operating system
(OS) kernel. It is also necessary that power be at least
partially removed from devices before putting the sys-
tem into a sleep state, so that they do not drain energy

struct platform_suspend_ops {
int (*valid)(suspend_state_t state);
int (*begin)(suspend_state_t state);
int (*prepare)(void);
int (*enter)(suspend_state_t state);
void (*finish)(void);
void (*end)(void);

};

Figure 3: struct platform_suspend_ops

in vain. The part of the system providing this function-
ality is often referred to as the platform. It defines the
foundation of the system—the motherboard hardware as
well as the firmware that ships with it.1

To carry out STR and standby power transitions, the
Linux kernel has to interact with the platform through
a well-defined interface. For this purpose, the kernel
includes platform drivers responsible for carrying out
low-level suspend and resume operations required by
particular platforms. They supply a set of callbacks via
struct platform_suspend_ops shown in Fig-
ure 3. The .valid() and .enter() callbacks are
mandatory, while the others are optional.

The platform drivers are used by the PM Core. The
PM core is generic; it runs on a variety of platforms
for which appropriate platform drivers are available, in-
cluding ACPI-compatible personal computers (PCs) and
ARM platforms.

This paper focuses primarily on ACPI-compatible plat-
forms. The next section describes how ACPI fits
into the system architecture and describes some of the
specific capabilities that ACPI provides for suspend/
resume. Then we combine the PM core and ACPI dis-
cussions by stepping through the suspend and resume
sequences on an ACPI platform, in which all six of the
platform_suspend_ops are invoked.

3 ACPI and Platform System Architecture

Platform hardware defines the programming model seen
by software layers above. Platforms often augment this
programming model by including an embedded con-
troller (EC) running motherboard firmware. The EC
off-loads the main processors by monitoring sensors for

1The motherboard hardware includes not only the major proces-
sor, memory, and I/O sub-systems, but also interrupt controllers,
timers, and other logic that is visible to the software layers above.

2008 Linux Symposium, Volume One • 41

Linux Kernel
Drivers, ACPICA Core

ACPI Registers,
ACPI Tables & BIOS

Platform Hardware
Platform BIOS & firmware

Applications, System Util i t ies
User
Space

Kernel
Space

ACPI
Specification

Platform
Defined

Figure 4: Platform Abstraction Layers

buttons, batteries, temperature, fans, etc. In addition,
personal computer (PC) motherboards include a PC-
compatible BIOS (Basic Input Output System) responsi-
ble for initializing the system and presenting some stan-
dard services, such as booting, to the OS kernel.

The ACPI specification [ACPI-SPEC] defines a layer
of abstraction that sits above the platform-defined layer.
ACPI specifies that the platform hardware must support
certain standard registers, and that the BIOS be extended
to export tables in memory to guide the OS kernel. Fig-
ure 4 shows how ACPI fits into the system architecture.

Some ACPI tables are simply static data structures that
the ACPI BIOS uses to describe the machine to the OS.
Other ACPI tables contain functions, known as meth-
ods, to be executed in the kernel, encoded in the ACPI
Machine Language (AML).

AML methods are first expressed in ACPI Source Lan-
guage (ASL) and then translated into the AML byte
code with the help of an ASL compiler. The compiled
AML tables are then burned into PROM when the moth-
erboard is manufactured.

AML is executed by the ACPI Component Architec-
ture [ACPICA] Core’s AML interpreter residing in the
next layer up—the Linux kernel. This design allows
AML, which is effectively ACPI BIOS code, to run in
kernel context.2 That, in turn, allows platform design-
ers to use many different types of hardware components

2Before ACPI, the choices to support run-time BIOS code were

and to tailor the interfaces between those components
and the OS kernel to their needs.

However, since the AML code is obtained by compiling
source code written in ASL, the preparation of an ACPI
platform involves software development that is prone
to human error. There are additional problems related
to the ACPI’s abstraction capability, some of which are
discussed in Section 11.

4 ACPI and Suspend to RAM

Aside from its configuration and run-time power-
management responsibilities, ACPI also standardizes
several key hooks for suspend and resume:

1. Device power states.

2. Device wake-up control.

3. Standard mechanism to enter system sleep states.

4. Firmware wake-up vector.

When discussing ACPI and devices, it is important to re-
alize that ACPI firmware is stored into EEPROM when
a motherboard is created. Thus ACPI can be aware of
all logic and devices that are permanently attached to
the motherboard, including on-board legacy and PCI de-
vices, device interrupt routing, and even PCI slot hot-
plug control. But ACPI has no knowledge of the devices
that may later be plugged into I/O slots or expansion
buses.

ACPI defines “Device Power States” (D-states) in terms
of power consumption, device context retention, device-
driver restore responsibilities, and restore latency. The
PCI Power Management specification [PCI-PM] simi-
larly defines the D-states used by PCI devices; ACPI
extends the notion of D-states to non-PCI motherboard
devices.

D-states can be used independently of system sleep
states, for run-time device power management. Note,
however, that D-states are not performance states; that
is, they do not describe reduced levels of performance.
A device is non-functional in any D-state other than D0.

to call the BIOS directly in real mode, which required a real-mode
OS, or to invisibly invoke the System Management Mode (SMM).

42 • Suspend-to-RAM in Linux

System sleep states, such as STR, mandate the use of D-
states. Before D-states were implemented in Linux, we
found several systems that would suspend and resume
from RAM successfully, but they had devices which
would continue to drain energy while the system was
suspended—which severely shortened the the system’s
ability to sleep on battery power.

ACPI also defines a mechanism to enable and disable
device wake-up capability. When the system is in the
working state, this mechanism can be used to selectively
wake up a sleeping device from a D-state. When the
whole system is suspended, this capability may be used
to enable automatic system resume.

Many devices export native wake-up control. In partic-
ular, modern Ethernet Network Interface Cards (NIC)
support Wake-on-LAN (WOL) and their drivers export
that function via ethtool(1). Note that this has to
be a native capability, because ACPI firmware can not
provide wake-up support for add-on adapters.

Today the wake-up support in Linux is in flux. There is
a legacy hook for ACPI wake-up capability in /proc/
acpi/wakeup, but that interface is nearly unusable, as
each entry refers to an arbitrary 4-letter ASL name for
a device that the user (or an application) cannot reliably
associate with a physical device. The device core pro-
vides its own wakeup API in /sys/devices/.../
power/wakeup; this is not yet fully integrated with
the ACPI wake-up mechanism.

The ACPI specification carefully describes the sequence
of events that should take place to implement both sus-
pend and resume. Certain platform ACPI hooks must
be invoked at various stages in order for the platform
firmware to correctly handle suspend and resume from
RAM. These hooks are mentioned in later sections that
detail the suspend and resume sequence.

Finally, ACPI provides a standard mechanism to tell the
platform what address in the kernel to return to upon
resume.

More information about ACPI in Linux can be found in
previous Linux Symposium presentations [ACPI-OLS],
as well as on the Linux/ACPI project home page
[ACPI-URL].

5 Suspend Overview

There are two ways to invoke the Linux kernel’s suspend
capability. First, by writing mem into /sys/power/

state.3 Second, with the SNAPSHOT_S2RAM ioctl
on /dev/snapshot, a device provided by the user-
space hibernation driver. This second method is pro-
vided only as a means to implement the mixed suspend-
hibernation feature4 and will not be discussed here.

Once mem has been written to /sys/power/state,
the PM core utilizes the platform_suspend_ops
in the steps shown in Figure 5. First, it invokes the
platform driver’s global .valid() method, in order to
check whether the platform supports suspend-to-RAM.

The .valid() callback takes one argument represent-
ing the intended system-sleep state. Two values may
be passed by the PM core, PM_SUSPEND_STANDBY
and PM_SUSPEND_MEM, representing the standby and
the suspend sleep states, respectively. The .valid()
callback returns true if the platform driver can asso-
ciate the state requested by the PM core with one of
the system-sleep states supported by the platform. Note,
however, that on non-ACPI systems the choice of the ac-
tual sleep state is up to the platform. The state should
reflect the characteristics requested by the core (e.g.,
the STR state characteristics if PM_SUSPEND_MEM is
used), but the platform may support more than two such
sleep states. In that case, the platform driver is free to
choose whichever sleep state it considers appropriate.
But the choice is made later, not during .valid().

If the .valid() platform callback returns true, the
PM core attempts to acquire pm_mutex to prevent
concurrent system-wide power transitions from being
started. If that succeeds, it goes on to execute sys_
sync() to help prevent unwritten file system data from
being lost in case the power transition fails in an unre-
coverable manner. It switches the system console to a
text terminal in order to prevent the X server from in-
terfering with device power-down. It invokes suspend
notifiers to let registered kernel subsystems know about
the impending suspend, as described in Section 7. It
freezes the tasks, as detailed in Section 8. This puts all
user processes into a safe, static state: They do not hold
any semaphores or mutexes, and they cannot run until
the PM core allows them to.

3The old STR user interface, based on /proc/acpi/sleep,
is deprecated.

4This feature first creates a hibernation image and then suspends
to RAM. If the battery lasts, then the system can resume from RAM,
but if the battery fails, then the hibernation image is used. An exper-
imental implementation is provided by the s2both utility included in
the user-land suspend package at http://suspend.sf.net.

2008 Linux Symposium, Volume One • 43

acquire pm_mutex

.valid

suspend device class

sys_sync

console switch

suspend notif iers

freeze tasks

.begin

freeze console

disable non-boot CPUs

disable interrupts

.suspend_late()

.enter

abort

.prepare
set f i rmware waking vector
_PSW (Prepare wake devices)
_PTS (Prepare to Sleep)
_SST (System indictor status)

PM: Syncing file systems ... done.

abort

suspend system devices

suspend device bus

suspend device type

Figure 5: Suspend Sequence

Next the PM core invokes the .begin() platform-
suspend callback to notify the platform driver of the de-
sired power transition. The .begin() callback takes
one argument representing the system-sleep state re-
quested by the PM core. The interpretation as well as
the possible values of its argument are the same as for
the .valid() callback. At this point, however, the
platform driver chooses the sleep state in which to place
the system and stores the information for future refer-
ence. The choice made by the platform driver is not di-
rectly conveyed to the PM core, which does not have the
means to represent various sleep states that may be sup-
ported by different platforms and does not really need
that information. Still, the sleep state chosen by the plat-
form driver, the target state of the transition, may deter-
mine the low-power states (D-states on ACPI systems)
into which devices should be put. For this reason, the
platform driver provides device drivers with information
on the low-power states in which they are supposed to
place their devices. The .begin() callback returns 0
on success or an error code on failure, in which case the
PM core aborts the transition.

After .begin() succeeds, the PM core blocks system
console messages in order to protect the console de-
vices from being accessed while they are suspended,5

and starts suspending devices (i.e., putting them in low-
power states). Devices are suspended in reverse order
of registration; in this way the kernel should never find
itself stuck in a situation where it needs to access a sus-
pended device or where a suspended parent has an ac-
tive child. To suspend a device, the PM core invokes the
suspend callbacks provided by the device-class driver,
device-type driver, and bus-type driver associated with
it, in that order.

Device-class, device-type, and bus-type drivers can
each implement one device-suspend method, called
.suspend(), and one corresponding device-resume
method, called .resume(). Bus-type drivers
can define extra device-suspend and -resume meth-
ods to be executed with interrupts disabled, called
.suspend_late() and .resume_early(), re-
spectively. These additional methods are invoked after
the non-boot CPUs have been disabled, as described be-
low.

Each of the suspend callbacks takes two arguments,
5Since this mechanism makes debugging difficult, there is a

no_console_suspend kernel command-line parameter which
prevents it from triggering.

44 • Suspend-to-RAM in Linux

a pointer to the appropriate device structure and a
pm_message_t argument, representing the transition
being carried out. Currently five values of this ar-
gument are recognized: PMSG_ON, PMSG_FREEZE,
PMSG_SUSPEND, PMSG_HIBERNATE, and PMSG_
PRETHAW. The first represents the transition back
to the working state, while PMSG_FREEZE, PMSG_
HIBERNATE, and PMSG_PRETHAW are specific to hi-
bernation. Thus only PMSG_SUSPEND is used for
standby and STR. Since the same callbacks are in-
voked for both suspend and hibernation, they must de-
termine the proper actions to perform on the basis of the
pm_message_t argument.

The device-class, device-type, and bus-type suspend
callbacks are responsible for invoking the suspend call-
backs implemented by individual device drivers. In
principle the names of those suspend callbacks may
depend on the device class, device type, or bus type
the device belongs to, but traditionally drivers’ suspend
callbacks are called .suspend() (or .suspend_
late() if they are to be executed with interrupts dis-
abled). Also, all of them take two arguments, the first of
which is a pointer to the device structure and the second
of which is as described above.

The framework for suspending and resuming devices is
going to be changed. The current framework has some
deficiencies: It is inflexible and quite inconvenient to
use from a device-driver author’s point of view, and it is
not adequate for suspending and resuming devices with-
out the freezing of tasks. As stated in Section 8, the
freezing of tasks is planned to be phased out in the fu-
ture, so a new framework for suspending and resuming
devices (described in Section 9) is being introduced.

After executing all of the device-suspend callbacks, the
PM core invokes the .prepare() platform suspend
method to prepare the platform for the upcoming transi-
tion to a sleep state. For the ACPI platform, the _PTS
global-control method is executed at this point.

Next the PM core disables non-boot CPUs, with the help
of the CPU hot-plug infrastructure. We will not dis-
cuss this infrastructure in detail, but it seems important
to point out that the CPU hot-plug notifiers are called
with special values of their second argument while non-
boot CPUs are being disabled during suspend and en-
abled during resume. Specifically, the second argu-
ment is bitwise OR’ed with CPU_TASKS_FROZEN, so
that the notifier code can avoid doing things that might

lead to a deadlock or cause other problems at these
times. The notifier routines should also avoid doing
things that are not necessary during suspend or resume,
such as un-registering device objects associated with a
CPU being disabled—these objects would just have to
be re-registered during the subsequent resume, an over-
all waste of time.6

After disabling the non-boot CPUs, the PM core dis-
ables hardware interrupts on the only remaining func-
tional CPU and invokes the .suspend_late()
methods implemented by bus-type drivers which, in
turn, invoke the corresponding callbacks provided by
device drivers. Then the PM core suspends the so-called
system devices (also known as sysdevs) by executing
their drivers’ .suspend() methods. These take two
arguments just like the regular .suspend() methods
implemented by normal (i.e., not sysdev) device drivers,
and the meaning of the arguments is the same.

To complete the suspend, the PM core invokes the
.enter() platform-suspend method, which puts the
system into the requested sleep state. If the .begin()
method is implemented for given platform, the state
chosen while it was executed is used and the argument
passed to .enter() is ignored. Otherwise, the plat-
form driver uses the argument passed to .enter() to
determine the state in which to place the system.

6 Resume Overview

The resume sequence is the reverse of the suspend se-
quence, but some details are noteworthy.

Resume is initiated by a wake-up event—a hardware
event handled by the platform firmware. This event may
be opening a laptop lid, pressing the power button or a
special keyboard key, or receiving a magic WOL net-
work packet.

Devices must be enabled for wake-up before the sus-
pend occurs. On ACPI platforms, the power button is
always enabled as a wake-up device. The sleep button
and lid switches are optional, but if present they too are
enabled as wake-up devices. Any platform device may
be configured as a wake-up device, but the power, sleep,
and lid buttons are standard.

6It also would mess up the PM core’s internal lists, since the
objects would be re-registered while they were still suspended.

2008 Linux Symposium, Volume One • 45

When a wake-up event occurs, the platform firmware
initializes as much of the system as necessary and passes
control to the Linux kernel by performing a jump to a
memory location provided during the suspend. The ker-
nel code executed at this point is responsible for switch-
ing the CPU to the appropriate mode of operation.7

This sequence is similar to early boot, so it is generally
possible to reuse some pieces of the early initialization
code for performing the resume CPU-initialization op-
erations.

Once the CPU has been successfully reinitialized, con-
trol is passed to the point it would have reached if the
system had not been put into the sleep state during the
suspend. Consequently the PM core sees the platform-
suspend callback .enter() return zero. When that
happens, the PM core assumes the system has just wo-
ken up from a sleep state and starts to reverse the actions
of the suspend operations described in Section 5.

It resumes sysdevs by executing their .resume() call-
backs, and then it invokes the device-resume callbacks
to be executed with interrupts disabled. That is, it ex-
ecutes the .resume_early() callbacks provided by
bus-type drivers; they are responsible for invoking the
corresponding callbacks implemented by device drivers.
All of these callbacks take a pointer to the device object
as their only argument.

Subsequently the non-boot CPUs are enabled with the
help of the CPU hot-plug code. As mentioned above,
all of the CPU hot-plug notifiers executed at this time
are called with their second argument OR-ed with CPU_
TASKS_FROZEN, so that they will avoid registering
new device objects or doing things that might result in a
deadlock with a frozen task.

After enabling the non-boot CPUs, the PM core calls the
.finish() platform-suspend method to prepare the
platform for resuming devices. In the case of an ACPI
platform, the _WAK global-control method is executed
at this point.

Next the PM core resumes devices by executing the
device-resume methods provided by bus-type, device-
type, and device-class drivers, in that order. All of
these methods are called .resume() and take a device
pointer as their only argument. They are responsible for
invoking the corresponding methods provided by device

7For example, protected mode on an i386 PC or 64-bit mode on
an x86-64 system.

resume at wake vector

unblock console

initialize CPU

.resume system devices

.resume_early()

resume non-boot CPUs

.finish

.resume device bus

thaw tasks

resume notif iers

console switch

.end
forget target state

.enter

_WAK (wakup)

release pm_mutex

.resume device class

.resume device type

Figure 6: Resume Sequence

46 • Suspend-to-RAM in Linux

drivers. Although these methods may return error codes,
the PM core cannot really do anything about resume er-
rors; the codes are used for debugging purposes only.
Devices are resumed in order of registration, the reverse
of the order in which they were suspended.

Once devices have been resumed, the PM core un-
blocks the system console so that diagnostic messages
can be printed, and calls the .end() platform method.
This method is responsible for doing the final platform-
resume cleanup. In particular, it assures that the in-
formation about the target sleep state of the system
stored by .begin() has been discarded by the plat-
form driver.

The last three steps of resume are the thawing of tasks,
invoking suspend notifiers with the appropriate argu-
ment (PM_POST_SUSPEND), and switching the system
console back to whatever terminal it had been set to be-
fore the suspend started. Finally, the PM core releases
pm_mutex.

7 Suspend and Hibernation Notifiers

Suspend and hibernation notifiers are available for sub-
systems that need to perform some preparations before
tasks are frozen (see Section 8). For example, if a device
driver needs to call request_firmware() before a
suspend, that should be done from within a suspend no-
tifier.

The notifiers are registered and un-registered using the
register_pm_notifier() and unregister_
pm_notifier() functions, respectively. Both these
functions take one argument, a pointer to an appro-
priately populated struct notifier_block. If
there is no need to un-register a suspend notifier, it can
be registered with the help of the simplifying macro
pm_notifier(), which takes only a function name
and a priority as arguments.

The notifiers are called just prior to freezing tasks
during both suspend and hibernation with their sec-
ond argument set to PM_SUSPEND_PREPARE or PM_
HIBERNATION_PREPARE, respectively,8 as well as
during resume from a sleep state or hibernation with
the second argument equal to PM_POST_SUSPEND or
PM_POST_HIBERNATION, respectively. In addition,

8They also are called during resume from hibernation with PM_
RESTORE_PREPARE, but we will not discuss that here.

they are called if suspend or hibernation fails. The
PM core does not distinguish these invocations from the
calls made during a successful resume; for this reason,
the notifier code should be prepared to detect and han-
dle any potential errors resulting from a suspend fail-
ure. Regardless, the rule is that if the notifiers were
called with PM_SUSPEND_PREPARE during suspend,
then they are called with PM_POST_SUSPEND to undo
the changes introduced by the previous invocation, ei-
ther during resume or in a suspend error path.

Notifiers return zero on success; otherwise they return
appropriate error codes. However, while an error code
returned by a notifier called during suspend causes the
entire suspend to fail, error codes returned by notifiers
called during resume are ignored by the PM core, since
it is not able to act on them in any significant way.

8 Freezing Tasks

In both suspend and hibernation, tasks are frozen before
devices are suspended. This assures that all user-space
processes are in a stable state in which they do not hold
any semaphores or mutexes, and they will not continue
running until the PM core allows them. This mechanism
was introduced with hibernation in mind, to prevent data
from being written to disks after the hibernation image
was created. Otherwise the on-disk data would not re-
flect the information preserved within the hibernation
image, leading to corruption when the system resumed.
Historically, Linux’s support for hibernation has been
much more robust than its support for STR, and drivers’
suspend and resume callbacks were designed and tested
with hibernation in mind. They generally expected tasks
to be frozen before they were executed. Since the same
callbacks were (and still are) used for both STR and
hibernation, it became necessary to freeze tasks before
STR as well as before hibernation.

The piece of code that freezes tasks is called the freezer.
It is invoked by the PM core after the suspend no-
tifiers are called (see Section 7) and just before the
.begin() platform-suspend method is executed. It
works by traversing the list of all tasks in the system
and setting the TIF_FREEZE flag for the ones marked
as freezable (i.e., those without the PF_NOFREEZE flag
set).

It does this first for user-space tasks, calling signal_

2008 Linux Symposium, Volume One • 47

wake_up() on each of them.9 The code uses a busy
loop in which the freezer checks if there still are any
tasks with TIF_FREEZE set. The loop finishes when
there are none left, or the only remaining ones also have
the PF_FREEZER_SKIP flag set.10

The tasks for which TIF_FREEZE has been
set are forced by the signal handler to call
refrigerator(). This function unsets
TIF_FREEZE, sets the PF_FROZEN flag for the cur-
rent task, and puts it into the TASK_UNINTERRUPTIBLE
state. The function will keep the task in this state as
long as the PF_FROZEN flag is set; the PM core has
to reset that flag before the task can do any more
useful work. Thus, the tasks that have PF_FROZEN
set and are inside the refrigerator() function are
regarded as “frozen.” As a result of the way in which
refrigerator() is entered, the frozen tasks cannot
hold any semaphores or mutexes, so it is generally safe
to leave them in this state before suspending devices.

When all of the user-space tasks have been frozen,
the freezer sets TIF_FREEZE for the remaining freez-
able tasks (i.e., freezable kernel threads). They also
are supposed to enter refrigerator(). But while
user-space tasks are made call refrigerator() by
the generic signal-handling code, kernel threads have
to call it explicitly in order to be frozen. Specifi-
cally, they must call the try_to_freeze() func-
tion in suitable places. Moreover, the freezer does
not call fake_signal_wake_up() on them, since
we do not want to send a fake signal to a kernel
thread. Instead the freezer calls wake_up_state(p,
TASK_INTERRUPTIBLE) on those tasks (where p is
a pointer to the task’s struct task_struct ob-
ject). This causes the tasks to be woken up in case they
are sleeping—but it also means that kernel threads in the
TASK_UNINTERRUPTIBLE state cannot be frozen.11

Although freezing tasks may seem to be a simple
mechanism, it has several problems. First of all, the
main limitation of the freezer (inability to handle un-
interruptible tasks) causes it to fail in many cases where
we would like it to succeed. For example, if there

9The freezer distinguishes user-space tasks from kernel threads
on the basis of the task’s mm pointer. If this pointer is NULL or has
only been set temporarily, the task is regarded as a kernel thread;
otherwise it is assumed to belong to user-space.

10This allows the freezer to handle some corner cases, such as the
vfork() system call.

11This also applies to user-space processes in that state.

is a task waiting on a filesystem lock in the TASK_
UNINTERRUPTIBLE state and the lock cannot be re-
leased for a relatively long time due to a network er-
ror, the freezer will fail and the entire suspend will fail
as a result. Second, the freezer does not work well
with device drivers having a user-space component, be-
cause they may not be able to suspend devices after
their user-space parts have been frozen. Third, freezing
tasks occasionally takes too much time. It usually does
not take more than several milliseconds, but in extreme
cases (i.e., under a heavy load) it may take up to sev-
eral seconds, which is way too much for various impor-
tant usage scenarios. Finally, the approach used by the
freezer to distinguish user-space processes from kernel
threads is not optimal. It turns out that there are kernel
threads which in fact behave like user-space processes
and therefore should be frozen in the same way, by send-
ing fake signals to them with signal_wake_up().
These threads often fail to call refrigerator() in
a timely manner, causing the freezer to fail.

For these reasons, the kernel developers generally agree
that the freezing of tasks should not be used during sus-
pend. Whether it should be used during hibernation is
not entirely clear, but some implementations of hiberna-
tion without freezing tasks are being actively discussed.
In any case, there ought to be an alternative mechanism
preventing user-space processes and kernel threads from
accessing devices that are in a low-power state (i.e., after
they have been suspended and before they are resumed).
It is generally believed that device drivers should handle
this, and for this purpose it will be necessary to rework
the suspend and resume framework.

9 Proposed Framework for Suspending and
Resuming Devices

As stated in Section 5, the current framework for sus-
pending and resuming devices does not seem to be ade-
quate. It is considered inflexible and generally difficult
to use in some situations. It does not include any mech-
anisms allowing the PM core to protect its internal data
structures from damage caused by inappropriate driver
implementations.12 It does not provide enough context
information to resume callbacks. Finally, it may not be

12For example, if a callback or notifier routine registers a new
device object below a suspended parent, the ordering of the device
list used by the PM core will be incorrect and the next suspend may
fail as a result.

48 • Suspend-to-RAM in Linux

suitable when the freezing of tasks is removed and de-
vice drivers are made responsible for preventing access
to suspended devices. Consequently a new framework
for suspending and resuming devices is now being in-
troduced [PATCHES].

The first problem solved by the new framework is the
lack of separation between the suspend and hiberna-
tion callbacks, especially where the resume part is con-
cerned. Within the current framework the same device-
resume callbacks are used for both hibernation and sus-
pend, and since they take only one argument (a pointer
to the device structure), it is nearly impossible for them
to determine the context in which they are invoked. This
is a serious limitation leading to unnecessary complica-
tions in some cases, and it is going to be fixed by in-
troducing separate device-resume callbacks for suspend
and hibernation.13 Likewise, separate device-suspend
callbacks for suspend and hibernation will be intro-
duced, so that the pm_message_t argument (used for
determining the type of transition being carried out, see
Section 5) will not be necessary any more.

struct pm_ops {
int (*prepare)(struct device *dev);
void (*complete)(struct device *dev);
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*thaw)(struct device *dev);
int (*poweroff)(struct device *dev);
int (*restore)(struct device *dev);

};

Figure 7: Proposed struct pm_ops

struct pm_ops, representing a set of device-
suspend and -resume callbacks (including hibernation-
specific callbacks), is defined as shown in Figure 7.
Each device-class or device-type driver implementing
these callbacks will provide the PM core with a pointer
to one of these structures. Since bus-type drivers gener-
ally need to define special device-suspend and -resume
callbacks to be executed with interrupts disabled, the
extended struct pm_ext_ops structure detailed in
Figure 8 is provided for their benefit.

Although the implementation of suspend and resume
callbacks in device drivers may generally depend on the

13In fact, two separate device-resume callbacks are necessary for
hibernation: one to be called after creating an image and one to be
called during the actual resume.

struct pm_ext_ops {
struct pm_ops base;
int (*suspend_noirq)(struct device *dev);
int (*resume_noirq)(struct device *dev);
int (*freeze_noirq)(struct device *dev);
int (*thaw_noirq)(struct device *dev);
int (*poweroff_noirq)(struct device *dev);
int (*restore_noirq)(struct device *dev);

};

Figure 8: Proposed struct pm_ext_ops

bus type, device type, and device class their devices
belong to, it is strongly recommended to use struct
pm_ops or struct pm_ext_ops objects. How-
ever, the legacy callback method pointers will remain
available for the time being.

The majority of callbacks provided by struct
pm_ops and struct pm_ext_ops objects are
hibernation-specific and we will not discuss them. We
will focus on the callbacks that are STR-specific or com-
mon to both suspend and hibernation.

The .prepare() callback is intended for initial
preparation of the driver for a power transition, with-
out changing the hardware state of the device. Among
other things, .prepare() should ensure that after it
returns, no new children will be registered below the de-
vice. (Un-registering children is allowed at any time.) It
is also recommended that .prepare() take steps to
prevent potential race conditions between the suspend
thread and any other threads. The .prepare() call-
backs will be executed by the PM core for all devices
before the .suspend() callback is invoked for any of
them, so device drivers may generally assume that the
other devices are functional while .prepare() is be-
ing run.14 In particular, GFP_KERNEL memory alloca-
tions can safely be made. The .prepare() callbacks
will be executed during suspend as well as during hiber-
nation.15

The .suspend() callback is suspend-specific. It will
be executed before the platform .prepare() method
is called (see Section 5) and the non-boot CPUs are
disabled. In this callback the device should be put

14However, user-space tasks will already be frozen, meaning that
things like request_firmware() cannot be used. This limita-
tion may be lifted in the future.

15During hibernation they will be executed before the image is
created, and during resume from hibernation they will be executed
before the contents of system memory are restored from the image.

2008 Linux Symposium, Volume One • 49

into the appropriate low-power state and the device’s
wake-up mechanism should be enabled if necessary.
Tasks must be prevented from accessing the device af-
ter .suspend() has run; attempts to do so must block
until .resume() is called.

Some drivers will need to implement the
.suspend_noirq() callback and its resume
counterpart, .resume_noirq(). The role of these
callbacks is to switch off and on, respectively, devices
that are necessary for executing the platform methods
.prepare() and .finish() or for disabling and
re-enabling the non-boot CPUs. They should also
be used for devices that cannot be suspended with
interrupts enabled, such as APICs.16

The .resume() callback is the counterpart of
.suspend(). It should put the device back into an
operational state, according to the information saved
in memory by the preceding .suspend(). After
.resume() has run, the device driver starts working
again, responding to hardware events and software re-
quests.

The role of .complete() is to undo the changes
made by the preceding .prepare(). In particular,
new child devices that were plugged in while the sys-
tem was suspended and detected during .resume()
should not be registered until .complete() is called.
It will be executed for all kinds of resume transitions,
including resume-from-hibernation, as well as in cases
when a suspend or hibernation transition fails. After
.complete() has run, the device is regarded as fully
functional by the PM core and its driver should han-
dle all requests as appropriate. The .complete()
callbacks for all devices will be executed after the last
.resume() callback has returned, so drivers may gen-
erally assume the other devices to be functional while
.complete() is being executed.

All of the callbacks described above except for
.complete() return zero on success or a nonzero er-
ror code on failure. If .prepare(), .suspend(),
or .suspend_noirq() returns an error code, the en-
tire transition will be aborted. However the PM core
is not able to handle errors returned by .resume()
or .resume_noirq() in any meaningful manner, so

16At present, APICs are represented by sysdev objects and are
suspended after the regular devices. It is possible, however, that
they will be represented by platform device objects in the future.

they will only be printed to the system logs.17

It is expected that the addition of the .prepare() and
.complete() callbacks will improve the flexibility
of the suspend and resume framework. Most impor-
tantly, these callbacks will make it possible to separate
preliminary actions that may depend on the other de-
vices being accessible from the actions needed to stop
the device and put it into a low-power state. They will
also help to avoid some synchronization-related prob-
lems that can arise when the freezing of tasks is removed
from the suspend code path. For example, drivers may
use .prepare() to disable their user-space interfaces,
such as ioctls and sysfs attributes, or put them into a de-
graded mode of operation, so that processes accessing
the device cannot disturb the suspend thread.

Moreover, we expect that the introduction of the
hibernation-specific callbacks and the elimination of the
pm_message_t parameter will help driver authors to
write more efficient power-management code. Since all
of the callbacks related to suspend and hibernation are
now going to be more specialized and the context in
which they are invoked is going to be clearly defined,
it should be easier to decide what operations are to be
performed by a given callback and to avoid doing unnec-
essary things (such as putting a device into a low-power
state before the hibernation image is created).

10 Suspend to RAM and Graphics Adapters

One of the most visible weaknesses of Linux’s current
implementation of suspend-to-RAM is the handling of
graphics adapters. On many systems, after resume-
from-RAM, the computer’s graphics adapter is not func-
tional or does not behave correctly. In the most extreme
cases this may lead to system hangs during resume and
to the appearance of many unusual failure modes. It is
related to the fact that the way Linux handles graphics
does not meet the expectations of hardware manufactur-
ers.18

For a long time graphics has been handled entirely by
the X server, which from the kernel’s point of view is

17To change this, the resume callbacks would have to be required
to return error codes only in case of a critical failure. This currently
is not possible, since some drivers return noncritical errors from their
legacy resume callbacks. In any event, drivers have a better idea of
what recovery options are feasible than the PM core does.

18This mostly applies to the vendors of notebooks.

50 • Suspend-to-RAM in Linux

simply a user-space process. Usually the X server uses
its own graphics driver and accesses the registers of the
graphics adapter directly. In such cases the kernel does
not need to provide its own driver as well, and the X
server is left in control. Normally this does not lead to
any problems, but unfortunately with suspend-to-RAM
it does.

When the system is put into STR, power is usually re-
moved from the graphics adapter, causing it to forget its
pre-suspend settings. Hence during the subsequent re-
sume, it is necessary to reinitialize the graphics adapter
so that it can operate normally. This may be done by the
computer’s BIOS (which gets control over the system
when a wake-up event occurs) and it often is done that
way on desktop systems. However, many laptop ven-
dors tend to simplify their BIOSes by not implement-
ing this reinitialization, because they expect the graphics
driver provided by the operating system to take care of
it. Of course this is not going to work on Linux systems
where the kernel does not provide a graphics driver, be-
cause the X server is activated after devices have been
resumed and that may be too late for it to reinitialize the
graphics adapter, let alone restore its pre-suspend state.
Furthermore X may not even have been running when
the system was suspended.

The ultimate solution to this problem is to implement
graphics drivers in the Linux kernel. At a minimum,
graphics drivers should be split into two parts, one of
which will reside in the kernel and will be responsi-
ble for interacting with the other kernel subsystems and
for handling events such as a system-wide power tran-
sition. The other part of the driver may still live in the
X server and may communicate with the first part via a
well-defined interface. Although this idea is not new, it
was difficult to realize owing to the lack of documen-
tation for the most popular graphics adapters. Recently
this situation has started to change, with first Intel and
then AMD making their adapters’ technical documenta-
tion available to kernel and X developers. As a result,
.suspend() and .resume() callbacks have been
implemented in the i915 driver for Intel adapters, and it
is now supposed to correctly reinitialize the adapter dur-
ing resume-from-RAM.19 It is expected that this ability
will also be added to the graphics drivers for AMD/ATI
adapters in the near future.

Still, there are many systems for which the graphics

19This driver is included in the 2.6.25 kernel.

adapters are not reinitialized correctly during resume-
from-RAM. Fortunately it was observed that the reini-
tialization could often be handled by a user-space wrap-
per executing some special BIOS code in 16-bit emu-
lation mode. It turned out that even more things could
be done in user-space to bring graphics adapters back to
life during resume, and a utility called vbetool was
created for this purpose.20 At the same time, a util-
ity for manipulating backlight on systems using ATI21

graphics adapters, called radeontool, was created.
These two programs were merged into a single utility
called s2ram, which is a wrapper around the Linux
kernel’s /sys/power/state interface incorporating
the graphics reinitialization schemes.22

Although s2ram is a very useful tool, it has one draw-
back: Different systems usually require different opera-
tions to be carried out in order to reinitialize their graph-
ics adapters, and it is necessary to instruct s2ram what
to do by means of command-line options. Moreover,
every user has to figure out which options will work on
her or his system, which often is tedious and can in-
volve several failed suspend/resume cycles. For this rea-
son s2ram contains a list of systems for which a work-
ing set of options is known, and the users of these sys-
tems should be able to suspend and resume their com-
puters successfully using s2ram without any additional
effort.23

11 Problems with Platforms

The flexibility given to platform designers by ACPI can
be a source of serious problems. For example, if the
ACPI Machine Language (AML) routines invoked be-
fore suspend are not implemented correctly or make un-
reasonable assumptions, their execution may fail and
leave the system in an inconsistent state. Unfortunately
the kernel has no choice but to execute the AML code,
trusting that it will not do any harm. Of course if given
platform is known to have problems, it can be black-
listed on the basis of its DMI24 identification. Still, be-

20vbetool was written by Matthew Garrett.
21ATI was not a part of AMD at that time.
22The creator of s2ram is Pavel Machek, but many people have

contributed to it since the first version was put together. s2ram is
available from http://suspend.sf.net.

23s2ram matches computers against its list of known working
systems based on the DMI information in the BIOS. The list is built
from feedback provided by the s2ram users and is maintained by
Stefan Seyfried.

24Desktop Management Interface.

2008 Linux Symposium, Volume One • 51

fore blacklisting a system, the kernel developers have
to know what kind of problems it experiences and what
exactly to do to prevent them from happening. That,
in turn, requires the users of those systems to report
the problems and to take part in finding appropriate
workarounds.

Moreover, problems may arise even if there is nothing
wrong with the AML code. This happens, for exam-
ple, if the kernel provides native drivers for devices that
are also accessed from the AML routines, because the
kernel has no means to determine which registers of a
given device will be accessed by the AML code before
actually executing that code. Thus, if the native driver
accesses the device concurrently with an AML routine,
some synchronization issues are likely to appear. It is
difficult to solve those issues in a way general enough
to be applicable to all systems and, again, blacklisting
is necessary to make things work on the affected plat-
forms.

Another major inconvenience related to ACPI platforms
is that the requirements regarding STR changed between
revisions of the ACPI specification. The suggested code
ordering for suspend changed between ACPI 1.0 and
ACPI 2.0, and there are systems for which only one of
them is appropriate. Some of these systems fail to sus-
pend or even crash if the code ordering implemented by
the kernel is not the one they expect. Again, the kernel
has no choice but to use one suspend code ordering by
default and blacklist the systems that require the other
one.25

Last but not least, testing the interactions between the
kernel and a particular platform is problematic because
it can be carried out on only a limited number of sys-
tems. Even if the kernel follows the ACPI specification
and works on the systems available to its developers, it
may very well fail to work on other systems having dif-
ferent implementations of the AML code in question.
For this reason, it is very important that the users of
STR test development kernels and immediately report
any new STR-related problems, so that the developers
can investigate and fix them before the new code is offi-
cially released.

12 Future Work

We’ve reached a level of stability where STR is useful
on a large number of systems. We need to continue these

25At present, the ACPI 2.0 ordering is used by default.

stability efforts with the goal of broad, and ultimately
universal, deployment.

But to make STR even more useful, we need to increase
our focus on performance. We need tools to track STR
performance such that performance is easily and widely
measured, issues are easily identified, regressions are
prevented, and benefits of tuning are permanent.

Linux needs a stable user/system API for device D-state
control. D-states should be widely available to run-time
device power management, which must inter-operate
well with system sleep states. (Some progress in this
area has already been made; a few subsystems, such as
USB, can power down devices when they are not in ac-
tive use.)

The wake-up API available in sysfs needs to be more
widely used and better integrated with the platform
wake-up mechanisms.

It is unclear that the existing CPU hot-plug infrastruc-
ture is ideally suited to system suspend, and alternatives
should be sought.

We need to think about the work required for device
drivers to properly implement suspend and make sure
that the burden on driver authors is minimized. This
applies to the API seen by individual device drivers as
well as to the infrastructure provided by the upper-level
device-class drivers.

13 How to Participate

STR in Linux is approaching a point where a crit-
ical mass of developers routinely use it, and thus
test it. These developers often run the development
and release-candidate kernels and thus immediately
notice and report regressions. With tools such as
git-bisect [GIT-OLS, GIT-URL], these develop-
ers are empowered to do an excellent job isolating is-
sues, even if they never read or modify a single line of
suspend-related code.

Please join them! For STR on Linux to reach the next
level of success, it is critical that the Linux community
assert that STR work properly on the systems that they
have, and actively file bugs and help isolate regressions
when STR does not meet expectations. The more active
testers we have, the easier it will be for the community
to successfully deploy STR on a broad range of systems.

52 • Suspend-to-RAM in Linux

Also, note that there is now a dedicated kernel
Bugzilla category for STR related issues: http://
bugzilla.kernel.org, product Power Manage-
ment, and Component Hibernation/Suspend.

Still another group in the community must be
mobilized—driver authors. At this point, drivers are
expected to include full suspend/resume support if they
are used on systems that support suspend. A new driver
should not be considered complete enough for inclusion
in the kernel if it does not include suspend support.

14 Acknowledgments

Linux’s suspend-to-RAM support is not a new idea; it
has been evolving for years. We must all acknowledge
that we are standing on the shoulders of the giants who
came before us, and thank them for all they have done.

In particular, the authors would like to single out Pavel
Machek of Novell/SuSE, co-maintainer of suspend and
hibernation, who has been key to development and
adoption. Also Andy Grover and Patrick Mochel, who
set a lot of the foundation starting way back in Linux-
2.4.

We thank Alan Stern for many valuable suggestions and
for helping us to prepare the manuscript. We also thank
Pavel Machek for valuable comments.

Finally, we thank the communities on the mailing lists
linux-pm@lists.linux-foundation.org
and linux-acpi@vger.kernel.org, where the
actual work gets done.

References

[ACPI-SPEC] Advanced Configuration and Power
Interface Specification
(http://www.acpi.info).

[ACPICA] ACPICA project home page
(http://acpica.org).

[PCI-PM] PCI Bus Power Management Interface
Specification (http://www.pcisig.com/
specifications/conventional/).

[ACPI-OLS] Brown, Keshavamurthy, Li, Moore,
Pallipadi, Yu; ACPI in Linux—Architecture,
Advances, and Challenges; In Proceedings of the
Linux Symposium (Ottawa, Ontario, Canada, July
2005).

[ACPI-URL] Linux/ACPI project home page
(http://www.lesswatts.org/
projects/acpi).

[GIT-URL] GIT project home page
(http://git.or.cz).

[GIT-OLS] J.C. Hamano, GIT—A Stupid Content
Tracker, In Proceedings of the Linux Symposium
(Ottawa, Ontario, Canada, July 2006).

[REPORT] R.J. Wysocki, Suspend and Hibernation
Status Report
(http://lwn.net/Articles/243404).

[PATCHES] R.J. Wysocki, Separating Suspend and
Hibernation (http://kerneltrap.org/
Linux/Separating_Suspend_and_
Hibernation).

Systems Monitoring Shootout
Finding your way in the Maze of Monitoring tools

Kris Buytaert
Inuits

Kris.Buytaert@inuits.be

Tom De Cooman
Inuits

Tom.DeCooman@inuits.be

Frederic Descamps
Inuits

Frederic.Descamps@inuits.be

Bart Verwilst
Inuits

Bart.Verwilst@inuits.be

Abstract

The open source market is getting overcrowded with
different Network Monitoring solutions, and not with-
out reason: monitoring your infrastructure is becoming
more important each day. You have to know what’s go-
ing on for your boss, your customers, and for yourself.

Nagios started the evolution, but today OpenNMS,
Zabix, Zenoss, GroundWorks, Hyperic, and different
others are showing up in the market.

Do you want light-weight, or feature-full? How far do
you want to go with your monitoring, just on an OS
level, or do you want to dig into your applications, do
you want to know how many query per seconds your
MySQL database is serving, or do you want to know
about the internal state of your JBoss, or be alerted if
the OOM killer will start working soon?

This paper will provide guidance on the different alter-
natives, based on our experiences in the field. We will
be looking both at alerting and trending and how easy or
difficult it is to deploy such an environment.

1 Some Definitions

The monitoring business has its own set of terms, which
we will gladly explain.

How do you want your monitoring system being
“served?” A light version? Full-blown and feature-full?
The most important question is: how far do you want to
go with your monitoring? Just on the OS level, or do you
want to dig into your applications, do you want to know
how many query per seconds your MySQL database is

serving, do you want to know about the internal state of
your JBoss, or be triggered if the OOM killer will start
working soon? . . . As you see, there are several ways of
monitoring depending on the level of detail.

In our monitoring tool, we add hosts. This host can be
any device we would like to monitor. Next we need
to define what parameter on the host we would like to
check, how we are going to get the data, and at which
point we’d consider the values not within normal lim-
its anymore. The result is called a check. There are
several ways to ‘get’ the required data. Most monitor-
ing tools can use SNMP as a way to gather the required
data. Either the tool itself performs an SNMP-get, or it
receives data via an SNMP-trap. A lot of tools can also
work with external scripts that can be ‘plugged in.’ Most
of the time you can use a script in whichever language
you like (bash, perl, C, java, etc.), as long as it sticks
to certain rules set by the monitoring tool. These rules
make sure the tool can understand the data returned.
Checks that are performed by the monitoring tool itself
are called active checks. The monitoring tool ‘polls’
another device to get some data out of it. Checks per-
formed and submitted by external applications are called
passive checks. Passive checks are useful for monitor-
ing hosts and services on that host that are, e.g., not di-
rectly reachable for the monitoring server or where no
direct check is possible or available. An SNMP Trap
can be implemented in a monitoring solution via a pas-
sive check.

Alerting is the way to send a warning signal. Usually
this is an automatic signal warning of a danger. In mon-
itoring services, alerts can be sent via different methods
when available: an email is sent to one or many users
with the warning message and the result of the check

• 53 •

54 • Systems Monitoring Shootout

having a problem. A message is sent on the mobile
of one or many users with the description of the prob-
lem. The monitoring interface highlights the problem
in a user-friendly way, usually with colors depending
on the severity level of the problem. We obviously also
want Instant Messaging to be used. All the alerts are re-
lated to services that the monitoring system must check.
The level and the signal of the alerts can be setup in-
dependently by services. All good monitoring systems
are able to send different notifications depending on the
time frame. So for example during the night only the
on-call person will be notified via SMS of the problem.

The data the monitoring tool is gathering is also stored
for historical reference. This can be used to generate
reports, so one can view the status detail for a specific
host or service over a certain period. General availabil-
ity can be checked and reviewed. Custom availability
reports can be generated depending on the monitoring
tools capabilities. E.g., the uptime of a certain host or
service. How many times it went down, for how long,
also providing a time related percentage of downtime or
uptime. We then can report a summary of all events and
status linked to the services we are monitoring.

Next to reports themselves, some tools also provide a
way to chart the gathered data. Although monitoring
and trending are actually two different businesses, some
tools are combining them into a single interface. The
capabilities of the monitoring tool might be enough to
suite your historical data trending needs, still there are
other specific tools available which are pretty good in
performing only the trending task. These standalone
tools mostly provide more options, or might provide an
easier way to accomplish certain tasks than the monitor-
ing tools.

Trending and reporting can definitely help in perfecting/
fine-tuning the monitoring task. Using trends we can ad-
just already implemented monitoring rules to situations
noticed in the trends/reports. Checks can be adjusted to
certain situations. We can disable a check during a cer-
tain time period, or we could loosen the limits a check
is set to trigger on during this time interval. . . . In other
words, it can help to make a check more accurate. So
in the end to establish a more accurate monitoring sys-
tem, which also gives us the ability to notice upcoming
issues and react on them, making the business of system
administration more proactive.

Trending is reading of the variation in the measure-

ment of data over several intervals. In your environment
you are interested in how many queries your databases
parses per second, and how this evolves over time.
You are also interested in figuring out how many traffic
passes over a certain switch port and if you have enough
bandwidth capacity left. Trending therefore is not so
much related to the uptime of certain services but to the
behavior of the service itself.

2 What are we looking for?

We started out asking ourselves what we want in a net-
work and infrastructure monitoring. Some interesting
topics came up. We look at an NMS from different
viewpoints, from a user viewpoint, from a sysadmin
viewpoint, and also from a developer viewpoint.

Note that we are experienced systems people, but often
new to the tools, and that’s probably the way you want it.
We want to know how fast you can get up to speed with
a tool while not having to spent hours and days tuning
the platform, or even read manuals.

Monitoring tools are typically set up by System Admin-
istrators or Infrastructure Architects and then handed
over to either Junior staff or Operations people. That
means that once it is up and running, everybody should
be able to use it. A good an clean GUI is a requirement.

However, as you are going to add over 100 servers at
once to a monitoring application, you do not want to
use a web-interface for that the process. You want to be
able to write a simple for-loop for a variety of servers
to create config-files, database-scripts, adjust them, and
add them. In a later stage, you want some administrators
to add hosts to the system through some GUI, but with a
template-based system so they can reuse what you pre-
pared.

When introducing a monitoring tool in a large environ-
ment, that also means that you are rather reluctant to in-
stall a daemon on all these hosts—unless you can fully
automate that installation.

SNMP is a great tool to manage/monitor just about any-
thing in your network. You can call this an advantage
because SNMP is a package available in every OS, does
not have many dependencies prior to installing, it is easy
to configure for simple setups, and most of all: quick re-
sult! (The ability to add SNMP-scripts of course is a
big plus.) However, unlike the name tells us, SNMP

2008 Linux Symposium, Volume One • 55

is everything but simple and requires in-depth think-
ing of how to provision our SNMP configuration at all
the hosts, so configuring SNMP might be as difficult as
adding a client specific to your monitoring, too.

We want to be able to automate as much as possible, so
we prefer a config-file-based approach. It doesn’t matter
whether it has its own syntax, as long as it is still human-
readable. A web interface of course is also a must; how-
ever, it should be supportive, not enforcing. You should
be able to create a configuration that the webinterface
doesn’t overrule. We have to realize that performing an
action on 3 hosts via GUI is feasible, but on 300, it isn’t.
So we would rather settle for less GUI features that we
never use.

We all have to please managers and customers, so we
want a tool that is capable of creating very clear and
complete reports and graphs. Ideally graphs that can
be mapped against each other to pinpoint concurrent
events, etc.

It goes without saying that a monitoring tool should be
stable. As the tool is monitoring events in our infrastruc-
ture, it needs to be up and running all the time in order
to be able to escalate issues. It also needs to be able to
scale; infrastructures grow at a terrific speed these days,
so the monitoring tool you are starting out with today
must be capable of either delegating groups of machines
or manage them itself.

When looking at the resources used in your infrastruc-
ture, you are interested in memory usage, IO perfor-
mance, etc. So you want your monitoring tool to be
almost invisible. We mentioned before that ideally no
plugins have to be installed, but if they have to be in-
stalled, we want them to be lightweight. A JVM requir-
ing a big chunk of your precious RAM just to see if a
process is still running might be overkill. A monitor-
ing tool should blend in with the infrastructure, not add
more requirements to it.

A good Monitoring Platform has capabilities of both
telling us how a machine performed in the past, how
much time a certain service was available and how long
it wasn’t. We want to see trends in usage—e.g., whether
disk and memory usage have been changing over time.

Ideally you also get a separate status page, no techni-
cal data, but a clean status page along with persons to
contact in case of problems.

A good monitoring tool has plenty of alternative notifi-
cation methods. SMS and mail are primary methods, but
Instant Messaging solutions are more and more a stan-
dard requirement, too. And you want to be able to con-
figure these notifications, select different methods based
on the time, how critical an incident is, and so on. Also
you don’t want to be spammed by the tool, you want rel-
evant escalation when appropriate, but you don’t want a
message flooding your inbox that you will filter away
anyhow.

A great framework is a good start, but without an ac-
tive community it is probably as bad as a commercial
tool that also requires you to buy a lot of extra features.
You need a plugin model that allows you to add checks
and functionalities in different languages: PHP, bash,
perl, C, etc. So having a clear and powerful API is a
must. That way your community will be able to write
new checks for services that you either don’t know yet
or haven’t heard about yet.

3 Nagios

Nagios is considered by many to be the godfather of host
and service monitoring on Linux. It is without doubt the
best known monitoring tool out there, and is available by
default in all major Linux distributions. Nagios version
3.0 was released in March 2008, but will only be picked
up by most distributions in the next 6-12 months. In the
meantime, version 2.11 is the most common in today’s
distributions. Nagios was created by Ethan Galstad and
is licensed under the GPL v2. Many others contributed
to Nagios since its conception through plugins, add-ons,
bugfixes, suggestions, testing, bug reporting, ideas, and
feature requests. Where as Nagios was incepted in 1999,
Ethan only recently started Nagios Enterprises to com-
mercially support the Open Source project.

One of the greatest features of Nagios is the great script-
ability of its configuration. Nagios is fully configured
with text files, which can easily be generated on the
fly to perfectly fit into your network. Everything from
hosts, services, contacts to groups and alert escalation
plans can be configured in this way. Configuring Na-
gios comes with a pretty steep learning curve, though,
for first-time users. At frequent intervals the Nagios
monitoring deamon will run checks on hosts and ser-
vices you specify via a mechanism of external plugins
that then return status information.

56 • Systems Monitoring Shootout

Problems can be reported to the administrators by means
of SMS, email, instant messages, or a variety of other
ways. Escalation is also supported, so that when the
first contact doesn’t acknowledge the problem within a
predefined time frame, another person or group can be
notified in order to get the problem resolved. Nagios
works by running predefined checks on a configurable
interval through a plethora of external plugins that return
status information to the Nagios service itself. Since
Nagios is solely an alerting tool, and lacks a fancy GUI
with graphs, trending, and other monitoring features, it
is usually accompanied by a separate tool that handles
those features, such as Cacti. The Nagios/Cacti combo
is the most popular one. Several independent projects
also try to improve and extend the pretty rudimentary
and boring looks of the Nagios web interface by imple-
menting a new web-based frontend on top of the Nagios
data and configuration, thus merging the reporting and
monitoring/trending features into one single rich web in-
terface.

Nagios by itself is pretty lightweight, with a C-based
backend and a cgi-based frontend (web GUI), and re-
quires hardly any dependencies to get it in a working
state, and can be used on a very modest (virtual) ma-
chine.

4 GroundWorks Open Source

A couple of months ago we decided to testrun the
GroundWorks Open Source 1.6 RPM. We didn’t get
far as we immediately had to with our efforts, because
GroundWorks decided that their RPM should modify
our httpd initscripts and point to its own httpd instal-
lation in /usr/local/groundworks, hence break-
ing other tools we had on the platform.

So this was our second encounter with the GroundWorks
platform. GroundWorks expects you to untar a tarball,
then run its installation script which comes to ask you
if it can install a bunch of RPMs. Or you can just try to
install these RPMs manually, which fails as the RPM ex-
pects you to have set your JAVA home. I’ve never seen
an RPM that failed in the preinstall because of lacking
environment settings, and this obviously shouldn’t hap-
pen as people expect to be able to install RPMs from
a repository during boot time, obviously lacking those
environment variables.

So we opted for the installer. It requires SELinux to be
disabled, complains about lack of memory (it expects

one GB and I only have 256MB). It also tells me I need
40GB of disk space rather than telling me how much
disk space I really need, it explains on failing me with
200MB short on my rootfs. The installer failed multi-
ple times on me, first telling me I need a different java-
1.5.06 java version than the java-1.5.06 version I had
installed.

The installer knows that mysql isn’t started, but doesn’t
try starting it itself—it tells me to start it before contin-
uing, which I do in another console, and then it aborts
because mysql isn’t started. Error handling seems to be
a feature for the next installer version as the installer to-
day fails on you without errors. Although the underlying
RPM installation process gave clean and clear errors, the
GroundWorks Monitor 5.2 failed to capture them, not
even in its logfile.

So we were pretty disappointed with the install process.
Sadly GroundWorks still didn’t fix the Apache problem
mentioned before, either.

As we are setting up different test platforms in a remote
isolated lab, we often tunnel port 80 of the monitoring
tool to another port on our own machine. GroundWorks
was the first tool that complained about having tunneled
its port 80 to my local port 8888, and insisted on refresh-
ing itself to localhost:80—hence a totally differ-
ent environment, although a problem I could solve. In
this case, you are often forced to tunnel your monitoring
tool and map it on different ports, and a web application
should be unaware of that.

The next problem was the documentation. The installer
process points you to a Bookshelf in the application, a
Bookshelf you can’t access unless you are logged on to
the system, which doesn’t work, as you never got any
information about a default username or password com-
bination.

After 3 days, the forum came back with the obvious
admin:admin answer that didn’t work for me at first.
It worked now.

The auto discovery seemed to work only partly, it found
some hosts, but it seems it doesn’t update the Nagios
config files, so I couldn’t figure out how to get them in
the Nagios overview.

For a Nagios-based tool, you would expect a good and
easy installation procedure and great documentation.
You’d expect to build around a great tool and make it
better.

2008 Linux Symposium, Volume One • 57

5 Zenoss

Bill Karpovich, Mark Hinkle, and Erik Dahl are start-
ing to become regular names in the Open Manage-
ment industry; they bring us Zenoss. Zenoss gives
you a single, integrated solution for monitoring your
entire infrastructure—network, servers, and applica-
tions. They claim to support inventory, configuration,
availability, performance, and events of your services.
Zenoss comes in a Free community edition and a differ-
ent commercially supported version. Its Free version in-
cludes Availability Monitoring, Performance Monitor-
ing, Event Management, and core reporting functional-
ity.

Zenoss likes to compare itself to both proprietary and
open source tools, claiming that unlike the others it is
both easy to install and configure, and it’s affordable. It
is more open, brings no vendor lock-in and has better
community collaboration.

The Zenoss architecture breaks down into three parts.
A user part with the WebConsole/Portal, a Data Layer
(where all the data lives), and the Process Layer that
collects the data via standard protocols. Zenoss is one
integrated package, not some different packages glued
together into a bigger whole. You can configure tem-
plates and map instances to those templates.

In the data layer, Zenoss uses three places to store its
data, its CMDB (Configuration Management DataBase)
is an object model stored in Zope (ZODB). It is obvious
that for historical data they use RRDTool, and the events
are being stored in a MySQL database. A nice mix-and-
match to store everything they need.

The actual work is done by a series of daemons and
control services that provide node discovery, configu-
ration modeling, availability monitoring, performance
monitoring, event collection, and automated responses.
Each of these services can run as a single local instance
or be distributed, hence providing a scalable solution.
Zendisc stands for the device discovery; Zenmodeller
is used to get configuration details and map resources
to the resource model; whereas ZenWinmodeler uses
WMI to discover windows-based services. Different
plugins such as ZenPin, ZenStatus, ZenPerfSNMP, and
ZenProcess are used to check services. ZenSyslog, Zen-
Eventlog, and ZenTrap are used to collect events, and as
the names already show, they respectively collect sys-
log events, WMI events, and SNMP traps. And let’s not

forget ZenActions, which is responsible for notifications
and automated action scripts.

Zenoss is heavily based on Zope and Python for its web
framework, which classifies is as a rather lightweight
platform.

Zenoss has a prebuild VMware Applicance; RHEL,
Fedora, and CentOS packages; and source tarballs
available for SuSE, Debian/Ubuntu, Gentoo, OSX,
FreeBSD, and Solaris.

We downloaded the zenoss-2.1.3-0.el5 RPM from SF.
net.

Upon initial startup, it populates the database and starts
building parts of itself. It almost performs a clean install
in /opt, although different files in its directory don’t
belong to the package ;(

From there it is on to the webbrowser to use the web-
GUI to configure everything. Its autodiscovery func-
tionality uses SNMP. So any host with SNMP will be
autodetected. Others will remain unknown. Autodis-
covery seems to work, but only partially; it detects all
of the devices that use SNMP, but fails to recognize de-
tails as configured in our snmpd config (process lists,
diskspace usage, etc.). We flooded our root partition on
one of the machines on purpose; snmpd was configured
to start alerting at 10% left. Zenoss failed to recognize
that. Shouldn’t we expect this to be working? In the
Main Views, Zenoss has a nice Ajax host relation di-
agram, it realizes hosts are connected to different net-
works and maps them out—really nice feature.

6 OpenNMS

‘OpenNMS: professional software, amateur marketing.’
That’s their slogan, and it is a good reflection of what
they stand for. Their site is mostly technical documen-
tation, no fluff on how good they are how many features
they have, just plain and correct facts.

OpenNMS is one of the older Open NMS platforms
around. Back when they started out, Nagios was the lean
and mean monitoring tool and OpenNMS was the Enter-
prise Grade platform that would take on HP OpenView,
IBM Tivoli, and other proprietary monitoring tools.

In 2001 the choice was easy, you either had Nagios or
OpenNMS, if you had SNMP and weren’t afraid of de-
ploying a J2EE appserver, you went for OpenNMS; oth-
erwise, Nagios. Today things have changed :)

58 • Systems Monitoring Shootout

An OpenNMS instance can watch a large number of
nodes from a single server, with a minimal amount of
configuration and reconfiguration work needed. In an
OpenNMS platform, you can define flexible rules to
specify how often and when certain devices are polled,
to whom different alerts are sent, and so on.

The basic element that OpenNMS monitors—an
interface—is uniquely identified by an IP address. Ser-
vices are mapped to those interfaces, and a number of
interfaces on the same devices can be mapped together
to a node, in OpenNMS terminology. OpenNMS was
one of the first tools around to support autodiscovery.
OpenNMS first polls a device; it tries to connect to an
IP address as defined in the range, then uses SNMP to
collect data.

Events are the core of a Network Monitoring system.
OpenNMS has a daemon running called eventd. It
makes the distinction between two types of events: those
that are generated by OpenNMS itself, and those that are
generated via SNMP traps. Events trigger actions such
as logging a message, triggering an automatic action via
an external script, or triggering the notification system.

Notifications can be sent to users or groups as defined in
OpenNMS, One can configure delays, escalations, and
email addresses to send the alerts to.

Our CentOS testbed was fairly pleased with some good
installation documentation on how to install OpenNMS
using yum. OpenNMS has its own repository, yum.
opennms.org.

7 Zabbix

Zabbix is a network management platform created by
Alexei Vladishev. It is designed to monitor and track
the status of various network services, servers, and other
network hardware. Zabbix has a mission: “To create
a superior monitoring solution available and affordable
for all.” Zabbix was released for the first time in 2001,
and the Zabbix company was founded in 2005 in Riva,
Latvia.

Zabbix has three main parts: the daemon, the agent, and
the web interface. The daemon collects all data from
the agents and populates the database. The independent
web interface then parses that data from the database
and provides the users with an overview of what’s hap-
pening.

It uses MySQL, PostgreSQL, SQLite, or Oracle to store
data. Its web-based frontend is written in PHP. Zab-
bix offers several monitoring options. Simple checks
can verify the availability and responsiveness of stan-
dard services such as SMTP or HTTP without installing
any software on the monitored host. A Zabbix agent can
also be installed on UNIX and Windows hosts to moni-
tor statistics such as CPU load, network utilization, disk
space, etc. As an alternative to installing an agent on
hosts, Zabbix also includes support for monitoring via
SNMP.

As Zabbix uses a database to store its data, this also in-
volves some extra configuration steps. Installing via the
system’s package manager will be straightforward, as
dependencies will be resolved, too. The Zabbix package
contains the MySQL (or other) tables to be imported in
the database. As you install Zabbix on a server, you’ll
probably want the Server and the Webserver installed.
Note that you don’t really need to place them on the
same machine, but of course, you can. The default user
is admin, with no password assigned.

On the Zabbix-server side, all configuration is done us-
ing the web interface. For initial setup, connect as user
admin. The most important part is Configration in the
top-most menu.

In the configuration part, a lot of things can be config-
ured or customized—from adding hosts to customizing
the look and feel of the web interface itself.

We’ll start with some general Zabbix-info. Simple ex-
ample: we have a host running an FTP server; when the
FTP service goes down, we’d like to be alerted. As with
probably all kinds of monitoring applications, you first
need to add a host. (More on templates later, let’s just
assume we defined a host with a name and an IP ad-
dress). When this is done, an item for this host can be
created. An item has all the data to define how a check
is to be performed on the host. (Important ones: a name
for the item, a check type: info about what data we want
and how to get it, a check interval.) The result is that
a key is stored for a certain host (e.g., FTP-key being
0 or 1, off or on). A simple check is used by Zabbix
to monitor agentless hosts. They include ICMP, HTTP,
and others. The next thing is to make sure the system
notices when the FTP service goes down and does send
us a notification. In Zabbix terms, this means we need
to define a trigger and an action. The trigger is quite
simple in this case: when the FTP is down, trigger to

2008 Linux Symposium, Volume One • 59

YES. The trigger uses an expression, in which a key is
evaluated. Now that we have a key and we have config-
ured a trigger on it, we want the system to send us an
email when the trigger’s state changes. In Zabbix, this
is done by adding an Action. An action has an Event
Source (in this case, it is a trigger), a condition, and an
operation. In the condition, we make the link with the
correct trigger; in the operation, we simply say to send
an email to a certain user. A Zabbix-template is made
of several items and triggers. All templates are actually
just some kind of special host-definitions, which are put
into the templates-group. It does not contain any ac-
tions. So when linking a host with a template, a lot of
items and triggers will be added for that host, but you
will still need to define actions yourself. Most of the de-
fault templates in Zabbix are using items based on keys
grabbed from the Zabbix agent. So if you want to get up
and running as soon as possible, just install the Zabbix-
agent on the host to be monitored. One way to add hosts
is by using Discovery. Zabbix can scan a network, or a
part of it, and add hosts it finds. The scan can be defined.
E.g., Zabbix can check a network range for hosts that are
running the Zabbix agent, or you can set other require-
ments like the presence of a ssh-server, etc. Based on
the output of this scan, Zabbix can use an Action to do
something with the host it has found. E.g., a discovered
Linux host that is running the Zabbix-agent can directly
be put in the Linux-group and the Linux Template can
be assigned right away.

As mentioned earlier, Zabbix will use an action to act on
a trigger. Zabbix can use different methods to send out
alerts, such as email, Jabber messages, or text messages
to a mobile phone. One can also define the days and
hours on which a person can receive alerts.

Zabbix uses items that have a key containing data; this
data can easily used to produce graphs. And Zabbix
seems to be built keeping this in mind. By default, the
data of items can be seen in a graph. Just go to the
top-most Monitoring tab and select Latest data. Graphs
viewed here are called Simple Graphs. Data is stored
during one year by default, but this can be changed
when creating an item. Zabbix can also monitor Ap-
plications. For example, an application MySQL Server
may contain all items which are related to the MySQL
server: availability of MySQL, disk space, processor
load, transactions per second, number of slow queries,
etc. Apart from the default graphs, you can also create
custom graphs. With the default ones, there is always

just one item present in the graph. When you create
a graph yourself, you can group multiple items in one
graph.

Zabbix also provides an Overview page. Several of these
pages can be created; they are called Screens in Zab-
bix terminology. A screen is a combination of several
types of information—e.g., Simple graphs, custom cre-
ated graphs, host info, trigger info, or event info. One
can define what is being displayed in a screen. It could
be set up in a way as to create a perfect status-page for
the monitoring system.

8 Hyperic-HQ

Hyperic claims to be Open Source Web Infrastructure
Monitoring and Management Software; it aims at au-
tomating your operations. Hyperic HQ is GPL, but they
also offer a Silver Support package that includes low-
cost support.

Hyperic has Auto-Discovery, it understands a lot of
technologies over 9 different operating systems, and it
is within their goals to manage everything centrally and
quickly, allowing their customers to focus on serious is-
sues. HQ collects both real-time and historical metrics
from production environments including hardware, net-
work, and application layers of your infrastructure with
what they claim is no need for invasive instrumentation.
Hyperic does performance tracking, alerting upon per-
formance problems or inventory changes and even diag-
noses errors to issue corrective actions remotely. They
claim to be able to correlate events, config changes, or
even security events in your environment.

The list of tools and platforms that Hyperic HQ knows
about is growing every day. Not only does Hyperic man-
age these products, it does so by talking to the native
APIs that these products provide. Unlike different other
tools we’ve ran into, Hyperic goes IN the application
you are monitoring.

Looking at Hyperic HQ from an architectural point of
view, they isolate different layers. They start out with
a platform which is a machine / operating system com-
bination or a network or storage devices. Hyperic HQ
likes to look at components such as the CPU, the Net-
work interfaces, or the Filesystems. One step further is
the server. The server is the actual piece of software
installed on the machine—it could be a web server, a

60 • Systems Monitoring Shootout

database, or a messaging server. Next up is the service.
An example might be the vhost that is configured within
a web server. The bigger picture for HypericHQ is the
Application, which is usually a combination of differ-
ent components that need to be working, the combina-
tion of an Apache virtual host, filesystem, and a MySQL
database.

Hyperic is a typical Agent Server setup, The Hyperic
agent is a “lightweight Java-based client” that consumes
between 10 and 70MB of memory, depending on the
number of plugins enabled. Its kernel is capable of pro-
cessing commands from its agent subsystem like mea-
suring, controlling, autodiscovery, and event tracking,
and it will be acting as a listener to delegate requests to
the appropriate system. On top of that kernel a plugin
layer is available that allows different subsystems to in-
teract with a particular product. The Agent also acts as
a local cache for data when it can’t reach the HQ server.

For the HQ-server, at least 1GB of RAM is advised—
but for deployments with more than 25 agents, how-
ever, 4GB is recommended. Hyperic HQ is running its
own Jboss Application server which might be an un-
wanted overhead for some people. Hyperic HQ also
ships with its own PostgreSQL database. Hyperic HQ
server is in charge of processing all incoming monitor-
ing data, detecting alert conditions and triggering send-
ing out messages, managing the inventory, scheduling
auto-discovery scans, and last but not least, processing
all the commands initiated by the end user. One of the
features not often seen in a monitoring tool is the avail-
ability to cluster the framework, meaning that one can
spread the load of different aspects over more nodes of
the monitoring framework.

Hyperic HQ has an active community and even its own
HyperForge where people can find all kind of different
plugins.

Back in the early days they only had a couple of tarballs,
but those were fine. However, when you want to auto-
mate the agent installation, a package such as an RPM
would be better. Seems like recently indeed Hyperic fig-
ured out that an RPM would be interesting. . .

The RPM does almost everything for you. Manually
starting the HQ Server, however, should be done using
the Hyperic user. The problem with this RPM, however,
is that it unpacks a tarball. From here it is a similar
action with your clients. After configuring your clients

(you can copy a prepared agent.properties file
around), you’ll see a list of autodetected services in your
Dashboard. And Hyperic proposes you to add this to its
inventory. Now, Hyperic isn’t flawless—it detects a lot
of services, only to fail, finding different versions of that
same service. For example, it finds the local HQ JBoss
that it requires for its own workings, but fails to find
the JBoss 4.0.3 installed on another server that it is sup-
posed to monitor. However, modifying the parameters
in the agent.properties file should solve that.

Most other Monitoring systems just detect your MySQL
being up or down. Hyperic tells you how fast your in-
dexes and tables are growing, and how many QPS you
have on a specific table. The information is in there;
however, we have to admit that sometimes it takes a
while to find it. :)

Apart from looking at your database, Hyperic also gives
you a GUI to optimize and check your tables. So Hy-
peric goes beyond monitoring, alerting, and trending
into fully managing your infrastructure.

Also, when working with different JBoss versions, Hy-
peric knows about JMX, giving you more fine-grained
information.

The big disadvantage of Hyperic is that it requires an
awful lot of resources. Hyperic might call a 70MB-
eating JVM lightweight, but we call it fat and over-
weight (especially when compared to other alterna-
tives). When you are trying to measure performance of
an ill-behaving server, adding the Hyperic client to that
server will, for sure, have an impact on your system. On
the other hand, however, you can really drill into an ap-
plication with Hyperic, you can look deep inside your
databases and application servers. And that with almost
no configuration efforts.

9 Conclusion

We covered a lot in just 3.5 weeks; getting a full-blown
monitoring tools shootout done is a lot of work. We tried
our best to test as much as possible and to get a good
idea of what worked where and how things worked out
of the box. We spent equal time on most of the solutions.

With such little time we had little data for trending anal-
ysis, but we haven’t shut down our boxen, they’ll be
gathering more data, and we’ll update our findings as
we go.

2008 Linux Symposium, Volume One • 61

Nagios is still one of the most-deployed tools around,
lots of people prefer it because they are used to it and it
does what they expect. But do we want more? Do we
want easier installations, trending, and so on?

Looking at the installation effort, GroundWorks is ob-
viously the poorest performer in the class. Other tools
have prepackaged builds in mainstream Linux distribu-
tions that simply work. Where as GroundWorks makes
the process more difficult and fails to deliver clear doc-
umentation.

On the Auto discovery part, both Agent-based tools
score fairly good. Compared to Zabbix, Zenoss doesn’t
even come close in discovering services, or at least isn’t
that intuitive.

Zabbix also positively surprised us regarding trending
and quick graph correlation, combined with a good set
of default templates that get you up to speed in no time.

Part of being a good tool is the capability of not hav-
ing to look at a manual, of not having to redefine a set of
terms so your users understand what you mean. Ground-
Works and Zenoss fail there.

We’ve seen GroundWorks trying to add its own features
to Nagios. Because they wanted to build on the shoul-
ders of giants, not reinventing the wheel. The question,
however, is: did they make it better? We’re not con-
vinced.

On the other hand, we see the OpenNMS and Hyperic
people with different monitoring approaches (agent-
based vs. agent-less). The OpenNMS folks have written
a plugin for Hyperic-HQ that interacts with OpenNMS.
This way you really get the best of both worlds. You get
the good features of OpenNMS network device integra-
tion within one view of Hyperic’s application overview.

Hyperic gives you a lot more than a regular monitoring
tool, as it goes deep into the applications itself. On the
negative side, you might call HypericHQ bloated.

Mark Hinkle, however, mentioned an interesting point
in his blog:

“Nagios that has been around longer than any
of the monitoring solutions mentioned here
they have a large base of plugins and tests
used to check status. Hyperic, Groundwork,
OpenNMS, and Zenoss all support Nagios

plugins as it is the most utilitarian approach
to expanding their products rather than create
new standards that might prevent users from
using previous customizations and gives flex-
ibility to try new solutions. This adherence to
standards enforced (or at least motivated) by
users rather than vendors is a bit of a novelty.”

As mentioned, these are our initial findings. We plan to
continue our evaluation and keep you posted on our site.

62 • Systems Monitoring Shootout

Virtualization of Linux servers
a comparative study

Fernando Laudares Camargos
Revolution Linux

fernando.laudares@revolutionlinux.com

Gabriel Girard
Université de Sherbrooke

gabriel.girard@usherbrooke.ca

Benoit des Ligneris
Revolution Linux

benoit.des.ligneris@revolutionlinux.com

Abstract

Virtualization of x86 servers has been a hot topic in the
last decade, culminating in changes in the architecture’s
design and the development of new technologies based
in different approaches to provide server virtualization.

In this paper, we present a comparative study of six vir-
tualization technologies released under the GPL license.
Our analysis is done in two steps. First we evaluate the
overhead imposed by the virtualization layers by execut-
ing a set of open source benchmarks in the Linux host
system and inside the virtual machines. Secondly we
analyze the scalability of those technologies by execut-
ing a benchmark suite concurrently in multiple virtual
machines. Our findings may help users choose the tech-
nology that better suits their needs.

1 Introduction

Virtualization is not a new idea [17, 18]. What has
changed is its practical purpose. In the begining, vir-
tualization was used as a way of providing multiple ac-
cess to mainframe systems by running multiple operat-
ing systems on the same machine concurrently [31, 30],
as well as a safe environment for software development.
At that time operating systems were designed for a sin-
gle user, so the solution to provide access to several
users was to run many operating systems in separate vir-
tual machines.

Today, the actual operating systems can provide mul-
tiple access to the same machine. There is no more
need for running multiple operating systems on the same
machine—unless we want them for other reasons. De-
velopment is still one use for virtualization, but now the

main focus has changed to other applications such as
server virtualization. The idea behind server virtualiza-
tion has always been to make a better use of the available
resources—this is being achieved today through a tech-
nique called server consolidation. Studies have shown
that the majority of data centers found in today’s en-
terprises are organized around a silo-oriented architec-
ture [24], in which each application has its own dedi-
cated physical server. This may have been the right de-
sign in the past but today the computational resources of
the average physical server exceeds the needs of most
server applications, which means a share of those re-
sources is being wasted, only around 15% of them be-
ing actually used on average [21, 25]. The solution to
avoid this waste of physical resources is then to con-
solidate a group of those servers in one physical ma-
chine. Doing this by virtualizing the underlying infras-
tructure warrants a greater level of isolation between
the servers as well as providing other advantages inher-
ent to server virtualization besides server consolidation,
which are covered by many other studies [12, 23, 32].
This concept is illustrated by Figure 1. In this scenario
four under-utilized physical servers were consolidated
in one.

The virtualization layer that allows the hosting of guest
operating systems may be provided by different virtual-
ization solutions. Each solution implements this layer in
a different way. One negative side-effect of this model
is that the existence of such a layer implies a possible
overhead that can affect the performance of applications
running inside a virtual machine[26]. Ideally this over-
head is minimized.

The main objective of this study is to evaluate six vir-
tualization solutions for Linux released under the GPL

• 63 •

64 • Virtualization of Linux servers

web
server

mail
server

print
server

web
server

file
server

mail
server

print
server

virtual servers

S1 S2

S3

S2

file
server

S4

Figure 1: Virtualization as a way to provide server con-
solidation

license and measure their efficiency. We borrow the
definition of efficiency from [33], which refers to it as
being the combination of performance and scalability.
The stated characteristics of virtualization solutions may
lead us to make bad choices if we base ourselves solely
on them. This study aims to be practical. We hope our
findings may help users to choose the virtualization so-
lutions that better suits their needs.

The rest of this article is structured as follows. Sec-
tion 2 presents the main points that have motivated us
to conduct this study. In Section 3 we present our way
of categorizing the different virtualization solutions in
groups of technologies that share similar characteristics.
Section 4 presents the methodology used to conduct our
evaluation. The obtained results are presented and dis-
cussed in Section 5. Finally, our conclusions and sug-
gestions for future work are presented in Section 6.

2 Motivation

A number of studies evaluating different virtualization
technologies have been published in the past. Table 1
presents some of them chronologically, indicating the
year of publication as well as the respective virtual-
ization technologies that were covered by each study.
While those studies have been of great value for our un-
derstanding of this article’s subject, none has covered
the main open source virtualization solutions side-by-
side and just a few of them were published by indepen-
dent sources. The main reason for this lack of coverage

is that such a work requires a great amount of time. Still
we were intrigued by this possibility and we believed
many others would be as well.

We have chosen to limit the scope of our study to open
source technologies because of the friendly nature of the
software user licence, which didn’t prevent us publish-
ing our findings nor required them to be scrutinized be-
fore a publication permission would eventually be is-
sued. The access to the source code of the software also
provides the freedom to adapt it as we need to, which
proved to be useful during our experiments.

As users of some of the virtualization technologies that
were subjected to our evaluation, our intention with this
project was to gain a better view of how they relate to
each other. We believe and hope that our feedback may
contribute to their continuous development in a positive
way.

We have not evaluated the features of the different virtu-
alization technologies on an individual basis. The main
characteristics of the majority of those technologies
have already been presented in other studies [20, 33, 6].

3 Overview of virtualization technologies

Virtualization technologies differ in the way the virtual-
ization layer is implemented. In 1974, Popek & Gold-
berg [26] published a paper that presented one way of
doing it, which was later referred to as classic virtual-
ization [1]. This paper became a reference in the subject
and presented a series of requirements for a control pro-
gram (which is known today as operating system, or su-
pervisor) to work as a virtual machine monitor (VMM,
also known today as hypervisor). Such requirements,
organized as a set of properties, limited the construction
of such VMMs to a specific machine generation or pro-
cessor instruction set architecture (ISA) “(. . .) in which
sensitive instructions1 are a subset of privileged instruc-
tions.” This characteristic allows the VMM to selec-
tively trap only the privileged instructions issued inside
the virtual machines by the guest operating systems and
let the remaining instructions be executed directly by the
processor. This procedure thus correlates with the stated
efficiency property, which is directly associated to a low
virtualization overhead.

1Instructions that may change the current state of the physical
machine (IO, for instance).

2008 Linux Symposium, Volume One • 65

Study Year Evaluated technologies Version Kernel version

[2] 2003

Xen - 2.4.21
VMware Workstation 3.2 2.4.21
UML - 2.4.21
VMware ESX Server - 2.4.21

[13] 2004 Xen - 2.4.26

[27] 2005
Linux-VServer 1.29 2.4.27
UML - 2.4.26 / 2.6.7
Xen - 2.6.9

[5] 2006

Linux-VServer 1.29 2.4.27
UML - 2.4.26 / 2.6.7
Xen 2.0 2.6.9
VMware Workstation 3.2 2.4.28
VMware GSX - -

[14] 2006

Linux-VServer 2.0.2rc9 / 2.1.0 2.6.15.4 / 2.6.14.4
MCR 2.5.1 2.6.15
OpenVZ 022stab064 2.6.8
Xen 3.0.1 2.6.12.6

[1] 2006 VMware Player 1.0.1 -
[10] 2006 VMWare ESX Server 3.0 -

[35] 2007 VMware ESX Server 3.0.1 GA -
Xen 3.0.3-0 -

[36] 2007 VMware ESX Server 3.0.1 2.6.9
XenEnterprise 3.2 2.6.9

[11] 2007 Xen 3.0.3 (unstable) -
OpenVZ stable 2.6

[33] 2007 Linux-VServer 2.0.1 2.6.17
Xen 3.0.2-testing 2.6.16

[16] 2007 Linux-VServer 2.2 2.6.20

[22] 2007 Xen - -
KVM 24 -

Table 1: Summary of studies evaluating virtualization technologies published between 2003 and 2007

Even then the researchers were aware of the fact that not
all architectures may be “virtualizable” this way. This
realization is specially true for today’s most popular ar-
chitecture, commonly known as x86. The original de-
sign of the x86 architecture did not included virtualiza-
tion [8]. A detailed account on this issue is reported in
[28]. In summary, not all sensitive instructions in the
x86’s architecture are a subset of its privileged instruc-
tions. In practice, this prevents the implementation of a
VMM capable of selectively trapping only the sensitive
instructions executed by the guest operating systems.
Instead, it would have to trap all instructions, incurring
a considerable system overhead.

Other virtualization technologies have been developed
to avoid this issue and implement alternative ways to vir-
tualize the x86 architecture. Some of them rely on the
complete or partial emulation of the underlying hard-

ware [36] and provide what is called full-virtualization.
QEMU [4] is a software emulator that emulates the en-
tire hardware stack of a machine and is used as the
base for various virtualization projects in this category,
like KQEMU (an “accelerator” for QEMU that may be
used to transform the latter in a virtualization solution
[3]), KVM and VirtualBox. Those solutions are ex-
tremely flexible, meaning they can theoretically support
any guest operating system developed for the x86 archi-
tecture, but are not among the most efficient ones due to
the hardware emulation.

A second category contains virtualization solutions that
implement a technique called para-virtualization. The
most important consideration when running more than
one operating system concurrently on the same machine
is that this class of software is designed to control the
machine exclusively. That is why the use of emulation

66 • Virtualization of Linux servers

works so well—in this case, the guest operating sys-
tem is still the only one controlling the machine, but
the machine in question is not the physical machine, but
a virtual machine. The key for para-virtualizing a sys-
tem is to make the guest operating systems aware of the
fact that they are being virtualized [12]—and ask them
to collaborate. In exchange, the VMM provides an al-
most direct access to some of the physical resources of
the machine. This approach provides an efficient vir-
tualization technology but it is also an extremely inva-
sive technique since it requires important modifications
to the guest OS kernel structure. Xen is the most well
known para-virtualization solution.

The third and last of our categories focus on the virtual-
ization at the operating system level. The virtualization
layer in this particular implementation is set above the
operating system [23]. “Virtual machines” are soft parti-
tions [15], or containers [14], that replicate the environ-
ment of the host operating system. This is in theory the
most efficient kind of virtualization—yet the less flex-
ible. The efficiency comes from the fact that there is
only one kernel in execution at any time, and thus the
absence of hypervisor overhead. The lack of flexibility
comes from the same reason—one may even run differ-
ent flavors of Linux, but they will share the same ker-
nel. Linux-VServers and OpenVZ are two examples of
OS-level virtualization solutions. Both are available as
a patch that can be applied to the Linux kernel.

Recently, the x86 architecture received additional exten-
sions [34, 37] that allows the implementation of a clas-
sic VMM that responds to Popek & Goldberg’s crite-
ria. Whether the use of those extensions will assure the
development of more efficient virtualization solutions
is still arguable [1]. Nonetheless, since version 2.6.20
the Linux kernel comes with KVM, a simple yet robust
piece of software that uses those additional extensions to
transform Linux into a hypervisor [29, 19]. More recent
versions of Xen also use those extensions, as well as a
little dose of emulation, to allow for the virtualization of
“closed source” operating systems.

4 Methodology

There is no consensus in the scientific community nor
in the industry about what would be the best way to
evaluate virtualization solutions. The Standard Perfor-
mance Evaluation Corporation (SPEC) created a com-
mittee at the end of 2006 that is studying this matter

[7]. VMware and Intel, both members of the commit-
tee, stepped ahead and released two different bench-
mark suites (or workloads, since both suites are com-
posed of already existent and independent benchmarks),
named respectively VMmark [10] and vConsolidate [9].
The workloads that compose both suites are very sim-
ilar, the difference is in the way each company com-
bines the obtained results to define a scoring system.
Neither of these benchmark suites have been considered
in this study because they both rely on a benchmark for
mail servers called LoadSim, which works only with Mi-
crosoft’s Exchange Server.

The majority of the studies in Table 1 have used bench-
marks that target different parts of the system. We have
adopted a similar approach. Our analysis is done in two
steps. In the first step we evaluate the overhead imposed
by the virtualization layers by executing a set of open
source benchmarks in the Linux host system and inside
the virtual machines. In the second step, we analyze
the scalability of those technologies by executing Sys-
Bench, one of the benchmarks used in the first step, con-
currently in multiple virtual machines.

We decided to use Ubuntu 7.10 as the operating sys-
tem for the host system, as it comes with kernel version
2.6.22-14, which is well supported among all the eval-
uated virtualization solutions. For the virtual machines
we have chosen Ubuntu’s Long Time Supported version,
which at the time of this study was Ubuntu 6.10. This
proved to be a bad decision for a comparative study and
one of the major weaknesses of this work, since the ma-
jority of the OS utilities, like Rsync and Bzip2, have
different versions in each release, not to mention the dif-
ference in kernel versions.

The name and version of the benchmarks used in our
evaluation are shown in Table 2. Table 3 presents a
list of the evaluated virtualization solutions, showing the
kernel versions used in the host and guest operating sys-
tems.

The compilation of the results is done as follows. All ex-
periments are repeated four times. The first sample was
discarded, the presented results for each set of experi-
ments being the median of the second, third, and fourth
samples. The results of the experiments conducted in-
side the virtual machines are normalized using the re-
sults of the respective experiments conducted in the non-
virtualized environment as a base. The evaluation was
done in two steps. The first step focused on the overhead

2008 Linux Symposium, Volume One • 67

Benchmark Version (Host) Version (VMs) Unit of measure
Bzip2 1.0.3-0ubuntu2.1 1.0.4-0ubuntu2.1 time
Dbench 3.04 3.04 throughput
Dd (coreutils) 5.93-5ubuntu4 5.97-5.3ubuntu3 throughput
Kernel (build) linux-2.6.22.14 linux-2.6.22.14 time
Netperf 2.4.4 2.4.4 throughput
Rsync 2.6.6-1ubuntu2.1 2.6.9-5ubuntu1 time
SysBench 0.4.8 0.4.8 throughput

Table 2: List of the benchmarks used in the first step of our evaluation and respective metrics

Virtualization solution Version Host Kernel Guest Kernel
KQEMU 1.3.0 pre11-6 2.6.22.14-kqemu 2.6.15-26-amd64
KVM 58 2.6.22-14-server 2.6.15-26-amd64
Linux-VServer 2.2.0.5 2.6.22.14 2.6.22.14
OpenVZ 5.1 2.6.22-ovz005 2.6.22-ovz005
VirtualBox 1.5.4_OSE/1.5.51_OSE 2.6.22-14-server 2.6.22.14
Xen 3.1.0 2.6.22-14-xen 2.6.22-14-xen

Table 3: Evaluated virtualization solutions and the respective kernel versions

of a single virtual machine. In the second step the exper-
iments are repeated concurrently in n virtual machines,
with n=1,2,4,8,16, and 32.

The experiments were conducted using an IBM/Lenovo
desktop configured with an Intel Core 2 Duo 6300 pro-
cessor, 4G of RAM, an 80GB SATA hard drive and two
gigabit network interfaces. The main network interface
is connected to a LAN and the other is attached with a
cross-over cable to a second machine, which was used
as a client for the experiments involving a network. This
second machine is a Dell Optiflex GX configured with
an Intel Pentium 2 processor, 123M of RAM, a 250GB
IDE hard drive and one gigabit interface.

The main machine was rebooted before the beginning of
each new set of tests. Before moving on to test the next
virtualization solution, the disk was re-formated and the
operational system was re-installed from scratch.

In the first step of the evaluation, the virtual machines
were configured with 2G of RAM. Table 4 shows the
memory allocation used in the second step. The top
limit was set to 2039M of RAM because this was the
maximum amount supported by QEMU-based virtual-
ization solutions during preliminary tests.

To run the scalability tests we have used Konsole’s Send
input to all sessions function to log in the n virtual ma-

Number of VMs Memory/VM (in M)
n=1 2039
n=2 1622
n=4 811
n=8 405
n=16 202
n=32 101

Table 4: Memory distribution used in the second step of
the evaluation

chines simultaneously from a third machine, connected
to the test machine through the LAN interface, and start
the benchmark in all VMs simultaneously.

Figure 2 presents the commands and respective param-
eters used to execute each one of the benchmarks.

5 Results and discussion

This section presents the results of our experiments. For
all charts but the ones representing our scalability eval-
uations, the results for the different virtualization solu-
tions have been normalized against the results when run-
ning without virtualization. Higher bars represent better

68 • Virtualization of Linux servers

Kernel Build

$ make defconfig
$ date +%s.%N && make && date +%s.%N
$ make clean

Dbench

$ /usr/local/bin/dbench -t 300 -D /var/tmp 100

Netperf

$ netserver # server side
$ netperf -H <server> # client side

Rsync

Experiment 1:
$ date +%s.%N && rsync -av <server>::kernel /var/tmp && date +%s.%N # client side

where ’kernel’ is the linux-2.6.22.14 file tree (294M)
$ rm -fr /var/tmp/*
Experiment 2:
$ date +%s.%N && rsync -av <server>::iso /var/tmp && date +%s.%N # client side

where ’iso’ is ubuntu-6.06.1-server-i386.iso (433M)
$ rm -fr /var/tmp/*

Dd

Experiment 1:
$ dd if=/opt/iso/ubuntu-6.06.1-server-i386.iso of=/var/tmp/out.iso
$ rm -fr /var/tmp/*
Experiment 2:
$ dd if=/dev/zero of=/dev/null count=117187560 # 117187560 = 60G

Bzip2

$ cp /opt/ubuntu-6.06.1-server-i386.iso .
$ date +%s.%N && bzip2 -9 ubuntu-6.06.1-server-i386.iso && date +%s.%N
$ rm ubuntu-6.06.1-server-i386.iso.bz2

SysBench

$ mysql> create database sbtest;
$ sysbench --test=oltp --mysql-user=root --mysql-host=localhost --debug=off prepare
$ sysbench --test=oltp --mysql-user=root --mysql-host=localhost --debug=off run

Figure 2: Commands and parameters used to execute the benchmarks

performance of the virtualization solution for the respec-
tive workload.

