
Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada

Contents

TCP Connection Passing 9

Werner Almesberger

Cooperative Linux 23

Dan Aloni

Build your own Wireless Access Point 33

Erik Andersen

Run-time testing of LSB Applications 41

Stuart Anderson

Linux Block IO—present and future 51

Jens Axboe

Linux AIO Performance and Robustness for Enterprise Workloads 63

Suparna Bhattacharya

Methods to Improve Bootup Time in Linux 79

Tim R. Bird

Linux on NUMA Systems 89

Martin J. Bligh

Improving Kernel Performance by Unmapping the Page Cache 103

James Bottomley

Linux Virtualization on IBM Power5 Systems 113

Dave Boutcher

The State of ACPI in the Linux Kernel 121

Len Brown

Scaling Linux to the Extreme 133

Ray Bryant

Get More Device Drivers out of the Kernel! 149

Peter Chubb

Big Servers—2.6 compared to 2.4 163

Wim A. Coekaerts

Multi-processor and Frequency Scaling 167

Paul Devriendt

Dynamic Kernel Module Support: From Theory to Practice 187

Matt Domsch

e100 weight reduction program 203

Scott Feldman

NFSv4 and rpcsec_gss for linux 207

J. Bruce Fields

Comparing and Evaluating epoll, select, and poll Event Mechanisms 215

Louay Gammo

The (Re)Architecture of the X Window System 227

James Gettys

IA64-Linux perf tools for IO dorks 239

Grant Grundler

Carrier Grade Server Features in the Linux Kernel 255

Ibrahim Haddad

Demands, Solutions, and Improvements for Linux Filesystem Security 269

Michael Austin Halcrow

Hotplug Memory and the Linux VM 287

Dave Hansen

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

8 • Linux Symposium 2004 • Volume One

TCP Connection Passing

Werner Almesberger
werner@almesberger.net

Abstract

tcpcp is an experimental mechanism that al-
lows cooperating applications to pass owner-
ship of TCP connection endpoints from one
Linux host to another one. tcpcp can be used
between hosts using different architectures and
does not need the other endpoint of the con-
nection to cooperate (or even to know what’s
going on).

1 Introduction

When designing systems for load-balancing,
process migration, or fail-over, there is even-
tually the point where one would like to be
able to “move” a socket from one machine to
another one, without losing the connection on
that socket, similar to file descriptor passing on
a single host. Such a move operation usually
involves at least three elements:

1. Moving any application space state re-
lated to the connection to the new owner.
E.g. in the case of a Web server serv-
ing large static files, the application state
could simply be the file name and the cur-
rent position in the file.

2. Making sure that packets belonging to the
connection are sent to the new owner of
the socket. Normally this also means that
the previous owner should no longer re-
ceive them.

3. Last but not least, creating compatible
network state in the kernel of the new con-
nection owner, such that it can resume the
communication where the previous owner
left off.

Origin (server)

Destination (server)

Application state

Kernel state

Packet routing

User space
Kernel

(client)
Peer

App

App

Figure 1: Passing one end of a TCP connection
from one host to another.

Figure 1 illustrates this for the case of a client-
server application, where one server passes
ownership of a connection to another server.
We shall call the host from which ownership of
the connection endpoint is taken theorigin, the
host to which it is transferred thedestination,
and the host on the other end of the connection
(which does not change) thepeer.

Details of moving the application state are be-
yond the scope of this paper, and we will only
sketch relatively simple examples. Similarly,
we will mention a few ways for how the redi-
rection in the network can be accomplished,
but without going into too much detail.

10 • Linux Symposium 2004 • Volume One

The complexity of the kernel state of a network
connection, and the difficulty of moving this
state from one host to another, varies greatly
with the transport protocol being used. Among
the two major transport protocols of the Inter-
net, UDP [1] and TCP [2], the latter clearly
presents more of a challenge in this regard.
Nevertheless, some issues also apply to UDP.

tcpcp (TCP Connection Passing) is a proof of
concept implementation of a mechanism that
allows applications to transport the kernel state
of a TCP endpoint from one host to another,
while the connection is established, and with-
out requiring the peer to cooperate in any way.
tcpcp is not a complete process migration or
load-balancing solution, but rather a building
block that can be integrated into such systems.
tcpcp consists of a kernel patch (at the time
of writing for version 2.6.4 of the Linux ker-
nel) that implements the operations for dump-
ing and restoring the TCP connection end-
point, a library with wrapper functions (see
Section 3), and a few applications for debug-
ging and demonstration.

The project’s home page is athttp://
tcpcp.sourceforge.net/

The remainder of this paper is organized as fol-
lows: this section continues with a description
of the context in which connection passing ex-
ists. Section 2 explains the connection pass-
ing operation in detail. Section 3 introduces
the APIs tcpcp provides. The information that
defines a TCP connection and its state is de-
scribed in Section 4. Sections 5 and 6 discuss
congestion control and the limitations TCP im-
poses on checkpointing. Security implications
of the availability and use of tcpcp are exam-
ined in Section 7. We conclude with an outlook
on future direction the work on tcpcp will take
in Section 8, and the conclusions in Section 9.

The excellent “TCP/IP Illustrated” [3] is rec-
ommended for readers who wish to refresh

their memory of TCP/IP concepts and termi-
nology.

1.1 There is more than one way to do it

tcpcp is only one of several possible meth-
ods for passing TCP connections among hosts.
Here are some alternatives:

In some cases, the solution is to avoid pass-
ing the “live” TCP connection, but to termi-
nate the connection between the origin and the
peer, and rely on higher protocol layers to re-
establish a new connection between the des-
tination and the peer. Drawbacks of this ap-
proach include that those higher layers need to
know that they have to re-establish the connec-
tion, and that they need to do this within an
acceptable amount of time. Furthermore, they
may only be able to do this at a few specific
points during a communication.

The use of HTTP redirection [4] is a simple
example of connection passing above the trans-
port layer.

Another approach is to introduce an intermedi-
ate layer between the application and the ker-
nel, for the purpose of handling such redirec-
tion. This approach is fairly common in pro-
cess migration solutions, such as Mosix [5],
MIGSOCK [6], etc. It requires that the peer
be equipped with the same intermediate layer.

1.2 Transparency

The key feature of tcpcp is that the peer can be
left completely unaware that the connection is
passed from one host to another. In detail, this
means:

• The peer’s networking stack can be used
“as is,” without modification and without
requiring non-standard functionality

• The connection is not interrupted

Linux Symposium 2004 • Volume One • 11

• The peer does not have to stop sending

• No contradictory information is sent to the
peer

• These properties apply to all protocol lay-
ers visible to the peer

Furthermore, tcpcp allows the connection to be
passed at any time, without needing to syn-
chronize the data stream with the peer.

The kernels of the hosts between which the
connection is passed both need to support
tcpcp, and the application(s) on these hosts will
typically have to be modified to perform the
connection passing.

1.3 Various uses

Application scenarios in which the functional-
ity provided by tcpcp could be useful include
load balancing, process migration, and fail-
over.

In the case of load balancing, an application
can send connections (and whatever processing
is associated with them) to another host if the
local one gets overloaded. Or, one could have a
host acting as a dispatcher that may perform an
initial dialog and then assigns the connection
to a machine in a farm.

For process migration, tcpcp would be in-
voked when moving a file descriptor linked to a
socket. If process migration is implemented in
the kernel, an interface would have to be added
to tcpcp to allow calling it in this way.

Fail-over is tricker, because there is normally
no prior indication when the origin will be-
come unavailable. We discuss the issues aris-
ing from this in more detail in Section 6.

2 Passing the connection

Figure 2 illustrates the connection passing pro-
cedure in detail.

1. The application at the origin initiates the
procedure by requesting retrieval of what
we call theInternal Connection Informa-
tion (ICI) of a socket. The ICI contains
all the information the kernel needs to re-
create a TCP connection endpoint

2. As a side-effect of retrieving the ICI,
tcpcp isolatesthe connection: all incom-
ing packets are silently discarded, and no
packets are sent. This is accomplished
by setting up a per-socket filter, and by
changing the output function. Isolating
the socket ensures that the state of the con-
nection being passed remains stable at ei-
ther end.

3. The kernel copies all relevant variables,
plus the contents of the out-of-order and
send/retransmit buffers to the ICI. The
out-of-order buffer contains TCP seg-
ments that have not been acknowledged
yet, because an earlier segment is still
missing.

4. After retrieving the ICI, the application
empties the receive buffer. It can either
process this data directly, or send it along
with the other information, for the desti-
nation to process.

5. The origin sends the ICI and any relevant
application state to the destination. The
application at the origin keeps the socket
open, to ensure that it stays isolated.

6. The destination opens a new socket. It
may then bind it to a new port (there are
other choices, described below).

12 • Linux Symposium 2004 • Volume One

Vars Send/Retr OutOfOrder

Receive OutOfOrder

Receive OutOfOrder

Send/Retransmit

Send/Retransmit ACK

(Re)transmit, or send ACK (10)

Isolate connection (2)

Copy kernel state to ICI (3)

Switch network traffic (8)

Get ICI (1)

Empty receive buffer (4)

Bind port (6)

Set ICI (7)

Data flow in networking stack Data transfer Command

Activate connection (9)

Send application state and ICI to new host (5)

Application

Application

TCP

TCP

Router, switch, ...

Network path to peer

Internal Connection Information

De
st

in
at

io
n

Or
ig

in

Figure 2: Passing a TCP connection endpoint in ten easy steps.

7. The application at the destination now sets
the ICI on the socket. The kernel creates
and populates the necessary data struc-
tures, but does not send any data yet. The
current implementation makes no use of
the out-of-order data.

8. Network traffic belonging to the connec-
tion is redirected from the origin to the
destination host. Scenarios for this are de-
scribed in more detail below. The applica-
tion at the origin can now close the socket.

9. The application at the destination makes a
call toactivatethe connection.

10. If there is data to transmit, the kernel
will do so. If there is no data, an other-
wise empty ACK segment (like a window
probe) is sent to wake up the peer.

Note that, at the end of this procedure, the
socket at the destination is a perfectly normal
TCP endpoint. In particular, this endpoint can
be passed to another host (or back to the origi-
nal one) with tcpcp.

2.1 Local port selection

The local port at the destination can be selected
in three ways:

• The destination can simply try to use the
same port as the origin. This is necessary
if no address translation is performed on
the connection.

• The application can bind the socket before
setting the ICI. In this case, the port in the
ICI is ignored.

Linux Symposium 2004 • Volume One • 13

• The application can also clear the port
information in the ICI, which will cause
the socket to be bound to any available
port. Compared to binding the socket be-
fore setting the ICI, this approach has the
advantage of using the local port number
space much more efficiently.

The choice of the port selection method de-
pends on how the environment in which tcpcp
operates is structured. Normally, either the first
or the last method would be used.

2.2 Switching network traffic

There are countless ways for redirecting IP
packets from one host to another, without help
from the transport layer protocol. They in-
clude redirecting part of the link layer, inge-
nious modifications of how link and network
layer interact [7], all kinds of tunnels, network
address translation (NAT), etc.

Since many of the techniques are similar to
network-based load balancing, the Linux Vir-
tual Server Project [8] is a good starting point
for exploring these issues.

While a comprehensive study of this topic if
beyond the scope of this paper, we will briefly
sketch an approach using a static route, be-
cause this is conceptually straightforward and
relatively easy to implement.

Server A

Server B

GW Client

ipA, ipX

ipB, ipX

ipX

ipX gw ipA ipX gw ipB

Figure 3: Redirecting network traffic using a
static route.

The scenario shown in Figure 3 consists of two
serversA andB, with interfaces with the IP ad-
dressesipA andipB, respectively. Each server
also has a virtual interface with the address
ipX . ipA , ipB, andipX are on the same subnet,
and also the gateway machine has an interface
on this subnet.

At the gateway, we create a static route as fol-
lows:

route add ipX gw ipA

When the client connects to the addressipX , it
reaches hostA. We can now pass the connec-
tion to hostB, as outlined in Section 2. In Step
8, we change the static route on the gateway as
follows:

route del ipX
route add ipX gw ipB

One major limitation of this approach is of
course that this routing change affects all con-
nections toipX , which is usually undesirable.
Nevertheless, this simple setup can be used to
demonstrate the operation of tcpcp.

3 APIs

The API for tcpcp consists of a low-level part
that is based on getting and setting socket op-
tions, and a high-level library that provides
convenient wrappers for the low-level API.

We mention only the most important aspects of
both APIs here. They are described in more de-
tail in the documentation that is included with
tcpcp.

3.1 Low-level API

The ICI is retrieved by getting theTCP_ICI
socket option. As a side-effect, the connection
is isolated, as described in Section 2. The ap-
plication can determine the maximum ICI size

14 • Linux Symposium 2004 • Volume One

for the connection in question by getting the
TCP_MAXICISIZE socket option.

Example:

void *buf;
int ici_size;
size_t size = sizeof(int);

getsockopt(s,SOL_TCP,TCP_MAXICISIZE,
&ici_size,&size);

buf = malloc(ici_size);
size = ici_size;
getsockopt(s,SOL_TCP,TCP_ICI,

buf,&size);

The connection endpoint at the destination is
created by setting theTCP_ICI socket option,
and the connection is activated by “setting”
the TCP_CP_FNsocket option to the value
TCPCP_ACTIVATE.1

Example:

int sub_function = TCPCP_ACTIVATE;

setsockopt(s,SOL_TCP,TCP_ICI,
buf,size);

/* ... */
setsockopt(s,SOL_TCP,TCP_CP_FN,

&sub_function,
sizeof(sub_function));

3.2 High-level API

These are the most important functions pro-
vided by the high-level API:

void *tcpcp_get(int s);
int tcpcp_size(const void *ici);
int tcpcp_create(const void *ici);
int tcpcp_activate(int s);

1The use of a multiplexed socket option is admittedly
ugly, although convenient during development.

tcpcp_get allocates a buffer for the ICI, and
retrieves that ICI (isolating the connection as a
side-effect). The amount of data in the ICI can
be queried by callingtcpcp_size on it.

tcpcp_create sets an ICI on a socket, and
tcpcp_activate activates the connection.

4 Describing a TCP endpoint

In this section, we describe the parameters that
define a TCP connection and its state. tcpcp
collects all the information it needs to re-create
a TCP connection endpoint in a data structure
we callInternal Connection Information(ICI).

The ICI is portable among systems supporting
tcpcp, irrespective of their CPU architecture.

Besides this data, the kernel maintains a large
number of additional variables that can either
be reset to default values at the destination
(such as congestion control state), or that are
only rarely used and not essential for correct
operation of TCP (such as statistics).

4.1 Connection identifier

Each TCP connection in the global Internet or
any private internet [9] is uniquely identified by
the IP addresses of the source and destination
host, and the port numbers used at both ends.

tcpcp currently only supports IPv4, but can
be extended to support IPv6, should the need
arise.

4.2 Fixed data

A few parameters of a TCP connection are ne-
gotiated during the initial handshake, and re-
main unchanged during the life time of the
connection. These parameters include whether
window scaling, timestamps, or selective ac-
knowledgments are used, the number of bits by

Linux Symposium 2004 • Volume One • 15

Connection identifier
ip.v4.ip_src IPv4 address of the host on which the ICI was recorded (source)
ip.v4.ip_dst IPv4 address of the peer (destination)
tcp_sport Port at the source host
tcp_dport Port at the destination host
Fixed at connection setup
tcp_flags TCP flags (window scale, SACK, ECN, etc.)
snd_wscale Send window scale
rcv_wscale Receive window scale
snd_mss Maximum Segment Size at the source host
rcv_mss MSS at the destination host
Connection state
state TCP connection state (e.g. ESTABLISHED)
Sequence numbers
snd_nxt Sequence number of next new byte to send
rcv_nxt Sequence number of next new byte expected to receive
Windows (flow-control)
snd_wnd Window received from peer
rcv_wnd Window advertised to peer
Timestamps
ts_gen Current value of the timestamp generator
ts_recent Most recently received timestamp

Table 1: TCP variables recorded in tcpcp’s Internal Connection Information (ICI) structure.

which the window is shifted, and the maximum
segment sizes (MSS).

These parameters are used mainly for sanity
checks, and to determine whether the destina-
tion host is able to handle the connection. The
received MSS continues of course to limit the
segment size.

4.3 Sequence numbers

The sequence numbers are used to synchronize
all aspects of a TCP connection.

Only the sequence numbers we expect to see
in the network, in either direction, are needed
when re-creating the endpoint. The kernel uses
several variables that are derived from these se-
quence numbers. The values of these variables

either coincide withsnd_nxt andrcv_nxt
in the state we set up, or they can be calculated
by examining the send buffer.

4.4 Windows (flow-control)

The (flow-control) window determines how
much more data can be sent or received with-
out overrunning the receiver’s buffer.

The window the origin received from the peer
is also the window we can use after re-creating
the endpoint.

The window the origin advertised to the peer
defines the minimum receive buffer size at the
destination.

16 • Linux Symposium 2004 • Volume One

4.5 Timestamps

TCP can use timestamps to detect old segments
with wrapped sequence numbers [10]. This
mechanism is calledProtect Against Wrapped
Sequence numbers(PAWS).

Linux uses a global counter (tcp_time_
stamp) to generate local timestamps. If a
moved connection were to use the counter at
the new host, local round-trip-time calculation
may be confused when receiving timestamp
replies from the previous connection, and the
peer’s PAWS algorithm will discard segments
if timestamps appear to have jumped back in
time.

Just turning off timestamps when moving the
connection is not an acceptable solution, even
though [10] seems to allow TCP to just stop
sending timestamps, because doing so would
bring back the problem PAWS tries to solve
in the first place, and it would also reduce the
accuracy of round-trip-time estimates, possibly
degrading the throughput of the connection.

A more satisfying solution is to synchroniza-
tion the local timestamp generator. This is
accomplished by introducing a per-connection
timestamp offset that is added to the value
of tcp_time_stamp . This calculation is
hidden in the macrotp_time_stamp(tp) ,
which just becomestcp_time_stamp if the
kernel is configured without tcpcp.

The addition of the timestamp offset is the only
major change tcpcp requires in the existing
TCP/IP stack.

4.6 Receive buffers

There are two buffers at the receiving side:
the buffer containing segments received out-of-
order (see Section 2), and the buffer with data
that is ready for retrieval by the application.

tcpcp currently ignores both buffers: the out-
of-order buffer is copied into the ICI, but not
used when setting up the new socket. Any data
in the receive buffer is left for the application
to read and process.

4.7 Send buffer

The send and retransmit buffer contains data
that is no longer accessible through the socket
API, and that cannot be discarded. It is there-
fore placed in the ICI, and used to populate the
send buffer at the destination.

4.8 Selective acknowledgments

In Section 5 of [11], the use of inbound SACK
information is left optional. tcpcp takes advan-
tage of this, and neither preserves SACK infor-
mation collected from inbound segments, nor
the history of SACK information sent to the
peer.

Outbound SACKs convey information about
the receiver’s out-of-order queue. Fortunately,
[11] declares this information as purely advi-
sory. In particular, if reception of data has been
acknowledged with a SACK, this does not im-
ply that the receiver has to remember having
done so. First, it can request retransmission of
this data, and second, when constructing new
SACKs, the receiver is encouraged to include
information from previous SACKs, but is un-
der no obligation to do so.

Therefore, while [11] discourages losing
SACK information, doing so does not violate
its requirements.

Losing SACK information may temporarily
degrade the throughput of the TCP connec-
tion. This is currently of little concern, be-
cause tcpcp forces the connection into slow
start, which has even more drastic performance
implications.

Linux Symposium 2004 • Volume One • 17

SACK recovery may need to be reconsid-
ered once tcpcp implements more sophisticated
congestion control.

4.9 Other data

The TCP connection state is currently always
ESTABLISHED. It may be useful to also al-
low passing connections in earlier states, e.g.
SYN_RCVD. This is for further study.

Congestion control data and statistics are cur-
rently omitted. The new connection starts with
slow-start, to allow TCP to discover the char-
acteristics of the new path to the peer.

5 Congestion control

Most of the complexity of TCP is in its conges-
tion control. tcpcp currently avoids touching
congestion control almost entirely, by setting
the destination to slow start.

This is a highly conservative approach that is
appropriate if knowing the characteristics of
the path between the origin and the peer does
not give us any information on the characteris-
tics of the path between the destination and the
peer, as shown in the lower part of Figure 4.

However, if the characteristics of the two paths
can be expected to be very similar, e.g. if the
hosts passing the connection are on the same
LAN, better performance could be achieved by
allowing tcpcp to resume the connection at or
nearly at full speed.

Re-establishing congestion control state is for
further study. To avoid abuse, such an opera-
tion can be made available only to sufficiently
trusted applications.

Origin

Destination

? Peer

High−speed LAN

WAN

Characteristics may differ
Go to slow−start

Characteristics are identical
Reuse congestion control state

Figure 4: Depending on the structure of the
network, the congestion control state of the
original connection may or may not be reused.

6 Checkpointing

tcpcp is primarily designed for scenarios,
where the old and the new connection owner
are both functional during the process of con-
nection passing.

A similar usage scenario would if the node
owning the connection occasionally retrieves
(“checkpoints”) the momentary state of the
connection, and after failure of the connection
owner, another node would then use the check-
point data to resurrect the connection.

While apparently similar to connection pass-
ing, checkpointing presents several problems
which we discuss in this section. Note that this
is speculative and that the current implementa-
tion of tcpcp does not support any of the exten-

18 • Linux Symposium 2004 • Volume One

sions discussed here.

We consider the send and receive flow of the
TCP connection separately, and we assume that
sequence numbers can be directly translated to
application state (e.g. when transferring a file,
application state consists only of the actual file
position, which can be trivially mapped to and
from TCP sequence numbers). Furthermore,
we assume the connection to be in ESTAB-
LISHED state at both ends.

6.1 Outbound data

One or more of the following events may occur
between the last checkpoint and the moment
the connection is resurrected:

• the sender may have enqueued more data

• the receiver may have acknowledged
more data

• the receiver may have retrieved more data,
thereby growing its window

Assuming that no additional data has been re-
ceived from the peer, the new sender can sim-
ply re-transmit the last segment. (Alternatively,
tcp_xmit_probe_skb might be useful for
the same purpose.) In this case, the following
protocol violations can occur:

• The sequence number may have wrapped.
This can be avoided by making sure
that a checkpoint is never older than the
Maximum Segment Lifetime (MSL)2, and
that less than231 bytes are sent between
checkpoints.

• If using PAWS, the timestamp may be be-
low the last timestamp sent by the old
sender. The best solution for avoiding this

2[2] specifies a MSL of two minutes.

is probably to tightly synchronize clock
on the old and the new connection owner,
and to make a conservative estimate of the
number of ticks of the local timestamp
clock that have passed since taking the
checkpoint. This assumes that the times-
tamp clock ticks roughly in real time.

Since new data in the segment sent after res-
urrecting the connection cannot exceed the re-
ceiver’s window, the only possible outcomes
are that the segment contains either new data,
or only old data. In either case, the receiver
will acknowledge the segment.

Upon reception of an acknowledgment, either
in response to the retransmitted segment, or
from a packet in flight at the time when the con-
nection was resurrected, the sender knows how
far the connection state has advanced since the
checkpoint was taken.

If the sequence number from the acknowl-
edgment is belowsnd_nxt , no special ac-
tion is necessary. If the sequence number is
abovesnd_nxt , the sender would exception-
ally treat this as a valid acknowledgment.3

As a possible performance improvement, the
sender may notify the application once a new
sequence number has been received, and the
application could then skip over unnecessary
data.

6.2 Inbound data

The main problem with checkpointing of in-
coming data is that TCP will acknowledge data
that has not yet been retrieved by the applica-
tion. Therefore, checkpointing would have to
delay outbound acknowledgments until the ap-
plication has actually retrieved them, and has

3Note that this exceptional condition does not neces-
sarily have to occur with the first acknowledgment re-
ceived.

Linux Symposium 2004 • Volume One • 19

checkpointed the resulting state change.

To intercept all types of ACKs, tcp_
transmit_skb would have to be changed
to sendtp->copied_seq instead oftp->
rcv_nxt . Furthermore, a new API function
would be needed to trigger an explicit acknowl-
edgment after the data has been stored or pro-
cessed.

Putting acknowledges under application con-
trol would change their timing. This may upset
the round-trip time estimation of the peer, and
it may also cause it to falsely assume changes
in the congestion level along the path.

7 Security

tcpcp bypasses various sets of access and con-
sistency checks normally performed when set-
ting up TCP connections. This section ana-
lyzes the overall security impact of tcpcp.

7.1 Two lines of defense

When setting TCP_ICI, the kernel has no
means of verifying that the connection infor-
mation actually originates from a compatible
system. Users may therefore manipulate con-
nection state, copy connection state from arbi-
trary other systems, or even synthesize connec-
tion state according to their wishes. tcpcp pro-
vides two mechanisms to protect against inten-
tional or accidental mis-uses:

1. tcpcp only takes as little information as
possible from the user, and re-generates
as much of the state related to the TCP
connection (such as neighbour and desti-
nation data) as possible from local infor-
mation. Furthermore, it performs a num-
ber of sanity checks on the ICI, to ensure
its integrity, and compatibility with con-

straints of the local system (such as buffer
size limits and kernel capabilities).

2. Many manipulations possible through
tcpcp can be shown to be available
through other means if the application has
the CAP_NET_RAWcapability. There-
fore, establishing a new TCP connection
with tcpcp also requires this capability.
This can be relaxed on a host-wide basis.

7.2 Retrieval of sensitive kernel data

Getting TCP_ICI may retrieve information
from the kernel that one would like to hide
from unprivileged applications, e.g. details
about the state of the TCP ISN generator. Since
the equally unprivilegedTCP_INFO already
gives access to most TCP connection meta-
data, tcpcp does not create any new vulnera-
bilities.

7.3 Local denial of service

SettingTCP_ICI could be used to introduce
inconsistent data in the TCP stack, or the ker-
nel in general. Preventing this relies on the cor-
rectness and completeness of the sanity checks
mentioned before.

tcpcp can be used to accumulate stale data in
the kernel. However, this is not very different
from e.g. creating a large number of unused
sockets, or letting buffers fill up in TCP con-
nections, and therefore poses no new security
threat.

tcpcp can be used to shutdown connections be-
longing to third party applications, provided
that the usual access restrictions grant access to
copies of their socket descriptors. This is sim-
ilar to executingshutdown on such sockets,
and is therefore believed to pose no new threat.

20 • Linux Symposium 2004 • Volume One

7.4 Restricted state transitions

tcpcp could be used to advance TCP connec-
tion state past boundaries imposed by internal
or external control mechanisms. In particular,
conspiring applications may create TCP con-
nections without ever exchanging SYN pack-
ets, bypassing SYN-filtering firewalls. Since
SYN-filtering firewalls can already be avoided
by privileged applications, sites depending on
SYN-filtering firewalls should therefore use
the default setting of tcpcp, which makes its
use also a privileged operation.

7.5 Attacks on remote hosts

The ability to setTCP_ICI makes it easy
to commit all kinds of of protocol violations.
While tcpcp may simplify implementing such
attacks, this type of abuses has always been
possible for privileged users, and therefore,
tcpcp poses no new security threat to systems
properly resistant against network attacks.

However, if a site allows systems where only
trusted users may be able to communicate with
otherwise shielded systems with known remote
TCP vulnerabilities, tcpcp could be used for at-
tacks. Such sites should use the default set-
ting, which makes settingTCP_ICI a privi-
leged operation.

7.6 Security summary

To summarize, the author believes that the de-
sign of tcpcp does not open any new exploits if
tcpcp is used in its default configuration.

Obviously, some subtleties have probably been
overlooked, and there may be bugs inadver-
tently leading to vulnerabilities. Therefore,
tcpcp should receive public scrutiny before be-
ing considered fit for regular use.

8 Future work

To allow faster connection passing among
hosts that share the same, or a very similar path
to the peer, tcpcp should try to avoid going to
slow start. To do so, it will have to pass more
congestion control information, and integrate it
properly at the destination.

Although not strictly part of tcpcp, the redirec-
tion apparatus for the network should be fur-
ther extended, in particular to allow individual
connections to be redirected at that point too,
and to include some middleware that coordi-
nates the redirecting with the changes at the
hosts passing the connection.

It would be very interesting if connection pass-
ing could also be used for checkpointing. The
analysis in Section 6 suggests that at least lim-
ited checkpointing capabilities should be feasi-
ble without interfering with regular TCP oper-
ation.

The inner workings of TCP are complex and
easily disturbed. It is therefore important to
subject tcpcp to thorough testing, in particu-
lar in transient states, such as during recovery
from lost segments. The umlsim simulator [12]
allows to generate such conditions in a deter-
ministic way, and will be used for these tests.

9 Conclusion

tcpcp is a proof of concept implementation that
successfully demonstrates that an endpoint of
a TCP connection can be passed from one host
to another without involving the host at the op-
posite end of the TCP connection. tcpcp also
shows that this can be accomplished with a rel-
atively small amount of kernel changes.

tcpcp in its present form is suitable for exper-
imental use as a building block for load bal-
ancing and process migration solutions. Future

Linux Symposium 2004 • Volume One • 21

work will focus on improving the performance
of tcpcp, on validating its correctness, and on
exploring checkpointing capabilities.

References

[1] RFC768; Postel, Jon.User Datagram
Protocol, IETF, August 1980.

[2] RFC793; Postel, Jon.Transmission
Control Protocol, IETF, September 1981.

[3] Stevens, W. Richard.TCP/IP Illustrated,
Volume 1 – The Protocols,
Addison-Wesley, 1994.

[4] RFC2616; Fielding, Roy T.; Gettys,
James; Mogul, Jeffrey C.; Frystyk
Nielsen, Henrik; Masinter, Larry; Leach,
Paul J.; Berners-Lee, Tim.Hypertext
Transfer Protocol – HTTP/1.1, IETF,
June 1999.

[5] Bar, Moshe.OpenMosix, Proceedings of
the 10th International Linux System
Technology Conference
(Linux-Kongress 2003), pp. 94–102,
October 2003.

[6] Kuntz, Bryan; Rajan, Karthik.
MIGSOCK – Migratable TCP Socket in
Linux, CMU, M.Sc. Thesis, February
2002.http://www-2.cs.cmu.edu/

~softagents/migsock/MIGSOCK.

pdf

[7] Leite, Fábio Olivé.Load-Balancing HA
Clusters with No Single Point of Failure,
Proceedings of the 9th International
Linux System Technology Conference
(Linux-Kongress 2002), pp. 122–131,
September 2002.http://www.
linux-kongress.org/2002/
papers/lk2002-leite.html

[8] Linux Virtual Server Project, http://
www.linuxvirtualserver.org/

[9] RFC1918; Rekhter, Yakov; Moskowitz,
Robert G.; Karrenberg, Daniel; de Groot,
Geert Jan; Lear, Eliot.Address
Allocation for Private Internets, IETF,
February 1996.

[10] RFC1323; Jacobson, Van; Braden, Bob;
Borman, Dave.TCP Extensions for High
Performance, IETF, May 1992.

[11] RFC2018; Mathis, Matt; Mahdavi,
Jamshid; Floyd, Sally; Romanow, Allyn.
TCP Selective Acknowledgement
Options, IETF, October 1996.

[12] Almesberger, Werner.UML Simulator,
Proceedings of the Ottawa Linux
Symposium 2003, July 2003.
http://archive.linuxsymposium.

org/ols2003/Proceedings/

All-Reprints/

Reprint-Almesberger-OLS2003.

pdf

22 • Linux Symposium 2004 • Volume One

Cooperative Linux

Dan Aloni
da-x@colinux.org

Abstract

In this paper I’ll describe Cooperative Linux, a
port of the Linux kernel that allows it to run as
an unprivileged lightweight virtual machine in
kernel mode, on top of another OS kernel. It al-
lows Linux to run under any operating system
that supports loading drivers, such as Windows
or Linux, after minimal porting efforts. The pa-
per includes the present and future implemen-
tation details, its applications, and its compar-
ison with other Linux virtualization methods.
Among the technical details I’ll present the
CPU-complete context switch code, hardware
interrupt forwarding, the interface between the
host OS and Linux, and the management of the
VM’s pseudo physical RAM.

1 Introduction

Cooperative Linux utilizes the rather under-
used concept of a Cooperative Virtual Machine
(CVM), in contrast to traditional VMs that
are unprivileged and being under the complete
control of the host machine.

The termCooperative is used to describe two
entities working in parallel, e.g. coroutines [2].
In that sense the most plain description of Co-
operative Linux is turning two operating sys-
tem kernels into two big coroutines. In that
mode, each kernel has its own complete CPU
context and address space, and each kernel de-
cides when to give control back to its partner.

However, only one of the two kernels has con-

trol on the physical hardware, where the other
is provided only with virtual hardware abstrac-
tion. From this point on in the paper I’ll refer
to these two kernels as the host operating sys-
tem, and the guest Linux VM respectively. The
host can be every OS kernel that exports basic
primitives that provide the Cooperative Linux
portable driver to run in CPL0 mode (ring 0)
and allocate memory.

The special CPL0 approach in Cooperative
Linux makes it significantly different than
traditional virtualization solutions such as
VMware, plex86, Virtual PC, and other meth-
ods such as Xen. All of these approaches work
by running the guest OS in a less privileged
mode than of the host kernel. This approach
allowed for the extensive simplification of Co-
operative Linux’s design and its short early-
beta development cycle which lasted only one
month, starting from scratch by modifying the
vanilla Linux 2.4.23-pre9 release until reach-
ing to the point where KDE could run.

The only downsides to the CPL0 approach is
stability and security. If it’s unstable, it has the
potential to crash the system. However, mea-
sures can be taken, such as cleanly shutting it
down on the first internal Oops or panic. An-
other disadvantage is security. Acquiring root
user access on a Cooperative Linux machine
can potentially lead to root on the host ma-
chine if the attacker loads specially crafted ker-
nel module or uses some very elaborated ex-
ploit in case which the Cooperative Linux ker-
nel was compiled without module support.

24 • Linux Symposium 2004 • Volume One

Most of the changes in the Cooperative Linux
patch are on the i386 tree—the only supported
architecture for Cooperative at the time of this
writing. The other changes are mostly addi-
tions of virtual drivers: cobd (block device),
conet (network), and cocon (console). Most of
the changes in the i386 tree involve the initial-
ization and setup code. It is a goal of the Coop-
erative Linux kernel design to remain as close
as possible to the standalone i386 kernel, so all
changes are localized and minimized as much
as possible.