VirtualBox is a virtualization solution that allows the
user to decide whether or not it should use the virtualiza-
tion extensions present in the processor. This fact lead
us to perform all experiments with this software twice,
with (--hwvirtex on) and without (--hwvirtex

off) the use of such extensions. As previously men-
tioned, QEMU is the base for a considerable number of
the virtualization solutions evaluated in this study. Since
the virtual machine image used by KVM and KQEMU
is also compatible with QEMU, we have also evaluated
the latter in the first step of our practical study and in-
cluded the results whenever we considered it to be ap-
propriate. Our main reason for doing this is to show how

2008 Linux Symposium, Volume One • 69

Figure 3: Relative performance of the virtualization so-
lutions for the kernel compilation experiment.

much a virtualization layer below QEMU (like KQEMU
and KVM) can benefit the performance of the applica-
tions running inside it.

Figure 3 shows the results for the kernel build exper-
iments. Kernel compilation is a CPU intensive task
which involves multiple threads and stress the filesystem
in both reading and writing small files. Those charac-
teristics make it for a good overall system performance
indication. As expected, virtualization solutions rely-
ing on both OS-level and para-virtualization technolo-
gies presented a performance close to Linux’s. Among
the full-virtualization solutions, KVM’s performance is
far superior.

This first graphic shows a unique situation in our study
in which the non-use of the virtualization extensions by
VirtualBox results in performance that is higher than
when VirtualBox makes use of such extensions to ac-
complish the same task. In all the other experiments,
such a difference in performance will be less significant.

The next experiment is a file compression using Bzip2.
This is also a CPU intensive task, but with low I/O re-
quirements. The -9 option used for maximum compres-
sion also demands more memory for the process to exe-
cute the compression. For this experiment, we have all
virtualization solutions performing close to Linux, ex-
cept for KQEMU and OpenVZ, as shown in Figure 4.
The low performance of OpenVZ was a surprise since
we expected it to perform close to Linux for all experi-

Figure 4: Evaluating the virtualization solutions with
Bzip2

ments.

Figure 5 shows the results for the experiments with
Dbench, a file system benchmark that simulates the load
placed on a file server. Here, the sole virtualization solu-
tion to match Linux closely was Linux-Vserver, the re-
maining solutions showing performance less than 30%
of Linux. This includes Xen, which has shown bet-
ter performances in other studies [2, 33] for a similar
workload. We were not able to successfully run this
benchmark with VirtualBox without it crashing for an
unknown reason.

The results for our experiments of disk performance
done with dd are presented in Figure 6. These exper-
iments do not stress the CPU but focus mainly on disk
I/O. For the first experiment, which copies a 433M iso
image file to the same ext3 partition, Linux-VServer
presented performance that considerably surpasses that
of Linux. VServer’s modifications to the kernel clearly
benefit this kind of task. Xen and KVM presented good
performance while OpenVZ was significantly slower.
In the second experiment, 60G of null characters are
read from /dev/zero and written to a scratch device
(/dev/null). Since the data is not actually written
to the disk this experiment focuses on the I/O opera-
tions of the OS without physically stressing the disk.
For this experiment, Xen shows a decrease in perfor-
mance while OpenVZ performs a lot better than in the
first experiment, but still shows a considerable overhead
when compared to Vserver and KVM. We were unable

70 • Virtualization of Linux servers

Figure 5: Evaluating the virtualization technologies
with Dbench, a file system benchmark

to correctly measure this experiment with KQEMU and
VirtualBox, the resultant values for time and through-
put being noticeably inaccurate when compared against
a wall clock.

Figure 7 shows our results for Netperf, a simple network
benchmark that uses a stream of TCP packets to evaluate
the performance of data exchange. We can clearly dif-
ferentiate two groups in this experiment: the technolo-
gies that are based on QEMU, presenting a poor per-
formance, and the others, which all presented excellent
performance. We highlight VirtualBox’s performance,
possibly due to the use of a special network driver im-
plementation that communicates closely with the physi-
cal network interface.

To complement our network evaluation, we have per-
formed two other experiments using Rsync to transfer
data from a server to a client machine. The first experi-
ment consisted in the transfer of the entire kernel source
tree, which is composed by 23741 small files for a total
of 294M. The second experiment consisted in the trans-
fer of the same iso image file used in the compression
benchmark. Figure 8 presents the results for both exper-
iments. They confirm the strength of OpenVZ for tasks
that include transfering data throughout the network. In
the opposite sense, these kinds of task reveal one of the
major weaknesses of KVM.

Figure 9 presents our results for the SysBench database
server performance benchmark (OLTP). The workload

Figure 7: Netperf uses a stream of TCP packets to eval-
uate the performance of the network

consisted of a set of 10000 transactions performed
against a MySQL database. For this workload, Linux-
VServer and Xen where the only virtualization solutions
to perform close to Linux, while KVM and OpenVZ
presented performance half as good.

For the second part of our evaluation, we have chosen
the SysBench benchmark to evaluate how the virtual-
ization solutions perform when having to manage and
share the physical resources of the server between multi-
ple virtual machines executing the same workload. Fig-
ure 10 presents our results for this scenario. The left
side of the picture (a) shows the aggregate throughput
for each set, which was calculated by multiplying the
average throughput of the virtual machines, shown in
the right side of the picture (b), by the number of virtual
machines executing concurrently.

For all virtualization solutions but KVM and Virtual-
Box, the biggest aggregate throughput appears when 4
VMs were running concurrently. Xen and KQEMU pre-
sented a similar behavior, producing an almost constant
aggregate throughput, but with opposite performances:
while Xen can be considered the most efficient virtu-
alization solution for this particular workload, the in-
ability of KQEMU to make a good use of the available
resources was evident.

The two most interesting results were achieved by Vir-
tualBox and Linux-VServer. The aggregate throughput
of the first grew smoothly until the number of running

2008 Linux Symposium, Volume One • 71

Figure 6: Using dd to evaluate disk performance

Figure 8: Evaluating data transfer in the network with Rsync

72 • Virtualization of Linux servers

Figure 10: Evaluating the capacity of the virtualization solutions to manage and share the physical available re-
sources with SysBench: the left side of the picture (a) shows the aggregate throughput (average throughput per VM
x number of VMs) while the right side of the picture (b) shows the average throughput per VM

Figure 9: Using the SysBench OLTP benchmark to eval-
uate the performance of a database server

virtual machines reached 8. When we doubled the num-
ber of virtual machines to 16, the average throughput per
VM remained the same, duplicating the total aggregate
throughput produced. We were not able, though, to exe-
cute the experiment with 32 VMs, as the available mem-
ory per VM was insufficient to run the benchmark. With
Linux-VServer, the aggregate throughput obtained for
two and eight VMs (or vservers) was almost the same,
but it fell considerably when running 16 and 32 vservers
concurrently.

This is not the behavior we are used to seeing in pro-
duction systems running this virtualization solution. We
have contacted the authors of [16], who pointed some
issues that could help explain Linux-VServer’s perfor-
mance for this particular workload at scale. In sum-
mary, they suggested to try different kernel I/O sched-
ulers and timer frequencies, and also executing the same
experiment directly in the host OS with and without
VServer’s kernel patch, and compare the results with
those of VServer. Figure 11 summarizes this analysis.
In the legend, the data between parenthesis are respec-
tively the Ubuntu version, the kernel timer frequency,
and the kernel I/O scheduler used in each experiment.

The Vserver patch used in the experiment did not

2008 Linux Symposium, Volume One • 73

Figure 11: Repeating the scalability evaluation with Linux-VServer, Xen, and Linux using different settings.

change the kernel standard timer frequency, set to 100
Hz, nor the I/O scheduler, deadline. Xen uses a differ-
ent configuration, setting the kernel timer frequency to
250 Hz and selecting a different I/O scheduler, called
Completely Fair Queuing(cfq). We have repeated the
experiment with VServer for n=32 VMs using different
combinations of timer frequency and I/O scheduler. We
have also experimented installing each vserver in indi-
vidual LVM partitions. Neither of those configurations
gave better results.

To eliminate the possibility of this being a kernel-related
issue we repeated the experiment with 1, 2, 4, 8, and 32
instances of SysBench running in the host system and
accessing the same database. The resulting performance
curve resembles more the one of Xen. The aggregate
throughput decreases slowly when there is more than
4 instances executing concurrently and does not follow
the pattern of VServer. We also repeated this experi-
ment running 32 instances of SysBench that connected
each to different databases, hosted by 32 mysqld servers
running on different ports of the host system. This con-
figuration achieved by far the best aggregate throughput
in our experiments.

The PlanetLab project uses Linux-VServer to share part
of the available resources of their clusters of machines
in “slices” [33]. We tried a patch used in the project that
fixes a CPU scheduler related bug present in the version
of VServer we used in our experiments, with no better
results. Finally, we decided to try a different workload,
the kernel build benchmark. For VServer and Xen ex-

Figure 12: Evaluation of the scalability of Linux-
VServer and Xen using the kernel build as benchmark
and Linux as reference

periments we used the same configuration as in our pre-
vious experiments. For the experiment in the host sys-
tem we have simply used multiple kernel source trees.
Figure 12 summarizes the results, showing the aggre-
gate time for each set of experiments.

For this particular workload, Linux-VServer performs
as well as the Linux host system, while Xen follows
closely but shows a small overhead that becomes more
significant when the experiment is done with 32 VMs.

74 • Virtualization of Linux servers

The results we had with this experiment helps to shown
how the nature of the workload affects the performance
of the virtualization solutions, and how Linux-VServer
can deliver the performance we expect from it.

6 Conclusion

This paper evaluated the efficiency of six open source
virtualization solutions for Linux. In the first part of
our study, we used several benchmarks to analyze the
performance of different virtualisation solutions under
different types of load and related it to the raw perfor-
mance of Linux, observing the resulting overhead. In
the second part of our study, we evaluated the scalabil-
ity of those virtualization solutions by running the same
benchmark concurrently in multiple virtual machines.

For the first part of our evaluation, Linux-VServer per-
formed close to Linux in all experiments, showing lit-
tle to no overhead in all situations but one, in which it
surpassed Linux’s own performance for disk I/O. When
executing SysBench at scale, thought, VServer failed
to deliver the expected aggregate throughput, specially
when the benchmark was running in more than four vir-
tual machines concurrently. A closer look at the prob-
lem indicates that it is not directly related to Linux’s
kernel. We tried different combinations of kernel I/O
schedulers and timer frequencies with no better results.
To be fair, we repeated the experiment with Linux, Xen,
and Linux-VServer using the kernel build benchmark
instead of SysBench. This time VServer’s performance
was comparable to Linux’s while Xen showed a small
overhead that became more significant when running the
experiment concurrently in 32 VMs.

Xen performed fairly well in all experiments but the
one using the file system benchmark Dbench. In fact,
no other virtualization solution had good results for this
benchmark, with the exception of Linux-Vserver. Xen
was also the solution that presented the best aggregate
throughput when executing SysBench at scale.

KVM performed quite well for a full-virtualization so-
lution. Although it makes for a good development tool,
our results indicate it should be avoided for running
application services that rely heavily on network I/O.
On the other hand, the performance of OpenVZ was
disappointing, except when the workload included data
transfer throughout the network, which proved to be a
strength of this virtualization solution. VirtualBox also

showed good results for experiments that focused on the
network but did not performed as well as the others, with
the exception of the file compression benchmark. Fi-
nally, KQEMU may also be a good candidate in the area
of development but for now its use should be avoided in
production systems.

For the consolidation of Linux servers, virtualization
technologies such as para-virtualization and OS-level
virtualization seem to make more efficient use of the
available physical resources. However, our findings in-
dicate that the scalability of virtualization solutions may
be directly related to the nature of the workload. Except
for Linux-VServer and Xen, we have not used different
workloads in the second part of our work and we suggest
that this should be took in consideration for future stud-
ies. It would also be interesting to repeat the scalability
experiments using a mix of different workloads. With
the exception of web hosting centers, there are few pro-
duction systems interested in running multiple instances
of the same workload in the same physical server.

References

[1] Keith Adams and Ole Agesen. A comparison of
software and hardware techniques for x86
virtualization. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural
support for programming languages and
operating systems, pages 2–13, New York, NY,
USA, 2006. ACM Press.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[3] Daniel Bartholomew. Qemu: a multihost,
multitarget emulator. Linux J., 2006(145):3, May
2006.

[4] Fabrice Bellard. Qemu, a fast and portable
dynamic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual
Technical Conference, pages 41–41, Berkeley,
CA, USA, 2005. USENIX Association.

[5] Franck Cappello Benjamin Quetier, Vincent Neri.
Selecting a virtualization system for grid/p2p

2008 Linux Symposium, Volume One • 75

large scale emulation. In Proc of the Workshop on
Experimental Grid testbeds for the assessment of
large-scale distributed applications and tools
(EXPGRID’06), Paris, France, 19-23 june, 2006.

[6] Lucas Bonnet. Etat de l’art des solutions libres de
virtualisation pour une petite entreprise. Livre
blanc, Bearstech, Decembre 2007.
http://bearstech.com/files/

LB-virtualisationEntrepriseBearstech.pdf.

[7] Standard Performance Evaluation Corporation.
Spec virtualization committee, April 2008.
http://www.spec.org/
specvirtualization/.

[8] Simon Crosby and David Brown. The
virtualization reality. Queue, 4(10):34–41, 2007.

[9] Casazza et al. Redefining server performance
characterization for virtualization benchmarking.
Intel Technology Journal, 10(3):243–252, 2006.

[10] Makhija et al. Vmmark: A scalable benchmark
for virtualized systems. Tech reaport, VMware,
Inc., 2006.

[11] Padala et al. Performance evaluation of
virtualization technologies for server
consolidation. Tech Reaport HPL-2007-59, HP
Laboratories Palo Alto, 2007.

[12] Justin M. Forbes. Why virtualization
fragmentation sucks. In Proceedings of the Linux
Symposium, volume 1, pages 125–129, Ottawa,
ON, Canada, June 2007.

[13] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian
Pratt, Andrew Warfield, and Mark Williamson.
Safe hardware access with the xen vir tual
machine monitor. In Proceedings of the 1st
Workshop on Operating System and Architectural
Support for On-Demand IT In frastructure,
Boston, MA, USA, October 2004.

[14] Cedric Le Goater, Daniel Lezcano, Clement
Calmels, Dave Hansen, Serge E. Hallyn, and
Hubertus Franke. Making applications mobile
under linux. In Proceedings of the Linux
Symposium, volume 1, pages 347–368, Ottawa,
ON, Canada, July 2006.

[15] Risto Haukioja and Neil Dunbar. Introduction to
linux virtualization solutions. Technical report,
Hewlett-Packard Development Company, L.P.,
September 2006.

[16] Marc E. Fiuczynski Herbert Potzl. Linux-vserver:
Resource efficient os-level virtualization. In
Proceedings of the Linux Symposium, volume 2,
pages 151–160, Ottawa, ON, Canada, June 2007.

[17] IBM. Driving business value with a virtualized
infrastructure. Technical report, International
Business Machines Corporation, March 2007.

[18] M. Tim Jones. Virtual linux, December 2006.
http:
//www.ibm.com/developerworks/
library/l-linuxvirt/index.htlm.

[19] M. Tim Jones. Discover the linux kernel virtual
machine, April 2007. http:
//www.ibm.com/developerworks/
linux/library/l-linux-kvm/.

[20] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,
and Anthony Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, Ottawa,
ON, Canada, June 2007.

[21] Tim Klassel and Jeffrey Peck. The rise of the
virtual machine and the real impact it will have.
Technical report, Thomas Eisel Partners, 2006.

[22] Jun Nakajima and Asit K. Mallick.
Hybrid-virtualization: Enhanced virtualization for
linux. In Proceedings of the Linux Symposium,
volume 2, pages 87–96, Ottawa, ON, Canada,
June 2007.

[23] Susanta Nanda and Tzi cker Chiueh. A Survey on
Virtualization Technologies. Rpe report, State
University of New York, 2005.

[24] Pradeep Padala. Adaptive control of virtualized
resources in utility computing environments. In
Proc of the EUROSYS (EUROSYS’07), Lisboa,
Portugal, March 21-23, 2007.

[25] John Pflueger and Sharon Hanson. Data center
efficiency in the scalable enterprise. Dell Power
Solutions, pages 08–14, February 2007.

76 • Virtualization of Linux servers

[26] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421,
1974.

[27] Benjamin Quetier and Vincent Neri. V-meter:
Microbenchmark pour evaluer les utilitaires de
virtualisation dans la perspective de systemes
d’emulation a grande echelle. In 16eme
Rencontres Francophones du Parallelisme
(RenPar’16), Le Croisic, France, Avril 2005.

[28] J. Robin and C. Irvine. Analysis of the intel
pentium’s ability to support a secure virtual
machine monitor, 2000.

[29] Michael D. Day Ryan A. Harper and Anthony N.
Liguori. Using kvm to run xen guests without
xen. In Proceedings of the Linux Symposium,
volume 1, pages 179–188, Ottawa, ON, Canada,
June 2007.

[30] Love H. Seawright and Richard A. MacKinnon.
Vm/370 - a study of multiplicity and usefulness.
IBM Systems Journal, 18(1):4–17, 1979.

[31] B. D. Shriver, J. W. Anderson, L. J. Waguespack,
D. M. Hyams, and R. A. Bombet. An
implementation scheme for a virtual machine
monitor to be realized on user -
microprogrammable minicomputers. In ACM 76:
Proceedings of the annual conference, pages
226–232, New York, NY, USA, 1976. ACM Press.

[32] Amit Singh. An introduction to virtualization,
2006. http://www.kernelthread.com/
publications/virtualization/.

[33] Stephen Soltesz, Herbert Potzl, Marc E.
Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization:
A scalable, high-performance alternative to
hypervisors. In Proc of the EUROSYS
(EUROSYS’07), Lisboa, Portugal, March 21-23,
2007.

[34] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L.
Santoni, Fernando C. M. Martins, Andrew V.
Anderson, Steven M. Bennett, Alain Kagi,
Felix H. Leung, and Larry Smith. Intel
virtualization technology. Computer,
38(5):48–56, 2005.

[35] VMware. A performance comparison of
hypervisors. Technical report, VMware, Inc.,
2007.

[36] XenSource. A performance comparison of
commercial hypervisors. Technical report,
XenSource, Inc., 2007.

[37] Alan Zeichick. Processor-based virtualization,
amd64 style, part i. Technical report, Advanced
Micro Devices, 2006. http://developer.
amd.com/article_print.jsp?id=14.

MondoRescue: a GPL Disaster Recovery Solution

Bruno Cornec
Project Lead

bruno.cornec@hp.com

Abstract

MondoRescue is a GPL Disaster Recovery solution. It
has existed since 2000, and has now matured to a global
solution used both to restore systems in case of emer-
gency as well as to deploy dozens of systems having the
same or nearly the same configuration. The main Web
site is at http://www.mondorescue.org where
all the detailed information is contained.

This paper will explain the various functions of the
solution: backup image creation, (various filesys-
tems supported, compression schemas, media, distri-
butions, . . . mindi, the mini-distro creating the environ-
ment needed for restoration), restore options, (fully au-
tomated, interactive, compare mode, online, . . .), some
extended usages for which the presenter made patches
(LVM v2 support, PXE support. . .), creation of an im-
age deployment server suited for PXE, restoration of
mondo images, cloning techniques with mondo, and so
on.

It will also explain the new orientation given to the
project since September 2005 with the new maintain-
ership of B. Cornec and the various aspects considered
for 3.0.x.

At last, we will also cover some important points around
project management (SVN, ML, trac, . . .).

1 First encounter with MondoRescue

My initial discovery of the tool was back in 2000, when I
was in charge of a project in HP for which I had to find a
way to provide an easy installation mechanism of a pre-
load of Linux on our servers in EMEA. More over, the
idea was to do that with media that the customer would
get in the same box as the server.

At that time, only 2 tools existed for this purpose:
mkCDrec and MondoRescue. As I more easily un-
derstood the way to use MondoRescue for my project,

combined with the fact that the project already covered
90% of my needs, and that the developer (Hugo Rabson)
was cooperative and inclined to integrate patches, I then
chose it as my tool for this project, and have used it ever
since.

Having done a patch to automate the recovery steps
to make it easy to both customers and plant people in
charge of the installation, I was quickly integrated in the
development team of the project (even if not very ac-
tive). I tried to make an Itanium (ia64) port, but didn’t
follow up with it at that time, as our HP team wasn’t
working on the Itanium program anymore. In the other
hand, the pre-install Linux project was really successful
and gave me a good opportunity to jump on the project.

The goal of MondoRescue is thus to provide a GPL Dis-
aster Recodery (DR) or Cloning technology which is
distribution-neutral (it runs on Mandriva, Fedora, Open-
SuSE, RHEL, CentOS, SLES, Debian, Ubuntu, Gentoo,
Slackware), filesystem-neutral (it supports ext2/3, reis-
erfs, XFS, JFS, LVM v1 and v2, and software & hard-
ware RAID), media-neutral (CD-R/RW, DVD+-R/RW,
tape, network, ISO files), kernel-neutral (provides a fail-
safe one, or use the one you run or another one, as long
as MondoRescue requirements are fulfilled).

The interface is either command-line based (via options)
or a semi-graphical interface based on newt. A Web
interface to the CLI is also planned for version 3.x.

1.1 mindi

MondoRescue uses mindi to create the bootable part
of the DR media set, which uses itself busybox to pro-
vide a light Linux environment at restore time. mindi
is a shell script. Its role is to create the necessary boot
environment needed at restore time to be able to cor-
rectly set up your hardware and have access to your re-
covery images.

• 77 •

78 • MondoRescue: a GPL Disaster Recovery Solution

Typically, mindi is called through mondoarchive
to build that small boot environment. It can also be
called separately in order to provide a minimal boot im-
age matching your current installation, so you can use it
as a rescue disc.

mindi creates a bootable image that cat be used to ei-
ther create recovery USB devices, using syslinux, or
serve as the boot part of an El-Torito ISO9660 CD, using
isolinux.

mindi has some interesting options to help you ana-
lyze the underlying environment and check that it will
be handled correctly.

mindi -findkernel finds the image of the running
kernel in the file system. Example on a Mandriva 2007.1
distribution:

mindi --findkernel
/boot/vmlinuz-2.6.17.14-mm-desktop-5mdv

Example on a RHEL 4 distribution:

mindi --findkernel
/boot/vmlinuz-2.6.9-42.ELsmp

Another useful option of mindi for debuging problems
is the -makemountlist. Example on a MDV 2008.1
distribution (mindi 2.0.2):

mindi --makemountlist /tmp/1
Your mountlist will look like this:
Analyzing LVM...

DEVICE Mountpoint Format Size Label/UUID
/dev/sda1 / ext3 1239
/dev/sdb1 /home ext2 476937 /home
/dev/sda8 /tmp ext3 1129
/dev/sda6 /usr ext3 12033
/dev/sda7 /var ext3 4235
/dev/sda5 swap swap 980

This exhibits some news brought by the more recent ver-
sion (support of UUID for Ubuntu, for instance). If the
output of that command doesn’t reflect the layout of par-
titions on your system, then you will experience prob-
lems during normal mindi’s run.

Most of hardware support issues met with Mondorescue
come in fact from mindi. As its responsibility is to cre-
ate a correct boot environment for the machine, it has to
put all the required drivers on the boot part of your res-
cue media. In order to do that, in current versions, a
lot of supported drivers are included in mindi’s code
for all the required drivers that you may want to use

(CD/DVD drivers, IDE/SATA/SCSI controllers, USB
controllers, tape controllers, and network controllers for
those doing PXE restore). Code example:

FLOPPY_MODS="ide-floppy floppy"
TAPE_MODS="ht st osst ide-tape ide_tape"
SCSI_MODS="3w-xxxx 3w_xxxx 3x_9xxx\\
3x-9xxx 53c7,8xx a100u2w a320raid\\
aacraid adpahci advansys aha152x\\
aha1542 aha1740 aic79xx aic79xx_mod\\
aic7xxx aic7xxx_mod aic7xxx_old\\
AM53C974 atp870u BusLogic cciss\\
cpqfc dmx3191d dpt_i2o dtc eata\\
eata_dma eata_pio fdomain gdth\\
g_NCR5380 i2o_block i2o_core\\
ide-scsi ieee1394 imm in2000\\
initio ips iscsi isp megaraid\\
megaraid_mm megaraid_mbox\\
mptbase mptscsih mptsas mptspi\\
mptfc mptscsi mptctl NCR53c406a\\
ncr53c8xx nsp32 pas16 pci2000\\
pci2220i pcmcia ppa psi240\\
qla1280 qla2200 qla2300 qlogicfas\\
qlogicfc qlogicisp raw1394\\
scsi_debug scsi_mod sd_mod seagate\\
sg sim710 sr_mod sym53c416 sym53c8xx\\
sym53c8xx_2 t128 tmscsim u14-34f\\
ultrastor wd7000 vmhgfs"

ide-probe-mod
IDE_MODS="ide ide-generic ide-detect\\
ide-mod ide-disk ide-cd ide_cd\\
ide-cs ide-core ide_core edd paride\\
ata_generic ata_piix libata\\
via82cxxx generic nvidia ahci\\
sata_nv cmd64x"
PCMCIA_MODS="pcmcia_core ds\\
yenta_socket"
USB_MODS="usb-storage usb-ohci\\
usb-uhci usbcore usb_storage input\\
hid uhci_hcd ehci_hcd uhci-hcd\\
ehci-hcd ohci-hcd ohci_hcd usbkbd\\
usbhid keybdev mousedev"
CDROM_MODS="$TAPE_MODS $FLOPPY_MODS\\
$IDE_MODS af_packet cdrom isocd\\
isofs inflate_fs nls_iso8859-1\\
nls_cp437 sg sr_mod zlib_inflate\\
$USB_MODS $PCMCIA_MODS"
NET_MODS="sunrpc nfs nfs_acl lockd\\
fscache loop mii 3c59x e100\\
bcm5700 bnx2 e1000 eepro100\\
ne2k-pci tg3 pcnet32 8139cp\\
8139too 8390 forcedeth vmxnet vmnet"
EXTRA_MODS="$CDROM_MODS vfat fat\\
loop md-mod linear raid0 raid1 xor\\
raid5 raid456 lvm-mod dm-mod\\
dm-snapshot dm-zero dm-mirror\\
jfs xfs xfs_support pagebuf\\
reiserfs ext2 ext3 minix nfs\\
nfs_acl nfsd lockd sunrpc jbd\\
mbcache"

2008 Linux Symposium, Volume One • 79

Of course, maintaining that list is an endless story. ;-)
That’s why an evolution planned for the next stable re-
lease will be to automatically include the full list of all
drivers to use. Anyway, this is a difficult task when you
want to extend Mondorescue in the cloning area. For ex-
ample, if you want to restore the content of your phys-
ical system in a Virtual Machine (VM) for demo pur-
poses, you need to have the drivers for the VM in your
image, which may not even be part of your original dis-
tribution and that you may want to be able to add. The
same is true if you backup on SCSI and restore on SATA
controllers. . .

However, currently you have to deal with a fixed list of
drivers, and modify mindi’s code by amending those
variables in case some driver is missing.

When called from mondoarchive, mindi has a high
number of parameters for the moment passed to him
with the -custom option, which triggers the fact that
it’s used in a mondoarchive context. This will
change in version 3.0.x as instead a configuration file
will be used, generated by mondoarchive to override
the defaults held in mindi’s configuration file.

The most important information in trying to understand
mindi’s issues is contained in the log file /var/log/
mindi.log. If used alone, you should always at-
tach it to your request on the mailing list (if used from
mondoarchive, the tool includes it in its own log file,
so you don’t need it anymore).

Another tool provided by mindi is the /sbin/init
script launched at boot time, whose role is as said to
prepare the drivers to support your hardware, but also to
configure all the software stacks required to be able to
access the DR sets stored on some media somewhere.
It goes from just mounting a physical CD-ROM on the
right directory to setting up LVM on your hard driver
and the network stack, mounting via NFS the remote file
system, finding on it the right ISO image to loopback-
mount on the same directory.

The steps involved in init include:

• Load the mandatory modules from initrd:
InsertEssentialModules

• Get restore media going: HandleTape |
HandleCDROM | start-nfs | start-usb

• Get additional stuff from restore media includ-
ing all other modules: install-additional-

tools (gets ordinary NFS working)

• Now that all modules are available, load the ones
we need: insert-all-my-modules.

As all those scripts are currently bash scripts run by
busybox, one way to debug a problem is to include
a set -x command inside them at the interesting line
where you want to have a detailed view of actions run
by the shell. This is, of course, also true for mindi in
itself. Then, once those tasks have been performed, the
command mondorestore is launched to deal with the
restoration process in itself from the DR set.

1.2 mondoarchive

MondoRescue provides one command,
mondoarchive, which handles the creation of
the DR set. mondoarchive is written in C. It accepts
multiple options to force it to act specifically (and
can be launched that way with cron); or without
options, you will get a curses-based interface asking
you the questions required to make your archive.
After having done some sanity checks on your system,
mondoarchive will first build a catalog of all the
files to archive. Then it will call mindi to create the
boot image used at restore time, passing to it all the
parameters required with its -custom option. Then
mondoarchive will call afio and your compressor
of choice to prepare the package of files to back up.
When it estimates that it won’t be able to add more files
in order to fit within the planned capacity, it will call
mkisofs on the temporary directory to produce the
final ISO, and loop through those steps again up to the
last file in the catalog. At the end of that step, it will do
the same with the so-called “big files,” which are split
in order to take the maximum advantage of media size.

It supports multiple compression tools:

• bzip2: the default one historically. Best compres-
sion ratio, slower backup/restore time, ideal when
space contraints are predominant.

• lzo: added second to improve performance while
retaining a good compression ratio. The lzo pack-
age has to be added to the distribution as most of
them do not include it.

80 • MondoRescue: a GPL Disaster Recovery Solution

• gzip: added recently in 2.2.1. Offers probably the
best balanced solution between time and compres-
sion ratio. Standard in all distributions.

MondoRescue is based on the afio tool to create
archive packages. The choice of afio may be sur-
prising, but it presents some advantages compare to the
more classical tar or cpio:

• Compatible with cpio to allow for easy recovery
of content in case of catastrophe where even afio
is not available.

• Does compression on a file-by-file basis, instead of
doing it on the resulting package. This improves
the reliability of the solution as even if a media has
an error, the user may still be able to recover all
the other files; whereas with a single compressed
package, he may lose up to the whole package.

• Doesn’t compress already compressed files (based
on files’ suffixes, whose list can be modified).

• Archives are portable between different types
of UNIX systems, as they contain only ASCII-
formatted header information.

• Supports various block sizes (useful for tape back-
ups).

With mondoarchive you can generate files (ISO im-
ages that you can burn later or keep on an NFS server for
further deployment with PXE) or you can directly cre-
ate media (CD, DVD, tapes, and USB devices) that you
can then use to regenerate your system. The size of the
image is a parameter the administrator may choose at
will (e.g., 700MB (CD-size), 4GB (DVD-size), 50GB
through the LAN, etc.); mondoarchive will create
the number of media needed automatically and poten-
tially invoke the burning command to make your media.

mondoarchive (and mindi) can use either your run-
ning kernel to boot your system at restore time, or what-
ever kernel you specify to it. Among those you may
want to use in some very particular cases is the failsafe
kernel that mindi can provide as a replacement.

It has to be noted that mondoarchive is working on a
live system, so precautions need to be taken when back-
ing up databases, or evolving sets of data that need to re-
main consistent (you may want to stop or snapshot your

application before launching the archival). A possibility
is to run the system in the S run-level to avoid those is-
sues. Also the filesystems are backed up when they are
still mounted, so a fsck will have to occur at the first
boot after restore.

Here is an example of mondoarchive’s CLI usage:

/usr/sbin/mondoarchive -OV \\
-k /boot/vmlinuz-2.6.16 -d /bkp -s 700M \\
-E "/usr/share/doc /usr/src /mnt/fs2" \\
-N -p machine1 -T /home/mondo/tmp \\
-S /home/mondo/scratch \\
-n server.hpintelco.org:/writer/nfs

• -O: Backup the machine

• -V: Verify the backup

• -k: Do not use the running kernel but a specific one

• -d: Destination path for the images created (ISO files)

• -s: Size of the images created

• -E: List of directories to exclude from backup

• -N: Do not backup network file systems

• -p: Prefix to be use in image name

• -T: Path of the temporary files (useful for NFS mode to
have them created locally)

• -S: Path of the scratched files (useful for NFS mode to
have them created locally)

• -n: NFS location of the images

Look at the man page of mondoarchive for more de-
tails on these options.

The usage of a configuration file in v3.0.x will allow
to avoid using all those parameters in the future. That
same configuration file will be used as a base to fill all
the fields of the Web interface in order to generate the
right mondoarchive command.

1.3 mondorestore

MondoRescue provides one command,
mondorestore, which handles the restore of the
DR set. mondorestore is written in C. It will handle
the restore process on your system once /sbin/init
has set things up. One option you can pass to it is the
-p option to specify the prefix used at backup time,
which is only useful when using NFS restore (name
doesn’t matter for physical media).

2008 Linux Symposium, Volume One • 81

mondorestore is generally called by /sbin/init
during the boot of your DR media. It can also be called
manually in the case you booted in expert mode (in order
to setup your hardware before for whatever reason) or
in interactive mode from your running system to restore
selectively chosen files.

mondorestore will get the parameter passed to
/sbin/init from the boot prompt, from the
post-init script, which could be -Z compare,
-Z nuke or (by default) -Z interactive (see be-
low for details). Without parameter, mondorestore
will first ask you whether it should operate in compare,
interactive or automatic mode. Then it will ask from
which media you want to restore (CD/DVD/Tape/HDD/
NFS are among the choices). Then depending on the
type of media, it may ask complementary questions be-
fore displaying an interface allowing you to change your
file system’s layout (could be size, type), as long as the
mount point remains accessible and of a sufficient size
to host the data. When done with that layout, the restore
process will start by formatting your hard drive and then
restoring your data from the DR media set. At the end
it will restore the boot loader (including your modifica-
tions if necessary) and relabel if needed.

mondorestore supports multiple ways of doing the
restoration:

• From bootable media: CD/DVD, USB devices
(keys, disks), and OBDR tapes

• From Virtual Media (HP Proliant only): USB CD
emulation

• From the network: PXE.

The content of the archives can then be on the same me-
dia, or located on a hard disk on the machine, on a tape,
or on a network share (NFS). Even if MondoRescue is
primarily a DR solution, some derived usage may be
envisioned. ;-) One of such usage is as a backup so-
lution. Thus the mondorestore command can also
be launched from the shell and will provide you with a
semi-graphical interface to select the files and directo-
ries you want to restore.

Different modes are provided at restore time when you
boot from your MondoRescue DR set:

• Automatic: In this mode, no questions will be
asked of the user, and the restore will be done fully
automatically, as much as possible. This is the op-
tion to use in another derived usage of MondoRes-
cue, cloning machines.

• Interactive: This is the standard mode. In this
mode, you will be asked a certain number of ques-
tions (with generally good defaults coming from
your original machine) on how you want to re-
store your system. This mode allows you to make
changes compared to the original machine—for in-
stance, to adapt to a new hardware configuration,
etc. Thus the type of the filesystem, its size, and
layout can be modified, as well as new hardware
supported (if the drivers are available). It is indeed
possible to restore on a SATA controller when the
backup was made on a SCSI controller.

• Compare: This mode is a non-destructive one, al-
lowing you to compare the content of what is on
your DR media with what is currently on the sys-
tem. A report will be generated at the end to give
you the list of all differing files.

• Expert: in this mode, mondorestore is not even
launched, allowing you to have access to a shell
giving you full control before launching it to pre-
pare the hardware the way you want.

Another derived usage is to use MondoRescue as a
cloning tool. This generally requires knowledge of both
the master and target machine. If those machines are
identical, you may use the -H option, which will allow
you to use the automatic mode at restore time, making it
easy for people in charge of the deployment to indeed re-
store the system (only one keyword to type at boot time).
If those machines are different—especially in terms of
drivers—you’ll have to inform mindi that it will have
to include additional modules in order to support the tar-
get platform correctly.

2 Historical view

Coming back to my history with the MondoRescue
project, I have to confess that after that initial work, I
wasn’t really involved around MondoRescue until 2004,
when I worked again on my Itanium port to finish it
in April. Patches were committed upstream as usual
in the CVS repository where I have had write access

82 • MondoRescue: a GPL Disaster Recovery Solution

since June, 2003. I also produced (around the end of
2004) some other patches to improve Proliant support
(the /dev/cciss device file) but this time was unable
to commit them, as we were in a transition phase be-
tween CVS and SVN. . . which never really worked (or
during a too-short period of time). :-(The original
author of the project then became less interested in it,
and questions appeared on the mailing-list and between
the developers on how to proceed, without conclusion at
that time.

Then there was the “famous” FastServers affair! (look
at Google for “FastServers mondo” if you want the
history). Fortunately I also had PXE patches I pub-
lished under the GPL at the same time, so the story
wasn’t a very good one indeed. I needed the ability
to store a large number of MondoRescue images on a
central repository and be able to redeploy them from
that same server through the network, without media
manipulation. To achieve this, the central server needs
to be configured as an NFS server (the only protocol
supported for file sharing) and PXE server (using ISC
DHCP server, hpa TFTP server, and pxelinux), and
some support was added in mindi to handle the load-
ing of network drivers, IP setup in busybox, the NFS
stack, and mounting the images from that file share.

But with all that, we were still unable to commit code;
patches were floating on the mailing-list without real
integration; Hugo published his last version the 3rd of
May 2005 (2.04) and then gave nearly no news; de-
velopers were discussing from time to time what to
do. . . clearly the project was going to die.

And I was a bit upset by that, as I was using it quite a lot
in the HP/Intel Solution Center in which I was (and still
am) working, I had patches that would improve some
cases that I was unable to commit, so was attaching them
to mails on the mailing-list, . . . So finally I decided it
was time to have a working development environment,
and hosted it on Berlios.de. I chose them as they
were offering subversion access, whereas Sourceforge
was still using CVS only (and I was convinced, during
the few months of availability, of subversion’s advan-
tages over CVS). I proposed to all the people working
around MondoRescue to give them access as they were
accustomed to, and that’s how Andree Leidenfrost, who
was already committing bug fixes and was managing
Debian packages, was involved in the new development
team. Here is the message which announced the “fork”
(with original typos :-)):

From: Bruno Cornec <Bruno.Cornec@hp.com>
Date: Fri, 9 Sep 2005 20:48:30 +0200
Subject: Announce: mondo 2.04_berlios/
mindi 1.04_berlios available (was:
[Mondo-devel] Is Mondo still being worked
on?)

Hello,

First some feedback:

I’m working with mondorescue since 2000 to
integrate some patches I needed at that time.
I’ve never been a very active developper, but
provided from time to time some patches to
improve things (PXE, cciss support, -H
option, ...) and was SVN committer.

After monthes of problems to contribute to
the development of mondo (CVS to SVN
migration, then SVN repository not accessible
for me since nearly one year now), I’m now in
the "scratching an itch" phase :-) (Cf:
http://www.catb.org/~esr/writings/
cathedral-bazaar/cathedral-bazaar/ar01s02.
html)

So I decide it was time to do something in
order to avoid the project to decline. I
like it, I use it a lot, it makes my life
easier, both at work and at home. So here
are the news:

I have registered a mondorescue project on
BerliOS, which provides a sourceforge like
environement, including SVN support.

I’ve taken the latest tar ball available from
mondo (2.04_cvs_20050523) and mindi
(1.04_cvs_20050523) on
http://www.mondorescue.org and initiate an
SVN repository with them. I’ve patches the
code with what I had locally. The Changelog
looks like:

v2.04_berlios (Bruno Cornec <bcornec
@users.berlios.de)
- Add -p option to generate ISO images
file names with prefix. The new default
name for ISO images is mondorescue-1.iso
- Mandrake 2005 support
- NFS patches (Yann Aubert <technique
@alixen.fr>)

I’d be happy to add new developpers to SVN
write access list. You just have to create
an account and send it to me so that I can
add you. The SVN access is available through
https:
//developer.berlios.de/svn/?group_id=2524

I’ve setup a tiny Web page and Wiki. The
main access is at https:
//developer.berlios.de/projects/mondorescue/

2008 Linux Symposium, Volume One • 83

And for those of you who would like to try
the new version, it can be downloaded from
there or from
ftp://ftp.berlios.de/pub/mondorescue Please
register bugs and feature requests as well.

I do not promise anything, as I don’t have
much time myself, but hope to be able to get
help from you so that the project goes on
living.

Bruno.

It soon became obvious that it would not just be a tran-
sition in tools to manage the project, but also a change
in the development team. At that time, I considered
myself just as a maintainer of a branch that should be
reintegrated in the standard tree, when possible. But in
fact, that branch was becoming the standard tree! So
after some discussions on the mailing list, and to avoid
confusion, it was decided that the next version would be
named 2.05 to show it was a better version than the prior
one made by Hugo (integration of lots of patches, and a
first build process approach).

As in addition to maintaining the code itself (enhance-
ments, bug fixes), it was also necessary to take over all
the things related to the project: The subversion repos-
itory (September, 2005), the Web site content (fully
rewritten and delivered in February, 2006), the do-
main names (mondorescue.org/.com in January,
2006), the HOWTO (January, 2006), animation of the
mailing-list (could be a full-time job ;-), announce-
ments on freshmeat, etc.

Since we took over the maintenance, 11 versions have
been published. To sustain the development effort, it
also became obvious that being hosted was less con-
venient and powerful than having a dedicated machine
providing those services for the project. So in July of
2006, HP gave me a server dedicated to the project
which is hosted by the HP/Intel Solution Center in
Grenoble, France, where I work. It has allowed us to
manage our own Subversion repository and the Web site
(without the unavailability met on hosting platforms),
and to add additional functions such as a real ftp site and
Trac, an ingenious tool to help manage projects (Wiki,
Bug tracking, and SVN browsing). We couldn’t de-
cently work without it today. Sympa is probably the
next candidate to host mailing-lists.

Three generations of build process have also been devel-
oped based on another ingenious tool, QEMU (for Vir-
tual Machine (VM) emulation), and home-made scripts

(which have evolved into a separate project at http://
trac.project-builder.org) to build for 50+
distributions now from a single set of source files. This
allows us to launch a single script to activate all those
builds in sequence from the SVN repository automat-
ically. This is a great help in ensuring coherency and
consistency across distributions, and makes it easy for
users to install it on their distribution of choice. This
work will also serve as a base for automated testing in
the future.

The future version 2.2.7 is planned for end of July,
2007, and will propose support of the latest distributions
(OpenSuSE 11, etc.), various fixes on 2.2.6, etc.

The 2.2.x branch of subversion should then enter into
maintenance mode and all our efforts will concentrate
on producing the long-promised 3.0.X version. The
main changes are internal, with the introduction of a
new low-level internal library, with test routines to im-
prove reliability using only dynamic memory alloca-
tion. The rest of the code is being parsed to remove as
much static memory usage as possible during the 3.0.X
timespan. As part of that work, configuration files for
both mindi and mondoarchive will be introduced
to help users change the way the tool works, without
dealing with the code at all. Also a web interface used
to generate the options of the mondoarchive will
be available, helping with the integration of mondo in
another project called dploy.org, made in conjunc-
tion with the LinuxCOE team managed by HP fellows
(cf. http://trac.dploy.org). New features will
also include a internationalization support, maybe reac-
tivated FreeBSD support, etc.

3 Getting Help

There are multiple ways to get help when you encounter
issues with MondoRescue.

• Look at the documentation available on Mondores-
cue Web site at http://www.mondorescue.
org/docs.shtml (includes HOWTO, man
pages, migration docs, etc.).

• Look at the FAQ on the Wiki at http://trac.
mondorescue.org/wiki/FAQ. It contains
valuable tips and tricks for some common issues.

84 • MondoRescue: a GPL Disaster Recovery Solution

• Read the messages on screen, and the log
files. 90% of the time they just contain
the information which will help you help
yourself. They are located under /var/
log/mindi.log for mindi, /var/log/
mondoarchive.log for mondoarchive, and
/var/log/mondorestore.log during the
restoration process.

• Look at http://sourceforge.net/

mailarchive/forum.php?max_rows=

25&style=ultimate&offset=25&forum_

name=mondo-devel for archives of the mailing
list, which may already contain information about
your issue.

• If you think you need external help, you may
reach the Mondorescue community via the regular
mailing list (mailto:mondo-devel@lists.
sourceforge.net). But that community can
only help you if your provide at least the above-
mentioned log files.

• If your think you have found a bug in Mondores-
cue, please fill a bug report at http://trac.
mondorescue.org/newticket and also in-
clude the log files. Likewise, if you wish Mon-
dorescue had your new shiny dream-function, feel
free to create a feature request at the same URL.

• Access to source code is provided as per the
license of the software (GPL). So you may
want to add/remove/modify whatever fea-
ture; access is made available through FTP at
ftp://ftp.mondorescue.org/src and
SVN at svn co svn://svn.mondorescue.

org/mondorescue/branches/stable

(replace stable by the branch you want to
get, which could be 2.2.6 for the latest sta-
ble 2.2 published—the stable name is for
3.0.x). Patches are more than welcome
;-). All packages provided are available at
ftp://ftp.mondorescue.org/. Read the
instructions on http://trac.mondorescue.

org/wiki/DistributionPackaging if you
want to rebuild either your packages or a version
from source of the MondoRescue project, or apply
some specific patches.

The Corosync Cluster Engine

Steven C. Dake
Red Hat, Inc.

sdake@redhat.com

Christine Caulfield
Red Hat, Inc.

ccaulfie@redhat.com

Andrew Beekhof
Novell, Inc.

abeekhof@suse.de

Abstract

A common cluster infrastructure called the Corosync
Cluster Engine is presented. The rationale for this ef-
fort as well as a history of the project are provided. The
architecture is described in detail. The internal program-
ming API is presented to provide developers with a basic
understanding of the programming model to architec-
ture mapping. Finally, examples of open source projects
using the Corosync Cluster Engine are provided.

1 Introduction

The Corosync Cluster Engine [Corosync] Team has
designed and implemented the Corosync Cluster En-
gine to meet logistical needs of the cluster commu-
nity. Some members of the cluster developer commu-
nity have strong desires to reduce technology and com-
munity fragmentation.

Technology fragmentation results in difficulty with in-
teroperability. Different project clustering systems do
not inter-operate well because they each make decisions
regarding the state of the cluster in inconsistent ways.
Each cluster software may take different approaches to
managing failures, communicating, reading configura-
tion files, determining cluster membership, or recover-
ing from failures.

Community fragmentation results in dispersal of devel-
oper talent across many different projects. Most projects
have a very small set of developers. These developers
in the past have not worked on the same infrastructure
but instead implement code with similar functionality.
This software is then is deployed in various cluster sys-
tems and must be maintained and developed by individ-
ual projects.

The Corosync Cluster Engine resolves these issues by
separating the core infrastructure from the cluster ser-
vices. By making this abstraction, all cluster services

can cooperate on decision making in the cluster. This
abstraction also unifies the core code base under one
open source group with the purpose to maintain, de-
velop, and direct a reusable cluster infrastructure with
an OSI-approved license.

2 History

The Corosync Cluster Engine was founded in January
2008 as a reduction of the OpenAIS project. The cluster
infrastructure primitives are reduced from the Service
Availability Forum Application Interface Specification
APIs into a new project. This effort was spawned by
various maintainers of cluster projects to improve inter-
operability and unify developer talent.

The OpenAIS project was founded in January 2002 to
implement Service Availability Forum Application In-
terface Specification APIs [SaForumAIS]. These APIs
are designed to provide an application framework for
high availability using clustering techniques to reduce
MTTR [Dake05]. During the development of OpenAIS,
more development time was spent on the infrastructure
than the APIs. As a result of the focus on the infrastruc-
ture, a completely reusable plug-in based Cluster Engine
was created.

3 Architecture

3.1 Overview

Corosync Cluster Engine clusters are composed of pro-
cessors connected by an interconnect. This paper de-
fines an interconnect as a physical communication sys-
tem which allows for multicast or broadcast operation
to communicate packets of information. This paper de-
fines a processor as a common computer, including a
CPU, memory, network interface chip, physical storage
and operating system such as Linux. This type of cluster
is commonly referred to as a shared-nothing cluster.

• 85 •

86 • The Corosync Cluster Engine

Live Component Replacement

Handle Database Manager

Timers

The Totem Stack

IPC Manager

Service Manager

Synchronization Engine

Object Database

Logging System

Service Engines

Configuration Engines

Figure 1: Corosync Cluster Engine Architecture

The Corosync Cluster Engine supports a fully compo-
nentized plug-in architecture. Every component of the
Corosync Cluster Engine can be replaced by a different
component providing the same functionality at proces-
sor start time.

Figure 1 depicts the architecture of the Corosync Cluster
Engine process.

The subsections in this paper are organized by depen-
dency, not importance. Every component used in the
Corosync Cluster Engine is critical to creating a cluster
software engine.

3.2 Handle Database Manager

The handle database manager provides a reference
counting database that maps in O1 order a unique 64-
bit handle identifier to a memory address. This mapping
can then be used by libraries or other components of the
Corosync Cluster Engine to map addresses to 64-bit val-
ues.

The handle database supports the creation and destruc-
tion of new entries in the database. Finally, mechanisms
exist to obtain a reference to the object database entry
and release the reference.

struct iface {
void (*func1) (void);
void (*func2) (void);
void (*func3) (void);

};

/*
* Reference version 0 of A and B interfaces

*/
res = lcr_ifact_reference (
&a_ifact_handle_ver0,
"A_iface1",
0, /* version 0 */
&a_iface_ver0_p,
(void *)0xaaaa0000);

a_iface_ver0 = (struct iface *)a_iface_ver0_p;

res = lcr_ifact_reference (
&b_ifact_handle_ver0,
"B_iface1",
0, /* version 0 */
&b_iface_ver0_p,
(void *)0xbbbb0000);

b_iface_ver0 = (struct iface *)b_iface_ver0_p;

a_iface_ver0->func1();
a_iface_ver0->func2();
a_iface_ver0->func3();

lcr_ifact_release (a_ifact_handle_ver0);

b_iface_ver0->func1();
b_iface_ver0->func2();
b_iface_ver0->func3();

lcr_ifact_release (b_ifact_handle_ver0);

Figure 2: Example of using multiple interfaces in one
application

Garbage collection occurs automatically and a user-
supplied callback may be called when the reference
count for a handle reaches zero to execute destruction
of the handle information.

3.3 Live Component Replacement

Live Component Replacement is the plug-in system
used by the Corosync Cluster Engine. Every compo-
nent in the engine is an LCR object which is loaded dy-
namically. LCR objects are designed to be replaceable
at runtime, although this feature is not yet fully imple-
mented.

2008 Linux Symposium, Volume One • 87

The LCR plug-in system is different from all other plug-
in systems in that a complete C interface is plugged into
the process address space, instead of simply one func-
tion call. Figure 2 demonstrates the use of the LCR sys-
tem.

LCR objects are linked statically or dynamically. When
an interface is referenced, an internal storage area is
checked to see if the object has been linked statically.
If it has been linked statically, a reference will be given
to the user. If it isn’t found in the internal storage area,
the lcrso directory on the storage medium will be
scanned for a matching interface. If it is found it will
be loaded and referenced to the user; otherwise, an error
is returned.

The live component replacement plug-in system is used
extensively throughout the Corosync Cluster Engine to
provide dynamic run-time loading of interfaces.

3.4 Object Database

The object database provides an in-memory non-
persistent storage mechanism for the configuration en-
gines and service engines.

The object database is a collection of objects. Every ob-
ject has a name and is stored in a tree-like structure. Ev-
ery object has a parent. Within objects are key and value
pairs which are unique to the object. Figure 3 depicts a
partial object database layout.

The object database provides an API for the creation,
deletion, and searching for objects. The database also
provides mechanisms to read and write key and value
pairs. Finally, the database provides a mechanism to
find objects, iterate objects within a tree, and iterate keys
within an object.

Objects have specific requirements. The object database
allows multiple objects with the same name to be stored
in the database with the same parent. Every object may
contain key and value pairs. An object’s key is unique
and its value is a binary blob of data.

Because the object database is often used in parsing by
the configuration engine, a special API is provided to
automatically detect failures in the storing of keys and
associated values within an object. On object creation,
a list of valid keys for that object can be registered as
well as a validation callback for each key. If the user

token,1000

PARENT

KEY,VALUEObject

Totem

fail_to_recv,30

name,ckptServices

ver,0

MOREKEYS,VALUE

DIAGRAM KEY

Figure 3: Typical Object Database Layout

of the API specifies an invalid key when modifying an
object within the object database, the modification re-
quest will be rejected with an error. When the key is
valid, before the key is modified, the validation callback
is called. This validation callback verifies the contents
of the value using the user-registered callback. If the
callback returns an invalid value, the modification re-
quest is rejected.

3.5 Logging System

A common logging system is available to service en-
gines as well as the rest of the Corosync Cluster Engine
software stack. The logging system is completely non-
blocking and uses a separate thread in the process ad-
dress space to filter and output logging information. The
logging system is a generically reusable library avail-
able to third-party processes as well as service engines.
In the case that multiple service engines use the logging
system, only one thread is created by the Corosync Clus-
ter Engine.

The logging system supports logging with complete
printf() style argument processing. Information may
be printed to stderr, a file, and/or syslog.

88 • The Corosync Cluster Engine

A logging system may contain any number of compo-
nents, called tags, which allow runtime filtering of de-
bug messages and 8 levels of tracing messages to the
logging output medium. Each tracing type may be sepa-
rately filtered so specific trace numbers may be used for
specific functionality.

A unique feature of the logging system is that a logging
system and logging components are initialized through a
constructor definition at the beginning of the C code for
the file. The configuration options may also be changed
at runtime. Additionally, the logging system supports
the fork() system call.

3.6 Timers

Nearly every service engine requires the use of timers,
so a timer system is provided. Time is represents in
nanoseconds since the epoch, or January 1, 1970.

Timers may be set to expire at an absolute time. Another
type of timer allows expiration in a certain number of
nanoseconds into the future.

When a timer expires, it executes a callback registered
at timer creation time to execute software code desired
by the service engine designer.

3.7 The Totem Stack

The Totem Single Ring Ordering and Membership Pro-
tocol [Amir95] implements a totally ordered extended
virtual synchrony communication model [Moser94].
Unlike many typical communication systems, the ex-
tended virtual synchrony model requires that every pro-
cessor agrees upon the order of messages and member-
ship changes, and that those messages are completely
recovered.

A property of virtual synchrony, called agreed order-
ing, allows for simple state synchronization of clus-
ter services. Because every node receives messages in
the same order, processing of messages occur once the
Totem protocol has ordered the message. This allows
every node in the cluster to remain in synchronization
when processor failure occurs or new processors are in-
cluded in the membership.

One key feature of the Totem stack is that it supports
the ability to communicate redundantly over multiple

network interfaces. All data including the membership
protocol is replicated over multiple network interfaces
using the Totem Redundant Ring Protocol [Koch02].

Totem is implemented completely in userspace using
user datagram protocol [Postel80] multicast. The pro-
tocol implementation can be configured to run within
Internet Protocol version 4 [USC81] networks or Inter-
net Protocol version 6 [Deering98] networks.

All communication may be, at user configuration, au-
thenticated and encrypted using a private secret key
stored securely on all nodes.

3.8 Configuration Engine

The Corosync Cluster Engine solves the issue of con-
figuration file independence by providing the ability to
load an application specific configuration engine. The
configuration engine provides a method to read and
write configuration files in an application specific way.
These plug-ins configure the Corosync Cluster Engine
as well as other components specific to an application
plug-in.

In the event that the Corosync Cluster Engine executive
is not running, the configuration engine can still be used
by applications transparently to read and store configu-
ration information.

3.9 Interprocess Communication Manager

The interprocess communication manager is responsi-
ble for receipt and transmission of IPC requests. The in-
coming IPC requests are routed via the service manager
to the appropriate service engine plug-in. The service
engine may send responses to a third-party process.

Every IPC connection is an abstraction of two file de-
scriptors. One file descriptor is used for third-party
process blocking request and response packets. The
remaining file descriptor is used exclusively for non-
blocking callback operations that should be executed by
the third-party process. These two file descriptors are
connected to each other during initialization of the IPC
connection by the Interprocess Communication Man-
ager.

2008 Linux Symposium, Volume One • 89

3.10 Service Engine

A service engine is created by third parties to provide
some form of cluster wide services. Some examples of
these are the Service Availability Forum’s Application
Interface Specification checkpoint service, Pacemaker,
or CMAN.

The service engine has a well defined live component re-
placement interface for run-time linking into the service
manager. The service engine is responsible for provid-
ing a specific class of cluster service to a user via API
or external control via the interprocess communication
manager.

3.11 Service Manager

The service manager is responsible for loading and un-
loading plug-in service engines. It is also responsible
for routing all requests to the service engines loaded in
the Corosync Cluster Engine.

During Corosync Cluster Engine initialization, the con-
figuration engine is loaded. The configuration engine
then stores the list of service engines to load. Finally,
the service manager loads every service engine.

Once the service manager loads a service, it is responsi-
ble for initializing the service engine. When the user re-
quests an operation via the interprocess communication
manager, that request is routed to the appropriate service
engine by the service manager. The service manager is
also responsible for sending membership changes to the
service manager. A service engine replicates informa-
tion via the low-level Totem Single Ring Protocol by
transmitting messages. These transmitted messages are
delivered via the service manager to a service engine.
Finally, the service manager is responsible for routing
synchronization activities with the synchronization en-
gine.

3.12 Synchronization Engine

The synchronization engine is responsible for directing
the recovery of all service engines after a failure or ad-
dition of a processor. A service engine may optionally
use the synchronization engine, or set the synchroniza-
tion engine functions to NULL, in which case they won’t
be used.

typedef uint64_t cpg_handle_t;

typedef enum {
CPG_DISPATCH_ONE,
CPG_DISPATCH_ALL,
CPG_DISPATCH_BLOCKING

} cpg_dispatch_t;

typedef enum {
CPG_TYPE_UNORDERED,
CPG_TYPE_FIFO,
CPG_TYPE_AGREED,
CPG_TYPE_SAFE

} cpg_guarantee_t;

typedef enum {
CPG_FLOW_CONTROL_DISABLED,
CPG_FLOW_CONTROL_ENABLED

} cpg_flow_control_state_t;

typedef enum {
CPG_OK = 1,
CPG_ERR_LIBRARY = 2,
CPG_ERR_TIMEOUT = 5,
CPG_ERR_TRY_AGAIN = 6,
CPG_ERR_INVALID_PARAM = 7,
CPG_ERR_NO_MEMORY = 8,
CPG_ERR_BAD_HANDLE = 9,
CPG_ERR_ACCESS = 11,
CPG_ERR_NOT_EXIST = 12,
CPG_ERR_EXIST = 14,
CPG_ERR_NOT_SUPPORTED = 20,
CPG_ERR_SECURITY = 29,
CPG_ERR_TOO_MANY_GROUPS=30

} cpg_error_t;

typedef enum {
CPG_REASON_JOIN = 1,
CPG_REASON_LEAVE = 2,
CPG_REASON_NODEDOWN = 3,
CPG_REASON_NODEUP = 4,
CPG_REASON_PROCDOWN = 5

} cpg_reason_t;

struct cpg_address {
uint32_t nodeid;
uint32_t pid;
uint32_t reason;

};

#define CPG_MAX_NAME_LENGTH 128

struct cpg_name {
uint32_t length;
char value[CPG_MAX_NAME_LENGTH];

};

#define CPG_MEMBERS_MAX 128

Figure 4. The Closed Process Group Interface
Definitions

90 • The Corosync Cluster Engine

The synchronization engine has four states

• sync_init

• sync_process

• sync_activate

• sync_abort

The first step in the synchronization process for a ser-
vice engine is initialization. The sync_init call in a
service engine stores information for executing the re-
covery algorithm created by the service engine designer.

The sync_process is executed to process the recov-
ery operation. Because the Totem protocol transmis-
sion queue may become full on the processor executing
recovery, sync_process may have to return without
completing by returning a negative value. If synchro-
nization was completed, a value of zero should be re-
turned.

If at any time during synchronization, a new processor
joins the membership or a processor leaves the member-
ship, the sync_abort call will be executed to reset any
state created by sync_init.

After synchronization has completed on all nodes,
sync_activate is called to activate the new data set
for the service engine.

3.13 Default Service Engines

The Corosync Cluster Engine provides a few default ser-
vice engines which are generically useful. Other default
service engines will be provided in the future.

3.13.1 Closed Process Group Service Engine

The closed process group API and the associated ser-
vice engine are responsible for providing closed pro-
cess group messaging semantics. Closed process groups
are a specialization of the process groups semantics
[Birman93].

Any process may join a process group. A process is a
system task with a process identifier, often called a PID.
Once joined, a join message is sent to every process in
the membership. The contents of the join message are

the process ID of the process and the processor identifier
that the joining process on which the process is running.
When the process leaves the process group, either vol-
untarily, or as a result of failure, a leave message is sent
to every remaining processor.

The closed process group service engine allows the
transmission and delivery of messages among a collec-
tion of processors that have joined the process group.

The definitions in Figure 4 and API in Figure 5 are used
to implement the closed process group system. At all
times, the extended virtual synchrony messaging model
is maintained by this service.

To join a process group, cpg_join() is used in a C
program. The user passes the process group to join. To
leave a process group, cpg_leave() is used. Failures
automatically behave as if the process had executed a
cpg_leave() function call. Messages are sent to every
node in the process group using the C function cpg_

mcast().

Changes in the process membership and delivery of
messages are executed using the cpg_dispatch() C
function call. This function calls the cpg_deliver_
fn_t() function to deliver messages and cpg_
confchg_fn_t() to deliver membership changes.
These functions are registered during initialization with
the cpg_initialize() function call.

3.13.2 Configuration Database Service Engine

The configuration database service engine provides a C
programming API to third-party processes to read and
write configuration information in the object database.
The API is essentially the same as that used in the object
database.

The configuration database service C API may operate
when the Corosync Cluster Engine is not running for
configuration purposes. In this operational mode, a con-
figuration engine is loaded and automatically used to
read or write the object database after the user of the
C API has made changes to the object database.

4 Library Programming Interface

4.1 Overview

The library programming interface is useful for third-
party processes that wish to access a Corosync service

2008 Linux Symposium, Volume One • 91

typedef void (*cpg_deliver_fn_t) (
cpg_handle_t handle,
struct cpg_name *group_name,
uint32_t nodeid,
uint32_t pid,
void *msg,
int msg_len);

typedef void (*cpg_confchg_fn_t) (
cpg_handle_t handle,
struct cpg_name *group_name,
struct cpg_address *member_list,

int member_list_entries,
struct cpg_address *left_list, int

left_list_entries,
struct cpg_address *joined_list, int

joined_list_entries);

typedef struct {
cpg_deliver_fn_t cpg_deliver_fn;
cpg_confchg_fn_t cpg_confchg_fn;

} cpg_callbacks_t;

cpg_error_t cpg_initialize (
cpg_handle_t *handle,
cpg_callbacks_t *callbacks);

cpg_error_t cpg_finalize (
cpg_handle_t handle);

cpg_error_t cpg_fd_get (
cpg_handle_t handle, int *fd);

cpg_error_t cpg_context_get (
cpg_handle_t handle, void **context);

cpg_error_t cpg_context_set (
cpg_handle_t handle, void *context);

cpg_error_t cpg_dispatch (
cpg_handle_t handle, cpg_dispatch_t

dispatch_types);

cpg_error_t cpg_join (
cpg_handle_t handle,
struct cpg_name *group);

cpg_error_t cpg_leave (
cpg_handle_t handle,
struct cpg_name *group);

cpg_error_t cpg_mcast_joined (
cpg_handle_t handle,
cpg_guarantee_t guarantee,
struct iovec *iovec, int iov_len);

Figure 5: The Closed Process Group Interface API

engine. The library programming interface provides
handle management and connection management with
the hdb inline library and the cslib library.

4.2 Handle Database API

The handle database API, shown in Figure 6, is respon-
sible for managing handles that map to memory blocks.
Handle memory blocks are reference counted and the
handle memory area is automatically freed when no user
references the handle. The API is fully thread safe and
may be used in multithreaded libraries.

When creating a handle database, the function hdb_

create() should be used. When destroying a handle
database, the function hdb_destroy() should be used.

To create a new entry in the handle database, use the
function hdb_handle_create(). Once the handle is
created, it will start with a reference count of 1. To re-
duce the reference count and free the handle, the func-
tion hdb_handle_destroy() should be executed.

Once a handle is created with hdb_handle_
create(), it can be referenced with hdb_handle_
get(). This function will retrieve the memory storage
area relating to the handle specified by the user. When
the library is done using the handle, hdb_handle_
put() should be executed.

4.3 Corosync Library API

The Corosync Library API, defined in Figure 7, pro-
vides a mechanism for communicating with Corosync
service engines. A library may connect with the
Corosync Cluster Engine by using cslib_service_

connect(). This function returns two file descriptors.
One file descriptor is used for request and response mes-
sages. The remaining file descriptor is used for callback
data that shouldn’t block normal requests.

Once an IPC connection is made, a request message can
be sent with cslib_send(). A response may be re-
ceived with cslib_recv(). These functions generally
shouldn’t be used unless the size of the message to be
received is variable length.

When the size of the message to be received is known,
cslib_send_recv() should be used. This will send a
request, and receive a response of a known size.

92 • The Corosync Cluster Engine

struct hdb_handle {
int state;
void *instance;
int ref_count;

};

struct hdb_handle_database {
unsigned int handle_count;
struct hdb_handle *handles;
unsigned int iterator;
pthread_mutex_t mutex;

};

void hdb_create (
struct hdb_handle_database

*handle_database);

void hdb_destroy (
struct hdb_handle_database

*handle_database);

int hdb_handle_create (
struct hdb_handle_database *handle_database,
int instance_size,
unsigned int *handle_id_out);

int hdb_handle_get (
struct hdb_handle_database *handle_database,
unsigned long long handle,
void **instance);

void hdb_handle_put (
struct hdb_handle_database *handle_database,
unsigned long long handle);

void hdb_handle_destroy (
struct hdb_handle_database *handle_database,
unsigned long long handle);

void hdb_iterator_reset (
struct hdb_handle_database

*handle_database);

void hdb_iterator_next (
struct hdb_handle_database *handle_database,
void **instance,
unsigned long long *handle);

Figure 6: The Handle Database API Definition

All of these functions handle recovery of message trans-
mission on short reads or writes, or in the event of sig-
nals or other system errors that may occur.

Finally, it is useful to poll a file descriptor, especially
in a dispatch routine. This can be achieved by using
cslib_poll() which is similar to the poll system call

cslib_service_connect (
int *response_out,
int *callback_out,
unsigned int service);

cslib_send (int s,
const void *msg,
size_t len);

cslib_recv (int s,
const void *sg,
size_t len);

cslib_send_recv (
int s,
struct iovec *iov,
int iov_len,
void *response,
int response_len);

cslib_poll (
struct pollfd *ufds,
unsigned int nfds,
int timeout);

Figure 7: The Corosync Library API Definition

except it retries on signals and other errors which are
recoverable.

5 Service Engine Programming Model and In-
terface

5.1 Overview

A service engine consists of a designer-supplied plug-in
interface coupled with the implementation of function-
ality that uses Corosync Cluster Engine APIs.

A service engine designer implements the plug-in inter-
face. This interface is a set of functions and data which
are loaded dynamically. The service manager directs the
service engine to execute functions. Some of the service
engine functions then use four APIs which are registered
with the service engine to execute the operations of the
Corosync Cluster Engine.

5.2 Plug-In Interface

The full plug-in interface is a C structure depicted in
Figure 8. The interface contains both data and function

2008 Linux Symposium, Volume One • 93

calls which are used by the service manager to direct the
service engine plug-in.

The name field contains a character string which
uniquely identifies the service engine name. This field
is printed by the Corosync Cluster Engine to give status
information to the user.

The id field contains a 16-bit unique identifier regis-
tered with the Corosync Cluster Engine. This unique
identifier is used to route library and Totem requests to
the proper service engine by the service manager.

When private data is needed to store state information,
the interprocess communication manager allocates a
block of memory of the size of the parameter private_
data_size during initialization of the connection.

The exec_init_fn field is a function executed to ini-
tialize the service engine. The exec_exit_fn field is
a function executed to request the service engine to shut
down. When the administrator sends a SIGUSR2 signal
to the Corosync Cluster Engine process, the state of the
service engine is dumped to the logging system by the
exec_dump_fn function.

The lib_init_fn field is a function executed when
a new library connection is initiated to the service en-
gine by the interprocess communication manager. The
lib_exit_fn field is a function executed when the IPC
connection is closed by the interprocess communication
manager.

The main functionality of a service engine is man-
aged by the service engine using the lib_engine and
exec_engine parameters. These parameters contain
arrays of functions which are executed by the service
manager.

A service engine connection is routed to the proper
lib_engine function by the service manager. When
a library connection requests the service engine to exe-
cute functionality, the connection’s id is used to iden-
tify the function in the array to execute. The lib_

engine_count contains the number of entries in the
lib_engine array.

The function then would generally use the various APIs
available within the corosync_api_v1 structure to
create timers, send Totem messages, or respond with
a message using the interprocess communication man-
ager.

When Totem messages are originated, they are deliv-
ered to the proper exec_engine function by the ser-
vice manager to every processor in the cluster. The
proper exec_engine function is called based upon the
service id in the header of the function. The exec_

engine_count contains the number of entries in the
exec_engine array.

The design of a service engine should take advantage
of the Totem ordering guarantees by executing most of
the logic of a service engine in the exec_engine func-
tions. These functions generally respond to the library
request that originated the Totem message using the in-
terprocess communication manager API.

5.3 Service Engine APIs

5.3.1 Overview

There are four sets of functionality within Corosync ser-
vice engine APIs shown in Figure 9.

5.3.2 Timer API

The timer api allows a user-specified callback to be ex-
ecuted when a timer expires. Timers may either be de-
fined as absolute or at some duration into the future.

The timer_add_duration() function is used to add
a callback function that expires into a certain num-
ber of nanoseconds into the future. The timer_add_

absolute() function is used to execute a callback at
an absolute time as specified through the number of
nanoseconds since the epoch.

If a timer has been added to the system, and later needs
to be deleted before it expires, the designer can execute
timer_delete() function to remove the timer.

Finally, a service engine can obtain the system time in
nanoseconds since the epoch with the timer_get()

function call.

5.3.3 Interprocess Communication Manager API

The Interprocess Communication Manager API in-
cludes functions to set and determine the source of mes-
sages, to obtain the IPC connection’s private data store,

94 • The Corosync Cluster Engine

struct corosync_lib_handler {
void (*lib_handler_fn) (void *conn, void *msg);
int response_size;
int response_id;
enum corosync_flow_control flow_control;

};

struct corosync_exec_handler {
void (*exec_handler_fn) (void *msg, unsigned int nodeid);
void (*exec_endian_convert_fn) (void *msg);

};

struct corosync_service_engine {
char *name;
unsigned short id;
unsigned int private_data_size;
enum corosync_flow_control flow_control;
int (*exec_init_fn) (struct objdb_iface_ver0 *, struct corosync_api_v1 *);
int (*exec_exit_fn) (struct objdb_iface_ver0 *);
void (*exec_dump_fn) (void);
int (*lib_init_fn) (void *conn);
int (*lib_exit_fn) (void *conn);
struct corosync_lib_handler *lib_engine;
int lib_service_count;
struct corosync_exec_handler *exec_engine;
int (*config_init_fn) (struct objdb_iface_ver0 *);
int exec_service_count;
void (*confchg_fn) (

enum totem_configuration_type configuration_type,
unsigned int *member_list, int member_list_entries,
unsigned int *left_list, int left_list_entries,
unsigned int *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id);

void (*sync_init) (void);
int (*sync_process) (void);
void (*sync_activate) (void);
void (*sync_abort) (void);

};

struct corosync_service_handler_iface_ver0 {
struct corosync_service_handler *(*corosync_get_service_handler_ver0) (void);

};

Figure 8: The Service Engine Plug-In Interface

2008 Linux Symposium, Volume One • 95

typedef void *corosync_timer_handle;

struct corosync_api_v1 {
int (*timer_add_duration) (

unsigned long long nanoseconds_in_future,
void *data, void (*timer_nf) (void *data),
corosync_api_handle_t *handle);

int (*timer_add_absolute) (
unsigned long long nanoseconds_from_epoch,
void *data, void (*timer_fn) (void *data),
corosync_timer_handle_t *handle)

void (*timer_delete) (corosync_timer_handle_t timer_handle):

unsigned long long (*timer_time_get) (void);

void (*ipc_source_set) (mar_message_source_t *source, void *conn);

int (*ipc_source_is_local) (mar_message_source_t *source);

void *(*ipc_private_data_get) (void *conn);

int (*ipc_response_send) (void *conn, void *msg, int mlen);

int (*ipc_dispatch_send) (void *conn, void *msg, int mlen);

void (*ipc_refcnt_inc) (void *conn);

void (*ipc_refcnt_dec) (void *conn);

void (*ipc_fc_create) (
void *conn, unsigned int service, char *id, int id_len,
void (*flow_control_state_set_fn)

(void *context, enum corosync_flow_control_state flow_control_state_set),
void *context);

void (*ipc_fc_destroy) (
void *conn, unsigned int service, unsigned char *id, int id_len);

void (*ipc_fc_inc) (void *conn);

void (*ipc_fc_dec) (void *conn);

unsigned int (*totem_nodeid_get) (void);

unsigned int (*totem_ring_reenable) (void);

unsigned int (*totem_mcast) (struct iovec *iovec, int iov_len,
unsigned int gaurantee);

unsigned void (*error_memory_failure) (void);
};

Figure 9: The Service Engine APIs

96 • The Corosync Cluster Engine

and to send responses to either the response or dispatch
socket descriptor. Messages are automatically delivered
to the correct service engine depending upon parameters
in the message header.

The ipc_source_set() will set a mar_message_

source_t message structure with the node id and a
unique identifier for the IPC connection. A service en-
gine uses this function to uniquely identify the source of
an IPC request. Later this mar_message_source_t

structure is sent in a multicast message via Totem. Once
this message is delivered, the Totem message handler
then can respond to the ipc request by determining if
the message was locally sent via ipc_source_is_

local().

Each IPC connection contains a private data area private
to the IPC connection. This memory area is allocated on
IPC initialization and is determined from the private_
data field in the service engine definition. To obtain the
private data, the function ipc_private_data_get()

function is executed by the service engine designer.

Every IPC connection is actually two socket descriptors.
One descriptor, called the response descriptor, is used
for requests and responses to the library user. These re-
quests are meant to block the third-party process using
the Corosync Cluster Engine until a response is deliv-
ered. If the third-party process doesn’t desire blocking
behavior, but may want to execute a callback within a
dispatch function, the service engine designer can use
ipc_dispatch_send() instead.

There are other APIs which are useful to manage flow
control, but they are complex to explain in a short pa-
per. If a designer wants to use these APIs, they should
consider viewing the Corosync Cluster Engine wiki or
mailing list.

5.3.4 Totem API

The Totem API is extremely simple for service engines
to use with only three API functions. These functions
obtain the current node ID, allow a failed ring to be
reenabled, and allow the multicast of a message. Con-
versely, most of the complexity of Totem is connected to
the Corosync service engine interface and hidden from
the user.

To obtain the current 32-bit node identifier, the function
totem_nodeid_get() function can be called. This is

useful when making comparisons of which node origi-
nated a message for service engines.

When Totem is configured for redundant ring oper-
ational mode, it is possible that an active ring may
fail. When this happens, a service engine can execute
totem_ring_reenable() via administrative opera-
tion to repair a failed redundant ring.

Service engines do a majority of their work by send-
ing a multicast message and then executing some func-
tionality based upon the multicasted message parame-
ters. To multicast a message, an io vector is send via the
totem_mcast() API. This message is then delivered
to all nodes according to the extended virtual synchrony
model.

5.3.5 Miscellaneous APIs

Currently many of the subsystems in the Corosync Clus-
ter Engine are tolerant of failures to allocate memory.
The exception to this rule may be the service engine
implementations themselves. When a non-recoverable
memory allocation failure occurs in a service engine, the
api error_memory_failure() is called to notify the
Corosync Cluster Engine that the service engine calling
the function has had a memory malfunction.

In the future, the Corosync Cluster Engine designers in-
tend to manage memory pools for service engines to
avoid any out of memory conditions or memory process
starvation.

6 Security Model

The Corosync Cluster Engine mitigates the following
threats:

• Forged Totem messages intended to fault the
Corosync Cluster Engine

• Monitoring of network data to capture sensitive
cluster information

• Malformed IPC messages from unprivileged users
intended to fault the Corosync Cluster Engine

The Corosync Cluster Engine mitigates those threats via
two mechanisms:

2008 Linux Symposium, Volume One • 97

• Authentication of Totem messages and IPC users

• Secrecy of Totem messages with the usage of en-
cryption

7 Integration with Third Party Projects

7.1 OpenAIS

OpenAIS [OpenAIS] is an implementation of the Ser-
vice Availability Forum’s Application Interface Specifi-
cation. The specification is a C API designed to improve
availability by reducing the mean time to repair through
redundancy.

Integration with OpenAIS was a simple task since a ma-
jority of the Corosync functionality was reduced from
the OpenAIS code base. When OpenAIS was split into
two projects, some of the internal interfaces used by
plug-ins changed. The usage of these internal APIs were
modified to the definitions described in this paper.

7.2 OpenClovis

OpenClovis [OpenClovis] is an implementation of
the Service Availability Forum’s Application Interface
Specification. OpenClovis uses some portions of the
Corosync services. Specifically, it uses the Totem pro-
tocol APIs to provide membership for its Cluster Mem-
bership API.

7.3 OCFS2

The OCFS2 [OCFS2] filesystem can use the closed pro-
cess group api to communicate various pieces of state
information about the mounted cluster. Further the CPG
service is used for supporting Posix Locking because of
the virtual synchrony feature of the closed process group
service.

7.4 Pacemaker

Pacemaker [Pacemaker] is a scalable High-Availability
cluster resource manager formerly part of Heartbeat
[LinuxHA]. Pacemaker was first released as part of
Heartbeat-2.0.0 in July 2005 and overcame the deficien-
cies of Heartbeat’s previous cluster resource manager:

• Maximum of 2-nodes

• Highly coupled design and implementation

• Overly simplistic group-based resource model

• Inability to detect and recover from resource-level
failures

• Pacemaker is now maintained independently of
Heartbeat in order to support both the OpenAIS
and Heartbeat cluster stacks equally.

Pacemaker functionality is broken into logically distinct
pieces, each one being a separate process and able to be
rewritten/replaced independently of the others:

• cib—Short for Cluster Information Base. Contains
definitions of all cluster options, nodes, resources,
their relationships to one another and current sta-
tus. Synchronizes updates to all cluster nodes.

• lrmd—Short for Local Resource Management
Daemon. Non-cluster aware daemon that presents
a common interface to the supported resource
types. Interacts directly with resource agents
(scripts).

• pengine—Short for Policy Engine. Computes the
next state of the cluster based on the current state
and the configuration. Produces a transition graph
contained a list of actions and dependencies.

• tengine—Short for Transition Engine. Co-
ordinates the execution of the transition graph pro-
duced by the Policy Engine.

• crmd—Short for Cluster Resource Management
Daemon. Largely a message broker for the PE, TE,
and LRM. Also elects a leader to co- ordinate the
activities of the cluster.

The Pacemaker design of one process per feature pre-
sented an interesting challenge when integrating with
Corosync which uses plug-ins/service engines to expand
its functionality. To simplify the task of porting to the
Corosync Cluster Engine, a small plug-in was created
to provide the services traditionally delivered by Heart-
beat.

At startup, the Pacemaker service engine spawns Pace-
maker processes and respawns them in the event of fail-
ure. Cluster-aware components connect to the plug-in

98 • The Corosync Cluster Engine

using the interprocess communication manager. Those
applications can then send and receive cluster messages,
query the current membership information, and receive
updates.

The Pacemaker components use the Pacemaker service
engine features indirectly via an informal API which is
used to hide details of the chosen cluster stack. The
abstraction layer can automatically determine the oper-
ational stack and chose the correct implementation at
runtime by checking the runtime environment. Once
the Pacemaker service engine and abstraction layer were
functional, Pacemaker was made stack independent, as
shown in Figure 10, with little effort.

PEngineTEngine

CRMdLRMd CIB

Cluster Stack Abstraction

Corosync

Heartbeat

Stonith*

PacemakerHeartbeat

DIAGRAM KEY

CCM (Membership)

Corosync

Figure 10. Pacemaker Dual Stack Architecture

Pacemaker components exchange messages consisting
mostly of compressed XML-formatted strings. Repre-
senting the payload as XML is not efficient, but the for-
mat’s verboseness means it compresses well, and com-
plex objects are easily unpackable by numerous custom
and standard libraries.

In order to accommodate Pacemaker, the Corosync
Cluster Engine designers added ordered service engine
shutdown. When an administrator or another service en-
gine triggers a shutdown of the Corosync Cluster En-

gine, the service engines clean up and exit gracefully.
This allows the Pacemaker service engine to organize
for resources on a node be to migrated away grace-
fully and eventually stop its child processes before the
Corosync Service Engine process exits.

7.5 Red Hat Cluster Suite

The Red Hat Cluster Suite [RHCS] version 3 uses the
Corosync Cluster Engine. The Red Hat Cluster Suite
uses a service engine called CMAN to provide services
to other Red Hat Cluster Suite services.

Quorum is the main function of the CMAN service and
is a strong dependency in all of the Red Hat Cluster
Suite software stack. Quorum ensures that the cluster is
operating consistently with more then half of the nodes
operational. Without quorum, filesystems such as the
Global File System can lead to data corruption.

The Quorum disk software communicates with the
CMAN service via an API. The quorum disk software
provides extra voting information to help the infrastruc-
ture identify when quorum has been met for special cri-
teria.

Red Hat Cluster Suite uses a distributed XML-based
configuration system called CCS. CMAN provides a
configuration engine which reads Red Hat Cluster
Suite specific configuration format files and stores them
within the object database. This configuration plug-in
overrides the default parsing of the /etc/corosync/
corosync.conf configuration file format.

The libcman library provides backwards compatibility
with the cman-kernel in Red Hat Enterprise Linux 4.
This backwards compatibility is used by a few appli-
cations such as CCS, CLVMD, and rgmanager.

Red Hat Cluster Suite, and more specifically the Global
File System component, makes use of the Closed Pro-
cess Groups interface that is standardized within the
CPG interface included in the Corosync Cluster Engine.

8 Future Work

The Corosync Cluster Engine Team intends to improve
the scalability of the engine. Currently, the engine has
been used in a physical 60 node cluster. The engine
has been tested in a 128 node virtualized environment.

2008 Linux Symposium, Volume One • 99

While these environments demonstrated the Corosync
Cluster Engine works properly at large processor counts,
the team wants to improve scalability to even larger
processor counts and reduce latency while improving
throughput.

The Corosync Cluster Engine designers desire to add
a generically useful quorum plug-in engine so that any
project may define its own quorum system.

Finally, the team wishes to add a generic fencing engine
and mechanism for multiple plug-in services to deter-
mine how to fence cooperatively.

9 Conclusion

This paper has presented a strong rationale for using the
Corosync Cluster Engine and demonstated the design
is generically useful for a variety of third-party cluster
projects. This paper has also presented the current ar-
chitecture and plug-in developer application program-
ming interfaces. Finally, this paper has presented a brief
overview of some of our future work.

References

[Corosync] The Corosync Cluster Engine Community.
The Corosync Cluster Engine,
http://www.corosync.org

[Amir95] Y. Amir, L.E. Moser, P.M. Melliar-Smith,
D.A. Agarwal, and P. Ciarfella. The Totem
Single-Ring Ordering and Membership Protocol,
ACM Transactions On Computer Systems, 13(4),
pp. 311–342, November, 1995. http://www.
cs.jhu.edu/~yairamir/archive.html

[Moser94] L.E. Moser, Y. Amir, P.M. Melliar-Smith,
and D.A. Agarwal. Extended Virtual Synchrony,
ACM Transactions on Computer Systems
13(4):311-342, November, 1995. Proceedings of
DCS, pp. 56–65, 1994.

[Dake05] S. Dake and M. Huth. Implementing High
Availability Using the SA Forum AIS
Specification, Embedded Systems Conference,
2005.

[SaForumAIS] Service Availability Forum. The
Service Availability Forum Application Interface
Specification, http://www.saforum.org/
specification/download

[Birman93] K.P. Birman. The Process Group
Approach to Reliable Distributed Computing,
Communications of the ACM 36(12): 36-56, 103,
1993.

[Koch02] R.R. Koth, L.E. Moser, and P. M.
Melliar-Smith. The Totem Redundant Ring
Protocol, ICDCS 2002:598-607.

[Postel80] J. Postel. User Datagram protocol, Darpa
Internet Program RFC 768, August 1980.

[USC81] University of Southern California. Internet
Protocol, Darpa Internet Program RFC 791,
September 1981.

[Deering98] S. Deering and R. Hinden. Internet
Protocol, Version 6 (IPv6) Specification, IETF
Network Working Group, December 1998.

[OpenAIS] The OpenAIS Community. The OpenAIS
Standards Based Cluster Framework,
http://www.openais.org

[OpenClovis] The OpenClovis Company. OpenClovis,
http://www.openclovis.org

[OCFS2] The Oracle Cluster File System Community.
The Oracle Cluster Filesystem, http:
//oss.oracle.com/projects/ocfs2

[Pacemaker] The Pacemaker Community. Pacemaker,
http://www.clusterlabs.org

[LinuxHA] The Linux-HA Community. Linux-HA,
http://www.linux-ha.org

[RHCS] Red Hat Cluster Suite. The Linux Cluster
Community Project, http:
//sources.redhat.com/cluster/wiki

100 • The Corosync Cluster Engine

LTTng: Tracing across execution layers, from the Hypervisor to
user-space

Mathieu Desnoyers
École Polytechnique de Montréal

mathieu.desnoyers@polymtl.ca

Michel Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

This presentation discusses the upcoming changes to be
proposed to the kernel tracing field by the LTTng com-
munity. It will start by explaining what has been main-
lined (per-cpu atomic operations, Linux Kernel Mark-
ers.) Then, the focus will turn to the patch set currently
developed and for which the mainlining process is in
progress. An important part of this presentation will
talk about the efficient system-wide user-space tracing
infrastructure being designed. Work done for tracing
across execution layers, including the Hypervisors, will
also be shown.

The mainlining status of kernel tracing will be a key el-
ement of this talk. Considering the increasing amount
of news articles written on this subject, many atten-
dees, from the kernel hacker to the system administrator,
should find interest in this presentation.

1 Introduction

Since last year’s symposium, where the need the indus-
try has for a tracer in the Linux kernel has been demon-
strated [1], the expectations from the Linux commu-
nity for tracing tools matching DTrace [2] seem to have
grown [4]. A lot has happened since then in the various
tracing projects, with results still waiting to find their
way into the kernel mainline.

This paper presents the current state of the work per-
formed in the LTTng project which have been integrated
or is planned to be integrated in the Linux kernel. It
details the “Immediate Values,” improvements for the
“Linux Kernel Markers” and discusses the kernel instru-
mentation patch set, based on the markers, submitted to
the Linux community.

2 Related Work

Other projects with similar goals have already tackled
areas of the tracing problem. Credit must be given
to the K42 team [9] at IBM Research for developing
a highly scalable operating system implements a lock-
free, mostly atomic trace buffering mechanism (except
for subbuffer switch.) The Kprobes developers at IBM,
Intel, and Hitachi and the Djprobes [7] team at Hitachi
have also pioneered the area of dynamic kernel code
modification on the x86 architecture, providing the abil-
ity to insert custom instrumentation based on break-
points or jumps based on dynamic code modification.
The shortcoming of these two methods seems to be the
performance impact of the breakpoint and the fact that
none of these can guarantee access to the local variables
in the middle of a function, since they can be optimized
away by the compiler.

The SystemTAP [6] project is built on top of Kprobes
and the Linux Kernel Markers to provide a scriptable
language to create probes, which can be connected on
any of those two information sources to extract infor-
mation from the running kernel. LTTng learned from
the lessons brought by the first generation of tracer,
LTT [10]. It also reused the instrumentation found in
LTT.

More recent work includes the “Driver Tracing Infras-
tructure” (DTI) [8] and the “Generic Trace Setup and
Control” (GTSC), which aim at providing a standard
driver tracing infrastructure for drivers.

3 Mainlining Status

In the past years, the LTTng project has proved its use-
fulness and yet, the ground work required in the Linux
kernel before a kernel tracer can really become usable
is not over. The next section will present the pieces of

• 101 •

102 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

infrastructure required by LTTng which have been inte-
grated in the mainline kernel.

3.1 Linux Kernel Markers

LTTng depends on the Linux Kernel Markers [3] to pro-
vide the instrumentation of the core kernel. It uses the
Linux Kernel Markers as primary information source,
but could connect to other sources of information if
needed. The markers provide an interface to source
code instrumentation that simplifies adapting to code
source changes, separating the concept of “high level
trace event” from the actual code source. The markers
can be dynamically activated, and can provide informa-
tion to probes registering on specific markers from either
the code kernel or GPL modules. Other projects, such
as SystemTAP [6], also support hooking on markers.

3.2 Per-CPU Atomic Operations

The LTTng kernel tracer does not only need to be fast,
but it also needs to be reentrant with respect to other
execution contexts, when it reserves space in its mem-
ory buffer. Using per-CPU data structures and buffers
helps eliminating false sharing and eliminates concur-
rency coming from other processors. However, local in-
terrupts, both maskable and non-maskable (NMI), will
try to write events to the same trace buffers concurrently.

The algorithm for lock-less NMI-safe buffer manage-
ment [5] is based on extensive use of the compare-and-
swap atomic operation. It is known, however, to be
slower than interrupt disable on SMP systems. The Per-
CPU atomic operations, also known as “local ops” do
best of both: they offer reentrancy with respect to NMI
contexts and are faster than interrupt disable on many
architectures. The reason for such performance is that
these operations don’t need neither LOCK prefix nor
memory barriers, since they update memory local to a
given CPU.