2 Uses

Cooperative Linux in its current early state
can already provide some of the uses that
User Mode Linux[1] provides, such as vir-
tual hosting, kernel development environment,
research, and testing of new distributions or
buggy software. It also enabled new uses:

• Relatively effortless migration path
from Windows. In the process of switch-
ing to another OS, there is the choice be-
tween installing another computer, dual-
booting, or using a virtualization soft-
ware. The first option costs money, the
second is tiresome in terms of operation,
but the third can be the most quick and
easy method—especially if it’s free. This
is where Cooperative Linux comes in. It
is already used in workplaces to convert
Windows users to Linux.

• Adding Windows machines to Linux
clusters. The Cooperative Linux patch
is minimal and can be easily combined
with others such as the MOSIX or Open-
MOSIX patches that add clustering ca-
pabilities to the kernel. This work in
progress allows to add Windows machines
to super-computer clusters, where one
illustration could tell about a secretary

workstation computer that runs Cooper-
ative Linux as a screen saver—when the
secretary goes home at the end of the day
and leaves the computer unattended, the
office’s cluster gets more CPU cycles for
free.

• Running an otherwise-dual-booted
Linux system from the other OS. The
Windows port of Cooperative Linux
allows it to mount real disk partitions
as block devices. Numerous people are
using this in order to access, rescue, or
just run their Linux system from their
ext3 or reiserfs file systems.

• Using Linux as a Windows firewall on
the same machine. As a likely competi-
tor to other out-of-the-box Windows fire-
walls, iptables along with a stripped-down
Cooperative Linux system can potentially
serve as a network firewall.

• Linux kernel development / debugging
/ research and study on another operat-
ing systems.

Digging inside a running Cooperative
Linux kernel, you can hardly tell the
difference between it and a standalone
Linux. All virtual addresses are the
same—Oops reports look familiar and the
architecture dependent code works in the
same manner, excepts some transparent
conversions, which are described in the
next section in this paper.

• Development environment for porting
to and from Linux.

3 Design Overview

In this section I’ll describe the basic meth-
ods behind Cooperative Linux, which include

Linux Symposium 2004 • Volume One • 25

complete context switches, handling of hard-
ware interrupts by forwarding, physical ad-
dress translation and the pseudo physical mem-
ory RAM.

3.1 Minimum Changes

To illustrate the minimal effect of the Cooper-
ative Linux patch on the source tree, here is a
diffstat listing of the patch on Linux 2.4.26 as
of May 10, 2004:

CREDITS | 6
Documentation/devices.txt | 7
Makefile | 8
arch/i386/config.in | 30
arch/i386/kernel/Makefile | 2
arch/i386/kernel/cooperative.c | 181 +++++
arch/i386/kernel/head.S | 4
arch/i386/kernel/i387.c | 8
arch/i386/kernel/i8259.c | 153 ++++
arch/i386/kernel/ioport.c | 10
arch/i386/kernel/process.c | 28
arch/i386/kernel/setup.c | 61 +
arch/i386/kernel/time.c | 104 +++
arch/i386/kernel/traps.c | 9
arch/i386/mm/fault.c | 4
arch/i386/mm/init.c | 37 +
arch/i386/vmlinux.lds | 82 +-
drivers/block/Config.in | 4
drivers/block/Makefile | 1
drivers/block/cobd.c | 334 ++++++++++
drivers/block/ll_rw_blk.c | 2
drivers/char/Makefile | 4
drivers/char/colx_keyb.c | 1221 +++++++++++++*
drivers/char/mem.c | 8
drivers/char/vt.c | 8
drivers/net/Config.in | 4
drivers/net/Makefile | 1
drivers/net/conet.c | 205 ++++++
drivers/video/Makefile | 4
drivers/video/cocon.c | 484 +++++++++++++++
include/asm-i386/cooperative.h | 175 +++++
include/asm-i386/dma.h | 4
include/asm-i386/io.h | 27
include/asm-i386/irq.h | 6
include/asm-i386/mc146818rtc.h | 7
include/asm-i386/page.h | 30
include/asm-i386/pgalloc.h | 7
include/asm-i386/pgtable-2level.h | 8
include/asm-i386/pgtable.h | 7
include/asm-i386/processor.h | 12
include/asm-i386/system.h | 8
include/linux/console.h | 1
include/linux/cooperative.h | 317 +++++++++
include/linux/major.h | 1
init/do_mounts.c | 3
init/main.c | 9
kernel/Makefile | 2
kernel/cooperative.c | 254 +++++++
kernel/panic.c | 4
kernel/printk.c | 6
50 files changed, 3828 insertions(+), 74 deletions(-)

3.2 Device Driver

The device driver port of Cooperative Linux
is used for accessing kernel mode and using
the kernel primitives that are exported by the

host OS kernel. Most of the driver is OS-
independent code that interfaces with the OS
dependent primitives that include page alloca-
tions, debug printing, and interfacing with user
space.

When a Cooperative Linux VM is created, the
driver loads a kernel image from a vmlinux
file that was compiled from the patched kernel
with CONFIG_COOPERATIVE. The vmlinux
file doesn’t need any cross platform tools in or-
der to be generated, and the same vmlinux file
can be used to run a Cooperative Linux VM on
several OSes of the same architecture.

The VM is associated with a per-process
resource—a file descriptor in Linux, or a de-
vice handle in Windows. The purpose of this
association makes sense: if the process run-
ning the VM ends abnormally in any way, all
resources are cleaned up automatically from a
callback when the system frees the per-process
resource.

3.3 Pseudo Physical RAM

In Cooperative Linux, we had to work around
the Linux MM design assumption that the en-
tire physical RAM is bestowed upon the ker-
nel on startup, and instead, only give Cooper-
ative Linux a fixed set of physical pages, and
then only do the translations needed for it to
work transparently in that set. All the memory
which Cooperative Linux considers as physi-
cal is in that allocated set, which we call the
Pseudo Physical RAM.

The memory is allocated in the host OS
using the appropriate kernel function—
alloc_pages() in Linux and
MmAllocatePagesForMdl() in
Windows—so it is not mapped in any ad-
dress space on the host for not wasting PTEs.
The allocated pages are always resident and
not freed until the VM is downed. Page tables

26 • Linux Symposium 2004 • Volume One

--- linux/include/asm-i386/pgtable-2level.h 2004-04-20 08:04:01.000000000 +0300
+++ linux/include/asm-i386/pgtable-2level.h 2004-05-09 16:54:09.000000000 +0300
@@ -58,8 +58,14 @@

}
#define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte_low, 0))
#define pte_same(a, b) ((a).pte_low == (b).pte_low)

-#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))
#define pte_none(x) (!(x).pte_low)

+
+#ifndef CONFIG_COOPERATIVE
+#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))

#define __mk_pte(page_nr,pgprot) __pte(((page_nr) << PAGE_SHIFT) | pgprot_val(pgprot))
+#else
+#define pte_page(x) CO_VA_PAGE((x).pte_low)
+#define __mk_pte(page_nr,pgprot) __pte((CO_PA(page_nr) & PAGE_MASK) | pgprot_val(pgprot))
+#endif

#endif /* _I386_PGTABLE_2LEVEL_H */

Table 1: Example of MM architecture dependent changes

are created for mapping the allocated pages
in the VM’s kernel virtual address space. The
VM’s address space resembles the address
space of a regular kernel—the normal RAM
zone is mapped contiguously at 0xc0000000.

The VM address space also has its own
special fixmaps—the page tables themselves
are mapped at 0xfef00000 in order to pro-
vide an O(1) ability for translating PPRAM
(Psuedo-Physical RAM) addresses to physical
addresses when creating PTEs for user space
and vmalloc() space. On the other way
around, a special physical-to-PPRAM map is
allocated and mapped at 0xff000000, to speed
up handling of events such as pages faults
which require translation of physical addresses
to PPRAM address. This bi-directional mem-
ory address mapping allows for a negligible
overhead in page faults and user space map-
ping operations.

Very few changes in the i386 MMU macros
were needed to facilitate the PPRAM. An ex-
ample is shown in Table 1. Around an #ifdef
of CONFIG_COOPERATIVEthe__mk_pte()
low level MM macro translates a PPRAM
struct page to a PTE that maps the real phys-
ical page. Respectively,pte_page() takes
a PTE that was generated by__mk_pte()

and returns the corresponding struct page for
it. Other macros such aspmd_page() and
load_cr3() were also changed.

3.4 Context Switching

The Cooperative Linux VM uses only one host
OS process in order to provide a context for it-
self and its processes. That one process, named
colinux-daemon, can be called a Super Process
since it frequently calls the kernel driver to per-
form a context switch from the host kernel to
the guest Linux kernel and back. With the fre-
quent (HZ times a second) host kernel entries,
it is able able to completely control the CPU
and MMU without affecting anything else in
the host OS kernel.

On the Intel 386 architecture, a complete con-
text switch requires that the top page direc-
tory table pointer register—CR3—is changed.
However, it is not possible to easily change
both the instruction pointer (EIP) and CR3 in
one instruction, so it implies that the code that
changes CR3 must be mapped in both contexts
for the change to be possible. It’s problematic
to map that code at the same virtual address
in both contexts due to design limitations—the
two contexts can divide the kernel and user ad-

Linux Symposium 2004 • Volume One • 27

dress space differently, such that one virtual ad-
dress can contain a kernel mapped page in one
OS and a user mapped page in another.

In Cooperative Linux the problem was solved
by using an intermediate address space during
the switch (referred to as the ‘passage page,’
see Figure 1). The intermediate address space
is defined by a specially created page tables in
both the guest and host contexts and maps the
same code that is used for the switch (passage
code) at both of the virtual addresses that are
involved. When a switch occurs, first CR3 is
changed to point to the intermediate address
space. Then, EIP is relocated to the other map-
ping of the passage code using a jump. Finally,
CR3 is changed to point to the top page table
directory of the other OS.

The single MMU page that contains the pas-
sage page code, also contains the saved state of
one OS while the other is executing. Upon the
beginning of a switch, interrupts are turned off,
and a current state is saved to the passage page
by the passage page code. The state includes
all the general purpose registers, the segment
registers, the interrupt descriptor table register
(IDTR), the global descriptor table (GDTR),
the local descriptor register (LTR), the task reg-
ister (TR), and the state of the FPU / MMX
/ SSE registers. In the middle of the passage
page code, it restores the state of the other OS
and interrupts are turned back on. This process
is akin to a “normal” process to process context
switch.

Since control is returned to the host OS on ev-
ery hardware interrupt (described in the follow-
ing section), it is the responsibility of the host
OS scheduler to give time slices to the Cooper-
ative Linux VM just as if it was a regular pro-
cess.

0xFFFFFFFF

Host OSIntermediateGuest Linux

0x80000000

Figure 1: Address space transition during an
OS cooperative kernel switch, using an inter-
mapped page

3.5 Interrupt Handling and Forwarding

Since a complete MMU context switch also in-
volves the IDTR, Cooperative Linux must set
an interrupt vector table in order to handle the
hardware interrupts that occur in the system
during its running state. However, Cooperative
Linux only forwards the invocations of inter-
rupts to the host OS, because the latter needs
to know about these interrupts in order to keep
functioning and support the colinux-daemon
process itself, regardless to the fact that exter-
nal hardware interrupts are meaningless to the
Cooperative Linux virtual machine.

The interrupt vectors for the internal processor
exceptions (0x0–0x1f) and the system call vec-
tor (0x80) are kept like they are so that Coop-
erative Linux handles its own page faults and
other exceptions, but the other interrupt vectors
point to special proxy ISRs (interrupt service
routines). When such an ISR is invoked during
the Cooperative Linux context by an external
hardware interrupt, a context switch is made to
the host OS using the passage code. On the

28 • Linux Symposium 2004 • Volume One

other side, the address of the relevant ISR of
the host OS is determined by looking at its IDT.
An interrupt call stack is forged and a jump oc-
curs to that address. Between the invocation of
the ISR in the Linux side and the handling of
the interrupt in the host side, the interrupt flag
is disabled.

The operation adds a tiny latency to interrupt
handling in the host OS, but it is quite ne-
glectable. Considering that this interrupt for-
warding technique also involves the hardware
timer interrupt, the host OS cannot detect that
its CR3 was hijacked for a moment and there-
fore no exceptions in the host side would occur
as a result of the context switch.

To provide interrupts for the virtual device
drivers of the guest Linux, the changes in the
arch code include a virtual interrupt controller
which receives messages from the host OS
on the occasion of a switch and invokesdo_
IRQ() with a forged struct pt_args .
The interrupt numbers are virtual and allocated
on a per-device basis.

4 Benchmarks And Performance

4.1 Dbench results

This section shows a comparison between User
Mode Linux and Cooperative Linux. The ma-
chine which the following results were gener-
ated on is a 2.8GHz Pentium 4 with HT en-
abled, 512GB RAM, and a 120GB SATA Max-
tor hard-drive that hosts ext3 partitions. The
comparison was performed using the dbench
1.3-2 package of Debian on all setups.

The host machine runs the Linux 2.6.6 kernel
patched with SKAS support. The UML kernel
is Linux 2.6.4 that runs with 32MB of RAM,
and is configured to use SKAS mode. The Co-
operative Linux kernel is a Linux 2.4.26 kernel
and it is configured to run with 32MB of RAM,

same as the UML system. The root file-system
of both UML and Cooperative Linux machines
is the same host Linux file that contains an ext3
image of a 0.5GB minimized Debian system.

The commands ‘dbench 1’, ‘dbench 3’, and
‘dbench 10’ were run in 3 consecutive runs for
each command, on the host Linux, on UML,
and on Cooperative Linux setups. The results
are shown in Table 2, Table 3, and Table 4.

System Throughput Netbench
43.813 54.766

Host 50.117 62.647
44.128 55.160
10.418 13.022

UML 9.408 11.760
9.309 11.636

10.418 13.023
coLinux 12.574 15.718

12.075 15.094

Table 2: output of dbench 10 (units are in
MB/sec)

System Throughput Netbench
43.287 54.109

Host 41.383 51.729
59.965 74.956
11.857 14.821

UML 15.143 18.929
14.602 18.252
24.095 30.119

coLinux 32.527 40.659
36.423 45.528

Table 3: output of dbench 3 (units are in
MB/sec)

4.2 Understanding the results

From the results in these runs, ‘dbench 10’,
‘dbench 3’, and ‘dbench 1’ show 20%, 123%,
and 303% increase respectively, compared to
UML. These numbers relate to the number

Linux Symposium 2004 • Volume One • 29

System Throughput Netbench
158.205 197.756

Host 182.191 227.739
179.047 223.809
15.351 19.189

UML 16.691 20.864
16.180 20.226
45.592 56.990

coLinux 72.452 90.565
106.952 133.691

Table 4: output of dbench 1 (units are in
MB/sec)

of dbench threads, which is a result of the
synchronous implementation of cobd1. Yet,
neglecting the versions of the kernels com-
pared, Cooperative Linux achieves much better
probably because of low overhead with regard
to context switching and page faulting in the
guest Linux VM.

The current implementation of the cobd driver
is synchronous file reading and writing directly
from the kernel of the host Linux—No user
space of the host Linux is involved, therefore
less context switching and copying. About
copying, the specific implementation of cobd
in the host Linux side benefits from the fact
that filp->f_op->read() is called di-
rectly on the cobd driver’s request buffer after
mapping it usingkmap() . Reimplementing
this driver as asynchronous on both the host
and guest—can improve performance.

Unlike UML, Cooperative Linux can bene-
fit in the terms of performance from the im-
plementation of kernel-to-kernel driver bridges
such as cobd. For example, currently virtual
Ethernet in Cooperative Linux is done simi-
lar to UML—i.e., using user space daemons
with tuntap on the host. If instead we cre-
ate a kernel-to-kernel implementation with no
user space daemons in between, Cooperative

1ubd UML equivalent

Linux has the potential to achieve much better
in benchmarking.

5 Planned Features

Since Cooperative Linux is a new project
(2004–), most of its features are still waiting
to be implemented.

5.1 Suspension

Software-suspending Linux is a challenge on
standalone Linux systems, considering the en-
tire state of the hardware needs to be saved and
restored, along with the space that needs to be
found for storing the suspended image. On
User Mode Linux suspending [3] is easier—
only the state of a few processes needs saving,
and no hardware is involved.

However, in Cooperative Linux, it will be even
easier to implement suspension, because it will
involve its internal state almost entirely. The
procedure will involve serializing the pseudo
physical RAM by enumerating all the page ta-
ble entries that are used in Cooperative Linux,
either by itself (for user space and vmalloc
page tables) or for itself (the page tables of
the pseudo physical RAM), and change them
to contain the pseudo value instead of the real
value.

The purpose of this suspension procedure is to
allow no notion of the real physical memory
to be contained in any of the pages allocated
for the Cooperative Linux VM, since Coopera-
tive Linux will be given a different set of pages
when it will resume at a later time. At the sus-
pended state, the pages can be saved to a file
and the VM could be resumed later. Resum-
ing will involve loading that file, allocating the
memory, and fix-enumerate all the page tables
again so that the values in the page table entries
point to the newly allocated memory.