In addition to the LTTng tracer, the Per-CPU Atomic
Operations are currently being used in an experimen-
tal patch for the SLUB allocator, which uses the local
compare-and-swap primitive in the allocate and free fast
paths. Initial performance improvements range from
two to threefold compared to the version using interrupt
disable.

4 Forthcoming Kernel Changes

4.1 Immediate Values Optimization

The immediate values are a derivative work of the Linux
Kernel Markers. They provide an infrastructure to en-
code, in the instruction stream of the Linux kernel, static
and global variables which are read-often, but updated
rarely. The read-side does not have to read any infor-
mation from data cache, since it’s already encoded in
the form of an immediate value at each variable refer-
ence site; therefore, all the information needed is present
within the instruction stream.

Updates are done dynamically by updating the immedi-
ate values in the load immediate instructions on a live
running kernel, upon each variable modification.

The original goal of immediate values was to provide a
very efficient activation mechanism for the Linux Ker-
nel Markers. With their current version, in kernel 2.6.25,
each encountered marker adds a memory read to check
if the marker is enabled. The impact on data cache there-
fore grows as more markers are added to kernel cache-
hot instruction paths.

Using the immediate values, to encode the branch con-
dition in the instruction stream, helps solving this prob-
lem. Instead of polluting the data cache, markers based
on immediate values encode the branch condition di-
rectly in the instruction stream. Assembly example of
immediate values use by markers on x86_32 and x86_64
goes as follow. The first example focuses on the added
code to schedule() cache-hot code. It adds 2 bytes
for the immediate value load, a 2-byte test and a 6-byte
conditional near jump, for a total of 10 bytes.

356: b0 00 mov $0x0,%al
358: 84 c0 test %al,%al
35a: 0f 85 1e 03 00 00 jne 67e <schedule+0x449>

For smaller functions such as wake_up_new_
task(), the conditional jump only takes 2 bytes since
the offset can be expressed as a short jump, for a total of
6 bytes.

848e: b0 00 mov $0x0,%al
8490: 84 c0 test %al,%al
8492: 75 7f jne 8513 <wake_up_new_task+0x97>

2008 Linux Symposium, Volume One • 103

This infrastructure can be used simply by replacing ev-
ery reference to a static or global variable “var” by a
imv_read(var) and by changing each update to the
variable by an imv_set(var), the latter being a pre-
emptable function. Variables with size of 1, 2, 4, or 8
bytes can be referred to. If the architecture does not
support updating one of these type size on a live system,
a normal variable read is used. This is the case for a
8 bytes variable on a 32 bits x86, which cannot be en-
coded as an immediate value of a single instruction, and
for variables larger than 2 bytes on PowerPC, because
instructions are limited to 4 bytes in size and take only
2 bytes operands. If no immediate value optimization is
implemented for a given architecture, the generic fall-
back is used: a standard memory read.

Some work is currently being done to improve even fur-
ther immediate values used as boolean condition for a
branch. The goal is to minimize the impact of disabled
markers on a running system, replacing the mov, test
and branch instructions by a sequence of 2-byte nops
and either a 2-byte short jump or a 1-byte nop and 5-
byte jump. Since the compiler might reorder instruc-
tions between the mov, test, and jne/je instructions, this
optimization is only done when the pattern is detected as
unmodified by the compiler. Initial results show that the
97% of the 120 trace points added to the Linux kernel
in the LTTng instrumentation do not suffer from such
compiler modifications on x86_32 and that the success
rate stays at 90% on x86_64. Knowing for sure where
the test and branch instructions are would require some
work on the compiler.

The performance impact of a loop instrumented with
different techniques is shown in tables 1 and 2. This
loop executes some ALU work in the baseline. It is then
compared with the performance impact of the same loop
with an added inactive marker using a sequence of mov,
test, and branch instructions, and with a normal marker
reading a memory variable.

It is then compared with the “ftrace” approach, using
a function call replaced by nops. The latter method is
also used in DTrace. The second column shows the
same results with a baseline which flushes the data cache
containing the information accessed to show how each
method behaves when the data is cache cold. We can see
that the cache cold impact is much higher for the dis-
abled function call when it references information not
present in the cache or in the registers. This is required
to perform the stack setup, even if the function call is

disabled with nops. The non-optimized markers have a
similar data cache impact.

The difference of impact between the cached runs could
be considered as non-significant and amortized by the
pipeline, but the real difference comes from the un-
cached memory accesses, where the runtime cost ranges
from 41.8 to 154.7 cycles.

It must be noted that, on the code size aspect, the mark-
ers also add about 50 bytes in an unlikely branch. With
gcc -O2 or -freorder-blocks, this branch is
placed away from cache-hot instructions and therefore
does not stress the instruction cache. The data added by
each marker is placed in a special section, only needed
when the markers are activated.

4.2 Instrumentation

Once the marker infrastructure is in place to support in-
strumentation, the following step to have a useful tracer
is to start integrating a core instrumentation set in the
kernel. The instrumentation proposed in the LTTng
project is divided into architecture independent and de-
pendant patch sets.

Architecture independent instrumentation is by far the
largest, yet the simplest, instrumentation with 86 mark-
ers inserted in the filesystem, inter-process communi-
cation, kernel, memory management, networking, and
library code. Its simplicity comes from the fact that it
only instruments C code in a straightforward way. It’s
therefore easy to benefit from the small performance
overhead of the markers.

The architecture dependant instrumentation currently
supports the following architectures, from the most
complete to the less: x86_32, x86_64, PowerPC, ARM,
MIPS, SuperH, Sparc, and S/390. Instrumentation at
the assembly level requires some extra mechanisms to
efficiently extract information from system calls. Those
are implemented in the form of a new TIF_KERNEL_
TRACE thread flag added to every architecture. It
can be enabled or disabled at runtime to control sys-
tem call tracing activation for all the system threads.
This new thread flag is tested in assembly to check
if the do_syscall_trace() functions, which con-
tains the system call entry and exit markers, must be
called.

In addition to the instrumentation of the kernel code,
dumping the kernel structures requires the addition of

104 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

x86 Pentium 4, 3.0GHz, Linux 2.6.25-rc7 Added cycles Added cycles
(cached) (uncached)

Optimized marker 0.002 0.07
Normal marker 0.004 154.7
Stack setup + (1+4 bytes) NOPs (6 local var.) 0.04 0.6
Stack setup + (1+4 bytes) NOPs (1 pointer read, 5 local var.) 0.03 222.8

Table 1: Comparison of markers and disabled function impact on x86_32

AMD64, 2.0GHz, Linux 2.6.25-rc7 Added cycles Added cycles
(cached) (uncached)

Optimized marker -1.2 0.2
Normal marker -0.3 41.8
Stack setup + (1+4 bytes) NOPs (6 local var.) -0.5 0.01
Stack setup + (1+4 bytes) NOPs (1 pointer read, 5 local var.) 2.7 51.8

Table 2: Comparison of markers and disabled function impact on x86_64

new in-kernel accessors. This information extraction is
typically done at trace start to have a complete picture
of the operating system state. When a trace is examined
in a viewer, this recorded initial state can be updated us-
ing the information in the trace, and the system state is
thus available for viewing and analysis purposes for the
whole trace duration. Functionality must be added to
dump the important kernel structures in the trace buffers,
in a way that permits to identify when the data struc-
tures are changing concurrently. Typically, the /proc file
system expects the kernel structures to stay unchanged
between two consecutive reads. If they change, it will
result in the loss of information that can’t be linked with
the element being added or removed from the structures.
The output text will be truncated at the offset of the cur-
rently requested read operation.

The LTTng state dump module dumps the kernel struc-
tures to the trace in multiple iterations, releasing the
locks after a fixed number of elements, to make sure
operations such as dumping all the memory maps of
all the processes in the system won’t generate high la-
tencies. Detection of concurrent data structure modi-
fication is done by the rest of the kernel instrumenta-
tion; since every manipulation to these data structures
is traced, the trace analyzer can re-create the data struc-
ture at any given point of the trace after the end of state
dump.

5 User Space Tracing

Work performed in the user-space tracing area involved
porting the Linux Kernel Markers to user-space so that
they can be used in libraries. The linker scripts are mod-
ified to add a new section which contains the markers
placed in each object. A library init function is linked
with each object to allow registration of the markers to
the kernel through an additionnal system call.

Activation of markers can then be done system-wide.
It would allow to easily turn on instrumentation of the
NPTL pthread mutexes at the user-space level, or to in-
strument glibc memory allocation primitives and link
this information with the kernel memory requests.

As a first step, the extraction of information could be
done through a string, passed as an argument to a trace
system call. The reason for using system calls rather
than other mechanisms is that this technique does not
depend on other libraries to open files and help instru-
menting user-space programs executed at boot time.

Eventually, extracting the information without going
through a system call would help to minimize tracing
performance impact. It would, however, imply that
shared buffers should be made accessible for writing to
each traced process. Because of security concerns, these
buffers cannot be shared between the various processes,
as done in the K42 research operating system. There is
therefore still work to do in this area.

2008 Linux Symposium, Volume One • 105

6 Hypervisor Tracing

The Xen hypervisor has already its own tracer, xentrace.
It exports fixed-size data to userspace through a buffer
shared with a process running on domain0. The pro-
cess communicates with the hypervisor to activate trac-
ing through hypercalls.

An experimental port of LTTng to the Xen hypervisor
has been realized. The lttd-xen daemon has been cre-
ated by modifying the lttd daemon to use new hypercalls
rather than debugfs. The same has been done to lttctl
and liblttctl: they have been ported to use hypercalls
rather than a netlink socket. Because we use variable-
sized events, which represent the data in its most com-
pact form, we were able to generate traces twice as small
as xentrace.

The main interest in having a tracer extracting informa-
tion in the same format as the operating system and user-
land is to help analyze concurrency, race and other tim-
ing problems across execution domains.

7 Conclusion

With Kprobes and Linux Kernel Markers already in the
mainline kernel, the road seems to be opening for in-
tegration of more parts required to have a solid tracing
infrastructure in the kernel, namely the immediate val-
ues, a kernel instrumentation, and eventually, support
for userspace tracing.

Once the kernel goals are reached, the focus will be eas-
ier to turn on the other aspects of tracing, which includes
the choice of userland markers and standardization of
hypervisor tracing.

References

[1] Martin Bligh, Rebecca Schultz, and Mathieu
Desnoyers. Linux kernel debugging on
google-sized clusters. In Proceedings of the
Ottawa Linux Symposium 2007, 2007.

[2] Bryan M. Cantrill, Michael W. Shapiro, and
Adam H. Leventhal. Dynamic instrumentation of
production systems. In USENIX ’04, 2004.

[3] Jonathan Corbet. Kernel markers. August 2007.

[4] Jonathan Corbet. On dtrace envy. August 2007.

[5] Mathieu Desnoyers and Michel Dagenais. The
lttng tracer : A low impact performance and
behavior monitor for gnu/linux. In Proceedings of
the Ottawa Linux Symposium 2006, 2006.

[6] Frank Ch. Eigler. Problem solving with
systemtap. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[7] Masami Hiramatsu and Satoshi Oshima. Djprobes
- kernel probing with the smallest overhead. In
Proceedings of the Ottawa Linux Symposium
2006, 2006.

[8] David Wilder. Unified driver tracing
infrastructure. In Proceedings of the Ottawa
Linux Symposium 2007, 2007.

[9] Robert W. Wisniewski and Bryan Rosenburg.
Efficient, unified, and scalable performance
monitoring for multiprocessor operating systems.
In Supercomputing, 2003 ACM/IEEE Conference,
2003.

[10] Karim Yaghmour and Michel R. Dagenais. The
linux trace toolkit. Linux Journal, May 2000.

106 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

Getting the Bits Out: Fedora MirrorManager

Matt Domsch
Dell

Matt_Domsch@Dell.com

Abstract

Fedora is fortunate to have several hundred volunteer
mirror organizations globally. MirrorManager tracks all
of these mirror servers and automatically directs users
to a local, fast, current mirror. It has several unique
features, including registration of private mirrors and
designation of preferred mirrors by IP address—a great
benefit to corporations, ISPs, and their users; and au-
tomatic direction of Internet2 clients to Internet2 mir-
rors. This paper presents the web application architec-
ture that feeds updates to over 200,000 users each day.
It provides instructions for setting up local private Fe-
dora or EPEL mirrors for schools, companies, and or-
ganizations, and explains how you can volunteer to help
distribute Fedora worldwide.

1 Introduction

The Fedora Project (hereafter ‘Fedora’) is a leading-
edge Linux distribution that provides the newest and
best Free and Open Source Software to millions of users
worldwide. MirrorManager (MM) [9] is the tool devel-
oped to get that software out to those users accurately,
quickly, and inexpensively.

To assist with this distribution, Fedora is fortunate to
have several hundred volunteer mirror organizations
globally. These organizations provide manpower (re-
sponsive system administrators), servers, storage, and
copious bandwidth. Each mirror server carries a subset
of the content available on the Fedora master servers. It
is often fastest and least expensive for these mirrors to
serve users whom are “local” network-wise. MM tracks
all of these mirror servers and automatically directs
users to a local, fast, current mirror.

We present MM from three aspects. Section 3 shows
how end users download software transparently using
MM. Section 4 shows how mirror system administrators
interact with MM. Section 5 goes behind the scenes into
the design of the MM software itself.

2 Background

There are three factors to consider when scoping the size
of the distribution channel you need: number of users,
size of the software, and available network bandwidth.

By conservative estimates [7], Fedora has nearly 2 mil-
lion users worldwide. Neglecting the number of users
who buy or receive free CDs, at a minimum each user
downloads one CD worth of material (about 700MB).
This equates to at least 1.4 Exabytes of data to serve for
each release. With a single 45 Mbit/second T3 network
connection, it would take over 8 years to serve all this
content. Security and bugfix updates could easily double
this number. At this rate, Fedora releases occur every 6
months, we’d fall behind very quickly (not to mention
lose our entire user base!).

As for total disk space, Fedora keeps at least the current
release (at time of press, Fedora 9), the previous release
(Fedora 8), and the next previous release (Fedora 7) on-
line and available for download. Each Fedora version
release, including packages, CD and DVD images, and
daily security and bugfix updates, can consume up to
200GB of disk space. In addition, alpha and beta test
releases, and the “rawhide” tree (the development tree
for what will be the next major release), are posted reg-
ularly. These consume a bit less space than a full release.
Overall, about 1TB of space is constantly needed on the
master servers and for each full mirror.

While our mirror organizations are altruistic, they’re
also not overly wasteful. Each mirror may choose to
carry only a subset of the available content, such as
omitting lesser-used architectures and debug data. This
means it’s not sufficient to know which mirrors exist,
but we must also know which content each carries. This
precludes using a simple DNS round-robin redirector.

Further complicating matters, due to historical ways in
which the content was offered via rsync modules, each

• 107 •

108 • Getting the Bits Out: Fedora MirrorManager

mirror server may publish their tree of the Fedora con-
tent at paths of their choosing—often not matching that
of the master servers. This makes it even more impor-
tant that tools can discover the content a mirror carries,
and at which URLs that content is served—a naïve redi-
rect would fail miserably.

Organizations have several reasons why they choose to
become a Fedora mirror. Generally, they have many Fe-
dora users locally, and for those users, it’s faster (and
for the organization, less expensive) if they can pull that
content from a local mirror rather than across the Inter-
net multiple times. For large Internet Service Providers
or organizations, the savings can be quite dramatic.

Organizations that are part of Internet2, or one of the
high speed research and educational networks that peer
with it, often have significantly lower costs and higher
bandwidth when passing traffic over Internet2 than over
their commercial links. Fedora itself does not have any
public download servers that are accessible via Inter-
net2, but more than half of the Fedora public mirror
servers are accessible via Internet2. By directing users
to local or Internet2-connected mirrors, they can get the
benefit of high speed downloads at a reduced cost.

2.1 Sidebar: Preventing Meltdown

One of the driving forces behind MM is to get the bits
to end users as fast as possible. A related goal is to
keep Fedora’s primary sponsor, Red Hat, online during
release week.

In October 2006, Fedora had around 100 active mirrors.
During the days leading up to a release, individual mir-
ror admins would report by email that they were synced.
However, the list of mirrors was managed manually, in-
cluded in release announcements manually, and gener-
ally quite error-prone (dozens of text files had to be up-
dated correctly, once for each mirror reporting ready).

When Fedora Core 6 was released that month, demand
was immense—over 300,000 installs in the first three
weeks—larger than ever seen for a Red Hat Linux or
Fedora release. A few dozen mirrors were synced in
time for the release, but nowhere near sufficient capacity
to handle the demand. It didn’t help that the web page
most users were being directed to in order to begin their
download pointed them to use Red Hat’s own servers,
not mirror servers.

On top of this, an apparent Distributed Denial of Service
attack was mounted against Red Hat’s own servers on
release day. Talk about kicking you when you’re down.

The result: for the week following the Fedora Core 6
release, significant portions of Red Hat’s network be-
came unusable for anything other than responding to the
DDoS attack and serving Fedora content. You can imag-
ine the joy this brought to Red Hat executives. The mir-
rors were annoyed that they would finally get synced,
only to not be listed on the mirror list web pages (the
Fedora sysadmins were busy trying to handle the traf-
fic and keep everything running, and were slow getting
those manual lists updated). Chaos and confusion.

Thus MM was born, to address the shortcomings of
manually updating dozens of text files, and to ensure
all known mirrors were accounted for and being put to
good use.

Six months later, MM made its debut with the Fedora
7 release. Fortunately, there was no DDoS attack this
time, and while there were some growing pains get-
ting all the mirrors listed in the database, it went quite
smoothly.

In November 2007, Fedora 8 was released. With ev-
ery confidence in MM and the mirrors themselves, the
Red Hat servers were removed from public rotation—
Red Hat served bits to the mirrors, but served very few
end users directly. From Red Hat’s perspective, the re-
lease went so smoothly they didn’t even know it hap-
pened. Users were able to get their downloads quickly.
Life was good.

3 Getting the Bits: End Users

End users have several options for downloading Fedora
CDs, DVDs, and packages. Outside the scope of MM,
Fedora serves the content via BitTorrent. However, tools
such as yum do not use BitTorrent, and network restric-
tions by a user’s organization may prevent BitTorrent or
other peer-to-peer download methods.

Critical to the goal of delivering mirrored content to
users quickly is the redirector which automatically redi-
rects user download requests to an up-to-date, close mir-
ror, using several criteria:

• The user’s IP address is compared against a list of
network blocks as provided by each mirror server.

2008 Linux Symposium, Volume One • 109

If a user is on a network served by a listed mir-
ror server, the user is directed to that network-local
mirror. This should be the fastest and least expen-
sive way to serve this user.

• If the user is on a network served by Internet2 or
its peers, they are redirected to another Internet2-
connected mirror in their same country, if avail-
able. MaxMind’s open source and zero-cost GeoIP
database provides country information.

• Users are directed to mirrors in their same country,
if any.

• Users are directed to mirrors on their same conti-
nent, if any.

• Users are directed to one of the mirrors globally.

This search algorithm, while not always perfect, pro-
vides a pretty good approximation of the Internet topol-
ogy, and in practice has shown to provide acceptable
performance for users. In the event a user wants to man-
ually choose a mirror, he or she can look at the list of
available up-to-date mirrors [6].

To override this search algorithm in some way (e.g. be-
cause GeoIP guesses the country incorrectly, or because
the actual network you’re on is near a border with an-
other country where there is a faster mirror), users may
append flags to the URLs used ([3] or [5]). Table 1 de-
scribes the available flags.

4 Hosting the Bits: Mirrors

MM offers several features aimed specifically to assist
mirror server administrators most efficiently serve their
local users, as well as global users, such as:

• The ability to have “private” mirrors—those which
serve only local users and which are not open to the
general public.

• The ability to specify the network blocks of their
organization. Local users from that organization
will be automatically directed to their local mirror.

• The ability to specify the specific countries a mirror
should serve.

• The ability to preferentially serve users on In-
ternet2 and related research and educational net-
works.

These features help help keep down bandwidth costs for
serving Fedora users.

4.1 Signing Up

These are the steps involved with registering as a Fedora
mirror, either to serve the public, or to serve your own
organization.

1. Create yourself a Fedora Account System ac-
count [2]. You should have one account per per-
son in your organization who will maintain your
mirror. You will be able to list these people as ad-
ministrators for your mirror site.

2. Log into the MM web administration inter-
face [10].

3. Create a new Site. Sites are the administrative con-
tainer, and where your organization can get spon-
sorship credit for running a public mirror. Pub-
lic mirrors are listed on a fedoraproject.org
web page with a link to each sponsoring organiza-
tion.

4. Create a new Host. Hosts are the individual ma-
chines, managed under the same Site, which serve
content. Sites may have unlimited numbers of
Hosts.

5. Add Categories of content for each Host. Most
mirrors carry the “Fedora Linux” category (cur-
rent releases and updates), while some also carry
the “Fedora EPEL” (Extra Packages for Enter-
prise Linux) [1], “Fedora Web” (web site), and
“Fedora Secondary Arches” (seconardary architec-
tures such as ia64 and sparc) categories.

6. Add your URLs for each Category. Most mirrors
serve content via HTTP and FTP; some also serve
via rsync.

In addition, you can set various bits about your Site and
Host, including its country, whether it’s connected via
Internet2 or its peers, whether it’s private or public, your
local network blocks, etc.

110 • Getting the Bits Out: Fedora MirrorManager

Table 1: mirrorlist flags

Flag Description
country=us,ca,jp Return the list of mirrors for the specified countries.
country=global Return the global list of mirrors instead of a country-specific list.
ip=18.0.0.1 Specify an IP address rather than the one the server believes you are connecting from.

Private Sites or Hosts are those which expect to only
serve content to their local organization. As such, they
will not appear on the public-list web pages. Hosts de-
fault to being “public” unless marked “private” on either
the Site (which affects all Hosts), or individually on the
Hosts’s configuration page. Private Hosts are ideal for
universities who have one mirror for internal users, and
another they share with the world. Private hosts are re-
turned to download requests based on matching client
IP to a Host’s netblock.

Netblocks are a feature unique to MM. You may specify
all of the IPv4 and IPv6 network blocks, in CIDR for-
mat, that your mirror should preferentially serve. Users
whose IP addresses fall within one of your netblocks
will be directed to your mirror first. There is one secu-
rity concern, as this could allow a malicious mirror to
direct specific users to them. However, as all content
served by the mirror system as a whole is GPG-signed
by the Fedora signing keys, to be successful the attacker
would have to convince the target user to accept their
GPG keys as well, which, one hopes, would be unlikely.
Mirrors may not set overly large netblocks without MM
administrator assistance, further limiting the scope of
such possible attack.

Internet2 detection is done by regularly downloading
and examining BGP RIB files from the Internet2 log
archive server. This data includes all the CIDR blocks
visible on Internet2 and its peer research and educa-
tional networks worldwide. Clients determined to be
on Internet2 will be preferentially directed to a mirror
on Internet2 in their same country, if possible. By set-
ting the Internet2 checkbox for the Host, your Host will
be included in that preferential list. In addition, private
Hosts on Internet2 may be happy to serve clients on In-
ternet2, even if they don’t fall within the Host’s list of
netblocks. MM provides this option as well.

Each Host should list the IP addresses from which they
download content from the master servers. These ad-
dresses are entered into the rsync Access Control List

on the master servers, as well as on the Tier 1 mirrors.
This is used to limit the users who may download con-
tent from the master mirror servers, so as to not overload
them.

4.2 Syncing

Fedora employs a multi-tier system [4] to speed deploy-
ments, similar to other Linux distributions. Tier 1 mir-
rors pull from the Fedora master servers directly, Tier 2
mirrors pull from the Tier 1 servers. Private mirrors pull
from one of the Tier 1 or 2 mirrors.

Unique to MM, the tool report_mirror is run on
each mirror server immediately after each rsync run
completes. This tool informs the MM database about
the full directory listing of content carried by that mir-
ror. The MM database for each Site contains a pass-
word field, used by report_mirror to authenticate
this upload, so as to not expose an individual user’s Fe-
dora Account System username and password.

5 Architecture

The MM software follows a traditional 3-tier architec-
ture of database back-end, application server, and front-
end web services. It is written in python, and leverages
the TurboGears rapid application development environ-
ment. However, some specific design decisions were
made to address the memory consumption and multi-
threaded locking challenges that python imposes. We
split the most often hit web services out from the appli-
cation server, exactly to address the memory demands.

5.1 Application Server and Database

MM uses TurboGears [13], with the SQLObject [12]
object-relational mapper layer for most data, and the
SQLAlchemy [11] mapper for integration with the Fe-
dora Account System. The application server provides
several entry points:

2008 Linux Symposium, Volume One • 111

• The administrative web interface [10], where mir-
ror administrators register their mirrors and can see
the perceived status.

• A limited XMLRPC interface used by the
report_mirror script, run on the mirror
servers, to “check in” with the database.

• A web crawler, which detects which mirrors are
up-to-date. In conjunction with the report_
mirror script, this follows the “trust, but verify”
philosophy. Mirrors which are unreachable, even
temporarily, are removed from the redirector lists.

The database itself can be anything that SQLObject can
speak to, including PostgreSQL and MySQL. SQLOb-
ject takes care of creating the proper tables and mapping
rows into objects. For speed and memory efficiency,
some queries are implemented in SQL directly.

5.2 Crawler

The second half of the “trust, but verify” philosophy is
the web crawler. This application first updates its record
of content found on the master servers. For each pub-
lic Host, it then scans, using lightweight HTTP HEAD
or FTP DIR requests (depending on protocols served by
that Host), each file that Host is expected to contain. For
large directories full of RPM files, only the most recent
10 files are scanned to cut down on extra unnecessary
lookups. Directories where all the files match the master
servers are marked up-to-date in the database; unreach-
able servers or those whose content does not match are
marked as not up-to-date, effectively preventing clients
from being directed to those Hosts’ directories. The
crawler can run against several Hosts at once, limited
only be available memory on the crawling system.

The crawler extends python’s httplib to use HTTP
keep-alives. This lets it scan about 100 files per server
per TCP connection using HTTP HEAD calls which do
not download the actual file data, and thus are very fast.

5.3 Web Services

5.3.1 Mirrorlist Redirector

To the end user, the most critical service MM provides
is the mirrorlist redirector [5], which directs users to a

mirror for the content they request. This service receives
all the requests generated by yum looking for package
updates, and individuals downloading CD and DVD im-
ages from the front page of fedoraproject.org.
These services operate on a cache of the database, con-
taining pre-computed answers to most queries, for max-
imum speed.

As this application gets hundreds of hits each sec-
ond, a pure mod_python solution was infeasible—
it simply wasn’t fast enough, and the memory con-
sumption (upwards of 30MB per httpd process waiting
to service a client) overwhelmed the servers. So, we
split the application into two parts: a mod_python
mirrorlist_client app, which marshalls the re-
quest and performs basic error checking and HTTP
redirection, and a mirrorlist_server app, which
holds the cache and computes the results for each client
request. mirrorlist_server fork()s itself on
each client connection, keeping the cache read-only (so
copy-on-write is never invoked), which eliminates the
memory consumption problems and python interpreter
startup times. The two communicate over a standard
Unix socket. Client requests are answered in about 0.3
seconds on average.

This pair of applications is then replicated on several
web servers, distributed globally. This reduces the like-
lihood of a single server or even data center failure
bringing down the service as a whole. In the event of
application server or database layer failure, the web ser-
vices can operate on the cached data indefinitely, until
the back ends can be made available again.

5.3.2 Publiclist pages

Aside from the redirector, the second user-visible aspect
of MM are the “publiclist pages,” web pages that list
each up-to-date available public mirror and its proper-
ties, including country, sponsoring organization, band-
width, and URLs to content. These pages are ren-
dered once per hour into static HTML pages and served
via HTTP reverse proxy servers, again to make use of
caching. This keeps the traffic load manageable, even
on very active major release days.

6 Future Work

There are several features MM does not currently pro-
vide which would be useful additions.

112 • Getting the Bits Out: Fedora MirrorManager

• MM lists each mirror’s available bandwidth, but
does not use this information when choosing which
mirrors to return in what order. This causes both
relatively fast and slow mirrors in the same country
to be returned with equal probability. MM should
take into account a given Host’s available band-
width, and return a list of mirrors probabilistically
favoring the faster mirrors.

• report_mirror does not work from behind a
HTTP proxy server. Private mirrors need to run this
tool, but are often stuck behind such a proxy. This
is actually a shortcoming of python’s urllib.

• Metalink [8] downloads, which would let users pull
data from several mirrors in parallel. This is some-
what controversial, as it increases the load on the
mirrors (they wind up serving more random read
requests, which are much slower than streaming
reads). But it might let metalink-aware download
tools do a better job of choosing a “close” mirror
than MM does.

7 Conclusion

MM has been very effective in getting Fedora content to
users quickly and easily. Furthermore, it has decreased
the bandwidth burden of Fedora’s primary sponsor, Red
Hat, by making good use of the contributions from hun-
dreds of volunteer mirror organizations worldwide. Its
architecture allows it to serve millions of users, and to
scale as demand grows. It’s simple and fast for users,
and saves money for mirror organizations—a win all
around.

8 Acknowledgments

MM is primarily developed for the Fedora Project on
behalf of the author and his employer, Dell, Inc. It is
licensed under the MIT/X11 license.

MM includes GeoLite data created by MaxMind, avail-
able from http://www.maxmind.com/.

The Fedora Project is grateful to the hundreds of mirror
server administrators and their organizations who help
distribute Free and Open Source software globally.

9 About the Author

Matt Domsch is a Technology Strategist in Dell’s Office
of the CTO. He has served on the Fedora Project Board
and as the Fedora Mirror Wrangler since 2006.

References

[1] Extra Packages for Enterprise Linux. http:
//fedoraproject.org/wiki/EPEL.

[2] Fedora Account System. https://admin.
fedoraproject.org/accounts.

[3] Fedora download site.
http://download.fedoraproject.org.

[4] Fedora mirror tiering.
http://fedoraproject.org/wiki/
Infrastructure/Mirroring/Tiering.

[5] Fedora mirrorlist used by yum.
http://mirrors.fedoraproject.org/
mirrorlist.

[6] Fedora Project public mirror servers.
http://mirrors.fedoraproject.org.

[7] Fedora Project statistics. http://
fedoraproject.org/wiki/Statistics.

[8] Metalink. http://www.metalinker.org.

[9] MirrorManager. http:
//fedorahosted.org/mirrormanager.

[10] MirrorManager administrative interface.
https://admin.fedoraproject.org/
mirrormanager/.

[11] SQLAlchemy. http://sqlalchemy.org.

[12] SQLObject. http://sqlobject.org.

[13] TurboGears. http://turbogears.org.

Applying Green Computing to clusters and the data center

Andre Kerstens
SGI

kerstens@sgi.com

Steven A. DuChene
SGI

sduchene@sgi.com

Abstract

Rising electricity costs and environmental concerns are
starting to make both the corporate IT and scientific
HPC worlds focus more on green computing. Because
of this, people are not only thinking about ways to de-
crease the initial acquisition costs of their equipment,
but they are also putting constraints on the operational
budgets of that same equipment. To address this chal-
lenge, we use both commercial and open-source Linux
tools to monitor system utilization and closely track the
power usage of those systems. The results of our mon-
itoring are then used to make real-time decisions on
whether systems can be put to sleep or shutdown alto-
gether. In this paper we show how to use the Ganglia
monitoring system and Moab scheduling engine to de-
velop a methodology that guarantee the most efficient
power usage of your systems by helping Moab make in-
telligent decisions based on real-time power data and in-
coming workload.

1 Introduction

In the last five years, corporate and research data cen-
ters have grown significantly due to the increasing de-
mand for computer resources. Not only has the power
used by these computer systems roughly doubled over
this period, but also the energy consumed by the cool-
ing infrastructure to support these computer systems has
increased significantly. In addition to the resulting in-
crease in data center capital and operational costs, this
expanding energy use has an impact on the environment
in the form of carbon-dioxide emissions that are created
as an unwanted by-product of the electricity generation.
In their Report to Congress on Server and Data Cen-
ter Energy Efficiency [1], the Environmental Protection
Agency (EPA) estimates that servers and data centers
consumed about 61 billion kilowatt-hours in 2006 (1.5
percent of the total US electricity consumption) and that
this will double by the year 2011 (an annual growth rate

of 9 percent). Recent findings by the Uptime Institute
[2] show that the EPA numbers are probably too con-
servative and that the annual growth rate from 2006 to
2011 is more likely to be 20 to 30 percent. No matter
who is right in the end, it is obvious that measures have
to be taken to limit the increase in power consumption.
On a global level, organizations like the Green GridSM

have started defining metrics for energy efficiency. They
are developing standards and measurements methods to
determine data center efficiency against these metrics.
On a local level, we can increase the efficiency of our
data centers and reduce operating costs by decreasing
the power and cooling loads of our computing infras-
tructure.

To achieve this objective, we propose to use intelligent
monitoring and control of data center resources. With a
combination of open-source and commercial Linux soft-
ware like Ganglia [3] and Moab [4], we will be able to
monitor system utilization as well as closely track the
power usage of those systems. The information col-
lected are used to make real-time decisions on whether
systems can be put to sleep, run in a lower power mode,
or shutdown altogether. The rest of this paper is orga-
nized as follows: After some history on green comput-
ing efforts in Section 2, we discuss the details of our
methodology in Section 3, and show a case study in Sec-
tion 4. We conclude the paper in Section 5.

2 Green Computing

Wikipedia defines Green Computing as the study and
practice of using computing resources efficiently [5].
This comes down to designing computer systems that
optimize the performance of the system compared to the
cost of running (i.e., electricity) and operating it (i.e.,
power distribution and cooling).

In the past decade there have been some disconnected
efforts by government, academic, and corporate facili-
ties as well as data center managers and system vendors

• 113 •

114 • Applying Green Computing to clusters and the data center

to increase the energy efficiency of servers and other
computing resources. On a national and global level,
organizations such as Green GridSM [6], ASHRAE [18],
and Climate Savers Computing InitiativeSM[19] are
defining metrics for energy efficiency and are develop-
ing methods to measure energy efficiency against these
metrics. For example, Green GridSM has defined the
Power Usage Effectiveness (PUE) metric [7] that en-
ables data center operators to estimate the energy ef-
ficiency of their data centers and determines if energy
efficiency improvements need to be made.

There have been a number of other attempts to man-
age the consumption of server systems and clusters.
Rajamani and Lefurgy worked on identifying system
and workload factors in power-aware cluster request
distribution policies [13]. Elnozahy et al. have stud-
ied dynamic voltage scaling and request batching poli-
cies to reduce the energy consumption of web server
farms [14]. Fan et al. studied the aggregate power usage
characteristics of up to 15 thousand servers for different
classes of applications over a period of approximately
six months to evaluate opportunities for maximizing the
use of the deployed power capacity of data centers and
assess over-subscribing risks [15]. Chase et al. looked
at how to improve the energy efficiency of server clus-
ters by dynamically resizing the active server set and
how to respond to power supply disruptions or thermal
events by degrading service in accordance with negoti-
ated Service Level Agreements (SLAs) [12]. Pinheiro
et al. developed a system that dynamically turns cluster
nodes on or off by considering the total load on the sys-
tem and the performance implications of changing the
current configuration [16].

Our goal is to expand these efforts to full data centers or
clusters of data centers. For example, by moving work-
loads around based on the cost of power and cooling
in various geographical locations or by delaying work-
loads to run during off-peak electricity rates, additional
cost savings can be realized.

3 Methodology

Our method of green computing consists of three pri-
mary components:

1. Collect data to monitor resource state (power/
temperature);

2. Interfacing to power management facilities; and

3. Enabling intelligent policies to control power con-
sumption and remove hot spots.

The following sections discuss these components in de-
tail; they will be combined in a case study that is de-
scribed in Section 4.

3.1 Data Collection

Most modern computer systems, if not all, contain a ser-
vice processor that provides out-of-band remote man-
agement capabilities. In most open or commodity-based
systems, this service processor is a Baseboard Manage-
ment Controller (BMC) which provides access to Intel-
ligent Platform Management Interface (IPMI) capabil-
ities. Various tools to access the BMC can be used to
monitor sensor information like temperature, voltages,
fan speeds, and power status. The BMC also provides
remote network access to power on and power off sys-
tems. The BMC operates independent of the proces-
sor and the operating system, thus providing the abil-
ity to monitor, manage, diagnose, and recover systems,
even if the operating system has crashed or the server is
powered down, and as long as the system is connected
to a power source. Other service-processor-based, out-
of-band management systems such as RSA cards, iLO,
ALOM, ILOM, or DRAC implement similar feature sets
using vendor-specific tool sets.

Most currently available BMCs support either IPMI 1.5
or IPMI 2.0 with common sensors of fan speeds, cpu
temperatures, board temperature, cpu voltages, power
supply voltages, etc. On a system with a BMC that
supports IPMI 2.0, a power sensor is more likely to
be present that reports watts being used by the system.
The sensor data returned from ipmitool run against a
BMC that supports IPMI 1.5 looks like this:

CPU Temp 1 29 degrees C ok
CPU Temp 2 28 degrees C ok
CPU Temp 3 no reading ns
CPU Temp 4 no reading ns
Sys Temp 27 degrees C ok
CPU1 Vcore 1.31 Volts ok
CPU2 Vcore 1.31 Volts ok
3.3V 3.26 Volts ok

2008 Linux Symposium, Volume One • 115

5V 4.90 Volts ok
12V 11.81 Volts ok
1.5V 1.49 Volts ok
5VSB 4.85 Volts ok
VBAT 3.28 Volts ok
Fan1 13200 RPM ok
Fan2 11200 RPM ok
Fan3 13200 RPM ok
Fan4 11200 RPM ok
Fan5 13200 RPM ok
Fan6 11100 RPM ok

Once the access to the sensor data from the BMC is
confirmed across the cluster, the various sensor values
can be pulled into a cluster monitoring system like Gan-
glia, Nagios, or MRTG. Since the authors of this pa-
per are most familiar with it, Ganglia will be used to
monitor and record historical data about the systems,
clusters, and other data center power and cooling equip-
ment. Ganglia has web-based data-display mechanisms
as well as command-line tools to peek at the data stream.
The web-based display is based around rrdtool just
like MRTG.

By getting this sensor data into a monitoring tool like
Ganglia, historical data becomes available for perfor-
mance trend analysis and post-problem root cause anal-
ysis.

Modern data center infrastructure equipment such as
Power Distribution Units (PDU), Uninterruptible Power
Supplies (UPS), chillers, and Computer Room Air Con-
ditioning (CRAC) units are IP-enabled and understand
network protocols (e.g., SNMP or HTTP) for commu-
nication with other systems on the network. Using this
capability, th,e electric current through a UPS or a PDU
branch circuit can be measured and the temperature of
the water in a chiller or the return line of a CRAC unit
can be requested. Some models of rack PDUs can mea-
sure the power draw per PDU outlet. This provides an
opportunity for measuring power usage of servers that
do not have IPMI capabilities. Often these infrastruc-
ture devices can also be controlled over the network, but
that discussion falls outside of the scope of this paper.

Adding these data sources from CRAC units or PDUs
into the monitoring system provides a more complete
picture of data center conditions over long periods of
time or for spot analysis of daily, weekly, or monthly
trends. For example, it could show that a particular set

of systems or areas of a data center get unusually hot on
weekends. The cause of this could be that some error
in data center facilities setup is not taking into account
system loads on weekends.

3.2 Power Management Interface

Various power states are available in a Linux sys-
tem, i.e., everything from a 100% power utilization to
powered-off. By being able to intelligently control the
current power level based on current and future sys-
tem load expectations, we can take maximum advan-
tage of the power savings available. Within an HPC
environment, where a job control system is used to pro-
cess incoming workloads, the system load expectations
can be fairly predictable. By placing the power state
of HPC cluster client systems under control of the job
control scheduler, the incoming workload can drive the
power demands of the cluster. In this case, nodes can be
switched off when the workload is light and switched on
again when the workload is expected to go up. However,
even when a system is running a job, there are power
savings benefits possible by controlling the power usage
of non-critical system components. Modern processors,
disks, and other components can have varying states of
power usage. By taking advantage of the ability to dy-
namically control the power state, the system is able to
make adjustments when a device is idle for a significant
period of time. The degree of significance here is differ-
ent for a processor versus a disk or other components:
processor idle times can be of milliseconds, while disk
idle times are in the range of seconds.

There are currently four different processor power-
saving states described in the Advanced Configuration
and Power Interface (ACPI) specification [10]: C0, C1,
C2, C3, and C4. Table 1 shows the power usage of the
Intel Core 2 Duo processor in each of these states. Note
that the lower the power-saving state, the longer it will
take to wake up from that state.

Many of these numbers come from the LessWatts orga-
nization [8], which does research into power saving for
Linux systems [9]. To see the current power state as well
as power states supported by a system use:

cat /proc/acpi/processor/CPUx/power

where x is a number ranging from 0 to the number
of CPUs in the system. For example, the output on a
Core2Duo system looks as follows:

116 • Applying Green Computing to clusters and the data center

C-State Max Power Consumption (Watt)
C0 35
C1 13.5
C2 12.9
C3 7.7
C4 1.2

Table 1: Intel Core 2 Duo maximum power consump-
tion in the different C-states

active state: C3
max_cstate: C8
bus master activity: 00000000
maximum allowed latency: 2000 usec
states:
C1: type[C1] promotion[C2] demotion[--]
latency[001] usage[00000010]
duration[00000000000000000000]
C2: type[C2] promotion[C3] demotion[C1]
latency[001] usage[181597540]
duration[00000000631489359035]

*C3: type[C3] promotion[--] demotion[C2]
latency[057] usage[1438931278]
duration[00000006636332340366]

With the use of a script, the active power state of the
system CPUs can be monitored over time with Ganglia.

When a low-power state is entered, it is best to stay in
that state as long as possible for the greatest energy sav-
ings. Unfortunately, older Linux kernels have a regu-
larly occurring interrupt, called a timer tick, that is used
to alert the kernel when some housekeeping tasks have
to be performed. This feature limited the usefulness
of the lower power states (for example, C3 or C4), be-
cause the system could only stay in that state in between
timer ticks (1, 4, or 10 ms). In newer Linux kernels,
starting with 2.6.21 for x86 and 2.6.24 for x86_64, a
tick-less timer was introduced which made it possible to
keep the processor in a lower power state for a longer
amount of time, at least until the next timer event oc-
curred. Unfortunately, there is still much code around
(e.g., applications, device drivers) which does not take
energy efficiency into account and which triggers the
kernel hundreds of times per second to wake it up and do
some work. Until this situation changes (and it is indeed
slowly changing due to projects like Lesswatts.org [8]),
saving power on Linux using power-saving states con-
tinues to be a struggling task.

The ACPI specification also defines four system sleep
states:

• S1 – Stopgrant – Power to CPU is maintained, but
no instructions are executed. The CPU halts itself
and may shut down many of its internal compo-
nents. In Microsoft Windows, the “Standby” com-
mand is associated with this state by default.

• S3 – Suspend to RAM – All power to the CPU is
shut off, and the contents of its registers are flushed
to RAM, which remains on. In Microsoft Win-
dows, the “Standby” command can be associated
with this state if enabled in the BIOS. Because it
requires a high degree of coordination between the
cpu, chipset, devices, OS, BIOS, and OS device
drivers, this system state is the most prone to errors
and instability.

• S4 – Suspend to Disk – CPU power shut off as in
S3, but RAM is written to disk and shut off as well.
In Microsoft Windows, the “Hibernate” command
is associated with this state. A variation called
S4BIOS is most prevalent, where the system im-
age is stored and loaded by the BIOS instead of the
OS. Because the contents of RAM are written out
to disk, system context is maintained. For exam-
ple, unsaved files would not be lost following an
S4 transition.

S4 is currently not supported by the 2.4.x kernel
series in Linux, but you might have good luck with
SWSUSP. Some machines offer S4_BIOS whose
support is considered to be experimental within
Linux/ACPI.

• S5 – Soft Off – System is shut down, however some
power may be supplied to certain devices to gen-
erate a wake event—for example, to support au-
tomatic startup from a LAN or USB device. In
Microsoft Windows, the “Shut down” command is
associated with this state. Mechanical power can
usually be removed or restored with no ill effects.

These sleep states are activated by writing values to the
file /sys/power/state. The current state can be
queried by reading this file.

Processor voltage and frequency scaling are other tech-
niques for managing power usage that have been
available in consumer platforms for some years and
only recently have been made available to server-class
processors [11]. Processor voltage scaling is used

2008 Linux Symposium, Volume One • 117

to run a processor (or processors) at a lower volt-
age than the maximum possible while frequency scal-
ing is used to run a processor at a lower frequency
than the maximum possible to conserve power. In
Linux 2.6.x systems, frequency scaling can be con-
trolled through the directory /sys/devices/system/
cpu/cpu0/cpufreq/. There are several gover-
nors available to control the frequency scaling be-
havior of the system, e.g., conservative, on-demand,
power-save, user-space, performance. The list on
a specific system can be shown by viewing the
file /sys/devices/system/cpu/cpu0/cpufreq/

scaling_available_governors. The governor
can be changed by writing a new value into the
file /sys/devices/system/cpu/cpu0/cpufreq/

scaling_governor. Both processor voltage and fre-
quency scaling techniques are heavily used on note-
books and other systems containing mobile processors.
Unfortunately mobile processors are not used for data
center workloads normally and thus many of the power-
saving features discussed above are not applicable to
server platforms. On the other hand, vendors like In-
tel are planning to bring power management features
usually found in their mobile line of processors like the
Core 2 Duo to server platforms like the Xeon family of
processors [9]. By passing on the power-savings fea-
tures from the mobile market to the server market, a
whole new range of possibilities for energy conserva-
tion is entering the data center.

In HPC clusters, the concept of shutting down nodes is
a relatively new concept since most HPC clusters leave
nodes running 24/7 except for scheduled maintenance
outages. This is not necessary with current workload
management systems. One issue is that cluster admin-
istrators often perceive shutting down nodes as a proba-
ble cause of power supply failures or hard drive spin-up
failures. However, our view is that if components are
going to break, and this is inevitable, they should do so
in a known, controlled manner at a time that jobs are
not scheduled on these resources. Deliberately taking a
node down is the clearest indicator of the reliability of
your cluster. Doing these tests, everything from UPS
loading, to switch fabric, to control and mediation, as
well as the hardware of the node itself is affected.

3.3 Scheduling and Control

The power management functionality discussed in Sec-
tion 3.2 is not necessarily passed through to the con-

trol of the workload scheduler. We will start by do-
ing coarse-grained control through Moab, the workload
scheduler we chose in this paper.

Moab uses IPMI or similar capabilities to monitor tem-
perature information, check power status, power-up,
power-down, and reboot compute nodes. This informa-
tion can be utilized to make intelligent scheduling de-
cisions that can save energy, limit or remove hot spots
in the data center, and open up the possibility of im-
plementing chargeback structures for users, groups, or
departments based on energy usage.

In this context, the first action is to specify a pool of
idle nodes that are accessed by the scheduler when the
workload of a cluster changes. To achieve this, the
scheduler utilizes workload prediction algorithms to de-
termine when idle nodes are required to run a queued
workload and switches them on accordingly by taking
into consideration the time the node needs to boot up.
Initially all nodes in the pool will be idle and switched
on for instant workload response, but when nodes have
not been requested after a specified time, the nodes go to
the off state and power down. The status of the idle pool
is transparent to the end users and workload. If service
level agreements (SLAs) are in place, the idle pool can
be dynamically adjusted based on the requested qual-
ity of service (QoS) level. To maximize the number of
nodes that are powered off, and if memory bandwidth
requirements allow it, jobs can be densely packed to-
gether on nodes instead of running all on separate nodes.
Checkpoint/restart job migration strategies can be part
of this scheme to make sure that power consumption is
minimized.

A second method of energy conservation is to utilize
cost-aware scheduling. The scheduler needs to be made
aware of expensive peak and cheaper off-peak electric-
ity rates and the times these rates are in effect. Only
time-critical workloads are scheduled during the more
expensive time periods where the peak electricity rate
is in effect, while other, less time-critical workloads are
deferred to off-peak time periods. This type of schedul-
ing can be extended to incorporate summer and winter
rates which are used by many utility companies to pro-
vide seasonal discounts to their customers. If an orga-
nization operates in multiple geographically dispersed
data centers or co-locations, one could go a step further
and migrate workloads to the least expensive data cen-
ter based on the time of day at those locations and the
electricity rates that are in effect in these locations. Tak-

118 • Applying Green Computing to clusters and the data center

ing advantage of any significant rate differences from
these distinct locations, countries, and even continents,
additional cost savings can be realized. From a user per-
spective, as long as the input and output data sets are
readily available, it would not make a difference if their
workload is run in New York or in Hong Kong, but from
a energy cost perspective it makes a significant differ-
ence.

Gartner’s research, performed in 2007, shows that 47%
of data centers in the US will run out of power by
2008 [17]. For such data centers, Moab can be in-
structed to utilize daily limits based on watts per user
or group. Again, these can vary for different times of a
day and different seasons.

Moab’s ability to learn application behavior can be uti-
lized to find out on which systems certain applications
use minimum power with acceptable performance. The
data that is gathered during the learning process can then
be used to create the system mapping which defines the
optimal performance/power ratio for each application.
This mapping can subsequently be used during work-
load scheduling.

Not only can Moab make scheduling decisions to op-
timize power usage in a data center, but it also can be
configured to make sure that any localized hot spots
are minimized in a computing facility. Hot spots oc-
cur when certain systems or nodes are highly utilized,
but do not receive sufficient cooling to keep temperature
at an acceptable level. It is important that any server or
data center issues leading to recurring hot spots are in-
vestigated as soon as possible, because over-temperature
events in a server can be directly correlated to failure
rates of systems. A node that runs hot all the time has
a larger probability of component failures then a node
that is kept within its specified temperature range. Most
modern server systems have service processors that al-
low real-time remote monitoring of temperatures and
fan speeds. This data can be used to set limits which can
then be used to make intelligent scheduling decisions to
resolve or minimize the effects of hot spots. For exam-
ple, several parts of a workload can be distributed over
certain nodes to best balance the heat dissipation in the
data center. If a raised floor environment is used to sup-
ply server racks with cool air, often the systems that are
mounted higher in a rack receive less cool air and thus
run hotter. A scheduling policy can be implemented,
based on data gathered during a learning process, that
will always schedule workloads with lower processor

utilization (and thus generate less amounts of heat) on
nodes that are located in these higher temperature areas
of a rack or data center.

In this section we have discussed a number of ways to
schedule workload with the goal of lowering power con-
sumption of and removing hot spots in a data center. The
next section shows a detailed case study that uses a num-
ber of these methods in a data center facility.

4 Case Study

Let’s consider this hypothetical scenario: Doodle Com-
puting Inc. owns a co-location data center with four
large cluster systems which are used by many manu-
facturing companies to run Computer Fluid Dynamics
(CFD) and Finite Element Analysis (FEA) studies to
design and optimize their products. Figure 1 shows
the layout of the data center in detail. As shown in
the figure, the cluster racks are laid out in a hot/cold
aisle configuration to create an effective separation of
hot and cold air. The Computer Room Air Conditioning
(CRAC) units are placed at the end of the hot aisles to
provide a short distance for the hot waste air to return to
the unit. The cold aisles contain perforated floor grates
to allow the cold air from underneath the raised floor to
come up to the air intake of the servers in the racks.

Doodle Computing Inc. currently owns four different
clusters: A, B, C, and D, all with approximately the
same processor speeds, but with different power effi-
ciencies. Table 2 shows the number of nodes/blades
each cluster contains and how much power each of these
nodes/blades consumes.

Cluster Number Power Usage /
of Nodes Node (Watts)

A 1040 700
B 560 500
C 280 500
D 2688 1000

Table 2: Cluster Properties

Clusters B and C are some years older and contain a mix
of 1U and 2U nodes with dual single-core processors
per node. Cluster A is only one year old and consists of
high-density blades with two dual-core processors each.
As shown in the figure, one of the racks of cluster A
runs a little hot (depicted by the red dot). Cluster D

2008 Linux Symposium, Volume One • 119

C
O

L
D

 I
S

L
E

C
O

L
D

 I
S

L
E

C
O

L
D

 I
S

L
E

C
O

L
D

 I
S

L
E

C
O

L
D

 I
S

L
E

CRAC CRACCRACCRAC

CRAC CRAC CRAC

P
D

U
P

D
U

P
D

U
P

D
U

C
O

L
D

 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

H
O

T
 I
S

L
E

C
O

L
D

 I
S

L
E

CLUSTER A

CLUSTER C CLUSTER D

CLUSTER B

CRAC

Figure 1: Doodle Computing Inc.’s co-location data center layout

is the newest cluster in the data center and consists of
very high density blades with four quad-core processors
each. Due to the high power usage of the nodes and
the fact that the CRAC unit serving that aisle is broken
and does not cool the air sufficiently any more, there
are a number of hot spots in the second hot aisle of
that cluster (see Figure 1 for details). The monthly en-
ergy bill for Doodle Computing Inc. of approximately
$160,000 has led the management team to believe that
savings should be possible if the data center can more
intelligently manage the resources. Doodle Computing
Inc. has standardized on Moab and TORQUE as their
scheduler and resource managers. The servers and clus-
ter nodes of clusters A, B, and D have a BMC interface
and provide temperature and power information to the
outside world, while cluster C only reports temperature.
To make it possible to monitor the power usage of this
cluster, the facilities department has installed IP-enabled
rack PDUs in the racks of cluster C. This type of PDU
can report on the power usage of every outlet and submit
that information as a reply to an HTTP request.

There are two different electricity rates in effect in the
location where Doodle Computing Inc. operates their

co-location data center: $0.10/kWh from 7 AM to 7 PM
and $0.05/kWh from 7 PM to 7 AM. By implement-
ing several of the green policies that were discussed in
Section 3.3 of this paper, significant power savings can
be achieved and the observed problem with hot spots
in the Doodle Computing Inc. co-location data center is
resolved. We will show in the remainder of this section
how this is done.

Moab has knowledge of the power usage of compute
nodes in all of the clusters and thus it can make intelli-
gent decisions where the incoming workload has to be
scheduled to optimize power usage. For our scenario,
let’s consider a job that runs optimally on 64 processors
or processor cores, has an approximate running time of
4 hours, and whose result has to be available within 24
hours of submission. For such a job, Moab can calculate
the respective cost of running the job on each cluster as
follows:

• Cluster A 16 nodes of four cores, each is needed
to run the job. This represents a power usage of
16*700 = 11.2 kW. For a four-hour run, 4*11.2

120 • Applying Green Computing to clusters and the data center

= 44.8 kWh is needed. The cost of this run is
44.8*$0.10 = $4.80.

• Cluster B and C 32 nodes of two processors, each is
needed to run the job. This represents a power us-
age of 32*500 = 16 kW. For a four-hour run, 4*16 =
64 kWh is needed. The cost of this run is 64*$0.10
= $6.40.

• Cluster D for nodes of 16 cores, each is needed
to run the job. This represents a power usage of
4*1000 = 4 kW. For a four-hour run, 4*4 = 16 kWh
is needed. The cost of this run is 16*$0.10 = $1.60.

It is obvious that the job most efficiently runs on cluster
D. If a node on cluster D is not available, cluster A is
the next choice, followed by clusters B or C. Because
the result of the job only has to be available in 24 hours,
even more cost savings can be made by scheduling this
job at a different time of the day, e.g., after 7 PM when
the resource cost is lower. By running the job at night,
the cost on cluster D decreases to a mere 80 cents ($2.40
on cluster A and $3.20 on cluster B and C).

For all clusters, idle pools are created for nodes that have
been switched off. Moab can instruct clusters to switch
off any compute nodes that have not been utilized in the
past hour and for which no reservations or jobs in the
queue exist. For example, assume that at 9 PM clus-
ter A is 50 percent utilized, cluster B is 40 percent uti-
lized, cluster C is not utilized at all, and cluster D is
80 percent utilized. Also assume that reservations ex-
ist that utilize all of the clusters at 100% starting from
7 o’clock the next morning. In such a situation, half of
the nodes of cluster A (520 nodes) can be switched off
and move to the idle pool until 7 AM. This represents
a cost saving of: 520*700W*10h*0.05 = $182. In ad-
dition, 60 percent of the nodes in cluster B (336 nodes)
can be moved to the idle pool which represents a cost
saving of 336*500W*10h*0.05 = $84. All the nodes in
cluster C (280 nodes) can be moved to the idle pool for
a saving of 280*500W*10h*0.05 = $70. Last but not
least, 20% of the nodes in cluster D (538 nodes) can be
moved to the idle pool for a cost saving of 538*1000W*
10h*0.05 = $269. This means that a total of $605 is
saved by switching off compute nodes and move them
into the idle pool for 10 hours.

To solve the hot-spot problems, Moab is provided with
node temperature limits and instructed to assess the tem-
perature output of the node BMCs on a regular basis.

This way, if it finds that the temperature of the nodes in
the second hot aisle of cluster D is too high, the work-
load can be migrated to cooler nodes in the same cluster.
If D nodes are not be available, the workload can be mi-
grated to cluster A, B, or C. Moab can react even more
proactively if it has access to data from the CRAC units
so it can react to any problems with those units. In this
case, the workload can be migrated more promptly mak-
ing sure that hot spots do not get a chance to occur and
nodes in that hot aisle are switched off or turned to sleep
if the CRAC unit has an extended problem. The hot spot
found in cluster A can be taken care of in a similar way.

5 Conclusion

In this paper we present several techniques for moni-
toring and controlling power consumption and temper-
ature. Through a case study we show how these tools
can be practically deployed in a data center facility. In
particular we show how real-time monitoring and intel-
ligent scheduling of workload can be efficiently utilized
to lower the energy cost of data centers. In the scenario
we have used, we also show ways to limit or remove
temperature hot spots.

References

[1] EPA Report to Congress on Server and Data
Center Energy Efficiency, 2007,
http://www.energystar.gov/ia/
partners/prod_development/
downloads/EPA_Datacenter_Report_
Congress_Final1.pdf

[2] Uptime Institute,
http://uptimeinstitute.org

[3] Ganglia,
http://ganglia.sourceforge.net

[4] MOAB, http:
//www.clusterresources.com/pages/
products/moab-cluster-suite.php

[5] Wikipedia Green Computing,
http://en.wikipedia.org/wiki/
Green_computing

[6] The Green Grid,
http://www.thegreengrid.org

2008 Linux Symposium, Volume One • 121

[7] Green Grid Metrics: Describing datacenter power
efficiency, 2-20-2007,
http://www.thegreengrid.org/gg_
content/Green_Grid_Metrics_WP.pdf

[8] Less Watts: Saving Power with Linux on Intel
Platforms, http://www.lesswatts.org/

[9] Less Watts Whitepaper, http://oss.intel.
com/pdf/lesswatts_whitepaper.pdf

[10] ACPI specification Version 3.0b, 10/6/2006, ACPI
Working Group,
http://www.acpi.info/spec.htm

[11] Intel Corporation. Dual-Core Intel Xeon
Processor LV and ULV Datasheet.
http://download.intel.com/design/
intarch/datashts/31139101.pdf,
September, 2006.

[12] J.S. Chase, D.C. Anderson, P.N. Thakar, and
A.M. Vahdat, Managing Energy and Server
Resources in Hosting Centers, Proc. 18th Symp.
Operating Systems Principles, ACM Press, 2001,
pp. 103–116.

[13] K. Rajamani and C. Lefurgy, On Evaluating
Request-Distribution Schemes for Saving Energy
in Server Clusters, Proc. IEEE Intl Symp.
Performance Analysis of Systems and Software,
IEEE CS Press, 2003, pp. 111–122.

[14] M. Elnozahy, M. Kistler, and R. Rajamony,
Energy Conservation Policies for Web Servers,
Proc. 4th Usenix Symp. Internet Technologies and
Systems, Usenix Assoc., 2003, pp. 99–112.

[15] X. Fan, W. Weber, and L.A. Barroso, Power
Provisioning for a Warehouse-sized Computer,
Proc. of the ACM International Symposium on
Computer Architecture, San Diego, CA, June
2007.

[16] E. Pinheiro, R. Bianchini, E.V. Carrera, and T.
Heath, Dynamic Cluster Reconfiguration for
Power and Performance, Compilers and
Operating Systems for Low Power, Kluwer, 2003,
pp. 75–94.

[17] Gartner: 2007 Data Center Conference Poll
Results for Power and Cooling Issues.

[18] ASHRAE, http://www.ashrae.org/

[19] Climate Savers Initiative, http:
//www.climatesaverscomputing.org/

122 • Applying Green Computing to clusters and the data center

Introduction to Web Application Security Flaws

Jake Edge
LWN.net

jake@lwn.net

Abstract

You hear the names of the most common web secu-
rity problems frequently: cross-site scripting, SQL in-
jection, cross-site request forgery—but what do those
terms mean? This paper will provide an introduction to
those vulnerabilities along with examples and ways to
avoid them. This introduction is language-independent,
as the problems can occur in any language used to de-
velop web applications.

Developers of web applications sometimes get caught
up in the excitement of developing the application and
forget to consider the security implications. This paper
will help them get a handle on what to avoid so that the
excitement doesn’t get squashed by an attacker. Others
who are curious about the kinds of attacks made against
web applications will also find much of interest.

1 Introduction

Web application vulnerabilities make up a fairly large
slice of security vulnerabilities reported on Bugtraq and
other security mailing lists. In addition, they are prob-
ably the type of vulnerability that Linux users are most
likely to come across.

The consequences of a web vulnerability vary
greatly, from full compromise of a vulnerable server
application—potentially the server machine itself as
well—to stealing authentication information so that
a user’s account, often on an unrelated site, can be
accessed by an attacker. This highlights the broad reach
of web application vulnerabilities as they can affect
particular sites or the users who visit them.

2 Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is the language
spoken by web applications. It is a fairly simple, text-
oriented protocol that is easy to read and understand. A

web browser sends an HTTP request and awaits a re-
sponse from the server. That response is generally text
in Hypertext Markup Language (HTML), but can also
be other types of data: images, audio, video, etc. The
browser then displays the response from the server and
awaits another user action (e.g. clicking a link, submit-
ting a FORM, using a bookmark to go elsewhere, etc.).

The most common HTTP requests are of the following
three types:

• HEAD – this retrieves the headers and dates asso-
ciated with a page so the browser can determine
whether it can use its cached version of the object
(HTML, image, etc.).

• GET – This is the workhorse of HTTP. Retrieve
content based on a URL, with parameters passed as
part of the URL (e.g. http://foo.com/bar?
baz=42).

• POST – This is used by FORMs. The parameters
are encoded into the request and POSTed to a spe-
cific URL, which is specified in the FORM tag.

Figure 1 shows a short example of using telnet to talk
to a web server. The “GET” and “Host:” lines are typed
by the user (followed by two carriage returns) with the
response from the server following. The headers are sent
first followed by a blank line and then the content, in
this case the HTML of the document (abbreviated in the
figure).

There is an important distinction between GET and
POST that web application programmers should be
aware of. GET requests should be idempotent, that
is they should not change the state of the application.
Multiple GET requests should return the same content,
unless the underlying state of the application has been
changed via a POST request. It is common for web

• 123 •

124 • Introduction to Web Application Security Flaws

HTTP EXAMPLE

$ telnet lwn.net 80
Connected to lwn.net.

GET /talks/ols2008/ HTTP/1.1
Host: lwn.net

HTTP/1.1 200 OK
Date: Mon, 28 Apr 2008 03:54:40 GMT
Server: Apache
Last-Modified: Mon, 28 Apr 2008 03:49:48 GMT
ETag: "428105-30c-4815495c"
Accept-Ranges: bytes
Content-Length: 780
Content-Type: text/html

<html>
<head>
<title>OLS 2008</title>
</head>
...

Figure 1: Example of HTTP using telnet

applications to have state-changing links (which corre-
spond to GETs), though there are two good reasons not
to do that.

One classic example is a web page with links to
delete content that looked something like: http://
somehost.com/delete?id=4. A web spider then
came along to index the site and found all of these links
to follow—promptly deleting all the content on the site.
The other reason to avoid state-changing GET requests
is to prevent trivial cross-site request forgery as will be
described below.

Another important thing to note about HTTP is that it
is a stateless protocol. There is no inherent state infor-
mation kept by the server and client. Each request is an
entity unto itself. Various mechanisms have been used
to achieve stateful web applications, the most common
is the idea of a session. Sessions are typically set up
by the server, given some kind of identification number
(i.e., session ID), and then set as a cookie in the user’s
browser in the response from the server. Cookies are
persistent values, associated with a particular website,
that are sent by a browser whenever a request is made of
that website.

3 User input cannot be trusted

Many web application vulnerabilities share a fairly sim-
ple characteristic: insufficient or incorrect filtering of
user-controlled input. This input can come as part of the
URL, from FORM data, or from cookie values. These
inputs make up most, if not all, of the attack surface of
an application and must be appropriately filtered before
use. The filtering should use a whitelisting, rather than
blacklisting, approach—only allowing known-good in-
puts is far safer than trying to construct a list of all “bad”
inputs.

One common mistake that web application program-
mers make is to assume that all traffic generated to
their program will come from a web browser. They
assume that certain things are “impossible” because a
web browser does not do it that way. This is a grievous
error, as it is trivial to generate HTTP traffic from any
programming language—many provide full-featured li-
braries to do just that. An attacker can use a browser and
easily manipulate parameters passed as part of the URL
in a GET request, but using FORMs is no protection.
Generating a POST request with the appropriate param-
eters is a simple task that is often done in Javascript as
part of an exploit. Cookie values can also be created or
stolen from another user.

Perhaps the most common manifestation of this mistake
is in using Javascript validation. Web application pro-
grammers will often write some Javascript to run on
the browser to validate values typed into a form. For
example, a form might have a place to type in an IP
address, with Javascript that ensured the values were
legitimate—integers in the right range—popping up an
alert box if the values were not valid. This may help
some users and is a reasonable thing for a web applica-
tion to do. The mistake is in not doing the same vali-
dation on the server. Any validation done by Javascript
needs to be repeated on the server side. There is no guar-
antee that the user has Javascript enabled—even if the
application tries to force it—or even that it is a browser
at the other end. A program can easily be written to sub-
mit any value of any kind for that parameter. Browser-
based limitations on length or type of a field in a form
are not enforced if the browser is not present.

2008 Linux Symposium, Volume One • 125

4 Cross-site scripting (XSS)

One of the more common vulnerabilites seen for web
applications is cross-site scripting (XSS1). XSS re-
sults from taking user input and echoing it back to
the browser without properly filtering it for HTML el-
ements. Many web applications allow users to store
some content, a comment on a story for example, in a
database on the server. This content is then sent back
to the browser for that user or others as appropriate
for the application. Consider the following “content”
<script>alert("XSS")</script>. If that is
sent to the browser unchanged, it will cause Javascript
to pop up an alert.

Any user input that gets sent back to the browser is a
potential XSS vector. One common mistake is for an er-
ror message to contain the unrecognized input, which
is helpful for a legitimate user who made a mistake,
but can also be used as part of an XSS attack. Typi-
cally, XSS vulnerabilities are described with a proof-of-
concept that just uses a Javascript alert which tends to
make some underestimate the power of XSS. It is im-
portant to note that XSS attacks are capable of anything
Javascript can do, which is a lot.2 One of the more com-
mon uses of XSS is to steal cookie information from the
browser which can then be used for session hijacking or
other attacks.

There are two major flavors of XSS, the non-persistent
XSS, where the attack comes as part of the link—like
the error message example above—and persistent XSS,
where the attacker stores something persistently on the
server that can attack each time that content is accessed.
Both flavors can have serious effects, but the amount of
malicious code that can be contained in a link is some-
what limited, whereas the database will happily store a
great deal more. Vulnerable applications may be storing
page contents for MySpace or Facebook-like uses, com-
ments on a blog posting, or some other lengthy content,
any of which may be effectively unlimited in size.

The only defense against XSS is to filter all user input
before echoing it back to the browser. Table 1 shows the

1For web abbreviations, CSS was already taken by Cascading
Style Sheets.

2For some examples, including network scanning be-
hind firewalls, stealing web browser history, and more, see
http://jeremiahgrossman.blogspot.com/2006/07/
my-black-hat-usa-2006-presentation.html.

Input Character Output HTML Entity
< <
> >
((
))
& &
#

Table 1: Character mapping for HTML entities

recommended filtering rules. Mapping each listed char-
acter to its HTML entity equivalent will prevent XSS.

Depending on the implementation language, there
may be functions (like htmlentities() or cgi.

escape()) that do some or all of the filtering job. Note
that some implementations may not do all of the recom-
mended transformations, which could possibly lead to
an XSS hole.

5 Cross-site request forgery (XSRF or CSRF)

Another type of web vulnerability—in some ways re-
lated to XSS—is cross-site request forgery (CSRF or
XSRF3). XSRF abuses the trust that a web site has in
the user, typically in the form of cookies, to cause an
action on that site from an unrelated site.

To see how this works, consider a state-changing GET
on a particular web site, perhaps one for a broad-
band router. If a particular URL on the site, http:
//router/config?setDNS=1.2.3.4 for exam-
ple, will change the router’s DNS setting, a completely
unrelated attack site could use that URL in an im-
age tag: <img src="http://router/config?
setDNS=1.2.3.4">. This would cause a request to
be made of the router with any cookie the browser has
stored for the router. If the cookie was used for authen-
tication and had not yet expired, the action would be
performed.

It is not just GETs that can be attacked via XSRF,
POSTs are vulnerable as well. Using Javascript—and
often hidden away in an IFRAME—FORMs can be con-
structed and submitted with values under the control of
an attacker. A user could be lured to the attack site via
a link in an email or other web page. Once they arrive,
the attack site could generate a FORM submission to a

3For consistency with XSS, this paper will use XSRF.

126 • Introduction to Web Application Security Flaws

Username: x
Password: ’ OR 1=1; --
Query: SELECT id FROM users WHERE name=’$name’ AND password=’$pword’
Results in: SELECT id FROM users WHERE name=’x’ AND password=’’ OR 1=1; --’

Figure 2: SQL injection example

$stmt = prepare("SELECT id FROM users WHERE name=? AND password=?")
execute($stmt, $name, $pword)

Figure 3: SQL prepared statement and placeholder example

completely unrelated site—a banking, stock trading, or
shopping site for example—which would be transmit-
ted along with any cookies the user has for the site. If
the user has recently logged in, the form action will be
taken, just as if the user visited the site and filled in the
form that way.

For high-profile sites, the URL is easy to know, but even
for local devices like the broadband router mentioned
above, the URL can often be guessed. It is very com-
mon for a particular model of router to be handed out
en masse to subscribers of a particular service—often
by default their IP address is fixed. So an attacker that
wanted to do a phishing scam might choose a vulnerable
router type and try to do XSRF attacks to 192.168.1.1,
for example.

Getting rid of XSRF holes is somewhat complicated.
First, as described above, state-changing GETs must be
eliminated from the site. These are clearly the easist
XSRF hole to exploit.

For FORMs, there needs to be something that cannot
be reliably predicted—or brute forced—in the FORM
data. The best way to do that is with a TYPE=
HIDDEN FORM element that has unpredictable NAME
and VALUE attributes. Each should be generated sep-
arately, be long enough to resist brute force, and be
tracked on the server side associated with the session
ID. Whenever a FORM is submitted, the NAME and
VALUE of the element should be validated, with any
action dependent on that validation.

It should be noted that XSS can provide a means for
Javascript to read the FORM and gather the required in-
formation, so a site must be free of XSS issues or the
avoidance mechanism above can be circumvented.

It should also be noted that for very sensitive opera-
tions, re-authenticating the user can provide absolute
protection against XSRF—assuming a good password
has been chosen. It is common for web applications to
require the current password before changing to a new
password, which is an example of this technique.

6 SQL injection

SQL injection is, after XSS, the most commonly re-
ported web site application flaw. Because many web
sites are backed by some kind of SQL database, there
are a large number of applications that are potentially
vulnerable. SQL injections can lead to data loss, data
disclosure, authentication bypass, or other unpleasant
effects.

SQL injection abuses the queries that the web site does
as part of its normal operation by injecting additional
SQL code—under the control of the attacker—into the
query. It is usually done through parameters to GET
or POST requests by taking advantage of naïve—or
nonexistent—attempts to protect the query from the pa-
rameter values.

In Figure 2, there is an example of how a SQL injection
can happen. The SQL query is generated by interpolat-
ing the FORM variables for username and password into
the statement. Under normal circumstances, when a user
is trying to log in, the SQL statement works fine to select
an ID if the username/password matches someone in the
database. If an attacker types in the ’ OR 1=1; --4

string for the password, he modifies the query as shown.
This has the effect of returning every row in the users ta-
ble. Typically application code is written to just take the

4The “--” tells the SQL engine to ignore the rest of the query,
similar to a comment.

2008 Linux Symposium, Volume One • 127

first returned result in that case, which should be a valid
user—and may in fact be the first user added, which is
often the administrative user.

Depending on how the web application is structured and
what database system is used, other abuses are possible.
Some databases allow multiple statements separated by
“;” so a password of ’; DROP TABLE users; --
would end up removing all users from the database.
There are ways to use SQL injection to discover all of
the tables in the database and their contents, again de-
pending on the database system.5

When trying to work out how to create a SQL injec-
tion for a site, an attacker may need to try multiple dif-
ferent techniques. The error messages returned by the
web application often make it easier to determine what
needs to be added to the injection to make it work be-
cause they disclose what the problem is (i.e., “Missing
parentheses,” “Unterminated string,” and the like). Even
unhelpful error messages can give clues to an attacker if
the application responds differently to well-formed SQL
that uses correct table and column names versus illegal
SQL. That difference can be exploited by a technique
known as blind SQL injection.

Thankfully, there are straightforward ways to avoid all
SQL injection attacks. Converting an existing codebase
may be somewhat tedious and time-consuming, but the
method is easy. Essentially all of the techniques boil
down to having the database treat the user input as a sin-
gle entity that is used in the proper place in the query—
as opposed to textually substituting that text into a query
string.

The overall best technique is to use prepared statements
with placeholders for the values that are to be used
in the query. Different database systems use different
placeholder syntax—and various languages’ database li-
braries obscure it more—but a common choice is the “?”
character.

Queries are then created using the placeholder and
passed to the database prepare() function. Figure 3
gives an example in a kind of pseudocode. Instead of
textually substituting the $name and $pword variables
into the query, the database system uses them internally
to match. Doing it that way, the only way the query will

5Microsoft’s SQL Server is said to be particularly susceptible to
this.

return any results is if there is a user named x with the
password ’ OR 1=1; --.

If the database (or language library) does not have place-
holder support, strong consideration should be given to
changing to one that does. If that is impossible, any
database library should have some kind of support for a
database-specific quote() function. This will take the
user input and do whatever necessary to escape special
characters in the input so that they can be used directly
in the query string.

Stored procedures offer similar protections to prepared
statements, but are set up in the database itself ahead
of time. It is somewhat less flexible than just tossing a
query in where needed, but will also handle parameters
in a safe method.

7 Authentication bypass

Authentication bypass comes in various flavors, but at
the core it is a way to circumvent logging in while
still being able to perform privileged actions. Unlike
cracking a password—which still uses the standard au-
thentication mechanism—authentication bypass, as the
name implies, circumvents the authentication method
completely. It abuses some aspect of the application to
“reach around” the requirement to be logged in.

While not truly an authentication bypass, default pass-
words that remain unchanged have essentially the same
effect. If default passwords are for some reason
required—and finding a way to not require them would
be a better choice—it should be difficult to get very far
with the application without changing the default.

Applications should be structured in such a way that it
is impossible to view or submit a page that is privileged
without also supplying the proper credentials. One com-
mon mistake is for an application to check the URL
against a list of privileged URLs, requiring authenti-
cated users for any that are on the list. This kind of
testing can fall prey to aliasing.

Most web servers will allow multiple URLs to reach the
same page, but those URLs can look quite different. A
trivial example is http://vulnsite/foo//bar
which is equivalent—in web server terms—to http:
//vulnsite/foo/bar, but is very different when

128 • Introduction to Web Application Security Flaws

matching the URL. By adding the extra slash, an at-
tacker gets around the authentication requirement. Sim-
ilar things can be done using HTML URL encoding (us-
ing %2F instead of /, for example).

Another common mistake is to assume that any links or
forms that are only presented to the user after they have
logged in are somehow protected. While in the normal
course of events, the user has no access to those ele-
ments through the application, there is nothing stopping
an attacker from using them. Some applications will
use a separate program to process FORM submissions—
without checking authentication—believing that be-
cause those FORM URLs are only presented post-login,
they cannot be accessed otherwise. Both of these are
a kind of “security through obscurity” that provides no
protection at all.

It is imperative that the code for each page that requires
authentication check for it before displaying or taking
any action. If a separate program is used to process
FORMs, it must also check authentication. No matter
what kind of aliasing might be happening, the page code
must be invoked, so that is the proper place for checking
credentials.

8 Session hijacking

As described above, sessions are a standard way for
adding state to HTTP. A session is assigned a particu-
lar ID that is stored in a cookie. Each HTTP request
from the client is accompanied by the session ID, allow-
ing the application to track a related series of requests.
For applications that require authentication, the session
stores the status of that authentication. This means that
a valid session ID can be presented to the application by
an attacker to hijack it.

This hijacking works only as long as the session is valid.
Short-lived sessions—on the order of minutes—reduce
the window of vulnerability, but can be annoying to
users because they have to reauthenticate whenever the
session times out. For sensitive web applications, it is
worth the user annoyance.

An attacker can gain access to the values of a victim’s
cookies in a number of ways. If the application runs on
an unencrypted connection, cookie values can be sniffed
on the wire. XSS provides another means to get access
to cookie values. Some web applications do not even

use cookies—instead sending the session ID in the URL
or a hidden FORM element—making it even easier to
access them.

Some applications store IP address information in the
session which is verified on each subsequent request.
This technique is not particularly useful, as there are
often lots of computers sharing a single IP address
(e.g. NAT); also, some ISPs effectively assign a new
IP on each request which would require the user to re-
authenticate for each page accessed.

Re-authentication is an important safeguard for ex-
tremely sensitive operations. It can be annoying, but
does protect against leaked session IDs.

9 Conclusion

The vulnerabilities presented are the most common
flaws that are found in web applications. There are oth-
ers, of course, but these should be at the top of any web
application designer’s list. Properly handling user in-
put while ensuring that authentication is correctly im-
plemented will go a long way towards securing these
applications.

Modern web frameworks—like Ruby on Rails, Django,
and others—often provide mechanisms to eliminate or
seriously lessen these vulnerabilities. Quite a bit of
thought has gone into the security model of these frame-
works and there is typically an active security group
maintaining them. For new web applications, it is worth
looking into them so as to benefit from those protec-
tions.

Around the Linux File System World in 45 minutes

Steve French
IBM

Samba Team
sfrench@us.ibm.com

Abstract

What makes the Linux file system interface unique?
What has improved over the past year in this important
part of the kernel? Why are there more than 50 Linux
File Systems? Why might you choose ext4 or XFS, NFS
or CIFS, or OCFS2 or GFS2? The differences are not al-
ways obvious. This paper will describe the new features
in the Linux VFS, how various Linux file systems dif-
fer in their use, and compare some of the key Linux file
systems.

File systems are one of the largest and most active parts
of the Linux kernel, but some key sections of the file sys-
tem interface are little understood, and with more than
than 50 Linux file systems the differences between them
can be confusing even to developers.

1 Introduction: What is a File System?

Linux has a rich file system interface, and a surprising
number of file system implementations. The Linux file
system layer is one of the most interesting parts of the
kernel and one of the most actively analyzed. So what
is a file system? A file system “is a set of abstract data
types that are implemented for the storage, hierarchical
organization, manipulation, navigation, access, and re-
trieval of data.” [4]

But a “file system” can also mean a piece of code, i.e., a
Linux kernel module used to access files and directories.
A file system provides access to this data for applica-
tions and system programs through consistent, standard
interfaces exported by the VFS. It enables access to data
that may be stored persistently on local media or on re-
mote network servers/devices, or that may be transient
(such as debug data or kernel status) stored temporarily
in RAM or special devices.

The virtual file system interface and file systems to-
gether represent one of the larger (over 500 thousand

lines of code), most active (averaging 10 changesets a
day!), and most important kernel subsystems.

2 The Linux Virtual File System Layer

The heart of the Linux file system, and what makes
Linux file systems unique, is the virtual file system
layer, or VFS, which they connect to.

2.1 Virtual File System Structures and Relation-
ships

The relationships between Linux file system compo-
nents is described in various papers [3] and is impor-
tant to understand when carefully comparing file system
implementations.

2.2 Comparison with other Operating Systems

The Linux VFS is not the only common file system in-
terface. Solaris, BSD, AIX, and other Unixes have sim-
ilar interfaces, but Linux’s has matured rapidly over the
2.6 development cycle. Windows, originally with an
IFS model similar to that of OS2, has evolved its file
system interface differently than Linux, and has a very
rich set of file system features, but at the cost of addi-
tional complexity. A reasonably functional file system
can be much smaller in Linux than in most other operat-
ing systems (look at shmemfs for example), including
Windows.

2.3 What has changed in the VFS

During the past year, no new file systems were added,
although one (smbfs) was deprecated. In the previous
year, three new file systems were added: ecryptfs
(allowing per-file encryption), gfs2 (a new clustered

• 129 •

130 • Around the Linux File System World in 45 minutes

file system), and ext4 (an improved, more scalable ver-
sion of ext3). The file system area did improve dra-
matically though during the past year. From 2.6.21.1
to 2.6.25, the size of the VFS code grew almost 7%
(from 38 KLOC to 41 KLOC). The total size of the
file systems and VFS together (the fs directory and
all subdirectories) grew about 6% (from 487 KLOC to
518 KLOC). 3612 changesets from almost 400 develop-
ers were added during the year (about 8.4% of the total
kernel changesets), and resulting in adding or changing
over 200,000 lines of kernel file system code over the
year. There has been huge progress.

Interestingly, despite thousands of code changes, the
VFS interface, the API needed to implement a fie sys-
tem, changed only in minor ways, although file system
drivers from the 2.6.21 source tree would require minor
changes to compile on 2.6.25. The exportfs opera-
tions (needed to export a file system over the network
via NFS) reworked its required methods (2.6.24). The
debugfs and sysfs file systems also changed their
external interfaces (2.6.24). The debugfs changes
make it easier to export files containing hexadecimal
numbers. Write-begin and Write-end methods were
added to the VFS to remove some deadlock scenarios
(2.6.24). New security operations were added to con-
trol mount and umount operations (2.6.25). SMBFS was
deprecated (CIFS replaces it), but this did not affect the
VFS interface. The kernel (2.6.22) now supports set-
ting (not just getting) nanosecond inode timestamps via
the new utimensat(2) system call. This call is an
extension to futimesat(2) which provides the fol-
lowing:

• nanosecond resolution for the timestamps.

• selectively ignoring the atime or mtime values.

• selectively using the current time for either atime
or mtime.

• changing the atime or mtime of a symlink itself
along the lines of the BSD lutimes(3) func-
tions.

A similar API call is being added to POSIX.

In the previous year, splice support was added. Splice is
a mechanism to receive file data directly from a socket,
and can dramatically improve performance of network

applications like Samba server when they are reading
file data directly from a socket. The name of a common
structure element in the dentry changed as it moved into
to the new f_path structure (2.6.20). The readv and
writev methods were modified slightly and renamed
to aio_readv and aio_writev (2.6.19). The in-
ode structure shrunk (2.6.19), which should help mem-
ory utilization in some scenarios. There were changes
to the vfsmount structure and get_sb (2.6.18). A
new inotify kernel API (2.6.18) was added to fix
some functional holes with the DNOTIFY ioctl. The
statfs prototype was changed (2.6.18). Support for
MNT_SHRINKABLEwas added (2.6.17) to make imple-
mentation of global namespaces (such as NFS version 4
and CIFS DFS) possible. Shrinkable mounts are im-
plicit mounts, and are cleaned up automatically when
the parent is unmounted.

3 File Systems from a to xfs

There are many Linux file systems—each for a different
purpose. Within the fs directory of the Linux kernel are
60 subdirectories, all but five contain distinct file sys-
tem drivers: from adfs (which supports the Acorn Disk
Filing System used on certain ARM devices) to XFS (a
well regarded high performance journaling file system).
Linux also can support out of kernel file systems through
FUSE (the Filesystems in User Space driver).

4 File Systems

4.1 Types of File Systems

Conventionally we divide file systems into four types:
local file systems, cluster file systems, network file sys-
tems, and special-purpose file systems. Local file sys-
tems are used to store data on a local desktop or server
system, typically using the disk subsystem rather than
network subsystem to write data to the local disk. Lo-
cal file systems can implement POSIX file-API seman-
tics more easily than network file systems, which have
more exotic failure scenarios to deal with, and are lim-
ited by network file system protocol standards. Cluster
file systems aim to achieve near-POSIX file-API seman-
tics, while writing data to one or more storage nodes
that are typically nearby, often in the same server room.
Cluster file systems are sometimes needed for higher
performance and capacity. In such file systems, which

2008 Linux Symposium, Volume One • 131

often use SANs or network attached block storage, more
disks can be connected to the system, and more actively
used at one time, than could be achieved with a local file
system running on a single system.

5 Local File Systems

5.1 EXT4

In 2.6.23 kernel, ext4 added various scalability im-
provements including fallocate() support, increas-
ing the number of uninitialized extents, and remov-
ing the limit on number of subdirectories. In addition,
support for nanosecond inode timestamps was added
(needed by Samba and some network services). The
development of advanced snapshot and reliability fea-
tures in ZFS have led to consideration of longer-term
file system alternatives to ext4. One promising can-
didate is btrfs which was announced last year and is
under development by Chris Mason at Oracle (although
still experimental).

5.2 EXT2 and EXT3

With the obvious need to improve the scalability of the
default local file system (ext3 or ext2 on many dis-
tributions), attention has focused on the follow-on to
ext3, ext4. Despite this, there were 88 changesets
added which affected ext3 over the past year, from
over 50 developers, changing over 1000 lines. This is
a surprisingly high number of changes for a file system
in “maintenance” mode.

5.3 JFS

IBM’s JFS, which is in maintenance mode, had 45
changesets throughout the year (mostly global changes
to structures, and minor code cleanup) but few new fea-
tures.

5.4 XFS

In 2.6.23, XFS added a “concurrent multi-file data
streams” feature to improve video performance and sup-
port for “lazy superblock counters” to improve perfor-
mance of simultaneous transactions.

5.5 UDF

The “Universal Disk Format” is very important due
to the explosion in numbers of writable optical drives.
UDF added support for large files (larger than 1GB) in
2.6.22.

6 Network File Systems

6.1 NFS version 3

NFS version 3 defines 21 network file system operations
(four more than NFS version 2) roughly corresponding
to common VFS (Virtual File System) entry points that
Unix-like operating systems require. NFS versions 2
and 3 were intended to be idempotent (stateless), and
thus had difficulty preserving POSIX semantics. With
the addition of a stateful lock daemon, an NFS version 3
client could achieve better application compatibility, but
still can behave differently than a local file system.

6.2 NFS version 4

NFS version 4, borrowing ideas from other protocols in-
cluding CIFS, added support for an open and close op-
eration, became stateful, added support for a rich ACL
model similar to NTFS/CIFS ACLs, and added sup-
port for safe caching and a wide variety of extended
attributes (additional file metadata). It is possible for
an NFS version 4 implementation to achieve better ap-
plication compatibility than before without necessarily
sacrificing performance. This has been an exciting year
for NFS development with a draft of a new NFS RFC
point release (NFS version 4.1) under active develop-
ment with strong participation of the Linux community
(including CITI and various commercial NFS vendors).
The NFS version 4.1 specification is already 593 pages
long. NFS version 4.1 includes various new features that
will be challenging for the Linux file system to support
fully, including directory oplocks (directory entry infor-
mation caching), NFS over RDMA, and pNFS. pNFS
allows improved performance by letting a server dis-
patch read and write requests for a file across a set of
servers using either block- or object-based mechanisms
(or even using the NFSv4 read and write mechanism).
Some NFS version 4.1 features likely will be merged
into the kernel by early next year, but their complexity
has been challenging to the community.

132 • Around the Linux File System World in 45 minutes

6.3 NFS improvements

Over the past year, NFS has improved significantly, and
has had more changes than any other file system. The
SunRPC layer (which NFS uses for sending data over
the network) now supports IPv6, although some smaller
supporting patches are still being evaluated. Due to
scarcity of IPv4 addresses in some countries, IPv6 sup-
port is becoming more important, especially as some
government agencies are beginning to require IPv6 sup-
port in their infrastructure. NFS over RDMA, which
provides performance advantages for workloads with
large writes, is partially integrated into mainline (some
of the server portions are not upstream yet). Server-side
security negotiation is upstream. A new string-based
mount options interface to the kernel has been added,
which allows new options to be implemented in ker-
nel without necessarily requiring nfs-utils (user-
space tools) update, and eases long-term NFS packag-
ing. Forced unmount support, which had been removed
from NFS a few years earlier, was readded (2.6.23).
This allows “umount -f” to better handle unresponsive
servers. Also added to NFS in kernel version 2.6.23 was
support for “nosharecache” which allows two mounts,
with different mount options, from the same client to
the same server export. When this mount option is not
specified, the second mount gets the same superblock,
and hence the same mount options as the first. With this
new mount option, the user may specify different mount
options on a second mount to the same export.

6.4 CIFS

IPv6 support was added (2.6.22). Additional POSIX
extensions were added (2.6.22) to improve POSIX ap-
plication compatibility on mounts to Samba servers.
The most exciting changes to CIFS over the past year,
though, have been the addition of Kerberos support and
the addition of DFS support. MS-DFS is a mechanism
for traversing and managing a global name space for
files and is commonly used in larger networks. The
Samba server already supported DFS, but the Linux
kernel did not, until this year. Released earlier this
spring, large amounts of interoperability documentation
by Microsoft may allow us to improve our support more
quickly, not just for newer servers, but also for older
servers. Older dialects of SMB, sometimes more than 15
years old, are still in use in some places. This documen-
tation is also making development of an in kernel SMB2

client implementation easier. Currently smb2 support
is being prototyped as a distinct module from cifs,
to make it easier to make rapid changes, and because
SMB2 is turning out to be much different than CIFS. Al-
though sharing some information levels with SMB and
CIFS, SMB2 has a much simplified set of commands
that are largely handle- (rather than path-) based, and
are even more efficient to parse, which should allow im-
proved performance in the long run. SMB2 also allows
improved asynchronous operation and request dispatch-
ing, while also adding better reconnection support via a
new durable handle feature of the protocol. The proto-
type SMB2 client should be available (in experimental
form) before the end of the year. Although the server for
CIFS, Samba, is not in-kernel, it should be mentioned
that with the recent release of the enormous amount of
network interoperability documentation by Microsoft,
the Samba team already has made great progress with
the Samba 4 SMB2 server, already passing most func-
tional tests.

6.5 AFS

There are multiple versions of AFS, the OpenAFS im-
plementation which is more complete in function, but
not in mainline kernel, and what a year ago was only
a minimal implementation in-kernel. The AFS version
in the mainline kernel has improved dramatically over
the past year. In 2.6.22, support for basic file write
was added, and support for directory updates (mkdir,
rename, unlink, etc.) and krb4 ticket support was
added via RPC over AF_RXRPC sockets.

7 Cluster File Systems

There are two cluster file systems in the mainline ker-
nel, GFS2 from Red Hat/Sistina and OCFS2 from Ora-
cle. There are also two popular cluster file systems that
are not in the mainline, but that are mentioned because
they are often used in high-end compute clusters: Lus-
tre (now owned by Sun) and IBM’s GPFS. GFS2 sup-
ports more file system entry points than OCFS2 (which
has worse locking and ACL support), but OCFS2 does
support sufficient features to address the needs of some
clustered databases.

7.1 OCFS2

In 2.6.22 OCFS2 added support for sparse files. Over
the year the OCFS2 team and other kernel developers

2008 Linux Symposium, Volume One • 133

added 247 changesets to OCFS2, more than 16,000 lines
of code.

7.2 GFS2

This area had a busy year, with 243 changesets added:
many small stability patches and bug fixes, but multiple
performance enhancements were added as well.

8 Future Work

Going forward there are many challenges to address in
the Linux File System area, but among the most interest-
ing are the following: clustering improvements, new hi-
erarchical storage management features, improved error
handling and detection in the local file system, support
for new network file systems (SMB2), and improved
network file systems (NFS version 4.1).

8.1 Clustering

With the need for reliable server failover, and the need
for dynamic reconfiguration of complex networks, clus-
tering is becoming more important, but there is no clear
winner among the cluster file systems, and two of the
most popular choices still remain out-of-kernel. In ad-
dition, the NFS version 4.1 protocol adds the ability to
support parallel NFS, to better distribute load across a
set of NFS servers without requiring cluster file system
software to be installed on all clients. Similar features
are being investigated for CIFS. Samba server support
for clustering is greatly improved through the work of
Tridge, and others on the SOFS team, on ctdb. Ctdb
has proven to be a very useful library for high perfor-
mance cluster state management and recovery. NFS
server support for running over a clustered file system
also has improved in the past year through work by CITI
and by IBM and others.

8.2 New Local File Systems

Among the biggest long term challenges in the file sys-
tem area remains error handling and recovery. As disks
get ever larger and yet error rates stay constant, error de-
tection and recovery is reaching a critical point. One of
the design goals of btrfs is to address this problem,
as well as to improve HSM features. Many new systems

now contain a mix of storage which includes disk and
solid state. Since these devices perform very differently,
local file systems must add features to optimize perfor-
mance on hybrid systems which contain both. Whether
in the long term we will need two local file systems,
ext4 and btrfs, due to performance differences on
particular popular workloads, or whether one Linux file
system will win and be used for most workloads remains
to be seen. EXT4 scalability is improved but would re-
quire substantial changes to handle ever increasing disk
errors on ever larger disks as well as btrfs already
does. In some operating system, the file system and vol-
ume manager layers of the operating system are more
tightly coupled than in Linux. This eases the addition
of better support for dynamic reconfiguration of disk
subsystems when failing disks are added or removed on
the fly. The development of btrfs may open up dis-
cussion of changes to the volume management layer as
well as changes to Linux to support DMAPI, the stan-
dard for disk management used by many storage man-
agement applications. Adding support for part or all of
DMAPI to the VFS and btrfs or ext4 would allow
for improved backup and disk management. Currently a
subset of DMAPI is supported but on XFS only.

8.3 New Network File Systems

An SMB2 file system prototype, written by the author,
is being coded and tested currently. Since SMB2 is sig-
nificantly different than SMB and CIFS protocols in the
way it handles path names, and in the way it handles
file handles, less code could be shared between it and
the existing cifs module, so it is being written as a dis-
tinct module. This also allows it to be updated quickly
without impacting the existing cifs module. SMB2 will
become more important in the coming year since it is the
default network file system for current Microsoft servers
and clients, and matches reasonably well to Linux. NFS
version 4.1 also includes new features which will need
to be explored in the Linux VFS, including how to sup-
port directory oplocks (directory delegations).

9 Legal Statement

This work represents the view of the author and does not nec-
essarily represent the view of IBM. IBM and GPFS are regis-
tered trademarks of International Business Machines Corpo-
ration in the United States and/or other countries. Microsoft,

134 • Around the Linux File System World in 45 minutes

Windows, and Windows Vista are either a registered trade-
mark or trademark of Microsoft Corporation in the United
States and/or other countries. UNIX is a registered trademark
of The Open Group in the United States and other countries.
POSIX is a registered trademark of The IEEE in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds. Other company, product, and service names
may be trademarks or service marks of others.

References

[1] O. Kirch. Why NFS Sucks. Proceedings of the
2006 Ottawa Linux Symposium, Ottawa, Canada,
July, 2006. http://ols.108.redhat.
com/reprints/kirch-reprint.pdf

[2] Linux CIFS Client and Documentation.
http://linux-cifs.samba.org

[3] S. French. Linux File Systems in 45 minutes: A
Step by Step Introduction to Writing or
Understanding a Linux File System.
http://pserver.samba.org/samba/
ftp/cifs-cvs/
ols2007-fs-tutorial-smf.pdf

[4] File System. Wikipedia, The Free Encyclopedia,
Retrieved 28 April 2008. http://en.
wikipedia.org/wiki/Filesystem

[5] Linux Weekly News, API changes in the 2.6
kernel series http://lwn.net/Articles/
2.6-kernel-api/

[6] Kernel Newbies. Linux Changes report. http:
//kernelnewbies.org/LinuxChanges

Peace, Love, and Rockets!

Bdale Garbee
HP Open Source & Linux Chief Technologist

bdale@gag.com

Abstract

My son and I enjoy building and flying model rockets.
But when we went looking for an electronic altimeter to
measure how high our flights were going, the products
we found provided limited features, and required the use
of proprietary software for configuration and to extract
the data recorded. . . and that’s no fun!

This paper gives a brief overview of the resulting work
to develop open hardware and associated open source
software to satisfy our altitude curiosity, and provides
pointers to sources of more information. The live con-
ference presentation will include a more detailed report
on our progress and plans for more sophisticated pay-
loads for our higher-powered rocket projects, punctu-
ated with photos and video clips.

This material should be interesting to anyone curious
about open small embedded systems. The hardware is
ARM-based, licensed under the TAPR Open Hardware
License, and implemented entirely using open source
design tools. The software is built on FreeRTOS using
GNU tools and a variety of open source libraries.

1 The Basic Idea

Model rocketry is a popular hobby in which rocket-
shaped models are built, launched, and recovered by a
variety of means to be flown again. One of the first ques-
tions people ask about model rockets is: “How high did
it go?” This question can be answered by visual obser-
vations and some fairly simple math, but modern elec-
tronics and miniature sensors also make it possible (and
more fun!) to measure altitude and other flight parame-
ters directly.

A number of commercial model rocket avionics systems
exist, are reasonably priced, and work well. The prob-
lem is that they really aren’t “hackable” to add new fea-
tures, or try out different approaches. In some cases,

even the serial protocol used to speak to the units from
a PC is explicitly proprietary and only useful with pro-
vided software for Windows or Mac systems. And that’s
just no fun!

2 Role of Avionics

Beyond the simple “how high did it go?” question, there
are a number of other dynamic parameters that can be
interesting to measure in flight. This is particularly true
at the more advanced end of the hobby, where flights
may exceed the speed of sound, or where experimental
propellants, motor casings, and nozzle designs may be
under evaluation.

Another significant role of avionics in many model rock-
ets is to control the recovery system, firing ejection
charges to deploy parachutes or streamers. If the rocket
is moving too fast when the recovery system deploys, it
can cause damage to the vehicle or recovery system due
to the sudden changes of velocity and resulting energy
transfers at ejection. The objective is therefore usually
to cause ejection to happen as close to the flight apogee
as possible, because that’s where the rocket is moving at
minimum speed. Simple models accomplish this by fly-
ing with a motor that includes a delay element that burns
through in a predictable time before firing an ejection
charge. But with active electronics, apogee can be di-
rectly sensed, eliminating variations due to weather con-
ditions, exact takeoff weights due to payload changes,
etc.

For very high flights, particularly on windy days, an ad-
ditional feature that active on-board electronics can en-
able is “dual deployment” in which a small drogue chute
or streamer is ejected at apogee, followed by deploy-
ment of the main recovery parachute at a pre-determined
altitude much closer to the ground. This allows the
rocket to return towards earth in a controlled but rapid
descent to minimize how far down-range it drifts, yet

• 135 •

136 • Peace, Love, and Rockets!

touch down at a safe speed once the main parachute de-
ploys.

Even more sophisticated systems include a radio down-
link to the ground for live updates, video from on-board
cameras, or even live position information if the rocket
is equipped with a GPS receiver. A radio uplink could
even be used to command events on board from the
ground.

3 What We Built

The Altus Metrum project intends to deliver a com-
pletely open (hardware and software) recording altime-
ter for model rockets. Sized to fit airframes as small
as 24mm in diameter, with flexible battery choices, the
design bases most operations on a barometric pressure
sensor, but also includes a three-axis accelerometer and
temperature sensor. Enough non-volatile memory is in-
cluded to support data logging through the entire flight,
and a USB interface allows easy programming, data re-
covery, and operational power when not in flight. Other
features include two serial ports to support an on-board
GPS receiver and RF downlink, and support for firing
two ejection charges using “electric match” low-current
igniters to support dual-deploy or staging activities.

The hardware design is based around the single-chip
LPC-2148 microcontroller from NXP, which is an
ARM7TDMI-S core with 512k of flash memory, 32k
of RAM, USB, and lots of analog, digital, and se-
rial I/O on-board. Non-volatile storage of flight data
is provided in a Microchip 24FC1025 CMOS serial
EEPROM, which is 128k by 8 bits with an I2C inter-
face. The sensor complement in the initial prototype
includes the Freescale MP3H6115A pressure sensor,
Freescale MMA7260QT 3-axis accelerometer, and Mi-
crochip MCP9700A linear temperature sensor. A Hon-
eywell 2-axis magnetic sensor was evaluated but not in-
cluded because of the large circuit board area required
for supporting circuitry.

The hardware was designed entirely using open source
tools, including gschem and pcb from the gEDA suite,
the features of digikey.com for parts selection and
data sheet access, gerbv and the service of freedfm.
com for circuit board verification, and the services of
barebonespcb.com for quick and cheap circuit board
fabrication. An Olimex ARM-USB-OCD JTAG inter-
face is used with gdb via openocd for hardware test-
ing and firmware development and debugging.

The firmware is written mostly in C with some ARM
assembler, runs from the on-chip flash using the on-chip
RAM, and stores flight data to the serial EEPROM. USB
serial emulation provides a console interface for inter-
action with the software during ground testing and to
retrieve data after flight. Software development uses
GCC, newlib, FreeRTOS, and the LPCUSB packages,
and is derived from a FreeRTOS demo package writ-
ten for the Olimex LPC-P2148 evaluation board by J.C.
Wren.

The hardware design carries the TAPR Open Hardware
License (OHL), which was created to be “GPL-like” for
hardware designs. The software is licensed GPL “v2 or
later.”

4 Current Status

First article prototypes are completely assembled and
mostly tested. Enough problems were found and fixed
that more v0.1 boards are unlikely to be assembled, a
revision of the circuit board design is called for instead.
The weather in Colorado has been mostly unsuitable for
flight testing since the hardware was developed, and the
flight software is not quite finished, so there have been
no flight tests yet as of the time of talk submission.

By the time of the conference, we hope to have com-
pleted testing and evaluation of the initial hardware in-
cluding some amount of flight testing. The design will
then be updated and a new circuit board revision re-
leased, with work to integrate a GPS receiver core and
RF downlink continuing in parallel.

5 For Further Information

This project can be found at http://
altusmetrum.org, with more information
on our hobby rocketry activities appearing at
http://gag.com/rockets.

Information about the TAPR Open Hardware License
may be found at http://tapr.org/ohl.

Secondary Arches, enabling Fedora to run everywhere

Dennis Gilmore
Fedora Project OLPC

dgilmore@fedoraproject.org

Abstract

There are many different types of CPU out there. From
SPARC to Alpha, Arm to s390. Most people run i386
or x86_64; how can you get a distro for your favorite
exotic preference? Fedora has been doing a lot of work
to allow interested people to build and support the archi-
tecture of their choice. Work has been going on for arm,
alpha, ia64, s390, and SPARC.

This paper will cover what has been done to enable mo-
tivated people to bring up and support new architectures.
The same tools used to make Fedora can be used to layer
products on top of Fedora also. If you’re interested in
MIPS, PA-RISC, or just want to know what is involved
in putting together a distro, this paper is also for you.

1 What is a secondary architecture?

Any architecture that is not mainstream? Fringe archi-
tectures? Anything not x86 or x86_64?

Fedora is starting by saying that it is anything that is not
x86 or x86_64 based, however ppc is currently a special
case. We are building ppc and ppc64 with the primary
architectures, however the release engineering for it is
being done by the Fedora community. This is also not
to say that the way things are done now is the way they
will always be. For instance if one architecture started
building up market share then it would be evaluated for
primary architecture inclusion.

The secondary architecture team is responsible for pro-
viding all of the building and hosting resources. The
team also gets full access to Fedora cvs. The same
source cvs checkout will be used to build across all ar-
chitectures.

Fedora package maintainers are encouraged to look
at and fix build failures on secondary architectures.
Howver, they are not required to do so. We understand

that there are people who have no interest in support-
ing secondary architectures. The architecture teams are
there to ensure things get fixed, and to provide architec-
ture specific knowledge to interested maintainers.

We are actively looking for sponsorship of a master mir-
ror for secondary architectures to reduce the barrier of
entry for all. While the barrier of entry is high for a
new Secondary Architecure it will ensure that the peo-
ple proposing the architecture are commited to ensuring
that it is a success.

The initial proposal was written by Tom Callaway with
the following purpose. As an open community, Fedora
encourages motivated individuals who care about ar-
chitectures which are currently unsupported [1]. With
the ultimate goal of supporting as many architectures as
people want to support.

2 Why support secondary architectures?

The more architectures that you build the same code on,
the more portable the code base. Lots of people make
a claim that their code is portable because they write to
standards, such as POSIX. Many times they really have
no idea if their code is truely portable.

What is portable code? The same code running in differ-
ent places. We are testing portability by building on big
endian CPUs, little endian CPUs, CPUs with different
instruction sets. We could also test portablity by build-
ing on different OS’s such as FreeBSD, Darwin, or Hurd
on the same CPU.

We also scratch people’s itches. If you want to know
more about Linux and how a distribution is put together,
then working on a secondary architecture is a great place
to start.

3 Who is doing secondary architectures?

• HP, Intel, SGI, and Red Hat for Itanium

• 137 •

138 • Secondary Arches, enabling Fedora to run everywhere

• Red Hat and IBM for S390

• Marvell for ARM

• Fedora Community for SPARC

• Fedora Community for ALPHA

Lots of different parts of the Fedora community are
working on actively ensuring the success of Secondary
Architectures. Secondary architectures are not a new
idea. Aurora SPARC Linux, Alpha Core, and RHEL
have been doing it for years. This is a new process
that simplifies and speeds up getting other architectures
built.

4 How do Secondary Architectures work?

All packages will be built on the primary hub first. Once
a package has been succesfully been built it will be
queued on the secondary hub. There is a many-to-one
relationship between primary and secondary hubs.

Initially all automated communication is one way. A
long term goal is to push builds back up to the primary
architecture hub. kojisd is a new tool that has been
written to enable automatic builds on secondary hubs.
kojisd ensures that the secondary hubs have the same
or newer build of everything used in the buildroot as
what was used on the primary hub. Architecture teams
are responsible for ensuring that bugs get fixed, and do-
ing the release enginering.

5 Architecture resources needed (provided by
architecture team)

• 1TB disk space per architecture
This will be an ever growing amount of disk. koji
has a garbage collection mechanism to clean up
old builds, however Fedora builds a huge number
of packages, the number of builds will continue
to grow as new packages are added. For Fedora-
9 there were ~20000 builds.

• web server
Used for the koji frontend and hub, running
apache with mod_python, the hub uses xmlrpc for
all communication. Fedora provides a SSL cert to
be used for user authentication. This allows users
to use the same credentials and work on any archi-
tecture.

Figure 1: previous workflow

• Database server
Postgresql server, depending on the hardware, this
can run on the web server. Ideally this is a ded-
icated server. Some tables like the rpmfiles table
contain over 90,000,000 rows in the Fedora instal-
lation. Fedora is able to provide scripts to enable
backups of the database. Postgres 8.3 is recom-
mended due to it having working autovacuum sup-
port.

• builders
At least one but preferably more, they need to have
read only access to the file system that koji stores
its packages on, this can be via http, nfs, iscsi, etc.
In order to run createrepo tasks, at least one builder
needs the local access to the koji file system.

• bandwidth
Pushing up images, rawhide, and updates takes up
bandwidth, uploading 30 to 60 gigabytes for a re-
lease at 1 mbit/s takes a long time.

2008 Linux Symposium, Volume One • 139

Figure 2: new workflow workflow

• mirrors
Right now we are unable to provide mirrors. We
are working on enabling hosting and mirroring of
release trees. Secondary architectures will always
be responsible for hosting their own infrastructure.

• Sand Box Machines (optional but recommended)
Gives a workspace for Fedora maintainers to do
test builds and debug failures using mock. This

will be an environment that will help people who
want to help but don’t have access to hardware.

6 Fedora Provided Resources

• Package CVS
Every package built for all architectures must come
from Fedora cvs. This will ensure that we can be in
compliance with the GPL, everyone will also know
where to go.

• User authentication
All users on secondary architecture hubs are iden-
tified by using the same certificates, there is seam-
less SSL authentication across all secondary archi-
tecture hubs.

• Packagers
Fedora has 596 packagers maintaining over 6000
source packages. Many, but not all of these peo-
ple, will help fix bugs on secondary arches for the
packages they maintain.

• Framework
There is an existing framework and mechanism to
support new contributors and contributions. Pack-
age management, workflow management, and user
support are all taken care of, greatly lowering the
barrier to entry of starting your own distribution
project. Fedora has resources for hosting upstream
projects called fedorahosted. As well as VoIP and
mailing lists for communications. Fedora uses
freenode for irc communications.

• Best practice guidelines
Fedora has a set of packaging guidelines
http://fedoraproject.org/wiki/
Packaging/Guidelines which are con-
stantly evolving and growing as new types of
software are added to package repositories. Fedora
is at the forefront of Linux development. Many
things like selinux, xen, gcj, OpenJDK and Net-
workManager shipped first in Fedora. Fedora is
also heavliy involved in upstream development of
many technologies. New gnome releases regularly
ship first in Fedora.

• Release engineering tools and support
Fedora’s insistance that everything be open means
that not a single proprietary tool is used to pro-
duce the distribution. In the past the hardest part

140 • Secondary Arches, enabling Fedora to run everywhere

in doing your own release was getting tools to do
composes. With the merge of Core and Extras Red
Hat’s previous tools were dropped and new open
source tools were created. Fedora Release Engi-
neering is entirely done in the open, and release en-
gineering team members are available to help with
issues. As things move forward we will have new
problems to tackle, being open we will be able to
resolve them all.

7 Existing Fedora Tools

• koji
http://koji.fedorahosted.org
Terminology

In Koji, it is sometimes necessary to distinguish be-
tween the package in general, a specific build of
a package, and the various rpm files created by
a build. When precision is needed, these terms
should be interpreted as follows:

Package:

– The name of a source rpm. This refers to
the package in general and not any particu-
lar build or subpackage. For example: kernel,
glibc, etc.

Build:

– A particular build of a package. This refers
to the entire build: all arches and sub-
packages. For example: kernel-2.6.9-34.EL,
glibc-2.3.4-2.19.

RPM:

– A particular rpm. A specific arch and
subpackage of a build. For example:
kernel-2.6.9-34.EL.x86_64, kernel-devel-
2.6.9-34.EL.s390, glibc-2.3.4-2.19.i686,
glibc-common-2.3.4-2.19.ia64.

Koji Components

Koji is comprised of several components:

– koji-hub is the center of all Koji operations.
It is an XML-RPC server running under
mod_python in Apache. koji-hub is passive
in that it only receives XML-RPC calls and
relies upon the build daemons and other com-
ponents to initiate communication. koji-hub

is the only component that has direct access
to the database and is one of the two compo-
nents that have write access to the file system.

– kojid is the build daemon that runs on each
of the build machines. Its primary responsi-
bility is polling for incoming build requests
and handling them accordingly. Koji also has
support for tasks other than building. Creat-
ing install images is one example. kojid is
responsible for handling these tasks as well.
kojid uses mock for building. It also creates a
fresh buildroot for every build. kojid is writ-
ten in Python and communicates with koji-
hub via XML-RPC.

– koji-web is a set of scripts that run in
mod_python and use the Cheetah templating
engine to provide an web interface to Koji.
koji-web exposes a lot of information and
also provides a means for certain operations,
such as cancelling builds.

– koji is a CLI written in Python that provides
many hooks into Koji. It allows the user to
query much of the data as well as perform ac-
tions such as build initiation.

– kojira is a daemon that keeps the build root
repodata updated.

Koji organizes packages using tags. In Koji a tag is
roughly analogous to a beehive collection instance,
but differ in a number of ways:

– Tags are tracked in the database but not on
disk.

– Tags support multiple inheritance.

– Each tag has its own list of valid packages
(inheritable.)

– Package ownership can be set per-tag (inher-
itable.)

– Tag inheritance is more configurable.

– When you build you specify a target rather
than a tag.

A build target specifies where a package should be
built and how it should be tagged afterwards. This
allows target names to remain fixed as tags change
through releases [2].

• mash
http://mash.fedorahosted.org

2008 Linux Symposium, Volume One • 141

mash is a tool that creates repositories from koji
tags, and solves them for multilib dependencies.

• pungi
http://pungi.fedorahosted.org
The pungi project is two things. First and foremost
it is a free opensource tool to spin Fedora installa-
tion trees and isos. It will be used to produce Fe-
dora releases from Fedora 7 on, until it is replaced
by something better. Secondly, pungi is a set of
python libraries to build various compose-like tools
on top of. Pungi provides a library with various
functions to find, depsolve, and gather packages
into a given location. It provides a second library
with various functions to run various Anaconda
tools on the gathered packages and create isos from
the results.

• livecd-tools
livecd-tools lives in a git repo at http://
fedorahosted.org/. In a nutshell, the livecd-
creator program

– Sets up a file for the ext3 file system that will
contain all the data comprising the live CD.

– Loopback mounts that file into the file system
so there is an installation root.

– Bind mounts certain kernel file systems (/dev,
/dev/pts, /proc, /sys, /selinux) inside the in-
stallation root.

– Uses a configuration file to define the re-
quested packages and default configuration
options. The format of this file is the same as
is used for installing a system via kickstart.

– Installs, using yum, the requested packages
into the installation using the given reposito-
ries.

– Optionally runs scripts as specified by the live
CD configuration file.

– Relabels the entire installation root (for
SELinux.)

– Creates a live CD specific initramfs that
matches the installed kernel.

– Unmounts the kernel file systems mounted in-
side the installation root.

– Unmounts the installation root.

– Creates a squashfs file system containing
only the ext3 file (compression.)

– Configures the boot loader.

– Creates an iso9660 bootable CD.

8 New Tools Needed

• kojisd
kojisd is a new tool written to monitor one hub
and on success of tasks to repeat the task on a sec-
ond hub. There are two things that we want to do.
Maintain tags/targets and build packages using a
buildroot which is as identical as possible. Due to
the high possibility during rampup that packages
will fail we are saying that if we have a newer build
on the secondary hub then that’s ok. It also sim-
plifies buildroot management. We can follow the
same principles that the primary hub does. The one
thing we add is to ensure that for instance things
depending on a specific version of xulrunner are
built against that version since build timings will
vary on different architectures.

Many options in kojisd are configurable. For in-
stance you can choose to import packages based on
architecture, and whitelist/blacklist targets to build
for. For Secondary Architecture purposes we will
be importing noarch packages. For someone layer-
ing products on top of Fedora they can import all
builds.

9 Secondary architecture Teams

We currently have teams working on ARM, Alpha, Ita-
nium, S390, and SPARC.

9.1 ARM

• Hub: Not yet available.

• Team Page: http://fedoraproject.org/
wiki/Architectures/Arm

Arm is being lead by Lennert Buytenhek. The base-
line ARM CPU architecture that we have chosen to sup-
port is ARMv5, Little Endian, Soft-Float, EABI. We be-
lieve that this provides a nice baseline and that the pre-
built packages and root file system images will be usable
on many of the modern ARM CPUs, including XScale,
ARM926, and ARM-11, etc.

142 • Secondary Arches, enabling Fedora to run everywhere

9.2 Alpha

• Hub: http://alpha.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/Alpha

The Alpha team is being lead by Oliver Falk and has Jay
Estabrook as a member. Fedora Alpha started out as the
AlphaCore Linux Project, when Red Hat stopped sup-
port for Alpha with Red Hat Linux 7.1. Fedora Alpha is
the continuation of the AlphaCore efforts, in an official
capacity as part of the Fedora Project.

9.3 Itanium

• Hub: http://ia64.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/IA64

The IA64 team is being lead by Doug Chapman, and has
Tim Yamin, Prarit Bhargava, Yi Zhan, Jes Sorensen, and
George Beshers as members. The IA64 work is based
on unofficial releases composed from builds as a side
effect of Fedora’s buildsystem before the merge. It was
maintained in sorts after and is now becoming official.

9.4 S390

• Hub: http://s390.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/
wiki/Architectures/s390x

The S390 team is being lead by Brad Hinson and has
Brock Organ as a member. The work on s390 is being
based on RHEL5.

9.5 SPARC

• Hub: http://sparc.koji.fedoraproject.

org

• Team Page: http://fedoraproject.org/

wiki/Architectures/SPARC

The SPARC team is lead by Tom Callaway, and has
Peter Jones, Patrick Laughton, and I as members. We
have a wide range of SPARC hardware. Fedora, unlike
Aurora SPARC Linux, will support only UltraSPARC
and higher hardware due to lack of an upsteam kernel
maintainer for older SPARC. All user land is being built
for sparcv9 and sparc64, with sparcv9 recommended for
use.

10 How can the Secondary Architecture work
help layering products on top of Fedora?

Using the tools written for secondary architectures, you
are able to pull into your own koji setup builds from
Fedora as they happen. Using a trigger mechanisim you
are able to build your own packages when new packages
are built in Fedora.

References

[1] Fedora Secondary Architecure proposal,
http://fedoraproject.org/wiki/
TomCallaway/
SecondaryArchitectures.

[2] Fedora wiki Describing koji. http:
//fedoraproject.org/wiki/Koji.

Application Testing under Realtime Linux

Luis Claudio R. Gonçalves
Red Hat Inc.

lgoncalv@redhat.com

Arnaldo Carvalho de Melo
Red Hat Inc.

acme@redhat.com

Abstract

In the process of validating the realtime kernel and val-
idating third-party applications under this kernel, it was
necessary to build a set of small tools to understand dif-
ferent behavior presented by applications and the kernel
itself.

We have identified several practices and common mis-
takes that could be harmful to performance and deter-
minism in a Linux RT environment. We used systemtap
and other tools to identify these problems and in some
cases, to fix them or test alternatives without touching
the application code.

1 Introduction

This paper talks about experiments conducted on sys-
tems with PREEMPT_RT Realtime enabled kernels.
The main features of the PREEMPT_RT patch were
already described in papers [1] and the Project wiki
page [2].

The main goal of PREEMPT_RT is to offer determin-
ism, predictability to the highest priority tasks in the sys-
tem. The project is moving in a fast pace, and most of
its mature features have already been merged upstream.

In the search for determinism, several well established
entities had been touched and changed. Examples are:

• sleeping spin_locks – in the PREEMPT_RT patch
most spin_locks were converted to rt_mutexes and
can sleep. This leads to better kernel preemption
capabilities.

• threaded interrupts – Interrupt Service Routines are
now threaded. This prevents, for instance, lower
priority tasks doing heavy I/O activity from creat-
ing latencies in higher priority tasks.

• threaded softirqs – each softirq has its thread and so
the system administrator has the ability to change
their priorities in order to favor the ones more im-
portant for his application.

• priority inheritance – avoid priority inversion by
boosting the priority of a lower priority thread
to the priority of the thread waiting for the re-
source, if higher. This is possible, in part, because
rt_mutexes have the concept of ownership.

Sleeping spin_locks and threaded IRQs are bound to-
gether, because it is necessary to have a process context
in order to sleep. This way, interrupt processing had to
be delegated to specialized threads. Sleeping spin_locks
are also building blocks for priority inheritance. These
features are the foundations on which PREEMPT_RT is
built.

Realtime is all about determinism, predictable behav-
ior. There are certain practices in application develop-
ment that may hurt these premises and lead a system to
present a Byzantine behavior.

Along with determinism comes extra flexibility, as en-
tities like interrupt handlers can now be prioritized, al-
lowing the user to tune the environment to better server
particular workloads. User applications can have priori-
ties higher than any IRQ or kernel thread. Of course, ap-
plication errors in such a high priority can lead to prob-
lems. A busy loop could starve disk IRQ or any other
subsystem.

2 About the Tests

Most of the examples presented here are based in experi-
ence acquired while testing customer applications. Most
of the tests happened under the “It runs slower on RT!”
pressure. That alone was enough motivation to find the
root cause of the observed behavior.

• 143 •

144 • Application Testing under Realtime Linux

On one hand, the objective of Realtime is determinism
and sometimes the cost of determinism is a negative im-
pact on performance—other areas such as High Avail-
ability suffer from the same problem. On the other hand,
the hit on performance should be as light as possible and
Realtime, in fact, can improve performance in several
scenarios.

That said, there are four main possibilities for the per-
formance penalties observed:

• Problem in the kernel – a simple example is the
case where a user application was aborting due to
system load reaching the defined limit in the test,
that was caused by a bug in the kernel system load
calculation routine;

• Problem in the application – user application was
multithreaded and not all the threads were running
in the same priorities, or at least in reasonable pri-
orities, causing the lowest priority thread to starve;

• Problem in both – race condition in user applica-
tion that was more likely to be reached in Realtime,
due to system architecture, triggered a kernel bug
in a code path not usually exercised;

• Incorrect comparison – comparing results from
running the test application in tuned environment
versus running the test application in a system with
out of the box settings.

2.1 Avoid using sched_yield

A good description on the problem of using sched_
yield on Realtime was written [3]. After discussing
the problem of “trying to help the scheduler,” the author
notes:

One example can be found in recent changes
to the iperf networking benchmark tool, that
when the Linux kernel switched to the CFS
scheduler, exhibited a 30% drop in perfor-
mance. Source code inspection showed that it
was using sched_yield in a loop to check
for a condition to be met. After a fix was
made, the performance drop disappeared and
CPU consumption went down from 100% to
saturate a gigabit network to just 9%. [4]

The use of sched_yield is not recommended in Realtime
and that serves as a good example how systemtap can be
used to identify usage of a certain system call or kernel
function and account the usage:

#! stap

pid, process_name and number of calls
to sched_yield()
global process_list

probe syscall.sched_yield {
p = pid()
e = execname()

if (process_list[p,e])
process_list[p,e] += 1

else
process_list[p,e] = 1

}

probe end {
foreach ([pid+, name] in process_list)

printf ("%s[%d] called sched_yield %d times\n",
name, pid, process_list[pid, name])

}

This systemtap script will run until Ctrl+C is pressed.
Once interrupted, this systemtap script will inform you
of the processes that have called sched_yield() and the
number of times it was called by each process. For ex-
ample:

[root@lab tmp]# stap sched_yield.stp
ping[2848] called sched_yield 14 times

2.2 Bad Priority Assignment

Due to PREEMPT_RT nature, interrupts are threaded
and so are several other kernel subsystems. A user ap-
plication running at the highest available priority, or a
priority high enough to be above certain kernel subsys-
tems, if not carefully crafted, can freeze the system. A
good piece of advice is to avoid running applications at
the highest available priority.

A simple example of this case would be the highest pri-
ority application running a busy loop, creating statistics
that will be sent to disk before the loop ends. That was
what probably happened with the gtod_latency test in
this email thread [5], where disk IRQ thread was unable
to run until gtod_latency finished its busy loop.

The opposite case, where the application under test runs
at the lowest priority, or on a priority so low that any

2008 Linux Symposium, Volume One • 145

other process could preempt it, is also a disaster if the
application is expected to have a high throughput. Ob-
serving /proc/<pid>/status can provide valu-
able information, especially in the nonvoluntary_
ctxt_switches field. This field keeps track of the
number of times this process has been preempted by
other tasks, so a high number in this field would result
in high latencies in process because everytime a pro-
cess gets preempted, its work is interrupted until it gets
rescheduled to run again.

This is the easiest case to observe and fix. However,
sometimes this problem can be hid when several threads
have reasonable priorities except for one with an unac-
ceptable priority. The common way of verifying this is
just a matter of using ps:

[root ~]# ps -emo pid,tid,policy,pri,rtprio,cmd
...
3826 - - - - /usr/lib64/.../firefox-bin

- 3826 TS 19 - -
- 3848 TS 19 - -
- 3849 TS 19 - -
- 3855 TS 19 - -
- 3856 TS 19 - -
- 3857 TS 19 - -
- 3869 TS 19 - -
- 8854 TS 19 - -

...

What is the best priority to use? That depends on various
factors such as what the application does, how it works,
what the most important resource for application is , and
the like. It should be noted here that the system can
be fine-tuned to favor the IRQ or softirq that is most
important for the application.

Another important thought to bear in mind is: what will
be the scheduler policy of use? Will that be SCHED_
FIFO or SCHED_OTHER? Changing scheduler policy
and priorities can enhance performance or turn your ap-
plication into a Denial-of-Service tool.

The tool used to run a given application with the desired
priority and under the desired scheduler policy is chrt.
This tool can also be used to modify priority and sched-
uler policy of running processes. It is also possible for
the application to set these parameters by itself.

For some of the tests, running the test application at a
higher priority and with a better scheduler policy solved
the performance issue.

2.3 Resource Allocation

There is a saying in realtime stating that every needed
resource should be allocated in advance. Dynamic allo-
cations are prone to resource contention and other laten-
cies which are the worst offenders in realtime.

Whenever an application requests memory allocation,
the kernel tries to carry this task as fast as possible.
Eventually, these memory pages may not be available
and a certain level system reorganization will be re-
quired, delaying the requested memory delivery. Some-
times not all requested memory pages are ready to use
and when accessed, if not ready, they may trigger a mi-
nor page fault. In this case, the kernel will need to per-
form a few steps to solve the situation. This scenario can
get more complicated, and the requested memory allo-
cation could trigger a major page fault, where the kernel
may need to swap memory pages of another application
in order to free memory pages for the requesting appli-
cation. These latencies can be big enough to hurt the
realtime constraints of the application.

This case can be even worse because it involves I/O ac-
cesses and depending on the system configuration, it
may become a nightmare. Imagine a system using a
network file system where in order to get the requested
memory pages, the system has to flush some buffers
through the network. In the context of realtime appli-
cations that may lead to unbounded latency spikes and
the end of determinism.

Another interesting point is that when a process runs
into a page fault it will be frozen, with all its threads,
until the kernel handles the page fault.

There are several ways to address this case [6], with the
use of mlock() and related functions being the com-
mon solution. Unfortunately, the real solutions here re-
quire changes in the source code.

Information about the amount of minor and major page
faults that already happened to a given application can
be obtained using:

• /proc/<pid>/stat – this file has a huge
amount of data about the process indicated by pid.
There are four fields presenting the number of mi-
nor and major page faults faced by this process
and the number of page faults faced by its child

146 • Application Testing under Realtime Linux

if you have problems hooking on exit_mm, use profile_task_exit instead.

probe kernel.function("exit_mm") {
printf("%s(%d:%d) stats:\n", execname(), pid(), tid())
printf("\tPeakRSS: %dKB \tPeakVM: %dKB\n",

$task->mm->hiwater_rss*4, $task->mm->hiwater_vm*4)
printf("\tSystem Time: %dms \tUser time: %dms\n",

$task->stime, $task->utime)
printf("\tVoluntary Context Switches: %d \tInvoluntary: %d\n",

$task->nvcsw, $task->nivcsw)
printf("\tMinor Page Faults: %d \t Major Page Faults: %d\n",

$task->min_flt, $task->maj_flt)
}

Figure 1: Simple script for observing resource usage by processes

processes. The position of this information may
change from kernel version to kernel version and
it is recommended looking for “contents of the
stat file” in the file filesystems/proc.txt
in your kernel documentation.

• getrusage – this function returns resource usage
information for a given process. Although not all
information fields are available in Linux, page fault
information is present.

• task_struct – the two methods above gather
information from processes’ task_struct. It is
possible to write a simple systemtap script to get
this information directly from the source. Later in
this session, we will present a systemtap script that
gets page faulting information when a given pro-
cess exits.

Some system calls are known to generate page faults;
e.g., fopen calls mmap to allocate memory which can
lead to a page fault. Some are known to present laten-
cies or to have a time resolution that may not be good
enough for some applications such as select timeout
mechanism which uses a jiffie based timer. Careful
thought and engineering can overcome these issues. A
simple approach is to have a separate thread to deal with
file operations and other latency prone tasks.

Creating threads on-the-fly can also be a problem if
there is a constraint for the time between the event that
should trigger thread creation and this new thread han-
dling the event. The same thought is valid for creating
new processes through fork().

As already said, there are several ways to get resource
usage information, such as: gathering information from
/proc/<pid>/status in regular time basis; using
the getrusage infrastructure; or writing a systemtap
script that gathers information. One important point to
keep in mind when choosing the method is when would
be the best moment to get the information. Maximum
memory usage would be best acquired when the process
exits. Time spent in thread creation should be measured
during thread creation. The first two methods are harder
to synchronize with specific events. Systemtap scripts
are more flexible and powerful.

The systemtap script below was used to observe re-
source usage by processes. When a process finishes,
the script prints the maximum amount of real and vir-
tual memory used by the application, CPU time used,
voluntary and involuntary context switches, and how
many page faults occurred during process execution.
The script is simple, and shown in Figure 1.

Two interesting notes about the systemtap script in Fig-
ure 1:

• this script gathers information from processes’
task_struct, and it would be easy to show
more information that may be of interest for the
user if needed.

• when a process finishes, it calls exit() that calls
do_exit(). The script hooks on exit_mm()
that is halfway in do_exit()—meaning that af-
ter the script collects data, there still are a few extra
steps until the process finishes. The only data that
may be different is the system time as the process
will spend more time until it really vanishes.

2008 Linux Symposium, Volume One • 147

This script was key to observe that processes were
spending a long time inside of do_exit—in some
cases, up to 10 seconds. That helped understanding why
performance comparisons carried using the time com-
mand were so horrible on PREEMPT_RT. The urge to
fix this issue was placated by the perception that the pro-
cess is exiting, it is already out of the run queue and its
resources will be freed when needed and when the ker-
nel can do that without disturbing the system.

Resource allocation also comprehends CPU allocation
and CPU isolation. For an application with strict real-
time constraints, that makes perfect sense reserving one
or more CPU in a SMP machine. In some cases it is
enough to be sure that thread A and thread B will run
in different CPU—that can be easily achieved using the
taskset command. Sometimes it is necessary to be
sure that nothing else will run in a given CPU set, only
the application—in this case the best solution is to use
the isolcpus parameter in the kernel boot command
line [7].

When taking in account the fact that PREEMPT-RT
has more kernel threads running simultaneously due to
threaded IRQ and softirq, it is clear that there are more
processes competing for CPU time and that the sched-
uler works harder to accommodate all tasks. CPU iso-
lation is a valuable tool especially when the application
under test does not follow the guidelines discussed in
this paper.

2.4 Using libautocork

What to do when a customer application shows
60% performance degradation when running on PRE-
EMPT_RT? And what if after careful system tuning the
performance degradation is about 40%?

As the application was network based, the first idea was
asking the customer all the information about packet
sizes, interval between packets, socket flags in use, and
everything else that could give clues to solve the issue.
Of course, source code was requested for inspection.
Most of the specific questions were not answered and
access to source code was denied due to internal secu-
rity policies.

Several attempts to reproduce the problem in the labo-
ratory, based on the information available, failed miser-
ably. At this point, tests were carried by the customer

and our main concern was to not abuse or bother a cus-
tomer that was as cooperative and helpful as possible.

Several small systemtap scripts were written to get
socket information, packet size, protocols in use and ev-
erything else. At a certain point Nettaps [8] was created,
a set of tapsets and systemtap scripts collecting ideas
discussed during the tests and a mix of the most relevant
scripts already written. These scripts were sent to the
customer and he was able to provide us valuable infor-
mation on the internals of his application and runtime
information.

The drill.stp [8] script collects information on the
number of times each thread calls writev, poll,
select, and sched_yield. It also collects statistics
on lock contention, per thread and per lock. The last bit
of information provided by this script is detailed infor-
mation on network connections, including buffer size,
packet size, average sizes for both buffers and packets,
the status on Nagle usage, delayed ACK and similar in-
formation. An excerpt from a drill.stp’s test run:

[root@lab nettaps]# stap -I tapset drill.stp
thread: tid name nrwritev nrpoll nrselect
nrsched_yield
thread: 1934 auditd 6 0 6 0
thread: 1935 auditd 0 0 0 0
thread: 2652 sshd 0 0 4 0
thread: 3300 sshd 0 5 0 0
thread: 3301 sshd 0 0 8 0
thread: 3302 sshd 0 1 37 0
lock: tid futex nrcontentions avg min max
lock: 1934 0x000055555576d508 1 43672 43672 43672
lock: 1935 0x000055555576d534 1 1960 1960 1960
connection: tid saddr sport daddr dport nrbf
avgbfsz minbfsz maxbfsz nrpkts avgpktsz minpktsz
maxpktsz nagle da ka wr
connection: 2652 192.168.0.200 22 192.168.0.100
38915 2 392 176 608 2 392 176 608 O 0 0 2
connection: 3300 192.168.0.200 22 192.168.0.100
36042 1 20 20 20 2 10 0 20 O 7 0 5
connection: 3301 192.168.0.200 22 192.168.0.100
36042 7 297 32 744 8 260 0 744 O 7 0 5
connection: 3302 192.168.0.200 22 192.168.0.100
36042 17 58 48 96 15 57 48 96 O 7 0 5

The second script sent to the customer, also part of Net-
taps, was lnlat [8]. This script gathers information
about packet flow, such as time spent by a packet when
traveling from the network interface up to the user space
application waiting for it, time between a user space ap-
plication sending a packet and that packet reaching the
network, network stack latency, and buffer size statis-
tics. Running lnlat produces data like Figure 2.

148 • Application Testing under Realtime Linux

[root@lab nettaps]# stap -I tapset lnlat.stp

latency(ns) buffer size
entry local address port remote address port avg min max avg min max

user_in 10.0.0.152 43667 10.0.0.152 20975 38802 38802 38802 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52965 37717 37717 37717 0 0 0
user_in 10.0.0.164 51375 10.0.1.234 2222 35590 35590 35590 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52964 51630 51630 51630 0 0 0
user_in 10.0.0.164 20975 10.0.0.164 52995 32706 32706 32706 0 0 0
user_in 10.0.0.152 20975 10.0.0.152 43687 32676 32676 32676 0 0 0
user_in 10.0.0.152 20975 10.0.0.152 43666 50457 50457 50457 0 0 0
user_in 10.0.0.164 37451 10.0.1.234 2222 40151 36293 44010 0 0 0
tcp_out 10.0.0.164 20975 10.0.0.164 52966 1750 818 8150 48 0 232
tcp_out 10.0.0.164 52966 10.0.0.164 20975 12360 6260 26967 7604 624 16384
tcp_out 10.0.0.152 20975 10.0.0.152 43666 1708 928 2488 20 0 40
tcp_out 10.0.0.152 43666 10.0.0.152 20975 5404 5404 5404 40 40 40
tcp_out 10.0.0.152 20975 10.0.0.152 43668 1710 837 7104 48 0 232
tcp_out 10.0.0.152 43668 10.0.0.152 20975 13161 6734 33385 7604 624 16384
tcp_out 10.0.0.152 20975 10.0.0.162 41931 197615 8602 1154511 2585 496 4344
tcp_out 10.0.0.164 52995 10.0.0.164 20975 1078 853 1589 3 0 40
tcp_out 10.0.0.164 20975 10.0.0.164 52995 3493 1042 6633 713 0 840
tcp_out 10.0.0.164 51371 10.0.1.234 2222 1876 1236 3082 20 0 34
tcp_out 10.0.0.152 43687 10.0.0.152 20975 1144 864 1707 3 0 40
tcp_out 10.0.0.152 20975 10.0.0.152 43687 3461 850 6736 713 0 840
tcp_out 10.0.0.164 20975 10.0.0.164 52965 1478 931 2025 20 0 40

Figure 2: Output from stap -I tapset lnlat.stp

Analyzing information received from the customer, that
was not the one in the examples just shown, we were
able to understand that:

• customer application was TCP/IP based;

• customer application was using the default NAGLE
algorithm [9];

• sending millions of small-sized packets;

• sending packets in a burst, without inter-packet in-
terval.

Being the most used transport protocol poses a fantastic
challenge for TCP to meet many different needs. Sev-
eral heuristics were introduced over time as new appli-
cation use cases and new hardware features appeared
and as well kernel architecture optimizations were im-
plemented. In an impressive way, default TCP/IP set-
tings are able to satisfy most users.

As one example of the heuristics in use, TCP delays
sending small buffers, trying to coalesce several before
generating a network packet. This normally is very ef-
fective, but in some cases this heuristic is not the better
fit.

Applications that want lower latency for the packets to
be sent, especially when working with small packets,
will be harmed by this TCP heuristic. There is a knob for
applications that want to avoid this algorithm, a socket
option called TCP_NODELAY. Applications can use it
through setsockopt sockets API:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_NODELAY,

&one, sizeof(one));

But for this to be used effectively, applications must
avoid doing small, logically related buffer writes as this
will make TCP send these multiple buffers as individual
packets, and TCP_NODELAY can interact with receiver
optimization heuristics, such as ACK piggybacking, and
result in poor overall performance. In other words, both
sender and receiver have to be in tune.

There are several sources of latency for TCP connec-
tions [10] and sometimes the solutions applied to a given
operating system network stack may not be the best one
for another. This becomes clear when working with ap-
plications ported from one operating system to another.

It was suggested to the customer using TCP_NODELAY
to solve, at least partially, the performance drop. But the
customer argued that even though the change seemed to

2008 Linux Symposium, Volume One • 149

be simple, touching the code was not an option. If we
could prove him that a considerable performance gain
would be perceived he could try convincing his man-
agers.

Using ideas discussed when trying to correlate data ob-
tained from the Futex Contention systemtap example
script [11] and the actual locks in the application, a
Glibc stub was written to set TCP_NODELAY on the
sockets used by a given application. The results were
satisfactory but the behavior of TCP_NODELAYwas not
the optimal way of enhancing these connections. Then
libautocork [12] was written.

The TCP socket option called TCP_CORK is a less
known option, present in a similar fashion in several OS
kernels, sometimes under a different name. The purpose
of this option is to put a cork in the socket, preventing
packets from being sent through this socket. When the
application decides it is time to send the packet or pack-
ets, it just removes the cork.

Applying the cork to a socket is just a matter of setting
TCP_CORK with a value of 1, as in this excerpt of code:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_CORK,

&one, sizeof(one));

That tells TCP to wait for the application to remove
the cork before sending any packets, just appending the
buffers it receives to the socket in-kernel buffers. That
allows applications to build a packet in kernel space,
something that can be required when using different li-
braries that provide abstractions for layers.

One example is on the SMB networking protocol code,
where headers are sent together with a data payload, and
better performance is obtained if the header and payload
are bundled in as few packets as possible.

When the logical packet was built in the kernel by the
various components of the application, it is time to re-
move the cork and send the packet. It is important to
note that the kernel does not have a way to identify, on
behalf of the application, that the packet is ready and
must be sent. To remove the cork the application uses:

int zero = 0;

setsockopt(descriptor, SOL_TCP, TCP_CORK,

&zero, sizeof(zero));

That makes TCP send the accumulated logical packet
right away, without waiting for any further packets from
the application, something that it would do in other
cases, to fully use the network maximum packet size
available.

In order to verify the impact of TCP_CORK on the cus-
tomer application, without access to source code, we de-
cided writing a library to be preloaded and interfere in a
few socket related operations. There were other options,
such as a systemtap script to touch the system calls re-
lated to the functions intercepted by libautocork but the
preloaded library offered lower overhead and was sim-
pler to write.

Using libautocork is just a matter of:

LD_PRELOAD=libautocork.so ./customer_app

Libautocork applies the cork to the sockets and automat-
ically removes it whenever the application waits for an
answer to what has been sent. The removal of the cork
happens when the application calls recv, recvmsg,
select and similar functions.

2.5 Comparing Apples to Apples

System configuration plays an important role in perfor-
mance test results. In addition, it is important to com-
pare results in the same environment, changing the min-
imal set of elements possible.

When a little knob is changed, the system may behave
in a completely different way during the test. As these
knobs vary from /proc/sys writable files to device
drivers parameters in modules, it may be a hard job to
record the exact environment where a test has been con-
ducted. Even the default values for knobs that were not
touched may vary from kernel version to kernel version.

Depending on the nature of the application under test,
some knobs have no effect on the test. Some knobs may
have a visible effect on the results. Determining all the
available knobs and their values and eventually record-
ing these values to replay a test or perform another test
in the same environment is surely a difficult task.

Some effort has been done to address this need and
projects like Tuna [13] and AIT are good examples of
such tools. The authors recommend using similar tools
to ease the task of comparing results, defining best con-
figurations and even identifying regressions.

150 • Application Testing under Realtime Linux

2.6 Conclusion

Testing applications under PREEMPT_RT was, most of
time, a refreshing and enlightening task. Understand-
ing why a given application presented such a different
behavior or performance just by changing the kernel or
why some race conditions and bugs were more likely to
be triggered under PREEMPT_RT was really insightful.
In fact, even kernel subsystems and device drivers had
bugs and race conditions uncovered by PREEMPT_RT.
The bugs were there all the time, but PREEMPT_RT
was more likely to trigger them—this way, several bugs
were found and fixed.

On the other hand, seeing all the theories about a given
problem falling apart, being unable to reproduce a bug,
having to solve a negative performance hit presented
by an application without access to information or the
source code was sometimes hard to manage. It was
even harder to reproduce the exact test environment or
the best configuration found without a tool. These mo-
ments required creativity and revived the joy of coding
and hacking.

The authors hope the reader will benefit from the system
tuning and development techniques briefly described in
this paper. Hopefully, the readers will even feel in-
spired by the testing ideas explained through the text
and endure the process of creating their own test devices
and tools or even automating “bad coding techniques”
checking. We hope that ultimately, the reader will find
the tools presented here helpful and use them to solve
his/her problems.

References

[1] Steven Rostedt and Darren V. Hart, “Internals of
the RT Patch,” Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, 2007, pp.
161–172.

[2] Real-Time Linux Wiki,
http://rt.wiki.kernel.org

[3] Arnaldo Carvalho de Melo, Techniques that can
have its behavior changed when the kernel is
replaced,
http://oops.ghostprotocols.net:
81/acme/unbehaved.txt

[4] Ingo Molnar, Re: Network slowdown due to CFS,
http:
//lkml.org/lkml/2007/9/26/132

[5] http://www.mail-archive.com/
linux-rt-users@vger.kernel.org/
msg02364.html

[6] HOWTO: Build an RT-application, http:
//rt.wiki.kernel.org/index.php/
HOWTO:_Build_an_RT-application

[7] Kernel boot parameters, Documentation/
kernel-parameters.txt

[8] Nettaps,
http://oops.ghostprotocols.net:
81/acme/nettaps.tar.bz2

[9] Wikipedia, Nagle’s algorithm,
http://en.wikipedia.org/wiki/
Nagle’s_algorithm

[10] Robert A. Van Valois, Todd L. Montgomery,
Steven R. Wright, and Eric Bowden, Topics in
High-Performance Messaging,
http://www.29west.com/docs/THPM/
thpm.html#TCP-LATENCY

[11] Systemtap War Stories: Futex Contention,
http://sourceware.org/systemtap/
wiki/WSFutexContention

[12] Libautocork,
http://git.kernel.org/?p=linux/
kernel/git/acme/libautocork.git;
a=blob_plain;f=tcp_nodelay.txt

[13] Arnaldo Carvalho de Melo, “If I turn this
knob. . . what happens?,” Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, 2008.

IO Containment

Naveen Gupta
Google Inc.

ngupta@google.com

Abstract

In existing Linux IO schedulers there is no way to dif-
ferentiate latency-sensitive IO from the background IO.
This means that jobs which have strong latency require-
ments cannot coexist with batch jobs. In the past various
ad-hoc solutions have been used to limit latencies such
as throttling background workload, periodic syncing to
handle delayed writes, and limiting the queue length.

With increasing CPU and memory speeds we generally
end up having multiple applications on the same ma-
chine sharing the disk. In the absence of differential
service, it is not possible to run a latency-sensitive ap-
plication along with a job doing batch updates. We have
added priorities in the anticipatory IO scheduler so that
an IO submitted by an application can be treated differ-
ently depending on the priority of IO. We are able to
show considerable improvement in the latency of high
priority applications using this mechanism.

1 Introduction

There is an effort within the Linux community to pro-
vide isolation for memory and network resources to run
multiple jobs independently on a single machine. IO
containment has been a difficult problem for various rea-
sons. The non-deterministic nature of storage devices
makes any kind of QoS or isolation a harder problem
for IO as compared to other computing resources. Vari-
ations in an IO stream—like size, placement of data on
platter, or seek distance—have played a major role in
determining throughput and latency. This inability to
quantify the device characteristics leads to inefficiency
when performing any kind of isolation. Even the ap-
plications sharing these resources have vastly different
performance and service quality requirements.

Disk isolation can be done over one or multiple IO
characteristics. For workloads needing different ser-

vice rates—bandwidth scheduling—which may be im-
plemented as a strict bandwidth guarantee or as pro-
portional scheduling, may suffice. Latency bounds are
needed for real-time applications sharing their storage
resources, while allocation of time slices is needed for
shared usage in applications wanting to schedule for
non-deterministic things like rotational delay and seek
time rather than raw throughput. Resource accounting
frameworks may need to limit the number of seeks in a
given container. Relative priority of a request as com-
pared to other outstanding requests is helpful in sepa-
rating latency-sensitive traffic from best-effort traffic. In
context of web searches, we need to serve low-latency
user traffic independent of background index updates.

The Linux mainline has support for four different IO
schedulers [5]. They have mainly aimed towards im-
proving bandwidth by reordering requests, submitting
them in batches, and merging outstanding requests. The
deadline scheduler tries to process all read requests
within a specified time period by selecting expired read
requests from a FIFO list. The anticipatory scheduler
[14] is a non-work-conserving scheduler which reduces
seeks for a sequential workloads. The CFQ sched-
uler allocates requests fairly amongst various processes,
while NO-OP provides basic merging. Apart from CFQ,
which allocates larger time slices to higher priority pro-
cesses, there is no differential service in the current
mainline IO schedulers.

Our current work uses non-work-conserving scheduling
to provide priority-based scheduling by building upon
the anticipatory scheduler. The current implementation
of the anticipatory scheduler solves the problem of de-
ceptive idleness [14] present in applications which issue
synchronous reads. It identifies deceptive idleness as a
condition where due to a short period of computation,
the scheduler incorrectly assumes that the last request-
issuing process has no further requests and dispatches
the requests from another process. These workloads
cause seek-optimizing schedulers to multiplex between

• 151 •

152 • IO Containment

requests from different processes. Letting the disk re-
main idle for a short period lets the scheduler select the
next nearby request from the same process, thereby in-
creasing disk performance at the cost of a small loss in
utilization. In our work we extend this concept to block
pending requests from a low priority process for a short
duration after submitting a request from a high priority
process. This prevents an incoming high priority request
from being delayed due to a dispatched low priority re-
quest. In addition to this a running batch of low priority
processes can be interrupted on seeing a request of high
priority.

2 Related work

Jassura et al. [1] have used both non-work-conserving
and work-conserving approaches at the user and kernel
levels to provide differentiated levels of service in web
content hosting based on priority. Their main metric for
quality of service for an HTTP request was latency. In
their implementation, a request may be postponed if the
load on the system is already high or if the request is
of lower priority. Their solution was not restricted to a
particular subsystem and was a preliminary step in in-
vestigating QoS mechanisms in web servers. In their
study, they observed that they had to limit the number
of processes to have differentiated performance. An
important finding was that a non-work-conserving ap-
proach is better since in their implementation a work-
conserving approach could not do much differentiation
with a large number of processes. Our approach isolates
latency even with multiple antagonists.

Seetarami Seelam et al. [23] proposed that throttling
IO streams in high performance computing systems im-
proved I/O performance. In Linux, similar approaches
are sometimes used to limit the latency of a high priority
job while running a throttled background job with de-
creased utilization. By using a non-working-conserving
scheduler we have been able to improve isolation with-
out throttling the IO streams.

Isolation based on time slicing has been used in
CFQ [3], the eclipse operating system [6], and
YFQ [22]. Argon [27] defined insulation as reduced
interference between workloads, allowing sharing with
a bounded loss of efficiency. But its focus was on
throughput efficiency and though usually it reduced av-
erage response times, it could increase the variation in

latency and worst-case response times. Our implemen-
tation of anticipatory priorities insulates both the aver-
age and maximum latency.

Dynamic selection of IO schedulers [21] investigated
the possibility of using runtime switching of IO sched-
ulers to deadline for providing latency bounds while us-
ing CFQ for best throughput traffic. This selection was
based on feedback from the IO system and the work-
load. Such a technique would be difficult to optimize
for competing workloads while incurring no overhead
for scheduler switches.

In order to compensate for the non-deterministic nature
of disks, QoS schedulers rely on conservative estimates
of bandwidth and latency. Some implementations use
weighted fair queuing coupled with admission control.
[7, 11, 15, 16, 19] all use a fair queuing/tag-based ap-
proach. Even though request stream patterns and the
disk characteristics impact the performance of other ap-
plications, these studies either ignore or take a conserva-
tive estimate. Another approach taken in IO schedulers
[19] is to take into account a disk model, but such tech-
niques are not feasible with numerous disk drives, since
most often it is not specified by the manufacturer and,
models are an approximate representation for today’s
complex drives. Latency-bound IO in QoS scheduling
is orthogonal to our problem, since we want prioritized
traffic to be isolated. We don’t want it to be delayed and
scheduled later to satisfy pre-calculated bounds.

The badger Project [13] solved a similar problem of
improving the latency of transaction synchronous re-
quests while improving the throughput of asynchronous
transaction database requests. They realized that the
only latency control available for synchronous requests
with current schedulers was to limit the number of pend-
ing background requests. Since they were focusing on a
database, they chose to implement priorities in the dead-
line scheduler since it is the most-used IO scheduler for
databases [18]. They implemented one FIFO per prior-
ity level where priority was determined when the dead-
line was set and that low priority IO would wait for a
high priority request. This effectively improved the la-
tency of high priority requests in their experiments with
better throughput than the no-priority, rate-throttling ap-
proach. But since priorities determined when the dead-
line was set, the latency was still bound by this deadline.
Our approach has no disk-parameter-agnostic bounds
and the non-work conserving approach achieves tighter
latency bounds [1]. Also, throughput [4] with the antic-

2008 Linux Symposium, Volume One • 153

ipatory scheduler is inherently more than with deadline
schedulers.

ABISS [10] is designed to provide guaranteed reading
and writing bit-rates to applications, with minimal over-
head and low latency. They use a custom priority sched-
uler and have support for CFQ. Their solution could
use anticipatory priorities since it has lower latency for
higher priority jobs than CFQ.

3 Design

The anticipatory IO scheduler [18] is a one-way ele-
vator algorithm with limited backward movement. It
has FIFO expiration times for both reads and writes.
These queues are maintained separately and expiration
times are tunable. This is similar to the deadline IO
scheduler implementation for interrupting the elevator
sweep. Another feature of the anticipatory scheduler is
batching, where bunches of read requests or write re-
quests are submitted together. The anticipatory sched-
uler alternates dispatching read and writes batches to the
driver. Also, the scheduler anticipates when reads are
dispatched to the driver one at a time. At completion, if
the next request is close to the previous request or from
same process, it is dispatched immediately.

Priority scheduling changes each of these policies to im-
prove response time for a high priority process and pre-
vents starvation of a low priority one. To change these
policies, two data structures are also changed, sort_
list and fifo_list. Changes to these structures
are described below as part of policy changes.

Sort queue: For the one-way elevator, we add two
queues per priority level so that the requests in a given
level can be served independently of requests at any
other level according to their layout on the disk. Instead
of two sort_lists, we now have two sort_list
structs for each level. These lists contain requests in
sorted order according to their layout on disk. A back-
ward seek can still occur when choosing between two
IO requests where one is behind the elevator’s current
position, and the other is in front. As before, if the seek
distance to the request in the back of the elevator is less
than half the seek distance to the request in front of the
elevator, then the request in the back can be chosen.

FIFO queue: Instead of one FIFO queue for each re-
quest direction, we now have two FIFO queues for each

priority level. Only when the requests from a given
priority level are being served, the read or write from
that level expires to interrupt the IO scheduler in its
current one-way sweep or read anticipation. This pre-
vents the starvation of requests in a given priority level.
The expiration times for requests on these lists are tun-
able using the existing parameters read_expire and
write_expire.

Changes to Anticipatory Core: In the vanilla antic-
ipatory scheduler, when a read request completes, the
next request is not dispatched to the driver unless it is
from same process or a nearby request [18]. In the pri-
ority scheduler, the next request will wait if it is from
a process of lower priority, in anticipation of a request
from a process of higher priority. When a request with
higher priority is submitted by the application, it will
break any anticipation happening in the scheduler. This
helps us prioritize a request over a batch of low-priority
requests. It still maintains the earlier statistics on think
time and mean seek distance for the process to decide
if it is worthwhile to wait for a request. The read an-
ticipation can be disabled using antic_expire set to
zero.

Changes to Batch submission: In most IO schedulers,
requests are served in batches where a batch is a set of
requests of one kind (read or write). For a read/write re-
quest, the scheduler submits read requests until there are
more read/write requests to submit and batch time has
not been exceeded. Before scheduling requests for the
alternate direction, the scheduler lets all requests from
the previous batch complete.

In addition to the time limit imposed on batches
by read_batch_expire and write_batch_
expire, the priority scheduler limits the number of re-
quests for a given priority level using tokens associated
with that priority level. Instead of alternately serving
read and write batches, the priority scheduler selects a
particular priority level and submits requests in one di-
rection as long as there are requests in the chosen direc-
tion or there are tokens left for that level. The batching
of requests for a given priority level maintains the lo-
calization per priority level and gets fairly good results
due to inherent batching in processes in a given prior-
ity level. As before, the read and write FIFO expiration
times are checked only when scheduling IO of a batch
for the corresponding (read/write) type.

Handling merges: Merging is another property of vari-

154 • IO Containment

ous IO schedulers. If a request entering the IO scheduler
is contiguous with a request that is already on the queue,
either to the front or to the back of a request, it is called a
front-merge candidate or a back-merge candidate. If the
size of new request is less than what can be handled by
the hardware, this new request is merged with the one
already in queue. With priorities, a request is merged
with an already existing request if it satisfies the above
criteria and also if it is from the same priority level as the
existing request. Merging of the request with a request
from another level should be possible, but we need to see
if this has any performance gain. Also, there is an issue
of whether we need to change the priority band of the
merged request, especially when dealing with logs and
journalled file systems due to a large number of merges.

Handling writes

Attaching Priority: The priority of a request is derived
from the current context and uses the infrastructure in
the Linux kernel for CFQ. Since writes are submitted
asynchronously, they get submitted in the context of
background threads or the process doing direct reclaim.
A prototype implementation was created to attach prior-
ity to the page struct in submission context. This priority
is transferred to the request during submission.

Writes and Page cache: While serving cached read traf-
fic, an application doing writes could effectively wipe
out the page cache unless it is submitted to the eleva-
tor frequently. One of the possible solutions would be
to throttle the dirty path with feedback from the eleva-
tor regarding available tokens for that priority level. A
second approach would be to do memory isolation of
an antagonist job. Fianlly, one can periodically sync the
dirty page cache. For simplicity we adopted this ap-
proach to eliminate interference from background high-
throughput jobs. We experimented using both periodic
dropping of cache and direct IO for background write
traffic.

Workload Description: We have attempted to isolate
latency, in particular we want to improve the latency of
seek-bound (low throughput) search traffic. When this
search traffic is served, in the background, the data that
is being used to serve this search traffic (index) is re-
freshed for more up-to-date results. This interferes with
foreground search traffic. Most of the foreground traf-
fic is random synchronous reads, some of which is sen-
sitive to the amount of cache in the system. We have
synthesized these two workloads to quantify the above

 8

 16

 32

 64

 128

 256

 512

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(m
se

c)

Blocksize (KB)

Antagonist - Mean
Low Priority Antagonist - Mean

Single Thread - Mean
Antagonist - Max

Low Priority Antagonist - Max
Single Thread - Max

Figure 1: Random read latency – varying block size

problem.

1. Sequential read of 80% of the file followed by
random reads to achieve good amounts of hits in
undisturbed cache. This is run along with antago-
nist sequential read/write traffic.

2. Random reads with sequential background read/
write.

4 Experimental Results

We evaluated the performance on two different configu-
rations. The first one is a dual-core 2Ghz system with
8GB of RAM. The test disk is a SATA drive with a
capacity of 400G and 8MB onboard cache. The sec-
ond system is a dual-core 2.4Ghz system with 16GB of
RAM and a SATA drive with a capacity of 500G and
8MB onboard cache. Both systems are running a cus-
tomized 2.6.18 kernel with ext2. The experiments were
conducted using synthetic workloads generated using
fio [2]. The tests were run on separate drives not run-
ning any other workload.

1. Random and Sequential Read Latency

The first experiment is designed to measure the la-
tency impact of random reads in the presence of
competing random reads (Figure 1). It measures
the mean and maximum latency of reads for dif-
ferent block sizes. When more than one thread is
running, both use the same block size. The three
cases in this experiment are

2008 Linux Symposium, Volume One • 155

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(m
se

c)

Blocksize (KB)

Antagonist - Mean
Low Priority Antagonist - Mean

Single Thread - Mean
Antagonist - Max

Low Priority Antagonist - Max
Single Thread - Max

Figure 2: Sequential read latency – varying block size

(a) Single Thread: One thread doing random
reads.

(b) Antagonist: Two threads doing random reads.

(c) Low Priority Antagonist: Two threads doing
random reads at two different priority levels.

When a competing thread is introduced without
any priority (b), the average latency is almost two
times as compared to when a single thread (a) is
running and the max latency is more than double.
On lowering the IO priority of the antagonist (c),
the mean and the maximum latency for the main
job is almost similar to when only a single thread
is running. Changing the priority of the antagonist
has isolated latency of foreground job.

For sequential reads, the results are similar. The
mean latency and the maximum latency are iso-
lated from competing workload on increasing the
IO priority of main thread (Figure 2). In case (b),
the maximum latency is more than 4 times, though
the average latency is almost twice—like in the
case of random reads. Here also, by increasing the
priority of the main thread (c), the effects of an an-
tagonist are minimal.

2. Direct IO

In the second comparison threads are doing random
direct IO (Figure 3). Here also, we have three cases
where:

(a) Single Thread: One thread running doing di-
rect IO.

(b) Antagonist: Two threads doing direct IO at
the same priority level.

 8

 16

 32

 64

 128

 256

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(m
se

c)

Block size (KB)

Antagonist - Mean
Low Priority Antagonist - Mean

Single Thread - Mean
Antagonist - Max

Low Priority Antagonist - Max
Single Thread - Max

Figure 3: Direct IO latency – varying block size

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 0 2 4 6 8 10 12 14 16

La
te

nc
y

(m
se

c)

Number of Threads

No_Priority - mean
Priority - mean

No_Priority - max
Priority - max

Figure 4: Multiple threads in background – block size
4k

(c) Low Priority Antagonist: Two threads doing
direct IO at different priority levels.

In case (c) the latency is reduced, since the prior-
ity scheduler anticipates a high priority IO even if
there is a pending low priority IO in queue. This
means that a high priority IO is not blocked be-
hind a low priority even if the submissions hap-
pened one after the another. In the case of a work-
conserving scheduler, a direct IO submission will
be handed off to the driver and hence the latency
of a high priority job is not isolated from low pri-
ority submissions. For all measured block sizes,
the equal priority antagonist had more than twice
the latency as compared to when a single thread is
running, but when higher priority was assigned to
the main thread, both the average and maximum
latency were reduced to a large extent.

156 • IO Containment

 16

 32

 64

 128

 256

 512

 1024

 2048

 0 2 4 6 8 10 12 14 16

La
te

nc
y

(m
se

c)

Number of Threads

No_Priority - mean
Priority - mean

No_Priority - max
Priority - max

Figure 5: Multiple threads in background – block size
1m

3. Multiple Background Threads

Figure 4 shows the isolation provided to a high
priority job in the presence of multiple low prior-
ity jobs. It has a thread doing 4k direct IO with
a varying number of antagonist jobs doing direct
IO of the same block size. When the antago-
nist threads run at the same priority as that of the
main thread (No Priority), the latency (both av-
erage and maximum) roughly doubles with each
doubling of the number of antagonists. On as-
signing higher priority to the main thread (Prior-
ity), the latency is fairly constant even when the
number of background threads is increased. Fig-
ure 5 plots the results of changing the number of
background threads when the block size is 1MB.
Irrespective of block size, varying the number of
background threads has little or no effect on the la-
tency of the foreground job. Earlier user-level and
kernel-level approaches to using priorities in both
work-conserving and non-work-conserving sched-
ulers [1] required restricting the number of jobs
to obtain differentiated performance. The current
scheme has no such limitation.

4. Rate-limited Background Load

Sometimes in order to limit the latency of a typi-
cal latency-sensitive job which is not throughput-
bound, the background thread needs to be rate lim-
ited. This reduces the probability of interference
of IO from an antagonist on the main workload.
Due to this, the utilization of the disk drive is re-
duced by a large extent. Figure 6 plots latency
of the foreground job while the throughput of the

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

La
te

nc
y

of
 fo

re
gr

ou
nd

 jo
b

(m
se

c)

Bandwidth of background job (KB/s)

No_Priority - Mean
Priority - Mean

No_Priority - Max
Priority - Max

Figure 6: Rate-limited Background Load

background job is increased. In this experiment,
both jobs are requesting 64k-sized buffered reads
sequentially to two different 2GB files on a 400GB
drive for 300 seconds. The foreground job is do-
ing reads at a fixed rate of 4096 kBps, while the
throughput of the background job is varied from
100 kBps to the drive’s maximum capacity. In ab-
sence of any priority (No_Priority), both the mean
and the maximum latency of the foreground job are
affected when the throughput of the background
job increases to around 4096kBps. But when the
foreground job is run at a higher priority (Prior-
ity), its latency is not affected with the increase in
the rate of background job. Even when the back-
ground load is run at its maximum throughput of
~66 MBps, the foreground job is isolated. The
drive is now able to service 16 times more back-
ground traffic, thus increasing its utilization.

Note: The next few experiments describe the per-
formance of random reads in the presence of back-
ground traffic, as described in workload descrip-
tion. The first two experiments simulate a condi-
tion where these random reads are partly served
from cache and there is sequential logging traffic
competing with the foreground load. Various meth-
ods of doing sequential traffic are compared, with
and without priority, to find out the best possible
method which reduces the latency of random reads
and which has good throughput.

Legend:

(a) no-load: Base case with no background log-
ging traffic.

(b) direct-64k: Direct IO of block size 64k in

2008 Linux Symposium, Volume One • 157

background.

(c) buf: 64k-sized sequential buffered IO in
background.

(d) buf-fadv: 64k-sized sequential buffered IO
where the cache is dropped using FADVISE_

DONT_NEED [17] after every 16MB.

(e) buf-prio: 64k-sized sequential buffered log-
ging traffic running at lower priority.

(f) buf-prio-fadv: In addition to lower prior-
ity, sequential buffered antagonist has cache
for the antagonist being dropped after every
16MB.

(g) direct-64k-prio: Direct IO of block size 64k
at lower priority.

(h) buf-sync-16m: 64k sequential buffered back-
ground IO with sync every 16MB.

Type mean max std dev b/w
- (msec) (msec) - MB/s

no-load 5.97 149 7.81 -
direct-64k 33.97 373 83.34 1.9

buf 111.78 528 160.05 0.6
buf-fadv 40.67 784 97.00 1.6
buf-prio 9.34 182 12.42 6.7

buf-prio-fadv 7.74 112 11.05 8.1
direct-64k-prio 7.48 116 10.32 8.3

Table 1: Random cached reads with background se-
quential reads

5. Random Cached Reads With Background Reads

In this setup, 8GB of the 10GB file is read se-
quentially into memory and will form cache for the
foreground thread doing 64k random reads. Ta-
ble 1 shows the mean, max, and standard devia-
tion of latency as well as the average bandwidth
of the foreground job for various kinds of reads in
the background. A random read in the presence
of cached data performs worse when a sequential
buffered read traffic (c) is running in background,
since the logging traffic quickly destroys the cache
and, in the absence of priority, competes with the
foreground random traffic. Lower mean latency
when using fadvise (d) confirms that the ma-
jor portion of increase in latency for the buffered
case comes from the cache being wiped out. Us-
ing lower priority either with buffered (e) or direct

 1

 4

 16

 64

 256

 1024

 4096

 16384

 8 16 32 64 128 256 512

N
um

be
r

of
 I/

O

Latency (msec)

no-load
buf-fadv
buf-prio

buf-prio-fadv
direct-64k-prio

Figure 7: Foreground Cached Random reads – Back-
ground sequential reads

(g) reads in the background reduces both the aver-
age and tails of the foreground job. Reads which
constantly drop cache and run at lower priority (f)
further reduce the average and tails. Direct IO at
lower priority (g) and buffered with cache drop (f)
perform the best as they reduce the latency and
at the same time increase bandwidth of the fore-
ground job. Direct (g) is marginally better than (f).

Figure 7 shows the distribution of per-IO latency of
the main thread. Even though Table 1 shows that
buffered read running with lower priority alone (e)
has a slightly longer tail as compared to when pri-
ority is used along with fadvise (f) or direct IO
(g) for background threads, the graph clearly shows
that running a lower priority read antagonist in all
three cases (running alone (e), with fadvise (f),
and with direct IO (g)) has almost similar distribu-
tion. Running fadvise alone (d) has a very long
tail due to contention in the scheduler.

6. Random Cached Reads With Background Writes

Similar to the last experiment, here also 8GB from
a 10GB file are pre-cached into memory sequen-
tially, followed by the main thread performing 64k
random reads. In this case, the background load
is sequential writes of various kinds, unlike in last
experiment, where we were reading in the back-
ground. Here, direct IO (b) performs the worst
due to contention in scheduler. Sequential (c) is a
lot better, but dropping cache periodically; (d) im-
proves the average latency further. Since the back-
ground writes can quickly wipe the cache, using
priority alone (e) does not reduce the average as

158 • IO Containment

Type mean max std dev b/w
- (msec) (msec) - MB/s

no-load 6.0 102 7.86 -
direct-64k 36.60 508 88.29 1.7

buf 12.89 891 30.83i 4.8
buf-fadv 7.49 236 15.68 8.3
buf-prio 12.15 258 15.10 5.1

buf-prio-fadv 8.17 133 12.06 7.6
buf-sync-16m 9.36 349 17.45 6.7
direct-64k-prio 6.27 99 8.60 9.9

Table 2: Random cached reads with background se-
quential writes

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 50 100 150 200 250 300

N
um

be
r

of
 I/

O

Latency (msec)

buf-fadv
buf-prio

buf-prio-fadv
direct-64k-prio

Figure 8: Foreground Cached Random reads – Back-
ground sequential writes

compared to buffered writes without priority (c).
Similar to the results of the last experiment, lower
priority direct writes (g) or buffered writes along
with dropping cache (f) give the best performance
both for latency (mean or max) and bandwidth. Us-
ing priority moves direct IO (g) from being the
worst antagonist to least intrusive antagonist. Also,
it reduces the tail for both direct (g) and buffered
(f) logging traffic. Figure 8 has per-IO latency dis-
tribution for the main thread and shows the long
tail of buf-fadv approach. Though Table 2 shows a
higher value of max for buf-prio, Figure 8 clearly
shows that for all cases using priority (e, f, g), the
tails end around 100msec. Doing sync alone (h)
does not perform as well as fadvise (d) due to
cache effects.

7. Random Reads With Background Reads

Unlike the previous two experiments, there is no

 1

 4

 16

 64

 256

 1024

 4096

 16384

 8 16 32 64 128 256 512

N
um

be
r

of
 I/

O

Latency (msec)

direct-64k
buf

buf-fadv
buf-prio

direct-64k-prio

Figure 9: Foreground Random reads – Background se-
quential reads

sequential caching read in the next two experi-
ments. In Table 3 we measure the latency and
throughput of a thread doing 64k random reads
with different kinds of antagonists reading se-
quentially. Unlike in the case of caching reads,
fadvise does not help here, both mean and max-
imum latency when using fadvise (d) is almost
similar to buffered reads (c). Using priority (e) re-
duces the average and maximum latency by elimi-
nating contention in the scheduler queues. It helps
in increasing bandwidth and reducing latency for
both direct (g) as well as buffered IO (e). Direct
IO seems to be slightly better, but the difference
between it and buffered IO is within experimental
noise. Figure 9 shows the per-IO latency distribu-
tion and in all cases where priority is used (e, f, g),
tails are shortened by a large amount.

8. Random reads with background writes

Type mean max std dev b/w
- (msec) (msec) - KB/s

no-load 8.91 32 9.34 6959
direct-64k 93.46 579 138.14 714

buf 115.29 506 161.29 577
buf-fadv 113.87 507 161.08 583
buf-prio 11.88 47 13.59 5294

buf-prio-fadv 11.47 63 13.05 5475
direct-64k-prio 11.13 46 12.34 5633

Table 3: Random reads with background sequential
reads

2008 Linux Symposium, Volume One • 159

Type mean max std dev b/w
- (msec) (msec) - KB/s

no-load 9.16 105 9.66 6782
direct-64k 100.94 512 145.47 654

buf 12.93 698 30.01 4939
buf-fadv 11.39 408 19.36 5516
buf-prio 13.09 155 15.66 4825

buf-prio-fadv 12.53 325 15.03 5033
buf-sync-16m 11.47 218 19.14 5482
direct-64k-prio 9.66 96 10.67 6450

Table 4: Random reads with background sequential
writes

Table 4 has the results of running a 64k random
read thread along with various kinds of sequential
write threads running in the background doing 64k-
sized IO. This is similar to experiment 6, but with
no caching reads. Unlike experiment 6, buffered
writes (c) in the background are better than direct
IO (b), since in this case wiping the cache does
not have an impact on the foreground random read
thread. Using direct IO (b) without priority causes
heavy contention in the scheduler, unlike the nor-
mal write requests. In fact, using priority (e) or
fadvise (d) has negligible impact on the mean
latency, though the latency tail is reduced to a large
extent by using priority. The large maximum la-
tency in Table 4 when using both fadvise and
priority (f) is due to an outlier. Looking at Fig-
ure 10 it is clear that using priority eliminates long
tails for all kinds of logging workloads (e, f, g).
And like experiment 6, direct IO has changed from
being the worst antagonist to the least intrusive one.

5 Conclusion and Future Work

Using priorities in a non-work-conserving scheduler,
we have been able to isolate latency of both buffered
and direct high-priority synchronous requests. In-
creasing the number of background jobs has small/
negligible impact on latency. Even though we tagged
asynchronous requests, multiple writers still perform
non-deterministically. For our example workload’s
(1) cache-sensitive reads, interference from background
reads can be effectively isolated using priority. In the
case of background writes, using priority along with
cache drop hints or direct IO reduces the average. For

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 8 16 32 64 128 256

N
um

be
r

of
 I/

O

Latency (msec)

buf-fadv
buf-prio

buf-prio-fadv
direct-64k-prio

Figure 10: Foreground Random reads – Background se-
quential writes

random reads (2), priority is able to handle reads/writes
as antagonists. Using priority we can effectively elimi-
nate tails in all cases.

In our solution we either bypassed cache (direct IO) or
used explicit hints to drop cache (fadvise) for back-
ground writes, but in a generic solution apart from feed-
back controlled IO throttling, we need prioritized sub-
mission in background writes like pdflush. Though
we used page struct as a prototype to tag asyn-
chronous priorities, in context of cgroups we could
use ioprio of a control group associated with the page
as proposed by Fernando [8]. Another non-container so-
lution would be to use io_context to hold this infor-
mation.

There is a push to create an IO subsystem controller for
dividing available bandwidth among various cgroups.
The Linux kernel mailing list had a proposal to limit
the bandwidth [20] based on values configured in a
control group filesystem. [28] [12] [25][9] are propor-
tional bandwidth-scheduling solutions, while [12] is an
IO scheduler solution, [25] is the solution in the device-
mapper driver. [26][24] are attempts in the cfq sched-
uler to add fairness control per group rather than per
process. While we agree that dividing bandwidth pro-
portionally is needed for I/O controller, we would also
like to be able to attach priority to a process or control
group. This is a more feasible solution than adding la-
tency and bandwidth requirements to a control group.
In this solution, a group having higher priority would be
given preference within its quota of bandwidth.

Proposed interface for such a scheduling scheme

160 • IO Containment

1. Using cgroup interface: Add blockio.bandwidth
and blockio.priority files per cgroup.

/dev/cgroup/group1/blockio.bandwidth 20

/dev/cgroup/group1/blockio.priority 0

/dev/cgroup/group1/blockio.prios_allowed BE(2–
4)

In this scheme, all processes submitting IO within
group1 get 20% of available bandwidth, while
being the highest priority (0) they are served be-
fore processes from any other group. Moreover,
processes in group1 are allowed to use only best-
effort levels 2–4.

2. Using ionice approach: When not using cgroups,
for per-process bandwidth/latency control,
ioprio_set() / ioprio_get() can be used
to specify bandwidth as well. This is overloading
of the current definition used by CFQ, but we
could add another class not conflicting with ones
defined now.

6 Acknowledgements

Thanks to Mike Waychison, Grant Grundler, Shishir
Verma, Paul Menagae, and Al Borchers for reviewing
this document or providing technical guidance. Special
thanks to Mike Waychison for code reviews and discus-
sions.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
Providing differentiated levels of service in web
content hosting. In Workshop on Internet Server
Performance, pages 91–102, 1998.

[2] Jens Axboe. Fio - flexible io tester. http:
//freshmeat.net/projects/fio/.

[3] Jens Axboe. [patch][cft] time sliced cfq ver18.
http:
//lkml.org/lkml/2004/12/21/67.

[4] Jens Axboe. Time sliced cfq io scheduler.
http://lwn.net/Articles/113869/.

[5] Jens Axboe. Linux block io – present and future.
In Ottawa Linux Symposium, pages 51–61, 2004.

[6] J. Bruno, E. Gabber, B. Ozden, and
A. Silberchatz. The eclipse operating system:
Providing quality of service via reservation
domain. In USENIX Annual Technical
Conference, pages 235–246. USENIX, 1998.

[7] John Bruno, Jose Brustoloni, Eran Gabber, Banu
Ozden, and Abraham Silberschatz. Disk
scheduling with quality of service guarantees. In
IEEE International Conference on Multimedia
Computing and Systems, volume 2, page 400,
1999.

[8] Fernando Luis Vazquez Cao and Hiroaki Nakano.
Cfq vs containers. http:
//iou.parisc-linux.org/lsf2008/
IO-CFQ_vs_Containers-Fernando_
Luis_V%e1zquez_Cao.pdf.

[9] Fabio Checconi. Bfq i/o scheduler.
http://lkml.org/lkml/2008/4/1/234.

[10] Giel de Nijs, Benno van den Brink, and Werner
Almesberger. Active block i/o scheduling system.
In Ottawa Linux Symposium, pages 109–126,
2004.

[11] Ajay Gulati, Arif Merchant, and Peter J. Varman.
pclock: an arrival curve based approach for qos
guarantees in shared storage systems. In
SIGMETRICS, pages 3–24, 2007.

[12] Naveen Gupta. [rfc] proportional bandwidth
scheduling using anticipatory i/o scheduler.
http://lkml.org/lkml/2008/1/30/10.

[13] Christoffer Hall-Frederiksen and Philippe Bonnet.
Using prioritized i/o to improve storage
bandwidth in mysql. VLDB 2005.

[14] Sitaram Iyer and P. Druschel. Anticipatory
scheduling: A disk scheduling framework to
overcome deceptive idleness in synchronous i/o.
In SOSP, 2001.

[15] W. Jin, J. Chase, and J. Kaur. Interposed
proportional sharing for a storage service utility.
In ACM Sigmetrics -Performance, 2004.

[16] C. Lumb, A. Merchant, and G. Alvarez. Facade:
Virtual storage devices with performance
guarantees. In Conference on File and Storage
Technology, pages 131–144, 2003.

2008 Linux Symposium, Volume One • 161

[17] Andrew Morton. Usermode pagecache control:
fadvise().
http://lkml.org/lkml/2007/3/3/110.

[18] Nick Piggin. Anticipatory i/o scheduler.
http://lxr.linux.no/linux/
Documentation/block/as-iosched.
txt.

[19] Lars Reuther and Martin Pohlack.
Rotational-position-aware real-time disk
scheduling using a dynamic active subset. In 24th
IEEE International Real-Time Systems
Symposium, page 374, 2003.

[20] Andrea Righi. cgroup: limit block i/o bandwidth.
http:
//lkml.org/lkml/2008/1/18/166.

[21] S. Seelam, J. Babu, and P. Teller. Automatic i/o
scheduler selection for latency and bandwidth
optimization. In Workshop on Operating System
Interference in High Performance Applications,
2005.

[22] S. Seelam and P. Teller. Virtual i/o scheduler: a
scheduler of schedulers for performance
virtualization. In 3rd international conference on
Virtual execution environments, pages 105–115,
2007.

[23] Seetharami R. Seelam, Andre Kerstens, and
Patricia J. Teller. Throttling i/o streams to
accelerate file-io performance. In HPCC, pages
718–731, 2007.

[24] Vasily Tarasov. cgroups: block: cfq: I/o
bandwidth controlling subsystem for cgroups
based on cfq. http:
//lkml.org/lkml/2008/3/21/519.

[25] Ryo Tsuruta. dm-band: The i/o bandwidth
controller. http:
//lkml.org/lkml/2008/1/23/106.

[26] Satoshi UCHIDA. Yet another i/o bandwidth
controlling subsystem for cgroups based on cfq.
http://lkml.org/lkml/2008/4/3/45.

[27] Matthew Wachs, Michael Abd-El-Malek, Eno
Thereska, and Gregory R. Ganger. Argon:
Performance insulation for shared storage servers.
In 5th USENIX Conference on File and Storage
Technologies, pages 61–76, 2007.

[28] C. Waldspurger and W. Weihl. Stride scheduling:
Deterministic proportional-share resource
management, 1995.

162 • IO Containment

Linux Capabilities: making them work

Serge E. Hallyn
IBM LTC

serue@us.ibm.com

Andrew G. Morgan
Google Inc.

agm@google.com

Abstract

Linux capabilities have been partially implemented for
many years, and in their incomplete state have been
nearly unusable. In light of recent kernel develop-
ments, including VFS support and per-process support
for bounding-set and secure-bits, capabilities have fi-
nally come of age. In this paper we demonstrate, with
examples, how capabilities enhance the security of the
modern Linux system.

1 Introduction

Linux helps users manage their data, and a single Linux
system simultaneously manages the data of multiple
users. Within the system, a particular user’s property is
generally contained in files which are annotated with a
numerical ownership user-identifier (UID). Linux also
manages and abstracts the computer hardware, offer-
ing programs an environment in which to execute. Part
of this abstraction enforces data ownership. In order
to honor the ownership of such data, Linux adheres to
context-specific rules limiting how programs can manip-
ulate, via system-calls, a specific user’s data (the context
in this case being the value of attributes like the user’s
UID).

To start running programs on a Linux system, an
applicant-user generally leverages a program (such as
login, sshd, or gdm) to authenticate their identity to
the system and create a working context for them to in-
voke other programs that access their data. Such login
programs are exceptionally special, insofar as they have
the ability to change the user context (set the current
UID). Changing user context is clearly a special oper-
ation, since if it were not then programs run from the
context of any user could trivially be leveraged to create
a different user’s context and manipulate data belonging
to that other user. The special property of these appli-
cations is commonly known as privilege, and this paper

concerns a newly completed mechanism for managing
privilege within the Linux operating system.

Programs, in the context of authenticated users, can cre-
ate data with access controls associated with them: cre-
ate a file that anyone can read; create a file that only the
creator can read or modify; etc. These forms of protec-
tion are known as Discretionary Access Control (DAC),
and with more recent Linux extensions such as Access
Control Lists (ACLs) can be quite elaborate [1]. The
protection of such data is at the discretion of the owner
of these files. Other mechanisms, such as Mandatory
Access Control (MAC), enforce a system policy that
restricts the ways in which users can share their data.
Linux, via the Linux Security Module (LSM) [2] pro-
gramming abstraction, natively supports simple MAC
[3] and the more modern type-enforcement model [4, 5].
All of these mechanisms follow a tradition [6] of at-
tempting to add real security to Linux and UNIX [7].

Managing a Linux system in the real world requires
levels of reliability (continuity of service for multiple
simultaneous users and uses) that must anticipate fu-
ture problems: the need for data backups; configuration
changes and upgrades to failing/obsolete hardware etc.
There is also a recurrent need to work around and correct
urgent issues: users accidentally instructing programs to
delete files, users being removed from the system (and
their data being archived or redistributed to other users);
etc. These requirements, in addition to the need to login
users (discussed above), lead to the fact that any system
must provide the ability to override DAC and MAC se-
curity protections to “get things done.” Viable systems
need a privilege model.