30 • Linux Symposium 2004 • Volume One

Another implementation strategy will be to just
dump everything on suspension as it is, but
on resume—enumerate all the page table en-
tries and adjust between the values of the old
RPPFNs2 and new RPPFNs.

Note that a suspended image could be created
under one host OS and be resumed in another
host OS of the same architecture. One could
carry a suspended Linux on a USB memory de-
vice and resume/suspend it on almost any com-
puter.

5.2 User Mode Linux[1] inside Cooperative
Linux

The possibility of running UML inside Coop-
erative Linux is not far from being immediately
possible. It will allow to bring UML with all its
glory to operating systems that cannot support
it otherwise because of their user space APIs.
Combining UML and Cooperative Linux can-
cels the security downside that running Coop-
erative Linux could incur.

5.3 Live Cooperative Distributions

Live-CD distributions like KNOPPIX can be
used to boot on top of another operating system
and not only as standalone, reaching a larger
sector of computer users considering the host
operating system to be Windows NT/2000/XP.

5.4 Integration with ReactOS

ReactOS, the free Windows NT clone, will be
incorporating Cooperative Linux as a POSIX
subsystem.

5.5 Miscellaneous

• Virtual frame buffer support.

2real physical page frame numbers

• Incorporating features from User Mode
Linux, e.g. humfs3.

• Support for more host operating systems
such as FreeBSD.

6 Conclusions

We have discussed how Cooperative Linux
works and its benefits—apart from being a
BSKH4, Cooperative Linux has the potential
to become an alternative to User Mode Linux
that enhances on portability and performance,
rather than on security.

Moreover, the implications that Cooperative
Linux has on what is the media defines as
‘Linux on the Desktop’—are massive, as the
world’s most dominant albeit proprietary desk-
top OS supports running Linux distributions
for free, as another software, with the aimed-
for possibility that the Linux newbie would
switch to the standalone Linux. As user-
friendliness of the Windows port will improve,
the exposure that Linux gets by the average
computer user can increase tremendously.

7 Thanks

Muli Ben Yehuda, IBM

Jun Okajima, Digital Infra

Kuniyasu Suzaki, AIST

References

[1] Jeff Dike. User Mode Linux.http:
//user-mode-linux.sf.net .

3A recent addition to UML that provides an host FS
implementation that uses files in order to store its VFS
metadata

4Big Scary Kernel Hack

Linux Symposium 2004 • Volume One • 31

[2] Donald E. Knuth.The Art of Computer
Programming, volume 1.
Addison-Wesley, Reading, Massachusetts,
1997. Describes coroutines in their pure
sense.

[3] Richard Potter. Scrapbook for User Mode
Linux. http:
//sbuml.sourceforge.net/ .

32 • Linux Symposium 2004 • Volume One

Build your own Wireless Access Point

Erik Andersen
Codepoet Consulting

andersen@codepoet.org

Abstract

This presentation will cover the software, tools,
libraries, and configuration files needed to
construct an embedded Linux wireless access
point. Some of the software available for con-
structing embedded Linux systems will be dis-
cussed, and selection criteria for which tools to
use for differing embedded applications will be
presented. During the presentation, an embed-
ded Linux wireless access point will be con-
structed using the Linux kernel, the uClibc C
library, BusyBox, the syslinux bootloader, ipt-
ables, etc. Emphasis will be placed on the
more generic aspects of building an embed-
ded Linux system using BusyBox and uClibc.
At the conclusion of the presentation, the pre-
senter will (with luck) boot up the newly con-
structed wireless access point and demonstrate
that it is working perfectly. Source code, build
system, cross compilers, and detailed instruc-
tions will be made available.

1 Introduction

When I began working on embedded Linux,
the question of whether or not Linux was small
enough to fit inside a particular device was a
difficult problem. Linux distributions1 have

1The term “distribution” is used by the Linux com-
munity to refer to a collection of software, including
the Linux kernel, application programs, and needed li-
brary code, which makes up a complete running system.
Sometimes, the term “Linux” or “GNU/Linux” is also
used to refer to this collection of software.

historically been designed for server and desk-
top systems. As such, they deliver a full-
featured, comprehensive set of tools for just
about every purpose imaginable. Most Linux
distributions, such as Red Hat, Debian, or
SuSE, provide hundreds of separate software
packages adding up to several gigabytes of
software. The goal of server or desktop Linux
distributions has been to provide as much value
as possible to the user; therefore, the large
size is quite understandable. However, this
has caused the Linux operating system to be
much larger then is desirable for building an
embedded Linux system such as a wireless ac-
cess point. Since embedded devices repre-
sent a fundamentally different target for Linux,
it became apparent to me that embedded de-
vices would need different software than what
is commonly used on desktop systems. I knew
that Linux has a number of strengths which
make it extremely attractive for the next gen-
eration of embedded devices, yet I could see
that developers would need new tools to take
advantage of Linux within small, embedded
spaces.

I began working on embedded Linux in the
middle of 1999. At the time, building an ‘em-
bedded Linux’ system basically involved copy-
ing binaries from an existing Linux distribution
to a target device. If the needed software did
not fit into the required amount of flash mem-
ory, there was really nothing to be done about
it except to add more flash or give up on the
project. Very little effort had been made to
develop smaller application programs and li-

34 • Linux Symposium 2004 • Volume One

braries designed for use in embedded Linux.

As I began to analyze how I could save space,
I decided that there were three main areas that
could be attacked to shrink the footprint of an
embedded Linux system: the kernel, the set of
common application programs included in the
system, and the shared libraries. Many people
doing Linux kernel development were at least
talking about shrinking the footprint of the ker-
nel. For the past five years, I have focused on
the latter two areas: shrinking the footprint of
the application programs and libraries required
to produce a working embedded Linux system.
This paper will describe some of the software
tools I’ve worked on and maintained, which are
now available for building very small embed-
ded Linux systems.

2 The C Library

Let’s take a look at an embedded Linux system,
the Linux Router Project, which was available
in 1999. http://www.linuxrouter.org/

The Linux Router Project, begun by Dave
Cinege, was and continues to be a very com-
monly used embedded Linux system. Its self-
described tagline reads “A networking-centric
micro-distribution of Linux” which is “small
enough to fit on a single 1.44MB floppy disk,
and makes building and maintaining routers,
access servers, thin servers, thin clients,
network appliances, and typically embedded
systems next to trivial.” First, let’s download
a copy of one of the Linux Router Project’s
“idiot images.” I grabbed my copy from
the mirror site atftp://sunsite.unc.edu/

pub/Linux/distributions/linux-router/

dists/current/idiot-image_1440KB_FAT_

2.9.8_Linux_2.2.gz .

Opening up the idiot-image there are several
very interesting things to be seen.

gunzip \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2.gz
mount \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2 \
/mnt -o loop

du -ch /mnt/*
34K /mnt/etc.lrp
6.0K /mnt/ldlinux.sys
512K /mnt/linux
512 /mnt/local.lrp
1.0K /mnt/log.lrp
17K /mnt/modules.lrp
809K /mnt/root.lrp
512 /mnt/syslinux.cfg
1.0K /mnt/syslinux.dpy
1.4M total

mkdir test
cd test
tar -xzf /mnt/root.lrp

du -hs
2.2M .
2.2M total

du -ch bin root sbin usr var
460K bin
8.0K root
264K sbin
12K usr/bin
304K usr/sbin
36K usr/lib/ipmasqadm
40K usr/lib
360K usr
56K var/lib/lrpkg
60K var/lib
4.0K var/spool/cron/crontabs
8.0K var/spool/cron
12K var/spool
76K var
1.2M total

du -ch lib
24K lib/POSIXness
1.1M lib
1.1M total

du -h lib/libc-2.0.7.so
644K lib/libc-2.0.7.so

Taking a look at the software contained in
this embedded Linux system, we quickly no-
tice that in a software image totaling 2.2
Megabytes, the libraries take up over half the
space. If we look even closer at the set of
libraries, we quickly find that the largest sin-
gle component in the entire system is the GNU
C library, in this case occupying nearly 650k.
What is more, this is a very old version of
the C library; newer versions of GNU glibc,

Linux Symposium 2004 • Volume One • 35

such as version 2.3.2, are over 1.2 Megabytes
all by themselves! There are tools available
from Linux vendors and in the Open Source
community which can reduce the footprint of
the GNU C library considerably by stripping
unwanted symbols; however, using such tools
precludes adding additional software at a later
date. Even when these tools are appropriate,
there are limits to the amount of size which can
be reclaimed from the GNU C library in this
way.

The prospect of shrinking a single library that
takes up so much space certainly looked like
low hanging fruit. In practice, however, re-
placing the GNU C library for embedded Linux
systems was not easy task.

3 The origins of uClibc

As I despaired over the large size of the GNU
C library, I decided that the best thing to do
would be to find another C library for Linux
that would be better suited for embedded sys-
tems. I spent quite a bit of time looking around,
and after carefully evaluating the various Open
Source C libraries that I knew of2, I sadly
found that none of them were suitable replace-
ments for glibc. Of all the Open Source C li-
braries, the library closest to what I imagined
an embedded C library should be was called
uC-libc and was being used for uClinux sys-
tems. However, it also had many problems at
the time—not the least of which was that uC-
libc had no central maintainer. The only mech-
anism being used to support multiple architec-

2The Open Source C libraries I evaluated at
the time included Al’s Free C RunTime library
(no longer on the Internet); dietlibc available from
http://www.fefe.de/dietlibc/ ; the minix C
library available from http://www.cs.vu.nl/
cgi-bin/raw/pub/minix/ ; the newlib library
available from http://sources.redhat.com/
newlib/ ; and the eCos C library available fromftp:
//ecos.sourceware.org/pub/ecos/ .

tures was a complete source tree fork, and there
had already been a few such forks with plenty
of divergant code. In short, uC-libc was a mess
of twisty versions, all different. After spending
some time with the code, I decided to fix it, and
in the process changed the name touClibc
(no hyphen).

With the help of D. Jeff Dionne, one of the cre-
ators of uClinux3, I ported uClibc to run on
Intel compatible x86 CPUs. I then grafted in
the header files from glibc 2.1.3 to simplify
software ports, and I cleaned up the resulting
breakage. The header files were later updated
again to generally match glibc 2.3.2. This ef-
fort has made porting software from glibc to
uClibc extremely easy. There were, however,
many functions in uClibc that were either bro-
ken or missing and which had to be re-written
or created from scratch. When appropriate, I
sometimes grafted in bits of code from the cur-
rent GNU C library and libc5. Once the core
of the library was reasonably solid, I began
adding a platform abstraction layer to allow
uClibc to compile and run on different types of
CPUs. Once I had both the ARM and x86 plat-
forms basically running, I made a few small
announcements to the Linux community. At
that point, several people began to make reg-
ular contributions. Most notably was Manuel
Novoa III, who began contributing at that time.
He has continued working on uClibc and is
responsible for significant portions of uClibc
such as the stdio and internationalization code.

After a great deal of effort, we were able to
build the first shared library version of uClibc
in January 2001. And earlier this year we were
able to compile a Debian Woody system using
uClibc4, demonstrating the library is now able

3uClinux is a port of Linux designed to run on micro-
controllers which lack Memory Management Units
(MMUs) such as the Motorolla DragonBall or the
ARM7TDMI. The uClinux web site is found athttp:
//www.uclinux.org/ .

4http://www.uclibc.org/dists/

36 • Linux Symposium 2004 • Volume One

to support a complete Linux distribution. Peo-
ple now use uClibc to build versions of Gentoo,
Slackware, Linux from Scratch, rescue disks,
and even live Linux CDs5. A number of com-
mercial products have also been released using
uClibc, such as wireless routers, network at-
tached storage devices, DVD players, etc.

4 Compiling uClibc

Before we can compile uClibc, we must first
grab a copy of the source code and unpack it
so it is ready to use. For this paper, we will just
grab a copy of the daily uClibc snapshot.

SITE=http://www.uclibc.org/downloads
wget -q $SITE/uClibc-snapshot.tar.bz2

tar -xjf uClibc-snapshot.tar.bz2
cd uClibc

uClibc requires a configuration file,.config ,
that can be edited to change the way the li-
brary is compiled, such as to enable or dis-
able features (i.e. whether debugging support
is enabled or not), to select a cross-compiler,
etc. The preferred method when starting from
scratch is to runmake defconfig followed
by make menuconfig . Since we are going
to be targeting a standard Intel compatible x86
system, no changes to the default configuration
file are necessary.

5 The Origins of BusyBox

As I mentioned earlier, the two components
of an embedded Linux that I chose to work
towards reducing in size were the shared li-
braries and the set common application pro-
grams. A typical Linux system contains a vari-
ety of command-line utilities from numerous

5Puppy Linux available from http://www.
goosee.com/puppy/ is a live linux CD system built
with uClibc that includes such favorites as XFree86 and
Mozilla.

different organizations and independent pro-
grammers. Among the most prominent of these
utilities were GNU shellutils, fileutils, textutils
(now combined to form GNU coreutils), and
similar programs that can be run within a shell
(commands such assed , grep , ls , etc.).
The GNU utilities are generally very high-
quality programs, and are almost without ex-
ception very, very feature-rich. The large fea-
ture set comes at the cost of being quite large—
prohibitively large for an embedded Linux sys-
tem. After some investigation, I determined
that it would be more efficient to replace them
rather than try to strip them down, so I began
looking at alternatives.

Just as with alternative C libraries, there were
several choices for small shell utilities: BSD
has a number of utilities which could be used.
The Minix operating system, which had re-
cently released under a free software license,
also had many useful utilities. Sash, the stand
alone shell, was also a possibility. After quite
a lot of research, the one that seemed to be
the best fit was BusyBox. It also appealed to
me because I was already familiar with Busy-
Box from its use on the Debian boot flop-
pies, and because I was acquainted with Bruce
Perens, who was the maintainer. Starting ap-
proximately in October 1999, I began enhanc-
ing BusyBox and fixing the most obvious prob-
lems. Since Bruce was otherwise occupied and
was no longer actively maintaining BusyBox,
Bruce eventually consented to let me take over
maintainership.

Since that time, BusyBox has gained a large
following and attracted development talent
from literally the whole world. It has been
used in commercial products such as the IBM
Linux wristwatch, the Sharp Zaurus PDA, and
Linksys wireless routers such as the WRT54G,
with many more products being released all the
time. So many new features and applets have
been added to BusyBox, that the biggest chal-

Linux Symposium 2004 • Volume One • 37

lenge I now face is simply keeping up with all
of the patches that get submitted!

6 So, How Does It Work?

BusyBox is a multi-call binary that combines
many common Unix utilities into a single exe-
cutable. When it is run, BusyBox checks if it
was invoked via a symbolic link (asymlink),
and if the name of the symlink matches the
name of an applet that was compiled into Busy-
Box, it runs that applet. If BusyBox is invoked
as busybox , then it will read the command
line and try to execute the applet name passed
as the first argument. For example:

./busybox date
Wed Jun 2 15:01:03 MDT 2004

./busybox echo "hello there"
hello there

ln -s ./busybox uname
./uname
Linux

BusyBox is designed such that the developer
compiling it for an embedded system can select
exactly which applets to include in the final bi-
nary. Thus, it is possible to strip out support for
unneeded and unwanted functionality, result-
ing in a smaller binary with a carefully selected
set of commands. The customization granu-
larity for BusyBox even goes one step further:
each applet may contain multiple features that
can be turned on or off. Thus, for example, if
you do not wish to include large file support,
or you do not need to mount NFS filesystems,
you can simply turn these features off, further
reducing the size of the final BusyBox binary.

7 Compiling Busybox

Let’s walk through a normal compile of Busy-
Box. First, we must grab a copy of the Busy-
Box source code and unpack it so it is ready to
use. For this paper, we will just grab a copy of
the daily BusyBox snapshot.

SITE=http://www.busybox.net/downloads
wget -q $SITE/busybox-snapshot.tar.bz2
tar -xjf busybox-snapshot.tar.bz2
cd busybox

Now that we are in the BusyBox source di-
rectory we can configure BusyBox so that it
meets the needs of our embedded Linux sys-
tem. This is done by editing the file.config
to change the set of applets that are compiled
into BusyBox, to enable or disable features
(i.e. whether debugging support is enabled or
not), and to select a cross-compiler. The pre-
ferred method when starting from scratch is
to runmake defconfig followed bymake
menuconfig . Once BusyBox has been con-
figured to taste, you just need to runmake to
compile it.

8 Installing Busybox to a Target

If you then want to install BusyBox onto a
target device, this is most easily done by typ-
ing: make install . The installation script
automatically creates all the required directo-
ries (such as/bin , /sbin , and the like) and
creates appropriate symlinks in those directo-
ries for each applet that was compiled into the
BusyBox binary.

If we wanted to install BusyBox to the direc-
tory /mnt, we would simply run:

make PREFIX=/mnt install

[--installation text omitted--]

38 • Linux Symposium 2004 • Volume One

9 Let’s build something that
works!

Now that I have certainly bored you to death,
we finally get to the fun part, building our own
embedded Linux system. For hardware, I will
be using a Soekris 4521 system6 with an 133
Mhz AMD Elan CPU, 64 MB main memory,
and a generic Intersil Prism based 802.11b card
that can be driven using thehostap 7 driver.
The root filesystem will be installed on a com-
pact flash card.