The classic UNIX model for wielding privilege is to as-
sign a special UID the right to do anything. Programs
running in the context of this super-user are not bound
by the normal DAC/MAC rules. They can read, mod-
ify, and change any user’s data. In UNIX, UID=0 is the
special context assigned to this administrative identity.
To give this entity a more human touch, this user is also

• 163 •

164 • Linux Capabilities: making them work

known as root. What this means for programs is that,
when they run in the context of root’s UID, system-
calls can do special (privileged) things. The converse of
this is also significant: when they run in this context,
programs can’t help breaking the normal DAC/MAC
rules, potentially causing unintended damage to the sys-
tem. For example, executing: rm -rf /, as root can
have spectacularly bad consequences to a system. How-
ever, running this command as a normal user (in this pa-
per, we’ll call such a user: luser) results in a prompt
error and no negative effects. This luser doesn’t have
a right to delete anything in the base directory of the
filesystem.

Unprivileged users, however, must always perform
some tasks which do require privilege. For instance, our
luser must be able to change his password. That be-
ing said, the system must prevent luser from being
able to read or change passwords for other users. Users
execute programs that act for them, and a program ex-
ists to change passwords: passwd. This program must
be invoked from the context of the luser but oper-
ate with sufficient privilege to manipulate the shared-
system’s password file (/etc/shadow). To this end,
Linux executable files can have a special attribute se-
tuid-bit set, meaning that the program can execute with
the effective UID (EUID1) of the user owning the pro-
gram file. If the setuid passwd program file’s owner is
root,2 then independent of the user context in which
the program is launched, it will execute with the effec-
tive context of the super-user. That is, a program such
as passwd will not be bound by any of the DAC/MAC
rules that constrain other regular programs.

2 The Linux capability model

While the simple UNIX privilege mechanism has more
or less sufficed for decades, it has long been observed
that it has a significant shortcoming: that programs that
require only some privilege must in fact run with full
privilege. The dangers of such a lack of flexibility are
well known, as they ensure that programming errors in
privileged programs can be leveraged by hostile users

1Details about effective, saved, and filesystem UIDs, groups, and
group membership have been omitted from this discussion. That be-
ing said, through complexity, they have greatly added to the usability
of the system.

2In practice, a shared need to edit a protected file like this can be
achieved with ACLs—requiring a shadow-UID or group for exam-
ple.

to lead to full system compromise [8]. Such compro-
mises can be mitigated through the use of MAC, but
at some fundamental level any privileged access to the
hardware underpinning an operating system can violate
even MAC rules, and bogging MAC implementations
down with details about root privilege separation only
increases policy complexity. In the real world, adminis-
trative access to override normal access control mecha-
nisms is a necessary feature.

Over the years, the proponents of a more secure UNIX
[7] explored various alternatives to the concept of an
all powerful root user. An aborted attempt was even
made to unify these enhancements into a single stan-
dard [9]. The downward trajectory in the mid to late
1990’s of the closed-source vendor-constrained rival
commercial UNIX implementations mired, and eventu-
ally halted, the ratification of this standard. However,
not entirely disconnected from this slowdown was the
rapid and perhaps inevitable rise of Linux—a truly open
(free) system in the original spirit of the UNIX tradition.
These modern ideas of incremental enhancements to the
UNIX security model have now found a home in Linux
[1, 10, 3, 11].

The proposed privilege model [9] introduced a separa-
tion of root privilege into a set of capabilities. These
capabilities break the super-user’s privilege into a set
of meaningfully separable privileges [7]. In Linux,
for instance, the ability to switch UIDs is enabled by
CAP_SETUID while the ability to change the owner-
ship of an object is enabled by CAP_CHOWN.

A key insight is the observation that programs, not peo-
ple, exercise privilege. That is, everything done in a
computer is via agents—programs—and only if these
programs know what to do with privilege can they be
trusted to wield it. The UID=0 model of privilege makes
privilege a feature of the super-user context, and means
that it is arbitrary which programs can do privileged
things. Capabilities, however, limit which programs can
wield any privilege to only those programs marked with
filesystem-capabilities. This feature is especially impor-
tant in the aftermath of a hostile user exploiting a flaw in
a setuid-root program to gain super-user context in the
system.

This paper describes how to use the Linux implemen-
tation of these capabilities. As we will show, while
support of legacy software requires that we sometimes
maintain a privileged root user, the full implementation

2008 Linux Symposium, Volume One • 165

of Linux capabilities enables one to box-in certain sub-
systems in such a way that the UID=0 context becomes
that of an unprivileged user. As legacy software is up-
dated to be capability-aware, a fully root-less system be-
comes a very real possibility [12].

2.1 Capability rules

Processes and files each carry three capability sets. The
process effective set contains those capabilities which
will be applied to any privilege checks. The permit-
ted set contains those capabilities which the task may
move, via the capset() system call, into its effective
set. The effective set is never a superset of the permit-
ted set. The inheritable set is used in the calculation of
capability sets at file execution time.

Capabilities are first established, at program execution
time, according to the following formulas:

pI′ = pI (1)

pP′ = (X& f P) | (pI& f I) (2)

pE ′ = f E ? pP′ : /0. (3)

Here pI, pE, and pP are the process’ inheritable, effec-
tive, and permitted capability sets (respectively) before
exec(). Post-exec(), the process capabilities sets
become pI′, pE ′, and pP′. The capability sets for the file
being executed are f I, f E, and f P. Equation 1 shows
the task retains its pre-exec() inheritable set. Equa-
tion 2 shows the file inheritable and process inherita-
ble sets are and’ed together to form a context-dependent
component of the new process permitted set. The file
inheritable set, f I, is sometimes referred to as the file’s
optional set because the program will only acquire capa-
bilities from it if the invoking user context includes them
in pI. By optional, we mean the program can gracefully
adjust to the corresponding privileges being available or
not. The file permitted set, f P, is also called the forced
set because capabilities in that set will be in the process’
new permitted set whether it previously had them in any
capability sets or not (subject to masking with X). In
Equation 3, the file effective capability set is interpreted
as a boolean. If f E (also called the legacy bit) is set, then
the process’ new effective set is equal to the new permit-
ted set. If unset, then pE ′ is empty when the exec()d
program starts executing.

The remaining object in these rules, X , has, until re-
cently, been an unwieldy system-wide capability bound-
ing set. However, it has now become the per-process

capability bounding set. X is inherited without modifi-
cation at fork() from the parent task. A process can
remove capabilities from its own X so long as its ef-
fective set has CAP_SETPCAP. A task can never add
capabilities to its X . However, note that a task can gain
capabilities in pP′ which are not in X , so long as they
are both in pI and f I. The bounding set will be further
discussed in Section 3.3.

When a new process is created, via fork(), its capa-
bility sets are the same as its parent’s. A system call,
capset(), can be used by a process to modify its
three capability sets: pI, pP and pE. As can be seen
in Equation 1, the inheritable set pI remains unchanged
across file execution. Indeed it is only changed when the
running process uses the system call to modify its con-
tents. Unless pE contains CAP_SETPCAP, Linux will
only allow a process to add a capabilities to pI that are
present in pP. No special privilege is required to remove
capabilities from pI. The only change to the permitted
set, pP, that a process can make is to drop raised capa-
bilities. The effective set is calculated at file execution,
and immediately after exec() will be either equal to
the permitted set or will be empty. Via capset() the
process can modify its effective set, pE, but Linux re-
quires that it is never a superset of the contents of the
process’ permitted set, pP.

Most software and distributions available currently de-
pend on the notion of a fully privileged root user.
Linux still supports this behavior in what we call legacy-
fixup mode, which is actually the default. Legacy-fixup
mode acts outwardly in a manner consistent with there
being a root user, but implements super-user privilege
with capabilities, and tracks UID-changes to fixup the
prevailing capability sets. This behavior allows a root
user to execute any file with privilege, and an ordinary
user to execute a setuid-root file with privilege. When
active, legacy-fixup mode force-fills the file capability
sets for every setuid-root file and every file executed
by the root user. By faking a full f P and full f I we
turn a setuid-root file or a file executed by the root
user into a file carrying privilege. This may appear dis-
tasteful, but the desire to support legacy software while
only implementing one privilege model within the ker-
nel requires it. As we will show in Section 4 legacy-
fixup mode can be turned off when user-space needs no
privilege or supports pure privilege through capabilities.

In the absence of VFS support for capabilities, a num-
ber of extensions to the basic capability model [9] were

166 • Linux Capabilities: making them work

introduced into the kernel: an unwieldy (global, asyn-
chronous,3 and system crippling) bounding set [13];
the unwieldy (asynchronous and questionable) remote
bestowal of capabilities by one process on another;4

the unwieldy (global, asynchronous, and system crip-
pling) secure-bits;5 and the more moderately scoped
prctl(PR_SET_KEEPCAPS) extension.

All but the last of these have recently been made vi-
able through limiting their scope to the current process,
becoming synchronous features in the Linux capability
model. The prctl(PR_SET_KEEPCAPS) extension of
legacy-fixup mode, which can be used as a VFS-free
method for giving capabilities to otherwise unprivileged
processes, remains so. When switching from the privi-
leged root user to a non-root user, the task’s permit-
ted and effective capability sets are cleared.6 But, using
prctl(PR_SET_KEEPCAPS), a task can request keep-
ing its capabilities across the next setuid() system
call. This makes it possible for a capability-aware pro-
gram started with root privilege to reach a state where
it runs locked in a non-root user context with partial
privilege. As we discuss in Section 4, while legacy-
fixup remains the default operating mode of the kernel,
each of these legacy features can be disabled on a per-
process basis to create process-trees in which legacy-
fixup is neither available nor, indeed, needed.

3 Worked Examples

In this section we provide some explicit examples for
how to use capabilities. The examples show how tradi-
tional setuid-root solutions can be emulated, and also
what is newly possible with capabilities.

3Asynchronocity with respect to security context means that a
task’s security context can be changed by another task without the
victim’s awareness.

4The ability for one process to asynchronously change, with-
out notification, the capabilities of another process, via the hijacked
CAP_SETPCAP capability, was so dangerous to system integrity
that it has been disabled by default since its inception in the ker-
nel. The addition of VFS support disables this feature and restores
CAP_SETPCAP to its intended use as documented in this paper (see
Section 3.1).

5Securebits have been implemented in the kernel for many
years, but have also been cut off from being available—without any
API/ABI for manipulating them for almost as long.

6The actual semantics of legacy-fixup are more complicated.

3.1 Minimum privilege

In this example we consider an application, ping, that
one might not even realize requires privilege to work.
If you examine the regular file attributes of a non-
capability attributed ping binary, you will see some-
thing like this:

$ ls -l /bin/ping
-rwsr-xr-x 1 root root 36568 May 2 2007 /bin/ping
$ /bin/ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.027/0.027/0.027/0.000 ms,
pipe 2
$

The s bit of the file’s mode is the familiar setuid-
executable bit. If we copy the file as an unprivileged
user (luser) it loses its privilege and ceases to work:

$ cp /bin/ping .
$ ls -l ping
-rwxr-xr-x 1 luser luser 36568 Mar 26 17:54 ping
$./ping localhost
ping: icmp open socket: Operation not permitted
$

Running this same program as root will make it work
again:

./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.027/0.027/0.027/0.000 ms,
pipe 2
#

In short, ping requires privilege to write the specially
crafted network packets that are used to probe the net-
work.

Within the Linux kernel there is a check to see whether
this application is capable(CAP_NET_RAW), which
means cap_effective (pE) for the current process
includes CAP_NET_RAW. By default, root gets all ef-
fective capabilities, so it defaults to having more-than-
enough privilege to successfully use ping. Similarly,
when setuid-root, the /bin/ping version is also
overly privileged. If some attacker were to discover

2008 Linux Symposium, Volume One • 167

a new buffer-overflow [14] or more subtle bug in the
ping application, then they might be able to exploit it
to invoke a shell with root privilege.

Filesystem capability support adds the ability to bestow
just-enough privilege to the ping application. To emu-
late just enough of its legacy privilege, one can use the
utilities from libcap [10] to do as follows:

/sbin/setcap cap_net_raw=ep ./ping
/sbin/getcap ./ping
./ping = cap_net_raw+ep

What this does is add a permitted capability for CAP_
NET_RAW and also sets the legacy effective bit, f E, to
automatically raise this effective bit in the ping process
(pE) at the time it is invoked:

$./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet
loss, time 0ms
rtt min/avg/max/mdev = 0.093/0.093/0.093/0.000
ms, pipe 2
$

Unlike the setuid-root version, the binary ping is not
bestowed with any privilege to modify a file that is not
owned by the calling user, or to insert a kernel module,
etc. That is, there is no direct way for some malicious
user to subvert this privileged version of ping to do
anything privileged other than craft a malicious network
packet.7

So far, we have explained how to replace the setuid-
root privilege of ping with file capabilities. This is
for an unmodified version of ping. It is also possible to
lock ping down further by modifying the ping source
code to use capabilities explicitly. The key change from
the administrator’s perspective is to set ping’s capabil-
ities as follows:

/sbin/setcap cap_net_raw=p ./ping

That is, no legacy effective bit, and no enabled privilege
(just the potential for it) at exec() time. Within the
ping application one can, using the API provided by
libcap [10], prepare to manipulate the application’s
privilege by crafting three capability sets as follows:

7Of course, it may prove possible to leverage a rogue network
packet to cause system damage, but only indirectly—by subverting
some other privileged program.

/* the one cap ping needs */
const cap_value_t cap_vector[1] =

{ CAP_NET_RAW };
cap_t privilege_dropped = cap_init();
cap_t privilege_off = cap_dup(privilege_dropped);
cap_set_flag(privilege_off, CAP_PERMITTED, 1,

cap_vector, CAP_SET);
cap_t privilege_on = cap_dup(privilege_off);
cap_set_flag(privilege_on, CAP_EFFECTIVE, 1,

cap_vector, CAP_SET);

Then, as needed, the capability sets can be used with the
following three commands:

/* activate: cap_net_raw=ep */
if (cap_set_proc(privilege_on) != 0)

abort("unable to enable privilege");
/* ...do privileged operation... */
/* suspend: cap_net_raw=p */
if (cap_set_proc(privilege_off) != 0)

abort("unable to suspend privilege");
/* ...when app has no further need of privilege */
if (cap_set_proc(privilege_dropped) != 0)

abort("failed to irrevocably drop privilege");

Also, remember to clean up allocated memory, using
cap_free(privilege_on) etc., once the capabil-
ity sets are no longer needed by the application. These
code snippets can be adapted for other applications, as
appropriate.

In these code snippets, the inheritable capability set is
forced to become empty. This is appropriate and suf-
fices for applications that do not expect to execute any
files requiring privilege, or which expect any privilege
in subsequently executed programs to come from the
file’s forced set (f P). For an application like a user
shell, the above snippets might be changed so as to pre-
serve pI. This can be achieved by replacing the use of
cap_init(), above, with the following sequence:

cap_t privilege_dropped = cap_get_proc();
cap_clear_flag(privilege_dropped, CAP_EFFECTIVE);
cap_clear_flag(privilege_dropped, CAP_PERMITTED);

A login process, in turn, would likely be authorized
with CAP_SETPCAP, allowing it to actually fill pI fur-
ther with specific capabilities assigned to the user being
logged-in. Section 3.2 will begin to show how to use
inherited privilege.

3.2 Inherited privilege

There are some programs that don’t have privilege, per
se, but wield it in certain circumstances: for example,

168 • Linux Capabilities: making them work

when they are invoked by root. One such application
is /bin/rm. When invoked by root, /bin/rm can
delete a file owned by anyone. Clearly, forcing privilege
with the file permitted bits, as we did in the previous
section, would give any invoker of /bin/rm such abil-
ities and not represent an increase in security at all! To
emulate root-is-special semantics for certain users, we
employ the inheritable capability set (pI).

The basic setup for leveraging inheritable capabilities is
to add file capabilities to /bin/rm as follows (in this
case, we’ll add the capability to the official rm binary):

/sbin/setcap cap_dac_override=ei /bin/rm

Reviewing the capability formula, Equation 1, one can
see that a process inherits its inheritable capabilities, pI,
directly from its parent. In order to use inheritable ca-
pabilities, therefore, a process has to first acquire them.
The libcap package provides a utility for reading the
capabilities of a process:

$ /sbin/getpcaps 1
Capabilities for ‘1’: =ep cap_setpcap-e
$

This says that init, the top of the process tree, and
ancestor to all processes in a system, does not have
any inheritable capabilities. That is, by default, no
process will passively obtain any inheritable capabili-
ties. However, init and its many privileged descen-
dants, such as login and su, do have access to ca-
pabilities through their permitted sets, pP. To add a
capability to its inheritable set, a process must either
have that capability present in its permitted set, or be
capable(CAP_SETPCAP)—have the single capabil-
ity, CAP_SETPCAP in its effective set, pE. Leverag-
ing this feature, the libcap package [10] contains two
convenient methods to introduce inheritable capabilities
to a process-tree: a simple wrapper program, capsh,
and a PAM [15] module, pam_cap.so.

The capsh command is intended to provide a conve-
nient command-line wrapper for testing and exploring
capability use. It is able to alter and display capabilities
of the current process and can be used to explore the nu-
ances of the present example. We shall use capsh in
Section 3.3. Here we will describe how to make use of
the pam_cap.so PAM module.

The PAM module pam_cap.so, as directed by a local
configuration file, sets inheritable capabilities based on
the user being authenticated. In our example, we give
a student administrator (studadmin) the ability to re-
move files owned by others. We set up a test file and
a configuration file (as root) with the following com-
mands:

cat > /etc/security/su-caps.conf <<EOT
cap_dac_override studadmin
none *
EOT
touch /etc/empty.file

ls -l /etc/{empty.file,security/su-caps.conf}
-rw-r--r-- 1 root root 0 Mar 30 14:00 /etc/empty.file
-rw-r--r-- 1 root root 52 Mar 30 13:59 /etc/security/su-caps.conf

We then put the following line at the very beginning of
the /etc/pam.d/su file:

auth optional pam_cap.so \
config=/etc/security/su-caps.conf

Now anyone able to authenticate via su studadmin
will become the regular user studadmin with the
enhancement that they have an inheritable capability,
CAP_DAC_OVERRIDE:

$ whoami
luser
$ su studadmin
Password:
$ whoami
studadmin
$ /sbin/getpcaps $$
Capabilities for ‘11180’: = cap_dac_override+i
$

Having obtained this inheritable capability,
studadmin can try it out by deleting a root-owned
file:

$ rm /etc/empty.file
rm: remove write-protected regular
file ‘/etc/empty.file’? y
$ ls -l /etc/empty.file
ls: /etc/empty.file: No such file or directory

In passing, we note that when the rm command was
prompting for the y response, it was possible to find the
PID for this process and, from a separate terminal:

$ /sbin/getpcaps 15310
Capabilities for ‘15310’: = cap_dac_override+eip
$

2008 Linux Symposium, Volume One • 169

That is, observe that the formula Equation 2 did its work
to raise the permitted, pP, capability for rm, and the
legacy f E bit caused it to become effective for the pro-
cess at exec() time.

It is instructive to try to remove something else using
another program. For example, using unlink:

$ unlink /etc/security/su-caps.conf
unlink: cannot unlink
‘/etc/security/su-caps.conf’: Permission denied
$

Because this unlink application has no filesystem ca-
pabilities, f I = f P = f E = 0, despite the prevailing in-
heritable capability in pI, unlink cannot wield any
privilege. A key feature of the capability support is
that only applications bearing filesystem capabilities can
wield any system privilege.

In this example, we have demonstrated how legacy ap-
plications can be used to exercise privilege through in-
heritable capabilities. As was the case in the previ-
ous example, legacy applications can be modified at the
source code level, to manipulate capabilities natively
via the API provided by libcap. Such a modified
application would not have its legacy capability raised
(f E = 0). The code samples from the previous section
are equally applicable to situations in which an applica-
tion obtains its capabilities from its inheritable set, we
do not repeat them here.

3.3 Bounding privilege

The capability bounding set is a per-process mask lim-
iting the capabilities that a process can receive through
the file permitted set. In Equation 2, the bounding set is
X . The bounding set also limits the capabilities which
a process can add to its pI, though it does not auto-
matically cause the limited capabilities to be removed
from a task which already has them in pI. When orig-
inally introduced [13], the capability bounding set was
a system-wide setting applying to all processes. An ex-
ample intended usage would have been to prevent any
further kernel modules from being loaded by removing
CAP_SYS_MODULE from the bounding set.

Recently, the bounding set became a per-process at-
tribute. At fork(), a child receives a copy of its
parent’s bounding set. A process can remove capabil-
ities from its bounding set so long as it has the CAP_

SETPCAP capability [16]. Neither a process itself, nor
any of its fork()d children, can ever add capabili-
ties back into its bounding set. The specific use case
motivating making the bounding set per-process was to
permanently remove privilege from containers[17] or
jails[18]. For instance, it might be desirable to create
a container unable to access certain devices. With per-
process capability bounding sets, this becomes possible
by providing it with a /dev that does not contain these
devices and removing CAP_MKNOD from its capabili-
ties.8

The reader will note, in Equation 2, that X masks only
f P. In other words, a process’ permitted set can receive
capabilities which are not in its bounding set, so long as
the capabilities are present in both f I and pI. Ordinarily
this means that a process creating a “secure container”
by removing some capabilities should take care to re-
move the unwanted capabilities from both its bounding
and inheritable sets. Thereafter they cannot be added
back to pI. However, there may be cases where keep-
ing the bits in the inheritable and not the bounding set
is in fact desirable. Perhaps it is known and trusted that
the capability will only be in f I for trusted programs, so
any process in the container executing those programs
can be trusted with the privilege. Or, the initial con-
tainer task may take care to spawn only one task with
the capability in its pI, then drop the capability from its
own pI before continuing. In this way the initial task
in a container without CAP_MKNOD, rather than mount-
ing a static /dev, could keep CAP_MKNOD in pI while
running a trusted copy of udev, from outside the con-
tainer, which has CAP_MKNOD in its f I. The udev pro-
cess becomes the only task capable of creating devices,
allowing it to fill the container’s /dev.

Here is an example of dropping CAP_NET_RAW from
the bounding set, using capsh [10]. So doing, we can
cause ping to fail to work as follows:

id -nu
root
/sbin/getcap ./ping
./ping = cap_net_raw+ep
/sbin/capsh --drop=cap_net_raw \

--uid=$(id -u luser) --
$ id -nu
luser
$./ping -q -c1 localhost
ping: icmp open socket: Operation not permitted
$ /bin/ping -q -c1 localhost
ping: icmp open socket: Operation not permitted

8This requires a (hopefully) upcoming patch causing mounts by a
process which is not capable(CAP_MKNOD) to be MNT_NODEV.

170 • Linux Capabilities: making them work

The --drop=cap_net_raw argument to /sbin/
capsh causes the wrapper program to drop CAP_NET_
RAW from the bounding set of the subsequently invoked
bash shell. In this process tree, we are unable to gain
enough privilege to successfully run ping. That is, both
our capability-attributed version, and the setuid-root
version attempt to force the needed privilege, but the
prevailing bounding set, X , suppresses it at execution
time.

In an environment in which the bounding set suppresses
one or more capabilities, it is still possible for a process
to run with these privileges. This is achieved via use of
the inheritable set:

id -nu
root
/sbin/setcap cap_net_raw=eip ./ping
/sbin/capsh --{inh,drop}=cap_net_raw \

--uid=$(id -u luser) --
$./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.037/0.037/0.037/0.000 ms,
pipe 2

That is, as per Equation 2, the bounding set, X , does not
interfere with the pI& f I component to pP′.

There are some subtleties associated with bounding set
manipulation that are worth pointing out here.

The first is that the bounding set does limit what capa-
bilities can be added to a process’ inheritable set, pI.
For example, as root:

/sbin/capsh --drop=cap_net_raw --inh=cap_net_raw
Unable to set inheritable capabilities:
Operation not permitted
#

This fails because, by the time we attempt to add an in-
heritable capability in the working process, we have al-
ready removed it from the bounding set. The kernel is
just enforcing the rule that once pI and X are both with-
out a particular capability, it is irrevocably suppressed.

The second subtlety is a warning, and relates to a bug
first highlighted in association with the sendmail pro-
gram [16]. Namely, for legacy programs that require
forced capabilities to work correctly, you can cause
them to fail in an unsafe way by selectively denying
them privilege.

When a legacy program makes the (common) assump-
tion that an operation must work because the program is
known to be operating with privilege (a previous privi-
leged operation has succeeded), with capabilities, it can
be fooled into thinking it is operating in one privilege
level when it actually isn’t. Since privilege is now rep-
resented by independent capabilities, one can leverage
the bounding set to deny a single capability that is only
needed later at a more vulnerable time in the program’s
execution.

The sendmail issue was in a context where the dropping
of an inheritable capability by an unprivileged parent of
the setuid-root sendmail caused sendmail to launch a
program as root when it thought it was running in the
context of the luser. The significance of the bug was
that an unprivileged luser could exploit it.

The kernel was fixed to make this particular situation
not occur. However, the bounding set actually recre-
ates a similar situation, and while sendmail has since
been fixed to protect it from this problem, many other
legacy setuid-root applications are expected to suffer
from this same issue. Non-legacy applications are not
susceptible to this subtlety because they can leverage the
libcap API to look-before-they-leap and check if they
have the needed privilege explicitly at runtime.

The significant difference between the old problematic
situation and this present case, is that to exploit this issue
you need to be able to alter the bounding set and that,
itself, requires privilege. That being said, this subtlety
remains. Be careful, when using the bounding set, to
avoid leveraging it suppress privilege in general when
it is more appropriate to supply optional capabilities as
needed via the inheritable set. Caveat emptor!

3.4 No privilege at all

In general, unprivileged users need to run privileged ap-
plications. However, sometimes it may be desirable to
confine a process, and any of its children, ensuring that it
can never obtain privilege. In a traditional UNIX system
this would not be possible, as executing a setuid-root
program would always raise its privilege.

To completely remove privilege from a process in a
capability-enabled Linux system, we must make sure
that both sides of Equation 2 are, and always will be,
empty. We can suppress f P by emptying the bounding

2008 Linux Symposium, Volume One • 171

set, X . Since a capability can never be added back into
X , this is irrevocable. Next, we can suppress the sec-
ond half of the equation by emptying pI using capset.
Thereafter the process cannot add any bits not in X
(which is empty), back into pI. The legacy compati-
bility mode refills f I whenever a setuid root binary is
executed, but we can see in Equation 2 that capabili-
ties must be in both f I and pI to appear in pP′. Now,
regardless of what the process may execute, neither the
process nor any of its children will ever be able to regain
privilege.

4 Future changes

At the conclusion of Section 2.1 we observed that the
capability rules are perverted for files run by the super-
user. When the super-user executes a file, or when any
user executes a setuid-root file, the file’s capability
sets are filled. Since historically Linux had no sup-
port for file capabilities, and since without file capa-
bilities a process can never wield privilege in a pure
capability system, this hack was unfortunate but nec-
essary. Now that the kernel supports file capabilities,
it is only userspace which must catch up. As applica-
tions become capability-aware, it will be desirable to re-
move the legacy root-as-super-user support for those
applications. While infrastructure to support disabling it
system-wide has been present for as long as the root-
as-super-user hack has existed, support to do this for ap-
plication sets has only recently been accepted into the
experimental -mm tree [19]. It is expected to be adopted
in the main Linux tree [20], and may have done so by
the time of publication.

With the per-process securebits, the root user excep-
tion can be “turned off” for capability-aware applica-
tions by setting the SECURE_NOROOT and SECURE_

NO_SETUID_FIXUP flags using prctl(). These are
per-process flags, so that a system can simultaneously
support legacy software and capability-aware software.
In order to lock capability-aware software into the more
secure state in a such a way that an attacker can-
not revert it, both bits can be locked by also setting
SECURE_NOROOT_LOCKED and SECURE_NO_SETUID_

FIXUP_LOCKED.

To nail the residue of problematic partial privilege for
legacy applications, discussed in Section 3.3, we are
considering adding a requirement that any legacy ap-
plication which is made privileged with f E 6= 0 must

execute with pP′ ≥ f P. That is, if the bounding set, X ,
suppresses a forced capability (f P < f P&X), and the
inheritable sets (pI& f I) do not make up for its suppres-
sion (see Equation 2), exec() will fail with errno =
EPRIV. This change will enforce what is presently only
a convention that legacy applications should run with all
of their forced (f P) capabilities raised, or are not safe to
run at all.

5 Conclusion

The intent of this paper has been to demonstrate that
the Linux capability implementation, with VFS support,
is a viable privilege mechanism for the Linux kernel.
With examples, we have shown how these capabilities
can and should be used. What remains is for user-space
applications to start using them.

That being said, privilege is not the only use of the root
identity. There are many files, such as are to be found
in /proc/ and /etc/, that are owned by root. Even
without super-user privilege, a process running in the
context of an impotent root user, can still do a large
amount of damage to a system by altering these files.
Here, DAC and MAC based security will continue to be
important in securing your Linux system.

Acknowledgments

It is our pleasure to thank Chris Friedhoff and KaiGai
Kohei for collaboration; Chris Wright, James Morris,
and Stephen Smalley for advice and careful scrutiny;
Olaf Dietsche and Nicholas Simmonds for posting alter-
native implementations of file capabilities; and Andrew
Morton for patiently sponsoring the recent capability en-
hancements to the kernel. AGM would additionally like
to thank Alexander Kjeldaas, Aleph1, Roland Buresund,
Andrew Main and Ted Ts’o for early libcap and ker-
nel work; the anonymous chap that let AGM read a copy
of a POSIX draft sometime around 1998; and Casey
Schaufler for persuading the POSIX committee to re-
lease an electronic copy of the last POSIX.1e draft [9].
Finally, we’d like to thank Heather A Crognale for her
insightful comments on an early draft of this paper.

References

[1] Andreas Grünbacher. POSIX Access Control
Lists on Linux. USENIX Annual Technical
Conference, San Antonio, Texas, June 2003.

172 • Linux Capabilities: making them work

[2] Chris Wright et al. Linux Security Modules:
General Security Support for the Linux Kernel.
11th USENIX Security Symposium, 2002.

[3] Casey Schaufler. The Simplified Mandatory
Access Control Kernel. linux.conf.au, 2008.

[4] W.E. Boebert and R.Y. Kain. A practical
alternative to hierarchical integrity policies. In
Proceedings of the Eighth National Computer
Security Conference, 1985.

[5] Peter Loscocco, Stephen Smalley. Integrating
Flexible Support for Security Policies into the
Linux Operating System. In Proceedings of the
FREENIX Track: 2001 USENIX Annual
Technical Conference, June 2001.

[6] The Trusted Computer System Evaluation Criteria
(the Orange Book). http://www.fas.org/
irp/nsa/rainbow/std001.htm.

[7] Samuel Samalin, Secure UNIX, McGraw-Hill,
1996.

[8] Whole system compromises are regularly
documented on websites such as Bugtraq: http:
//www.securityfocus.com/archive/1.

[9] The last POSIX.1e draft describing capabilities:
http://wt.xpilot.org/publications/

posix.1e/download.html.

[10] The capability user-space tools and library:
http://www.kernel.org/pub/linux/

libs/security/linux-privs/libcap2/.

[11] See for example: http:
//people.redhat.com/sgrubb/audit/.

[12] Advocates for transforming systems to be
capability based such as:
http://www.friedhoff.org/fscaps.html.

[13] Introduction of the global bounding set to Linux,
http://lwn.net/1999/1202/kernel.php3.

[14] An example of a buffer-overflow in the ping
binary (not exploitable in this case): http:
//www.securityfocus.com/bid/1813.

[15] Linux-PAM, http:
//www.kernel.org/pub/linux/libs/pam;
Kenneth Geisshirt, Pluggable Authentication

Modules: The Definitive Guide to PAM for Linux
SysAdmins and C Developers. Packt Publishing.
2006.

[16] Discussion of the unfortunately named
sendmail-capabilities-bug:
http://userweb.kernel.org/~morgan/

sendmail-capabilities-war-story.

html.

[17] Linux Containers,
http://lxc.sourceforge.net/.

[18] Poul-Henning Kamp, Robert N.M. Watson: Jails:
Confining the omnipotent root. Proceedings of
second international SANE conference, May
2000.

[19] Andrew Morton’s kernel patch series: http:
//www.kernel.org/patchtypes/mm.html

[20] Linus’ kernel tree: http:
//git.kernel.org/?p=linux/kernel/

git/torvalds/linux-2.6.git;a=summary

Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

John Hawley
3Leaf Systems

warthog19@eaglescrag.net

Abstract

The Linux community has risen to the challenge of shar-
ing distributions by developing an ad-hoc worldwide
collaborative mirroring infrastructure capable of with-
standing some of the heaviest network traffic imagin-
able. It is already capable of moving tens of terabytes
a day and it is continuing to grow and expand to meet
the needs of a demanding user base. However this ad-
hoc infrastructure is not without its faults. Distribution
maintainers have complicated, non-intuitive websites to
direct users to downloads. Things are made worse by
a lack of communication amongst the major releases
throughout the year, and a user base that is not always
correct in its requests and demands that it puts upon the
system.

As the infrastructure grows, the administrators seek out
new ways to help manage the stress on everyone in-
volved. BitTorrent has been heralded as one such tech-
nology; however, its claims of being better, faster, and
more manageable seem to fall short. BitTorrent itself
seems to have an upper limit to its capacity that does
not match the existing infrastructure. In fact, it has sig-
nificant downsides to the maintainers, the mirrors, and
the users, making it unsuitable as a large-scale primary
distribution mechanism.

1 Distributions

Distribution maintainers are at the very core of the
Linux mirroring infrastructure. They are creators of
the data that the mirrors will be providing to users, and
wield a significant amount of control over the experi-
ence that both mirrors and users have when download-
ing. Mirror maintainers and end-users have different is-
sues that distribution maintainers must do their best to
respect and work with.

Users, however, are by far the biggest challenge facing
both distribution maintainers and their mirrors. Users

are an un-relenting mob, capable of bringing some of
the largest, and fastest, machines to a crawl. The effect
users can have on mirrors during a major release is not
dissimilar to a distributed denial of service attack, with
the added affect that each user is fighting to use as much
bandwidth as can be obtained.

1.1 Keeping it simple

Linux users already face many problems with Linux—
getting it shouldn’t be one of them. Currently, users try-
ing to download a distribution are asked a multitude of
questions, many of which can be unclear and not well
understood by the user. This complicates the down-
load process, making it difficult for users to make good
choices for their needs. Options should be kept to a
minimum by default, as the more options exposed to a
user, the more potential for confusion. Where possible,
choices should be guessed at for the user, such as choos-
ing a download-mirror based on the geographic location
of the user’s IP address. A clear and simple mechanism
to override the default should be available, so that users
can correct or alter the assumptions if necessary.

For example, when users wish to download a distribu-
tion, they should be directed by the distribution’s web-
site to a download page. The page should default to
downloading the latest version, indicate the mirror cur-
rently selected, and display “download” icons for each
processor architecture. The mirror should be shown in
a drop-down list so it can be changed easily. If multi-
ple formats exist (CDs and DVDs, for example), clear
icons listing the processor architecture and the format
should be present. In the case of a single-file download
(like DVD ISOs), upon clicking the icon, the download
should just commence without further user action. In the
case of multiple file downloads (like CD ISOs), users
should then be directed directly to the directory on the
mirror server that has the CD ISO images in it so that
they may select and download each file on their own.

• 173 •

174 • Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

Archives should be linked to on the page, and a similar
strategy to the current version should be used. A full
listing of mirrors and their contents should be linked on
a separate page, should a user wish to manually browse.

This particular strategy encompasses a number of sim-
plifications to users, and gives distributions much more
flexible control over the distribution process. For
starters, having a centrally controlled download page
gives the distribution a common and simple way to di-
rect users to resources—in this case, their ISO images.
It also gives the distribution the ability to attempt to
spread the load amongst mirrors, by having a mirror de-
clare its download speed, the country it is located in and
what countries it serves a distribution to; the distribution
site may intelligently choose, using something like geo-
graphic IP lookup, where a user is attempting to down-
load from and provide a mirror that serves that country
with sufficient capacity. It also gives the users a very
clear and obvious path to get the data, by use of clear
icons defining their available choices and providing a
simple means of getting the data.

1.2 Mirrors are your friends, treat them with care

There is a growing trend to place more and more re-
quirements on mirrors. They need to mirror more data,
requiring more disk space. They may be asked to ver-
ify this data, both by internal scripts and by allowing
external crawlers to browse their filesystems. And, of
course, they need to be able to handle an ever-growing
user base. Each new requirement slowly adds a straw
to their backs. At some point, even the most powerful
mirrors must ask the question—is this too much?

Thankfully, there are ways that this load can be man-
aged so that mirrors don’t become overburdened—for
instance, limiting the amount of data that needs to be
mirrored, having a controlled schedule for crawlers, and
spreading out the dates when distributions are released.

1.2.1 Diet Time: Mirrors choice in Legacy data

With new releases coming out regularly, space on a
mirror is becoming a greater concern. An average re-
lease, ranging from 5GB on the low end to 20GB on
the high end, is quite a bit of data that not only has to
be stored, but served. Archiving older releases is essen-
tial, and distributions already doing this should be ap-
plauded. However, distribution maintainers should give

mirrors the choice to help by mirroring those archives.
This can either be done as an additional target to sync
from, or by making the archives available in some other
mirror-friendly format. This will not only alleviate loads
on slower archive machines, but it also provides legacy
users with guaranteed and stable means of downloading
packages and ISO images into the future.

1.2.2 Blowing disk cache: Filesystem traversal pain

Distributions have a need to know when a mirror has
been updated and to verify that it is up to date and should
be included as a valid mirror. The easiest way to do
this is to either externally crawl the mirror or to have
the site admins add a local process that runs to crawl
the repositories and report the results. Both methods
have advantages and disadvantages; however, distribu-
tions and mirror administrators should be very aware of
what these processes do to the servers, as each method
causes a linear traversal of the filesystem. This traver-
sal can and does push active data out of the disk cache,
causing more data to be sought from disk instead of
from the memory cache. This results in severe per-
formance penalties for busy and active mirrors. These
kinds of checks should be done sparingly at best as to
prevent thrashing of the mirror’s disks. A recommenda-
tion would be that these kinds of checks be performed
at most twice per day, per distribution. This should give
distribution maintainers reasonable verification of a mir-
ror’s status without causing undue additional stress on
the mirrors.

1.2.3 Talk to your neighbor: Scheduling Releases

Lastly, when it comes to distributions, there is one thing
that would help mirror administrators immensely—
communication amongst the distribution maintainers
themselves.

It is becoming common for distributions to follow a set
release schedule. While this is a boon to mirror admin-
istrators, as they can now easily plan downtimes, up-
grades, etc., there is a problem in its current state. A
number of these release schedules have become very
close together, to the point where in 2007 three major
distributions had releases all within the same week of
each other. This causes what is best described as chaos

2008 Linux Symposium, Volume One • 175

Figure 1: Current Fedora download page

on the mirrors. Where a single distribution could be con-
sidered a mad rush, having three distributions release si-
multaneously is akin to a swarm of locusts.

Handling a release means keeping the working dataset
(CD and DVD ISOs, packages, etc.) in memory, having
fast enough disk to fetch what’s not in memory, and hav-
ing sufficient network bandwidth. The main problem in
this scenario is that while many mirrors are capable of
the strain of a single release, tripling the working set’s
size will greatly exceed the memory available on most
systems. Using the Fedora Project as an example, and
assuming that only the ISO images are served, this is a
baseline of about 18GB of data—a dataset that many
mirrors are easily able to hold entirely in RAM. But
triple that to 55GB or so of data, and even the largest
mirrors must now constantly read everything from disk
in order to serve data. This is compounded by the cor-
responding increase in download requests; more people
downloading data means less bandwidth for everyone,
thus downloads take longer and load is substantially in-
creased on the mirror servers. For this reason, better
communication amongst the distribution maintainers is
essential to mitigate these overlaps in releases, and pro-
vide the best possible experience for everyone.

2 A better understanding for the user

User:
noun

1. a person who makes use of a thing;
someone who uses or employs some-
thing

2. a person who uses something or some-
one selfishly or unethically [syn: ex-
ploiter]

... 1

Users are the reason the mirrors exist in the first place:
they are the client and the customer, and as a whole are
a very demanding and diverse group. Each individual
brings a very different set of expectations, needs, and
goals when he or she goes to download the data that
is being served. However, there are some things users
should be aware of, and keep in mind, to gain a bet-
ter understanding of what is going on under the surface.
This knowledge will help them make better choices in
their downloading, from mirror selection, to package se-
lection. This will have set the expectations they bring to
the entire downloading process.

1http://dictionary.reference.com/browse/
user

176 • Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

Fedora, For You.

Install Media

9
SULPHUR

fedora
infinit | freedom | voice

fedora Released

in

??

DAYS

Navigation

 - Home

 - Get Fedora

 - Join Fedora

Tools

 - Docs

 - Wiki

Downloading From: USA - Kernel.org

32-bit - DVD
(older PC

compatible)

64-bit - DVD
(newer PC
compatible)

PowerPC - DVD
(non-Intel Mac)

Fedora 8:

Figure 2: Proposed Fedora download page

2.1 The user isn’t always right

Seeing the users as the clients or the customers is quite
natural; they are seeking to download data from the dis-
tributions. However, going against accepted wisdom
when it comes to customers, users are not always right.
It is not that their opinion is explicitly invalid, it is that
the vast majority of users are ignorant of the complexi-
ties in the entire mirroring process, and as a result lack
sufficient insight and details to make the correct choices
or significant suggestions. This can be alleviated pri-
marily by the users recognizing their own limitations,
and that their primary goal is to download data.

2.1.1 Users see things from their perspective

Consider a group of people sitting around a table with an
irregular object in the middle of it. Ask each person in
this group to describe what they are looking at, and you
will get a slightly different response from each of them
as they attempt to describe what, to their perspective,
is a completely different object. Users are in a similar
situation, as each user is staring at the entire mirror pro-
cess from a different perspective; some go directly to a
mirror, some to a distribution, and some follow links on
third-party sites to get at the data they are seeking. They
are also seeing just one side, the user-facing side, of a
much greater system that is working behind the scenes.
Users should be aware that what they are seeing is the

culmination of a huge amount of work, theory, and prac-
tice, so that they may click a link of some sort and down-
load their data.

Users may not be aware of the ramifications in sug-
gesting or demanding changes in the entire mirroring
structure. These consequences may be non-obvious and
have significant impact, of which a case in point: many
users consider BitTorrent to be something that can and
does help alleviate the loads of mirrors; however, this is
not strictly the case, and in fact may be detrimental the
the mirrors and distributions. Push from the user com-
munity at large can have consequences that distribution
maintainers and mirrors must carefully balance. To en-
sure the best user experience for everyone, it is some-
times necessary to discard even popular suggestions.

2.1.2 Diversity of Thought

There are by far more users than there are distribution
and mirror administrators. Therefore the push from the
user community for enhancements and changes can be
quite strong and varied. This does not mean, unfortu-
nately, that the outcry for change in the mirroring infras-
tructure is necessarily valid or useful. Distribution and
mirror administrators should be cautious and careful in
implementing the demands of their user base, as many
changes are ultimately detrimental. This is not to say
that user suggestions are all invalid, but rather to note

2008 Linux Symposium, Volume One • 177

that they may have consequences that adversely affect
the entire mirroring process. It is also possible that a
suggestion that is brought forth is attempting to solve a
problem that no one is actually facing. Users should be
careful of getting swept up in hype or marketing about
specific solutions or technologies; they may be great for
certain applications, but they are not always guaranteed
to give a better user experience, or may provide benefit
to a small minority, but be detrimental to the majority.

It should be kept in mind that every user may be ca-
pable of putting forth suggestions, but with there being
more users than administrators to experiment, analyze,
and verify things, there will always be technologies,
ideas, or problems that cannot be addressed or investi-
gated. Distribution and mirror administrators’ ranks are
filled with incredibly smart and dedicated people who
are working on a multitude of problems that many of
these individuals relish working on; however, they are a
small bunch of people and their time is not unlimited. If
there is a problem, it should be voiced, but it should not
be taken for granted that it will be solved immediately
just because the issue was raised, or that any solution
chosen to solve the problem will necessarily match any-
thing suggested.

2.1.3 Beware Arm-chair Administrators

Many users do have valid points, concerns, and issues.
There are, however, some that do not have a willing-
ness to accept that they may be wrong. There are count-
less individuals, the world over, who are working within
the systems they have at their disposal in universities,
corporations, non-profits, and their own personal equip-
ment to provide mirrors. Each mirror administrator
knows the limitations of what they can and cannot do
with what they have, and the distributions have a nigh-
impossible job of herding these volunteers into a coor-
dinated force capable of providing, with amazing effi-
ciency, the huge amount of data that is downloaded 24
hours a day, 7 days a week, 365 days a year. These
people are not perfect, but users who proclaim that they
themselves “can do it better,” that the administrators are
incompetent, or who lambaste the complicated and of-
ten hard decisions either that these administrators are
forced to make, are usually wrong. If these individu-
als that claim they can “do it better” are convinced they
are, they should make constructive criticism and sugges-
tions to the distribution and mirror maintainers. Every-

one is open to criticism, constructive suggestions, and
help. Users who assume their solution, when put forth,
is the absolute correct solution should look back on the
last two sections. Each user when putting forth a sug-
gestion or comment should consider that he isn’t seeing
the entire picture, and it may be that the opinion causes
more harm than good.

3 BitTorrent

Since its inception in 2001, BitTorrent has been pro-
claimed as the means of eliminating the mirror infras-
tructure, and that it will providing a faster, better means
of content distribution. It is based not on download-
ing from a central repository, or repositories (the typical
mirror infrastructure), but on a central point that coor-
dinates the masses of users who wish to download the
data and harnesses their collective bandwidth to allevi-
ate the load from the mirror servers and increase total
available bandwidth. This is accomplished through ev-
ery user participating in both downloading and upload-
ing content to the cloud. Distributions and mirrors have
recently been exploring or adopting BitTorrent as an al-
ternative means to download their content. This in part
due to a perceived user demand, and to explore the pos-
sibilities of this technology as a means to more effec-
tively use the resources at the disposal of the distribu-
tions and mirrors. However, the motivation should be
questioned, beginning with, what problem is BitTorrent
really solving? If relatively few nodes perform the vast
majority of the uploading, how is this any different or
better than providing the same files via more traditional
mechanisms like HTTP and ftp? Is BitTorrent straight-
forward enough for the average user to understand the
complex implications of using it, as opposed to tradi-
tional download mechanisms? With the rising resent-
ment against BitTorrent from Internet service providers,
is this going to adversely affect BitTorrent as a down-
load mechanism? These are but a few of the questions
that must be asked about BitTorrent as the answers to
these questions affect every layer in the mirroring in-
frastructure: distributions, mirrors, and users alike.

3.1 What it’s good for / Where it’s useful

BitTorrent’s original intent was to provide a simple
mechanism to alleviate the problem of downloading
large amounts of data when there is no established mir-
roring infrastructure in place, or the mirroring infras-
tructure is incapable of handling the demand put upon

178 • Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

it. In 2001, this was a serious concern, as it was quite
possible for large and popular datasets to cause the melt-
down of both servers and network infrastructure. In
some cases, this caused noticeable slowdowns and bot-
tlenecks on the entire Internet. BitTorrent’s intention
was to come to the rescue by distributing the combined
load to every user who was participating. By taking
advantage of the aggregate resources available, users
were than able to download faster, and in downloading,
helped make downloads for others faster by also upload-
ing the content that a user has.

As BitTorrent has matured and become more accepted,
it has been found to be exceedingly useful for moving
large datasets of any type, be it multimedia, software,
or anything, really. BitTorrent performs best in scenar-
ios where their is more than a single server and client in
the cloud. This has become particularly popular where
there is not, or cannot be, large and established mirror-
ing infrastructures. This is seen in small open-source
projects with large datasets and small followings, but
more commonly in illegal downloading. While BitTor-
rent has been popular for these smaller, more targeted,
distribution channels, there are a few commercial excep-
tions2 that are providing torrents.

3.2 Where BitTorrent falls flat on its face

While BitTorrent has the ability to create a respectable
distribution mechanism where none exists, by its very
nature it has an Achilles heel when large number of
users are in the cloud. The tracker, or the controlling
unit of the cloud, must pass messages to each of the
clients being used. This puts a load on the tracker, and
sets a finite limit to how fast it can respond to and pro-
cess the data in the cloud. As the cloud increases in size,
it does not keep the same level of efficiency or produc-
tivity when pitted against a mirror structure or a very
large user base, such as the one used to distribute Linux.
There are facets of BitTorrent that make it particularly
painful to an established mirroring structure, especially
if the mirrors themselves participate in the BitTorrent
cloud.

2Warner Brothers, Paramount, and BitTorrent Inc.’s own enter-
tainment network.

3.2.1 What the numbers show

With BitTorrent’s rise in popularity, kernel.org has
been running experiments exploring its use as more dis-
tributions attempt to push it as a download mechanism.
During these tests, data has been recorded and analyzed
for many distributions. This paper discusses the Fedora
7 and 8 releases, as they are most consistent and es-
tablished of these numbers. Kernel.org on both of
these occasions joined and participated in the BitTorrent
cloud from machines that were dedicated to this pur-
pose. These machines were not providing the same data
over traditional download mechanisms like HTTP and
ftp. The numbers reflecting the Fedora 7 release used
a stock configuration of rTorrent, which would be the
normal and expected setup for a typical user. The only
exception to this was that the two machines running in
this experiment each had three instances of rTorrent run-
ning simultaneously. The numbers reflecting the Fedora
8 release, however, add two additional machines and
the original two machines maintained three instances of
rTorrent, while the two added machines each ran five
instances. For the Fedora 8, release rTorrent’s config-
uration was also modified to allow for the maximum
possible peers, simultaneous uploads, upload and down-
load rates. Figures 3 and 4 show the amount of data
moved by the cloud as a whole versus the data moved
by Kernel.org acting as a part of the cloud.

It should be noted, in the case of Fedora 8, that
Kernel.org’s Pub 1 and Pub 2 servers were explicitly
throttled. This was done to prevent bandwidth issues to
the machines serving HTTP, ftp, and rsync, which reside
on the same network.

The numbers for BitTorrent reveal quite a bit, not the
least of which is that a small change in configuration
can cause a dramatic change in the behavior of the Bit-
Torrent client. The data also brings into question Bit-
Torrent’s ability to keep up with the mirroring needs of
a major distribution such as the Fedora Project. In the
Fedora 8 release, it can be shown that it is quite possi-
ble (in fact, quite probable), that a very few number of
nodes are performing the vast majority of the work in
the BitTorrent cloud. This is likely due to people leav-
ing the cloud once they have completed their downloads:
there is no continuing advantage for the user to continue
uploading into the BitTorrent cloud after acquiring the
full download. This leaves the cloud increasingly de-
pendent on the few seeders who have a full copy of the

2008 Linux Symposium, Volume One • 179

Fedora 7

size downloaded data transferred percent transferred by
by BitTorrent cloud of total Kernel.orga

Fedora-7-KDE-Live-i686 686MiB 4,900 3,200,000 18.85% 603,269.4
Fedora-7-KDE-Live-x86_64 831MiB 1,615 1,280,000 46.06% 589,629.2

Fedora-7-Live-i686 699MiB 8,044 5,360,000 12.95% 693,861.8
Fedora-7-Live-x86_64 779MiB 3,084 2,290,000 15.03% 344,127.6

Fedora-7-i386 2.79GiB 33,909 92,590,000 3.35% 3,097,718.9
Fedora-7-ppc 3.49GiB 957 3,260,000 28.03% 913,751.0

Fedora-7-x86_64 3.3GiB 10,448 33,730,000 6.45% 2,175,682.0
Totals: 141,710,000 5.94% 8,418,039.9

Pub 1b Pub 2c Total
Fedora-7-KDE-Live-i686 301,655.9 301,613.5 603,269.4

Fedora-7-KDE-Live-x86_64 145,080.6 444,548.6 589,629.2
Fedora-7-Live-i686 346,413.4 347,448.4 693,861.8

Fedora-7-Live-x86_64 175,252.0 168,875.6 344,127.6
Fedora-7-i386 1,503,176.6 1,594,542.3 3,097,718.9
Fedora-7-ppc 460,143.1 453,607.9 913,751.0

Fedora-7-x86_64 1,111,975.6 1,063,706.4 2,175,682.0
Totals: 4,043,697.2 4,374,342.7 8,418,039.9

athis is the total amount of data transferred through BitTorrent by Kernel.org’s Pub1 and Pub2 servers
bMachine was un-throttled, and has 1gbps of upstream bandwidth
cMachine was un-throttled, and has 1gbps of upstream bandwidth

Figure 3: Fedora 7 BitTorrent downloads of the cloud as a whole and of kernel.org

data and who are dedicated enough to stay in the cloud
despite having a complete download, or mirrors such as
kernel.org acting explicitly as a seeder.

BitTorrent’s performance also falters when you directly
compare it to more traditional download mechanisms
such as HTTP, FTP, or rsync. For our testing purposes
BitTorrent was given 15% more usable bandwidth, and
four machines while the traditional download mecha-
nisms used only two machines. Despite these advan-
tages, BitTorrent did not outshine the traditional down-
load methods. For the Live CD images BitTorrent only
moved more data in four of the five torrents. In the more
popular DVD install images BitTorrent was unable to
keep up lagging by 72% and 204.12% for the x86_64
and i386 downloads respectively, and beating out the
PPC downloads by a small margin. Looking beyond
pure number of bytes moved, BitTorrent moved 33,111
images as a whole. This pales in comparison to the mir-
roring infrastructure which has a hundred or so mirrors
in it, and with a single mirror, Kernel.org, moved

21,901 images. These numbers, however, reiterate Bit-
Torrent’s primary purpose: a distribution mechanism for
downloads that do not have more structured mirroring
and distribution mechanisms.

3.2.2 Immensely manual process for admins

The classic distribution mechanisms (HTTP, ftp, and
rsync) are very simple for both distribution and mir-
ror administrators. Simply put the files in a download-
able location, and the mirrors download the data to their
servers. When the time is correct, the distribution and
the mirrors perform what is commonly known as a “bit
flip” (or a changing of the file permissions) to allow nor-
mal users to acquire the data. This is quite simple for
both parties; in fact, if a mirror admin wished, after ini-
tial setup was done in such a way as to download from
the distribution on a regular basis, the distribution is the
only entity that needs to manually change the permis-
sions on the data and those changes will propagate to

180 • Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

Fedora 8
size downloaded data transferred percent transferred by

by BitTorrent cloud of total Kernel.orga

Fedora-8-Live-KDE-i686 698MiB 6,710 4,460,000 28.24% 1,259,591.4
Fedora-8-Live-KDE-x86_64 805MiB 1,663 1,270,000 29.55% 375,280.9

Fedora-8-Live-i686 697MiB 10,642 7,070,000 22.08% 1,561,068.2
Fedora-8-Live-ppc 698MiB 641 437,550 36.18% 158,286.5

Fedora-8-Live-x86_64 766MiB 2,649 1,930,000 25.2% 486,375.4
Fedora-8-dvd-i386 3.28GiB 33,111 106,380,000 22.81% 24,261,040.5
Fedora-8-dvd-ppc 3.96GiB 1,071 4,140,000 36.48% 1,510,322.9

Fedora-8-dvd-x86_64 3.71GiB 12,017 43,550,000 28.86% 12,569,610.7
Totals: 169,237,550 24.92% 42,181,576.5

Pub 1b Pub 2c Pub 3d Pub 4e Total
Fedora-8-Live-KDE-i686 232,696.2 257,395.4 221,166.9 548,333.9 1,259,591.4

Fedora-8-Live-KDE-x86_64 79,563.7 78,471.2 68,880.2 148,365.8 375,280.9
Fedora-8-Live-i686 286,141.2 322,965.5 242,441.7 709,519.8 1,561,068.2
Fedora-8-Live-ppc 35,926.2 36,520.0 29,412.0 56,428.3 158,286.5

Fedora-8-Live-x86_64 97,050.5 109,541.5 82,232.9 197,550.5 486,375.4
Fedora-8-dvd-i386 4,956,911.9 5,492,479.7 3,586,870.5 10,224,778.4 24,261,040.5
Fedora-8-dvd-ppc 381,919.8 300,517.5 299,703.8 528,181.8 1,510,322.9

Fedora-8-dvd-x86_64 2,479,605.9 2,760,286.6 1,751,454.1 5,578,264.1 12,569,610.7
Totals: 8,548,815.4 9,087,677.4 6,282,162.1 17,991,422.6 42,181,576.5

athis is the total amount of data transferred through BitTorrent by Kernel.org’s Pub1 and Pub2 servers
bBandwidth throttled to a max of 240.8mbps for the machine
cBandwidth throttled to a max of 240.8mbps for the machine
dMachine has a maximum of 100mbps of bandwidth due to upstream provider
eMachine was un-throttled, and has 1gbps of upstream bandwidth

Figure 4: Fedora 8 BitTorrent downloads of the cloud as a whole and of kernel.org

the mirrors automatically. This is very straightforward,
simple, easy to verify, and robust for all parties involved
in the mirroring process. BitTorrent is not, at least in its
current implementation, quite as simple for the distribu-
tion or mirror administrators to set up.

The process for BitTorrent is more cumbersome from
the distribution administrator’s point of view. The ad-
ministrator must put together package sets and create the
torrents, which takes some additional effort. Typically
these torrents are unavailable until the point at which
“bit flip,” or release, occurs; so there is no way for the
mirrors themselves to join the cloud early. There is an
added difficulty that per distribution, per release, the tor-
rent files are either inconsistent in where they are, or not
present at all. It is also made more difficult if the files
defining the torrent are not present, or they are not in a
location where the torrent file is expecting the ISO im-
ages to be. This makes it immensely time-consuming
for the mirror admins to participate, should they choose,

in the BitTorrent cloud, as they must hand-craft the en-
tire structure, or face re-downloading the data once the
torrents are available. There is a means of setting up a
more automatic searching of the file system to find and
automatically join torrents; however, this would cause
additional load on the system, as it will have to walk the
entire file space regularly in search of those torrents, and
again the structure in many cases is not set up to have the
files pre-configured in the correct structure.

3.2.3 Loading of a machine

BitTorrent is designed to manage the cloud and all of
the portions of the images that are available. While this
works well when a small number of machines are ask-
ing a host for data, it does not scale to thousands. This
causes the hosting machine to get, effectively, random
requests for sections of the data, meaning that it can
not sequentially read the file out, and take advantage of

2008 Linux Symposium, Volume One • 181

Fedora 7
Mirrors1 Mirrors2 Totals BitTorrent Ratio

HTTP Ftp Rsync HTTP Ftp Rsync (From Above)

Fedora-7-Live-x86_64.iso 144 24 146 31 345 441.75
Fedora-7-Live-i686.iso 1,062 184 1,031 142 2,419 992.64
Fedora-7-Live-KDE-x86_64.iso 120 21 104 24 269 709.54
Fedora-7-Live-KDE-i686.iso 664 129 633 94 1,520 879.40
Fedora-7-ppc-DVD.iso 145 20 107 17 289 441.75
Fedora-7-x86_64-DVD.iso 2,337 281 17 2,145 226 47 5,053 320.46
Fedora-7-i386-DVD.iso 10,579 1,193 55 9,146 865 63 21,901 365.43

Fedora 8
Mirrors1 Mirrors2 Totals BitTorrent Ratio

HTTP Ftp Rsync HTTP Ftp Rsync (From Above)

Fedora-8-Live-ppc.iso 42 5 18 37 2 14 118 226.40
Fedora-8-Live-x86_64.iso 178 31 34 162 16 30 451 634.36
Fedora-8-Live-i686.iso 1,339 111 50 1,167 80 38 2,785 2,238.90
Fedora-8-Live-KDE-x86_64.iso 67 29 33 67 17 30 243 456.19
Fedora-8-Live-KDE-i686.iso 588 82 50 547 71 37 1,375 1,803.80
Fedora-8-ppc-DVD.iso 171 27 16 141 14 13 382 398.71
Fedora-8-x86_64-DVD.iso 2,703 364 38 2,322 238 47 5,712 3,307.36
Fedora-8-i386-DVD.iso 10,716 951 55 9,416 712 51 21,901 7,201.36

read-ahead when sending data to clients. This random
access across the disk, which will only get more fre-
quent with the number of clients in the cloud, will very
quickly begin to adversely impact the system, causing
a rise in load and added stress to the disk. On a sys-
tem that may already be serving traditional download
methods, this constant seeking on the disk can cause
loads to rise dramatically, impacting performance for
both BitTorrent and the traditional download methods.
This makes its use on a normal mirror machine ques-
tionable due to the adverse impact it would have on the
system.

3.3 Increasing problem to users

There are several technical and logistical reasons that
BitTorrent is unsuitable for mirror usage, but there is
also a number of hurdles and complexities to a user, both
external and internal to their control, that can adversely
affect a user’s experience in using BitTorrent. BitTor-
rent, to make it usable, needs to have a routable port
for other clients to connect to and request data from.
This, however, poses an issue for users, as many of
them are behind a NATed firewall that they may or may

not control. On top of that, many users are unaware of
this particular issue and don’t know that a port needs to
be forwarded to their computer. This causes confusion
and a lack of understanding about why it “doesn’t just
work.” Things like rsync and HTTP do this without fire-
wall changes. Users may also not be able to control the
network they are on, for example a corporate network,
where a user is unable to alter the firewall to make use
of BitTorrent, thus making the experience painful and
unusable.

BitTorrent has also come under fire from Internet Ser-
vice Providers (ISPs) who feel that BitTorrent is primar-
ily being used for illegitimate purposes. This has lead
many large, and small, ISPs3 to begin performing var-
ious things to either slow down BitTorrent traffic or to
outright block it. This can be problematic for users, and
may be undetectable by them, causing frustration at the
inability to find what the cause is.

3Comcast is probably the most famous currently; however,
Azureus, a Java-based BitTorrent client, keeps a list of known prob-
lem ISPs at http://www.azureuswiki.com/index.php/
Bad_ISPs

182 • Issues in Linux Mirroring: Or, BitTorrent Considered Harmful

3.4 BitTorrent—too late to the party

While evaluating the feature list and promises of Bit-
Torrent, it seems like it could be the silver bullet that
solves many problems for distributions and mirror ad-
ministrators. However, during the course of real testing
and looking at BitTorrent from the perspective of the
distributions, the mirror administrators, and the users,
there are a number of rather serious concerns and issues
that come up that should give all three groups concern.
Requests are coming from users to provide BitTorrent,
and maintainers are seeking ways of making their dis-
tribution process faster and better. Users are seeking a
magic bullet, and they have been lead to believe that Bit-
Torrent is it. They want a faster and easier means of
downloading the data they want. The reality of the mat-
ter, however, is that their calls and howls for BitTorrent
to be provided are not made with a full understanding of
the impact it has on the system. Much of the infrastruc-
ture to provide the user a better experience is in place
today. There are hundreds of mirrors around the world
ready to mirror the data and distributions have created
the infrastructure to manage and pre-distribute the data
to the mirrors before release. All that is left to be done
is for the distributions to provide a simple and straight-
forward user interface to interact with so that users can
simply download the data they are seeking.

Distributions should endeavor to make and keep things
simple and straightforward for the end user. Users
should be given few (but clear) options, and choices
should be limited to the bare few needed. Distributions
should endeavor to provide a only the most popular for-
mats as a default, leaving less-common formats to be
generated by the end users themselves, with a mecha-
nism provided by the Distribution. The intent is not to
take all options away from the users, but rather to make
things as straightforward and simple for the majority,
giving the minority tools to meet their more specific
needs. Along with this “simpler is better” approach,
basic coordination amongst the distributions is critical,
mainly to prevent overlapping release schedules, but to
provide better discussion and feedback on what mirror-
ing practices are working and which aren’t. There are
issues in the mirroring infrastructure currently, but these
are solvable problems. With a better understanding of
the issues and problems faced by everyone, solutions
and practices can be put in place to better served.

Linux, Open Source, and System Bring-up Tools
How to make bring-up hurt less

Tim Hockin
Google, Inc.

thockin@google.com

Abstract

System bring-up is a complex and difficult task. Mod-
ern hardware is incredibly complex and it’s not getting
any simpler. Bringup engineers spend far too much time
hunting through specs and register dumps, trying to find
the source of their problems. There are very few tools
available to make this easier.

This paper introduces three open source tools that can
help ease the pain, and hopefully shorten bring-up cy-
cles for new platforms. SGABIOS is a legacy option
ROM which implements a simple serial console inter-
face for BIOS. Iotools is a suite of low-level utilities
which enables rapid prototyping of register settings.
Prettyprint is a powerful library and toolset which al-
lows users to easily examine and manipulate device set-
tings.

Introduction

Sometimes you get lucky on a bring-up, and things just
work the way they are supposed to. More often than
not, though, something goes wrong. Unfortunately, it’s
usually many “somethings” that go wrong. When things
do go wrong, someone has to figure out what happened
and how to fix it.

Platforms today are vastly more complicated than they
were just a few years back. Almost nothing works when
the system powers on. It all needs to be configured.
When the inevitable “something” goes wrong, determin-
ing the cause can be an overwhelming task.

Of course, there are no magic bullets, but there are tools
that can help to make solving some of these problems
easier.

1 Terminology

Before diving in, it’s important that we are all speaking
the same language:

Platform: Sometimes used as a synonym for mother-
board, a platform is really the combination of compo-
nents that make up a computer system. This includes
the CPU or CPU family, the memory controller, the IO
controller, the DRAM, the IO devices, and usually the
system firmware.

Bring-up: The process of evolving a platform from an
expensive objet d’art into a fully operational computer
system. This process usually involves debugging and/or
working around the hardware, configuring the system in
the BIOS, and hacking the drivers and kernel into shape.
It often includes superstitious rituals, cynical prayers,
and lots of cussing.

BIOS: Basic Input Output System. The BIOS is the
software that executes when a PC powers on, and is pri-
marily responsible for configuring the hardware.

Device: A piece of hardware that is logically self-
contained. While a typical southbridge is a single chip,
it is usually viewed as a collection of devices, such as
disk controllers, network interfaces, and bridges.

Chipset: A hardware chip or chips that provide the bulk
of the IO on a platform. Chipsets are typically tested and
sold as a single unit. These generally include a north
bridge which contains one or more memory controllers
as well as high-speed IO bridges, and a south bridge
which contains lower-speed devices such as storage and
legacy bus interfaces.

Register: An addressable set of bits exposed by a de-
vice. Most devices contain many registers. Registers
generally hold control and status bits for the device, and
can be mapped into a multitude of address spaces such
as PCI config space, memory, or IO space.

• 183 •

184 • Linux, Open Source, and System Bring-up Tools

2 Serial Console for the Unwashed Masses

An obvious place to start is to get the BIOS output as
it boots. Just about anyone who has ever booted up a
PC has seen the BIOS output on the screen. This is,
however, not very useful. Most servers do not have a
monitor plugged in to them at all times. VGA-capable
chips, while not particularly high-tech, are not free to
buy or run. Why require one on every server?

It is a sad fact that many platforms available today still
do not have serial console support. Those that do of-
fer it usually offer it as an up-sell on the BIOS, and the
implementation quality is often questionable.

Some implementations provide side-band interfaces,
which only get used to print certain information. This is
not particularly useful to anyone, and is fortunately not
seen much any more. Some implementations do what is
called screen scraping which depends on a real VGA de-
vice with real VGA memory to store the screen contents.
They periodically scan the VGA memory and send up-
dates on the serial port. Some implementations support
text output but completely break down in the face of “ad-
vanced” features like cursor movement or color.

2.1 Solving It Once and for All

In order to provide a consistent feature set, one Google
engineer chose to solve this once and (hopefully) for
all. Thus was born SGABIOS—the Serial Graphics
Adapter. SGABIOS is a stand-alone option ROM which
can be loaded on a platform to provide serial console
support. It provides a robust set of VGA-compatible fea-
tures which allow most BIOS output to be converted to
serial-safe output. It supports basic cursor movement,
color, text input, and large serial consoles.

The easiest way to use SGABIOS is to make your BIOS
load it as an option ROM. You can try to convince your
board vendor to include it as an option ROM in the
BIOS build, or you can use tools (usually provided by
the BIOS vendor) to load an option ROM into a BIOS
image. If this is not an option for you, all is not lost.
There are commercially available add-in debug cards
which have option-ROM sockets. In a pinch, many net-
work and other cards have programmable ROMs which
can be made to load an arbitrary option ROM.

When started, SGABIOS attempts to detect if there
is a terminal attached. If detected, SGABIOS will

adapt its internal structures to the detected terminal size.
SGABIOS then traps INT 10h, the legacy “print some-
thing” BIOS function, and INT 16h, the legacy “read
keyboard” function. The final result is that any well-
behaved BIOS, option ROM, or legacy OS will now be
using the serial port transparently. However, there are
some badly behaved programs which attempt to write to
VGA memory directly. SGABIOS can not fix those ap-
plications. Fortunately, this does not seem to be a very
big problem.

We have successfully run SGABIOS with LILO and
GRUB, as well as DOS. It works wonderfully for the
uses we have found, though it does have its limita-
tions. Some applications, such as LILO, query INT
10h for previously displayed data. Because there is no
VGA memory backing it, SGABIOS only stores a small
amount of the most recently printed output. This has
been good enough to handle the applications we have
found to do this, but it does have the potential to fail. As
with so many things, it is a tradeoff of memory size vs.
functionality.

You can find SGABIOS at http://sgabios.
googlecode.com.

3 Simple Access to Registers

A recurring situation in my office is that you can boot,
but something is not right. You might have some ideas
on what it could be, but you need to run some additional
tests. You need to modify some registers.

You could have the board vendor build some test
BIOSes with the various settings. That’s not going to
be an effective, scalable, or timely solution.

You could build a custom kernel which programs the de-
sired changes; at least you control that part. It’s still a
pretty heavyweight answer, and the hardware test team
folks are not really kernel hackers. This approach is bet-
ter than the last one, but not good.

One might ask “Hold on, doesn’t the kernel expose some
APIs that let me fiddle with registers?” Why yes, it does.
Now you only have to write some simple programs to
do these tests. But again, the test team is not really C
programmers. There must be something simpler.

2008 Linux Symposium, Volume One • 185

3.1 Introducing Iotools

A simple, scriptable interface to device registers allows
anyone who can do basic programming to deal with this
problem. Almost anyone is now able to trivially read
and write registers, thereby enabling a whole new de-
bugging army.

This is the goal of iotools. The iotools package
provides a suite of simple command-line tools which en-
able various forms of register accesses. They are mostly
thin wrappers around Linux kernel interfaces such as
sysfs and device nodes. Iotools also includes a num-
ber of simple logical operation tools, which make ma-
nipulating register data easier.

The iotools “suite” is actually a single binary, a la
busybox. This allows for simple distribution and in-
stallation on target systems. The iotools binary is
less than 30 kilobytes in size when built with shared li-
braries. Building it as a static binary obviously increases
the size, depending on the libc it is linked against. This
should make iotools suitable for use in most size-
sensitive environments, such as flash or initramfs.

A note of caution is warranted. Writing to registers on a
running system can crash the system. You should al-
ways understand exactly what you are changing, and
whether there might be a kernel driver managing those
same registers. Sometimes it is enough to simply unload
a driver before making your changes. Other times you
just have to go for it.

3.2 What’s in Iotools?

At the time of writing, the iotools suite includes
tools to access the following register spaces:

• PCI: Read and write registers in PCI config space.
This includes both traditional config space (256
bytes per device) and extended config space (4
Kbytes per device) for those devices which support
it. Access is provided by sysfs or procfs and
is supported as 8-bit, 16-bit, and 32-bit operations.

• IO: Read and write registers in x86 IO ports. This
covers the 64-Kbyte space only. Access is provided
by IN and OUT instructions and is supported as 8-
bit, 16-bit, and 32-bit operations.

• MMIO: Read and write memory-mapped regis-
ters or physical memory. This provides access
to the entire 64-bit physical memory space via
/dev/mem. It supports 8-bit, 16-bit, and 32-bit
operations.

• MSR: Read and write x86 model-specific registers
on any CPU. This provides access to the full 32-bit
MSR space via /dev/cpu/*/msr. It supports
only 64-bit operations (all MSRs are 64 bits).

• TSC: Read the CPU timestamp counter on the cur-
rent CPU. This is provided by the RDTSC instruc-
tion and is always a 64-bit operation.

• CPUID: Read data from the CPUID instruction on
any CPU. This provides access to the full 32-bit
CPUID space via /dev/cpu/*/cpuid.

• SMBus: Read and write registers on SMBus de-
vices. This is provided by the /dev/i2c-*
drivers and supports 8-bit, 16-bit, and block opera-
tions.

• CMOS: Read and write legacy CMOS memory.
Most PCs have around 100 bytes of non-volatile
memory that is accessed via the real-time clock.
Access is provided by the /dev/nvram driver,
and only supports 8-bit operations. This should be
used with caution. CMOS memory is often used
by the system BIOS, and changing it can have un-
intended side effects.

In addition to the register access tools, iotools also
includes several tools to perform logical operations on
numbers. These tools are important because they sup-
port 64-bit operations and treat all numbers as unsigned,
which can be a problem in some shell environments.

• AND: Produce the logical AND of all arguments.

• OR: Produce the logical inclusive OR of all argu-
ments.

• XOR: Produce the logical exclusive OR of all ar-
guments.

• NOT: Produce the bitwise NOT of the argument.

• SHL: Shift the argument left by a specified number
of bits, zero-filling at the right.

186 • Linux, Open Source, and System Bring-up Tools

• SHR: Shift the argument right by a specified num-
ber of bits, zero-filling at the left (no sign exten-
sion).

3.3 A Simple Example

Suppose you need to test the behavior of enabling SERR
reporting on your platform. This is controlled by bit 8
of the 16-bit register at offset 4 of each PCI device. You
could whip up a quick script:

#!/bin/bash

function set_serr {
SERR is bit8 (0x100) of
16-bit register 0x4
OLD=$(pci_read16 $1 $2 $3 0x4)
NEW=$(or $OLD 0x100)
pci_write32 $1 $2 $3 4 $NEW

}

hardcoded list of PCI addresses
set_serr 0 0 0
set_serr 0 0 1
set_serr 0 0 2

You can do better than this, though. You can trivially
make this script loop for each PCI device:

#!/bin/bash

function set_serr {
SERR is bit8 (0x100) of
16-bit register 0x4
OLD=$(pci_read16 $1 $2 $3 0x4)
NEW=$(or $OLD 0x100)
pci_write32 $1 $2 $3 4 $NEW

}

for each bus, dev, func
for B in $(seq 0 255); do

for D in $(seq 0 31); do
for F in $(seq 0 7); do

pci_read32 $B $D $F 0 \
>/dev/null 2>&1

if [$? != 0]; then
does not exist
continue;

fi
set_serr $B $D $F

done
done

done

This version takes a bit longer to run, but works regard-
less of the devices in the system. You can shorten the
run time significantly by putting a sane upper bound on
the number of buses. Few systems have more than 20 or
30 buses, even in this era of point-to-point PCI Express
buses.

This is the sort of tool that someone with very basic shell
scripting skills can produce in just a few minutes with
iotools.

You can find iotools at http://iotools.
googlecode.com.

4 Making it Simpler

The previous section shows just one example of the
sorts of problems that arise during bring-up. Frankly, it
wasn’t a particularly complicated problem, and the so-
lution is bordering on real programming. Worse than
that, it requires that the person doing the work remem-
ber several “magic” numbers. Which register is this bit
in? How wide is that register? Which bit is it? Taken
further, the problem quickly becomes very difficult.

Suppose you want to examine or configure something
more complicated, like PCI Express advanced error re-
porting (AER). AER is a capability in PCI terminology.
That means that some devices will support it and some
will not. The only way to find out is to ask each de-
vice. Further, each device might put the AER registers
at a different offset in their PCI register set. As if that
is not enough, some devices have different AER register
layouts, depending on what kind of device they are and
which version of the the specification they support.

Doing this in an iotools script is certainly possible; it
just isn’t so simple anymore. Google needed something
that internalizes and hides even more of the details. This
gave rise to prettyprint.

4.1 An Unfortunate Name

The original goal of prettyprint was this: to dump
the state of all the registers in the system in a diff-
friendly format. This would allow us to use one of our
favorite debug tools, which we call “Did you try rolling
back the BIOS?” Boot with BIOS A, prettyprint
the system. Boot with BIOS B, prettyprint the sys-
tem. Then diff the results.

2008 Linux Symposium, Volume One • 187

Like the previous examples, there are other ways of do-
ing this. They all resulted in a screenful of numbers,
followed by a few hours of digging through datasheets
to find what each bit of each differing register means.
The only thing worse than going through this process
and finding that the difference is undocumented is go-
ing through this process multiple times.

Instead, prettyprint attaches a datatype to field val-
ues, allowing it to produce output which is not only
diff-friendly, but which is also human-friendly.

4.2 Fundamentals of Prettyprint

Prettyprint has two fundamental constructs: regis-
ters and fields. In keeping with the common vernacular,
a register is a single addressable set of bits. Registers
have a defined, fixed width, but they have no intrinsic
meaning.

Fields, on the other hand, are of arbitrary width and are
the only entity with meaning. Fields can be defined as
a set of register bits (regbits), constant bits, or even as
procedures. Every field has a datatype, and the result of
reading a field is a value that can be evaluated against
that datatype to produce a human-readable string.

4.3 The Power of Fields

Let’s look at a the simple example from Section 3.3.
For each PCI device there is a 16-bit register at offset
4 called %command (the % is a convention to indicate
a name is register). For each PCI device there is also a
field called serr. This field is exactly 1 bit wide, and is
composed of bit 8 of %command. When accessing this
field, one can interpret its value as a boolean, where a
value of 1 = "yes" and a value of 0 = "no".

%command

serr

0123456789101112131415

Figure 1: A simple field

Now, when you dump the state of a device, you can see
a line item that says serr: yes.

This is vastly more useful than a hexadecimal number
about which I have to remember that bit 8 being set
means SERR is enabled. Even better, since I now have a
system that understands serr directly, I can write to it
just as easily as I can read from it.

4.4 Binding Fields to Devices

The previous example glossed over the details of
“for each PCI device.” This is a key aspect of
prettyprint’s power. Registers are defined in an
abstract way, divorced of exactly which device or ac-
cess method they employ. They simply have ad-
dresses. When it comes time to use these registers,
prettyprint passes control to the drivers which en-
able each class of device. A binding is used to map
which abstract registers belong to which driver.

When starting up, prettyprint can find hardware
devices in one of two ways. Firstly, you can tell it where
a device is found. This is the only option for some de-
vices, especially legacy devices. For example, to tell
prettyprint about the serial port, you would have
to tell it something to the effect of, “There exists a se-
rial port in IO space, at address 0x3f8.” In so doing,
you have given prettyprint enough information to
bind the serial port registers and fields to a driver and
address.

Better still, you can let prettyprint discover some
devices. Many modern devices can be discovered ei-
ther through the hardware itself, such as PCI, or through
simple interfaces, such as ACPI. In this case, the driver
has a discovery routine which will find devices and bind
them as it finds them. This is how we are able to define
things like serr as something that exists “for each PCI
device.”

4.5 About the Implementation

Prettyprint is written in C++. I can hear the cries
of frustration already. Why C++? Because I thought that
the problem decomposed nicely into an object-oriented
model, and because I wanted to improve my C++.

Prettyprint has been designed from the start as
a library to be used as a backend by various applica-
tions. From state dumping utilities to interactive shells
to FUSE filesystems, anything is possible.

188 • Linux, Open Source, and System Bring-up Tools

4.6 Defining Registers And Fields

So how does one go about defining a device? One of
the things that the choice of C++ brought to the project
was a way to manipulate the language syntax. The end
goal is to have an actual interpreted language which is
used to define devices. Until then, we have a set of C++
classes, functions, and templates which define a pseudo-
language.

This pseudo language is intended to make the definition
of registers and fields as simple as possible. Let’s look
at the SERR example:

REG16("%command", 0x04);
FIELD("serr", "yesno_t",

BITS("%command", 8));

That’s pretty straightforward. We define %command as
a 16-bit register at address 0x04. We define serr as a
field with datatype yesno_t, composed of bit 8 from
%command.

Frequently, a field maps directly to a register. To sim-
plify this, prettyprint understands regfields. For
example, the PCI “intpin” field is the only consumer of
the %intpin register.

%intpin

intpin

01234567

01234567

Figure 2: A regfield

We can express that as:

REG8("%intpin", 0x3d);
FIELD("intpin", "int_t",

BITS("%intpin", 7, 0));

Or we can take the equivalent regfield shortcut:

REGFIELD8("intpin", 0x3d, "int_t");

Let’s consider a more complicated example. In a PCI-
PCI bridge, there are several registers which control the
address ranges which are decoded by the bridge. They
are implemented as two different registers, which com-
bine to form a logical 64-bit address. The low 20 bits of
both the base and limit register are fixed to 0 and 1,
respectively.

%base_lo
03415

%base_hi
031

base 063 19203132

000...000

%limit_lo
03415

%limit_hi
031

limit 063 19203132

111...111

Figure 3: Complex fields

In prettyprint, this is expressed as:

REG16("%base_lo", 0x24);
REG32("%base_hi", 0x28);
REG16("%limit_lo", 0x26);
REG32("%limit_hi", 0x2c);

FIELD("base", "addr64_t",
BITS("%base_hi", 31, 0) +
BITS("%base_lo", 15, 4) +
BITS("%0", 19, 0));

FIELD("limit", "addr64_t",
BITS("%limit_hi", 31, 0) +
BITS("%limit_lo", 15, 4) +
BITS("%1", 19, 0));

Notice the use of %0 and %1 as registers. These are
the magic registers. When read, %0 always returns all
logic 0 bits. Likewise, %1 always returns all logic 1 bits.
Also notice that the bits in a field are defined from most
significant to least significant. A field can be arbitrarily
long, and can be composed of any number of regbits.

4.7 Scopes and Paths

The examples so far have been relatively small. In real-
ity the %command register has a number of fields that
derive from it. All told, there are thousands of fields in

2008 Linux Symposium, Volume One • 189

each PCI device. prettyprint provides scopes as a
mechanism for grouping related things together.

Think of scopes like directories in a filesystem. Each
scope has a name and a set of contents. A scope can con-
tain registers, fields, or other scopes. Like the filesystem
metaphor, prettyprint has paths. There is a con-
ceptual root of the path tree, and each register, field, and
scope can be named by a unique path. Also like a UNIX
directory tree, path elements are seperated by a forward
slash (/), and two dots (..) means the parent scope.

The %command register from our previous examples
actually looks something like this:

REG16("%command", 0x04);
OPEN_SCOPE("command");

FIELD("io", "yesno_t",
BITS("../%command", 0));

FIELD("mem", "yesno_t",
BITS("../%command", 1));

FIELD("bm", "yesno_t",
BITS("../%command", 2));

FIELD("special", "yesno_t",
BITS("../%command", 3));

FIELD("mwinv", "yesno_t",
BITS("../%command", 4));

FIELD("vgasnoop", "yesno_t",
BITS("../%command", 5));

FIELD("perr", "yesno_t",
BITS("../%command", 6));

FIELD("step", "yesno_t",
BITS("../%command", 7));

FIELD("serr", "yesno_t",
BITS("../%command", 8));

FIELD("fbb", "yesno_t",
BITS("../%command", 9));

FIELD("intr", "yesno_t",
BITS("../%command", 10));

CLOSE_SCOPE();

4.8 Datatypes

Each field can be evaluated against its datatype.
Prettyprint defines a number of primitives:

• int: a decimal number

• hex: a hexadecimal number

• enum: an enumerated value

• bool: a binary enum

• bitmask: a set of name bits

These primitives are used to create several pre-defined
datatypes:

• int_t: a number

• hex_t: a hexadecimal number

• hex4_t: a 4-bit hexadecimal number

• hex8_t: a 8-bit hexadecimal number

• hex12_t: a 12-bit hexadecimal number

• hex16_t: a 16-bit hexadecimal number

• hex20_t: a 20-bit hexadecimal number

• hex32_t: a 32-bit hexadecimal number

• hex64_t: a 64-bit hexadecimal number

• hex128_t: a 128-bit hexadecimal number

• addr16_t: a 16-bit address

• addr32_t: a 32-bit address

• addr64_t: a 64-bit address

• yesno_t: a boolean, 1 = "yes", 0 = "no"

• truefalse_t: a boolean, 1 = "true", 0 = "false"

• onoff_t: a boolean, 1 = "on", 0 = "off"

• enabledisable_t: a boolean, 1 = "enabled", 0 =
"disabled"

• bitmask_t: a simple bitmask

Without doubt, any reasonably complex device will
need to define its own datatypes. Prettyprint al-
lows datatypes to be defined at any level of scope, and
to be used in any scope below the definition—similar to
C.

• INT(name, units?): define a new int type with op-
tional units.

• HEX(name, width?, units?): define a new hex
type with optional width and units.

190 • Linux, Open Source, and System Bring-up Tools

• ENUM(name, KV(name, value), ...): define a
new enum type with the specified named values.

• BOOL(name, true, false): define a new bool type
with the specified true and false strings.

• BITMASK(name, KV(name, value), ...): define
a new bitmask type with the specified named bits.

Sometimes you want to define a new datatype for ex-
actly one field. Rather than come up with a good
name for it, each of the datatype definitions supports
an ANON_ prefix, which removes the name argument
and produces an anonymous datatype. For example,
the previous PCI intpin example used int_t as the
datatype. In reality, we want an enumerated type. This
is the only field that will use this type, so we want to
declare it anonymously:

REGFIELD8("intpin", 0x3d, ANON_ENUM(
KV("none", 0),
KV("inta", 1),
KV("intb", 2),
KV("intc", 3),
KV("intd", 4)));

4.9 Advanced Techniques

So far, we’ve seen how prettyprint can be used
to define simple registers and fields. Unfortunately,
few hardware devices are so simple. Because the
prettyprint “language” is actually a dialect of C++,
there is a lot of power at your fingertips.

Hardware registers are at a premium. Often the hard-
ware will overload the meaning of some bits depending
on the state of other bits. Prettyprint supports the
conditional definition of registers and fields.

Let’s look at another example. In a PCI bridge’s IO de-
code window, there is a width field. That field deter-
mines whether the high half of the base field is valid.

REG8("%base_lo", 0x1c);
REG16("%base_hi", 0x30);

FIELD("width", ANON_ENUM(
KV("bits16", 0),
KV("bits32", 1)),

BITS("%base_lo", 3, 0));

if (FIELD_EQ("width", "bits16")) {
FIELD("base", "addr16_t",

BITS("%base_lo", 7, 4) +
BITS("%0", 11, 0));

} else { // bits32
FIELD("base", "addr32_t",

BITS("%base_hi", 15, 0) +
BITS("%base_lo", 7, 4) +
BITS("%0", 11, 0));

}

In this example you see the usage of FIELD_EQ().
This performs a read of the width field and compares
the result against the value specified. Comparisons can
be done by string or by number, thanks to function over-
loading in C++. The above example could have just as
easily (though less maintainably) used:

FIELD_EQ("width", 0)

The actual evaluation of the a comparison is done by
the specific datatype, which is the only place that can
actually determine what it means to compare values.
Prettyprint supports the following comparison op-
erations:

• FIELD_EQ: the field is equal to the specified com-
parator.

• FIELD_NE: the field is not equal to the compara-
tor.

• FIELD_LT: the field is less than the comparator.

• FIELD_LE: the field is less than or-equal-to the
comparator.

• FIELD_GT: the field is greater than the compara-
tor.

• FIELD_GE: the field is greater than or-equal-to
the comparator.

• FIELD_BOOL: the field is boolean TRUE, equiv-
alent to NE 0.

2008 Linux Symposium, Volume One • 191

• FIELD_AND: the field matches the comparator.

Again, because the prettyprint “language” is really
just C++, almost any native construct will work. There
are some limitations, though.

To start with, C++ will not allow a switch statement
on a non-integer value, so you can not switch on enu-
merated strings. In the eventual prettyprint lan-
guage implementation, this will be supported.

Secondly, control statements are evaluated just once,
as the tree of registers and fields is being built. Later
changes to control bits do not change the tree struc-
ture. This is something we want to enable in the
prettyprint language, but we do not have support
for it yet.

4.10 Discovering Specific Devices

Throughout these examples, we have looked at standard
PCI fields and registers. The PCI standard covers only
a fraction of the available PCI register space. Almost
every PCI device defines its own non-standard register
set. What about those extra registers and fields?

In the same way that prettyprint can discover
generic devices, such as PCI, it can also discover spe-
cific devices. A device definition can register itself for
discovery through a specific driver. When the driver’s
discovery mechanism detects the registered device, as
determined by a driver-specific signature, it invokes the
specific device code, rather than the generic.

For example, a device definition for an AMD Opteron
might register with the PCI driver for the vendor and de-
vice pair (0x1022, 0x1100). When the PCI driver
finds that vendor and device pair, the Opteron-specific
device code would be invoked, rather than the generic
PCI device code.

Rather than re-encoding the entire PCI specification, the
generic PCI code can be invoked from the Opteron code.
This allows device code to extend standard devices with
very little effort.

4.11 The Directory Tree

The prettyprint code is broken into four compo-
nents. The top-level directory contains the core classes

and functions that make up the prettyprint li-
brary. This includes pp_register, pp_field, pp_
datatype, etc.

The drivers subdirectory contains the driver mod-
ules. Currently prettyprint only supports Linux,
though it would not be hard to add support for other
operating systems. At the time of writing, the drivers
directory contains drivers for:

• PCI: via /sys or /proc
• MEM: via /dev/mem
• IO: via IN and OUT instructions
• MSR: via /dev/cpu/*/msr
• CPUID: via /dev/cpu/*/cpuid

The devices subdirectory contains device code, writ-
ten in the prettyprint “language.” When we have
a real language parser, this is the code that will be re-
written in the new language. Prettyprint currently
has support for:

• PCI: most of the fields for generic PCI and PCI
Express devices, including many capabilities.

• CPUID: very basic CPUID fields

Lastly, the examples subdirectory contains example
programs which use the prettyprint library.

4.12 FUSE and Prettyprint

One of the more exciting examples is the pp_fs appli-
cation. This is a FUSE filesystem which allows direct
access to registers and fields.

Using pp_fs, the example of setting SERR on all de-
vices becomes trivial:

$ find /pp -wholename *command\/serr \
| while read X; do

echo -n "$X: $(cat $X) -> "
echo "yes" > $X
cat $X

done
/pp/pci.0.0.0.2/command/serr: no -> yes
/pp/pci.0.0.1.0/command/serr: no -> yes
/pp/pci.0.0.0.1/command/serr: no -> yes
/pp/pci.0.0.0.0/command/serr: no -> yes

192 • Linux, Open Source, and System Bring-up Tools

4.13 Current Status

The current examples demonstrate the capabilities of
prettyprint. pp_discover has already proven
to be a useful tool at Google. But there is still a lot of
work to do in many areas.

Prettyprint is under active development. A great
way to get involved is to encode new hardware devices
into the prettyprint language. The larger our de-
vice repository gets, the more useful it becomes.

You can find prettyprint at
http://prettyprint.googlecode.com.

5 Acknowledgements

Thanks to Nathan Laredo for pushing to make
SGABIOS a reality.

Thanks to Aaron Durbin for busybox-ifying iotools
on a whim, and to all the Google platforms folks who
have added tools to it.

Thanks to Aaron Durbin, Mike Waychison, Jonathan
Mayer, and Lesley Northam for all their help on
prettyprint.

Thanks to Google for letting us hack on fun systems and
release our work back to the world.

Audio streaming over Bluetooth

Marcel Holtmann
BlueZ Project

marcel@holtmann.org

Abstract

During the last year the Linux Bluetooth community
worked hard to establish a solution for streaming audio
using the Bluetooth wireless technology. This solution
is based on multiple standards for headset (mono qual-
ity) and headphones (stereo/high quality) that have been
published by the Bluetooth SIG. It also includes support
for remote control and meta data information like song
titles, etc.

This includes work on the open source implementation
of the Subband-codec which has been highly improved
and can now measure up against any commercial imple-
mentation of this codec.

Introduction

The initial Bluetooth specification [1] came with sup-
port for the Headset profile (HSP) which allowed con-
necting mono headsets to cellphones and enabled voice
playback and capture support. Later specifications in-
troduced the Handsfree profile (HFP) which added sup-
port for caller identification and additional status indica-
tion to allow better integration with cellular networks. In
addition to the mono headset support in HSP, the Blue-
tooth SIG created the Advanced Audio Distribution Pro-
file (A2DP) to support high quality audio streaming.

During the last three years various attempts have been
made to add proper support for all three profiles to the
Linux Bluetooth stack. The initial attempt was with
the Bluetooth ASLA project [2] and produced a ker-
nel module called btsco. It only supported the Head-
set profile. The second attempt was the PlugZ project
which derived from the Bluetooth ALSA project. It
collected various attempts for Headset profile (head-
setd) and A2DP (a2dpd). Both daemons came with
plugins for the Advanced Linux Sound Architecture
(ALSA) [3]. Figure 1 shows the planned architecture

audio
application

audio

library plugin

(e.g. alsa, gst)

btaudiod
audio xfer agent
connection mgt

dsp audio

device

bluetooth

adapter

audio routing gui D-Bus uinput HAL

1

2
3

4

5

6

7
8 9

10

Figure 1: PlugZ architecture

of PlugZ. The support for GStreamer [4] and D-Bus [5]
was never finished.

The Bluetooth ALSA project and PlugZ project had var-
ious deficiencies. The main problem was that both were
too tightly coupled with ALSA. For PlugZ the support
for alternate media frameworks was planned, but never
integrated since the design was not flexible enough. The
other issue was that neither of them were real zero-copy
designs. The audio data was always copied two times.
This killed the latency and increased the CPU load. The
Bluetooth audio service was created to solve the issues
of Bluetooth ALSA and PlugZ and fully replace them.

Technical background

The Headset profile and Handsfree profile use an RF-
COMM channel as control channel. The protocol of
this channel is based on standard AT commands with
Bluetooth specific extensions. An example of these
extensions is the volume control or the buttons to ac-
cept or reject calls. For the transport of the audio
stream, the Bluetooth Synchronous Connection Ori-
ented link (SCO) channel is used. The SCO channel
is a designated channel within the Bluetooth piconet
that allows the transport of 8 kHz Pulse Coded Modula-
tion (PCM) audio over the air that will be encoded using
Continuous Variable Slope Delta (CVSD) modulation.

• 193 •

194 • Audio streaming over Bluetooth

Bluetooth audio service

RFCOMM

L2CAP

uinput

D-Bus API
Audio plugin

Headset Gateway
(AT engine)

User Interface

Handsfree Gateway
(AT engine)

A2DP Source
(AVDTP engine)

AVRCP Target

SCO/eSCO PCM

ALSA plugin

PulseAudio plugin

GStreamer plugin

Figure 2: Bluetooth audio architecture

The audio data transferred over the SCO channel can be
provided via the normal Host Controller Interface (HCI)
hardware driver or via a PCM back-channel. In case
of a desktop computer, the HCI will be used. In case
of an embedded device (for example a mobile phone),
the SCO channel will be directly connected via a PCM
interface to the main audio codec.

The Advanced Audio Distribution Profile uses the Log-
ical Link Controller and Adaptation Protocl (L2CAP)
and the Audio/Video Distribution Transport Proto-
col (AVDTP) for control and streaming. This protocol
defines a binary control protocol and a binary stream-
ing protocol based on RTP [6]. To compress the audio
stream a royalty free Subband-codec (SBC) has been in-
troduced together with the A2DP specification. In addi-
tion to the mandatory SBC it is possible for Bluetooth
devices to support MP3, ACC or other vendor codes.

Bluetooth audio service

The focus during the Bluetooth audio service develop-
ment was to fix all the limitations of Bluetooth ALSA
and PlugZ and present a flexible infrastructure that
could be used for all Bluetooth audio related profiles.
The following requirements were identified during the
design:

• Treat mono and high quality profiles as equal

With the Service Discovery Protocol (SDP) it is
possible to retrieve the supported profile list from

any remote Bluetooth device. Together with the in-
formation about the audio stream it is possible to
select the correct profile automatically and do the
needed conversation transparent for the user.

• Integrate with all multimedia frameworks

Choosing ALSA as the basic multimedia frame-
work is not the best choice. Actually ALSA is
pretty bad when it comes to virtual soundcards and
that is what Bluetooth audio is. There is no audio
hardware directly attached to the system. All head-
sets, headphones or speakers are connected via an
invisible radio link.

The frameworks GStreamer and PulseAudio [7] are
much better when it comes to handling virtual au-
dio devices. So there is no need to treat them as
second class citizens.

• Low-latency and high performance

In cases where the host has to handle all audio
data processing, it should be done the most effi-
cient way and data copying should be avoided at
all costs. This increases the performance and at the
same time results in good latency. In addition this
will reduce the power consumption.

• Full integration with D-Bus

Provide a full D-Bus interface for control and noti-
fications. It should allow creating, configuring and
controlling audio connections.

2008 Linux Symposium, Volume One • 195

Integrate with the Audio/Video Remote Control
Profile (AVRCP) for handling keys and displays on
remote devices.

The current release of BlueZ contains the audio service
with support for HSP, HFP, A2DP and AVRCP. It comes
with plugins for ALSA and GStreamer. Figure 2 shows
the high-level architecture of the audio service.

Subband-codec implementation

During the work on PlugZ and later the Bluetooth au-
dio service, the open source community produced an
LGPL licensed implementation of SBC. This imple-
mentation has been highly optimized for performance
and quality by the Instituto Nokia de Tecnologia (INdT)
in Brazil [8].

The source code of the SBC implementation can be
found at its Sourceforge project [9] or as part of the
BlueZ source code [10].

ALSA support

The ALSA plugin has been created to allow legacy ap-
plications to use Bluetooth audio streaming. To make
use of a remote headset, headphone or speaker the de-
vice has to be configured first. The file .asoundrc in the
home directory needs to be extended with the lines from
Figure 3.

pcm.bluetooth {
type bluetooth
device 00:11:22:33:44:55

}

Figure 3: ALSA configuration entry

This creates a virtual PCM device bluetooth which can
now be used as if it were a normal soundcard, for exam-
ple with aplay -D bluetooth example.wav.

GStreamer support

With the usage of GStreamer the possibilities become
more flexible. The GStreamer framework allows a lot of
configuration since everything can be abstracted into el-
ements or containers and then a pipe can be constructed
out of them.

The GStreamer plugin that provides access to the Blue-
tooth audio services consists of multiple elements that
can be combined in various ways. Figure 4 shows the
details of these elements.

gst-inspect bluetooth
Plugin Details:
Name: bluetooth
Description: Bluetooth plugin library
Filename: libgstbluetooth.so
Version: 3.30
License: LGPL
Source module: bluez-utils
Binary package: BlueZ
Origin URL: http://www.bluez.org/

rtpsbcpay: RTP packet payloader
a2dpsink: Bluetooth A2DP sink
avdtpsink: Bluetooth AVDTP sink
sbcparse: Bluetooth SBC parser
sbcdec: Bluetooth SBC decoder
sbcenc: Bluetooth SBC encoder

bluetooth: sbc: sbc

7 features:
+-- 6 elements
+-- 1 types

Figure 4: GStreamer plugin

Besides the elements the plugin also contains the def-
inition for the SBC data type. This allows GStreamer
enabled applications to load or store files with and SBC
encoded audio stream.

The sbcparse, sbcdec and sbcenc elements contain the
SBC implementation and besides using them for Blue-
tooth device, the architecture of GStreamer would allow
them to be used within other multimedia applications.

The a2dpsink and avdtpsink provide an easy abstraction
of the inner workings of A2DP and its underlying pro-
tocol AVDTP. The rtpsbcpay element provides the RTP
payload with SBC encoded data. An alternative would
be to use an MP3 payloader from a different GStreamer
plugin. This however only works if the headset also sup-
ports an MP3 encoded stream which is not a mandatory
feature.

GNOME integration

The audio service provides an extensive D-Bus API to
control the audio devices and to allow user applications

196 • Audio streaming over Bluetooth

easy access. The current integration into the Bluetooth
GNOME application has just started. Figure 5 shows
the initial integration.

Figure 5: GNOME integration

The missing piece is integration with the Bluetooth wiz-
ard to provide an easy setup of Bluetooth audio devices.

Future work

Currently work is undergoing to develop the PulseAu-
dio plugin to integrate directly with the third major mul-
timedia framework.

The Bluetooth SIG has released updates of the HFP,
HSP, A2DP and AVRCP specifications. These new
specifications include updates for Simple Pairing sup-
port and meta-data transfer. The meta-data transfer al-
lows to transfer ID3 information like song titles and
artist information to the headset. In the future headsets
or speakers with a display could use the meta-data trans-
fer to display them. The support of meta-data transfer
within the GStreamer plugin is work in progress.

Conclusion

The design and implementation of the current architec-
ture has been widely accepted and used in products like
the Nokia N810 [11].

The quality and performance of the Subband-codec can
easily measure up against any commercial implementa-
tion. The architecture is flexible enough to support em-
bedded hardware and also advanced systems with DSP
or codec offload of the audio processing.

References

[1] Bluetooth Special Interest Group:
Bluetooth Core Specification Version 2.0 + EDR,
November 2004

[2] Bluetooth ALSA Project:
http://bluetooth-alsa.sf.net/

[3] Advanced Linux Sound Architecture (ALSA):
http://www.alsa-project.org/

[4] GStreamer Multimedia Framework:
http://www.gstreamer.net/

[5] freedesktop.org:
D-BUS Specification Version 0.12
http://dbus.freedesktop.org/doc/
dbus-specification.html

[6] Request for Comments:
RTP: A Transport Protocol for Real-Time
Applications (RFC3550)

[7] PulseAudio Sound Server:
http://www.pulseaudio.org/

[8] Instituto Nokia de Tecnologia (INdT):
http://www.indt.org.br/

[9] Subband-codec (SBC) implementation:
http://sbc.sf.net/

[10] BlueZ Project:
http://www.bluez.org/

[11] Nokia N810 Internet Tablet:
http://www.nokiausa.com/A4626058

Cloud Computing: Coming out of the fog

Gerrit Huizenga
IBM Corporation
gh@us.ibm.com

Abstract

Cloud computing is a term that has been around for
a while but has been storming into the mainstream
lexicon again, although with a lot of confusion about
what Cloud Computing really means. Many vendors
are jumping into Cloud like solutions and are label-
ing every new activity as somehow related to cloud
computing. This paper explores some aspects of what
makes a cloud, and distinguishes cloud computing
from provisioning, utility computing, application ser-
vice providers, grids, and many other buzzwords, pri-
marily by focusing on the technology components that
make up a cloud.

Further, this paper will briefly explore the factors that
have made cloud computing a popular topic, includ-
ing the current availability of Linux R©, the advances in
some of the virtualization technologies, and some inter-
esting evolution in terms of provisioning and virtual ap-
pliances, and, of course, some of the current providers
of technologies that are debatably clouds today. This
paper also makes a projection as to the rise of a new
era of Internet scale computing which will be enabled
by the cloud and identify some of the technologies that
will need to further evolve to make cloud computing as
ubiquitous as the Internet.

1 Clouds everywhere! Or is it just fog?

You’ve seen the buzz by now. Cloud computing is it.
The next big thing. The future of computing. There will
be only five clouds in the future. Computing power is
on the verge of being as pervasive as the network band-
width on the Internet. But, wait a minute. What exactly
is a cloud, you might ask? And, the answers are a bit
more foggy.

Some of the first answers point to Google. There! That’s
a cloud! Look at Amazon’s EC2—the Elastic Compute

Cloud—it has the word cloud in its name, it must be a
Cloud, right? Microsoft must have a cloud, right? Or,
another favorite response: We’ll know it when we see it.

Probably the best way to start to understand what cloud
computing might actually mean is to look at some of
the existing technologies that are not cloud computing.
There are quite a few of these, and all have some distinct
properties of their own. As it turns out, cloud comput-
ing encompasses a number of the properties from these
technologies which is probably why they are so com-
monly confused.

Some of the alternate technologies covered here include
utility computing, grid computing, cluster computing,
and distributed computing. We’ll also look at Appli-
cation Service Providers (ASPs), Software as a Service
(SaaS), and Hardware as a Service (Haas). Later, this
paper will also briefly show the relationship between
cloud computing and Software Oriented Architecture
(SOA).

After examining the technologies that exist distinctly
from clouds, this paper examines the challenges in the
industry are driving a push towards cloud computing,
and how cloud computing evolves from a number of ex-
isting technologies. Cloud computing expands beyond
these current properties, usually by drawing on the best
techniques present in those pre-existing technologies.
Clouds are often seen from a user perspective, but creat-
ing, managing, and ultimately implementing a number
of the advanced capabilities of clouds is a key topic dis-
cussed later in this paper.

Finally, we’ll provide some insights on the evolution of
clouds, where we really are with respect to clouds in the
industry, and when cloud computing will be as prevalent
as the Internet.

• 197 •

198 • Cloud Computing: Coming out of the fog

2 Technologies that are not cloud computing

Everyone always wants to start with the question: So
just what is cloud computing? And, I prefer to start that
answer with an analysis of what common buzz words
and technologies are not cloud computing. And, by
means of that path to the answer, I will assert that cloud
computing is actually something new—not just a new
name for an old technology. There are plenty of old
technologies in this space, and a few of the more com-
mon technologies that are confused with cloud comput-
ing are utility computing and grid computing. Starting
with those, we will begin with a short description of
what they are, and in each case, show how each relates
to cloud computing. Once those related technologies
have been put into context, we’ll dive into what cloud
computing actually is.

2.1 Utility Computing

So far, most of the industry buzz around cloud comput-
ing has actually been based on providing computational
capability to end users, usually with the potential for
charging for the use of that compute power. Basically,
with utility computing “somebody else” owns the com-
puters or compute resources, manages them, and sells
you access to capacity. This form of computing draws
its name directly from the public utilities which handle
the creation/management of the resources that you use
every day, such as water, electricity, natural gas, etc. As
an end user, you don’t have to worry about managing
those resources nor do you generally worry about access
to those resources other than some standardized means
of tapping into that resource. Then, based on the re-
sources that you use, you get a bill.

Utility computing eliminates the need for you to acquire
and manage your own compute resources, eliminates the
start up costs in acquiring capital, configuring machines,
performing the basic systems management and systems
administration, and allows you to focus your efforts on
simply running your application. Of course, in the util-
ity computing model, someone still has to buy that hard-
ware, manage that hardware, provide access, security,
authentication and, in some cases, even the basic appli-
cations that allow you to run your application. How-
ever, the term utility computing has no particular impli-
cation as to what systems are provided, what interfaces
are available, or how applications are developed, provi-
sioned, or otherwise utilized within a utility computing

service. So, in essense, utility computing is really fo-
cused on a means of using hardware managed by some-
one else—be it another company, or perhaps a division
of your own company, government, educational or re-
search institution.

Utility computing is often viewed as a type of use case
provided by several other types of computing, such as
Grid Computing or Cloud Computing, although effec-
tively anyone with a computer could provide access to
their resources, potentially with cost recovery for the
time and services used, and that would effectively be
utility computing. Utility computing in general does not
define the means of access to the compute resources, the
existence or need for any APIs, or even what types of
workloads would be supported by the underlying com-
pute resources.

Utility computing could also refer to access to storage
and the related cost recovery charged by those service
providers.

2.2 Grid Computing

Grid computing is an idea which started with a vision
of making compute resources sharable and broadly ac-
cessible, ultimately providing a form of utility com-
puting as described above. Grid development, though,
has historically evolved from a deep computing re-
search focus which has been heavily backed by access
to large compute clusters. Most of the interesting grid-
related projects are those doing deep research with clus-
ter aware programs, developed with a willingness to use
a grid-aware library such as the Globus ToolkitTM which
facilities compute and data intensive applications which
typically require high levels of inter-machine commu-
nication. These toolkits and applications provide the
ability to locate services within the grid, provide for
communication between processes, simplify the abil-
ity to partition a workload into a grid-aware applica-
tion, and provide the application with secure access to
data. The Globus Toolkit has recently evolved from a
library approach to a more Web-centric approach based
on the Web Services Definition Language (WSDL) and
the Simple Object Access Protocol (SOAP) to encapsu-
late interprocess communication into Web-based proto-
cols.

Most grids today provide a utility computing model, in-
cluding charge-back capabilities. These grids provide

2008 Linux Symposium, Volume One • 199

access to single machines or to entire clusters of ma-
chines in most cases. Further, many of these grids as-
sume that each machine in the cluster is running similar
or identical software packages. The packaging mechan-
sims that are typically used in Grid envrionment help
to ensure that all machines are running the same soft-
ware packages, have access to similar/identical versions
of the base libraries, and provide the same sets of grid
middleware whenever possible. They all typically allow
the installation of additional packages as well, but the
primary goal is on the build-up of a base stack which is
as close to identical between machines as possible.

Grid computing has also recently evolved its use cases
to the point of supporting commercial datacenter work-
loads, although it is much more difficult to find exam-
ples of commercial data centers running Grids for gen-
eral purpose workloads today.

While Grids operate as providers of utility computing,
they can also be used as a means of organizing a local,
regional or corporate data center into a high-powered
computing engine for research. It is a model which is
highly targeted to provide simplification of management
and processing for compute- or data-intensive work-
loads. However, its design strongly favors the scientific
computing community and is only just evolving, at least
conceptually, into a more general-purposed paradigm.

When we look at cloud computing, we’ll see that it bears
many similarities to grid computing, and, in fact, bor-
rows many concepts from grid computing. In the future,
it is also quite likely that cloud computing and grid com-
puting will have a high degree of convergence because
both models share many of the same core principles and
have a very similar vision of the ultimate state of the
computing world. Ian Foster, often viewed as the father
of grid computing, also writes occasionally about clouds
in his blog.1

2.3 Cluster computing

Cluster computing is again somewhat similar to Grid
computing, and, in many ways, can most easily be
viewed as a subset of Grid computing. Cluster comput-
ing is typically based on a set of machines with shared
access to storage, all operating as part of a single work-
load. Workloads are often designed to be cluster aware

1http://ianfoster.typepad.com/blog/2008/01/
theres-grid-in.html

and are often designed around a shared-nothing work-
load which limits the need for a coherent locking model,
or a shared-everything model, usually based on some
form of a distributed locking model. Clusters are typi-
cally used for many of the same workloads that are tar-
geted towards Grids, although many clustered installa-
tions use a more limited form of inter-process commu-
nication, fewer libraries, and, quite often, more custom
programming. Classic models for dividing a problem
up into discrete components, such as the calculation of
a Mandlebrot set or projects like the SETI (Search for
Extraterrestrial Intelligence) project can easily divide a
large working set into a large number of discrete prob-
lems.

Clusters differ from grids in a few visible ways. First,
clusters are very homogenous with respect to the hard-
ware and software installed. Most of the entries in
the Supercomputer Top 500 list2 tend to be large num-
bers of identical machines effectively operating as one
massive multiprocessor computer. Where Grid com-
puting tries to keep the software stack close to identi-
cal, large scale clusters or supercomputers tend to have
an identical stack such that every machine is an iden-
tical cog in the great supercomputer. Supercomputers
are typically viewed as a single aggregate machine with
their throughput measured as the sum of the potential
throughput in each machine.

Also, each cluster is typically designed to run one “job”
at a time, typically a long running job whose goal is to
address some problem so large that it would be nearly
impossible to tackle in any other conventional sense.
This usually means that the number of actual workloads
which are available to be run on any given cluster is a
very small list of applications over any particular period
of time.

Cluster computing, however, brings some very interest-
ing lessons of its own to Cloud Computing. One of the
first of those stems from the fact that today’s supercom-
puter is tomorrow’s mid range computer. Clusters have
started by using very high processor counts and system
counts as the way to get to their very high compute lim-
its. And with these large numbers of systems (as many
as 128,000!), the tools to install and manage those sys-
tems become very important. Simply installing the oper-
ating systems and applications can become a bottleneck
without excellent tools. And, managing those systems in

2http://www.top500.org/

200 • Cloud Computing: Coming out of the fog

the face of potential failures, firmware updates, network
reconfigurations, and so on, is critical to keeping those
expensive systems operational. One of the key proper-
ties for simplifying the management of those systems
tends to rely on their relative homogeneity, which we’ll
come back to briefly when discussing cloud computing.

2.4 Distributed Computing

Again, a subset of Grid Computing, Distributed Com-
puting is worth an independent mention in this space,
primarily because it is the form of computing which as-
sumes that multiple workloads operate across many ma-
chines, working together to solve a particular problem
or implement a business workflow. In the most com-
mon cases, distributed computing can be a set of coordi-
nating compute based workloads, distributed within an
intranet or across the Internet, each contributing some-
thing to the end result. Distributed computing has less
dependence on similarity of operating systems, plat-
forms, or internal data representations that Cluster com-
puting does. Instead, the real focus is on providing
either a method for communication—either very tight
coupling in the case of something like grid, or poten-
tially very light coupling in the typical SOA deploy-
ments. However, the end result is that the compute activ-
ities for a single operation are distributed across a wide
range of hardware and software, where, at the extreme,
those couplings must be well-managed; creation of the
various workloads must be coordinated; communication
points and protocols must be well-defined and managed
at some higher level. In some cases, distributed comput-
ing relies on a single “parent” process which coordinates
all of the components of the workflow. In other cases,
the components exist as services which reside at well-
known locations. In many business situations, those ser-
vices or other workload components reside at locations
which must be identified in a configuration file or by
a similar mechanism and then managed throughout the
lifecycle of that portion of the business process.

Just like with Grid and Cluster Computing, Distributed
computing has several lessons which are relevent to the
evolution of Cloud computing. These include the re-
alization that in most environments today, the work-
load is actually highly distributed, both within a cor-
porate, research, education or government intranet but
also more globally within the Internet. As such, many
of these interoperational connections need to be config-
ured and managed. The connections between applica-

tions need to be maintained, the network configurations
need to be maintained, and, on within the networking
space, security between applications must also be main-
tained. These problems are often addressed today by
the systems administrator or by the author of the soft-
ware. We’ll look at how another approach in the context
of cloud computing can also help with managing these
connections and the relevent security issues.

2.5 Provisioning

The most common solutions that I see today being la-
belled as Cloud Computing are those with a set of appli-
cations and the ability to provision, or deploy, those ap-
plications within a utility computing framework. And,
to be clear, I believe that provisioning and utility com-
puting are aspects present around cloud computing, but
a simple provisioning capability on top of utility com-
puting is not cloud computing. Further, most of the
provisioning solutions I see in use today are capable of
deploying a single application or a single set of applica-
tions onto a single machine. While that may be a start to-
wards cloud computing, it is honestly a very small start.

Provisioning capabilities come in many forms. Those
used today in Cluster computing typically specialize
in deploying the same operating system and applica-
tions to thousands of machine nearly simultaneously.
In the recent past, applications like Tivoli’s Provision-
ing Manager R© (TPM) provides the ability to deploy and
configure operating systems and complex applications
to bare metal or, recently, to any of several hypervisors.
Provisioning solutions within utility computing environ-
ments today, such as Amazon.com R©’s Elastic Compute
Cloud (EC2) tend to provision single images, usually
wrapped as a virtual appliance, to one of a few pre-set
virtual platform configurations.

Provisioning can include anything from deploying an
application onto an already running operating system,
up through deploying a set of complex virtual appli-
ances onto a newly configured set of virtual machines,
complete with virtual networks and configured access to
storage. There are a number of software applications to
aid in provisioning, including 3tera’s AppLogic which
allows graphical display of the connections between vir-
tual appliances that are to be provisioned.

Provisioning, including complex, multi-tier virtual ap-
pliance provisioning is a key component of cloud com-
puting. However, one of the larger gaps in provisioning

2008 Linux Symposium, Volume One • 201

related to cloud computing is the definition and stan-
dardization of the virtual appliances as well as tools to
help create those virtual appliances. Further for true
adoption and deployment, the ability to manage a cat-
alog of virtual appliances will be key.

2.6 Application Service Providers

A growing trend over the past 10–15 years has been
the growth of the application service providers (ASPs).
They range in nature from more conventional business
applications, like hosted version of SAP, to the more
current excursion of Google into Google Docs. Com-
mon questions on cloud computing still include refer-
ences to ASPs, which typically just host one or more
applications which allow users to use those applications
without having to install or manage those applications
themselves. However, there is very little flexibility on
what applications a given provider makes available, and
no true elasticity of the underlying resources that would
be possible from true cloud computing. As we will see
shortly, one of the major benefits of cloud computing is
a level of elasticity in the use of compute resources and
an underlying dynamic infrastructure.

2.7 Software as a Service

The new and updated term for ASP is Software as a Ser-
vice (SaaS), although as the internet and the capabili-
ties for software hosting have matured, there have been
some subtle evolution of the term. Historically, ASPs
provided physically isolated systems for different cus-
tomers, sometimes even going as far as to provide phys-
ically isolated networks or VPNs for their larger cus-
tomers. Today, many SaaS environments provide iso-
lation based strictly on successful authentication. This
in some ways is a reflection of the relative maturity of
security isolation solutions more than perhaps anything
else. Another shift has been a transition towards native
Web interfaces on top of today’s software applications.
Historically, most provided their own UI (or GUI). To-
day, most front ends are very Web-friendly, with SOAP
or REST based interfaces.

Ultimately, though, ASPs, SaaS, and Utility Comput-
ing are examples of services that can be provided by a
Cloud computing environment. And, the biggest differ-
ence between these models as provided today and their
deployment on a cloud computing-based environment

is that the underlying management of the platforms and
services will be be transparently managed and will allow
these configurations to be deployed by more than just a
few providers with highly sophisticated support staffs.

2.8 Hardware as a Service

Since we can offer software as a service, why not of-
fer hardware (or platform) as a service (HaaS, PaaS)?
Today a number of utility computing providers are ef-
fectively doing that. Amazon’s Elastic Compute Cloud
(EC2) or IBM’s Research Compute Cloud (RCC) are
effectively offering direct access to hardware to their re-
spective customers. In both of these modern cases, the
interesting difference is that the hardware being offered
up is typically virtualized. This allows some additional
functionality and flexibility on the back end because it
is now easier to over-provision resources which helps
improve overall utilization of the hardware resources.
And, this improved utilization enables an improved ther-
mal footprint in the data center, meaning that there is re-
duced power consumption for compute power and most
likely reduced cooling needs as well.

Ideally, that flexibility provides yet another lesson which
is applied in cloud computing. Specifically, that sep-
aration of the physical resources from their virtual-
ized counterparts allows for some additional manage-
ment benefits within the data center which implements
a cloud computing. And, the proof points with cur-
rent providers validates that the technologies have ad-
vances to the point where we can separate the physical
resources from the virtual resources. VMware’s VMo-
tion product provides some hints as to what might be
possible in that space if correctly harnessed under cloud
computing.

Further, recent advances in Linux which allow the dy-
namic addition of memory or processors to a physical
machine, and the ability to pass those capabilities on
to an instance of Linux running in a virtual machine,
enable a level of elasticity in the hardware which will
ultimately enable the most efficient use of resources in
cloud computing.

2.9 Software Oriented Architecture (SOA)

Rather than extol the virtues of SOA, we’ll suffice to say
that SOA is sufficiently prevalent within Enterprises to-
day that any solution which claims to be Cloud Comput-
ing must clearly enable SOA as a model for application

202 • Cloud Computing: Coming out of the fog

deployment. Clouds should be effectively deployment
platforms which enable advanced models such as SOA.
And, based on our earlier look into provisioning and our
quick looks at Software and Hardware as a Service, it
should be clear that the ability to deploy components of
software applications as virtual appliances would be an
extremely powerful building block for creating a cloud
of applications and services.

3 If that’s not Cloud Computing, What is?

Thus far we have avoided any real discussion of what
Cloud Computing is, although we’ve dropped a few
hints along the way. But why has the buzz on cloud
computing started now? What has made this topic jump
so quickly to prominence? To understand that, let’s look
at a few of the pressures on data centers, compute power,
and the challenge of creating and deploying new appli-
cations quickly.

3.1 First, how did we get here?

The rise to prominence of Cloud Computing stems from
several sources. One is clearly related to the marketing
hype engines that are always looking for something new.
Directly related to that, Google’s CEO, Eric Schmidt,
Ph.D., has been widely quoted on his definition, specif-
ically:

It starts with the premise that the data ser-
vices and architecture should be on servers.
We call it cloud computing—they should be
in a cloud somewhere. And that if you have
the right kind of browser or the right kind of
access, it doesn’t matter whether you have a
PC or a Mac or a mobile phone or a Black-
Berry or what have you—or new devices still
to be developed—you can get access to the
cloud. . .

This is a powerful vision and it is possible to see some
of the same goals as utility Computing, grid computing,
Application Service Provider(s) (ASPs), and Software
as a Service (SaaS) embodied in this thinking, as well
as much more. For instance, the ubiquitous access to
software and applications from hand held devices is con-
tained within this vision as well. The definition provides

a powerful vision as well as something of a marketing
and hype alignment vehicle, without getting into any of
the pesky little details that go with that vision.

However, even that short vision doesn’t go into why
cloud computing might be useful. And to do that, we
have to look to the Enterprise Data Center as well as into
the pressures that are inhibiting innovation from small
companies and individuals.

3.2 The IT Crisis

We have been approaching a crisis in Information Tech-
nology for quite a while now, and that impending cri-
sis has been forcing a lot of innovation into methods of
avoiding that crisis. What crisis, you ask? Okay, it may
not be a real crisis, per se. But, throughout the IT indus-
try, the cost of managing hardware, operating systems,
and applications has been on the rise for a long time.
In fact, that cost has gone up to the point that some ana-
lyst figures suggest that IT management costs in the data
center range from 25 to 45 percent of the total IT bud-
get.3 That means that money which could otherwise be
targeted towards specific new development in support of
a company’s value-add is instead going directly towards
maintenance of just the server and software environment
they already have. That directly limits a company’s abil-
ity to invest in innovation or increased capacity in a way
that impacts a company’s bottom line. What kind of so-
lution would substantially reduce those IT management
costs?

Or, viewed from another direction, the cost of supply-
ing existing servers with electricity and cooling data
centers has escalated to the point that energy costs are
now exceeding the costs of the actual hardware in many
data centers. And, those power costs are often going
to support capacity that is only needed in peak situa-
tions or sometimes to support failover capacity. As a re-
sult, data centers are spending a lot of money on equip-
ment and power which is not directly contributing to
the company’s revenue most of the time. This waste
capacity flies directly in the face of the Green move-
ment as well—data centers that are only 10 to 20 per-
cent utilized are still consuming precious raw materials
and contributing to pollution and global warming with-
out much value-add to organizations. What if there were

3I even saw a recent Microsoft presentation on Hyper-V indicat-
ing that number was as high as 70%!

2008 Linux Symposium, Volume One • 203

a paradigm shift which substantially reduced the waste
computing cycles, or enabled better sharing of existing
computing cycles?

And, viewed from a third perspective, the time to de-
velop and deploy new applications has been rising, es-
pecially as space, access to power, and complexity of
the development environment has increased. Many in-
novators today have to request new hardware from their
IT department; that hardware needs to be ordered, and,
when it arrives, it has to have a place to be installed that
has sufficient space, power, and cooling. Once installed,
the OS must be installed, key applications must be iden-
tified and installed, and, oh, make sure that all the ap-
plications you’ve selected are inter-operable, and then,
at last, you are ready to begin development. That cy-
cle in many companies, both small and large, often ap-
proaches 3 or in some cases, even 6 months from “idea”
to “ready to develop.” What if that development cycle
could start within hours, either based on a commercial
provider’s offering of compute cycles, or even your own
enterprise’s existing compute resources?

Cloud computing provides attractive answers to all of
these scenarios. Now if only we could figure out the
definition of cloud computing that provides all those an-
swers!

4 Cloud Computing: A Vision

In many ways, the Internet provides an ideal model for
Cloud Computing. The Internet provides bandwidth to
everyone and happens to hide nearly all of the details
of the underlying mechanism of the hardware provid-
ing that access to network bandwidth. From a user per-
spective, compute power should ideally be as ubiquitous
for the end user as network bandwidth is today. In fact,
some people have suggested that there is a Cloud with a
capital C, just as there is an Internet with a capital I.

A simple way of stating this would be that “Cloud Com-
puting provides ubiquitous access to compute resources
for any user, anywhere.”

Okay, so that’s a pretty simple vision statement, but
what does it say for people who want to do more than ac-
cess a web service (we can already do that) or instantiate
a pre-wrapped appliance on a utility computing service
provider’s platform? What is the development model?
How do I get access to a machine to do proprietary de-
velopment? How to I handle the set up and installation,

configuration, and management of the unique devel-
opment environment that I need for my development?
How do we handle licensing for those software applica-
tions that aren’t part of the open source ecosystem—or
even those that are part of the open source ecosystem but
still have maintainence fees and licenses for operation?

As an example, suppose I wanted to run Red Hat En-
terprise Linux with Oracle and Rational ClearCase R© in-
stalled? What if I want to implement a 3-tier database,
middleware, web server environment? Our vision is a
little bit lacking on the finer details of how cloud com-
puting is actually deployed and made available.

Further, suppose that I want to be a cloud comput-
ing provider or perhaps even share some of my exist-
ing compute capacity with other people—maybe even
charging some minor fee for access to my unused cy-
cles? I guess the vision leaves out some of those details
as well. In fact, given the vision and the hype, it is re-
ally unclear as to whether or not I could even be a cloud
computing provider. Clearly, we need some more def-
inition about what clouds actually are, how one creates
them, maintains, them, and what a cloud actually can
provide today.

4.1 Vision: Meet Reality

It is time to seperate our cloud into two distinct points
of view. One point of view will focus on what services
and capabilities a cloud provides. The other point of
view will look at what technologies are present within
a cloud. These two views will allow us to distinguish
a user of a cloud from a maintainer of a cloud. And,
buried in this analysis is the assumption that there will
be, for the foreseeable future, more than just one cloud
in the sky. Specifically, much like our earlier analogy
of the Internet, the cloud will be the composite view of
all of those individual clouds which will initially spring
up in isolation. Following the existance of many clouds,
there is the hope that someday, much like the view of
Grid computing, all of the providers will be loosely con-
nected, again like the Internet, to make a single, ubiqui-
tous view of a single, well-connected cloud.

4.2 What services does the cloud provide?

This is the easy question, the question that is the most
visible to end users. Specifically, the cloud provides a

204 • Cloud Computing: Coming out of the fog

set of services in the form of utility computing, or even
grid computing to end users. Those services could, in
theory, be physical hardware or virtual hardware. They
could be operating system instances or virtual appli-
ances. They could be operating systems instances with
a catalog of software which can be easily installed on
them, or which can receive custom software written by
and provided by the end user. They could provide for
simple Internet connectivity or perhaps they even pro-
vide some level of access to virtual private networks
(VPNs) or virtual LANs (vLANs) so that the end user
could deploy multiple servers cooperating with some
level of security protection to help in isolating propri-
etary data.

These clouds could provide access via the Internet—but
they could also be wired directly into private intranets,
either physically or virtually, enabling the applications
running on the cloud to have access to data or appli-
cations residing in an end-user’s internal, private net-
work. The Cloud provides an adjustable number of re-
sources, be they physical machines or software appli-
ances, where the user can adjust the number of machines
running their workload based on demand.

Of course, as we expand the level of definition of clouds,
the astute observer will question whether these clouds
provide enough security or reliability to satisfy all users.
For instance, would two Wall Street trading companies
both put their private applications and data on the same
cloud? Do we have strong enough security isolation in
place today in our operating systems, hypervisors, vir-
tual LAN technologies, virtualized storage access to en-
able true and safe isolation between competitors?

What about the latency of access? If this cloud is “just
out there” somewhere, how long does it take to get
data between any set of applications in the cloud or be-
tween the cloud and other internal machines? What is
the bandwidth between your machine and the cloud’s
environment—will I get the bandwidth and latency that
I need for my application from the cloud today? Does
it really have the ability to provide the services I need
with the security, performance, bandwidth, latency, and
availability that I need from my provider of ubiquitous
computing?

Of course, the answer to that last question is a bit “It
Depends.” For some workloads today, clouds as a flex-
ible, elastic provider of utility computing will do just
fine. The same is true for Grids today, and that is why

they are heavily used by some workloads, most com-
monly scientific workloads. Clouds may provide a bit
more flexibility in terms of the workload supported to-
day, but there is a long way for clouds to evolve before
they are ready to support the needs of all consumers of
the cloud computing resources.

Of course, the answers to some of those security, avail-
ability, performance, latency, and bandwidth questions
might change if an enterprise could effectively build its
own, in-house cloud. With direct access to their local
SAN, with access to some of the business services that
may not be hosted in the cloud, such as their print ser-
vices, their LDAP services, their nearby connections to
desktops, etc., some of these problems that aren’t re-
solved globally may be addressed in a more localized
implementation of clouds. We’ll come back to that
problem more in a little bit.

Finally, a well designed cloud based environment can
enable a variety of scenarios for the end users of the
cloud, including test and development configurations;
the ability to deploy SaaS; the ability to deploy HaaS,
aka Platform as a Service (PaaS); the ability to deploy
SOA components; the ability to deploy virtual worlds or
gaming environments on demand; and many more com-
mon workloads.

4.3 What does it take to build a cloud?

This question gets a little harder to answer, and most
of the common cloud implementations today are man-
aged by top-notch IT staff, explicitly hiding the details
of what goes into making a cloud so that the consumers
don’t have to deal with it at all. But if someone wants to
build their own cloud, they’ll have to have a firmer grasp
of exactly what goes into a cloud and what components
they will need to build or assemble, along with some
idea of what the cost for managing that infrastructure is
going to be.

For simplification, I’m going to suggest a rough
blueprint for what components go into a Cloud. It is
definitely possible to vary from that blueprint, and to
optimize within the blueprint and potentially still be a
cloud computing environment. However, this blueprint
should enable you to decide what components you may
need to have on hand to build a cloud or to evolve your
own computer center into a cloud configuration.

2008 Linux Symposium, Volume One • 205

4.3.1 Virtualization

At the very core of cloud computing, I’m going to start
with what could be a contentious choice but I’ll spend
more time justifying that choice later in the paper. That
first choice is that any good cloud in this point in time
should be built on top of a virtualized platform and that
all resources in the environment should be virtualized.
This includes not just the platform, but storage and net-
working as well. While it is possible to get the appear-
ance of having a cloud without virtualization, I’m going
to go out on a limb and suggest that non-virtualized so-
lutions have limitations in the flexibility that will in time
become a hallmark of cloud computing. This means
that the base platform in the case of, say, an Intel R©or
AMD R©-based processor should be virtualized by some-
thing like VMware R©’s ESX R©, Microsoft R©’s Windows
Server 2008 R©Hyper-V R©, some version of XenTM , or
any similar hypervisor. For non-Intel/AMD based ma-
chines, such as IBM R©’s POWER R©family of proces-
sors, PowerVM R©4 would be an appropriate choice and
the IBM mainframe provides virtualization in several
forms, such as z/VM R©or z/OS R©.

Today, most cloud-like deployments are based on a sin-
gle underlying class of platform, although most en-
terprises are made up of highly heterogenous environ-
ments. In an ideal world, the cloud will include all
of those platforms as the basis for cloud computing,
and the greater vision clearly postulates that support for
heterogenous platforms over time. But for our initial
blueprinting activity, we’ll start with the simplifying as-
sumption that all of the machines are of relatively the
same type, and, more importantly, can all run the same
hypervisor.

4.3.2 Virtual Appliances

Next, we need a repository of applications to deploy in
our cloud. And, since our cloud need not be restricted
to the applications that someone else has created, we
will need tools to somehow package those applications
for deployment within our cloud. For that, I’d recom-
mend that we start with virtual appliances, which are
essentially a packaged version of software and an op-
erating system, ready to run on a hypervisor. A num-
ber of companies have started down this path, including

4http://en.wikipedia.org/wiki/Advanced_Power_Virtualization

VMware and their appliance marketplace5 or companies
like rPathTM 6 and their rBuilderTM tool7 and their appli-
ances.8

Since these are virtual appliances, they need to be
built for a particular type of hypervisor, be it a Win-
dows/VMware image or a Linux/Xen image. This is
where a simpler environment makes it easier to build
your own prototype—the more hypervisors that your
virtual appliance needs to support, the more complex
it is to create a cloud environment. Constructing these
virtual images is one of the more challenging aspects,
although luckily there is a lot of experience in this space
now, with more emerging all the time. Most cloud-like
environments today are building multiple versions of
virtual appliances from the same sources, such as a Win-
dows/VMware and Linux/Xen at the same time, which
generally ensure that any of the appliances built at that
time are as close to identical as is reasonably possible.

Another aspect to building these appliances is to un-
derstand what format they will be created in. A
glance through the rBuilder appliances mentioned ear-
lier shows that today it is possible to build in at least
a dozen formats, and that just covers Intel/AMD plat-
forms! If you wanted to build for other processor types
or hypervisor technologies, that number will go up from
there. Luckily the market will likely resolve this issue
one way or the other before long—either a few key vir-
tualization technologies will emerge, or the tools will
evolve to support builds for multiple environments at
build time.

The VMware and Xen communities are looking into us-
ing the Open Virtualization Format as a wrapper format
for virtual appliances and that format is being broadly
standardized by the Distributed Management Task Force
(DMTF).9 There is a proposed project to create open
source tools for managing OVF files that will hopefully
be under way by the time this paper is published.10

5http://www.vmware.com/appliances
6http://www.rpath.com
7http://wiki.rpath.com/wiki/rBuilder
8http://wiki.rpath.com/wiki/Virtual_

Appliances
9http://www.dmtf.org/newsroom/pr/view?item_

key=3b542cbc5e6fc9ede97b9336c29f4c342c02c4e9
10http://code.google.com/p/open-ovf/

206 • Cloud Computing: Coming out of the fog

4.3.3 Provisioning

Once you have built a virtual appliance, you also need
to have some understanding of how to provision that vir-
tual appliance. Provisioning in this context means that
the appliance will need to be able to be installed on your
virtualization platform. Luckily, the OVF format de-
scribed above has a place within the file which allows
the builder to store some basic information about how to
set up, configure, and deploy the virtual appliance. This
might include things like configuring virtual LANs, con-
figuring access to local or shared storage and any other
configuration related to the virtual environment (such as
how the domU11 is configured in Xen, or how to boot
the virtual machine).

Provisioning can also be expanded beyond the basic de-
ployment of a single virtual appliance containing a sin-
gle application stack to deploying either multiple copies
of the same virtual appliance or more complex sets of
virtual appliances. As an example, it would be possible
to provision a three-tier application, such as a database
appliance, a middleware appliance, and a web front end
appliance. This allows for appliances to be created as
building blocks and deployed in sets based on a specific
need. This allows for a level of customization without
the need to build a large number of highly specific vir-
tual appliances. Also, it allows for some elasticity in
the number of appliances deployed—for instance, in the
database, middleware, and web front end appliances—
it would be easier to deploy additional web front-end
appliances as the workload increases, or additional mid-
dleware appliances depending on the type of workload.

OVF also has the ability to store multiple virtual ap-
pliances in the same wrapper, including all of the in-
structions to deploy the full set of appliances. To date,
there is no solid provisioning tool which generally de-
codes that information, although the open source OVF
tool will help extract that information soon. There are
also some tools such as TPM which could take that input
and convert it into a provisioning flow. There are limited
tools today which provision virtual machines, although
one interesting one comes from 3tera’sTM 12 AppLogic.13

AppLogic allows for the provisioning of complex work-
loads onto a physical or virtual machine environment.

11domU is Xen’s name for a guest operating system.
12http://www.3tera.com
13http://download2.3tera.net/demo/

applogic20demo.html

To date, there are very limited open source projects in
this area, though, and it is an interesting are for addi-
tional development work.

4.3.4 Virtual Appliances Catalog

Once we have a set of virtual appliances, we need a
place to put them. While a small set of appliances can be
kept on a laptop or other location, ideally we would like
to create a repository of these applications which can be
provisioned by end users on request. Also, we would
like for our end users to be able to store their own appli-
cations in the virtual appliance catalog. This repository
of appliances could be something as simple as a direc-
tory with virtual appliances in it, sorted by name. Or,
it could be a complex hierarchy of images built for a
variety of virtualization environments. Again, for sim-
plicity, I’m going to recommend the flat directory, pos-
sibly with a simple web-based front end to view those
images. Ideally, that web front would allow end users
to select one or more images to deploy to the set of ma-
chines in your cloud. These machines would all have
a hypervisor installed on them already, and your pro-
visioning software would scatter the virtual appliances
intelligently amongst your physical resources.

With some additional intelligence in the deployment
sofware, your virtual appliance catalog could contain
images that worked on multiple hypervisors or mul-
tiple machine configurations. In particular, the OVF
format contains information that identifies the environ-
ments to which that virtual appliance can be deployed.
That would allow you to deploy virtual appliances to a
variety of hardware, provided that you had either built
each virtual appliance for multiple platforms.

Now, for simplification, I proposed the virtual appliance
catalog as something containing just virtual appliances.
However, it would be possible to also have that catalog
contain base virtual appliances, perhaps a distribution
trimmed down to just what is necessary for supporting
a software stack, and a set of applications which could
be streamed to the pre-built, pre-defined software ap-
pliances. This configuration would provide a bit more
flexibility in terms of building blocks and perhaps re-
duce the number of specialized virtual images slightly
while increasing the flexibility of those environments.
That may be as simple as today’s ability to use a pack-
age manager or install tool on a running image. Or it

2008 Linux Symposium, Volume One • 207

might be something more like a pre-installed applica-
tion built as a union filesystem image, which could sim-
ply be mounted on top of an existing appliance. The
latter would allow more rapid provisioning of images
and ideally leave less configuration to the end user.

4.4 Cloud computing is really just that simple?

Is that all there is? Some hardware, virtual appliances,
a catalog, and an ability to provision? From a user per-
spective, yes, that is one view and it is sufficient to pro-
vide a basic cloud configuration. And, this is the basis
for Amazon.com’s Elastic Compute Cloud (EC2)14 and
IBM’s internal Research Compute Cloud (RCC). This is
also a solution which is being rolled out to a number of
other sites by an IBM team.1516

However, there is another view of cloud computing as
described by Google and IBM.1718 In this view, the fo-
cus is on a shift in the programming paradigm to solve
more problems using a huge number of computers, a
la Google’s infrastructure. Again, this starts with some
hardware, in this case, lot of it; one or more appli-
cations, although not necessarily in the form of appli-
ances this time; an ability to provision a parallel style
of workload; and, more uniquely, a variant of Google’s
internal MapReduce19 algorithm, potentially based on
the open source Hadoop20 code. This code enables
the workload to be divided quickly among hundreds or
thousands—or even tens of thousands of machines—
enabling some forms of complex, data intensive pro-
cessing to be smashed into thousands of very small
workloads which can return results in a fraction of the
time.

In some ways, this model is a variation on distributed
computing, which allows workloads to be partitioned
into smaller workloads and distributed to a large num-
ber of machines. But in this variation, the work is par-

14http://www.amazon.com/ec2
15http://www-03.ibm.com/press/us/en/

pressrelease/23426.wss
16http://www-03.ibm.com/press/us/en/

pressrelease/23710.wss
17http://www.ibm.com/ibm/ideasfromibm/us/

google/index.shtml
18http://www.google.com/intl/en/press/

pressrel/20071008_ibm_univ.html
19http://labs.google.com/papers/mapreduce.

html
20http://hadoop.apache.org/core/

titioned among a set of machines where multiple ma-
chines may compute overlapping results. A “reduce”
step winnows out the duplicates, providing a single set
of results to the end user. Many believe that this work-
load will be one of many which take advantage of the
forthcoming cloud environments.

4.5 So why all the hype if that’s all there is?

So far, we’ve covered the basis of what make up a local-
ized cloud environment. This definition relies on tech-
nologies that mostly exist today and integrates them in
a way that makes the deployment of some workloads
substantially simpler. But this simplified view is only
a subset of the grand vision that many believe is the
real direction for cloud computing. In particular the
grand vision implies substantially more capability and
sharing between the relatively smaller clouds proposed
here. However, there are a number of technology gaps
between this relatively modest proposal and the grand
vision. We’ll look at a couple of those gaps here.

4.5.1 Managing thousands of machines

One of the short term challenges for the most basic
clouds, as well as a challenge to expanding towards the
grand vision of cloud computing comes down to the rel-
atively simple issue of just how to manage all of the
computers in a data center. While many view cloud
computing by its usage model of effectively providing
utility computing, relying on just a few providers with
excellent systems administrators to provide all of that
capacity is not a very scalable model. And, while the
predictions of only five computers in the world have run
from the 1950’s or 1960’s21 to the current day,22 the re-
ality is that, by at least some estimates, there are over
25 million servers in the market as of 200523 and even if
there were a widespread conversion overnight to use one
of five mega-datacenters, the time (not to mention the
cost) for conversion would be overwhelming. And there
is a psychological factor at work as well: most compa-
nies aren’t ready to trust their core intellectual property

21http://en.wikipedia.org/wiki/Thomas_J.
_Watson#Famous_misquote

22http://www.guardian.co.uk/technology/2008/
feb/21/computing.supercomputers

23http://www.itjungle.com/tlb/
tlb030607-story04.html

208 • Cloud Computing: Coming out of the fog

in the form of data or applications to a third party to host
and manage.

So, for the near term at least, the prolifieration of clouds
will evolve, in my own estimation, from existing data
centers into a more global cloud computing IT vision.
This migration is akin to the growth of the Internet from
its rather humble beginnings at the end of the 1970’s
through the end of the 1980’s, where data centers—
mostly in the form of university computing centers and
some DARPA24 sponsored sites—were among the first
to connect computers locally in a data center with high
speed networks, providing the benefits of well con-
nected intranets long before the Internet was available.
In fact, the evolution started by creating slow speed con-
nections (based on store and forward technologies like
UUCP25 or BITNET26) which provided loose connec-
tivity between well connected, locally managed com-
pute resources. Another parallel between the expected
evolution of cloud computing and the Internet can be
seen in the handling of security concerns. The first
UUCP capabilities were used as a simple mechanism
for authenticated users to move files around or to ex-
change data via email. Later, when ARPANET27 and
its successori, NSFNET28, allowed more direct access,
a number of secured services such as remote shell (rsh),
remote copy (rcp), or unsecured services such as finger
and fingerd, whois, date and time servers, and basic do-
main name services, the Internet allowed select services
to be offered, typically at no charge to arbitrary users.
The evolution of TCP and IP helped bring the Internet
to the point that it was merely a conduit for any time of
data that any user might want to publish or consume.

Today any number of providers enable end users to con-
sume compute resources along the lines of specific ser-
vices, from SaaS providers or even services such as
Wikis or customizable home pages. However, the vis-
ible emergence of Amazon.com’s EC2 and some forms
of hosting providers starts to show how shared resources
can be made available, potentially with charge back.
The percentage of compute resources currently avail-
able through such providers is still extremely small—
some projections suggest only a few thousand machines

24US Defense Advanced Research Projects agency, http://
www.darpa.mil/

25http://en.wikipedia.org/wiki/UUCP
26http://en.wikipedia.org/wiki/BITNET
27http://en.wikipedia.org/wiki/ARPANET
28http://www.nsf.gov/about/history/nsf0050/

internet/launch.htm

are available through Amazon.com, for example. And,
one of the key reasons for this, in my estimation, is that
the management software has not evolved to efficiently
and effectively managing large groups of machines to
enable sites to develop cloud computing internally, and
the sheer quantity of machines that would be needed to
support the entire compute capacity of the world—or
even some large percentage of that capacity.

While the full gamut of management complexities are
too extreme to dive into in detail here, a few of the high-
lights include such simple things as hardware manage-
ment, operating system management, network and stor-
age connectivity management, application management,
security management, availability management and en-
ergy management, to name a few. Often, each of these
are managed independently for each machine and each
workload in a data center. Or, in some of the best prac-
tices, machines are grouped for ease of management,
applications are grouped for simplicity, security policies
are centralized for consistency, and often emerging ca-
pabilities such as energy management are added as an
afterthought. Without substantially improved practices
for enterprise and data center management, cloud com-
puting as a grand vision will remain as just a dream.

4.5.2 Provisioning Challenges

Earlier we mentioned provisioning as one of the key
components of cloud computing. And, honestly, pro-
visioning is really in its infancy, despite a few compa-
nies and projects which have started to address the prob-
lems. And, many of those companies and projects have
focused on relatively specialized solutions which will
not grow up to Internet-scale solutions. I firmly believe
that the emergence of cloud computing as a buzz word
and as a vision is strongly propelled by the predomi-
nance and rising eminence of open source software, in-
cluding Linux and a variety of key open source compo-
nents. However, until there is a world-class open source
project for generalized, complex provisioning, clouds
will evolve from within enterprises and from within a
set of localized utility computing providers using only
proprietary provisioning technologies.

Today, 3tera’s AppLogic or IBM’s TPM provide some
highly evolved mechanisms for provisioning and de-
ployment. However, as licensed applications, they will
be focused on deployments within enterprises and larger

2008 Linux Symposium, Volume One • 209

data centers. These and similar products will aid in
the evolution of clouds within the data center over the
next several years, but the evolution of a project like
SystemImager,29 the new xCat30 or improvements to
RPM (the RPM Package Manager) or APT (the Ad-
vanced Packaging Tool) may help increase the ability to
provision virtual machines or deploy virtual appliances.
However, provisioning includes the ability to configure
networking, perhaps as VLANs or VPNs, and includes
the set up and creation of storage. And, being able to de-
ploy those for any possible user-defined workload is still
too complex for wide-spread adoption. And, generally,
they don’t deal with the security impliciations for proper
isolation of workloads that are needed to make sure that
I, as a user, am unable to access your proprietary data or
applications.

4.5.3 Security Challenges

As alluded to above, security is another of the major
inhibitors to true cloud computing today. While some
workloads encourage sharing of data, such as Wikis, the
actual installation and management of the software ap-
plication typically needs to be restricted to the adminis-
trator of that software. But with utility providers’ com-
pute resources being completely accessed through the
Internet, any applications typically have Internet access
as well. Setting up and configuring VPNs or VLANs
requires custom administration by the creator of the vir-
tual appliance or via custom systems management by
the person deploying the virtual appliance. Today, enter-
prises and even small business owners employ as much
physical security and firewalling technology as possi-
ble to protect their business from crackers.31 Setting up
equivalent security at a remote internet site is not a well-
practiced art today. It may be a several years until best
practices emerge and those practices have withstood the
test of time.

In addition to the networking component of security,
an earlier postulate was that virtual appliances would
be instantiated on hypervisors or virtualized platforms.
However, today the leading hypervisors do not approach
the level of security and isolation between guests that

29http://wiki.systemimager.org/index.php/
Main_Page

30http://www.xcat.org/
31http://en.wikipedia.org/wiki/Hacker_

(computer_security)

is present in physical hardware isolation. While there
is work going on in both VMware and Xen, for in-
stance, to improve the security isolation between guests,
the ability for a guest to “escape” to the hypervisor and
from there have access to other guests is a concern that
is likely to prevent competitors from sharing the same
physical hardware. That level of isolation will increase
over the next few years, making increasing levels of
multi-tenency—the ability for diverse guests to share the
same hardware—more secure over time.

4.5.4 Other Challenges

While there are a number of other challenges to address,
such as how to handle licensing and cost recovery in a
virtualized environment, or improving the management
of virtual appliances, or making the virtualized environ-
ment more dyanmic through the capability of live guest
migration, those issues are likely to get worked out as
utility computing becomes more common, as organiza-
tions built their own internal clouds, and virtual appli-
ances become more common.

5 Conclusions and Outlook

Cloud computing clearly has a lot of hype now, and the
vision as represented here can be very compelling. The
ubiquitous access to computing resources, much as the
Internet has provided us with ubiquitous connectivity, is
a powerful vision for our future. Clearly, most of the
technology to achieve this vision exists in some form
today, which is what makes the vision so catchy in the
press today. However, as shown here, we can implement
subsets of cloud computing today and we can begin to
migrate data centers towards a model which will allow
the free flowing access of compute resources within a
cloud in the next few years. In the meantime, there are
a number of areas that need some additional focus to
make this vision a reality.

Those challenges include dramatic simplification in the
management of physical compute resources, improve-
ments in virtualization and the management of virtual
environments, the creation of a pervasive and accessible
set of tools to deploy virtual appliances and workloads
within a cloud of virtualized resources, improvements
in provisioning of networks and storage, and continued
work on improving the security provided by hypervisors

210 • Cloud Computing: Coming out of the fog

at a minimum. As those are evolving, there is the ability
to improve workload management, energy management
and availability management. Improvements in all of
these areas should also improve the efficiency and uti-
lization of computers resources. Resources should ul-
timately be more effectively shared, and additional re-
sources would be available on demand for those work-
loads which dynamically need access to more hardware
than they they would otherwise have at hand.

The era of cloud computing is just beginning.

Legal Statement

c© 2008 IBM Corporation Permission to redistribute in ac-
cordance with Linux Symposium sub-mission guidelines is
granted; all other rights reserved.

This work represents the views of the author and does not
necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo
are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino,
Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Ita-
nium, and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and
other countries.

Other company, product, and service names may be trade-
marks or service marks of others.

Introducing the Advanced XIP File System

Jared Hulbert
Numonyx

jaredeh@gmail.com

Abstract

A common rootfs option for Linux mobile phones is the
XIP-modified CramFS which, because of its ability to
eXecute-In-Place, can save lots of RAM, but requires
extra Flash memory. Another option, SquashFS, saves
Flash by compressing files but requires more RAM, or
it delivers lower performance. By combining the best
attributes of both with some original ideas, we’ve cre-
ated a compelling new option in the Advanced XIP File
System (AXFS).

This paper will discuss the architecture of AXFS. It will
also review benchmark results that show how AXFS
can make Linux-based mobile devices cheaper, faster,
and less power-hungry. Finally, it will explore how the
smallest and largest of Linux systems benefit from the
changes made in the kernel for AXFS.

1 Filesystems for Embedded Systems

1.1 Why not use what everyone else uses?

Embedded systems and standard personal computers
differ a great deal in how they are used, designed, and
supported. Nevertheless, Linux developers tend to think
of the Flash memory in an embedded system as the
equivalent of a hard disk. This leads many embedded
Linux newbies to ask, “Can I mount ext2 on the Flash?”
The simple answer is yes. One can mount ext2 on a mtd-
block partition in much the same way that one can bathe
in a car wash. However, for both the car wash and the
MTD, this is not what the system was designed for and
there are painful consequences—however, they get the
job done. . . well, sort of.

There are a few key differences between filesystems
used in a personal computer and those used in embed-
ded systems. One of these differences is compression.
Many filesystems used in embedded systems support

compression of file data in 4KB–128KB blocks. Cost,
power, and size limitations in embedded systems result
in a scarcity of resources. Compression helps to relieve
some of that scarcity by allowing the contents of a us-
able rootfs image to fit into a reasonably sized Flash
chip. Some embedded filesystems make use of the MTD
device API rather than a block device API. Using an
MTD device allows the filesystem to take advantage of
special characteristics of Flash and possibly avoid the
overhead of the block device drivers. A third difference
is that a read-only filesystem is perfectly acceptable for
many embedded systems. In fact, a read-only filesys-
tem is sometimes preferred over a writable filesystem
in embedded systems. A read-only filesystem can’t be
corrupted by an unexpected loss of power. Being read-
only can offer a bit of security and stability to an em-
bedded system, while allowing for a higher performance
and space-efficient filesystem design.

Linux filesystems that are well suited to the needs
of embedded systems include CRAMFS, JFFS2,
SQUASHFS, YAFFS2, LOGFS, and UBIFS. Only two
of these filesystems have been included in the kernel.
CRAMFS is a very stable read-only filesystem that sup-
ports compression and mounts from a block device.
There is an out-of-tree patch set for CRAMFS which
enables it to run XIP with no block device. If you
need to write data on Flash, the only option in the ker-
nel is the mature JFFS2. Like JFFS2, YAFFS2 requires
an MTD device, but does not provide compression like
JFFS2. YAFFS2 has been around for several years, but
getting it into the Linux kernel does not seem to be a
priority for the developers. SQUASHFS is over 5 years
old and is included in nearly every distribution. While
the developer has made attempts to get it pushed to
mainline, those attempts have been sidelined by a sur-
prising amount of resistance. As an improvement over
CRAMFS, SQUASHFS is capable of creating larger
filesystems at higher compression ratios. LOGFS and
UBIFS are projects with the same goal, providing more
scalable, writable Flash filesystems for growing NAND

• 211 •

212 • Introducing the Advanced XIP File System

storage in embedded systems. Both support compres-
sion and both are trying hard to be included in the kernel
by 2.6.26.

1.2 The inconvenient filesystem

The linear XIP CRAMFS patches have proved useful
in many small Linux systems for over 8 years. Unfor-
tunately, the patched CRAMFS contains calls to low-
level VM functions, a mount option to pass in a phys-
ical address, and modifications to the virtual memory
code. The main cause of this hubris is that this patched
CRAMFS doesn’t fit the filesystem paradigm and there-
fore doesn’t fit the infrastructure. The result is an ugly
hack and a maintenance nightmare. The patch set broke
badly almost every year due to some change in the
kernel, because it messed with code which filesystems
have no business touching. Not only is XIP CRAMFS
hard to maintain and port, it also has serious limita-
tions. CRAMFS only supports ∼256MB image sizes
and the maximum file size is 16MB. Notwithstanding
these limitations, the linear XIP patches to CRAMFS
have been included in most embedded Linux distribu-
tions for years. Variations on linear XIP CRAMFS ship
in millions of Linux-based mobile phones every year.

Embedded Filesystem Summary
filesystem compress MTD/block writable XIP in-kernel
CRAMFS 4 block 5 5 4
JFFS2 4 MTD 4 5 4
YAFFS2 5 MTD 4 5 5
SQUASHFS 4 block 5 5 5
LOGFS 4 MTD 4 5 soon
UBIFS 4 MTD 4 5 soon
XIP CRAMFS 4 5 5 5 5

2 Changing the Filesystem Paradigm

2.1 The current filesystem paradigm

Performing any real operations on data requires the data
to be in memory. Executing code also requires that it be
in memory. The role of the filesystem in Linux is to or-
der data into files so that it can be found and copied into
to memory as requested. In a typical personal computer,
a Linux filesystem copies data from a hard disk to RAM.
The Linux kernel filesystem infrastructure assumes that
data must be copied from a high-latency block device to
the low-latency system RAM. While there are a few mi-
nor exceptions, this is the rule. This is the basic filesys-
tem paradigm driving the architecture of the Linux vir-
tual filesystem.

A typical embedded system today might have an ARM
processor with some embedded Flash memory and some
RAM. The filesystem would copy data from Flash mem-
ory to RAM in this case. While Flash memory has much
faster read latency than a hard disk, the basic paradigm
is the same. Linux developers tend to think of the Flash
memory in an embedded system as the equivalent of a
block device like a hard disk. This fits the filesystem
paradigm built into the kernel, therefore few kernel de-
velopers care to investigate whether the paradigm fits
the realities of the hardware.

2.2 Why XIP?

What is so useful about the XIP-patched CRAMFS that
has prompted it to be haphazardly maintained out-of-
tree for nearly a decade? What is it about these patches
that make them so hard to reconcile with the kernel? The
answer to both is eXecute-In-Place, or XIP. Executing a
program from the same memory it is stored in is usually
referred to as XIP. As code must be in memory to be
executed, XIP requires a memory-mappable device such
as a RAM, ROM, or a NOR Flash. NAND Flashes are
not memory-mapped and thus not suitable for XIP; they
are more like block devices than RAM.

XIP is common in RTOS-based embedded systems
where the memory model is very simple. In a RTOS,
to add an application from Flash into the memory map,
the designer need only specify where in the Flash the
application is, and link the application there during the
build. When the system is run, that application from
Flash is simply there in memory, ready to be used. The
application never needs to be copied to RAM.

A Linux application in Flash is a file that would be con-
tained in a filesystem stored on the Flash. To get this
application from Flash into a memory map, individual
pages of the application would be copied into RAM
from Flash. The RTOS system would only require the
Flash space necessary to contain the application. The
Linux system would require the Flash space necessary
to store the application, and RAM space to contain the
application as it gets copied to RAM. The Linux filesys-
tem paradigm treats the Flash as a block device. The
Flash-as-block-device paradigm overlooks the memory
aspect of the Flash memory. The result is wasted re-
sources and higher cost.

If we have in our embedded system a Flash that can be
used as memory, why not use it as such? When such

2008 Linux Symposium, Volume One • 213

Flash is used as memory, the system can use less mem-
ory by removing redundancy as explained above. Using
less memory results in reduced cost, which is always
a priority for consumer electronics. Reduced memory
also reduces power, which increases battery life. Perfor-
mance can also be improved with XIP. If an application
does not need to be copied to RAM nor decompressed—
only pointed to—to be used, the paging latency is dras-
tically reduced. Applications launch faster with XIP.
Where it can be used, XIP is a great way of improv-
ing on system cost and performance. For years the only
option was to depend on the limited and hacked linear
XIP CRAMFS patches.

2.3 Expanding the paradigm

The first step toward consolidating the XIP features of
CRAMFS used in the smallest of Linux system into
the kernel came from an unlikely source, one of the
largest of Linux systems. As part of the 2.6.13 merge,
the s390 architecture tree introduced a block driver for
dcssmemory that extended the block device to include
a .direct_access() call. This new interface re-
turns an address to a memory region that can be directly
accessed. It allows for XIP from memory which is pos-
ing as a special block device. To complete the system
modification to ext2 were made, and the functions in
/mm/filemap_xip.c were introduced to allow data
on this dcss memory to be used directly from where
it was stored. The s390 architecture users find this fea-
ture very useful because of the way their systems allow
for Linux virtualization. Because many virtual systems
were sharing a root filesystem, requiring each system to
maintain copies of important files and code in a page
cache when it was already accessible in a shared mem-
ory device would be a huge waste of resources.

With these changes to the kernel, the filesystem
paradigm changed a bit. Data no longer had to be copied
from a block device into RAM before being used; the
data that is stored in a special memory device can be
mapped directly. While the embedded Linux world con-
tinued to fumble with the hacked CRAMFS patches,
the mainframe Linux developers laid the foundation for
merging XIP into the kernel.

3 Why a new filesystem?

3.1 The Problems

In order to take advantage of the memory savings and
performance benefits that XIP has to offer, Linux needed
a few more tweaks and a filesystem. Although the
/mm/filemap_xip.c infrastructure was a step in
the right direction, it did not address all the problems
with adding XIP functionality for embedded systems.
The changes introduced by /mm/filemap_xip.c
added a new function, get_xip_page(), to struct
address_space_operation that a filesystem was
supposed to use to pass a struct page for the mem-
ory that was to be inserted into a process’s memory map
directly. In an embedded system, the memory that is to
be passed is Flash, not RAM, and has no page asso-
ciated with it. The way the XIP CRAMFS patches han-
dled this was to call remap_pfn_range(). This was
one of the causes of the maintenance problems with the
patches. Because the API for doing this was intended for
limited use in drivers and internal memory management
code, not for filesystem interfacing, it changed relatively
often. A solution would need to be found that mod-
ified the infrastructure from /mm/filemap_xip.c
with the functionality enabled by calling remap_pfn_
range() directly.

With no struct page to leverage in mapping mem-
ory, the kernel would need the physical address of the
memory to be mapped. The XIP CRAMFS patches
solved this by requiring a -o physaddr=0x. . . at mount.
While this approach works, it violates some of the lay-
ering principles Linux developers try to enforce. This
approach required the filesystem to deal with hardware
details, the physical address of a memory device, which
are supposed to be handled by driver levels. There were
also conflicts with the ioremap() call in the filesys-
tem which mapped these physical addresses into kernel
addressable virtual addresses. There were some rather
important architecture-specific ioremap() optimiza-
tions controlled by #ifdef, creating more confusion
and calling more attention to the layer violation.

Analyzing and comparing systems with and without the
XIP CRAMFS patches lead to a discovery. Under some
circumstances, XIP CRAMFS would indeed save RAM,
but it would do so spending more space in extra Flash
than was saved. One secondary reason for this mis-
match was that XIP CRAMFS had a rather inefficient

214 • Introducing the Advanced XIP File System

way of mixing XIP and and non-XIP files. XIP files
must be aligned on Flash at page boundaries in order
for the memory to be directly inserted into the memory
map. XIP CRAMFS left possible alignment holes at the
beginning and end of each XIP file. The major cause
of this skewed exchange rate was that XIP CRAMFS
uncompressed entire files even if only a small part of
that file was ever mapped. In a non-XIP system, only
the pages that actually did get mapped would be copied
into the RAM. To realize true memory savings, a solu-
tion would need to be able to identify and XIP at a page
granularity rather than a file granularity. Unfortunately
the kernel internals capable of inserting physical pages,
not backed by a struct page, did not allow page-
by-page granularity.

If any effort was to be expended on creating a mainline-
able XIP filesystem solution, one could not ignore the
limitations of CRAMFS. 256MB is painfully close to to-
day’s largest NOR Flash chip and is many sizes smaller
than today’s NAND Flash chips. Even SQUASHFS
(which supports 4GB filesystems) was criticized as
being “limited” by kernel developers. Simply re-
architecting the CRAMFS patches would not produce a
sufficiently scalable solution. Even using SQUASHFS
as a starting point might be viewed as not scalable.
SQUASHFS would also need to be modified to use
MTD devices. JFFS2 could also be viewed as not scal-
able. It should also be noted that JFFS2, having a
writable architecture, would introduce many additional
complexities if used as the basis for an XIP filesystem.
We decided the best solution was to create a filesystem
designed from the ground up to support XIP.

Obstacles to extending existing filesystem for XIP

1. No struct page for /mm/filemap_xip.c

2. Physical address not provided by drivers

3. XIP/compression on page granularity not sup-
ported

4. Existing filesystems “limited” or poor fit to appli-
cation

3.2 Removing Barriers

As we looked at our options to enable XIP with a sus-
tainable solution, it became obvious that we needed to

address the remaining issues in the kernel infrastructure.
In order to remove the struct page dependency in
/mm/filemap_xip.c we worked with virtual mem-
ory developers as well as the developers of the s390
architecture. Amazingly, the s390 developers were as
excited as we were to remove the struct page de-
pendencies from the /mm/filemap_xip.c for much
the same reasons we had. In both the s390 architecture
and the classic ARM-plus-Flash embedded system, the
XIP memory is memory, but really doesn’t want to be
thought of as system RAM. Adding a struct page
increases RAM overhead, but did not deliver any true
benefit to our systems. Only in the Linux community do
you find “big iron” and embedded systems developers
working toward the same goal. The end result is a set of
patches that is in the -mm tree as of this writing, hoping
for a 2.6.26 merge.

Mapping non-struct page memory into memory
maps requires that the filesystem be able to get the
physical address that the virtual memory layers require.
The target system, an ARM processor with Flash mem-
ory, would be able to have an MTD partition for the
filesystem image to reside in. Using the little-used
mtd->point() would give the filesystem a kernel-
addressable virtual address to the image on Flash. While
it is tempting to try a virt_to_phys() conversion,
this simple approach doesn’t work for our target archi-
tecture. The only place that reliable information about
the physical address of Flash resides is in the MTD sub-
system. Mounting to an MTD and then getting the phys-
ical address from the MTD seems reasonable. However,
the MTD interface didn’t provide an interface to get
the physical address. The MTD developers decided the
best way to get the physical address was to extend the
mtd->point() to include a virtual and a physical ad-
dress. There is a patch that has been signed off by many
key MTD developers and will hopefully be merged in
the 2.6.26 window.

Allowing control over the decision to XIP or com-
press pages at a page granularity requires both a new
filesystem architecture and a change to the kernel. The
patches required to do this are included with the page-
less XIP recently added to the -mm tree. At issue were
the mechanisms available to insert physical addresses
in the form of a page frame number, or pfn, into pro-
cess memory maps. Inserting a pfn with no struct
page required the use of the VM_PFNMAP flag. The
VM_PFNMAP flag makes assumptions about how the

2008 Linux Symposium, Volume One • 215

pfns are ordered within a map. These assumptions are
incompatible with enabling a page granularity for XIP.
The VM_MIXEDMAP patch allows a process’s mem-
ory to contain pfn-mapped pages and ordinary struct
page pages in an arbitrary order. Allowing pfn-mapped
and struct page-backed pages to coexist in any or-
der allows a filesystem to have control over what parts
of what file are XIP, and which are copied to the page
cache.

4 Architecture

4.1 Design Goals

Once we decided that none of the existing Linux filesys-
tems was likely to be easily extended to have the fea-
ture set we required, development of the architecture for
the Advanced XIP File System began. The target ap-
plication we had in mind was in mobile phones. Many
phones use CRAMFS or SQUASHFS; therefore, many
of the features will overlap with these existing filesys-
tems. Being read-only and having limited time stats
is acceptable. We need to improve on the size limi-
tations built into CRAMFS and SQUASHFS by creat-
ing a 64-bit filesystem. Compressing in greater than
4KB chunks like SQUASHFS should also be enabled.
The new filesystem should be able to mount from block
devices like the legacy filesystems, but it should also
mount directly from a MTD device. One new thing that
we needed to add was the ability to mount with part of
the image on a memory-mapped NOR Flash chip, while
the rest of the image in on a NAND-style Flash chip.

4.2 Feature List

1. Basic Attributes

• 64-bit

• read-only

• designed with embedded needs in mind

2. Compression

• 4KB–4GB compression block size

• page-by-page uncompression map for XIP

3. Flexible Mount

• MTD (NAND/NOR)

• block device

• split across XIP NOR and non-XIP NAND

4. Tools

• GPL mkfs.axfs

• Supported image builder available

4.3 Profiling

Having the capability to decide whether to use XIP on
individual pages allows the system designer to make a
more cost-effective system, in theory. The obstacle in
making this work in practice is deciding the right pages
to XIP. The way we decided that made sense to us was to
measure which pages in a filesystem are actually paged
in. We chose to have a profiler built into the AXFS
filesystem driver. The profiler records each time a page
from a file in an AXFS filesystem is faulted into a non-
writable map. After important use cases, the result can
be read out of a /proc file and then the profile buffer can
be reset by writing to that same /proc entry. There is
a Kconfig option to allow the profiler to be compiling
in or out of the driver. To profile a system, the system
designer takes the following steps:

1. profiler is compiled in

2. system is booted with an AXFS image

3. important use cases are run

4. profile is extracted from /proc

5. profile is fed back into the image builder

6. profiler is compiled out

7. optimized AXFS image is loaded into system

4.4 Mount Options

Figure 1 shows how the same image can be mounted
either on a single device or split across two devices.
This is to allow a system designer maximum flexibil-
ity in optimizing systems for cost. A typical use for this
device-spanning capability is to allow an image to span
a NOR-type Flash and a NAND Flash. Device spanning
is only permitted if the first device is directly memory-
mappable. Any XIP regions of the AXFS image would

216 • Introducing the Advanced XIP File System

NOR

NANDBLOCK

/dev/sda1 /dev/mtd1

/dev/mtd2

AXFS
IMAGE

Figure 1: Mounting Details

need to reside on a NOR Flash. However, there is no
reason why the compressed page regions would need to
be in NOR. As NOR Flash is usually more expensive per
bit compared to NAND Flash, placing compressed page
regions in NAND Flash makes economic sense. It is not
uncommon to have a large amount of NAND Flash in a
mobile phone today. The amount on NAND Flash is of-
ten driven by media file storage demands rather the size
of the root filesystem.

XIP CRAMFS would require a large enough NOR Flash
be added to the system for the entire root filesystem im-
age. Such a system could not take advantage of two
facts: first, only a part of the image requires the XIP ca-
pabilities of the NOR Flash; and second, there is a large
NAND Flash available. With AXFS, the NOR Flash can
be as small as the XIP regions of the AXFS root filesys-
tem image, with the rest of the image spilling over into
the NAND. The reason this can lead to cost savings is
that each memory component—the RAM, NOR Flash,
and NAND Flash—can be sized to minimum-ration chip
sizes. If RAM usage is just over a rational chip size,
but there is room in the NOR Flash, the designer can
choose to XIP more pages. If the NOR Flash usage is
over a chip size, but there is free RAM, pages can be
compressed and moved to NAND Flash to be executed
from RAM.

This flexibility also lowers risk for the designer. If ap-
plications need to be added or turn out to be larger than
planned late in the design cycle, adjustments can be
made to the contents of RAM and NOR Flash to squeeze
the extra code and data into the system while retain-
ing performance. With a traditional system, unexpected
code size means unexpectedly high page cache require-
ments. This leads to more paging events. As system
performance is sensitive to paging latencies, more code

will certainly lead to lower system performance. When
this happens with an AXFS system, any free space in
NOR Flash can be exploited to to absorb the extra code
or to free up RAM for data.

4.5 Format

The AXFS on-media format is big-endian and has three
basic components: the superblock, RegionDescriptors,
and Regions. Essentially the superblock points to the
RegionDescriptors, which in turn point to Regions (as
shown in Figure 2). There is, of course, a single su-
perblock, many RegionDescriptors, and many Regions.

SUPERBLOCK

Region Descriptor
Region Descriptor

Region Descriptor
Region Descriptor

Region - file names

Region - node offsets

Region - compressed nodes

Region - xip nodes

Figure 2: On-media Format

The superblock contains filesystem volume-specific in-
formation and many offsets, each pointing to a separate
RegionDescriptor. Each RegionDescriptor then con-
tains an offset to its Region. A Region can contain many
different kinds of data. Some Regions contain the actual
file data and one contains the filename strings, but most
Regions contain ByteTables of metadata that allow the
files to be reconstructed.

ByteTables are how most numbers are stored in AXFS.
It is simply an array of bytes. Several bytes must be
“stitched” together to form a larger value. This is how
AXFS can have such low overhead and still be a 64-bit
filesystem. The secret is that in the AXFS driver, most
numbers are unsigned 64-bit values, but in the ByteTa-
bles, each value is only the minimum number of bytes
required to hold the maximum value of the table. The

2008 Linux Symposium, Volume One • 217

number of bytes used to store the values is called the
depth. For example, a ByteTable of offsets into the
Region containing all the file name strings could have
many depths. If the strings Region is only 240 bytes
long, the depth is 1. We don’t need to store offsets in
8-byte-wide numbers when every offset is going to be
less than the 255 covered by a single byte value. On a
strings Region that is 15KB in size, the depth would be
2, and so on. The ByteTable format makes it easy to
support large volumes without punishing the small em-
bedded systems the design originally targeted.

A Region in AXFS is a segment of the filesystem image
that contains the real data. The RegionDescriptors on
media representations are big-endian structures that de-
scribe where a given Region is located in the image, how
big it is, whether it is compressed, and for Regions con-
taining ByteTables information, information about the
depth and length of that ByteTable.

Several ByteTable regions are dedicated to inode-
specific data such as permissions, offset to the filename,
and the array of data nodes for files or child inodes for
directories. Those are fairly straightforward. The data
nodes prove a little more complex. A file inode points
to an array of page-sized (or smaller) data nodes. Each
node has a type (XIP, compressed, or byte-aligned) and
an index. The XIP case is the simplest. If the node
type is XIP, the node index becomes the page number in
the XIP region. Multiplying the index by PAGE_SIZE
yields the offset to the XIP node data within the XIP
Region.

A node of type byte-aligned contains data that doesn’t
compress and is a little more complicated to find. This
exists because data that doesn’t compress is actually
larger when run through a compression algorithm. We
couldn’t tolerate that kind of waste. The node index be-
comes the index into a ByteTable of offsets. The off-
set points to the location within the byte-aligned Region
where the actual data is found.

The compressed node type is the most complicated to
find. The node index for a compressed node is used as
the index to two separate ByteTable values, the cblock
offset and the cnode offset. A cblock is a block of
data that is compressed. The uncompressed size of all
cblocks is the same for a given filesystem, and is set by
the image builder. A cnode is a data node that will be
compressed. One or more cnodes are combined to fill a
cblock and then compressed as a unit. The compressed

cblocks are then placed in the compressed Region. The
cblock offset points to the location of the cblock con-
taining the node we are looking for. The cblock is then
uncompressed to RAM. In this uncompressed state, the
cnode offset points to where the node’s data resides in
the cblock.

5 Benchmarks

5.1 Benchmark Setup

The benchmarks were run on our modified “Mainstone
2” boards. The kernel was only slightly modified to run
on our platform and to include AXFS. The root filesys-
tem was a build of Opie we created from OpenEmbed-
ded about a year ago. It is a full PDA-style GUI, and we
added a few applications like Mplayer and Quake.

• PXA270 Processor

– 520 MHz (CPU)

– 104 MHz (SDRAM bus)

– 52 MHz (NOR flash bus)

• Linux-2.6.22

– xipImage

– CONFIG_PREEMPT=y

– MTD updated to Sept 25 git pull

– mem=24MB in kernel commandline

• Opie root filesystem

– OpenEmbedded

– about one year old

5.2 Performance

Rather than demonstrate meaningless raw throughput
numbers, we wanted to use a real-life scenario that
shows a difference. The easiest way to show how AXFS
can improve performance is by showing how fast it can
be at launching applications. We reduced the available
RAM to simulate the memory pressure present in a cost-
sensitive consumer electronic device. Figure 3 shows
the combined time it took to start up several applications
in seconds for each filesystem. Once these applications
(video player, PDF viewer, web browser) launched, they

218 • Introducing the Advanced XIP File System

Figure 3: Aggregate application launch (s)

performed the same on each platform as far as we could
measure.

Figure 4 shows the effect of memory pressure on the
various filesystems. This shows the time it took to boot
to the Opie splash screen with the amount of RAM var-
ied via mem=. As the memory pressure builds, you can
see that the performance is very steady on AXFS, while
it really effects the performance of SQUASHFS.

0

20

40

60

80

100

32MB 24MB 16MB

SQUASHFS AXFS

Figure 4: Impact of memory pressure on boot time (s)

5.3 Size

Comparing the image sizes for each filesystem, as we
do in Figure 5, shows how AXFS compresses better
than all the others, although it isn’t much smaller than
SQUASHFS. It also shows how optimized XIP AXFS
is much smaller than the best we could do with XIP
CRAMFS; both save the same amount of RAM.

Comparing the size of the XIP AXFS to the SQUASHFS
image in Figure 5 makes it look as though the
SQUASHFS is smaller. That is only part of the equa-
tion. If we take the amount of RAM used into consid-
eration, it is clear an XIP AXFS image uses less total

Figure 5: Image sizes (MB)

Figure 6: total used memory (MB)

memory, as shown in Figure 6. As all of these sys-
tem use more than 32MB of Flash, a 64MB Flash chip
would likely have to be used for all. However, while
the JFFS2 and SQUASHFS systems both need 32MB
of RAM, the AXFS system would only need 16MB. In
fact, the AXFS system would still have more free RAM
than the others, even with a smaller RAM chip.

6 Summary

AXFS was designed to create a filesystem with a chance
of being merged into the kernel that provided the XIP
functionality long used in the embedded world. It can
conserve memory, saving power and cost. In the right
circumstances it can make systems quicker and more
responsive. Hopefully it can soon be merged and en-
joyed by all—especially by those that have long been
struggling with the XIP CRAMFS patches. We are also
hopeful that other users will find new uses for its unique
capabilities, such as the root filesystem in a LiveCD.

Low Power MPEG4 Player

Joo-Young Hwang
Software Labs

Samsung Electronics Co. Ltd.
jooyoung.hwang@samsung.com

Sang-Bum Suh
Software Labs

Samsung Electronics Co. Ltd.
sbuk.suh@samsung.com

Woo-Bok Yi
Software Labs

Samsung Electronics Co. Ltd.
woobok.yi@samsung.com

Jun-Hee Kim
Seoul National University

goldlion@davinci.snu.ac.kr

Ji-Hong Kim
Seoul National University

jihong@davinci.snu.ac.kr

Abstract

In this paper, design and implementation of a dynamic
power management for a MPEG-4 player is described.
We designed two dynamic voltage scaling algorithms
(feedback-based and buffering-based) to adapt CPU
voltage dynamically according to the variable bit rate
of a movie. We experimented the algorithms with the
open-source XviD player. Our modified XviD player
can save up to about 50% power without performance
degradation. We describe practical lessons learned in
optimization of the algorithms.

Power management (PM) is an important issue for
battery-powered Linux devices, particularly for video
playing devices. Our work shows how a conventional
open-source video player can be modified to save power
significantly on a CPU with dynamic voltage scaling ca-
pability.

1 Introduction

Power consumption is one of the big issues facing mo-
bile embedded devices. Multimedia playing is one of
the key functions of recent mobile devices, and the mul-
timedia player is running for most of the time while us-
ing those devices. Power management for efficient mul-
timedia playing in mobile devices is an important issue.

There have been numerous research papers published on
power management for server systems [10], soft-real-
time systems [6], and up to real-time systems [12, 1, 11].

Some of them are focused on per-component power
management or system-level power management. In
this paper, we focus on power management of the CPU
component for multimedia playing devices, which is a
soft-real-time system.

Many modern CPUs provides dynamic changing of
clock frequencies and voltages in order to reduce power
consumption. When a CPU becomes idle, it normally
enters idle mode, a low-power mode provided by most
current processors. However, it is rather efficient to re-
duce voltage levels as much as possible without violat-
ing deadlines of tasks, because power consumption of
digital CMOS circuits is quadratically proportional to
the supply voltages (P = αC fVDD

2)[2, 7].

Conventional DVS algorithms adjust CPU voltage/clock
frequency dynamically according to workload varia-
tions. There are two DVS (Dynamic Voltage Scaling)
approaches to exploit CPU slack time: inter-task and
intra-task. Inter-task DVS is to exploit the slack time
obtained from one task when the task completes prior to
its planned execution time for the next task to schedule.
The OS scheduler determines the CPU voltage level for
the task to schedule, and changes the CPU voltage as
determined.

Intra-task DVS is to change voltage levels during the
execution of a task. Power Control Points (PCP) are in-
serted into a conventional program in order to change
CPU voltage level at those points. PCP can be inserted
automatically by the compiler, or manually by program-

• 219 •

220 • Low Power MPEG4 Player

mers. PCP should be inserted appropriately to avoid un-
necessary frequent voltage switches, which will lead to
performance degradation. There is no general rule of
thumb on where to insert PCP into a program, but it may
varies from application to application. The workload of
an application should be analyzed statically or profiled
dynamically at run time in order to pick the proper po-
sition for PCP.

Dynamic voltage scaling for multimedia players is an
intra-task DVS method. There have been many pa-
pers on dynamic voltage scaling multimedia playback
[3, 4, 8, 5, 9, 6]. In this paper, we describe a case study
on practical issues in deployment of DVS algorithms
on Linux and legacy multimedia player. We describe
implementation issues of two DVS methods (feedback-
based and buffer-based) and show detailed performance
analysis. We also indicate possible further optimization
directions.

This paper is organized as following: In Section 2, we
overview currently known DVS algorithms and describe
our implementation of those DVS algorithms in the open
source XviD MPEG4 player, and discuss implementa-
tion issues in Section 3. Experimental performance re-
sults are shown in Section 4, and we summarize this pa-
per in Section 5.

2 DVS Algorithms for Multimedia Playing

2.1 Feedback-based DVS Algorithm

Using conventional feedback-based algorithms [3, 4, 8,
5, 9], workload of the current Video Object Plane (VOP)
is predicted considering the previous VOP decoding
workloads, and the CPU voltage/clock is adjusted ac-
cordingly. In our media player, the VOP workload is es-
timated based on a simple moving average scheme; the
workloads measured in the unit of the number of CPU
cycles for previous frames are averaged over a window
(typically 3 frames). Target CPU clock for the current
frame decoding is calculated as the estimated workload
divided by the decoding period. Then we select the
power state with the minimum CPU clock among the
CPU clocks higher than the calculated target frequency.
The algorithm uses a different time window size for dif-
ferent VOP types (I, P, or B) of a frame.

2.2 Profile-based DVS Algorithm

This algorithm is the ideal case of a feedback-based al-
gorithm. By profiling actual VOP decoding times in
off-line and using the profile at run-time, the feedback-
based algorithm can adjust voltage/clock according to
correctly predicted workloads for all the frames. The
VOP decoding times are measured for each CPU clock
frequency because decoding time is affected not only by
CPU clock frequency, but also by off-chip memory la-
tencies. The performance of the profile-based feedback
scheme gives the ideal performance which can be ob-
tained by feedback-based algorithms.

2.3 Buffer-based DVS Algorithm

This algorithm, originally proposed in [6], can be used
for input buffering or output buffering. The paper de-
scribed only the input buffering case in detail, but we
are interested in output buffering in this paper.

When there is no output buffer and the decoder should
output decoded stream to the frame buffer directly, the
decoder should wait until the next period to update the
frame buffer. VST (Workload Variation Slack Time),
which is generated by early completion of decoding of
a frame, cannot be exploited for decoding of the next
frame. If there are output buffers to save the decoded
stream, the decoder can begin decoding of the next
frame, exploiting the VST generated by the previous
frame. This is illustrated in Figure 1.