To begin with, we need to create toolchain with
which to compile the software for our wire-
less access point. This requires we first com-
pile GNU binutils8, then compile the GNU
compiler collection—gcc9, and then compile
uClibc using the newly created gcc compiler.
With all those steps completed, we must fi-
nally recompile gcc using using the newly
built uClibc library so thatlibgcc_s and
libstdc++ can be linked with uClibc.

Fortunately, the process of creating a uClibc
toolchain can be automated. First we will go
to the uClibc website and obtain a copy of the
uClibcbuildroot by going here:

http://www.uclibc.org/cgi-bin/

cvsweb/buildroot/

and clicking on the “Download tarball” link10.
This is a simple GNU make based build system
which first builds a uClibc toolchain, and then
builds a root filesystem using the newly built
uClibc toolchain.

For the root filesystem of our wireless access

6http://www.soekris.com/net4521.htm
7http://hostap.epitest.fi/
8http://sources.redhat.com/

binutils/
9http://gcc.gnu.org/

10http://www.uclibc.org/cgi-bin/
cvsweb/buildroot.tar.gz?view=tar

point, we will need a Linux kernel, uClibc,
BusyBox, pcmcia-cs, iptables, hostap, wtools,
bridgeutils, and the dropbear ssh server. To
compile these programs, we will first edit the
buildroot Makefile to enable each of these
items. Figure 1 shows the changes I made to
the buildroot Makefile:

Runningmake at this point will download the
needed software packages, build a toolchain,
and create a minimal root filesystem with the
specified software installed.

On my system, with all the software packages
previously downloaded and cached locally, a
complete build took 17 minutes, 19 seconds.
Depending on the speed of your network con-
nection and the speed of your build system,
now might be an excellent time to take a lunch
break, take a walk, or watch a movie.

10 Checking out the new Root
Filesystem

We now have our root filesystem finished and
ready to go. But we still need to do a little
more work before we can boot up our newly
built embedded Linux system. First, we need
to compress our root filesystem so it can be
loaded as an initrd.

gzip -9 root_fs_i386
ls -sh root_fs_i386.gz
1.1M root_fs_i386.gz

Now that our root filesystem has been com-
pressed, it is ready to install on the boot media.
To make things simple, I will install the Com-
pact Flash boot media into a USB card reader
device, and copy files using the card reader.

ms-sys -s /dev/sda
Public domain master boot record
successfully written to /dev/sda

Linux Symposium 2004 • Volume One • 39

--- Makefile
+++ Makefile
@@ -140,6 +140,6 @@

Unless you want to build a kernel, I recommend just using
that...

-TARGETS+=kernel-headers
-#TARGETS+=linux
+#TARGETS+=kernel-headers
+TARGETS+=linux

#TARGETS+=system-linux

@@ -150,5 +150,5 @@
#TARGETS+=zlib openssl openssh
Dropbear sshd is much smaller than openssl + openssh

-#TARGETS+=dropbear_sshd
+TARGETS+=dropbear_sshd

Everything needed to build a full uClibc development system!
@@ -175,5 +175,5 @@

Some stuff for access points and firewalls
-#TARGETS+=iptables hostap wtools dhcp_relay bridge
+TARGETS+=iptables hostap wtools dhcp_relay bridge

#TARGETS+=iproute2 netsnmp

Figure 1: Changes to the buildroot Makefile

mkdosfs /dev/sda1
mkdosfs 2.10 (22 Sep 2003)

syslinux /dev/sda1

cp root_fs_i386.gz /mnt/root_fs.gz

cp build_i386/buildroot-kernel /mnt/linux

So we now have a copy of our root filesystem
and Linux kernel on the compact flash disk. Fi-
nally, we need to configure the bootloader. In
case you missed it a few steps ago, we are us-
ing the syslinux bootloader for this example.
I happen to have a ready to use syslinux con-
figuration file, so I will now install that to the
compact flash disk as well:

cat syslinux.cfg
TIMEOUT 0
PROMPT 0
DEFAULT linux
LABEL linux

KERNEL linux

APPEND initrd=root_fs.gz \
console=ttyS0,57600 \
root=/dev/ram0 boot=/dev/hda1,msdos rw

cp syslinux.cfg /mnt

And now, finally, we are done. Our embedded
Linux system is complete and ready to boot.
And you know what? It is very, very small.
Take a look at Table 1.

With a carefully optimized Linux kernel
(which this kernel unfortunately isn’t) we
could expect to have even more free space.
And remember, every bit of space we save is
money that embedded Linux developers don’t
have to spend on expensive flash memory. So
now comes the final test; it is now time to boot
from our compact flash disk. Here is what you
should see.

[----kernel boot messages snipped--]

40 • Linux Symposium 2004 • Volume One

ll /mnt
total 1.9M
drwxr-r- 2 root root 16K Jun 2 16:39 ./
drwxr-xr-x 22 root root 4.0K Feb 6 07:40 ../
-r-xr-r- 1 root root 7.7K Jun 2 16:36 ldlinux.sys*
-rwxr-r- 1 root root 795K Jun 2 16:36 linux*
-rwxr-r- 1 root root 1.1M Jun 2 16:36 root_fs.gz*
-rwxr-r- 1 root root 170 Jun 2 16:39 syslinux.cfg*

Table 1: Output ofls -lh /mnt .

Freeing unused kernel memory: 64k freed

Welcome to the Erik’s wireless access point.

uclibc login: root

BusyBox v1.00-pre10 (2004.06.02-21:54+0000)
Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

du -h / | tail -n 1
2.6M

#

And there you have it—your very own wire-
less access point. Some additional configura-
tion will be necessary to start up the wireless
interface, which will be demonstrated during
my presentation.

11 Conclusion

The two largest components of a standard
Linux system are the utilities and the libraries.
By replacing these with smaller equivalents a
much more compact system can be built. Us-
ing BusyBox and uClibc allows you to cus-
tomize your embedded distribution by strip-
ping out unneeded applets and features, thus
further reducing the final image size. This
space savings translates directly into decreased
cost per unit as less flash memory will be re-
quired. Combine this with the cost savings of
using Linux, rather than a more expensive pro-
prietary OS, and the reasons for using Linux
become very compelling. The example Wire-
less Access point we created is a simple but

useful example. There are thousands of other
potential applications that are only waiting for
you to create them.

Run-time testing of LSB Applications

Stuart Anderson
Free Standards Group

anderson@freestandards.org

Matt Elder
University of South Caroilina

happymutant@sc.rr.com

Abstract

The dynamic application test tool is capable
of checking API usage at run-time. The LSB
defines only a subset of all possible parame-
ter values to be valid. This tool is capable of
checking these value while the application is
running.

This paper will explain how this tool works,
and highlight some of the more interesting im-
plementation details such as how we managed
to generate most of the code automatically,
based on the interface descriptions contained
in the LSB database.

Results to date will be presented, along with
future plans and possible uses for this tool.

1 Introduction

The Linux Standard Base (LSB) Project be-
gan in 1998, when the Linux community came
together and decided to take action to pre-
vent GNU/Linux based operating systems from
fragmenting in the same way UNIX operating
systems did in the 1980s and 1990s. The LSB
defines the Application Binary Interface (ABI)
for the core part of a GNU/Linux system. As
an ABI, the LSB defines the interface between
the operating system and the applications. A
complete set of tests for an ABI must be capa-
ble of measuring the interface from both sides.

Almost from the beginning, testing has been

a cornerstone of the project. The LSB was
originally organized around 3 components: the
written specification, a sample implementa-
tion, and the test suites. The written specifica-
tion is the ultimate definition of the LSB. Both
the sample implementation, and the test suites
yield to the authority of the written specifica-
tion.

The sample implementation (SI) is a minimal
subset of a GNU/Linux system that provides a
runtime that implements the LSB, and as little
else as possible. The SI is neither intended to
be a minimal distribution, nor the basis for a
distribution. Instead, it is used as both a proof
of concept and a testing tool. Applications
which are seeking certification are required to
prove they execute correctly using the SI and
two other distributions. The SI is also used to
validate the runtime test suites.

The third component is testing. One of the
things that strengthens the LSB is its ability to
measure, and thus prove, conformance to the
standard. Testing is achieved with an array of
different test suites, each of which measures a
different aspect of the specification.

LSB Runtime

• cmdchk

This test suite is a simple existence test
that ensures the required LSB commands
and utilities are found on an LSB con-
forming system.

42 • Linux Symposium 2004 • Volume One

• libchk

This test suite checks the libraries re-
quired by the LSB to ensure they con-
tain the interfaces and symbol versions as
specified by the LSB.

• runtimetests

This test suite measures the behavior of
the interfaces provided by the GNU/Linux
system. This is the largest of the test
suites, and is actually broken down into
several components, which are referred to
collectively as the runtime tests. These
tests are derived from the test suites used
by the Open Group for UNIX branding.

LSB Packaging

• pkgchk

This test examines an RPM format pack-
age to ensure it conforms to the LSB.

• pkginstchk

This test suite is used to ensure that the
package management tool provided by a
GNU/Linux system will correctly install
LSB conforming packages. This suite is
still in early stages of development.

LSB Application

• appchk

This test performs a static analysis of an
application to ensure that it only uses
libraries and interfaces specified by the
LSB.

• dynchk

This test is used to measure an applica-
tions use of the LSB interfaces during its
execution, and is the subject of this paper.

2 The database

The LSB Specification contains over 6600 in-
terfaces, each of which is associated with a li-
brary and a header file, and may have parame-
ters. Because of the size and complexity of the
data describing these interfaces, a database is
used to maintain this information.

It is impractical to try and keep the specifica-
tion, test suites and development libraries and
headers synchronized for this much data. In-
stead, portions of the specification and tests,
and all of the development headers and li-
braries are generated from the database. This
ensures that as changes are made to the
database, the changes are propagated to the
other parts of the project as well.

Some of the relevant data components in this
DB are Libraries, Headers, Interfaces, and
Types. There are also secondary components
and relations between all of the components. A
short description of some of these is needed be-
fore moving on to how the dynchk test is con-
structed.

2.1 Library

The LSB specifies 17 shared libraries, which
contains the 6600 interfaces. The interfaces
in each library are grouped into logical units
called a LibGroup. The LibGroups help to or-
ganize the interfaces, which is very useful in
the written specification, but isn’t used much
elsewhere.

2.2 Interface

An Interface represents a globally visible sym-
bol, such as a function, or piece of data. Inter-
faces have a Type, which is either the type of
the global data or the return type of the func-
tion. If the Interface is a function, then it will
have zero or more Parameters, which form a

Linux Symposium 2004 • Volume One • 43

LibGroup LibGroup

Library

InterfaceInterfaceInterface

LibGroup

Figure 1: Relationship between Library, Lib-
Group and Interface

Interface

Type Parameter Parameter Parameter

Type Type Type

Figure 2: Relationship between Interface, Type
and Parameter

set of Types ordered by their position in the pa-
rameter list.

2.3 Type

As mentioned above, the database contains
enough information to be able to generate
header files which are a part of the LSB de-
velopment tools. This means that the database
must be able to represent Clanguage types. The
Type and TypeMember tables provide these.
These tables are used recursively. If a Type is
defined in terms of another type, then it will
have a base type that points to that other type.

For structs and unions, the TypeMemeber table

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1

Table 1: Example of recursion in Type table for
int *

struct foo {
int a;
int *b;

}

Figure 3: Sample struct

is used to hold the ordered list of members. En-
tries in the TypeMember table point back to the
Type table to describe the type of each member.
For enums, the TypeMember table is also used
to hold the ordered list of values.

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1
3 Struct foo 0

Table 2: Contents of Type table

The structure shown in Figure 3 is represented
by the entries in the Type table in Table 2 and
the TypeMember table in Table 3.

2.4 Header

Headers, like Libraries, have their contents ar-
ranged into logical groupings known a Header-
Groups. Unlike Libraries, these HeaderGroups
are ordered so that the proper sequence of
definitions within a header file can be main-
tained. HeaderGroups contain Constant defi-
nitions (i.e. #define statements) and Type def-
initions. If you examine a few well designed
header files, you will notice a pattern of a com-
ment followed by related constant definitions
and type definitions. The entire header file can
be viewed as a repeating sequence of this pat-

44 • Linux Symposium 2004 • Volume One

Tmid TMname TMtypeid TMposition TMmemberof
10 a 1 0 3
11 b 2 1 3

Table 3: Contents of TypeMember

Function
Declarations

HeaderGroup 1
Constants

Types

HeaderGroup 2
Constants

Types

HeaderGroup 3
Constants

Types

Figure 4: Organization of Headers

tern. This pattern is the basis for the Header-
Group concept.

2.5 TypeType

One last construct in our database should be
mentioned. While we are able to repre-
sent a syntactic description of interfaces and
types in the database, this is not enough to
automatically generate meaningful test cases.
We need to add some semantic information
that better describes how the types in struc-
tures and parameters are used. As an exam-
ple,struct sockaddr contains a member,
sa_family , of type unsigned short. The

compiler will of course ensure that only val-
ues between 0 and216 − 1 will be used, but
only a few of those values have any meaning
in this context. By adding the semantic infor-
mation that this member holds a socket fam-
ily value, the test generator can cause the value
found insa_family to be tested against the
legal socket families values (AF_INET , AF_
INET6 , etc), instead of just ensuring the value
falls between 0 and216−1, which is really just
a noop test.

Example TypeType entries

• RWaddress

An address from the process space that
must be both readable and writable.

• Rdaddress

An address from the process space that
must be at least readable.

• filedescriptor

A small integer value greater than or equal
to 0, and less than the maximum file de-
scriptor for the process.

• pathname

The name of a file or directory that should
be compared against the Filesystem Hier-
archy Standard.

2.6 Using this data

As mentioned above, the data in the database is
used to generate different portions of the LSB
project. This strategy was adopted to ensure

Linux Symposium 2004 • Volume One • 45

these different parts would always be in sync,
without having to depend on human interven-
tion.

The written specification contains tables of in-
terfaces, and data definitions (constants and
types). These are all generated from the
database.

The LSB development environment1 consists
of stub libraries and header files that contain
only the interfaces defined by the LSB. This
development environment helps catch the use
of non-LSB interfaces during the development
or porting of an application instead of being
surprised by later test results. Both the stub
libraries and headers are produced by scripts
pulling data from the database.

Some of the test suites described previously
have components which are generated from the
database.Cmdchk and libchk have lists of
commands and interfaces respectively which
are extracted from the database. The static ap-
plication test tool,appchk , also has a list of
interfaces that comes from the database. The
dynamic application test tool,dynchk , has the
majority of its code generated from informa-
tion in the database.

3 The Dynamic Checker

The static application checker simply examines
an executable file to determine if it is using
interfaces beyond those allowed by the LSB.
This is very useful to determine if an appli-
cation has been built correctly. However, is
unable to determine if the interfaces are used
correctly when the application is executed. A
different kind of test is required to be able to
perform this level of checking. This new test
must interact with the application while it is

1See the May Issue ofLinux Journalfor more infor-
mation on the LSB Development Environment.

running, without interfering with the execution
of the application.

This new test has two major components: a
mechanism for hooking itself into an applica-
tion, and a collection of functions to perform
the tests for all of the interfaces. These compo-
nents can mostly be developed independently
of each other.

3.1 The Mechanism

The mechanism for interacting with the appli-
cation must be transparent and noninterfering
to the application. We considered the approach
used by 3 different tools: abc, ltrace, and fake-
root.

• abc —This tool was the inspiration for
our new dynamic checker.abc was de-
veloped as part of the SVR4 ABI test
tools. abc works by modifying the tar-
get application. The application’s exe-
cutable is modified to load a different ver-
sion of the shared libraries and to call a
different version of each interface. This
is accomplished by changing the strings
in the symbol table andDT_NEEDED
records. For example,libc.so.1 is
changed toLiBc.So.1 , andfread()
is changed toFrEaD() . The test set
is then located in/usr/lib/LiBc.
So.1 , which in turns loads the original
/usr/lib/libc.so.1 . This mecha-
nism works, but the requirement to mod-
ify the executable file is undesirable.

• ltrace —This tool is similar to
strace , except that it traces calls
into shared libraries instead of calls into
the kernel. ltrace uses the ptrace
interface to control the application’s
process. With this approach, the test sets
are located in a separate program and are
invoked by stopping the application upon

46 • Linux Symposium 2004 • Volume One

entry to the interface being tested. This
approach has two drawbacks: first, the
code required to decode the process stack
and extract the parameters is unique to
each architecture, and second, the tests
themselves are more complicated to write
since the parameters have to be fetched
from the application’s process.

• fakeroot —This tool is used to cre-
ate an environment where an unprivileged
process appears to have root privileges.
fakeroot usesLD_PRELOADto load
an additional shared library before any of
the shared libraries specified by theDT_
NEEDEDrecords in the executable. This
extra library contains a replacement func-
tion for each file manipulation function.
The functions in this library will be se-
lected by the dynamic linker instead of the
normal functions found in the regular li-
braries. The test sets themselves will per-
form tests of the parameters, and then call
the original version of the functions.

We chose to use theLD_PRELOADmecha-
nism because we felt it was the simplest to use.
Based on this mechanism, a sample test case
looks like Figure 5.

One problem that must be avoided when us-
ing this mechanism is recursion. If the above
function just calledread() at the end, it
would end up calling itself again. Instead, the
RTLD_NEXTflag passed todlsym() tells the
dynamic linker to look up the symbol on one
of the libraries loaded after the current library.
This will get the original version of the func-
tion.

3.2 Test set organization

The test set functions are organized into 3 lay-
ers. The top layer contains the functions that
are test stubs for the LSB interfaces. These

functions are implemented by calling the func-
tions in layers 2 and 3. An example of a func-
tion in the first layer was given in Figure 5.

The second layer contains the functions that
test data structures and types which are passed
in as parameters. These functions are also im-
plemented by calling the functions in layer 3
and other functions in layer 2. A function in
the second layer looks like Figure 6.

The third layer contains functions that test the
types which have been annotated with addi-
tional semantic information. These functions
often have to perform nontrivial operations to
test the assertion required for these supplemen-
tal types. Figure 7 is an example of a layer 3
function.

Presently, there are 3056 functions in layer 1
(tests forlibstdc++ are not yet being gen-
erated), 106 functions in layer 2, and just a few
in layer 3. We estimate that the total number of
functions in layer 3 upon completion of the test
tool will be on the order of several dozen. The
functions in the first two layers are automati-
cally generated based on the information in the
database. Functions in layer 3 are hand coded.

3.3 Automatic generation of the tests

In Table 4, is a summary of the size of the test
tool so far. As work progresses, these num-
bers will only get larger. Most of the code in
the test is very repetitive, and prone to errors
when edited manually. The ability to automate
the process of creating this code is highly de-
sirable.

Let’s take another look at the sample function
from layer 1. This time, however, lets replace
some of the code with a description of the in-
formation it represents. See Figure 8 for this
parameterized version.

All of the occurrences of the stringread are

Linux Symposium 2004 • Volume One • 47

ssize_t read (int arg0, void *arg1, size_t arg2) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_filedescriptor(arg0, "read");
validate_RWaddress(arg1, "read");
validate_size_t(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 5: Test case for read() function

void validate_struct_sockaddr_in(struct sockaddr_in *input,
char *name) {

validate_socketfamily(input->sin_family,name);
validate_socketport(input->sin_port,name);
validate_IPv4Address((input->sin_addr), name);

}

Figure 6: Test case for validatingstruct sockaddr_in

Module Files Lines of Code
libc 752 19305
libdl 5 125
libgcc_s 13 262
libGL 450 11046
libICE 49 1135
libm 281 6568
libncurses 266 6609
libpam 13 335
libpthread 82 2060
libSM 37 865
libX11 668 16112
libXext 113 2673
libXt 288 7213
libz 39 973
structs 106 1581

Table 4: Summary of generated code

actually just the function name, and could have
been replaced also.

The same thing can be done for the sample
function from layer 2 as is seen in Figure 9.

These two examples, now represent templates
that can be used to create the functions for lay-
ers 1 and 2. From the previous description of
the database, you can see that there is enough
information available to be able to instantiate
these templates for each interfaces, and struc-
ture used by the LSB.

The automation is implemented by 2 perl
scripts:gen_lib.pl andgen_tests.pl .
These scripts generate the code for layers 1 and
2 respectively.

Overall, these scripts work well, but we have
run into a few interesting situations along the
way.

3.4 Handling the exceptions

So far, we have come up with an overall archi-
tecture for the test tool, selected a mechanism
that allows us to hook the tests into the running
application, discovered the pattern in the test
functions so that we could create a template for

48 • Linux Symposium 2004 • Volume One

void validate_filedescriptor(const int fd, const char *name) {
if (fd >= lsb_sysconf(_SC_OPEN_MAX))

ERROR("fd too big");
else if (fd < 0)

ERROR("fd negative");
}

Figure 7: Test case for validating a filedescriptor

return-type read (list of parameters) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_parameter1 type(arg0, "read");
validate_parameter2 type(arg1, "read");
validate_parameter3 type(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 8: Parameterized test case for a function

automatically generating the code, and imple-
mented the scripts to generate all of the tests
cases. The only problem is that now we run
into the real world, where things don’t always
follow the rules.

Here are a few of the interesting situations we
have encountered

• Variadic Functions

Of the 725 functions in libc, 25 of them
take a variable number of parameters.
This causes problems in the generation of
the code for the test case, but most impor-
tantly it affects our ability to know how
to process the arguments. These func-
tion have to be written by hand to han-
dle the special needs of these functions.
For the functions in theexec , printf
andscanf families, the test cases can be
implemented by calling the varargs form
of the function (execl() can be imple-
mented usingexecv()).

• open()

In addition to the problems of being a
variadic function, the third parameter to
open() and open64() is only valid
if the O_CREATflag is set in the sec-
ond parameter to these functions. This
simple exception requires a small amount
of manual intervention, so these function
have to be maintained by hand.

• memory allocation

One of the recursion problems we ran into
is that memory will be allocated within
the dlsym() function call, so the im-
plementation of one test case ends up in-
voking the test case for one of the mem-
ory allocation routines, which by default
would calldlsym() , creating the recur-
sion. This cycle had to be broken by hav-
ing the test cases for these routines call
libc private interfaces to memory alloca-
tion.

• changing memory map

Linux Symposium 2004 • Volume One • 49

void validate_struct_structure name(struct structure name
*input, char *name) {

validate_type of member 1(input->name of member 1, name);
validate_type of member 2(input->name of member 2, name);
validate_type of member 3((input->name of member 3), name);

}

Figure 9: Parameterized test case for a struct

Pointers are validated by making sure they
contain an address that is valid for the pro-
cess./proc/self/maps is read to ob-
tain the memory map of the current pro-
cess. These results are cached, for perfor-
mance reasons, but usually, the memory
map of the process will change over time.
Both the stack and the heap will grow,
resulting in valid pointers being checked
against a cached copy of the memory map.
In the event a pointer is found to be in-
valid, the memory map is re-read, and the
pointer checked again. Themmap() and
munmap() test cases are also maintained
by hand so that they can also cause the
memory map to be re-read.

• hidden ioctl()s

By design, the LSB specifies interfaces
at the highest possible level. One exam-
ple of this, is the use of the termio func-
tions, instead of specifying the underly-
ing ioctl() interface. It turns out that
this tool catches the underlyingioctl()
calls anyway, and flags it as an error. The
solution is for the termio functions the set
a flag indicating that theioctl() test
case should skip its tests.

• Optionally NULL parameters

Many interfaces have parameters which
may be NULL. This triggerred lots of
warnings for many programs. The solu-
tion was to add a flag that indicated that
the Parameter may be NULL, and to not

try to validate the pointer, or the data be-
ing pointed to.

No doubt, there will be more interesting situ-
ations to have to deal with before this tool is
completed.

4 Results

As of the deadline for this paper, results are
preliminary, but encouraging. The tool is ini-
tially being tested against simple commands
such as ls and vi, and some X Windows clients
such as xclock and xterm. The tool is correctly
inserting itself into the application under test,
and we are getting some interesting results that
will be examined more closely.

One example is vi passes a NULL to
__strtol_internal several times during
startup.

The tool was designed to work across all archi-
tectures. At present, it has been built and tested
on only the IA32 and IA64 architectures. No
significant problems are anticipate on other ar-
chitectures.

Additional results and experience will be pre-
sented at the conference.

50 • Linux Symposium 2004 • Volume One

5 Future Work

There is still much work to be done. Some of
the outstanding tasks are highlighted here.

• AdditionalTypeTypes

Semantic information needs to be added
for additional parameters and structures.
The additional layer 3 tests that corre-
spond to this information must also be im-
plemented.

• Architecture-specific interfaces

As we found in the LSB, there are some
interfaces, and types that are unique to one
or more architectures. These need to be
handled properly so they are not part of
the tests when built on an architecture for
which they don’t apply.

• Unions

Although Unions are represented in the
database in the same way as structures,
the database does not contain enough in-
formation to describe how to interpret or
test the contents of a union. Test cases that
involve unions may have to be written by
hand.

• Additional libraries

The information in the database for the
graphics libraries and forlibstdc++ is
incomplete, therefore, it is not possible to
generate all of the test cases for those li-
braries. Once the data is complete, the test
cases will also be complete.

Linux Block IO—present and future

Jens Axboe
SuSE

axboe@suse.de

Abstract

One of the primary focus points of 2.5 was fix-
ing up the bit rotting block layer, and as a result
2.6 now sports a brand new implementation of
basically anything that has to do with passing
IO around in the kernel, from producer to disk
driver. The talk will feature an in-depth look
at the IO core system in 2.6 comparing to 2.4,
looking at performance, flexibility, and added
functionality. The rewrite of the IO scheduler
API and the new IO schedulers will get a fair
treatment as well.

No 2.6 talk would be complete without 2.7
speculations, so I shall try to predict what
changes the future holds for the world of Linux
block I/O.

1 2.4 Problems

One of the most widely criticized pieces of
code in the 2.4 kernels is, without a doubt, the
block layer. It’s bit rotted heavily and lacks
various features or facilities that modern hard-
ware craves. This has led to many evils, rang-
ing from code duplication in drivers to mas-
sive patching of block layer internals in ven-
dor kernels. As a result, vendor trees can eas-
ily be considered forks of the 2.4 kernel with
respect to the block layer code, with all of
the problems that this fact brings with it: 2.4
block layer code base may as well be consid-
ered dead, no one develops against it. Hard-
ware vendor drivers include many nasty hacks

and #ifdef’s to work in all of the various
2.4 kernels that are out there, which doesn’t ex-
actly enhance code coverage or peer review.

The block layer fork didn’t just happen for the
fun of it of course, it was a direct result of
the various problem observed. Some of these
are added features, others are deeper rewrites
attempting to solve scalability problems with
the block layer core or IO scheduler. In the
next sections I will attempt to highlight specific
problems in these areas.

1.1 IO Scheduler

The main 2.4 IO scheduler is called
elevator_linus , named after the benev-
olent kernel dictator to credit him for some
of the ideas used. elevator_linus is a
one-way scan elevator that always scans in
the direction of increasing LBA. It manages
latency problems by assigning sequence
numbers to new requests, denoting how many
new requests (either merges or inserts) may
pass this one. The latency value is dependent
on data direction, smaller for reads than for
writes. Internally, elevator_linus uses
a double linked list structure (the kernels
struct list_head) to manage the request
structures. When queuing a new IO unit with
the IO scheduler, the list is walked to find a
suitable insertion (or merge) point yielding an
O(N) runtime. That in itself is suboptimal in
presence of large amounts of IO and to make
matters even worse, we repeat this scan if the
request free list was empty when we entered

52 • Linux Symposium 2004 • Volume One

the IO scheduler. The latter is not an error
condition, it will happen all the time for even
moderate amounts of write back against a
queue.

1.2 struct buffer_head

The main IO unit in the 2.4 kernel is the
struct buffer_head . It’s a fairly unwieldy
structure, used at various kernel layers for dif-
ferent things: caching entity, file system block,
and IO unit. As a result, it’s suboptimal for ei-
ther of them.

From the block layer point of view, the two
biggest problems is the size of the structure
and the limitation in how big a data region it
can describe. Being limited by the file system
one blocksemantics, it can at most describe a
PAGE_CACHE_SIZEamount of data. In Linux
on x86 hardware that means 4KiB of data. Of-
ten it can be even worse: raw io typically uses
the soft sector size of a queue (default 1KiB)
for submitting io, which means that queuing
eg 32KiB of IO will enter the io scheduler 32
times. To work around this limitation and get
at least to a page at the time, a 2.4 hack was
introduced. This is calledvary_io . A driver
advertising this capability acknowledges that it
can managebuffer_head’s of varying sizes
at the same time. File system read-ahead, an-
other frequent user of submitting larger sized
io, has no option but to submit the read-ahead
window in units of the page size.

1.3 Scalability

With the limit on buffer_head IO size and
elevator_linus runtime, it doesn’t take a
lot of thinking to discover obvious scalability
problems in the Linux 2.4 IO path. To add in-
sult to injury, the entire IO path is guarded by a
single, global lock:io_request_lock . This
lock is held during the entire IO queuing op-
eration, and typically also from the other end

when a driver subtracts requests for IO sub-
mission. A single global lock is a big enough
problem on its own (bigger SMP systems will
suffer immensely because of cache line bounc-
ing), but add to that long runtimes and you have
a really huge IO scalability problem.

Linux vendors have long shipped lock scalabil-
ity patches for quite some time to get around
this problem. The adopted solution is typically
to make the queue lock a pointer to a driver lo-
cal lock, so the driver has full control of the
granularity and scope of the lock. This solu-
tion was adopted from the 2.5 kernel, as we’ll
see later. But this is another case where driver
writers often need to differentiate between ven-
dor and vanilla kernels.

1.4 API problems

Looking at the block layer as a whole (includ-
ing both ends of the spectrum, the producers
and consumers of the IO units going through
the block layer), it is a typical example of code
that has been hacked into existence without
much thought to design. When things broke
or new features were needed, they had been
grafted into the existing mess. No well de-
fined interface exists between file system and
block layer, except a few scattered functions.
Controlling IO unit flow from IO scheduler
to driver was impossible: 2.4 exposes the IO
scheduler data structures (the->queue_head

linked list used for queuing) directly to the
driver. This fact alone makes it virtually im-
possible to implement more clever IO schedul-
ing in 2.4. Even the recently (in the 2.4.20’s)
added lower latency work was horrible to work
with because of this lack of boundaries. Veri-
fying correctness of the code is extremely dif-
ficult; peer review of the code likewise, since a
reviewer must be intimate with the block layer
structures to follow the code.

Another example on lack of clear direction is

Linux Symposium 2004 • Volume One • 53

the partition remapping. In 2.4, it’s the driver’s
responsibility to resolve partition mappings.
A given request contains a device and sector
offset (i.e. /dev/hda4 , sector 128) and the
driver must map this to an absolute device off-
set before sending it to the hardware. Not only
does this cause duplicate code in the drivers,
it also means the IO scheduler has no knowl-
edge of the real device mapping of a particular
request. This adversely impacts IO scheduling
whenever partitions aren’t laid out in strict as-
cending disk order, since it causes the io sched-
uler to make the wrong decisions when order-
ing io.

2 2.6 Block layer

The above observations were the initial kick off
for the 2.5 block layer patches. To solve some
of these issues the block layer needed to be
turned inside out, breaking basically anything-
io along the way.

2.1 bio

Given that struct buffer_head was one
of the problems, it made sense to start from
scratch with an IO unit that would be agree-
able to the upper layers as well as the drivers.
The main criteria for such an IO unit would be
something along the lines of:

1. Must be able to contain an arbitrary
amount of data, as much as the hardware
allows. Or as much that makessenseat
least, with the option of easily pushing
this boundary later.

2. Must work equally well for pages that
have a virtual mapping as well as ones that
do not.

3. When entering the IO scheduler and
driver, IO unit must point to an absolute
location on disk.

4. Must be able to stack easily for IO stacks
such as raid and device mappers. This in-
cludes full redirect stacking like in 2.4, as
well as partial redirections.

Once the primary goals for the IO struc-
ture were laid out, thestruct bio was
born. It was decided to base the layout
on a scatter-gather type setup, with thebio

containing a map of pages. If the map
count was made flexible, items 1 and 2 on
the above list were already solved. The
actual implementation involved splitting the
data container from thebio itself into a
struct bio_vec structure. This was mainly
done to ease allocation of the structures so
that sizeof(struct bio) was always con-
stant. Thebio_vec structure is simply a tu-
ple of {page, length, offset} , and the
bio can be allocated with room for anything
from 1 to BIO_MAX_PAGES. Currently Linux
defines that as 256 pages, meaning we can sup-
port up to 1MiB of data in a singlebio for
a system with 4KiB page size. At the time
of implementation, 1MiB was a good deal be-
yond the point where increasing the IO size fur-
ther didn’t yield better performance or lower
CPU usage. It also has the added bonus of
making thebio_vec fit inside a single page,
so we avoid higher order memory allocations
(sizeof(struct bio_vec) == 12 on 32-
bit, 16 on 64-bit) in the IO path. This is an
important point, as it eases the pressure on the
memory allocator. For swapping or other low
memory situations, we ideally want to stress
the allocator as little as possible.

Different hardware can support different sizes
of io. Traditional parallel ATA can do a max-
imum of 128KiB per request, qlogicfc SCSI
doesn’t like more than 32KiB, and lots of high
end controllers don’t impose a significant limit
on max IO size but may restrict the maximum
number of segments that one IO may be com-
posed of. Additionally, software raid or de-

54 • Linux Symposium 2004 • Volume One

vice mapper stacks may like special alignment
of IO or the guarantee that IO won’t cross
stripe boundaries. All of this knowledge is ei-
ther impractical or impossible to statically ad-
vertise to submitters of io, so an easy inter-
face for populating abio with pages was es-
sential if supporting large IO was to become
practical. The current solution isint bio_

add_page() which attempts to add a single
page (full or partial) to abio . It returns the
amount of bytes successfully added. Typical
users of this function continue adding pages
to abio until it fails—then it is submitted for
IO throughsubmit_bio() , a newbio is al-
located and populated until all data has gone
out. int bio_add_page() uses statically
defined parameters inside the request queue to
determine how many pages can be added, and
attempts to query a registeredmerge_bvec_

fn for dynamic limits that the block layer can-
not know about.