When decoding of the j-th VOP is complete prior to its
deadline, the slack whose amount is V STj occurs. With-
out output buffers, the decoder should wait for this slack
interval. Assuming that the workload required for de-
coding the j + 1-th frame is PEC, the CPU clock fre-
quency for decoding the frame is PEC/Period. With
output buffers, the decoder can start decoding of j + 1-
th frame without waiting for the next period. At the
moment, CPU clock frequency is adjusted to be PEC
/ (V STj + Period), so power consumption is reduced. At
the deadline of j + 1-th frame, the current frame buffer
address is switched to the memory, which contains the
decoded data of the j +1-th frame.

According to [6], maximum buffer size can be estimated
by the ratio of worst case execution time (WCET) to
best case execution time (BCET). The VST increases
as the actual execution time becomes shorter than the

2008 Linux Symposium, Volume One • 221

deadline. Assuming the steady state worst-case scenario
where VST is saturated to a maximum value, (BCET
/ WCET) becomes equivalent to (T / T + VST) where
T is the period, then VST = T(WCET/BCET - 1). To
fully exploit the VST, output buffers should be available.
Therefore, the buffer size h should satisfy the following.
h ≥ dV ST

T e= dWCET
BCET −1e

To determine BCET and WCET for a media clip, the
clip is played once at the full speed of a CPU. The au-
thors of [6] supposed that the execution times of the ap-
plications follow a normal distribution and took 3σ vari-
ations around the mean of the distribution as boundary
values. In our experiment, we simply take the actual
maximum and minimum execution times as WCET and
BCET, respectively.

3 Implementation

3.1 Voltage Scaling Function in Linux Kernel

In our experimental platform, CPU supply voltage is
regulated via the LTC1663 chip, and it takes non-
negligible time to change CPU voltage. So, the multi-
media player should not block waiting for completion
of CPU voltage change. A voltage scaling daemon,
running as a kernel thread, is responsible for changing
CPU voltage to a new value, specified by the multime-
dia player’s voltage scaling request. The VS daemon
writes the request to the LTC1663 chip and sleeps on
interrupt from the chip, which arrives when the actual
voltage change is complete.

3.2 Media Player SW Architecture

Our low power media player consists of four modules as
described in the following.

• AVI I/O Library

Most MPEG-4 video data are contained in a sep-
arate container format such as AVI or MOV.
Among them, AVI format is generally used,
and we use it for our experiments. AVI I/O
library extracts MPEG-4 VOP stream data
from AVI file and sends it to XviD decoder.
We use Transcode AVI I/O library for this
module.

• XviD Decoder Library

This is a open source GPL licensed MPEG-4 de-
coder library. It is not official reference soft-
ware for MPEG-4, but it is fully compatible
with MPEG-4 and its performance is well op-
timized, so we choose it for our baseline me-
dia player.

• Low Power Player Module

This is the core module of our media player.
It performs basic hardware initialization and
sends frame data decoded by the XviD de-
coder library to the LCD frame buffer, in syn-
chronization with frame deadlines. This also
includes implementation of feedback-based
and buffer-based DVS algorithms.

• User-level VS Library

The VS library provides user-level DVS APIs for
applications. These invoke system calls to get
service of DVS functions from Linux kernel.

DVS APIs provided by the user-level VS library to the
media player are summarized in the following.

• unsigned int getCurrentSpeed()

returns current relative speed

• void setScaledClock(unsigned int
newSpeed)

set CPU clock frequency to a value corresponding
to a given relative speed value of "newSpeed"

• void setScaledSpeed (unsigned int
newSpeed)

set both CPU clock frequency and voltage at the
same time corresponding to a given relative
speed value of "newSpeed"

• unsigned int getCurrentVoltage()

returns current voltage value multiplied by 100.

• void setVoltage(unsigned int
newVoltage)

set CPU voltage to the given "newVoltage" which
is a voltage value multiplied by 100.

222 • Low Power MPEG4 Player

3.3 Power States Selection

PXA-255 provides various CPU voltage/clock combi-
nations, as shown in Table 1. We selected combinations
with the same memory clock frequency of 99.5 MHz to
avoid ambiguity, as described in the following. When
we consider two combinations with different memory
clocks and different CPU clocks, it is not determinis-
tic which one consumes more power and gives higher
performance, because the actual power consumption de-
pends on workload characteristics. For memory inten-
sive workloads, a combination with a higher memory
clock may give higher performance, even though it has
lower CPU clock frequency. It is also difficult to com-
pare the total power consumption including CPU and
memory power, because they may vary from device to
device, and an accurate power consumption specifica-
tion for processor and memory is required for correct
comparison. For implementation simplicity and porta-
bility, we selected the four combinations in Table 1.

PXA-255 processor has an idle mode, where power con-
sumption is minimal. It is generally entered by operat-
ing systems when the system is idle. When an interrupt
arrives, processor mode is immediately changed to ac-
tive mode. Even though the system is idle, the Linux
kernel still typically processes a timer tick every ten mil-
liseconds. To reduce the power consumption for pro-
cessing, the periodic timer ticks when the system is idle;
we adjust the CPU voltage/clock to the lowest power
state on entry to slack interval.

3.4 Deadline Misses Handling

In the feedback-based method, a deadline miss may oc-
cur when the workload prediction is incorrect. If the
CPU voltage is adjusted too low, the decoding of a frame
will not be complete until the deadline of the frame.
When such deadline miss occurs for a frame, the VOP
deadline of the next frame is shortened accordingly not
to increase the total play time.

4 Performance results

Our experimental platform, TynuxBox-Xe, is equipped
with an Intel PXA255 CPU operating at 400MHz,
32MB SDRAM, and 32MB NOR flash memory. To
measure the power consumption of the CPU, a data

acquisition instrument is used to collect voltage sam-
plings. Small serial resistance is inserted between the
supply and the CPU to measure the current flow. Volt-
age level is sampled at the points (A) and (B) in Figure 2.
Instantaneous power consumption of the CPU is calcu-
lated as VB

VA−VB
R , where VA and VB are the voltages at

(A) and (B) points, respectively. Voltages are sampled
at 1000 HZ frequency. We used a trailer for the Matrix
Revolutions as an input, in which length is 63 seconds,
video frame rate is 12 frame per second, and screen res-
olution is 240x160.

PXA-255
(400MHz)

(B) (A)

V(B)

Data Acquisit ion
Instrument

V(A)

voltage sampling

R

Figure 2: Power consumption measurement

We compare the following four cases:

• Normal case without DVS methods. CPU voltage
is set to the highest value when system is active,
and CPU enters idle mode when system is idle.

• Feedback-based method. It is to adjust CPU volt-
age frame by frame according to the predicted cur-
rent frame’s CPU workload, which is estimated
based on history of actual workloads of the previ-
ous frames. Moving average window size is 3.

• Profile-based method. It is to adjust CPU voltage
frame by frame according to the actual workload
which is known a priori.

• Buffer-based method. It is to adjust CPU voltage
frame by frame according to the worst-case execu-
tion time of each frame. The number of buffers is
set to 4, which is calculated as described in 2.3.

Figure 3 shows instantaneous power consumption of the
three DVS methods for the first 500 milliseconds time

2008 Linux Symposium, Volume One • 223

t imeT 2T 3T 4T

VST1 VST2 VST3 VST4

Vmax

Vmin

(a) Without output buffers

t imeT 2T 3T 4T

VST1

VST2

VST3

VST4

Vmax

Vmin

(b) With output buffers

Figure 1: Working behaviour comparison between w/o buffer and w/ buffer cases.

CPU Clock (MHz)
corresponding to PXA255’s CCCR setting (N)

N = 1.00 N = 1.50 N = 2.00 N = 3.00 SDRAM Clk(MHz)
99.5@1.0V - 199.1@1.0V 298.6@1.1V 99.5
132.7@1.0V - - - 66
199.1@1.0V 298.6@1.1V 398.1@1.3V - 99.5
265.4@1.1V - - - 66
331.8@1.3V - - - 83
398.1@1.3V - - - 99.5

Table 1: PXA255 CPU voltage/clock combinations table with SDRAM clock frequency. CCCR is Core Clock
Configuration Register of PXA255 CPU.

224 • Low Power MPEG4 Player

interval, during which the video changes smoothly and
decoding workload is low. As shown in Figure 3 (a),
the decoder in the normal case is active only for approx-
imately half of the period. For the workload, all those
DVS methods work well and none of them outperforms
the others. Total energy consumption over the time in-
terval are 11.49, 7.37, 6.23, and 7.26 mJ for normal,
feedback-based, profile-based, and buffer-based meth-
ods, respectively. It should be noted that the buffer-
based method adjusts the CPU voltage higher than the
profile-based method for the first frame, because it uses
the worst-case execution time for workload estimation,
while the profile-based method uses the exact workload
of the frame. For that reason, total energy consumption
of the profile-based method is the the lowest among the
three methods.

Figure 4 shows instantaneous power consumption of the
DVS methods for the time interval from 3 - 3.5 seconds
of the video during which the scene changes quickly,
and decoding workload is high. The feedback-based
method failed to reduce power for this workload because
the moving average-based workload estimation is wrong
for most cases. The buffer-based method works well
for the workload, and even better than the profile-based
method. In the method, CPU voltages are kept low for
most of time and media player hardly enters Idle mode,
which is owing to the efficient exploitation of VST. Un-
like other methods, in the buffer-based method, CPU
voltage change is not synchronized with frame deadline
as observed during the (i+4)-th frame in Figure 4 (c).
Energy consumptions during the time interval are 14.84,
14.91, 10.28, and 7.33 mJ for normal, feedback-based,
profile-based, and buffer-based methods, respectively.

The current buffer-based method has more optimization
opportunities. It is possible that CPU voltage is conser-
vatively set because the buffer-based method uses the
worst-case execution time of a video clip, instead of us-
ing feedback from actual execution times. In case of
playing a video whose frame decoding complexity vari-
ation is very high, setting the CPU voltage consider-
ing WCET may lead to buffer shortage while decoding
low complexity frames. Using actual execution times
can be a solution of this problem. Since this may also
cause deadline misses as the feedback-based method, ei-
ther appropriate deadline miss handling or deadline miss
avoidance is necessary, which is one of our future works.

5 Summary

In this paper, we described our implementation of DVS
algorithms designed for low-power multimedia play-
back. Feedback-based and buffer-based methods are
implemented using the XviD MPEG4 player. The
feedback-based method performs well for smoothly
changing video. However, it could not correctly predict
frame decoding workloads for quickly changing video,
which led to non-significant power reduction. We also
implemented the profile-based DVS method, which uses
correct workload information profiled at off-line to show
the upper bounds of the performance, which can be ob-
tained by ideal feedback-based methods.

The buffer-based method using multiple output buffers
performs better than the profile-based method, owing to
efficient exploitation of VST (Workload Variation Slack
Time). Without output buffers, the decoder cannot de-
code the next frame, even though the current frame de-
coding is completed earlier than its deadline. In con-
trast, with output buffers, the decoder can continue work
by queuing output to buffers. The number of buffers
does not have to be large, and 4 buffers were enough
to get significant power reduction for our test video se-
quence.

We showed detailed analysis of voltage scaling be-
haviour for typical DVS methods. We also indicate the
possibility of further optimization of the buffer-based
DVS method for handling video sequences with vary-
ing frame complexity.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. M.
Alvarez. Dynamic and aggressive scheduling
techniques for power-aware real-time systems. In
Proceedings of IEEE Real-Time Systems
Symposium, 2001.

[2] T. Burd and R. Brodersen. Processor design for
portable systems. In Journal of VLSI Signal
Processing, Aug. 1996.

[3] K. Choi, K. Dantu, W. Cheng, and M. Pedram.
Frame-based dynamic voltage and frequency
scaling for a mpeg decoder. In Proceedings of
International Conference on Computer Aided
Design, pages 732–737, November 2002.

2008 Linux Symposium, Volume One • 225

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 50 100 150 200 250 300 350 400 450 500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
feedback

(a) Normal vs. Feedback based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 50 100 150 200 250 300 350 400 450 500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
profile

(b) Normal vs. Profile based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 50 100 150 200 250 300 350 400 450 500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
buffer

(c) Normal vs. Buffer based method

Figure 3: DVS results for smoothly changing video part.

226 • Low Power MPEG4 Player

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
feedback

(a) Normal vs. Feedback based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
profile

(b) Normal vs. Profile based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
buffer

(c) Buffer based method vs. Normal and Profile-based Methods

Figure 4: DVS results for quickly changing video part.

2008 Linux Symposium, Volume One • 227

[4] K. Choi, R. Soma, and M. Pedram. Off-chip
latency-driven dynamic voltage and frequency
scaling for an mpeg decoding. In Proceedings
of41st Design Automation Conference, pages
544–549, June 2004.

[5] C. Im and S. Ha. Dynamic voltage scheduling
with buffers in low- power multimedia
applications. ACM Transactions on Embedded
Computing Systems (TECS), 3(4):686–705,
November 2004.

[6] C. Im, H. Kim, and S. Ha. Dynamic voltage
scheduling technique for low-power multimedia
applications using buffers. In Proc. Int’l Symp. on
Low Power Electronics and Design, pages 34–39,
2001.

[7] T. Ishihara and H Yasuura. Voltage scheduling
problem for dynamically variable voltage
processors. In Proceedings of ISLPED
(International Symposium on Low Power
Electronics and Design), Aug. 1998.

[8] Z. Lu, J. Lach, M. Stan, and K. Skadron.
Reducing multimedia decode power using
feedback control. In Proc. of International
Conference on Computer Design, pages 489–496,
October 2003.

[9] Z. Lu, J. Lach, M. Stan, and K. Skadron. Design
and implementation of an energy efficient
multimedia playback system. In Signals, Systems
and Computers, 2006. ACSSC ’06. Fortieth
Asilomar Conference on, pages 1491–1497,
Oct.-Nov. 2006.

[10] T. Pering, T. Burd, and R. Broderson. The
simulation and evaluation of dynamic voltage
scaling algorithms. In Proc. Int’l Symp. on Low
Power Electronics and Design, pages 76–81,
1998.

[11] P.Pillai and K. G. Shin. Real-time dynamic
voltage scaling for low-power embedded
operating systems. In Proceedings of 18th ACM
Symposium on Operating Systems Principles,
pages 89–102, 2001.

[12] Y. Shin, K. Choi, and T. Sakurai. Power
optimization of real-time embedded systems on
variable speed processors. In Proceedings of the

International Conference on Computer-Aided
Design, pages 365–368, 2000.

228 • Low Power MPEG4 Player

VESPER (Virtual Embraced Space ProbER)

Sungho Kim
Hitachi, Ltd., Systems Development Lab

sungho.kim.zd@hitachi.com

Satoru Moriya
Hitachi, Ltd., Systems Development Lab
satoru.moriya.br@hitachi.com

Satoshi Oshima
Hitachi, Ltd., Systems Development Lab
satoshi.oshima.fk@hitachi.com

Abstract

This paper describes VESPER (Virtual Embraced Space
ProbER), the framework that gathers guest information
effectively in a virtualized environment. VESPER is
designed to provide evaluation criteria for system reli-
ability and serviceability, used in decision-making for
system switching or migration by a cluster manager. In
general, the cluster manager exchanges messages be-
tween underlying nodes to check their health through
the network. In this way, however, the manager can not
discover a fault immediately and get detailed informa-
tion about faulty nodes. VESPER injects Kprobes into
the guest to gather the guest’s detailed information. By
communicating with the guest in kprobes through the
VMM infrastructure, VESPER can provide the manager
with prompt fault information much more quickly.

In this paper, we explain how VESPER injects Kprobes
into a guest and clarify the benefits by showing a use
case on Xen. As VESPER is not strongly coupled to a
specific VMM, we also show its portability to KVM and
lguest.

1 Introduction

Recently, the trend of applying virtualization technol-
ogy to enterprise server systems is getting much more
noticeable, such as in server consolidation. The tech-
nology enables a single server to execute multiple tasks
which would usually run on multiple physical ma-
chines. From that point, applying virtualization tech-
nology to cluster computing is very attractive technol-
ogy and worth considering as well, in terms of efficient
resource utilization and system dependability. Further-
more, use of virtualized environments for cluster sys-
tems allows us to make improvements in several areas

of general clustering technology—especially, fail-over
response latency in high-availability clusters.

Even in a virtualized environment, a cluster manager
such as Heartbeat [1][2] software delivers messages be-
tween underlying nodes to check their health through
network periodically (known as heartbeat). If any node
fails to reply in a certain time, the manager will assign
the service which the faulty node was providing to an-
other node. This amount of time before switching to
another node is called the deadtime, key to ascertaining
node death in Heartbeat. With this approach, however,
the manager can not immediately determine faults, nor
get detailed information about faulty nodes; this results
in fail-over response latency. So we have focused on im-
proving upon this latency, and on the failure analysis the
manager should facilitate in clustering virtual machines,
by considering features of virtualization technology.

One solution to the latency and failure analysis issues
is to add dynamic probing technology into virtual ma-
chines. This allows the cluster manager to have:

• Dynamic probe insertion to guarantee service
availability while inserting a probe.

• Arbitrary probe insertion to any process address to
hold its versatile probing capability.

• Prompt notification when corresponding events
happen around a probe.

Utilizing this featured probe technology to examine the
health of a virtual cluster member machine could lead to
faster and more efficient evaluation criteria for system
switching or migration than a simple, periodic message
delivery mechanism.

• 229 •

230 • VESPER (Virtual Embraced Space ProbER)

Speaking of the probe technology, Kprobes [3] are avail-
able in the Linux kernel community. Kprobes can insert
a probe dynamically at a given address in the running
kernel of a targeted virtual machine. Its execution of
the probed instruction in the kernel is capable of deal-
ing with the detailed information on the targeted virtual
machine in an event-driven fashion.

From a system management point of view, however, one
privileged system running the cluster manager (called
host hereafter) should obtain all probed data from the
targeted virtual machine (called guest hereafter). So,
there needs a mechanism to insert probes from the host
into the guests to improve the manageability of the man-
ager, which Kprobes does not take into consideration.

Xenprobes [4] has already addressed this topic. Xen-
probes is newly devised for probing virtual machines,
but adopts Kprobes’s concept in inserting breakpoints
where one needs a probe. However, Xenprobes needs
the help of a VMM-like furnished debugging mecha-
nism [5] and should stop the guest to insert the probes.
Moreover, every breakpoint causes VMM to give exe-
cution control to the host, especially in Xen [6] tech-
nology. These could be significant problems in service
availability.

In this paper, therefore, we propose the framework
named VESPER (Virtual Embraced Space Prober)
which gathers guest information effectively in a virtual-
ized environment, taking advantage of the full features
of Kprobes, adopted for its probing component. In con-
trast to Xenprobes, VESPER never gets involved with
probe handlers; this acts to avoid unnecessary probing
overhead and to improve service availability. VESPER
simply transfers Kprobes generated in the host to the
targeted guest. The transferred Kprobes do all the nec-
essary probing work themselves in the guest, and then
VESPER simultaneously obtains the result of Kprobes
through shared buffers (such as relayfs) built across the
host and guest.

We will describe how VESPER injects the probes into
guest and provides the solution to fail-over response la-
tency with failure analysis in a virtualized environment
by showing a use case with Xen, in the following sec-
tions of this paper.

Section 2 briefly describes design requirements in VES-
PER; Section 3 presents the architecture of VESPER.
Section 4 presents implementation details of VESPER,

while Section 5 shows some benefits of VESPER for
simple web services. Finally, we conclude this paper in
Section 6.

2 Design overview

In designing VESPER, we took special interest in sim-
plicity of implementation and robustness against disas-
ters in userland. We thus set up some design require-
ments on VESPER as follows, to reflect our concepts.

1. No modifications on host or guest kernels.
Lightweight implementation as a kernel module
could assure better usability and availability of
VESPER in systems due to dynamic loading and
unloading features of kernel modules.

2. Only the host can insert probes into the guest, and
guest itself loads them using guest kernel space
only. As mentioned in the previous section, the
cluster manager running on the host might as well
control probes into the guest from a management
point of view. In addition, the guest itself loads the
probes inserted by the host into its kernel space dy-
namically to keep its serviceability. Furthermore,
if some disaster should mangle user space but not
kernel space in the guest, VEPSER should still be
available to find out what the problem is.

3. All probed data from the guest is sent to host as
quickly as possible. To receive prompt alerts via
probed data is the main purpose of VESPER, and
thus to improve fail-over response latency.

To satisfy the requirements above, VESPER thinks of
Xen and KVM mainly as target VMMs because of the
popularity of Xen and KVM [7] in the OSS (Open
Source Software) community in this writing. Firstly, to
address Requirement 1 above, VESPER is, by prefer-
ence, developed as a virtual device driver. Requirements
2 and 3 dictate that VESPER communicate with host
and guest. As a matter of fact, Xen and KVM technol-
ogy provide a well-defined device driver model, split de-
vice driver, and communication infrastructure between
host and guest. Xenbus is infrastructure specific to Xen
technology, whereas virtio is applicable to Xen and
KVM as well. Especially, virtio is available in 2.6.24
Linux kernel. VESPER uses hierarchical layers in its

2008 Linux Symposium, Volume One • 231

software structure to accommodate various infrastruc-
tures, making it more available and portable.

The layer dependent on a certain infrastructure prepares
the set of functions and data items for the use of the
layers independent of the VMM architecture. Details on
that structure and implementation will be discussed in
the upcoming sections.

3 Architecture and Semantics of VESPER

For probing the guest, VESPER uses Kprobes to hook
into the guest Linux kernel, and uses relayfs to
record probed data in the probe handler of Kprobes. In
this section, we take a brief look at the VESPER archi-
tecture featuring a 3-layered structure, then we present
its semantics.

3.1 VESPER Architecture

As mentioned before, VESPER uses Kprobes to hook
into the guest kernel. However, because Kprobes is the
probing interface for the local system, it can not im-
plant probes into the remote system directly. Besides,
in the typical use case of Kprobes, the probe handler in
Kprobes comes in the form of a kernel module. There-
fore, in using Kprobes to hook into the guest kernel,
VESPER should be able to load probing kernel modules,
on which the handlers to probe are implemented, from
host to guest. This loading capability of VESPER is im-
plemented as split drivers and named Probe Loader.

In VESPER, the probing modules use relay buffers to
record data in the probe handlers. At this point, prob-
ing modules are in the guest; thus, VESPER needs to
transfer the buffer data from the guest to the host. This
relayed data transfer capability is also implemented as
split drivers and named Probe Listener.

Figure 1 is the block diagram of the VESPER compo-
nent.

As just described, VESPER contains two pairs of split
drivers. These drivers are implemented for each VMM
because they strongly depend on the underlying VMM.
So, we divide VESPER into three layers (shown in Fig-
ure 2): UI Layer, Action Layer, and Communication
Layer, in order to localize VMM-dependent code. This
structure lets VESPER run on Xen and KVM by replac-
ing only the VMM architecture-dependent layer—the
Communication Layer.

Probing Module
kernel

kernelVESPER-UI

user land user land

Probe
Loader
Host Part

Probe
Loader
Guest Part

Probe
Listener
Guest Part

Probe
Listener
Host Part

host guest

VMM
Load Probing Module

Share Probed Data

Figure 1: Architecture of VESPER

Communication Layer

Action Layer

Probing Module

Communication Layer

Action Layer

UI Layer user space

kernel space

Host Guest

Figure 2: Layer of VESPER

1. UI Layer

This is the interface layer between VESPER and
user applications which manage the guest in the
host. This layer provides interfaces for loading and
unloading probing modules to/from the guest and
accessing probed data recorded in the guest. These
are presented in detail in Section 5.

2. Action Layer

This is the worker layer which processes requests
from the UI and Communication Layer. Concretely
speaking, in this layer VESPER does actual work
for load/unload probing modules to/from guest and
sharing probed data between host and guest.

3. Communication Layer

This is the layer which provides communication
channels between host and guest. It strongly de-
pends on VMM architecture. By implementing this
layer with respect to each VMM, VESPER con-
fines the differences between VMM environments
to this layer.

232 • VESPER (Virtual Embraced Space ProbER)

3.2 VESPER Semantics

In order to implant probes into guests, VESPER must
load probing modules from the host to the guest. And
then, VESPER sends probed data from the guest to the
host.

Figure 3 illustrates the semantics overview of VESPER.

3.2.1 Module Loading

The first step to probe the guest kernel is to load the
probing module onto the guest.

0. Make Module

First of all, one should make a probing module
which uses Kprobes and relayfs.

A1. Module Load Command

Execute the probing module insertion via inter-
faces provided by the probe loader. One can also
specify module parameters, if needed.

A2. Obtain Module Information

On the host-side Action Layer of the probe loader,
from user space, VESPER obtains the module in-
formation to insert such as the module’s name, its
size, and its address with others related to module
parameters, if any.

A3. Send/Receive Request

Through the interface provided by the VMM, the
probe loader transfers the probing module’s infor-
mation between the host and guest.

A4. Load Module

In the Action Layer, the probe loader on the guest
side loads the module without userspace help.

A5. Share Relay Buffer

In the Action Layer, the guest’s probe listener gets
relayfs buffer information such as the read index,
buffer ID, etc., from the probe modules; it then ex-
ports the buffer to the host.

A6. Send/Receive Buffer Information

Communication layer of guest probe listener trans-
fer the shared buffer information to host via VMM
interface, and then, host probe listener receives it.

A7. Setup Relayfs Structure

The Action Layer of the host’s probe listener builds
the relayfs structure based on the information re-
ceived from the guest.

A8. Analyze/Offer Probed Data

One can read probed data through the UI Layer of
the probe listener.

3.2.2 Probing

After finishing the procedures in Section 3.2.1, the host
and guest probe listeners share relay buffers of the prob-
ing module. Consequently, it is not necessary to transfer
all the recorded data from guest to host, but it is nec-
essary to transfer index information about shared relay
buffers, where the data is, to get the start index for the
actual access to relay buffers by host.

B1. Gather Guest Kernel Data

Once loaded, the probing module puts data into the
relay buffer in the probe handler.

B2. Get Index Information

When change occurs in the relay sub-buffer, the ac-
tion layer of the guest probe listener gets the index
information and creates a message to notify host.

B3. Send/Receive Message

Through the communication layer, the host probe
listener is notified of the index data from the guest.

B4. Update Index

The action layer function of the host probe listener
updates the index of relayfs in the host, based on
the received message.

3.2.3 Module Unloading

Basically, unloading a probing module below is similar
to loading a module. The significant difference is that
it takes two steps in the unloading module process, be-
cause before removing the relay buffer in the handler in
the guest, the exported user interface for the buffer in
host should be dropped.

2008 Linux Symposium, Volume One • 233

Com:(A3)(C3)

Act:(A4)(C4)(C8)

Probe Loader
Frontend

Com:(A6)(B3)(C6)

Act:(A5)(B2)(C5)

Probe Listener
Frontend

guest

Com:(A6)(B3)(C6)

Act:(A7)(B4)(C7)

UI:(A8)

Probe Listener
Backend

Com:(A3)(C3)

Act:(A2)(C2)

UI:(A1)(C1)

Probe Loader
Backend

host

Module:(B1)

user
space

kernel
space

VMM

Figure 3: Process Flow of VESPER.

C1. Module Unload Command

C2. Obtain Module Information

C3. Send/Receive Request

C4. Unload Module (step1)

C5. Stop Sharing Relay Buffer

C6. Send/Receive Buffer Information

C7. Destroy Relayfs Buffer

C8. Unload Module (step2)

In the next section, we describe the detailed implemen-
tation of the probe loader and listener.

4 Implementation of VESPER

As previously described, VESPER consists of two com-
ponents named probe loader and probe listener. Each
component is split into three parts, UI Layer, Action
Layer, and Communication Layer, to confine the de-
pendency on the underlying VMM. In this section, we
present the implementation of VESPER from the view-
point of the Communication Layer on Xen.

4.1 Probe Loader

Probe Loader loads probing modules from host to guest
without using the guest’s user space. To make this con-
cept real, probe loader needs to perform two functions.
One is to transfer the probing module from the host to
guest, and the other is to load the module in the guest
without involving user space.

4.1.1 Module Transfer Function

In order to implant the probing module from the host
into the guest memory space, VESPER needs to be
able to transfer the module image somehow. Gener-
ally, VMM provides I/O infrastructure between host and
guest using a shared memory mechanism. In the Xen
environment, grant table and I/O ring are pro-
vided for that. To use them for transferring the module,
probe loader is implemented as split drivers—frontend
driver in the guest, and backend driver in the host, on
Xenbus.

Backend driver allocates shared memory using grant
table and write the module image into it. And then,
the driver pushes a request onto I/O ring for the
frontend driver. After receiving the request through I/O
ring, frontend driver maps the shared memory to its
virtual memory space.

For security reasons, it is normally the frontend driver
that requests I/O from the backend driver. If, instead,

234 • VESPER (Virtual Embraced Space ProbER)

the backend driver issued I/O requests to the frontend
driver, because frontend driver should have read/write
permissions on the host to accomplish the requests, this
would result in the guest being able change the contents
of the host’s page.

In VESPER, however, (as mentioned above) the host
must issue requests to the guest for loading the module.
From a security perspective, we must ensure that VES-
PER’s communication protocol between host and guest
follows this pattern—that is, that the frontend driver re-
quests, and the backend driver responds. To keep this
pattern, the frontend driver first issues a dummy request
to backend driver. Then, the backend driver issues the
module loading request as a response to the dummy re-
quest in the protocol, when the UI layer in host triggers.
At this phase, the frontend driver has received all the in-
formation about the module to insert and then allocates
a grant table for the module image. After grant
table allocation, the frontend driver issues the real
module loading request. With that request, the backend
driver does copy_from_user to the grant table
with respect to the module for the response. Finally, the
result of loading the module is sent as a new dummy
request from frontend driver. When next request is trig-
gered from the host, the backend driver only issues a
new request as the response to the last dummy request
for the next process. The processes above are involved
for every module insertion request in the host. The de-
tails of the protocol follow.

1. Frontend driver issues a dummy request.

2. Application triggers the module loading into guest.

3. Backend driver issues the module loading request as
a response to the dummy request.

4. Frontend driver issues a real request with grant
table allocated.

5. Backend driver copies the module into the grant
table.

6. Frontend driver loads the module.

7. Frontend driver issues a new dummy request with the
last loading module result.

8. Backend driver hands in the result of the module
loading to the application.

9. Repeat Steps 2 through 8 for every request from the
application.

From the benefit of the protocol, we sacrifice only one
dummy request incurred in the initialization phase of the
drivers, which is very trivial compared to the security
hole.

4.1.2 Module Load Function

Sometimes there is the situation that a user program
goes out of control. In such cases, the user program
cannot be executed, but a kernel program can. If it is
possible to load the module without user space help, one
is able to analyze system faults even in the case above.
Thus, in VESPER, the module load function is imple-
mented without using a user-space program.

Currently the core system of the module loader in Linux,
such as load_module, calls copy_from_user to
get module images because it assumes that module load-
ing is executed in user space. Inside copy_from_
user, access_ok is called to verify its memory
address. However, it never checks whether the call-
ing function is executed in user space; it only checks
whether the address limit is in its process address space.
Hence, we implemented the module load function as
a kernel thread in the Action Layer of the guest probe
loader. This kernel thread calls sys_init_module,
which calls load_module. Because the loaded mod-
ule is already copied from the host via the module
transfer function described above, copy_from_user
works properly.

Nevertheless, it is impossible to invoke sys_init_
module and load_module from external kernel
modules, because they are not exported by EXPORT_
SYMBOL. To address this problem, in VESPER, we get
the address of these symbols from the guest kernel sym-
bol table, and then pass them as parameters to the user
interface probe loader provides for loading.

4.2 Probe Listener

The Probe Listener should retrieve the probed data from
the guest and make it available to user-space applica-
tions in the host. Probing modules use relayfs to record
the probed data which describes the behavior of the
guest kernel around the probe points.

2008 Linux Symposium, Volume One • 235

In fact, relayfs tends to allocate its buffers by pages,
and grant table is also a page-oriented mechanism.
So, provided that the buffers controlled by relayfs are
allocated by grant table in the guest, a copy pro-
cess is definitely unnecessary between host and guest
to share the data, because grant table is transpar-
ent to both host and guest. A design decision on using
grant table as relayfs buffers could also eliminate
the need of other control mechanisms onto buffers than
relayfs rchan.

In the case of sharing the probed data in the buffers,
VESPER should also share and update some infor-
mation about the buffers, such as the read index and
padding value for relayfs in the host, to access the
buffers.

As a result, Probe Listener consists of two components,
which are a buffer share function and an index update
function, and it is implemented as split drivers, just like
Probe Loader.

4.2.1 Buffer Share Function

As mentioned before, because the probing module
records probed data into relay buffers, Probe Listener
shares them between host and guest. Sharing the buffers
is implemented by using grant table like the mod-
ule transfer function in Probe Loader. Similarly, infor-
mation about which buffers need to be shared is pro-
vided from guest to host by using I/O ring.

Once the relay buffers are exported by the guest and
their information is received by the host, the relayfs
structure is built on the host to provide probed data
in the buffers to user-space applications. At this time,
Probe Listener does not call relay_open to create
a rchan structure, which is a control structure of re-
layfs. This is because Probe Loader does not need to
newly allocate the pages for the relay buffers, but should
just map the pages exported by the guest. Therefore,
Probe Listener sets up the rchan structure manually.
After rchan is set up, the interface to read this relay
buffers is created on /sys/kernel/debug/vesper/

domid/modname/ like other subsystems which use re-
layfs. User applications can read this interface directly,
or use APIs abstracted by VESPER.

Finally, to stop sharing the buffer, the probe listener ex-
ecutes the above process in reverse. Removing the relay

structure is done at first, and then exporting relay buffers
is stopped.

4.2.2 Index Update Function

When the probe listener shares the relay buffers be-
tween host and guest, it must synchronize some buffer
information such as the read index between both rchan
structures. If it does not, the user application on the
host cannot read the probed data correctly. Probe Lis-
tener uses I/O ring for the information transfer. The
guest’s probe listener creates a message including the
information, pushes it to I/O ring, and then notifies
the host’s probe listener. The host’s probe listener gets
the message from I/O ring and updates its own relay
buffer information with the message.

Ideally, probe listener should update that information
immediately whenever the guest rchan is changed.
However, message passing by I/O ring is too expen-
sive to update each time due to the intervention of the
interrupt mechanism to notify host of the existence of
pending messages. Hence, Probe Listener updates the
buffer information when switching to sub-buffer occurs.
In doing so, probe listener updates the buffer control
information, and the user application can get the latest
data probed from the guest.

5 VESPER Interface

This section describes the VESPER Interface.

5.1 The VESPER User API

VESPER provides user applications with simple inter-
faces to insert probing modules to target guests and to
obtain probed data from the guests in Figure 4. Argu-
ments of virt_insmod and virt_rmmod are sim-
ply the same as insmod and rmmod, Linux user com-
mands to handle kernel modules, except that they target
the guest. In addition, virt_is_alive is available
for the application to check if some error occurs around
the probed point.

5.2 The VESPER Module API

VESPER defines an API to export relay buffers of the
probing module to the host. Additionally, VESPER pro-
vides a callback function for use when the sub-buffer of

236 • VESPER (Virtual Embraced Space ProbER)

int virt_insmod(
const int target_guest,
const char *modname,
const char *opt);

int virt_rmmod(
const int target_guest,
const char *modname,
const long flags);

bool virt_is_alive(
const int target_guest,
const char *modname);

Figure 4: Prototype of the VESPER user API

the relay is changed. All probing modules should call
the exported function after relay_open, and the stop
export function before relay_close. The callback
function also is set up to subbuf_start, the member
of struct rchan_callbacks. Figure 5 shows the
prototype of the module API.

int relay_export_start(
struct rchan *rchan,
const chaq *modname);

void relay_export_stop(
const char *modname);

int virtrelay_subbuf_start_callback(
struct rchan_buf *buf,
void *subbuf,
void *prev_subbuf,
size_t prev_padding);

Figure 5: Prototype of the VESPER module API

6 Evaluation

In this section, we will examine the benefits of VES-
PER with a webserver running on a Xen-based guest,
and will explain how VESPER works with Heartbeat to
eliminate the latency using the test case we plan to build.

6.1 Test environment

For this experiment, we plan to prepare two physical
machines. We set up two guests as resources managed
by the LRM (Local Resource Manager) of Heartbeat on
each physical machine. In fact, it is a controversial is-
sue on how a guest is treated in the cluster, as one of
the cluster nodes, or as a resource like IP. However, we
will treat guests as a resource to avoid any complexity
of management caused by difficulty in identifying host
and guest from the all nodes, in case a guest were treated
as a node. On each physical machine, the webserver is
on the one guest, we say VM1; it is actively performing
web service. On the other hand, the webserver in the
other guest, we say VM2, is inactive. Figure 6 depicts
the details.

When something wrong happens to VM1, Heartbeat lets
VM2 take over all of roles which VM1 was perform-
ing. However, one physical machine, P1, has Heart-
beat’s LRM without involvement of VESPER to show
how Heartbeat works in the usual way. However, the
other physical machine, P2, has LRM cooperating with
VESPER. Here, we treat the guest as a resource so that
we plan to add virtual machine resource plugin con-
forming to OCF (Open Cluster Framework) to LRM to
make Heartbeat and LRM recognize a virtual machine
as a resource. The plugin has interfaces for start, stop,
and monitor (a.k.a. status) the resource. In implement-
ing the resource plugin, the monitor interface of the plu-
gin will invoke VESPER for LRM on P2 only.

6.2 Implementation of virtual machine resource

In Heartbeat, CRM (Cluster Resource Manager) coordi-
nates what resources ought to run where, or which status
they are running, working with the resource configura-
tion it maintains. And it commands LRM to achieve
all the things. LRM then searches for proper resource
to handle by way of the PILS subsystem of Heartbeat.
LRM calls exported interfaces by the resource to exe-
cute CRM requests, start/stop/monitor, etc. We newly
define a virtual machine resource, and it exports a start/
stop/monitor interface implemented as follows.

• start. The resource invokes the xm command (Xen
tool) to start a specific guest.

• stop. The resource also invokes xm (Xen tool) to
stop a specific guest.

2008 Linux Symposium, Volume One • 237

host
user space

Heartbeat

LRM

resource

kernel space

VM1
user space

kernel space

web
server

VM2
user space

kernel space

Xen

Hardware

P1

host
user space

Heartbeat

LRM

resource

kernel space

VM1
user space

kernel space

web
server

VM2
user space

kernel space

Xen

Hardware

P2

VESPER
probes probes

Figure 6: Test environment to demonstrate the usability of VESPER.

• monitor. The resource invokes the xm command
(Xen tool) to get the status of a specific guest as
well as monitor procedure, prepared for this test,
to get status of the services running on that guest.
What is more, the resource on P2 invokes the VES-
PER interface and does a logical OR on the results
of the above two for the return value, only in case
of P2.

6.3 Expected result and discussion

For simplicity, we insert Kprobes around the panic path
of the guest kernel via VESPER. Kprobes thus inserted
will put clues like the callstack to the panic on the re-
layfs when the panic occurs. Then, we cause a panic
intentionally on VM1 and measure the recovery time on
P1 and P2. We can easily expect that P2 will recognize
what happened to VM1 of P2 as soon as VM1 panics,
because of the prompt notification done by VESPER.
Obviously service recovery time is supposed to be dra-
matically improved by as much as deadtime we set for
Heartbeat. Moreover, one can find out the reason why
VM1 on P2 panicked through the probed data on the re-
layfs later on.

Through the experiment, we could verify better perfor-
mance on response latency and usability of failure anal-
ysis provided by VESPER.

However, special care should be taken with two issues
regarding probes. One is what probe points are suitable
for proper monitoring. If the targeted, necessary probe

points miss, no more improvement over usual Heartbeat
can be expected. Actually, the problem on where probe
points should be inserted seems very tricky to handle,
because highly experienced developers or system ad-
ministrators on kernel context and applications running
on the server are required to select optimal probe points.
The other is about overhead produced by the execu-
tion of probes. One should adjust the overhead ac-
cording to the required service performance. Both is-
sues exclude each other. More probes inserted to hit
fine-grained events cause more overhead in probing, ob-
viously. Some mechanism to help one select optimal
probes could be needed. Some suggestions for these is-
sues will be mentioned as future works of VESPER in
the next section.

7 Conclusion and future works

In this paper, we proposed VESPER as a framework to
insert probes in virtualized environments and discussed
what topics VESPER can solve in clustering computing.
After that, we described the design and the implementa-
tion of VESPER. Then we suggested a test bed to show
the performance improvement on fail-over response la-
tency and failure analysis. Finally we discussed some
considerations on places and overhead of probing. To
address these considerations, we have some plans about
future VEPSER developments.

7.1 Probing aid subsystem

For the ease use of cluster manager or other applications,
we plan to develop a probing aid subsystem. Probing

238 • VESPER (Virtual Embraced Space ProbER)

points could be classified into several groups based on
their functionality. The subsystem thus can pre-define
several groups of probe points and abstract them to
its clients or application—like memory group, network
group, block-io group, etc. The clients just select one
of groups, and the subsystem will generate all needed
probes relayed to VESPER. Also, fine-grained selection
from several groups will be supported by the subsystem.

7.2 SystemTap Enhancement

We have a plan to integrate the feature of VESPERs for
virtualization into the SystemTap [8] for its versatile us-
age in the native kernel as well as the virtualized kernel.

7.3 Virtio support and evaluation on KVM and
lguest

Virtio is likely to promise one standard solution to
host and guest communication infrastructure on various
VMMs. VESPER should support virtio and be evalu-
ated on KVM and lguest [9] to verify its portability and
usability.

The next two are not related directly to probing tech-
nique but are worth examining as enhancements of func-
tionality of virtual machine resource facilities in clusters
in terms of virtualization technology.

7.4 Virtual machine resource support for LRM

Arguably, there is a question on how services running
on virtual machines should be treated if a virtual ma-
chine is treated as a resource. Should the services be
handled at the same level as the virtual machine itself in
LRM? When the services go fail-down, only the failed
service must be moved to another virtual machine on the
same physical machine—better than virtual machine it-
self should be switched to another virtual machine on a
different physical machine. The next version of inter-
face VESPER exports will suggest the solution to that.

7.5 Precaution capability on collapse of the host

If the host collapsed, all services running on the guests
would be lost. It is obviously a big problem. Therefore,
VESPER should probe the host simultaneously to check
whether the host is in good condition. When VESPER
catches a sign of the host’s collapse, the cluster manager
notified by VESPER could take necessary action, such
as live migration to other host.

8 Acknowledgments

We would like to thank Yumiko Sugita and our col-
leagues for reviewing this paper.

9 Legal Statements

Linux is a registered trademark of Linus Torvalds. Other
company, product, and service names may be trademarks or
service marks of others.

References

[1] Alan Robertson, “Linux-HA Heartbeat Design,”
In Proceedings of the 4th International Linux
Showcase and Conference, 2000.

[2] Heartbeat, http://linux-ha.org.

[3] Ananth N. Mavinakayanahalli et al., “Probing the
Guts of Kprobes,” In Proceedings of the Linux
Symposium, Ottawa, Canada, 2006.

[4] Nguyen A. Quynh et al., “Xenprobes, A
Lightweight User-space Probing Framework for
Xen Virtual Machine,” In USENIX Annual
Technical Conference Proceedings, 2007.

[5] Nitin A. Kamble et al., “Evolution in Kernel
Debugging using Hardware Virtualization With
Xen,” In Proceedings of the Linux Symposium,
Ottawa, Canada, 2006.

[6] The Xen vitual machine monitor,
http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/.

[7] KVM, http://kvm.qumranet.com/.

[8] SystemTap,
http://sourceware.org/systemtap/.

[9] Rusty Russell, “lguest: Implementing the little
Linux hypervisor,” In Proceedings of the Linux
Symposium, Ottawa, Canada, 2007.

[10] VESPER,
http://vesper.sourceforge.net/.

Camcorder multimedia framework with Linux and GStreamer

W. H. Lee, E. K. Kim, J. J. Lee , S. H. Kim, S. S. Park
SWL, Samsung Electronics

woonghee.lee@samsung.com

Abstract

Along with recent rapid technical advances, user expec-
tations for multimedia devices have been changed from
basic functions to many intelligent features. In order to
meet such requirements, the product requires not only a
powerful hardware platform, but also a software frame-
work based on appropriate OS, such as Linux, support-
ing many rich development features.

In this paper, a camcorder framework is introduced that
is designed and implemented by making use of open
source middleware in Linux. Many potential develop-
ers can be referred to this multimedia framework for
camcorder and other similar product development. The
overall framework architecture as well as communica-
tion mechanisms are described in detail. Furthermore,
many methods implemented to improve the system per-
formance are addressed as well.

1 Introduction

It has recently become very popular to use the internet to
express ourselves to everyone in the world. In addition
to blogs, the emerging motion video service provided by
such companies as YouTube and Metacafe help us to use
internet in this way. The question is, how can we record
the video content we want to express?

Digital camcorders, cameras and even mobile phones
can be used for making movies. But the quality gen-
erated by mobile phones or digital cameras is gener-
ally not as good as that of a digital camcorder. If users
want to make higher quality content they must use digi-
tal camcorders.

In this paper we introduce a camcorder multimedia
framework with Linux and GStreamer. We take into
account portability and reusability in the design of this
framework. To achieve portability and reusability we
adopt a layered and modular architecture.

Application
Layer

Middleware
Layer

OS Layer

Camcorder hardware platform

OSAL HAL

Graphics UI Connectivity

Multimedia
Sequencer

DVD FS

Applications

GStreamer

Hardware
Layer

Device
Drivers

Software
codecs

Linux Kernel

Figure 1: Architecture diagram of camcorder multime-
dia framework

The three software layers on any hardware platform are
application, middleware, and OS. The architecture and
functional operation of each layer is discussed. Addi-
tionally, some design and implementation issues are ad-
dressed from the perspective of system performance.

The overall software architecture of a multimedia
framework is described in Section 2. The framework
design and its operation are introduced in detail in Sec-
tion 3. Development environments, implementation,
and performance issues are represented and discussed
in Section 4. Finally, we present some concluding re-
moarks in Section 5.

2 Multimedia Framework Overview

The three layers of the multimedia framework are ap-
plication, middleware and OS. The architecture of the
multimedia framework is shown in Figure 1.

2.1 Application layer

There are many programs, such as players and recorders
for movie and still pictures, User Interface (UI) man-
agers, USB control, navigator and camera manager in

• 239 •

240 • Camcorder multimedia framework with Linux and GStreamer

the application layer. The player and recorder are sim-
ilar to the general media player and recorder present in
standard platforms, however they have additional fea-
tures in order to support DVD media. The UI manager
interacts with camcorders through the keypad, sound
and display. USB control manages USB connections.
Users can browse DVD titles and select a particular clip
with the navigator module. All camera specific func-
tions such as Image Stabilizer and Auto Focusing are
implemented inside the camera manager. Because the
application layer outside of this paper’s scope, we will
not discuss it further.

2.2 Middleware layer

The Middleware layer is categorized into four functional
groups: multimedia, connectivity, UI, and DVDFS
(DVD File System). The multimedia module includes
the DVD sequencer, GStreamer and many media spe-
cific plugins. USB specific functions are implemented
in the connectivity module and are further broken into
three major functional blocks: USB Mass Storage
(UMS), Digital Print Solution (DPS) and PC Camera
(PC-Cam). The UI module includes FLTK and Nano-
X. DVDFS is the module that controls the DVD disk
file system.

2.3 OS layer

The OS layer plays an important role in system manage-
ment, OS services, and hardware abstraction. It consists
of OSAL (OS Abstraction Layer), HAL (Hardware Ab-
straction Layer), Linux kernel, device drivers and soft-
ware codecs. The OSAL provides the middleware an
abstraction eliminating the OS dependency. The HAL
also provides the middleware with an abstraction elimi-
nating the hardware dependency. The role of the Linux
kernel is the management of the system and the support
of the general OS environment. The device drivers are
used to control the hardware. The multimedia codecs
not supported by hardware in the platform are imple-
mented by software.

2.4 Hardware layer

In this paper, the hardware layer represents the cam-
corder hardware platform including a camcorder spe-
cific multimedia SoC chip and its supporting board. The

Device Drivers

Multimedia Sequencer

Sequencer API

Sequencer Main

GStreamer

HAL

Sequencer
Main Thread

Buffer
Manager

Navigation
Pack

Generator

Software Codecs

DVDFS

Figure 2: Structure of the multimedia sequencer

SoC chip supports multimedia oriented operations such
as MPEG-2 coding, multiplexing and de-multiplexing
of the DVD stream, and IO operations to the DVD disc.
In this paper, an application product is assumed to be
a camcorder. The supporting board has NOR flash,
SDRAM, DVD loader, LCD screen, key pad, camera
module and so on.

3 Architecture design

3.1 Multimedia subsystem

3.1.1 Sequencer

The multimedia sequencer is a middleware module that
has functions related to the multimedia control, such as
playback and recording.

The architecture of the multimedia sequencer is de-
scribed in Figure 2.

The multimedia sequencer is configured using interfaces
such as the sequencer API layer, sequencer main mod-
ule, and GStreamer multimedia engine. The GStreamer
plugins call the device drivers or the software codecs
through the HAL APIs. A developer can create and
maintain the plugin codes easily using the HAL APIs.
The DVDFS module is used for reading and writing
a DVD disc in the sequencer. It is used in both the
DVDSrc plugin and the buffer manager block. For
playback, the DVDSrc plugin reads the stream data
stored in a DVD disc using the DVDFS. For record-
ing, the buffer manager uses the DVDFS for writing the
recorded stream data to the DVD disc.

In the sequencer API layer, there are functions related
to creation, initialization and control of the sequencer.

2008 Linux Symposium, Volume One • 241

NULL CREATED INITIALIZED RUN

CREATE INIT START

STOPDEINITDESTROY

Figure 3: State diagram of multimedia sequencer

The application can create, destroy, initialize, and de-
initialize the multimedia sequencer. There are three
modes and two types in the multimedia sequencer. The
modes are categorized as DVD-Video, DVD+VR and
DVD-VR, and the two types are playback and record.
For example, if the application initializes the multi-
media sequencer using DVD-Video mode and play-
back type, then the sequencer is set for the DVD-Video
player. The sequencer API also supplies control func-
tions. Using these control functions, the application can
start, stop, pause and resume the sequencer. And the ap-
plication can register callback function pointers to the
sequencer using the init function. The sequencer can
send information to the application at any time using
this registered callback function.

In the main layer of the sequencer, the three function
blocks are the thread block, buffer manager and nav-
igation pack generator. In the main thread block, the
thread routine reads and processes messages in a queue.
When the sequencer API is called by the application, the
API function is converted to a message. This converted
message is sent back to the message queue in the main
thread block of the sequencer.

When the sequencer is operating as a DVD recorder,
the buffer manager and the navigation pack generator
are activated. In the DVD recorder, VOB data has to
be recorded on the DVD disc. VOB data contains the
presentation data and part of the navigation data. VOB
data may be divided into CELL’s, which are made up
of VOBU’s. The video and audio data is packed and
recorded as a VOBU unit. The navigation pack is stored
at the start of each VOBU data. Because CELL informa-
tion has to be stored in the navigation packs of VOBU’s
in the CELL, buffering of CELL data is necessary. The
buffering manager controls the VOBU data and calls the
navigation pack generator to make navigation pack data
of VOBU’s in the CELL.

The four states of the multimedia sequencer are NULL,
CREATED, INITIALIZED and RUN. The states can

change as described in Figure 3. Each state can be man-
aged and set to in the multimedia sequencer based on
the state of the GStreamer core.

3.1.2 Interface between GStreamer and sequencer

In this section, we describe the interface between
GStreamer and the multimedia sequencer. The
GStreamer pipeline configuration for DVD playback
and recording is also discussed.

When the multimedia sequencer is initialized, the
gst_init() function is called for GStreamer framework
initialization.[1] After the GStreamer framework is ini-
tialized, shared libraries for plugins are loaded using
the gst_plugin_load_file() function. After loading plu-
gin libraries, the sequencer creates a pipeline using
gst_pipeline_new() function.

To monitor the state of the GStreamer framework, the
sequencer creates an event loop thread that checks mes-
sages from the GStreamer framework. In this thread,
the sequencer gets a bus from the created pipeline and
checks the GstMessage from the GStreamer framework
using gst_bus_poll() function. To send the GstMessage
to the application, the sequencer uses the registered call-
back function.

When the application calls the start() function of the se-
quencer, the loaded GStreamer plugins are registered us-
ing gst_element_factory_make() function and then the
pipeline is configured. After the pipeline is configured,
the properties of plugins are set using g_object_set()
function.

To change the GStreamer state, the sequencer calls
the gst_element_set_state() function. When the play-
back or recording operation is started, the state of
GStreamer is changed to GST_STATE_PLAYING. To
pause the GStreamer framework, the state is changed to
GST_STATE_PAUSED.

GObject signals are used to communicate between the
sequencer and the plugin. In GStreamer, the GObject
signal is already defined for notifying the application
of plugin events. In order to register the signal in the
sequencer, the g_signal_connect() function is called in
the sequencer.[2] After the plugin sends the signal to se-
quencer, the signal handler function in the sequencer is
called. The detailed structure of GStreamer pipelines for

242 • Camcorder multimedia framework with Linux and GStreamer

Software
Codecs

Device
Drivers

HAL Layer

Camera PMBM2VD M2VE PSD PSM AC3D AC3EVOutput

Video In/Out
MPEG2 Video

Codec
MPEG2
System

AC3 Audio
Codec

Memory
Mapping

Figure 4: HAL layer with device drivers

playback and record are discussed in sections 3.1.4 and
3.1.5.

3.1.3 Hardware abstraction layer

There are some hardware IP blocks for DVD cam-
corders in the hardware layer. These hardware IP’s can
be accessed and controlled by device drivers. These de-
vice drivers are wrapped by the HAL layer described in
Figure 4. The GStreamer elements related to the device
drivers are implemented using the HAL layer API’s.

In the HAL layer, there are wrapper functions for video
input and output. The device driver functions of cam-
era and VOutput are wrapped in the HAL. The device
drivers for MPEG2 video are M2VD and M2VE. These
device drivers are wrapped up in the HAL as the MPEG2
video codec. For MPEG2 system layer, there are some
hardware IP’s such as MPEG2 PS demuxer and muxer.
These short names for these device drivers are PSD and
PSM. These device drivers are wrapped in the HAL
layer as MPEG2 system. Because the hardware IP re-
quires a physical memory buffer for input data, the user
space program has to be able to access the physical
memory buffer area. For this reason we use memory
mapped IO for mapping a physical memory area in de-
vice driver into a virtual memory area in user space.
An additional benefit of using memory mapped IO is
that memory copy operations can be avoided. In device
drivers for hardware IP’s, the physical memory area can
be assigned as the input and output buffer. But, if an
element is not connected to such device drivers, the ele-
ment has to use a device driver that enables the physical
memory area mapping. For this reason the PMB device
driver is implemented for memory mapping in the HAL
layer. The operation of PMB will be described in de-
tail in section 4.2.2. The AC3 audio encode and decoder
codecs are needed for a DVD camcorder. These soft-
ware codecs and named as AC3D and AC3E. The au-

Software
Codecs

HAL
Layer

Device
Drivers

HAL
Layer

DVDSrc PSD

M2VD

AC3D

VIDSink

ALSASink

DVDFS

Memory
Mapping

MPEG2
System

MPEG2 Video
Codec

Video In/Out

ALSA

PMB PSD M2VD VOutput

AC3 Audio
Codec

AC3D

Figure 5: Playback pipeline

dio codecs are wrapped in the HAL layer as AC3 audio
codec.

3.1.4 Playback pipeline

In this section, the structure and HAL interface of the
playback pipeline are discussed. Its diagram is shown
in Figure 5.

The DVDSrc element reads the stream data from DVD
disc using DVDFS and stores the stream data in the
stream buffer. Because the PSD element requires physi-
cal memory for the input buffer, the input stream buffer
has to be assigned to a physical memory area. This
physical buffer is assigned by the PMB device driver
through the memory mapping HAL layer and is mapped
into the virtual memory address in the DVDSrc element.
The DVDSrc element stores the stream data into the
physical memory buffer using the mapped virtual mem-
ory address. The base addresses of physical and virtual
memory and the memory size are sent to the PSD ele-
ment using GstCaps. The input stream buffer memory is
configured and managed as a ring buffer in the DVDSrc
element. The address of the input data is sent to the PSD
element through the GstBuffer.

The PSD element parses the input stream data and
stores the parsed data into the video and audio stream
buffers that assigned by the PSD device driver through
the MPEG2 system HAL layer. This parsing operation
is processed using the PSD device driver through the
MPEG2 system HAL layer. The stream buffer for the
parsed data is located at a physical memory area and the

2008 Linux Symposium, Volume One • 243

address of this stream buffer is sent to the M2VD ele-
ment through the GstBuffer.

The M2VD element is used for MPEG2 video decod-
ing. In the M2VD element, the M2VD device driver is
connected through the HAL layer of the MPEG2 video
codec. The address of the video stream buffer in the
physical memory area is sent from PSD element. The
M2VD element decodes the input video stream data and
stores the decoded frame data into the physical memory
buffer. This physical memory buffer is assigned by the
M2VD device driver through the HAL layer of MPEG2
video codec. After decoding the video stream into the
reconstructed frame, the M2VD element sends the phys-
ical buffer address of output buffer to the VIDSink ele-
ment through GstBuffer. Then, the reconstructed frame
can be displayed on either LCD or TV.

For audio, the stream data is sent from the PSD to the
AC3D element. Because the AC3 audio decoder is a
software codec, it can access the input buffer by virtual
memory address. The PSD sends the memory mapped
virtual address to the AC3D element using GstBuffer.
The AC3D element decodes the AC3 audio stream data
to PCM data by AC3D software codec through the HAL
layer of AC3 Audio codec. The decoded PCM data is
sent to the ALSASink element. This ALSASink ele-
ment is provided from the GStreamer base plugin.

Audio and video synchronization is controlled using the
system clock provided from GStreamer. AV synchro-
nization is implemented based on the time stamp data
embedded in the stream data. The time stamp data,
so called PTS (Presentation Time Stamp), is extracted
from the navigation pack in VOBU data and converted
to the GStreamer time format. All audio packs have the
PTS, so the audio decoder can send the PTS to next
element without additional calculation. In the case of
video pack, however, the PTS only exists in the first
video pack of GOP. Hence, the time information of the
video packs has to be calculated using the video frame
rate. In GStreamer, the calculated time information is
embedded in GstBuffer structure and passed through
the GStreamer pipeline. And then the audio and video
synchronization can be achieved automatically in the
GStreamer core.

Device
Drivers

HAL
Layer

CAMSrc M2VE PSM FakeSink

ALSASrc AC3E

Software
Codec

HAL
Layer Video In/Out

MPEG2
System

MPEG2 Video
Codec

AC3 Audio
Codec

Camera PSMM2VE

AC3E

ALSA
Memory
Mapping

Device
Drivers

PMB

Sequencer

Buffer Manager
Navigation

Pack
Generator

DVDFS

Figure 6: Record pipeline

3.1.5 Record pipeline

In this section, the structure and HAL interface of the
record pipeline are discussed. Its diagram is shown in
Figure 6.

The CAMSrc element is connected to the camera device
driver through the video in/out HAL layer. The input
frame data is stored in the physical address area that is
assigned by camera device driver. The physical address
of the input frame data is sent to the M2VE element.

The M2VE element encodes the input frame data and
sends the physical address of the encoded video stream
data to the PSM element.

The ALSASrc element sends the captured PCM data to
the AC3E element. In the AC3E element, the PCM
data is encoded by the AC3E software codec through
the HAL layer of AC3 audio codec. Because the PSM
device driver requires the physical memory address of
the input audio stream buffer, the AC3E element uses
the PMB device driver for memory mapping. The en-
coded audio data is stored in the virtual memory address
by the AC3E element and the memory mapped physical
address is sent to the next PSM element.

The PSM element packetizes the input video and au-
dio stream data, and generates video and audio packs.
In order to satisfy the MPEG2 system layer and the
DVD standard, the PSM element uses the buffer man-
ager in the multimedia sequencer. For synchronization

244 • Camcorder multimedia framework with Linux and GStreamer

Input Device Drivers Output Device Drivers

FLTK

Nano-X

OSD DriverButton Driver Touch Screen Driver

Figure 7: Structure of graphics subsystem

of recorded stream, the PSM element uses the GstCol-
lectPads that is provided from GStreamer.

In PSM, the VOBU information from the packetized
data is sent to the buffer manager. The buffer manager
generates the navigation pack for the VOBU using the
navigation pack generator. After CELL data is ready
in the buffer manager, the CELL data is recorded to the
DVD disc using DVDFS module. Because the disc write
operation is processed in the buffer manger and DVDFS
module, we use the FakeSink as a dummy element for
the generation of a complete pipeline

3.2 Graphics subsystem

The structure of the graphics subsystem is depicted
in Figure 7. The FLTK (Fast Light Tool Kit)[3] is
a lightweight version of GTK+, and Nano-X[4] is a
lightweight X window system. They are generally used
for the graphics subsystem of embedded platforms due
to their small size. They are supported by input and out-
put device drivers. The input device can be a keyboard
and a pointer like touchpad, and the output device can
be on screen display (OSD) or the frame buffer.

3.2.1 Input and output device drivers

To support input devices, the button and the touch screen
devices are used in the camcorder platform. The but-
ton driver takes care of the press, release and long press
events from each key or button. The touch screen driver
handles of click, double click and drag events.

The target platform has video output and OSD layers.
The video output layer is used for displaying video
frame data from camera module, and the OSD is used
for displaying camcorder information like icons, num-
bers and menus. In the graphics subsystem, only the
OSD layer is of interest. The OSD implementation is
similar to that of the Linux frame buffer, however, it

needs an additional process. It should be set the palette
of the specified OSD and its property as followings:

• Width and height

• Bit per pixel

• Screen color number

• Pixel format

• Frame buffer address

• Scale

• Chroma-key information

Additionally, the video output and OSD have different
color formats, YUV and RGB respectively. Because the
color format to be displayed on LCD or TV is YUV, the
RGB data from OSD must be converted to YUV.

3.2.2 Nano-X

Nano-X is a lightweight X windows system developed
by the Nano-X open source project. Although it imple-
ments a lightweight X window system, it offers lots of
functionality so that it is sufficient for embedded devices
such as digital cameras and camcorders.

Nano-X is implemented based on MicroGUI, which is
a portable graphics engine and composed of Win32-like
Microwindows API and X-like Nano-X API.

Nano-X generally supports keyboards and pointers such
as mice as input devices, however buttons and a touch
screen are used for the input devices of camcorders. The
drivers of button and touch screen devices should work
like those of keyboard and pointer devices.

3.2.3 FLTK

FLTK is a lightweight version of GTK+. FLTK takes an
important role in creating and exploiting widgets, han-
dling various events in the windows and widgets, and
supporting OpenGL window to implement OpenGL’s
applications on the FLTK. Its role is similar to GTK+’s.

2008 Linux Symposium, Volume One • 245

DVD-Video DVD-VR DVD+VR

UtilityTempFS UDF RSAT

DVDFS API

ATAPI API

Figure 8: Architecture of DVDFS

FLTK is implemented in C++ so that we can create var-
ious types of windows and widgets, and handle the spe-
cial events by sub-classing the widget and window class.
FLTK supports FLUID (UI Designer Toolkit) to help UI
designers create an UI applications easily.

Because all applications in our framework are imple-
mented in C, application programmers can not create or
extend the widgets and windows implemented by C++.
So the parts of FLTK implemented by C++ should be
wrapped in API’s for the mixed C/C++ development.

3.3 DVD file system

Nowadays there are various types of DVD-Disc, such as
DVD-ROM, DVD-R, DVD-RW, DVD-RAM, DVD+R
and DVD+RW. Each of them has different physi-
cal characteristics. Moreover, the formats for stor-
ing data on DVD-Disc can be categorized into three
different specifications: DVD-Video[5], DVD-VR and
DVD+VR. The camcorder software has to consider all
of the types of media and DVD formats. DVDFS pro-
vides simple APIs for DVD recording and playback.
The application and middleware can record and play
the DVD contents without worrying about what types
of DVD media and formats are used.

The architecture of DVDFS is shown in Figure 8.

Modules of DVDFS can be described as follows:

• DVDFS API-The unified user API set.

• DVD-Video-Module for DVD-Video format

• DVD-VR-Module for DVD-VR format

• DVD+VR-Module for DVD+VR format

• Tempfs-Temporary File System. It manages a tem-
porary table which is used in the finalization on
DVD-Video format.

VMG = Video Manager
VTS = Video Title Set
VTSI = Video Title InformationVTSI_BUP = Video Title Information Backup
VMGI = Video Manager Information
VOBS = Video Object Set
Menu VOBS=Video Object Set for Menu (optional data)

Volume & File
Structure

VMG VTS # 1LI LO

VTSI VOBs VTSI_BUP

VTS # N
(up to 99)

â�¦â�¦

VMGI
Menu
VOBs

VMGI_BUP
Menu
VOBs

1 file 1 file 1 file 1 file 1 file 1 ~9 files 1 file

DVD-Video Zone

Figure 9: Layout of DVD-Video format

• UDF-Module for Universal Disc Format[6]

• RSAT-Module for Reserved Sector Allocation Ta-
ble. It is used by DVD+VR module to translate the
mapping information of first reserved area.

• Utility-Module for formatting, getting disc info.

• ATAPI API-Wrapper of the OS specific ATAPI.

DVD-Video, unlike other formats, does not support real-
time recoding, so it needs to support Tempfs. We will
focus on how to record through DVD-Video format in
following sections.

3.3.1 DVD-Video format

DVD-Video format is a basic specification and most
widely used for the distribution of movies. In the be-
ginning it only considered pre-pressed disc like DVD-
ROM, so the order of files is physically predetermined
as showin in Figure 9. For that reason it is not suit-
able for real-time recording devices such as camcorders,
recorders and so on.

3.3.2 Real-time recording on DVD-R

DVD-R is a write-once media. Basically, it has to be
written by sequential-recording methods. This means
that recording is only permitted at the next address of
the written block. Therefore, DVD-R provides the in-
cremental write mode. In this mode, the media can
be divided into several areas and these areas are called
RZone. Sequential-recording is performed in each
RZone. DVDFS adopts this method to reserved areas

246 • Camcorder multimedia framework with Linux and GStreamer

Reserved
Rzone #1

Reserved
Rzone #2

Incomplete
Rzone #3

Lead
-In

Lead
-Out

Reserved
Rzone #1

Completed
Rzone

Completed
Rzone

Lead
-In

Lead
-Out

Video
Data

(a) Initial status

BUP

Incomplete
Rzone #3

VTSI

Reserved
Rzone #2

(b) Complete One VTS

 FS + VMG VTSI

FS + VMG

Completed
Rzone #1

Completed
Rzone

Lead
-In

Lead
-Out

VTS #1

(C) Finalized Disc

FS + VMG

Tempfs
Table

VTSI

Tempfs
Table

Completed
Rzone

VTS #2
Tempfs
Table

â�¦â�¦

Figure 10: Real-time recording DVD-Video with DVD-
R

for file system data and video information files which
are determined after recording video data.

The management of RZone is the most important pro-
cess in recording data on DVD-R. Disc status during the
recording operation on DVD-Video and its sequence are
described in Figure 10.

(a) depicts the initial status of disc. RZone #1 is re-
served for file system and VMG. RZone #2 is reserved
for VTSI. The remained area is automatically regarded
as RZone #3, and it is used for recording movie data.

(b) depicts the status of the completed VTS. When user
closes a movie data recorded, VTSI_BUP is generated
and written continuously. Then, Tempfs table is written
at the end of VTSI_BUP. It contains all data of file lo-
cation, file size and time information. Once RZone is
closed, it can not be managed any more. Then, DVDFS
need to reserve another RZone for new VTSI.

(c) depicts the final status. Firstly, the volume and file
structures of UDF are written to RZone #1. At that time,
the last Tempfs table is used for constructing the UDF
data structures. Then, VMG data is written on the end
of UDF. Finally, the border will be closed.

3.3.3 Real-time recording on DVD-RW

In case of the rewritable media, formatting creates ad-
dressable blocks which can be overwritten. It takes a
long time to format a whole disc. To avoid this prob-
lem, quick format is used. Formatting is performed in

Blank
Lead

-In
Lead
-Out

Lead
-In

Lead
-Out

(a) After quick format

(b) Complete One VTS

FS, VMG

Padding dummy

Lead
-In

Lead
-Out

FS, VMG

Tempfs
Table

Video Data BUPVTSI

Video Data BUPVTSI
Tempfs
Table

(C) Finalized Disc

Figure 11: Real-time recording DVD-Video with DVD-
RW

the small part of disc, and other parts are only used for
sequential recording. Once a block is written, it turns
into an over-writable block.

Figure 11 illustrates the sequence of recording opera-
tions on DVD-RW. After quick format, DVDFS reserves
a space by writing dummy data. This area will contain
file system, VMG, VTSI, and Tempfs table. Video data
is written after that padded data.

Another difference between recording of DVD-R and
that of DVD-RW is the location of Tempfs table. Be-
cause the over-writing is possible in DVD-RW, the
Tempfs table is written on a fixed area

3.4 Connectivity subsystem

3.4.1 Architecture of USB Connectivity

The Linux kernel supports USB devices using the USB
gadget framework.[7] It is made up of the Peripheral
controller drivers, Gadget drivers and Upper layers. The
Peripheral controller drivers manage and control the
USB hardware IP. The Gadget drivers are the logical
layers divided by their function. They can be a file
system (Gadget file system), a network (Ethernet over
USB), a serial or a MIDI. Upper layers are the support-
ing layers for user applications. They execute the spe-
cific functions such as UMS, DPS, Ethernet or serial.

The USB connectivity architecture is depicted in Fig-
ure 12. USB controller driver is the Peripheral con-
troller driver in the USB gadget framework. It has to fit
well with the API of the USB gadget framework. This
makes it easier to implement or to use Gadget drivers.
Although there are many kinds of Gadget drivers, only

2008 Linux Symposium, Volume One • 247

Linux Kernel

Device Drivers

Conectivity

USB Controller
 Driver

Gadget
Filesystem

UMS DPS PC-Cam

Middleware
Layer

OS Layer

Figure 12: Architecture of USB connectivity

the Gadget file system is used in our camcorder frame-
work. In the middleware layer, the connectivity module
supplies UMS, DPS and PC-Cam.

3.4.2 Blocks of USB connectivity

UMS transfers files to computer. This requires some
implementations such as:

• USB Mass Storage Class Bulk-Only Transport
- It sends commands through CBW(Command
Block Wrapper) and gets the result of CBW by re-
ceiving CSW(Command Status Wrapper).[8]

• SCSI protocol - It is a protocol included in CBW.
It has commands like READ and WRITE.[9]

• Block device control function - It enables UMS
to get block device information such as media type
and number of sectors from block device. And it
must be able to read and write from/to the block
device.

DPS enables the camcorder to connect to a printer di-
rectly and to print images. The connected printer must
have the function of PictBridge. This needs some im-
plementations such as:

• Picture Transfer Protocol-It is a protocol for digi-
tal cameras to send images to other devices like PC
and printers.[10]

• PictBridge-It is an industry standard written by
CIPA (Camera & Image Products Association). It
includes the methods for the device discovery and
sending the information of images.[11]

PC-Cam enables a camcorder to send the captured im-
ages and sounds. Data transfer is divided into two parts
- video and audio. Video data is compressed by JPEG
and transferred to PC. The methods for transferring au-
dio data observe the definition of USB Audio Class.[12]

3.5 OS

3.5.1 OS abstraction layer

The original purpose of OSAL was to remove the OS de-
pendency from software. If middleware and application
have such a dependency on the OS, they can’t be reused
on different OS’s. However, it causes some overhead to
cover up the difference between many OS’s. Therefore,
we designed the OSAL to achieve its original purpose
and to reduce overhead simultaneously. To meet this
goal, the number of categories and functions of OSAL
are limited to the minimum as far as possible. The cat-
egories consist of task, semaphore, message queue, mu-
tex, timer and system timer. The functions of OSAL are
limited to creating, deleting and a few action functions.

3.5.2 Porting Linux kernel

In order to support the camcorder platform, the Linux
kernel needs to be ported with board specific code and
device drivers. The first work is to select the appropriate
ARM core code from many versions of codes already
existing in the Linux kernel source. Because our plat-
form has ARM 11 core, the ARMv6 code of Linux ker-
nel source was selected. The second is to include ma-
chine specific code. This code initializes and controls
the peripherals of the SoC Chip such as Timer, Clock,
DMA, IO mapping and so on. Finally, device drivers not
existing in the standard kernel source need to be created.
They support many kinds of general and camcorder spe-
cific devices. They are almost based on open source and
managed by HAL layer and GStreamer elements in mid-
dleware.

4 Implementation

4.1 Development environments with emulator

The emulator is a useful tool for development and test-
ing of applications on a PC. It is helpful when a real tar-
get is not available. It provides an emulated camcorder

248 • Camcorder multimedia framework with Linux and GStreamer

Linux kernel

Sandbox

Graphics UI

Connectivity DVD FS

GStreamer
X-Window

GTK+

VKB VTS VFB

Multimedia
Sequencer

USB
Device
Driver

UDF

Application

Figure 13: Architecure of emulator

framework. The user interface of the emulator includes
keyboards, buttons, menu toolbar, touch screen and so
on. It is based on X Window, GTK+ and sandbox modi-
fied from scratchbox[13] . The architecture of emulator
is shown in Figure 13.

In general, the emulator supports virtual devices for UI
interface. The camcorder emulator supports virtual key-
board (VKB), virtual touch screen (VTS) and virtual
frame buffer (VFB). Each device works as input and out-
put devices respectively. The emulator can display the
camcorder application on the PC using the X window
through the VFB device and emulate its actions through
VKB and VTS.

The other parts of camcorder framework are also emu-
lated by substituting target platform dependent part. We
install USB-device PCI card to the PC for emulation of
USB connectivity. In the case of GStreamer emulation,
the software codecs are used instead of the hardware
codec.

4.2 Performance enhancement methods

4.2.1 Thread based element in GStreamer

When input data is not sufficient to be processed, the
input data needs to be buffered more. Especially in the
case of DVDs, because the input stream data is divided
into packs, the M2VD element has to wait the input
data until the input stream data is sufficient to be de-
coded and reconstructed into a frame. For this buffering
operation, the M2VD element is threaded. The struc-
ture of the M2VD element based on the thread is sim-
ilar to that of the queue element of GStreamer. In the
thread based element, the size of queue is the main con-
trol point of the element. When the chain function of

1000 0000

1400 0000
OSD

Video In

M2VE

PSM

Stoage

Bootloader &
Images

Kernel &
Application

area
(38MB)

0000 0000

0080 0000

Reserved
buffer area

(26MB)

SDRAM

NOR FLASH

Physical address map

1260 0000

Recoding mode

OSD
LOADER

M2VD

PSD

Storage

Playback mode

OSD
Video In

M2VE

USB

Stoage

USB mode

Figure 14: Reserved buffer area

the thread based element is called, the element just in-
creases the size of queue by the input data size and re-
turns immediately. The main operation on the input data
starts immediately when the size of queue is sufficient
for processing. Because the memory mapped addresses
are shared between the elements, this buffer size based
control is possible. The immediate return of the thread
based element enables the previous element to do an-
other operation. We apply the structure of thread based
elements to both M2VD and AC3D elements. These el-
ements are linked with the source pads of PSD element.
Because of the immediate response/return of the M2VD
and AC3D to the PSD element we can get better decod-
ing performance

4.2.2 Reserved buffer area

The memory allocation routine spends CPU time to use
memory efficiently. The dynamic memory allocation,
e.g., memory allocation and free in Linux kernel, are
very complicated and computationally intensive. In or-
der to eliminate these problems, the reserved buffer area
is used for some device drivers.

Figure 14 shows the reserved buffer area in our cam-
corder framework. It’s divided into small parts for
the device driver according to execution modes such as

2008 Linux Symposium, Volume One • 249

DVDSrc PSD

M2VD

AC3D

VIDSink

ALSASink

Stream
Input
Buffer

Video
Stream
Buffer

Audio
Stream
Buffer

Video
Frame
Buffer

buffers
of

device
drivers

GStreamer
elements

Figure 15: Memory interfaces of elements

recording, playback and USB mode. Each device driver
buffer can be accessed by not only the device driver it-
self, but also user applications or middleware.

4.2.3 Using memory mapped IO

Normally, read and write functions are used for ex-
changing data between user application and kernel de-
vice drivers, but this needs to be reconsidered from a
performance point of view. Firstly, they use system
calls has a long call path. Secondly, the read and write
data are copied by two functions, copy_from_user() and
copy_to_user(), in the device driver. In order to avoid
copy operations, the mmap is used instead of the read
and write operations. The mmap permits us to directly
access the buffer in the device driver. The camcorder
framework benefits from this mmap operation a lot be-
cause it transfers a huge data frequently.

Figure 15 shows the memory interface for DVD play-
back. In the previous section, buffers are allocated in the
reserved buffer area and accessed by their own device
drivers. However, GStreamer elements can not access
those buffers directly. Therefore, GStreamer elements
get the access permission and virtual address by calling
mmap functions of device drivers. Each element con-
trols or manages its buffer through the virtual address.

4.2.4 Fast boot

In a PC environment, the Linux system spends more
than one minute on the booting process. The booting
process includes following steps; loading image, initial-
izing the kernel and device drivers, and starting some

daemons. However, such a long boot time is not suit-
able for commercial products. Fast boot techniques for
Linux have been studied for a long time.[14] We inves-
tigated and adapted them to our camcorder framework.

• Fast memory copy - Generally, the memory copy
routine is implemented by ARM instructions such
as LDR and STR. The transfer unit is 4 bytes long
in size with those instructions. However, LDM and
STM can transfer data in a larger unit longer than 4
bytes. By using these instructions, the fast memory
copy can be achieved.

• Using the uncompressed kernel image - The zIm-
age is the compressed kernel image. It spends quite
a long time to uncompress the image. If the uncom-
pressed image is used, the uncompressing time can
be removed.

• Reducing kernel option - There are many options
in the Linux kernel source. Only minimum options
required for booting the system up are turned on to
save time.

• Preset LPJ - In the kernel initialization, there is a
function so called LPJ to calibrate the CPU speed.
It is used for busy waiting like udelay() and mde-
lay(). The Preset LPJ means that the calibrating
code is disabled and its output variable for the de-
lay is set with the pre-estimated value.

• Invalidating printk - There are a lot of messages
generated in the booting phase, and consequently
they affect the booting time. To solve this we can
either use the ’quiet’ parameter in the kernel, or
turn off the CONFIG_PRINTK option. The for-
mer increases the verbose level so that messages
are not printed out. And the latter invalidates the
printk function completely. In other words, the
prink function is converted to a null function. We
invalidate the printk function using the latter.

• Using prelink - An application is generally built
with shared libraries. Using shared libraries saves
the development time and the image size as well.
However, it spends a lot of time binding the library
symbols at run-time. The prelink technique re-
moves the bind operation, so that the start-up time
of the application can be reduced.

250 • Camcorder multimedia framework with Linux and GStreamer

Before

After

1s 2s 3s 4s 5s

Loading image

Uncompressing kernel

Kernel init

Device driver init

Loading application

Figure 16: Result of fast boot

To analyze the fast booting process, the booting com-
pletion point needs to be defined first. Usually, it cor-
respond to a state of record standby. In this paper,
however, the completion point is defined as just before
the application start-up because the application devel-
opment is not completed for integration in the software
framework at this time. Figure 16 shows measured data
after adopting the fast boot techniques mentioned above.
The booting time was about 5.5 seconds before adop-
tion of fast boot techniques. After adoption, it reduced
to about 2.1 seconds. Assuming a real product develop-
ment, it will presumably take an extra time due to added
components in the application.

4.2.5 Memory foot print

Because GStreamer depends on many external libraries,
the total library size of the GStreamer framework is not
suitable for the embedded system. In order to use the
GStreamer in an embedded system, the size optimiza-
tion is a significant part of development. In order to re-
duce GStreamer size, the external libraries actually used
in the operation of GStreamer should be identified, as-
sorted, and built with the appropriate options accord-
ingly.

The external libraries that have dependencies with the
GStreamer core are libxml, libz, libglib, libcheck and
libpopt. Of the above, all external libraries except the
libglib can be removed. Because the libglib is exten-
sively used in the entire GStreamer core, it needs to be
kept.

The result of optimization is described in the following
Table 1. As a result of optimization, the total size of
GStreamer was reduced from 2.9MB to 1.4MB approx-
imately.

Library name Before After
libcheck.so 27,216 0
libpopt.so 26,928 0
libxml2.so 1,110,004 0

libz.so 74,140 0
libglib-2.0.so 622,420 622,420

libgmodule-2.0.so 10,308 10,308
libgobject-2.0.so 243,020 243,020
libgthread-2.0.so 14,684 14,684

libgstreamer-0.10.so 644,160 445,896
libgstbase-0.10.so 147,516 79,280

libgstinterfaces-0.10.so 32,412 32,392
total 2,952,808 1,448,000

Table 1: Foot print of GStreamer optimization

5 Conclusions

In order to support many multimedia devices such as
cameras and camcorders using a single hardware plat-
form equipped with a dedicated multimedia SoC, a flex-
ible and extensible software framework is highly pre-
ferred from the development cost perspective.

GStreamer is one of the open source based multime-
dia frameworks. Especially, it is adopted widely in
multimedia product because of a variety of its plugin
functions. In this paper, we presented a multimedia
framework which supports both DVD and memory cam-
corders. It was designed and implemented by making
use of open source middleware such as GStreamer in
Linux OS. Based on the GStreamer engine, we devel-
oped a multimedia framework with many plug-ins im-
plemented by hardware as well as software codec. The
emulator was also introduced as a development environ-
ment in the PC platform.

References

[1] GStreamer Application Development Manual,
http://gstreamer.freedesktop.org/
data/doc/gstreamer/head/manual

[2] GStreamer Plugin Writer’s Guide,
http://gstreamer.freedesktop.org/
data/doc/gstreamer/head/pwg/

[3] Fast Light Tool Kit Open Source Project,
http://www.fltk.org/

[4] The Nano-X Windows System Open Source
Project,http://www.microwindows.org/

2008 Linux Symposium, Volume One • 251

[5] DVD Specification for Read-Only Disc Part3:
Version 1.1

[6] Universal Disc Format Specification Revision
2.50, http://www.osta.org/specs/

[7] Linux-USB Gadget API Framework,
http://www.linux-usb.org/gadget/

[8] USB Mass Storage Class Bulk-Only Transport,
http://www.usb.org/developers/
devclass_docs/usbmassbulk_10.pdf

[9] Information Technology - SCSI Block Commands
2–3

[10] PIMA 15740:2000 - Picture Transfer Protocol for
Digital Still Photography Devices,
http://www.i3a.org/

[11] White Paper of CIPA DC-001-2003 Digital Photo
Solutions for Imaging Devices

[12] Universal Serial Bus Device Class Definition for
Audio Devices

[13] Scratchbox,
http://www.scratchbox.org/
documentation/general/tutorials/
explained.html

[14] Boot Time Resources,
http://tree.ceLinuxforum.org/pubwiki/
moin.cgi/BootupTimeResources

252 • Camcorder multimedia framework with Linux and GStreamer

On submitting kernel patches

Andi Kleen
Intel Open Source Technology Center

ak@linux.intel.com

Abstract

A lot of groups and individual developers work on im-
proving the Linux kernel. Many innovative new features
are developed all the time. The best and smoothest way
to distribute and maintain new kernel features is to in-
corporate them into the standard mainline source tree.
This involves a review process and some standard con-
ventions. Unfortunately actually getting innovative new
features through review can be a rough ride and some-
times they don’t make it in at all. This paper examines
some common problems for submitting larger changes
and some strategies to avoid problems.

1 Introduction

Many people and groups want to contribute to the Linux
kernel.

Sometimes it can be difficult to get larger changes into
the mainline1 sources, especially for new contributors.
This paper examines some of the challenges in sub-
mitting larger patches, and outlines some solutions for
them.

This paper assumes that the reader already knows the
basics of patch submissions. These are covered in de-
tail in various documents in the Linux kernel source tree
(see [4], [3], [5]). Instead of repeating the material in
there this paper covers some strategic higher level points
in patch submission.

Some of the procedures suggested here are also only
applicable to complex or controversal changes. Linux
kernel development isn’t (yet) a bureaucracy with fixed
complicated procedures that cannot be diverged from
and there is quite some flexibility in the process.

1“Mainline” refers to the kernel.org tree as maintained by
Linus Torvalds.

2 Why submit kernel patches to mainline?

There are many good reasons not to keep changes pri-
vate but to submit them to Linus Torvalds’ mainline
source tree.

• A common approach for companies new to Linux
is to take a snapshot of one kernel version (and its
associated userland) and try to standardize on that
version forever. But freezing on old versions for a
long time is not a good idea. New features and bug
fixes are constantly being added to mainline and
some of them will be eventually needed. Freezing
on a old version cuts off from a lot of free develop-
ment.

While some changes from mainline can be rela-
tively easily backported to older source trees, many
others (and that will likely be the bug fix or feature
you want) can be very difficult to backport. The
Linux kernel infrastructure is constantly evolving
and new changes often rely on newer infrastructure
which is not available in old kernels. And even
relatively simple backports tend to eventually be-
come a maintenance problem when they add up in
numbers because such a tree will diverge quite a lot
from a standard kernel and invalidate previous test-
ing. Then there are also security fixes that will be
missed in trees that are frozen too long. It is pos-
sible to keep up with the security changes in main-
line, but it’s quite expensive requiring constant ef-
fort. And missed security fixes can be very costly
to fix later.

At some point usually, it is required to resync the
code base with mainline when updating to a new
version. Forward porting private changes during
such a version update tend to be hard, especially
if they are complicated or affect many parts of the
kernel. To avoid this problem submit changes to
mainline relatively quickly after developing them,

• 253 •

254 • On submitting kernel patches

then they will be part of the standard code base and
still be there after version updates. This will also
give additional code review, additional improve-
ments and bug fixing and a lot of testing for free.

• For changes and redesigns done in mainline, usu-
ally only the requirements of in-tree code are con-
sidered. So, even if an enhancement works first
externally with just standard exported kernel sym-
bols, these might change or be taken away at any
time. The only sure way to avoid that or at least
guarantee an equivalent replacement interface to
prevent breaking your code is to merge into main-
line.

When the code is in mainline, it will be updated
to any interface changes directly or in consultation
with the maintainer. And in mainline, the user base
will also test on the code and provide free quality-
assurance.

• Writing a driver for some device and getting it into
mainline means that all the distributions will auto-
matically pick it up and support that device. That
makes it much easier for users to use in the end
because installing external drivers tends to be com-
plicated and clumsy.

For another perspective on the why to submit changes to
mainline, see also Andrew Morton’s presentation [1].

3 Basics of maintenance

All code in the kernel has some maintenance overhead.
Once code is submitted the kernel maintainers commit
themselves to keeping it functional for a long time.2 It is
usually expected that the person who submits new code
does most of the maintenance for that code at least ini-
tially. Some of the procedures described here are actu-
ally to demonstrate that the patch submitter is trustwor-
thy enough and they they not just plan to “throw code
over the fence.”

All code has bugs, so initially when code is submitted,
it is assumed contain new defects. Exposing code to
mainline also tends to generate a lot of new testing in
new unexpected circumstances, which will expose new

2There is a procedure to deprecate functionality too, but it is
rarely used and only for very strong reasons.

Maintainer 1

Linus Torvalds

Maintainer 2 Maintainer 3

Sub Maintainer 1Sub Maintainer 2

Andrew Morton

Developer 1 Developer 2

Figure 1: Kernel maintainer hierarchy (example) and
patch flow. Andrew Morton is the fallback maintainer
taking care of areas with no own maintainer or of
patches crossing many subsystems

problems. One important part of patch submission is to
make sure these bugs will be handled adequately.

The mainline kernel changes at a very high rate (see [7]
for detailed numbers), and it is very important for the
overall quality of the Linux kernel to keep the bug rate
under control. See [2] for details on the mechanics of
QA and bug reporting in mainline Linux. Because new
code often has more bugs than old code, the maintainers
tend to use various procedures to make sure the bugs
in the new code are minimized early on and handled
quickly. One common way to do this is extensive code
review.

All new kernel code has to go through standard code
review to make sure it follows the kernel coding style
[6] and avoids deprecated kernel interfaces and some
common mistakes. Code review will also look for other
functional problems (although that is not the main fo-
cus) and include a design review. Coding style is already
covered extensively in [6], and I won’t cover it in detail
in this paper. In the end, coding style makes only a small
part of a successful piece of kernel code anyways and is
commonly overrated. Still it is a good idea to follow
the coding style in the initial posting so that discussions
about white space and variable naming do not distract
from the actual functionality of the change.

This paper takes a higher level look on the mechanics
of merging larger functionality, and assumes the basic
Linux code requirements (like coding style, using stan-
dard kernel interfaces etc.) are already covered.

4 Types of submissions

4.1 Easy cases

• The easiest case is a clear bug fix. The need for
a bug fix is obvious, and the only argument might

2008 Linux Symposium, Volume One • 255

be how the bug is actually fixed. But getting clear
bug fixes merged is usually no problem. Some-
times, the maintainers might want to fix a particu-
lar bug differently than with the original patch, but
then the bug will usually be fixed in a different way
by someone else. The end result is that the bug is
fixed.

Occasionally, there can be differences on what is
considered to be a bug and what is not. In this case,
the submitter has to argue for its case in the review
mail thread.

• Then there are cleanups. Cleanups can range from
very simple as in fixing coding style or making
code sparse3 clean to removing unused code to
refactoring an outdated subsystem. Getting such
cleanups in is not normally a problem, but they
have to be timed right to not conflict with other
higher priority changes during the merge win-
dows.4 The maintainers can normally coordinate
that.

• Optimizations are usually welcome, and not too
hard to merge, but there are some caveats. When
the optimization applies only to a very special case,
it is important that it does not impact other more
common cases. And there should be benchmark
numbers (or other data) showing that the optimiza-
tion is useful. The impact of the optimization on
the code base should also be limited (unless it is a
major advantage for an important use-case). Gen-
erally optimizations should not impact maintain-
ability too much. Especially when the optimization
is not a dramatic improvement or does apply only
to some special cases, it is important that it is clean
code and its impact is limited. Cleaning up some
code while doing the optimization will make the
optimization much more attractive.

4.2 Hardware drivers

The need can be easily established for submitting hard-
ware drivers for standard devices like network cards or
SCSI adapters. The hardware exists and Linux should

3Sparse is a static code analysis tool written for the Linux kernel.
See [8]. But like most static-checking tools, it needs a large amount
of work initially to eliminate false positives.

4Merge window is the two week period after each major releases
where maintainers send major features to Linus Torvalds tree. Most
features and code changes go in at that time.

support it and the driver (if correctly written) will in
most cases not impact any other code.