Drivers hooking into the block layer before the
IO scheduler1 deal withstruct bio directly,
as opposed to thestruct request that are
output after the IO scheduler. Even though the
page addition API guarantees that they never
need to be able to deal with abio that is too
big, they still have to manage local splits at
sub-page granularity. The API was defined that
way to make it easier for IO submitters to man-
age, so they don’t have to deal with sub-page
splits. 2.6 block layer defines two ways to
deal with this situation—the first is the general
clone interface.bio_clone() returns a clone
of abio . A clone is defined as a private copy of
thebio itself, but with a sharedbio_vec page
map list. Drivers can modify the clonedbio

and submit it to a different device without du-
plicating the data. The second interface is tai-
lored specifically to single page splits and was
written by kernel raid maintainer Neil Brown.
The main function isbio_split() which re-

1Also known as atmake_request time.

turns astruct bio_pair describing the two
parts of the originalbio . The twobio ’s can
then be submitted separately by the driver.

2.2 Partition remapping

Partition remapping is handled inside the IO
stack before going to the driver, so that both
drivers and IO schedulers have immediate full
knowledge of precisely where data should end
up. The device unfolding is done automati-
cally by the same piece of code that resolves
full bio redirects. The worker function is
blk_partition_remap() .

2.3 Barriers

Another feature that found its way to some ven-
dor kernels is IO barriers. A barrier is defined
as a piece of IO that is guaranteed to:

• Be on platter (or safe storage at least)
when completion is signaled.

• Not proceed any previously submitted io.

• Not be proceeded by later submitted io.

The feature is handy for journalled file sys-
tems, fsync, and any sort of cache bypassing
IO2 where you want to provide guarantees on
data order and correctness. The 2.6 code isn’t
even complete yet or in the Linus kernels, but it
has made its way to Andrew Morton’s -mm tree
which is generally considered a staging area for
features. This section describes the code so far.

The first type of barrier supported is a soft
barrier. It isn’t of much use for data in-
tegrity applications, since it merely implies
ordering inside the IO scheduler. It is sig-
naled with theREQ_SOFTBARRIERflag inside
struct request . A stronger barrier is the

2Such types of IO includeO_DIRECTor raw.

Linux Symposium 2004 • Volume One • 55

hard barrier. From the block layer and IO
scheduler point of view, it is identical to the
soft variant. Drivers need to know about it
though, so they can take appropriate measures
to correctly honor the barrier. So far the ide
driver is the only one supporting a full, hard
barrier. The issue was deemed most impor-
tant for journalled desktop systems, where the
lack of barriers and risk of crashes / power loss
coupled with ide drives generally always de-
faulting to write back caching caused signifi-
cant problems. Since the ATA command set
isn’t very intelligent in this regard, the ide solu-
tion adopted was to issue pre- and post flushes
when encountering a barrier.

The hard and soft barrier share the feature that
they are both tied to a piece of data (abio ,
really) and cannot exist outside of data con-
text. Certain applications of barriers would re-
ally like to issue a disk flush, where finding out
which piece of data to attach it to is hard or
impossible. To solve this problem, the 2.6 bar-
rier code added theblkdev_issue_flush()

function. The block layer part of the code is ba-
sically tied to a queue hook, so the driver issues
the flush on its own. A helper function is pro-
vided for SCSI type devices, using the generic
SCSI command transport that the block layer
provides in 2.6 (more on this later). Unlike
the queued data barriers, a barrier issued with
blkdev_issue_flush() works on all inter-
esting drivers in 2.6 (IDE, SCSI, SATA). The
only missing bits are drivers that don’t belong
to one of these classes—things likeCISS and
DAC960.

2.4 IO Schedulers

As mentioned in section 1.1, there are a num-
ber of known problems with the default 2.4 IO
scheduler and IO scheduler interface (or lack
thereof). The idea to base latency on a unit of
data (sectors) rather than a time based unit is
hard to tune, or requires auto-tuning at runtime

and this never really worked out. Fixing the
runtime problems withelevator_linus is
next to impossible due to the data structure ex-
posing problem. So before being able to tackle
any problems in that area, a neat API to the IO
scheduler had to be defined.

2.4.1 Defined API

In the spirit of avoiding over-design3, the API
was based on initial adaption ofelevator_

linus , but has since grown quite a bit as newer
IO schedulers required more entry points to ex-
ploit their features.

The core function of an IO scheduler is, natu-
rally, insertion of new io units and extraction of
ditto from drivers. So the first 2 API functions
are defined,next_req_fn andadd_req_fn .
If you recall from section 1.1, a new IO
unit is first attempted merged into an exist-
ing request in the IO scheduler queue. And
if this fails and the newly allocated request
has raced with someone else adding an adja-
cent IO unit to the queue in the mean time,
we also attempt to mergestruct request s.
So 2 more functions were added to cater to
these needs,merge_fn andmerge_req_fn .
Cleaning up after a successful merge is done
throughmerge_cleanup_fn . Finally, a de-
fined IO scheduler can provide init and exit
functions, should it need to perform any duties
during queue init or shutdown.

The above described the IO scheduler API
as of 2.5.1, later on more functions were
added to further abstract the IO scheduler
away from the block layer core. More details
may be found in thestruct elevator_s in
<linux/elevator.h> kernel include file.

3Some might, rightfully, claim that this is worse than
no design

56 • Linux Symposium 2004 • Volume One

2.4.2 deadline

In kernel 2.5.39,elevator_linus was fi-
nally replaced by something more appropriate,
the deadlineIO scheduler. The principles be-
hind it are pretty straight forward — new re-
quests are assigned an expiry time in millisec-
onds, based on data direction. Internally, re-
quests are managed on two different data struc-
tures. The sort list, used for inserts and front
merge lookups, is based on a red-black tree.
This providesO(log n) runtime for both inser-
tion and lookups, clearly superior to the dou-
bly linked list. Two FIFO lists exist for track-
ing request expiry times, using a double linked
list. Since strict FIFO behavior is maintained
on these two lists, they run inO(1) time. For
back merges it is important to maintain good
performance as well, as they dominate the to-
tal merge count due to the layout of files on
disk. So deadline added a merge hash for
back merges, ideally providingO(1) runtime
for merges. Additionally,deadlineadds a one-
hit merge cache that is checked even before go-
ing to the hash. This gets surprisingly good hit
rates, serving as much as 90% of the merges
even for heavily threaded io.

Implementation details aside,deadlinecontin-
ues to build on the fact that the fastest way to
access a single drive, is by scanning in the di-
rection of ascending sector. With its superior
runtime performance,deadline is able to sup-
port very large queue depths without suffering
a performance loss or spending large amounts
of time in the kernel. It also doesn’t suffer from
latency problems due to increased queue sizes.
When a request expires in the FIFO,dead-
line jumps to that disk location and starts serv-
ing IO from there. To prevent accidental seek
storms (which would further cause us to miss
deadlines),deadline attempts to serve a num-
ber of requests from that location before jump-
ing to the next expired request. This means that
the assigned request deadlines are soft, not a

specific hard target that must be met.

2.4.3 Anticipatory IO scheduler

While deadline works very well for most
workloads, it fails to observe the natural depen-
dencies that often exist between synchronous
reads. Say you want to list the contents of
a directory—that operation isn’t merely a sin-
gle sync read, it consists of a number of reads
where only the completion of the final request
will give you the directory listing. Withdead-
line, you could get decent performance from
such a workload in presence of other IO activi-
ties by assigning very tight read deadlines. But
that isn’t very optimal, since the disk will be
serving other requests in between the depen-
dent reads causing a potentially disk wide seek
every time. On top of that, the tight deadlines
will decrease performance on other io streams
in the system.

Nick Piggin implemented an anticipatory IO
scheduler [Iyer] during 2.5 to explore some in-
teresting research in this area. The main idea
behind the anticipatory IO scheduler is a con-
cept calleddeceptive idleness. When a process
issues a request and it completes, it might be
ready to issue a new request (possibly close
by) immediately. Take the directory listing ex-
ample from above—it might require 3–4 IO
operations to complete. When each of them
completes, the process4 is ready to issue the
next one almost instantly. But the traditional
io scheduler doesn’t pay any attention to this
fact, the new request must go through the IO
scheduler and wait its turn. Withdeadline, you
would have to typically wait 500 milliseconds
for each read, if the queue is held busy by other
processes. The result is poor interactive per-
formance for each process, even though overall
throughput might be acceptable or even good.

4Or the kernel, on behalf of the process.

Linux Symposium 2004 • Volume One • 57

Instead of moving on to the next request from
an unrelated process immediately, the anticipa-
tory IO scheduler (hence forth known asAS)
opens a small window of opportunity for that
process to submit a new IO request. If that hap-
pens,ASgives it a new chance and so on. Inter-
nally it keeps a decaying histogram of IOthink
timesto help the anticipation be as accurate as
possible.

Internally,AS is quite likedeadline. It uses the
same data structures and algorithms for sort-
ing, lookups, and FIFO. If the think time is set
to 0, it is very close todeadline in behavior.
The only differences are various optimizations
that have been applied to either scheduler al-
lowing them to diverge a little. IfAS is able to
reliably predict when waiting for a new request
is worthwhile, it gets phenomenal performance
with excellent interactiveness. Often the sys-
tem throughput is sacrificed a little bit, so de-
pending on the workloadAS might not be the
best choice always. The IO storage hardware
used, also plays a role in this—a non-queuing
ATA hard drive is a much better fit than a SCSI
drive with a large queuing depth. The SCSI
firmware reorders requests internally, thus of-
ten destroying any accounting thatAS is trying
to do.

2.4.4 CFQ

The third new IO scheduler in 2.6 is called
CFQ. It’s loosely based on the ideas on
stochastic fair queuing (SFQ [McKenney]).
SFQ is fair as long as its hashing doesn’t col-
lide, and to avoid that, it uses a continually
changing hashing function. Collisions can’t be
completely avoided though, frequency will de-
pend entirely on workload and timing.CFQ
is an acronym for completely fair queuing, at-
tempting to get around the collision problem
that SFQ suffers from. To do so,CFQ does
away with the fixed number of buckets that

processes can be placed in. And using reg-
ular hashing technique to find the appropriate
bucket in case of collisions, fatal collisions are
avoided.

CFQ deviates radically from the concepts that
deadline and AS is based on. It doesn’t as-
sign deadlines to incoming requests to main-
tain fairness, instead it attempts to divide
bandwidth equally among classes of processes
based on some correlation between them. The
default is to hash on thread group id, tgid.
This means that bandwidth is attempted dis-
tributed equally among the processes in the
system. Each class has its own request sort
and hash list, using red-black trees again for
sorting and regular hashing for back merges.
When dealing with writes, there is a little catch.
A process will almost never be performing its
own writes—data is marked dirty in context of
the process, but write back usually takes place
from the pdflushkernel threads. SoCFQ is
actually dividing read bandwidth among pro-
cesses, while treating each pdflush thread as a
separate process. Usually this has very minor
impact on write back performance. Latency is
much less of an issue with writes, and good
throughput is very easy to achieve due to their
inherent asynchronous nature.

2.5 Request allocation

Each block driver in the system has at least
one request_queue_t request queue struc-
ture associated with it. The recommended
setup is to assign a queue to each logical
spindle. In turn, each request queue has
a struct request_list embedded which
holds freestruct request structures used
for queuing io. 2.4 improved on this situation
from 2.2, where a single global free list was
available to add one per queue instead. This
free list was split into two sections of equal
size, for reads and writes, to prevent either

58 • Linux Symposium 2004 • Volume One

direction from starving the other5. 2.4 stati-
cally allocated a big chunk of requests for each
queue, all residing in the precious low memory
of a machine. The combination ofO(N) run-
time and statically allocated request structures
firmly prevented any real world experimenta-
tion with large queue depths on 2.4 kernels.

2.6 improves on this situation by dynamically
allocating request structures on the fly instead.
Each queue still maintains its request free list
like in 2.4. However it’s also backed by a mem-
ory pool6 to provide deadlock free allocations
even during swapping. The more advanced
io schedulers in 2.6 usually back each request
by its own private request structure, further
increasing the memory pressure of each re-
quest. Dynamic request allocation lifts some of
this pressure as well by pushing that allocation
inside two hooks in the IO scheduler API—
set_req_fn and put_req_fn . The latter
handles the later freeing of that data structure.

2.6 Plugging

For the longest time, the Linux block layer has
used a technique dubbedplugging to increase
IO throughput. In its simplicity, plugging
works sort of like the plug in your tub drain—
when IO is queued on an initially empty queue,
the queue is plugged. Only when someone asks
for the completion of some of the queued IO is
the plug yanked out, and io is allowed to drain
from the queue. So instead of submitting the
first immediately to the driver, the block layer
allows a small buildup of requests. There’s
nothing wrong with the principle of plugging,
and it has been shown to work well for a num-
ber of workloads. However, the block layer
maintains a global list of plugged queues in-
side thetq_disk task queue. There are three
main problems with this approach:

5In reality, to prevent writes for consuming all re-
quests.

6mempool_t interface from Ingo Molnar.

1. It’s impossible to go backwards from the
file system and find the specific queue to
unplug.

2. Unplugging one queue throughtq_disk

unplugs all plugged queues.

3. The act of plugging and unplugging
touches a global lock.

All of these adversely impact performance.
These problems weren’t really solved until late
in 2.6, when Intel reported a huge scalability
problem related to unplugging [Chen] on a 32
processor system. 93% of system time was
spent due to contention onblk_plug_lock ,
which is the 2.6 direct equivalent of the 2.4
tq_disk embedded lock. The proposed so-
lution was to move the plug lists to a per-
CMU structure. While this would solve the
contention problems, it still leaves the other 2
items on the above list unsolved.

So work was started to find a solution that
would fix all problems at once, and just gen-
erally Feel Right. 2.6 contains a link be-
tween the block layer and write out paths
which is embedded inside the queue, a
struct backing_dev_info . This structure
holds information on read-ahead and queue
congestion state. It’s also possible to go from
a struct page to the backing device, which
may or may not be a block device. So it
would seem an obvious idea to move to a back-
ing device unplugging scheme instead, getting
rid of the globalblk_run_queues() unplug-
ging. That solution would fix all three issues at
once—there would be no global way to unplug
all devices, only target specific unplugs, and
the backing device gives us a mapping from
page to queue. The code was rewritten to do
just that, and provide unplug functionality go-
ing from a specificstruct block_device ,
page, or backing device. Code and interface
was much superior to the existing code base,

Linux Symposium 2004 • Volume One • 59

and results were truly amazing. Jeremy Hig-
don tested on an 8-way IA64 box [Higdon] and
got 75–80 thousand IOPS on the stock kernel
at 100% CPU utilization, 110 thousand IOPS
with the per-CPU Intel patch also at full CPU
utilization, and finally 200 thousand IOPS at
merely 65% CPU utilization with the backing
device unplugging. So not only did the new
code provide a huge speed increase on this
machine, it also went from being CPU to IO
bound.

2.6 also contains some additional logic to
unplug a given queue once it reaches the
point where waiting longer doesn’t make much
sense. So where 2.4 will always wait for an ex-
plicit unplug, 2.6 can trigger an unplug when
one of two conditions are met:

1. The number of queued requests reach a
certain limit,q->unplug_thresh . This
is device tweak able and defaults to 4.

2. When the queue has been idle forq->

unplug_delay . Also device tweak able,
and defaults to 3 milliseconds.

The idea is that once a certain number of
requests have accumulated in the queue, it
doesn’t make much sense to continue waiting
for more—there is already an adequate number
available to keep the disk happy. The time limit
is really a last resort, and should rarely trig-
ger in real life. Observations on various work
loads have verified this. More than a handful or
two timer unplugs per minute usually indicates
a kernel bug.

2.7 SCSI command transport

An annoying aspect of CD writing applications
in 2.4 has been the need to use ide-scsi, neces-
sitating the inclusion of the entire SCSI stack
for only that application. With the clear major-
ity of the market being ATAPI hardware, this

becomes even more silly. ide-scsi isn’t without
its own class of problems either—it lacks the
ability to use DMA on certain writing types.
CDDA audio ripping is another application that
thrives with ide-scsi, since the native uniform
cdrom layer interface is less than optimal (put
mildly). It doesn’t have DMA capabilities at
all.

2.7.1 Enhancing struct request

The problem with 2.4 was the lack of abil-
ity to generically send SCSI “like” commands
to devices that understand them. Historically,
only file system read/write requests could be
submitted to a driver. Some drivers made up
faked requests for other purposes themselves
and put then on the queue for their own con-
sumption, but no defined way of doing this ex-
isted. 2.6 adds a new request type, marked by
theREQ_BLOCK_PCbit. Such a request can be
either backed by abio like a file system re-
quest, or simply has a data and length field set.
For both types, a SCSI command data block is
filled inside the request. With this infrastruc-
ture in place and appropriate update to drivers
to understand these requests, it’s a cinch to sup-
port a much better direct-to-device interface for
burning.

Most applications use the SCSI sg API for talk-
ing to devices. Some of them talk directly to
the /dev/sg* special files, while (most) oth-
ers use theSG_IO ioctl interface. The for-
mer requires a yet unfinished driver to trans-
form them into block layer requests, but the lat-
ter can be readily intercepted in the kernel and
routed directly to the device instead of through
the SCSI layer. Helper functions were added
to make burning and ripping even faster, pro-
viding DMA for all applications and without
copying data between kernel and user space at
all. So the zero-copy DMA burning was pos-
sible, and this even without changing most ap-

60 • Linux Symposium 2004 • Volume One

plications.