The increasing the bug rate argument in Section 3 is for-
tunately not a serious problem in this special case If the
hardware is not there, the driver will not be used, and
can then also not cause bugs.5 Luckily, this means that
because most of the kernel source base are drivers, the
effective bug rate is not raising as quickly as you would
expect from the raw source size growth. Still, this is
a problem maintainers are concerned about, especially
for core kernel code that is used on nearly6 all hard-
ware and on drivers for hardware used very widely in
the user-base.

There are well-established procedures to get new drivers
in, and doing so is normally not a problem. In some
cases, depending on the code quality of the driver, it can
take a long time with many iterations of reviews and
fixes.

One more difficult issue are special optimizations for
specific drivers. Most drivers won’t need any, for exam-
ple, a standard NIC or block driver is usually not a prob-
lem to add because it only plugs into the well established
network driver interface. There will be no changes on
other code.

On the other hand, if a hardware device does for ex-
ample RDMA,7 and needs special support in the core
networking stack to support that, merging that will be
much more difficult because these code changes could
impact other setups too. One recommended strategy in
this case is to first get basic support in while minimizing
changes to core infrastructure

Sometimes, there is first a rough consensus in the ker-
nel community that particular optimizations should not
be supported for various reasons. One example of this
is stateful TCP/IP stack off-loading8 or native support
for hashed page tables in the core VM. Of course such
consensus can be eventually re-evaluated when the facts

5This ignores the case of non-essential drivers for common hard-
ware. Adding them could risk increasing the bug rate.

6Nearly because there are some special cases like devices with-
out a block driver or MMU-less devices that disable significant parts
of a standard kernel.

7Remote DMA—DMA directly controlled by a remote machine
over the network.

8Partial stateless offloads like Large-Receive-Offload (LRO) or
TCP Segmentation Offload (TSO) on the other hand are already sup-
ported.

256 • On submitting kernel patches

change (or it is demonstrated that the optimization is re-
ally needed), but it is typically difficult to do so.

Once the basic support is in, and you need some specific
changes to optimize for your special case, one reason-
able way to get this done is to do clean-up or redesign
that improves the standard subsystem code (not consid-
ering your changes), and then just happens to make your
particular optimization easier. The trade-off is here that
offseting the maintainability impact on the subsystem
by cleaning it up and improving it first, later re-adding
some complexity for special optimizations can be justi-
fied.

Assuming your proposed change does not fall into one
of these difficult areas, it should be relatively easy to get
it included in mainline once the driver passes the basic
code review.

If it is in a difficult area, it is usually better to at least
try to merge it, but will require much more work. In
a few extreme cases the actual merge will be very hard
to impossible too, for instance when you’re planning to
submit a patch supporting a full TCP offload engine. On
the other hand, if the arguments are good maintainers
sometimes reconsider.

4.3 New core functionality

An especially touchy topic is adding new hooks into the
core kernel, like new notifier chains or new functions
calling into specific subsystems. Very generic notifiers
and hooks tend to have a large maintenance impact be-
cause they have the potential to alter the code flow in un-
expected ways, lead to lock order problems, bugs, and
unexpected behavior, and generally making code harder
to maintain and debug later. That is why maintainers
tend to be not very happy about adding them to their
subsystems. If you really need the hooks anyways trad-
ing cleanups for hooks as described in Section 4.2 is a
reasonable (but not guaranteed to be successful) strategy

Usually, there will be a discussion on the need for the
hooks on the mailing list, with commenters suggesting
design alternative if the case is not very clear. This may
result in you having to redesign some parts if you cannot
convince the maintainer of the benefits of your particular
design. A redesign might include moving some parts to
userland or doing it altogether differently.

To avoid wasting too much work, it is a good idea to
discuss the basic design publicly before spending too

much time on real production code. Of course doing
prototypes first to measure basic feasibility is still a good
idea. Just do not expect these prototypes to be necessar-
ily merged exactly as they are. As usual prototype code
tends to require some work to make it production ready.

5 Splitting submissions into pieces

It is also fairly important to submit larger changes in
smaller pieces so that reviewers and maintainers can
process the changes step-by-step. Normally this means
splitting a larger patch series into smaller logical chunks
than can be reviewed together. There are exceptions to
this. For example a single driver source file that is com-
pletely new is is normally reviewed together, even when
it is large. But this protocol is fairly important for any
changes to existing code.

These changes must be bisectable:9 that is applying or
unapplying any patch in the sequence must still produce
a buildable and working kernel.

Usually, you will need to revise patches multiple times
based on the feedback before they can be accepted.
Avoid patch splitting methods that cause you a lot of
work each time you post. Ideally you keep the split
patches in change set oriented version control system
like git or mercurial or in a patch management system
like quilt [9]. Personally, I prefer quilt for patch man-
agement which has the smoothest learning curve. [10]
has a introduction on using quilt.

It is also recommended to time submissions of large
patch kits. Posting more than 20 patches at a time
will overwhelm the review capacity of the mailing lists.
Group them into logical groups and post these one at a
time with at least a day grace time in between.

Patches should be logical steps with their own descrip-
tions, but they don’t need to be too small. Only create
very small (less than 10 lines change) patches if they
are really a logically an self-contained change. On the
other hand, new files typically do not need to be split
up, except when parts of them logically belong to other
changes in other areas.

When you post revised patches, add a version number to
the subject, and also maintain a brief change log at the
end of the patch description.

9Typically used with the “git bisect” command for semi-
automated debugging.

2008 Linux Symposium, Volume One • 257

6 A good description

Submitting a Linux kernel patch is like publishing a pa-
per. It will be scrutinized by a sceptical public. That is
why the description is very important. You should spend
some time writing a proper introduction explaining what
your change is all about, what your motivations were
and what the important design decisions and trade-offs
are.

Ideally you will also already address expected counter
arguments in the description. It is a good idea to browse
the mailing list archives beforehand and to study a few
successful submissions there.

Hard numbers quantifying improvements are always ap-
preciated, too, in the description. If there is something
to measure, measure it and include the numbers. If your
patch is an optimization, measure the improvement and
include the numbers.

The quality of a description can make or break whether
your kernel patch is accepted. If you cannot convince
the kernel reviewers that your work is interesting and
worthwhile, then there will be no code review and with-
out visible code review the code will likely not be
merged.

The linux-kernel mailing list (and other kernel project
mailing lists) are an attention economy, and it is impor-
tant to be competitive here.

7 Establishing trust

If your patch is larger than just a change to an exist-
ing system (like a new driver or similar), you will be
expected to be the maintainer of that code for at least
some time. A maintainer is someone who takes care
of the code of some subsystem, incorporates patches,
makes sure they are up to standard, does some release
engineering to stabilize the code for releases, and sends
changes bundled to the next level maintainer.

This relationship involves some level of trust. The next
level maintainer trusts you to do this job properly, and
keep linux code quality high. If the person is not known
yet from other projects, the only way to get such trust is
to do something publically visible. That could be done
by submitting some self-written code that is high quality
or by fixing bugs.

The maintainers in general favor people who do not only
care about their little piece of code but who take a little
larger view of the code base, and are known to improve,
and fix other areas of the kernel too. This does not nec-
essarily mean a lot of work, and could be just an occa-
sional bug fix.

8 Setting up a community

For larger new kernel features like a file system or a net-
work protocol, it is a good idea to have a small user base
first. This user base is needed for testing, and to make
sure there is actually interest in the new feature.

It is recommended to at least initially (while your com-
munity is still young) keep most of the technical discus-
sion on the linux-kernel mailing list. This way the main-
tainers can see there is an active group working on the
particular feature, fixing bugs, and caring about user’s
needs which then builds up trust for an eventual merge.

9 When to post

Publishing a patch is a very important event in its life-
time. There is a delicate balance between posting too
early and posting too late.

First, once the code basically works, it is a good idea to
post it as a Request-for-Comments (RFC), clearly mark-
ing it as such. For more complicated changes or you’re
not sure yet what will be acceptable to the maintainers
you can also post a rough prototype or even just a design
overview what you’re planning as RFC. This would not
be intended to be merged, but just to invite initial com-
ments, and to make other developers aware you have
something in the pipeline. There should already be valu-
able feedback in that stage, and when the feedback in-
cludes requests for larger changes, you do not need to
throw as much work away when you redo code, as you
would had posted a finished patch. For simple changes
the RFC stage can be skipped, but for anything more
complex it is typically a good idea. For very complex
or very controversial changes you will likely go through
multiple RFC stages.

Also, conducting more of the development process visi-
ble on the mailing list is good for building trust, and for
establishing a community as discussed earlier.

258 • On submitting kernel patches

On the other hand, actually merging (submitting to a up-
stream maintainer) too early when you still know the
code is unstable is a bad idea. The problem is that even
when some subsystem is marked experimental, people
will start using it, and if it does not work or only works
very badly or worse corrupts data, it will get a bad name.
Getting a bad name early on can be a huge problem later
for a project and it will be hard to ever get rid of that taint
again.10

So there should be some basic stability before actually
submitting it to merge. On the other hand, it definitely
does not need to be finished. Feature completeness or
final performance is not a requirement.

Patches take some time to travel through review and then
the various maintainer trees. If you want a change in
a particular release it is really too late when you only
post it during the two week merge window. Rather when
the merge window opens the patch should be already
through review and traveled up the maintainer hierarchy.
That will take some time. And during the merge window
reviewer capacity tends to be in short order and there
might be none left for you.

10 Dealing with reviews

Code review is an integral part of the Linux code sub-
mission process. It proceeds on public mailing lists with
everyone allowed to comment on your patches. Most of
the comments will be useful and help to improve the
code. This is usually fairly obvious, in this case just
make the changes they request.

Sometimes even when the comments are useful, they
might cause you excessive work: for example when they
ask for a redesign. Sometimes there can be very good
reasons for the redesign, sometimes not. It is your judg-
ment. Or sometimes the reviewer just missed something
and the suggestion wouldn’t actually improve the code
or not handle some case correctly. If the reason is con-
vincing, you should just make the changes if feasible.

In some cases, the reviewer might not realize how much
work it would be to implement a particular change. If
you are not convinced of the reasons for the redesign
or it is just not feasible because it would take too long,
explain that clearly with pure technical arguments on the

10There are several high quality subsystems in the kernel like JFS
or ACPI who suffer from this problem.

mailing list (but do not get yourself dragged into a flame
war).

Then if even after discussion the reviewer still insist on
you making such a change you don’t like, you have to
judge the request: If the the maintainer of the subsys-
tem or a upstream maintainer requests the change, and
you cannot convince them to change their mind, you’ll
have to implement the change or drop the submission. If
someone other than the maintainer requests the change,
it is useful to ask the maintainer for their opinion in a
private mail before embarking on large projects address-
ing review comments.

A reasonable rule of thumb (but there are exceptions of
course!) for how serious to take a reviewer is to check
how much code the person contributed. As a first ap-
proximation, if someone never contributed any patches
themselves their comments are less important,11 and
you could ignore them partly or completely after de-
scribing why on the mailing list. You can look up the
contributions of a particular person in the git version
history. But you really should do that only in extreme
cases when there is no other choice. Linux kernel devel-
opment unfortunately suffers from a shortage of review-
ers so you should consider well before you ignore one
and only do that for very strong reasons.

And sometimes you will notice that the comments from
a particular reviewer are just not constructive. This
comes from the fact that review is open to all on the
internet, and there are occasionally bad reviewers too.
These cases tend to be usually clear, and it is reasonable
not to address such unproductive comments.

11 Merging plans

For complicated patch kits, especially when they depend
on other changes, and after the basic reviews are done,
it is also a good idea to negotiate a merging plan with
the various stake holders. This is especially important if
changes touch multiple subsystems, and might need in
theory to go through multiple maintainers (which can
be quite tedious to coordinate). Merging plan would
be a simple email telling them in what order and when
the patches will go in and get their approval. If a
change touches a lot of subsystems you don’t necessar-
ily need the approval from all maintainers. Such tree
wide sweeps are normally coordinated by the upstream
maintainers.

11Some people call Linux a “codeocracy” because of that.

2008 Linux Symposium, Volume One • 259

12 Interfaces

Reviewers and maintainers focus on the interface de-
signs for user space programs. This is because merging
an externally visible interface commits the kernel to the
interface because other code will depend on it. Chang-
ing a published interface later is much harder and often
special backwards compatibility code is required. This
usually leads to very close scrutiny of interfaces by re-
viewers and maintainers before merge. To avoid delays,
it is best to get interface designs right on the first try. On
the other hand this first try should be as simple as pos-
sible and not include ever feature you plan on the first
iteration.

For many submissions, like device drivers for standard
devices or a file system, user space interfaces will not be
relevant because they don’t have user interfaces of their
own.

• There are various interface styles (e.g. file systems,
files in sysfs, system calls, ioctls, netlink, charac-
ter devices) which have different trade offs and are
the right choice for different areas. It is important
to chose the interface style that fits the application
best.

• There should be some design documentation on the
interface included with the submission.

• It is recommended to make any new interfaces as
simple as possible before submission. This will
make reviewing easier and they can be still later
extended.

• 64bit architectures typically use a compat layer to
translate system calls from 32bit application to the
internal 64bit ABI of the kernel. The needs of the
compat layer needs to be considered for new inter-
faces.

• For new system calls or system call extensions
there should be a manpage and some submittable
test code.

• Remove any private debug interfaces before sub-
mission if it’s not clear they will be useful long
term for code maintenance. Alternatively maintain
them as a separate add-on patch.

On the other hand internal kernel interfaces are consid-
ered subject to change and are much less critical.

13 Resolving problems

Sometimes a submission gets stuck during the submis-
sion process. In this case, it is a good idea to just send
private mail to the maintainer who is responsible and ask
advice on how to proceed with the merge. Alternatively,
it is also possible to ask one of the upstream maintainers
(in case the problem is with the maintainer)

There is also the linux-mentors [11] program and the
kernelnewbies project [12] who can help with process
issues.

14 Case studies

14.1 dprobes

Dprobes [13] was a dynamic tracing project from IBM
originally ported from OS/2 and released as a kernel
patch in 2000. It allowed to attach probes written in a
simple stack based byte code language to arbitrary code
in the kernel or user space, to collect information on ker-
nel behavior non intrusively. Dynamic tracing is a very
popular topic now,12 but back then, dprobes was clearly
ahead of its time. There was not much interest in it.

The dprobes team posted various versions with increas-
ing functionality, but could not really build a user com-
munity. dprobes was a comprehensive solution, cover-
ing both user space and kernel tracing. The user space
tracing required some changes to the Virtual Memory
subsystem that were not well received by the VM de-
velopers. Putting a byte-code interpreter into the ker-
nel was also unpopular, both from its code and because
the kernel developers as potential user base preferred to
write such code in C. That lead to the original dprobes
code never being merged to mainline and never getting
a real user base.

After a few years of unsuccessful merging attempts,
maintaining the code out of tree and existing in rela-
tive obscurity the project reinvented itself. One part of
dprobes was the ability to set non intrusive breakpoints
to any kernel code. They extracted that facility and al-
lowed it to attach handlers in kernel modules written in
C to arbitrary kernel functions. This new facility was
called kprobes [15]. kprobes became quickly relatively

12Especially due to the marketing efforts of a particular operating
system vendor for a much later similar project

260 • On submitting kernel patches

popular with the kernel community and was merged af-
ter a short time It attracted also significant contributors
from outside the original dprobes project. This was both
because it was a much simpler patch, touching less code,
none of its changes were controversial, and that other
competing operating systems had made dynamic trac-
ing popular by then, so there was generally much more
interest.

Kprobes then was the kernel infrastructure used by the
[14] project started shortly after the merge. systemtap is
a scripting language that generates C source for a kernel
module that then then uses kprobes to trace kernel func-
tions. systemtap and kprobes are popular Linux features
now, but it took a long time to get there. Also, significant
features of the original dprobes (attaching probes to user
space code) are still missing. Support for user probes is
currently developed as part of the utrace project, but un-
fortunately utrace development proceeds slowly and has
unlikely prospects for merge because utrace is a gigan-
tic “redesign everything” patch developed on a private
mailing list.

The lessons to learn from the dprobes story are:

• When building something new and radical, it is
needed to “sell” it at least a little, to get a user base
and interest from reviewers. dprobes, while being
technically a very interesting project, did not com-
pete well initially in the attention economy.

• Don’t try to put in all features on the first step. Sub-
mit features step-by-step.

• When a particular part of a submission is very un-
popular, strip it out to not let it delay submission of
the other parts.

• Don’t wait too long to redesign if the original de-
sign is too unpopular.

14.2 perfmon2

perfmon1 was a relatively simple architecture specific
interface for the performance counters of the IA64
port. That code was integrated into the mainline Linux
source. Later, it was redesigned as perfmon2 [16]
with many more features, support for more performance
monitoring hardware, support for flexible output for-
mats using plug-ins, and its cross architecture support.13

13perfmon2 is generally considered to be showing some signs of
the “Second System effect.”

perfmon2 was developed outside the normal Linux ker-
nel, together with its user land components at [17].
While it was able to attract some code contributions and
made some attempts to be merged into the mainline ker-
nel, it has not succeeded yet. This is mainly because it
has acquired many features on its long out-of-tree devel-
opment path that are difficult to untangle now.14

This lead to the perfmon2 patch submissions being very
large patches with many interdependencies which are
very difficult to understand and review and debug later.
It also didn’t help that its very flexible plug-in-based
output module architecture was a design pattern not pre-
viously used in Linux. Kernel programmer’s are rela-
tively conservative regarding design patterns. And the
subsystem came with a very complicated system call-
based interface that was difficult to evaluate. Also, many
perfmon2 features were relatively old and it was some-
times impossible to reconstruct why they were even
added. In turn, the patches were unable to either attract
enough reviewers or to satisfy the comments of the few
reviews it got. That in turn, didn’t lead to maintainer
confidence in the code and there was no mainline merge
so far, except for some trivial separatable changes.

• Be conservative with novel design patterns (like the
perfmon2 output plug-ins) Kernel programmers are
conservative regarding coding style and not very
open to novel programming styles.

• Don’t combine too many novelties into a single
patch. If you have a lot of new ideas do them step
by step.

• Don’t make the code too flexible internally. Too
much flexibility makes it harder to evaluate.

• Don’t do significant follow-on development out-
side the mainline kernel tree. Concentrate on de-
veloping the basic subsystem without too many
bells and whistles and merge that quickly into the
mainline. Then any additional features requested
by users should be submitted to the mainline incre-
mentally.

• If any optional features are already implemented up
front before merging, develop them as incremental
patches to the core code base, not in an integrated
source tree.

14Often programmers don’t remember ever detail on why they did
some code years before.

2008 Linux Symposium, Volume One • 261

In the author’s opinion, the only promising strategy for a
perfmon2 merge now would be similar to the evolution
from dprobes to kprobes in Section 14.1. Go back to
the core competencies: define the core functionality of
a performance counter interface, or develop a perfmon3
which only implements the core functionality in a very
clean way, and submit that. Then port forward features
requested by the user step-by-step from perfmon2, each
time you reevaluate the design of a particular feature and
its user interface. This process would likely lead to a
much cleaner perfmon2 code base. There is some work
underway now by the perfmon2 author to do this.

15 Conclusion

Submitting code to the mainline Linux kernel is reward-
ing, but also takes some care to be successful. With the
rough guidelines in this paper, I hope some commons
problems while submitting Linux kernel changes can be
avoided.

References

[1] Andrew Morton
kernel.org development and the embedded world
http://userweb.kernel.org/~akpm/

rants/elc-08.odp

[2] Andrew Morton
Production process, bug tracking and quality
assurance of the Linux kernel
http://userweb.kernel.org/~akpm/

rants/hannover-kernel-qa.odp

[3] Documentation/SubmittingDrivers in the Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[4] Documentation/SubmitChecklist in your Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[5] Documentation/SubmittingPatches in the Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[6] Documentation/CodingStyle in the Linux kernel
source from http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[7] Kroah-Hartmann et al.,
https://www.linux-foundation.org/

publications/linuxkerneldevelopment.

php.

[8] Sparse, the semantic parser,
http://www.kernel.org/pub/software/

devel/sparse/

[9] Quilt, the patch manager,
http:

//savannah.nongnu.org/projects/quilt

[10] Grünbacher,
How to survive with many patches or Introduction
to Quilt,
http://www.suse.de/~agruen/quilt.pdf

[11] http://www.linuxmentors.org

[12] http://www.kernelnewbies.org

[13] http://dprobes.sourceforge.net

[14] Prasad
Locating System Problems using Dynamic
Instrumentation
Proceedings of the Linux Symposium, Ottawa,
Canada, 2005.

[15] Keniston
Documentation/kprobes.txt in the Linux kernel
source from http://www.kernel.org

[16] Eranian
Perfmon2: A flexible performance monitoring
interface for Linux
Proceedings of the Linux Symposium, Ottawa,
Canada, 2006.

[17] http://perfmon2.sourceforge.net

This work represents the opinion of the author and not of In-
tel.

This paper is (c) 2008 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

262 • On submitting kernel patches

Ext4 block and inode allocator improvements

Aneesh Kumar K.V
IBM Linux Technology Center
aneesh.kumar@in.ibm.com

Mingming Cao
IBM Linux Technology Center

cmm@us.ibm.com

Jose R Santos
IBM Linux Technology Center

jrs@us.ibm.com

Andreas Dilger
Sun Microsystems, Inc
adilger@sun.com

Abstract

File systems have conflicting needs with respect to block
allocation for small and large files. Small related files
should be nearby on disk to maximize disk track cache
and avoid seeking. To avoid fragmentation, files that
grow should reserve space. The new multiple block and
delayed allocators for Ext4 try to satisfy these require-
ments by deferring allocation until flush time, packing
small files contiguously, and allocating large files on
RAID device-aligned boundaries with reserved space
for growth. In this paper, we discuss the new multiple
block allocator for Ext4 and compare the same with the
reservation-based allocation. We also discuss the perfor-
mance advantage of placing the meta-data blocks close
together on disk so that meta-data intensive workloads
seek less.

1 Introduction

The Ext4 file system was forked from Ext3 file system
about two years ago to address the capability and scal-
ability bottleneck of the Ext3 file system. Ext3 file sys-
tem size is hard limited to 16 TB on x86 architecture,
as a consequence of 32-bit block numbers. This limit
has already been reached in the enterprise world. With
the disk capacity doubling every year and with increas-
ing needs for larger file systems to store personal digital
media, desktop users will very soon want to remove the
limit for Ext3 file system. Thus, the first change made
in the Ext4 file system is to lift the maximum file system
size from 232 blocks(16 TB with 4 KB blocksize) to 248

blocks.

Extent mapping is also used in Ext4 to represent new
files, rather than the double, triple indirect block map-
ping used in Ext2/3. Extents are being used in many

047 3195

logical block #physical block #

lengthuninit ial ized extent f lag

ext4_extent structure

ext4_extent_header

eh_magic
eh_entries
eh_max
eh_depth
eh_generation

ext4_extent_idx

ei_block
ei_leaf
ei_leaf_hi
ei_unused

Figure 1: Ext4 extents, header and index structures

modern file systems[1], and it is well-known as a way to
efficiently represent a large contiguous file by reducing
the meta-data needed to address large files. Extents help
improve the performance of sequential file read/writes
since extents are a significantly smaller amount of meta-
data to be written to describe contiguous blocks, thus re-
ducing the file system overhead. It also greatly reduces
the time to truncate a file as the meta-data updates are
reduced. The extent format supported by Ext4 is shown
in Fig 1 and Fig 2. A full description of Ext4 features
can be found in [2].

Most files need only a few extents to describe their
logical-to-physical block mapping, which can be ac-
commodated within the inode or a single extent map
block. However, some extreme cases, such as sparse
files with random allocation patterns, or a very badly
fragmented file system, are not efficiently represented

• 263 •

264 • Ext4 block and inode allocator improvements

i_block

. . .
eh_header

root

node header

extent index

extent index

. . .

node header

extent

. . .
extent

node header

extent

. . .
extent

disk blocksext4_inode
index node

leaf nodes

Figure 2: Ext4 extent tree layout

using extent maps. In Ext4, it is more important to have
an advanced block allocator to reduce file fragmenta-
tion. A well-designed block allocator should pack small
files close to each other for locality and also place large
files contiguously on disk to improve I/O performance.

The block allocator in the Ext3 file system does limited
work to reduce file fragmentation and maintains group
locality for small files under the same directory. The
Ext3 allocator tries to allocate multiple blocks on a best
effort basis but does not do a smart search to find a bet-
ter location to place a large file. It is also unaware of
the relationship between different files, thus it is quite
possible to place small related files far apart, causing
extra seeks when loading a large number of related files.
Ext4 block allocation tries to address these two prob-
lems with the new multiple block allocator while still
making it possible to use the old block allocator. Mul-
tiple block allocation can be enabled or disabled by
mount option -o mballoc and -o nomballoc, re-
spectively. The current development version of Ext4 file
system enables the multiple block allocator by default.

While a lot of work has gone into the block allocator,
one must not forget that the inode allocator is what de-
termines where blocks start getting allocated to begin
with. While disk platter density has increased dramat-
ically over the years, the old Ext3 inode allocator does
little to ensure data and meta-data locality in order to
take advantage of that density and avoid large seeks.
Ext4 has begun exploring the possibilities of compact-
ing data to increase locality and reduce seeks, which ul-
timately leads to better performance. Removal of re-

strictions in Ext4’s block groups has made it possible
to rethink meta-data placement and inode allocation in
ways not possible in Ext3.

This paper is organized into the following sections. In
Section 2.1 and 2.2, we give some background on Ext3
block allocation principles and current limitations. In
Section 2.3, we give a detailed description of the new
multiple block allocator and how it addresses the limita-
tions facing the Ext3 file system. Section 2.4 compares
the Ext3 and Ext4 block allocators with some perfor-
mance data we collected.

Finally, we discuss the inode allocator changes made in
Ext4. We start with Section 4.1, describing the Ext3
inode allocation policy, the impact that the inode allo-
cation has on overall file system performance, and how
changing the concept of a block group can lead to per-
formance improvements. In Section 4.3, we explore a
new inode allocator that uses this new concept in meta-
data allocation to manipulate block allocation and data
locality on disk. Later, we examine the performance im-
provements in the Ext4 file system due to the changing
of block group concept and the new inode allocator. Fi-
nally, we will discuss some potential future work in Sec-
tion 4.5.

2 Ext4 Multiple Blocks Allocator

In this section we give some background on the Ext2/3
block allocation before we discuss the new Ext4 block
allocator. We refer to the old block allocator as the Ext3
block allocator and the new multiple block allocator as
the Ext4 block allocator for simplicity.

2.1 Ext3 block allocator

Block allocation is the heart of a file system design.
Overall, the goal of file system block allocation is to
reduce disk seek time by reducing file system fragmen-
tation and maintaining locality for related files. Also,
it needs to scale well on large file systems and paral-
lel allocation scenarios. Here is a short summary of the
strategy used in the Ext3 block allocator:

To scale well, the Ext3 file system is partitioned into 128
MB block group chunks. Each block group maintains a
single block bitmap to describe data block availability
inside this block group. This way allocation on different
block groups can be done in parallel.

2008 Linux Symposium, Volume One • 265

When allocating a block for a file, the Ext3 block alloca-
tor always starts from the block group where the inode
structure is stored to keep the meta-data and data blocks
close to each other. When there are no free blocks avail-
able in the target block group it will search for a free
block from the rest of the block groups. Ext3 always
tries to keep the files under the same directory close to
each other until the parent block group is filled.

To reduce large file fragmentation Ext3 uses a goal block
to hint where it should allocate the next block from. If
the application is doing a sequential I/O the target is to
get the block following the last allocated block. When
the target block is not available it will search further to
find a free extent of at least 8 blocks and starts allocation
from there. This way the resulting allocations will be
contiguous.

In case of multiple files allocating blocks concurrently,
the Ext3 block allocator uses block reservation to make
sure that subsequent requests for blocks for a particular
file get served before it is interleaved with other files.
Reserving blocks which can be used to satisfy the subse-
quent requests enable the block allocator to place blocks
corresponding to a file nearby. There is a per-file reser-
vation window, indicating the range of disk blocks re-
served for this file. However, the per-file reservation
window is done purely in memory. Each block alloca-
tion will first check the file’s own reservation window
before starts to find unreserved free block on bitmap. A
per-file system red-black tree is used to maintain all the
reservation windows and to ensure that when allocating
blocks using bitmap, we don’t allocate blocks out of an-
other file’s reservation window.

2.2 Problems with Ext3 block allocator

Although block reservation makes it possible to allocate
multiple blocks at a time in Ext3, this is very limited and
based on best effort basis. Ext3 still uses the bitmap to
search for the free blocks to reserve. The lack of free
extent information across the whole file system results
in poor allocation pattern for multiple blocks since the
allocator searches for free blocks only inside the reser-
vation window.

Another disadvantage of the Ext3 block allocator is that
it doesn’t differentiate allocation for small and large
files. Large directories, such as /etc, contain large
numbers of small configuration files that need to be

-20000

-15000

-10000

-5000

 0

 5000

 10000

 0 10 20 30 40 50 60

P
hy

si
ca

l b
lo

ck
 n

um
be

r
re

la
tiv

e
to

 fi
rs

t p
hy

si
ca

l b
lo

ck
 a

llo
ca

te
d

Logical block number

Ext3 block allocation for small files

"ext3-small-files"

Figure 3: Ext3 block allocator for small files

read during boot. If the files are placed far apart on
the disk the bootup process would be delayed by ex-
pensive seeks across the underlying device to load all
the files. If the block allocator could place these related
small files closer it would be a great benefit to the read
performance.

We used two test cases to illustrate the performance
characteristic of Ext3 block allocator for small and large
files, as shown in Fig 3 and Fig 4. In the first test we
used one thread to sequentially create 20 small files of
12 KB. In the second test, we create a single large file
and multiple small files in parallel. The large file is cre-
ated by a single thread, while the small files are created
by another thread in parallel. The graph is plotted with
the logical block number on the x-axis and the physical
block number on the y-axis. To better illustrate the lo-
cality, the physical block number plotted is calculated by
subtracting the first allocated block number from the ac-
tual allocated block number. With regard to small files,
the 4th logical block number is the first logical block
number of the second file. This helps to better illustrate
how closely the small files are placed on disk.

Since Ext3 simply uses a goal block to determine where
to place the new files, small files are kept apart by Ext3
allocator intentionally to avoid too much fragmentation
in case the files are large files. This is caused by lack

266 • Ext4 block and inode allocator improvements

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000 2500

P
hy

si
ca

l b
lo

ck
 n

um
be

r
re

la
tiv

e
to

 fi
rs

t p
hy

si
ca

l b
lo

ck
 a

llo
ca

te
d

Logical block number

Ext3 block allocation for large file

"ext3-large-file"

Figure 4: Ext3 block allocator for large file

of information that those small files are generated by
the same process and therefore should be kept close to
each other. As we see in Fig [3], the locality of those
small files are bad, though the files themselves are not
fragmented.

Fig [4] illustrates the fragmentation of a large file in
Ext3. Because Ext3 lacks knowledge that the large file is
unrelated to the small files, the allocations for the large
file and the small files are fighting for free spaces close
to each other, even though the block reservation helped
reduce the fragmentation to some extent already. A bet-
ter solution is to keep the large file allocation far apart
from unrelated allocation at the very beginning to avoid
interleaved fragmentation.

2.3 Ext4 Multiple block allocator

The Ext4 multiple block allocator tries to address the
Ext3 block allocator limitation discussed above. The
main goal is to provide better allocation for small and
large files. This is achieved by using a different strat-
egy for different allocation requests. For a relatively
small allocation request, Ext4 tries to allocate from a
per-CPU locality group, which is shared by all alloca-
tions under the same CPU, in order to try to keep these
small files close to each other. A large allocation request

is allocated from per-file preallocation first. Like Ext3
reservation, Ext4 maintains an in-memory preallocation
range for each file, and uses that to solve the fragmenta-
tion issues caused by concurrent allocation.

The Ext4 multiple block allocator maintains two preal-
located spaces from which block requests are satisfied:
A per-inode preallocation space and a per-CPU locality
group prealloction space. The per-inode preallocation
space is used for larger request and helps in making sure
larger files are less interleaved if blocks are allocated at
the same time. The per-CPU locality group prealloca-
tion space is used for smaller file allocation and helps in
making sure small files are placed closer on disk. Which
preallocation space to use depends on the total size de-
rived out of current file size and allocation request size.
The allocator provides a tunable /prof/fs/ext4/
<partition>/stream_req that defaults to 16. If
the total size is less than stream_req blocks, we use
per-CPU locality group preallocation space.

While allocating blocks from the inode preallocation
space, we also make sure we pick the blocks in such
a way that random writes result in less fragmentation.
This is achieved by storing the logical block number as
a part of preallocation space and using the value in de-
termining the physical block that needs to be allocated
for a subsequent request.

If we can’t allocate blocks from the preallocation space,
we then look at the per-block-group buddy cache. The
buddy cache consists of multiple free extent maps and a
group bitmap. The extent map is built by scanning all
the free blocks in a group on the first allocation. While
scanning for free blocks in a block group we consider
the blocks in the preallocation space as allocated and
don’t count them as free. This is needed to make sure
that when allocating blocks from the extent map, we
don’t allocate blocks from a preallocation space. Do-
ing so can result in file fragmentation. The free extent
map obtained by scanning the block group is stored in a
format, as shown in Fig 5, called a buddy bitmap. We
also store the block group bitmap along with the extent
map. This bitmap differs from the on-disk block group
bitmap in that it considers blocks in preallocation space
as allocated. The free extent information and the bitmap
is then stored in the page cache of an in-core inode, and
is indexed with the group number. The page containing
the free extent information and bitmap is calculated as
shown in Fig 6.

2008 Linux Symposium, Volume One • 267

0

0 max

First zero bit in the map at offset k

Order x offset obtained
 from super block

Max bit for order x allocation

First f ree block = k << x

size of extent = 1 << x

Block size buddy format

Figure 5: Ext4 buddy cache layout

/*
* the buddy cache inode stores the block bitmap

* and buddy information in consecutive blocks.

* So for each group we need two blocks.

*/
block = group * 2;
pnum = block / blocks_per_page;
poff = block % blocks_per_page;

page = find_get_page(inode->i_mapping, pnum);
.......
if (!PageUptodate(page)) {

ext4_mb_init_cache(page, NULL);
......

Figure 6: Buddy cache inode offset mapping

Before allocating blocks from the buddy cache, we nor-
malize the request. This helps prevent heavy frag-
mentation of the free extent map, which groups free
blocks in power of 2 size. The extra blocks allo-
cated out of the buddy cache are later added to the
preallocation space so that the subsequent block re-
quests are served from the preallocation space. In the
case of large files, the normalization follows a list of
heuristics based on file size. For smaller files, we
normalize the block request to stripe size if speci-
fied at mount time or to s_mb_group_prealloc.
s_mb_group_prealloc defaults to 512 and can
be configured via /proc/fs/ext4/<partition/
group_prealloc

Searching for blocks in buddy cache involves:

• Search for requested number of blocks in the extent

map.

• If not found, and if the request length is same
as stripe size, search for free blocks in stripe
size aligned chunks. Searching for stripe aligned
chunks results in better allocation on RAID setup.

• If not found, search for free blocks in the bitmap
and use the best extent found.

Each of these searches starts with the block group in
which the goal block is found. Not all block groups
are used for the buddy cache search. If we are look-
ing for blocks in the extent map, we only look at block
groups that have the requested order of blocks free.
When searching for stripe-size-aligned free blocks we
only look at block groups that have stripe size chunks
of free blocks. When searching for free blocks in the
bitmap, we look at block groups that have the requested
number of free blocks.

2.4 Ext4 multiple block allocator performance ad-
vantage

The performance advantage of the multiple block allo-
cator related to small files is shown in Fig 7. The blocks
are closer because they are satisfied from the same lo-
cality group preallocation space.

The performance advantage of multiple block allocator
related to large files is shown in Fig 8. The blocks are
closer because they are satisfied from the inode-specific
preallocation space.

268 • Ext4 block and inode allocator improvements

-20000

-15000

-10000

-5000

 0

 5000

 10000

 0 10 20 30 40 50 60

P
hy

si
ca

l b
lo

ck
 n

um
be

r
re

la
tiv

e
to

 fi
rs

t p
hy

si
ca

l b
lo

ck
 a

llo
ca

te
d

Logical block number

Ext4 block allocation for small files

"ext4-nomb-small"
"ext4-mb-small"

Figure 7: Multiple block allocator small file perfor-
mance

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000 2500

P
hy

si
ca

l b
lo

ck
 n

um
be

r
re

la
tiv

e
to

 fi
rs

t p
hy

si
ca

l b
lo

ck
 a

llo
ca

te
d

Logical block number

Ext4 block allocation for large file

"ext4-nomb-large"
"ext4-mb-large"

Figure 8: Multiple block allocator large file perfor-
mance

Table 1 shows the compilebench[5] number compar-
ing Ext4 and Ext3 allocators with the data=ordered
mount option. Compilebench tries to age a file system
by simulating some of the disk IO common in creating,
compiling, patching, stating and reading kernel trees. It
indirectly measures how well file systems can maintain
directory locality as the disk fills up and directories age

Test Ext4 allocator Ext3 allocator
intial create 20.44 MB/s 19.64 MB/s
create total 11.81 MB/s 8.12 MB/s
patch total 4.95 MB/s 3.66 MB/s
compile total 16.66 MB/s 12.57 MB/s
clean total 247.54 MB/s 82.57 MB/s
read tree total 7.06 MB/s 6.99 MB/s
read compiled
tree total

9.06 MB/s 10.40 MB/s

delete tree total 7.06 seconds 16.66 seconds
delete compiled
tree total

9.64 seconds 22.21 seconds

stat tree total 5.31 seconds 13.39 seconds
stat compiled
tree total

5.63 seconds 14.70 seconds

Table 1: Compliebench numbers for Ext4 and Ext3 al-
locator

2.5 Evolution of an Allocator

The mballoc allocator included in Ext4 is actually the
third generation of this allocation engine written by
Alex Tomas (Zhuravlev). The first two versions of the
allocator were focused mainly on large allocations (1
MB at a time), while the third generation also works to
improve small files allocation.

Even at low I/O rates, the single-block allocation used
by Ext3 does not necessarily make a good decision for
inter-block allocations. The Linux VFS layer splits any
large I/O submitted to the kernel into page-sized chunks
and forces single-block allocations by the file system
without providing any information about the rest of the
outstanding I/O on that file. The block found for the
first allocation is usually the first free block in the block
group, and no effort is made to find a range of free
blocks suitable for the amount of data being written to
the file. This leads to poor allocation decisions, such as
selecting free block ranges that are not large enough for
even a single write() call.

At very high I/O rates (over 1 GB/s) the single-block al-
location engine also becomes a CPU bottleneck because

2008 Linux Symposium, Volume One • 269

every block allocation traverses the file system allocator,
scans for a free block, and locks to update data struc-
tures. With mballoc, one test showed an improvement
from 800 MB/s to 1500 MB/s on the same system by
reducing the CPU cost per allocated block.

What is critical to the success of mballoc is the ability
to make smart allocation decisions based on as many
blocks of file data as possible. This necessitated the de-
velopment of delayed allocation for normal I/O. When
mballoc has a good idea that a file is small or large, and
how many data blocks to allocate, it can make good de-
cisions.

The first version of mballoc used the buddy allocator
only to allocate contiguous chunks of blocks, and would
align the allocation to the start of a free extent. While
this still leads to performance gains due to avoided seeks
and aggregation of multiple allocations, it is not opti-
mal in the face of RAID devices that have lower over-
head when the I/O is properly aligned on RAID disk and
stripe-wide boundaries.

The second version of mballoc improved the buddy al-
locator to align large allocations to RAID device bound-
aries. This is easily done directly from the buddy bitmap
for RAID geometries that use power-of-two numbers of
data disks in each stripe by simply stopping search for
free bits in the buddy bitmap at the RAID boundary size.

Avoiding the read-modify-write cycle for RAID systems
can more than double performance because the costly
synchronous read is avoided. In RAID devices that have
a read cache that is aligned to the stripe boundaries, do-
ing a misaligned read will double the amount of data
read from disk and fill two cachelines.

The Ext4 superblock now has fields that store the RAID
geometry at mke2fs time or with tune2fs. It is likely
that the complex RAID geometry probing done at mkfs
time for XFS will also be adopted by mke2fs in order to
populate these fields automatically.

During testing for the current third version of mballoc
the performance of small file I/O was investigated, and
it was seen that the aggregate performance can be im-
proved dramatically only when there are no seeks be-
tween the blocks allocated to different files. As a result
the group allocation mechanism is used to pack small
allocations together without any free space in between.
In the past there was always space reserved or left at the
end of each file “just in case” there were more blocks to

allocate. For small files, this forces a seek after each
read or write. With delayed allocation, the size of a
small file is known at allocation time and there is no
longer a need for a gap after each file.

The current mballoc allocator can align allocations to
a RAID geometry that is not power-of-two aligned,
though it is slightly more expensive.

More work still remains to be done to optimize the al-
locator. In particular, mballoc keeps the “scan groups
for good allocations” behaviour of the Ext2/3 block al-
locator. Implementing an in-memory list for more op-
timal free-extent searching, as XFS does, would further
reduce the cost of searching for free extents.

Also, there is some cost for initializing the buddy
bitmaps. Doing this at mount time, as the first version
of mballoc did, introduces an unacceptable mount delay
for very large file systems. Doing it at first access adds
latency and hurts performance for the first uses of the file
system. Having a thread started at mount time to scan
the groups and do buddy initialization asynchronously
among other things, would help avoid both issues.

3 Delayed allocation

Because Ext4 uses extent mapping to efficiently repre-
sent large files, it is natural to process a multiple block
allocation together, rather than one block allocation at
a time as done in Ext3. Because block allocation re-
quests for buffered I/O are passed through the VFS layer
one at a time at the write_begin time, the underly-
ing Ext3 file system cannot foresee and cluster future
requests. Thus, delayed allocation is being proposed
multiple times to enable multiple block allocation for
buffered I/O.

Delayed allocation, in short, defers block allocations
from write() operation time to page flush time. This
method provides multiple benefits: it increases the op-
portunity to combine many block allocation requests
into a single request reducing fragmentation and saving
CPU cycles, and avoids unnecessary block allocation for
short-lived files.

In general, with delayed allocation, instead of allocat-
ing the disk block in write_begin, the VFS just
does a plain block look up. For those unmapped buffer
heads, it calculates the required number of blocks to
reserve (including data blocks and meta-data blocks),

270 • Ext4 block and inode allocator improvements

reserves them to make sure that there are enough free
blocks in the file system to satisfy the write. After
that is done, it marks the buffer heads as delayed allo-
cated(BH_DELAY). No block allocation is done at that
moment. Later, when the pages get flushed to disk
by writepage() or writepages(), these func-
tions will walk all the dirty pages in the specified inode,
cluster the logically contiguous ones, and attempts to
perform cluster block allocation for those buffer heads
marked as BH_DELAY all together, then submit the page
or pages to the bio layer. After the block allocation is
complete, the unused block reservation is returned back
to the file system.

The current implementation of delayed allocation is
mostly done in the VFS layer, hoping that multi-
ple file systems, such as Ext2 and 3, can benefit
from the feature. There are new address space op-
erations added for Ext4 for delayed allocation mode,
providing call back functions for write_begin(),
write_end() and writepage() for delayed allo-
cation, with updated block allocation/reservation/look-
up functions. The current Ext4 delayed allocation only
supports data=writeback journalling mode. In
the future, there are plans to add delayed support for
data=ordered journalling mode.

4 FLEX_BG and the Inode allocator

4.1 The old inode allocator

The inode allocator in an Ext2/3 file system uses the
block groups as the vehicle to determine where new in-
odes are placed on the storage media. The Ext2/3/4 file
system is divided into small groups of blocks with the
block group size determined by the amount of blocks
that a single bitmap can handle. In a 4 KB block file
system, a single block bitmap can handle 32768 blocks
for a total of 128 MB per block group. This means
that for every 128 MB, there will be meta-data blocks
(block/inode bitmaps and inode table blocks) interrupt-
ing the contiguous flow of blocks that can be used to
allocate data.

The Orlov directory inode allocator [6] tries to maxi-
mize the chances of getting large block allocations by
reducing the chances of getting an inode allocated in a
block group with a low free block count. The Orlov
allocator also tries to maintain locality of related data

(i.e. files in the same directory) as much as possible.
The Orlov allocator does this by looking at the ratio of
free blocks, free inodes, and number of directories in a
block group to find the best suitable placement of a di-
rectory inode. Inode allocations that are not directories
are handled by a second allocator that starts its free in-
ode search from the block group where the parent direc-
tory is located and attempts to place the inodes with the
same parent inode in the same block group. While this
approach works very well given the block group design
of Ext2/3/4, it does have some limitations:

• A 1 TB file system has around 8192 block groups.
Searching through that many block groups on a
heavily used file system can become expensive.

• Orlov can place a directory inode in a random lo-
cation that is physically far away from its parent
directory.

• Orlov’s calculations to find a single 128 MB block
group are expensive in this multi-terabyte world we
live in.

• Given that hard disk seek times are not expected
to improve much during the next couple of years,
while at the same time seeing big increases in ca-
pacity and interface throughput, the Orlov allocator
does little to improve data locality.

Of course the real problem is not Orlov itself, but the re-
strictions imposed on it by the size of a block group.
One solution around this limitation is to implement
multi-block bitmaps. The drawback with this imple-
mentation is that things like handling bad blocks inside
one of those bitmap or inode tables becomes very com-
plicated when searching for free blocks to replace the
bad ones. A simpler solution is to get rid of the notion
that meta-data need to be located within the file system
block group.

4.2 FLEX_BG

Simply put, the new FLEX_BG feature removes the re-
striction that the bitmaps and inode tables of a particular
block group MUST be located within the block range of
that block group. We can remove this restriction thanks
to e2fsprogs being a robust tool at finding errors through
fsck. While activating the FLEX_BG feature flag itself

2008 Linux Symposium, Volume One • 271

doesn’t change anything in the behavior of Ext4, the
feature does allow mke2fs to allocate bitmaps and in-
ode tables in ways not possible before. By tightly al-
locating bitmaps and inode tables close together, one
could essentially build a large virtual block group that
gets around some of the size limitations of regular block
groups.

The new extent feature benefits from the new meta-data
allocation by moving meta-data blocks that would oth-
erwise prevent the availability of contiguous free blocks
on the storage media. By moving those blocks to the
beginning of a large virtual block group, the chances
of allocating larger extents are improved. Also, hav-
ing the meta-data for many block groups contiguous on
disk avoids seeking for meta-data intensive workloads
including e2fsck.

4.3 FLEX_BG inode allocator

Given that we can now have a larger collection of blocks
that can be called a block group, making the kernel
take advantage of this capability was the obvious next
step. Because the Orlov directory inode allocator owed
some design decisions to the size limitations of tradi-
tional block groups, a new inode allocator would need
to employ different techniques in order to take better ad-
vantage of the on disk meta-data allocation. Some of the
ways the new inode allocator differs from the old allo-
cator are:

• The allocator always tries to fill a virtual block
group to a certain free block ratio before attempt-
ing to allocate on another group. This is done to
improve data locality on the disc by avoiding seeks
as much as possible.

• Directories are treated the same as regular inodes.
Given that these virtual block groups can now han-
dle multiple gigabytes worth of free blocks, spread-
ing directories across block groups not only does
not provide the same incentive, it could actually
hurt performance by allowing larger seeks on rela-
tively small amounts of data.

• The allocator may search backwards for suitable
block groups. If the current group does not have
enough free blocks, it may try the previous group
first just in case space was freed up.

• The allocator reserves space for file appends in the
group. If all the blocks in a group are used, ap-
pending blocks to an inode in that group could
mean that the allocation could happen at a large off-
set within the storage media increasing seek times.
This block reservation is not used unless the last
group has been used past its reserved ratio.

The size of a virtual group is always a power-of-two
multiple of a normal block group in size, and it is speci-
fied at mke2fs time. The size is stored in the super block
in to control how to build the in-memory free inode and
block structure that the algorithm uses to determine the
utilization of the virtual block group. Because we look
at the Ext4 block group descriptors only when a suitable
virtual group is found, this algorithm requires fewer en-
dian conversions than the traditional Orlov allocator on
big endian machines.

One big focus of this new inode allocator is to maintain
data and meta-data locality to reduce seek time when
compared to the old allocator. Another very important
area of focus is reduction in allocation overhead. By
not handling directory inodes differently, we remove a
lot of the complexity from the old allocator while the
smaller number of virtual block groups makes searching
for adequate block groups easier.

Now that a group of inode tables is treated as if it were
a single large inode table, the new allocator also ben-
efits from another new feature found in Ext4. Unini-
tialized block groups mark inode tables as uninitialized
when they are not in use and thus skips reading those in-
ode tables at fsck time providing significant fsck speed
improvements. Because the allocator only uses an in-
ode table when the previous table on the same virtual
group is full, fewer inode tables get initialized result-
ing in fewer inode tables that need to be loaded and im-
proved fsck times.

4.4 Performance results

We used the FFSB[4] benchmark with a profile that ex-
ecutes a combination of small file reads, writes, creates,
appends, and deletes. This helps simulate a meta-data
heavy workload. A Fibre Channel disk array was used
as a storage media for the FFSB test with 1 GB of fast
write cache. The benchmark was run with a FLEX_BG
virtual block group of 64 packed groups and it is com-
pared to a regular EXT4 file system mounted with both

272 • Ext4 block and inode allocator improvements

mballoc and delalloc. Note that 64 packed groups is
not the optimum number for every hardware configura-
tion, but this number provided very good overall perfor-
mance for workloads on the hardware available. Further
study is needed to determine the right size for a particu-
lar hardware configuration or workload.

Op Ext4 Ext4(flex_bg)
read 67937 ops 73056 ops
write 98488 ops 104904 ops
create 1086604 ops 1228395 ops
append 31903 ops 33225 ops
delete 59503 ops 70075 ops
Total ops/s 4477.37 ops/s 5026.78 ops/s

Table 2: FFSB small meta-data FibreChannel(1 thread)-
FLEX_BG with 64 block groups

In Table 2, the single threaded results show a 10% over-
all improvement in operations-per-second throughput.
The 16 threaded results in Table 3 show an even better
improvements of 18% over the regular EXT4 allocation.
The results also show that there is 5.6% better scalabil-
ity from 1 to 16 threads when using FLEX_BG grouping
compared to the normal allocation.

Op Ext4 Ext4(flex_bg)
read 96778 ops 119135 ops
write 143744 ops 174409 ops
create 1584997ops 1937469 ops
append 46735 ops 56409 ops
delete 93333 ops 113598 ops
Total ops/s 6514.51 ops/s 7968.24 ops/s

Table 3: FFSB small meta-data (16 threads)- FLEX_BG
with 64 block groups

To see the overall effect of the new allocator on more
complex directory layouts, we used Compilebench[5],
which generates a specified number of Linux kernel tree
like directories with files that represent file sizes in the
actual kernel tree. In table 4, we see the overall results
for the benchmark are better when using grouping and
the new inode allocator. One exception is both the "read
tree" and the "read compiled tree" which show slightly
slower results. It shows that there is still some room for
improvement in the meta-data allocation and the inode
allocator.

Test Ext4 Ext4(flex_bg)
intial create 73.38 MB/s 81.09 MB/s
create total 69.90 MB/s 73.32 MB/s
patch total 21.73 MB/s 21.85 MB/s
compile total 125.52 MB/s 127.26 MB/s
clean total 921.01 MB/s 973.91 MB/s
read tree total 18.73 MB/s 18.43 MB/s
read compiled
tree total

35.59 MB/s 33.91 MB/s

delete tree total 4.18 seconds 3.70 seconds
delete compiled
tree total

4.11 seconds 3.90 seconds

stat tree total 2.68 seconds 2.59 seconds
stat compiled
tree total

3.20 seconds 2.86 seconds

Table 4: Compliebench FiberChannel - FLEX_BG with
64 block groups

4.5 Future work

The concept of grouping meta-data in EXT4 is still in its
infancy and there is still a lot of room for improvement.
We expect to gain performance out of the EXT4 file sys-
tem by looking at the layout of the meta-data. Because
the definition of the FLEX_BG feature removes meta-
data placement restrictions, this allows the implemen-
tation of virtual groups to be fluid without sacrificing
backward compatibility.

Other optimizations that are worth exploring are place-
ment of meta-data in the center of the virtual group in-
stead of the beginning to reduce the worst case seek sce-
nario. Because the current implementation just focuses
on inodes as a way to manipulate the block allocator, fu-
ture implementations could go further still and make the
various block allocators FLEX_BG grouping aware. Be-
cause the right size of groups depends on things related
to the disk itself, making mke2fs smarter to automati-
cally set the virtual group size base on media size, me-
dia type and RAID configuration will help users deploy
this feature.

Shorter-term fixes for removing file system size limita-
tions are in the works. The current code stores the sum
of free blocks and inodes of all the groups that build
a virtual block group in an in-memory data structure.
This means that if the data structure exceeds page size,
the allocation would fail, in which case we revert back
to the old allocator on very large file systems. While
this is a performance feature, storing all this informa-

2008 Linux Symposium, Volume One • 273

tion in memory may be overkill for very large file sys-
tems. Building this on top of an LRU scheme removes
this limitation and saves kernel memory.

5 Conclusion

The main motivation for forking the Ext4 file system
from the Ext3 file system was to break the relatively
small file system size limit. This satisfies the require-
ments for larger files, large I/O, and a large number of
files. To maintain the Ext4 file system as a general pur-
pose file system on a desktop, it is also important to
make sure the Ext4 file system performs better on small
files.

We have discussed the work related to block allocation
and inode allocation in the Ext4 file system and how to
satisfy the conflicting requirements of making Ext4 a
high performance general purpose file system for both
the desktop and the server. The combination of pre-
allocation, delayed allocation, group preallocation, and
multiple block allocation greatly help reduce fragmen-
tation issues occurring on large file allocation and poor
locality issues on small files that have been seen in Ext3
file system. By tightly allocating bitmap and inode ta-
bles close together with FLEX_BG, one could essen-
tially build a large virtual block group that increases the
likelyhood of allocating large chunks of extents and al-
lows Ext4 file system to handles better on meta-data-
intensive workload. Future work, including support for
delayed allocation for ordered mode journalling and on-
line defragmentation, will help to future reduce file frag-
mentation issues.

Acknowledgements

We would like to thank many Ext3/4 developers for
their contribution to Ext4 file system, especially grateful
to Alex Thomas, Theodore Tso, Dave Kleikamp, Eric
Sandeen, Jan Kara, Josef Bacik, Amit Arora, Avantika
Mathur, and Takashi Sato.

We owe thanks to Jean-Noël Cordenner and Valérie Clé-
ment, for their help on performance testing and analysis,
and development and support of the Ext4 file system.

We owe thanks to Eric Sandeen for his careful review
on an earlier draft of this manuscript.

Legal Statement

Copyright c© 2008 IBM.
Copyright c© 2008 Sun Microsystems, Inc.

This work represents the view of the authors and does not
necessarily represent the view of IBM or Sun Microsystems.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] BEST, S. JFS overview
http://jfs.sourceforge.net/
project/pub/jfs.pdf.

[2] MATHUR, A., CAO, M., BHATTACHARYA, S.,
DILGER, A., TOMAS, A AND VIVER, L. The
New ext4 filesystem: current status and future
plans. In Ottawa Linux Symposium (2007).
http://ols.108.redhat.com/2007/
Reprints/mathur-Reprint.pdf

[3] BRYANT, R., FORESTER, R., HAWKES, J.
Filesystem Performance and Scalability in Linux
2.4.17 . In USENIX Annual Technical Conference,
Freenix Track (2002). http://www.usenix.
org/event/usenix02/tech/freenix/
full_papers/bryant/bryant_html/

[4] Ffsb project on sourceforge. Tech. rep. http:
//sourceforge.net/projects/ffsb.

[5] Compilebench Tech. rep. http://oss.
oracle.com/~mason/compilebench.

[6] COBERT, J. The Orlov block allocator.
http://lwn.net/Articles/14633/.

274 • Ext4 block and inode allocator improvements

Bazillions of Pages
The Future of Memory Management under Linux

Christoph Lameter
Silicon Graphics, Inc.

christoph@lameter.com

Abstract

A new computer system running Linux is likely
equipped with at least 4GB of memory. The Linux VM
manages this memory in 4KB chunks. So the Linux
VM has to manage 1 million memory chunks. There
are some people who already run configurations with
tens or hundreds of gigabytes of memory. As time pro-
gresses these large memory sizes are going to become
more and more common. The Linux VM will have to
manage more and more pages. For effective memory
reclaim these pages may have to be repeatedly scanned
in order to determine the least recently used pages.

It is not surprising that the VM starts to struggling with
the increasing amount of work. At 8 to 16GB one can
observe live lock situations with certain loads. A num-
ber of possible solutions to this problem are considered:
One is Rik van Riel’s work of optimizing the way pages
are handled in the VM, another is Andrea Arcangeli’s
increase in the base page size. And yet another is to
make the page size dynamic in order to allow subsys-
tems to choose the page size that is most beneficial for a
given load.

1 Introduction

1.1 4 megabytes are lots of memory

My first Linux installation was done using a set of floppy
disks containing Slackware (1.0.4) and a strange kernel
version that was numbered 0.99 followed by some trail-
ing letters and numbers that I cannot remember. It was
1993 and I had to download 12 disk images through a
dial up line which took almost a week. The download
was using an advanced file transfer protocol named Z-
modem. The Slackware software was installed on a ma-
chine that had a 386SX processor (no floating point unit)

and 4 megabytes of memory. The machine was already
a big step forward from my first computer, a PET 2001
(Commodore Business Machines) that I gained access
to in 1978. The PET had 4KB of memory. The 386SX
machine was great and I thought really had plenty of
memory especially since MS-DOS could only use 640
kilobytes.

1.2 More and more memory

Fast forward to today and now I work at Silicon Graph-
ics on making Linux run well on Supercomputers. This
adds another strange twist since I get to work with ma-
chines that have thousands of times more memory than
an average computer. SGI has customers with machines
equipped with several petabytes of RAM. And given
the way the capacities develop: It may take less than a
decade until we get to machines that have memory sizes
in the exabyte range.1

So there is the chance of seeing how Linux handles su-
per large memory sizes years before they are available
in smaller computers for everyone. The time delay is
about a decade or so before these become available in
an average computer. Linux servers with one terabyte of
RAM will likely become available around 2010, mem-
ory sizes of a petabyte may be possible by 2018. Ma-
chines like that will also have a couple of hundred pro-
cessors (cores?) accessing that memory.2

I see how Linux runs with large memory sizes years be-
fore the same memory sizes are available to the general
public. If there is a hard issue related to memory then
it frequently ends up on my desk. The advantage for
Linux is that we have a chance to prepare the Linux ker-
nel for the upcoming memory issues years before they
become a problem for the general users of Linux.

1One exabyte has a million gigabytes and a petabyte a thousand
gigabytes.

2See Intel’s plans for large numbers of cores[6].

• 275 •

276 • Bazillions of Pages

One of the areas of concern is that memory sizes keep
growing while processor speeds and memory access
speeds are mostly stagnating. Memory management in
Linux occurs by managing a small piece of meta data
(the struct page) for each 4KB chunk of memory
(a page.) Whenever the kernel needs to perform I/O,
when a page fault occurs, or when the kernel is han-
dling memory in some other way then the meta data
in struct page is used for synchronization and for
tracking the state of the page.

2 The memory problem

The available computing resources to manage the meta
data in the struct page are shrinking because mem-
ory sizes grow faster than processing speeds. Each new
generation of hardware grows the number of 4KB pages
that have to be managed. The VM therefore has to deal
with an ever growing number of pages (bazillions of
pages because bazillions is an undetermined large num-
ber.) It looks like the trend will continue for the foresee-
able future.3

As a result we see critical OS activities like memory re-
claim taking a larger and larger portion of computing
resources. For memory reclaim, the page expiration is
based on examining all the the meta data structures (in
struct page) at some point. I/O bottlenecks also
develop because each 4KB page has to be handled sep-
arately for DMA transfers.4

The larger the dataset that is streamed through the sys-
tem becomes, the larger the scaling issues that we will
encounter due to the meta data that has to be kept for
each 4KB page that is processed by the I/O layer.

Table 1 shows the development of memory sizes, pro-
cessor capabilities and memory access speed for an av-
erage computer (simplified.) The number of pages in-
creases faster than the number of cores and the speed of
memory. Various hardware tricks are used in memory
subsystems to improve speed because we cannot change

3Maybe there will be a plateau when the limits of what is ad-
dressable within a 64 bit address space (at 8 exabytes) is reached.
Not likely to occur until 2024 or so for the average Linux server but
I would expect memory sizes like that to be reached by 2014 in the
supercomputer area.

4Supercomputer I/O is expected to be able to saturate the links
to the storage subsystem which contains large RAID configurations
(thousands of disks.) Being able to just saturate the bandwidth of a
single hard disk is certainly not acceptable.

Year Mem Pages ClckFreq Cores MSpeed
1993 4MB 1024 16Mhz 1 70ns
2001 32MB 8192 300Mhz 1 60ns
2005 1GB 256000 1-2 Ghz 1 55ns
2008 4GB 1 million 2-3Ghz 2 50ns
2010? 64GB 16 million 2-3Ghz 4-8 45ns?
2020? 128TB 32 billion 3-4Ghz 128 40ns?

Table 1: Memory sizes and processors

the basic physical limitations of how DRAM works.
Many of the optimizations are based on the assumption
of linear memory accesses, other optimizations are in-
creasing the number of bits that can be fetched simul-
taneously. Processors have to manage larger and larger
CPU caches in multiple layers (L1, L2, L3, maybe L4
soon?) to avoid the penalty of memory accesses. Mem-
ory accesses become more expensive as the distance be-
tween the processor and memory increases. The opti-
mizations make a relatively small amount of memory
accessible without long latencies and favor linear ac-
cesses to memory.

In such an environment memory locality becomes an
important consideration for improving the speed of the
computer system as a whole. The management of ever
larger lists of struct page referring to pages which
over time become distributed seemingly randomly all
over the memory of the system does not have a bene-
ficial effect on performance.

The ratio of cache to memory size is also falling follow-
ing a similar trajectory. The cost of a random memory
access will become more and more expensive over time
since the chance of hitting an object in the CPU cache
by chance is reduced.

The situation for Supercomputer configurations is worse
(the following data is for SGI Altix 3700/4700) because
the memory sizes are much larger while the processor
and memory are similar to other contemporary hard-
ware. On the other hand the number of processors is
larger but the number of processors also grows slower
than the total amount of memory. There is the additional
complexity of scaling the synchronization methods:

Table 2 shows the development of the sizes for Super-
computers. To some extent the massive amount of page
meta data was reduced on Itanium by increasing the
page size. A 16KB page size means that there are only
one fourth of the pages to worry about. The I/O sub-
systems can perform linear DMA transfers for 16KB

2008 Linux Symposium, Volume One • 277

Year Mem Procs PageSize Pages
2004 8TB 512 16K (ia64) 512 million
2006 16TB 1024 16K 1 billion
2007 4PB 2048 16k 256 billion
2008 4PB 4096 64k 64 billion
2008 16TB 4096 4k(x86) 4 billion
2014? 1EB? 16384? 4k(x86) 256 trillion

Table 2: Supercomputer memory sizes and processors

chunks which reduces the number of scatter gather en-
tries that have to be managed by the storage subsystem.
The increase to a page size of 64KB in 2008 decreases
the management overhead again but the overall number
of pages still stays comparatively high. We noticed that
configurations with over 2 thousand processors only run
reliably with 64KB pages. Otherwise the VM regularly
gets into fits while handling large queues of pages even
if running a HPC load that requires minimal I/O.

The successor to the Altix series will no longer be based
on Itanium processors but on x86 architecture. We can
no longer utilize large page sizes, but have to use the
only page size that x86 supports which is 4KB. Ironi-
cally these systems are intended to support even larger
memory sizes but the current physical addressing capa-
bilities of the Xeon line limit the amount of physical
memory that a single Linux instance will be able to ac-
cess. The address size limitations effectively reduce the
number of pages to be managed by a Linux instance but
will force the construction of large shared memory ma-
chines running a number of Linux instances that each
live in their own 16TB memory segment. Then we need
specialized hardware that bridges between the Linux in-
stances. Not a nice picture but the limit on the physical
memory that can be addressed by a processor also limits
the number of page structs that have to be managed by
the kernel.

The address space sizes are likely to be increased as pro-
cessor development continues. The future generations
of processor will then be able to reach similar memory
capacities as the Itanium based systems are capable of
today. The number of page structs that have to be man-
aged by the VM makes a jump of several orders for sim-
ilar memory sizes on Itanium versus Xeon. There are at
least 4 times more page structs compared to an Itanium
system with a 16k page size or even 16 times more page
structs for systems currently running 64KB page size.

2.1 The VM heart attack

Let’s consider a typical scenario that can lead to a sys-
tem appearing to live lock. The more processors and
memory are involved, the more likely these are to occur.

The Linux VM uses lists of pages in order to determine
which 4KB pages contain information that is no longer
worth keeping in memory. These lists establish the least
used memory in the system and then the Linux VM can
reclaim that memory for other uses. For each page it
has to be determined if it was used since the last scan by
checking a referenced bit. The VM must therefore visit
all pages regularly in order to correctly expire pages
from memory. The more memory there is, the larger
these lists become. The more allocations are performed,
the more aggressive the VM has to scan and then trim
pages via these lists.

As long as there is no lock contention and reclaim passes
only take a small amount of time everything will be
okay. The system is not under much memory pressure
and has a reasonable chance to find freeable memory
with short scans.

If memory allocations continue to occur and multiple
processes start to expire memory then extensive scan-
ning may result. Since we keep on adding more pro-
cessors (due to the increasing use of multi-core technol-
ogy) lock contention may also result because multiple
processors attempt to reclaim memory simultaneously
from the same memory range. Each has to wait for the
lock in order to be allowed to scan the list. These lists
are protected by spin locks and so other processors are
waiting by spinning on the lock. The more processors
the more likely live lock scenarios can develop due to
starvation or simple slowdown because processors have
to wait for locks that are held for a long time.

On NUMA it is typical that things take a turn for the
worse when direct reclaim is beginning to occur concur-
rently. At that point the VM is walking down potentially
long zone lists. Most of those are remote and memory
accesses are especially expensive. If concurrent reclaim
occurs within the same zone from multiple remote pro-
cessors then excessive latencies will slow reclaim down
further. At the end a majority of the processors may
be in reclaim and only minimal processor time may be-
come available for user processes to make progress with
data processing.

278 • Bazillions of Pages

2.2 Randomized memory references

The larger the memory the higher the chances of TLB
misses which may also slow the machine. TLBs can
map 4KB or 2MB sections of memory. The number of
TLBs that a processor can cache is limited. If the pro-
cessor can handle 512 4KB TLB entries (like in the up-
coming Nehalem processor) then the processor can ac-
cess only 2M of memory without a TLB miss. The num-
ber of supported TLBs for 2 megabyte entries is only 64
which allows the access to 128 megabyte of memory.
TLB misses can be fast if the page table entries are held
in the processor cache but a cache miss of the page table
entry can introduce significant latencies, and the larger
the amount of memory the higher the chance of these
misses.

With increased memory the accesses to data locations
in memory will be more sparse if data is not allocated
closely together. It is therefore becoming expensive to
follow pointers to memory that has not recently been ac-
cessed, and TLB misses become more and more likely
to occur. There is the increasing chance of CPU cache
misses, and the memory architectures are optimized
for neighboring memory accesses which cannot handle
sparse memory accesses effectively.

There are therefore multiple reasons why it is advanta-
geous to use memory that is near other memory that was
recently accessed. However, the arrays of pointers to
struct page that we currently use for various pur-
poses in the VM have a problem here because they have
no locality. 5 Pointers may go to arbitrary pages all over
memory. For all practical purposes these pointer lists
may degenerate to accesses that are seemingly random,
defeating the highly developed logic put in the proces-
sor to prefetch memory. In the worst case these lists may
cause a TLB miss for each page struct on the list.

2.3 I/O fragmentation

The result of degeneration of page lists to access to ran-
dom locations in memory has another important conse-
quence for I/O. The pages that are sent down to the I/O
subsystem cannot be coalesced into larger linear chunks

5The situation for page structs is still better than references to
objects in the pages because page structs are placed in a special
memmap area whereas other objects can be placed anywhere in
memory.

(which is typically possible for some time after boot be-
cause pages that follow each other are allocated in or-
der.) And therefore the I/O devices have to do I/O via
scatter/gather entries to bazillion of pages in seemingly
random locations in memory. I/O devices suitable for
Linux must support an ever increasing number of scat-
ter gather entries. The scatter gather list complexity be-
comes a potential I/O performance bottleneck.

3 Solutions for handling large amounts of
memory

The main problem here is that the VM has to sift through
too much meta data for key operations like memory allo-
cation, reclaim, and I/O. Plus the meta data is seemingly
randomly distributed over all of memory reducing opti-
mizations that the memory subsystem could make. The
following solutions are focusing on reducing the scan-
ning effort, reducing the amount of memory references
for key VM operations, and increasing the locality of ac-
cess in order for CPU caches, TLBs, and memory sub-
systems to be able to optimize memory accesses.

3.1 Reclaim improvements

One approach is to look at the problems that are emerg-
ing with memory reclaim in the VM. Rik van Riel has,
over the last years, investigated a variety of methods to
improve memory reclaim. These methods result in a
better determination of which pages to evict from mem-
ory utilizing new reclaim algorithms developed an aca-
demic setting. Among them are: ARC, ClockPro, CAR,
and LIRS. 6 These improvements would allow faster
expiration of pages by reducing scan time and allow a
more accurate prediction of pages that may be needed
in the future.

The other aspect of Rik and other developers work on
reclaim is that methods are developed to exclude pages
that are unreclaimable from the reclaim lists and lists
are created that contain easily reclaimable pages. These
methods reduce the scanning overhead and may reduce
the problems that we currently see. They are particularly
good for specialized loads that result in large numbers of
unreclaimable pages. The current reclaim in the Linux
VM has to scan unreclaimable pages again and again
which is obviously good to avoid.

6See http://linux-mm.org for more information about these ap-
proaches.

2008 Linux Symposium, Volume One • 279

These are interesting approaches that enhance page re-
claim and allow us to manage even more page structs in
a better way. However, they do not address the funda-
mental issue that there is too much meta data for the VM
to handle. The advanced reclaim methods still require
eventually scanning through all the pages. The num-
ber of pages is not reduced but keeps on growing while
we make minimal progress in getting these advanced re-
claim algorithms working in the Linux VM.

3.2 Increasing the default page size

The solution that we have adopted for Itanium is to
change the default page size. On Itanium this is sup-
ported by the hardware, so it’s easy to do and the in-
crease in page size has a significant effect in reducing
the VM overhead for those large machines.

The x86 platform only supports 4KB and 2MB (64-bit)
page table entries. We could work with that and increase
the default page size by installing multiple 4KB page
table entries in order to simulate e.g. a 16KB or 64KB
“page” like is done on IA64.

But it is not clear that one actually would want a larger
default page size. The 4KB page size is appropriate for
the executables and small files that are needed by the
operating system. The main use of larger sized pages
are for applications that either perform a large amount
of I/O (databases, enterprise applications) or need large
amounts of memory (HPC applications.)

The binary format is also affected. Current binaries are
formatted to have data aligned on 4KB boundaries. If
that is no longer the case then we either have to change
the binary format or provide some sort of layer that al-
lows 4KB aligned access although the default page size
is larger. The easy solution out of that may be to sim-
ply redefine the binary format and rebuild a completely
new distribution. But that would require some work on
binutils, the linker, and the loader.

Another idea that avoids multiple 4KB PTEs per large
page is to set the default page size to the next higher
page size which is 2 megabytes on x86. Essentially we
are using a PMD for a PTE. Such a specialized version
of Linux could perhaps run as a guest inside a virtual-
ized environment (KVM, Lguest) in order to allow the
special HPC or Enterprise class applications to run. The
applications would have to be compiled for an environ-
ment that has a 2MB base page size and we would need

a minimal distribution to create essential binaries that
are necessary for the application.

3.3 Optional Support for larger page sizes

Optional support for larger page sizes means that the
binary format can be left intact. User space works as
it always has. Without enabling additional options the
behavior of the kernel does not change. Optional large
page size support means that all existing kernel APIs
to user space stay as they are. Large page support can
be switched on for special purposes by–for example–
formatting a disk with a larger block size than 4KB. Or
one could create a pseudo file system in memory with
a larger page size that is then mapped into a processes
memory.

However, larger pages means that the VM must now
support more frequent allocations of contiguous mem-
ory larger than a 4KB. Requests for contiguous memory
may vary in size. Memory fragmentation in Linux may
increase.

Linux already has fragmentation avoidance logic im-
plemented by Mel Gorman and one active defragmen-
tation method (lumpy reclaim.) Both are measures to
keep contiguous memory available. Both increase the
chance of being able to obtain contiguous memory be-
yond the size of a single page but neither can guarantee
that a large contiguous memory chunk is available at any
point in time. Any user of contiguous memory beyond
4KB must implement fallback measures that kick in if
large contiguous memory is not available. In fallback
we loose the localization of memory accesses and in-
crease the cache footprint. Fallback usually is realized
by managing lists of small 4KB pages.

These fallbacks are currently rare but with the increase
of demand for larger allocations the fallbacks may be-
come more frequent. Additional defragmentation mea-
sures could be needed to produce more contiguous
memory to avoid fallbacks to lists of pages.

4 Virtualizable Compound Pages

Virtualizable Compound Pages are a first step to sup-
port allocations of varying sizes of larger pages in the
kernel. An allocation request for a Virtualizable Com-
pound Page will first attempt to allocate linear physical

280 • Bazillions of Pages

memory of the requested size (a real Compound Page.)
Typically these allocations will be successful resulting
in a large page useful to allow the localization of multi-
ple objects, the use of large stacks, or temporary storage
for various purposes.

If the page allocator does not have sufficient linear mem-
ory available then the fallback logic will allocate a series
of 4KB pages and use the vmalloc functionality to allow
the memory provided to be used as virtually contiguous
memory. This increases the overhead because the pro-
cessor needs to use a page table to look up the memory
location of each 4KB chunk but the page table handling
logic is usually integrated in the processor and therefore
fast and entries are cached. However, memory may be
physically dispersed which means the optimizations for
linear access of the memory subsystem and I/O subsys-
tems may not be triggered. An array of pointers to the
pages has to be maintained as well.

Virtualizable Compound Pages have the disadvantage
that the user of these pages must always be aware that
the linear memory that was provided by the allocator
may be virtual and that actual physical memory may not
be contiguous. If for example, a device needs to operate
on the memory of a Virtualized Compound Page then
the device needs to perform scatter gather operations to
the physical pages that constitute the Virtualized Com-
pound Page.

Additional problems result if the processor needs to
have TLB entries loaded via a processor trap (like on
IA64.) In that case access to the virtualized memory
requires the ability to handle the faults in the contexts
that the virtualized compound is used. In the case of
IA64 the use of Virtualizable Compounds for stacks is
impossible because the trap mechanism itself depends
on the availability of the stack. If the processor imple-
ments TLB lookups in hardware (like x86) then the use
of Virtualizable Compounds for stack areas is possible.

Virtualizable Compound Pages allow to optimize two
typical usage scenarios in the kernel:

4.1 Avoid vmalloc

The use of Virtualizable Compound Pages allows the re-
duction of the use of vmalloc’ed memory. If a Virtual-
izable Compound is used instead of vmalloc then the
page allocator will typically be able to provide a con-
tiguous physical memory area. No vmalloc is necessary

unless memory is significantly fragmented and the an-
tifragmentation measures have not produced enough lin-
ear memory. Therefore overall vmalloc use of the kernel
is reduced. The need to go through a page table can be
avoided and access to memory becomes more effective.

4.2 Fallback for higher order allocations

The other use of Virtual Compounds is to avoid higher
order allocations that may fail. If higher order allocation
requests are converted to Virtual Compounds then the
kernel code can transparently handle situations in which
memory is fragmented and no higher order pages are
available. A typical use case are large buffers and stacks
(would e.g. allow the use of significantly larger stack
areas than currently possible.)

5 Variable order slab caches

It is easy to make slab allocations use various sizes of
pages if the maximum number of objects is stored with
each page. A variable order slab cache therefore does
not need virtual mappings like provided through Virtu-
alizable Compound Pages. Slab allocations can then be
tuned to use more or less large pages depending on their
availability. Allocation sizes can be cut back to lower
sizes if memory fragmentation demands this. Alloca-
tions of large units that fail can be retried with a smaller
allocation unit. This means that in extreme cases the
effectiveness of the antifragmentation and defragmenta-
tion methods determines the extent to which large allo-
cation units can be used. Therefore the speed and the
locality of slab object allocations may depend on effec-
tive defragmentation.

The size of the allocation units also increases the like-
lihood that slab objects are allocated near one another.
The resulting object locality reduces the TLB pressure
commonly coming from pointer chasing because objects
are distributed all over memory. An optimal configura-
tion can be obtained if the allocation unit is made to
fit the TLB size used for the kernel data segment. On
x86_64 this is 2 megabytes, so if the allocation unit is
set to 2 megabytes then most objects taken out from a
given slab on one processor will come from the same
2 megabyte area that can be covered with a single TLB
entry.

A larger allocation unit is particularly useful for slab
caches with larger object sizes (1–3 kilobyte objects)

2008 Linux Symposium, Volume One • 281

because a larger allocation allows more effective place-
ment with less wasted memory. Objects may not fit well
into smaller sized allocations. In addition to more effi-
cient placement, allocation requests are also able to use
the fast path for a higher percentage of allocations. As a
result, calls to the page allocator become less frequent.

The allocation using varying page sizes puts more stress
on the antifragmentation and defragmentation methods
of the page allocator. If a high number of allocations
fail and requires a retry with a smaller allocation size
then this method is not effective and it would be better
to switch back to smaller allocation units.

6 Larger I/O buffers

One of the limitations under which Linux file systems
suffer is that I/O must be managed in 4KB chunks be-
cause the maximum buffer size is constrained by the
page size of the operating system. This size is 4KB on
x86 and as a result file systems are basically on their
own if they want to manage data in larger chunks of
memory. Some file systems implement a layer that al-
lows the management of larger buffers (as in XFS) us-
ing virtualized mapping which means managing a list
of pages for each larger buffer. The additional overhead
reduces the potential performance gain and results in po-
tentially non localized memory accesses.

The small I/O buffers also limit the amount of contigu-
ous I/O that can be reliably submitted via DMA trans-
fers to devices. Small 4KB chunks of memory require
the management of large scatter gather lists which may
be a limiting factor in the I/O throughput of a device.

Some file systems (like the ext file systems) are limited
in the size of the volumes they currently support be-
cause they track allocations in page size chunks. If the
chunk size can be increased through the use of larger I/O
buffers then the size of volumes can be increased. The
meta data that has to be managed for a given volume
size is reduced significantly which accelerates the oper-
ation of the file system. The scaling possible with larger
buffers can breathe new life into old file systems that can
now overcome their size and performance limitations.

Large page support requires modification to the way that
page size is handled in functions that provide page cache
operations. The page size is stored in the mapping struc-
ture that exists for each opened file in the system. The

mapping structure must then be consulted during each
page cache operation to determine the block size to use
for a particular operation. The page size or buffer size
can then be configured dynamically for each open file.

However, the use of large pages should not change the
user API. In particular mmap semantics that are exposed
to user space should not change. It needs to be possible
to continue the mapping in 4KB chunks. This becomes
possible if we allow mapping of 4KB segments of larger
pages into an address space. The semantics of mmap are
then preserved. One has to realize though that state for
multiple of these 4KB chunks is kept in a single page
struct. Only the large page as a whole can be dirtied or
locked. Write and read operations must be performed
using the block size set in the mapping.

Typically large pages up to 64KB can be supported by
Linux file systems since the file systems already sup-
port platforms (IA64, Powerpc) that allow a 64KB base
page size. The file system meta data structures are there-
fore already prepared to support block sizes up to 64KB.
Support for larger sizes will require modifications to the
file systems. The ability to set the page size per map-
ping may allow the design of entirely new file systems
with support for a block size that can be configured per
directory or per file.

The changes necessary for large page support are
typically transparent for file systems. The set_
blocksize() function will allow setting larger sizes
than 4KB pages which will affect the raw block device.

Fallback occurs using Virtualizable Compound Pages.
File systems can access the buffer data via linear access
through the page tables in the fallback case. However
devices may have to check if a virtually contiguous page
is passed to the driver and then set up DMA with a scat-
ter gather list of the physical pages that constitute the
Virtualized Compound Page.

7 Memory Fragmentation

Memory fragmentation has been an issue for a long time
for the Linux kernel. Over time the 4KB pages used for
processes tend to get randomly distributed over mem-
ory which also has the effect of making allocations of
large contiguous chunks of memory impossible. There
is no problem as long as only 4KB page allocations are
performed because memory of the same size is freed

282 • Bazillions of Pages

and allocated. However, larger allocations than 4KB
have always been performed for the stacks on x86 (8KB,
so two contiguous pages are required) and for certain
slab caches where objects would have caused too much
memory wastage if they would have been placed in a
4KB page. The risk of failing such an allocation was
judged to be negligible. If such an 8KB allocation can-
not be satisfied then the page allocator will continue re-
claiming until two consecutive pages are available.

The larger the chunk of memory becomes, the larger the
risk becomes that an allocation cannot be satisfied. The
page allocator will typically attempt to continue page re-
claim in order to generate contiguous pages for alloca-
tions up to order 3 (32KB.) Even larger allocations will
fail after a single reclaim pass that failed to generate a
sufficiently sized page.

7.1 Antifragmentation Measures

Antifragmentation measures avoid fragmentation by
classifying the allocation according to object lifetimes
and reclaimability. One result of antifragmentation mea-
sures is that reclaimable pages are allocated in special
memory areas. A series of neighboring pages can then
be reclaimed to obtain large contiguous regions. So
there is some level of guarantee that reclaim will be able
to open up contiguous areas of memory because there
are no unreclaimable pages in the way.

Antifragmentation measures were added to support al-
location of huge pages even after the system has been
running for awhile and after system memory has be-
come fragmented. Huge pages are becoming more im-
portant for applications since they allow the localization
of memory accesses and the reduction of TLB pressure
by the use of a single TLB entry for 2MB of memory.
Huge pages are a crude way to reach optimal speed of a
machine as long as we have no large page support in the
VM.

Problems still exist with allocations that are marked
unmovable. These allocations are mostly page tables
and certain slab allocations. The situation could be im-
proved by making page table pages movable.7 The slab
defrag functionality allows making slab objects movable
but a support function must be provided for each slab
cache to provide such functionality for each slab. A sig-
nificant reduction of the number of unmovable alloca-
tions would be possible with these two measures.

7See Ross Biro’s work on relocatable page table pages.

Somewhat fewer problems exist with allocations
marked reclaimable. Reclaimable allocations are
mainly used for slab allocations that can be reclaimed
using shrinkers. The slab defrag measures add methods
to these slabs that allow the targeted reclaim of objects
in these caches. So these are already movable to some
extend and the movability of these objects will increase
as the reclaim methods for reclaimable slabs mature.

Antifragmentation measures cannot guarantee the avail-
ability of larger allocations. Antifragmentation mea-
sures only increase the likelihood that a large alloca-
tion will be successful. In the worst case the situation
can degenerate into a state in which the categorization
of allocations fails. Antifragmentation will never move
pages but only sort the allocations according to its re-
claimability which means that antifragmentation can be
supported with minimal overhead.

7.2 Defragmentation

Defragmentation measures move pages or target specific
pages that are in the way of generating a large contigu-
ous section of memory. Defragmentation therefore in-
volves more overhead than antifragmentation measures.

The one defragmentation method currently imple-
mented in the kernel is lumpy reclaim. Lumpy reclaim
works with movable pages, during reclaim we check
if the neighboring pages could be freed. The free-
ing of adjacent pages then allows the merging of free
pages to large contiguous chunks that could be used for
large page allocations for the page cache, etc. How-
ever, lumpy reclaim does not apply to unmovable al-
locations and reclaimable allocations. Some additional
work could make lumpy reclaim like methods work for
reclaimable allocations.

Mel Gorman has a patch set that implements full fledged
defragmentation. Defragmentation has much in com-
mon with memory hot plug. In both cases an area of
memory is scanned and memory is then moved else-
where. We could have a defragmentation solution in the
kernel if we wanted to or needed to have such support.

8 The need for a better page allocator

The development of new functionality in the page allo-
cator has been slow since the merge of the antifragmen-
tation measures which was a controversial decision that
took years to make.

2008 Linux Symposium, Volume One • 283

There are a number of known problems:

8.1 Slow 4KB page allocations

The current buffering mechanism for 4KB pages (which
one would expect to be of superior speed given the im-
portance of 4KB allocations to the VM) is suffering
from bloat and is inferior to the allocation speed of the
slab allocators by some orders of magnitude. The result
is that 4KB allocations frequently use the slab allocators
instead of the page allocator. Various subsystems com-
pensate by having their own buffering schemes to avoid
the page allocator. All of that code could be avoided if
the page allocator fast path could be made competitive
in performance to what the slab allocators can do.

Ironically 4KB page allocations are often about 5%
slower (uncontended case) than 8KB sized allocations.
8KB allocations bypass the 4KB buffering mechanism
and therefore can avoid the list management overhead.
Performance wise it seems to be best for a subsystem to
allocate a large chunk of memory from the page alloca-
tor and then cut it into 4KB pieces on its own.

8.2 Issues with lock contention from multiple pro-
cessors

Higher order allocations have a disadvantage: Access to
the buddy free lists requires taking a zone lock which
is—for most systems—a global lock. So multiple pro-
cessors cannot simultaneously allocate memory from
the page allocator. For 4KB sizes we have a buffering
mechanism that avoids the locking (but creates overhead
that hurts elsewhere.)

If multiple processors allocate memory continuously
from the page allocator then we may end up with bounc-
ing cache lines for the zone locks. This contention can
even be observed with 4KB allocations if they are fre-
quent because even the 4KB buffering scheme needs to
go to the free lists once in a while to check out a new
batch of pages.

8.3 More effective support for order N allocations

If the page allocator is presented with varying orders
of allocations then it would be best if these would be
satisfied from several different areas. If allocations of
the same order came from the same memory area then

fragmentation would be reduced. Such a scheme is an
extension of the antifragmentation method of sorting the
allocations according to their lifetime. We would also
sort them by size.

8.4 Scaling memory reclaim

One important aspect of larger page support is that it
addresses the reclaim issue. If the pages on the reclaim
lists have a larger size then there are fewer of these pages
for a given amount of memory. The number of page
structs that have to be processed is reduced and therefore
reclaim works in a more effective way.

Reclaim is currently problematic on a multitude of plat-
forms. Even desktop loads can start to suffer from re-
claim scaling if applications are pushed into heavy re-
claim. Swapping of large applications can make the sys-
tem feel sluggish permanently. One wonders if it would
not be better to simply fail if there is not enough mem-
ory rather than have the system become so sluggish that
it takes a long time even if one attempts to simply reboot
the system to get rid of the memory reclaim problems.8

In the HPC area it is already fairly common to abort an
application if heavy reclaim occurs because the applica-
tions becomes unacceptably slow.

9 Transparent Huge and Giant page support

Support for varying sizes of pages for the page cache
would allow transparent support for huge pages with
minimal effort. Most of the page cache functions could
be used directly by the huge page subsystem. The VM
could be optimized to install PMDs instead of PTEs if
the PTEs would fill the complete page table page at the
lowest layer.

Ultimately it would be possible to get rid of the cur-
rent huge page support. A small skeleton could be re-
tained for backward compatibility. Having transparent
huge page support would clean up special casing in the
VM and make it easy for applications to use huge pages
for various purposes without the use of special libraries.

Giant pages are 1GB sized mappings that are currently
only supported by the most recent AMD processors.
Transparent huge page support could be extended to

8The problem is in no way unique to Linux

284 • Bazillions of Pages

also support the 1GB PUDs that these processors pro-
vide without the need to add yet another subsystem with
special reservations. 1GB support would be a way to ef-
fectively manage memory for applications that may use
several terabytes of memory.

10 Conclusion

Memory sizes are going to continue to increase, while
processor speeds will continue to not make much head-
way. Further parallelization will occur by processor
manufacturers increasing symmetric (multi core) and
asymmetric (coprocessors) parallelism on the die.

Concurrency issues will therefore continue to dominate
the development of operating systems. It is likely that
we will see a ratio of over 4GB of memory per core.
A single processor may have to handle about 1 million
pages for reclaim or for I/O if we stay with the current
scheme of handling memory in the VM. We will have to
deal with this situation in some way. Either we need to
develop ways to handle bazillions of pages or we need
to reduce their number. However, optimal performance
will only be reached through an effective reduction of
the number of entities that the kernel has to handle.

The trend to processor specialization will continue since
binding a task to a processor will allow effective use
of the CPU caches and speed the operation of actions
necessary repeatedly. This means that limiting I/O sub-
mission for a given cached dataset to a few processors
makes sense. Also it may be useful to dedicate certain
processors to the operating system for reclaim, defrag-
mentation and similar memory intensive operations that
would contaminate the caches of other processors exe-
cuting mostly in user context.

11 References

References

[1] Brim, Michael J. & James D. Speirs, The Processor-
Memory Gap: Current and Future Memory Ar-
chitectures. 2002. http://pages.cs.wisc.edu/
~mjbrim/personal/classes/752/report.ps.

[2] Mahapatra, Nihar R. & Balakrishna Venkatrao, “The
Processor-Memory Bottleneck: Problems and Solutions.”
Crossroads, Volume 6, Issue 3es. ACM: New York, 1999.

[3] Marathe, Jaydeep P. METRICS: Tracking Mem-
ory Bottlenecks via Binary Rewriting. Master
Thesis: North Carolina University, 2003. http:
//www.lib.ncsu.edu/theses/available/
etd-07132003-161530/unrestricted/etd.
pdf.

[4] “Optoelectronic Integration Overcoming Processor
Bottlenecks” in Science Daily, August 4th, 2005.
http://www.sciencedaily.com/releases/
2005/08/050804053723.htm.

[5] Sutter, Herb, “The Free Lunch is Over: A Fundamental
Turn toward Concurrency in Software.” Dr. Dobb’s Jour-
nal, (30)3, March 2005.

[6] Bokar, Shekhar, Pradeep Dubey, Kevin Kahn, David
Kuck, Hans Mulder, Steve Pawlowski and Justin Rattner
”Platform 2015: Intel Processor and Platform Evolution
for the Next Decade.” Technology Intel Magazine, Intel
Corporation: March 2005.