3 Linux-2.7

The 2.5 development cycle saw the most mas-
sively changed block layer in the history of
Linux. Before 2.5 was opened, Linus had
clearly expressed that one of the most impor-
tant things that needed doing, was the block
layer update. And indeed, the very first thing
merged was the complete bio patch into 2.5.1-
pre2. At that time, no more than a handful
drivers compiled (let alone worked). The 2.7
changes will be nowhere as severe or drastic.
A few of the possible directions will follow in
the next few sections.

3.1 IO Priorities

Prioritized IO is a very interesting area that
is sure to generate lots of discussion and de-
velopment. It’s one of the missing pieces of
the complete resource management puzzle that
several groups of people would very much like
to solve. People running systems with many
users, or machines hosting virtual hosts (or
completed virtualized environments) are dy-
ing to be able to provide some QOS guaran-
tees. Some work was already done in this
area, so far nothing complete has materialized.
The CKRM [CKRM] project spear headed by
IBM is an attempt to define global resource
management, including io. They applied a lit-
tle work to theCFQ IO scheduler to provide
equal bandwidth between resource manage-
ment classes, but at no specific priorities. Cur-
rently I have aCFQ patch that is 99% complete
that provides full priority support, using the IO
contexts introduced byAS to manage fair shar-
ing over the full time span that a process ex-
ists7. This works well enough, but only works

7CFQ currently tears down class structures as soon
as it is empty, it doesn’t persist over process life time.

for that specific IO scheduler. A nicer solution
would be to create a scheme that works inde-
pendently of the io scheduler used. That would
require a rethinking of the IO scheduler API.

3.2 IO Scheduler switching

Currently Linux provides no less than 4 IO
schedulers—the 3 mentioned, plus a forth
dubbednoop. The latter is a simple IO sched-
uler that does no request reordering, no latency
management, and always merges whenever it
can. Its area of application is mainly highly
intelligent hardware with huge queue depths,
where regular request reordering doesn’t make
sense. Selecting a specific IO scheduler can
either be done by modifying the source of a
driver and putting the appropriate calls in there
at queue init time, or globally for any queue by
passing theelevator=xxx boot parameter.
This makes it impossible, or at least very im-
practical, to benchmark different IO schedulers
without many reboots or recompiles. Some
way to switch IO schedulers per queue and on
the fly is desperately needed. Freezing a queue
and letting IO drain from it until it’s empty
(pinning new IO along the way), and then shut-
ting down the old io scheduler and moving to
the new scheduler would not be so hard to do.
The queues expose various sysfs variables al-
ready, so the logical approach would simply be
to:

echo deadline > \
/sys/block/hda/queue/io_scheduler

A simple but effective interface. At least two
patches doing something like this were already
proposed, but nothing was merged at that time.

4 Final comments

The block layer code in 2.6 has come a long
way from the rotted 2.4 code. New features

Linux Symposium 2004 • Volume One • 61

bring it more up-to-date with modern hard-
ware, and completely rewritten from scratch
core provides much better scalability, perfor-
mance, and memory usage benefiting any ma-
chine from small to really huge. Going back
a few years, I heard constant complaints about
the block layer and how much it sucked and
how outdated it was. These days I rarely
hear anything about the current state of affairs,
which usually means that it’s doing pretty well
indeed. 2.7 work will mainly focus on fea-
ture additions and driver layer abstractions (our
concept of IDE layer, SCSI layer etc will be
severely shook up). Nothing that will wreak
havoc and turn everything inside out like 2.5
did. Most of the 2.7 work mentioned above
is pretty light, and could easily be back ported
to 2.6 once it has been completed and tested.
Which is also a good sign that nothing really
radical or risky is missing. So things are set-
tling down, a sign of stability.

References

[Iyer] Sitaram Iyer and Peter Druschel,
Anticipatory scheduling: A disk
scheduling framework to overcome
deceptive idleness in synchronous I/O,
18th ACM Symposium on Operating
Systems Principles,http:
//www.cs.rice.edu/~ssiyer/
r/antsched/antsched.ps.gz ,
2001

[McKenney] Paul E. McKenney,Stochastic
Fairness Queuing, INFOCOMhttp:
//rdrop.com/users/paulmck/
paper/sfq.2002.06.04.pdf ,
1990

[Chen] Kenneth W. Chen,per-cpu
blk_plug_list, Linux kernel mailing list
http://www.ussg.iu.edu/
hypermail/linux/kernel/
0403.0/0179.html , 2004

[Higdon] Jeremy Higdon,Re: [PATCH]
per-backing dev unplugging #2, Linux
kernel mailing list
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
107941470424309&w=2 , 2004

[CKRM] IBM, Class-based Kernel Resource
Management (CKRM),
http://ckrm.sf.net , 2004

[Bhattacharya] Suparna Bhattacharya,Notes
on the Generic Block Layer Rewrite in
Linux 2.5, General discussion,
Documentation/block/biodoc.
txt , 2002

62 • Linux Symposium 2004 • Volume One

Linux AIO Performance and Robustness for
Enterprise Workloads

Suparna Bhattacharya,IBM (suparna@in.ibm.com)

John Tran,IBM (jbtran@ca.ibm.com)

Mike Sullivan,IBM (mksully@us.ibm.com)

Chris Mason,SUSE(mason@suse.com)

1 Abstract

In this paper we address some of the issues
identified during the development and stabi-
lization of Asynchronous I/O (AIO) on Linux
2.6.

We start by describing improvements made to
optimize the throughput of streaming buffered
filesystem AIO for microbenchmark runs.
Next, we discuss certain tricky issues in en-
suring data integrity between AIO Direct I/O
(DIO) and buffered I/O, and take a deeper look
at synchronized I/O guarantees, concurrent
I/O, write-ordering issues and the improve-
ments resulting from radix-tree based write-
back changes in the Linux VFS.

We then investigate the results of using Linux
2.6 filesystem AIO on the performance met-
rics for certain enterprise database workloads
which are expected to benefit from AIO, and
mention a few tips on optimizing AIO for such
workloads. Finally, we briefly discuss the is-
sues around workloads that need to combine
asynchronous disk I/O and network I/O.

2 Introduction

AIO enables a single application thread to
overlap processing with I/O operations for bet-
ter utilization of CPU and devices. AIO can

improve the performance of certain kinds of
I/O intensive applications like databases, web-
servers and streaming-content servers. The
use of AIO also tends to help such applica-
tions adapt and scale more smoothly to varying
loads.

2.1 Overview of kernel AIO in Linux 2.6

The Linux 2.6 kernel implements in-kernel
support for AIO. A low-level native AIO sys-
tem call interface is provided that can be in-
voked directly by applications or used by li-
brary implementations to build POSIX/SUS
semantics. All discussion hereafter in this pa-
per pertains to the native kernel AIO interfaces.

Applications can submit one or more
I/O requests asynchronously using the
io_submit() system call, and ob-
tain completion notification using the
io_getevents() system call. Each
I/O request specifies the operation (typically
read/write), the file descriptor and the pa-
rameters for the operation (e.g., file offset,
buffer). I/O requests are associated with the
completion queue (ioctx) they were submitted
against. The results of I/O are reported as
completion events on this queue, and reaped
usingio_getevents() .

The design of AIO for the Linux 2.6 kernel has
been discussed in [1], including the motivation

64 • Linux Symposium 2004 • Volume One

behind certain architectural choices, for exam-
ple:

• Sharing a common code path for AIO and
regular I/O

• A retry-based model for AIO continua-
tions across blocking points in the case of
buffered filesystem AIO (currently imple-
mented as a set of patches to the Linux 2.6
kernel) where worker threads take on the
caller’s address space for executing retries
involving access to user-space buffers.

2.2 Background on retry-based AIO

The retry-based model allows an AIO request
to be executed as a series of non-blocking it-
erations. Each iteration retries the remain-
ing part of the request from where the last it-
eration left off, re-issuing the corresponding
AIO filesystem operation with modified argu-
ments representing the remaining I/O. The re-
tries are “kicked” via a special AIO waitqueue
callback routine,aio_wake_function() ,
which replaces the default waitqueue entry
used for blocking waits.

The high-level retry infrastructure is respon-
sible for running the iterations in the address
space context of the caller, and ensures that
only one retry instance is active at a given time.
This relieves the fops themselves from having
to deal with potential races of that sort.

2.3 Overview of the rest of the paper

In subsequent sections of this paper, we de-
scribe our experiences in addressing several is-
sues identified during the optimization and sta-
bilization efforts related to the kernel AIO im-
plementation for Linux 2.6, mainly in the area
of disk- or filesystem-based AIO.

We observe, for example, how I/O patterns
generated by the common VFS code paths

used by regular and retry-based AIO could
be non-optimal for streaming AIO requests,
and we describe the modifications that ad-
dress this finding. A different set of prob-
lems that has seen some development ac-
tivity are the races, exposures and poten-
tial data-integrity concerns between direct and
buffered I/O, which become especially tricky
in the presence of AIO. Some of these issues
motivated Andrew Morton’s modified page-
writeback design for the VFS using tagged
radix-tree lookups, and we discuss the implica-
tions for the AIOO_SYNCwrite implementa-
tion. In general, disk-based filesystem AIO re-
quirements for database workloads have been a
guiding consideration in resolving some of the
trade-offs encountered, and we present some
initial performance results for such workloads.
Lastly, we touch upon potential approaches to
allow processing of disk-based AIO and com-
munications I/O within a single event loop.

3 Streaming AIO reads

3.1 Basic retry pattern for single AIO read

The retry-based design for buffered filesystem
AIO read works by converting each blocking
wait for read completion on a page into aretry
exit. The design queues an asynchronous no-
tification callback and returns the number of
bytes for which the read has completed so far
without blocking. Then, when the page be-
comes up-to-date, the callback kicks off a retry
continuation in task context. This retry contin-
uation invokes the same filesystem read opera-
tion again using the caller’s address space, but
this time with arguments modified to reflect the
remaining part of the read request.

For example, given a 16KB read request start-
ing at offset 0, where the first 4KB is already
in cache, one might see the following sequence
of retries (in the absence of readahead):

Linux Symposium 2004 • Volume One • 65

first time:
fop->aio_read(fd, 0, 16384) = 4096

and when read completes for the second page:
fop->aio_read(fd, 4096, 12288) = 4096

and when read completes for the third page:
fop->aio_read(fd, 8192, 8192) = 4096

and when read completes for the fourth page:
fop->aio_read(fd, 12288, 4096) = 4096

3.2 Impact of readahead on single AIO read

Usually, however, the readahead logic attempts
to batch read requests in advance. Hence, more
I/O would be seen to have completed at each
retry. The logic attempts to predict the optimal
readahead window based on state it maintains
about the sequentiality of past read requests on
the same file descriptor. Thus, given a maxi-
mum readahead window size of 128KB, the se-
quence of retries would appear to be more like
the following example, which results in signif-
icantly improved throughput:

first time:
fop->aio_read(fd, 0, 16384) = 4096,

after issuing readahead
for 128KB/2 = 64KB

and when read completes for the above I/O:
fop->aio_read(fd, 4096, 12288) = 12288

Notice that care is taken to ensure that reada-
heads are not repeated during retries.

3.3 Impact of readahead on streaming AIO
reads

In the case of streaming AIO reads, a sequence
of AIO read requests is issued on the same
file descriptor, where subsequent reads are sub-
mitted without waiting for previous requests to
complete (contrast this with a sequence of syn-
chronous reads).

Interestingly, we encountered a significant
throughput degradation as a result of the in-
terplay of readahead and streaming AIO reads.
To see why, consider the retry sequence for
streaming random AIO read requests of 16KB,

whereo1, o2, o3, ... refer to the ran-
dom offsets where these reads are issued:

first time:
fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,

after issuing readahead for 64KB
as the readahead logic sees the first page
of the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 8KB (notice
the shrinkage of the readahead window
because of non-sequentiality seen by the
readahead logic)

fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after maximally shrinking the readahead
window, turning off readahead and issuing
4KB read in the slow path

fop->aio_read(fd, o4, 16384) = -EIOCBRETRY,
after issuing 4KB read in the slow path

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 8192
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 4096
and when read completes for o4

fop->aio_read(fd, o3, 16384) = 4096
.
.

In steady state, this amounts to a maximally-
shrunk readahead window with 4KB reads at
random offsets being issued serially one at a
time on a slow path, causing seek storms and
driving throughputs down severely.

3.4 Upfront readahead for improved stream-
ing AIO read throughputs

To address this issue, we made the readahead
logic aware of the sequentiality of all pages in a
single read request upfront—before submitting
the next read request. This resulted in a more
desirable outcome as follows:

fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,
after issuing readahead for 64KB
as the readahead logic sees all the 4
pages for the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window shrinks to
4+1=5 pages)

66 • Linux Symposium 2004 • Volume One

fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window is maintained
at 4+1=5 pages)

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 16384
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 16384
.
.

3.5 Upfront readahead and sendfile regres-
sions

At first sight it appears that upfront readahead
is a reasonable change for all situations, since
it immediately passes to the readahead logic
the entire size of the request. However, it has
the unintended, potential side-effect of losing
pipelining benefits for really large reads, or op-
erations like sendfile which involve post pro-
cessing I/O on the contents just read. One way
to address this is to clip the maximum size
of upfront readahead to the maximum reada-
head setting for the device. To see why even
that may not suffice for certain situations, let
us take a look at the following sequence for
a webserver that uses non-blocking sendfile to
serve a large (2GB) file.

sendfile(fd, 0, 2GB, fd2) = 8192,
tells readahead about up to 128KB
of the read

sendfile(fd, 8192, 2GB - 8192, fd2) = 8192,
tells readahead about 8KB - 132KB
of the read

sendfile(fd, 16384, 2GB - 16384, fd2) = 8192,
tells readahead about 16KB-140KB
of the read

...

This confuses the readahead logic about the
I/O pattern which appears to be 0–128K, 8K–
132K, 16K–140K instead of clear sequentiality
from 0–2GB that is really appropriate.

To avoid such unanticipated issues, upfront
readahead required a special case for AIO

alone, limited to the maximum readahead set-
ting for the device.

3.6 Streaming AIO read microbenchmark
comparisons

We explored streaming AIO throughput im-
provements with the retry-based AIO imple-
mentation and optimizations discussed above,
using a custom microbenchmark called aio-
stress [2]. aio-stress issues a stream of AIO
requests to one or more files, where one can
vary several parameters including I/O unit size,
total I/O size, depth of iocbs submitted at a
time, number of concurrent threads, and type
and pattern of I/O operations, and reports the
overall throughput attained.

The hardware included a 4-way 700MHz
Pentium® III machine with 512MB of RAM
and a 1MB L2 cache. The disk subsystem
used for the I/O tests consisted of an Adaptec
AIC7896/97 Ultra2 SCSI controller connected
to a disk enclosure with six 9GB disks, one
of which was configured as an ext3 filesystem
with a block size of 4KB for testing.

The runs compared aio-stress throughputs for
streaming random buffered I/O reads (i.e.,
without O_DIRECT), with and without the
previously described changes. All the runs
were for the case where the file was not al-
ready cached in memory. The above graph
summarizes how the results varied across in-
dividual request sizes of 4KB to 64KB, where
I/O was targeted to a single file of size 1GB,
the depth of iocbs outstanding at a time being
64KB. A third run was performed to find out
how the results compared with equivalent runs
using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all
block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.

Linux Symposium 2004 • Volume One • 67

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

ai
o-

st
re

ss
 th

ro
ug

hp
ut

 (M
B

/s
)

request size (KB)

Streaming AIO read results with aio-stress

FSAIO (non-cached) 2.6.2 Vanilla
FSAIO (non-cached) 2.6.2 Patched
AIO-DIO 2.6.2 Vanilla

Figure 1: Comparisons of streaming random
AIO read throughputs

4 AIO DIO vs cached I/O integrity
issues

4.1 DIO vs buffered races

Stephen Tweedie discovered several races be-
tween DIO and buffered I/O to the same file
[3]. These races could lead to potential stale-
data exposures and even data-integrity issues.
Most instances were related to situations when
in-core meta-data updates were visible before
actual instantiation or resetting of correspond-
ing data blocks on disk. Problems could also
arise when meta-data updates were not visible
to other code paths that could simultaneously
update meta-data as well. The races mainly af-
fected sparse files due to the lack of atomicity
between the file flush in the DIO paths and ac-
tual data block accesses.

The solution that Stephen Tweedie came
up with, and which Badari Pulavarty re-
ported to Linux 2.6, involved protecting block
lookups and meta-data updates with the inode
semaphore (i_sem) in DIO paths for both read
and write, atomically with the file flush. Over-
writing of sparse blocks in the DIO write path
was modified to fall back to buffered writes.
Finally, an additional semaphore (i_alloc_
sem) was introduced to lock out deallocation

of blocks by a truncate while DIO was in
progress. The semaphore was implemented
held in shared mode by DIO and in exclusive
mode by truncate.

Note that handling the new locking rules (i.e.,
lock ordering of i_sem first and theni_
alloc_sem) while allowing for filesystem-
specific implementations of the DIO and file-
write interfaces had to be handled with some
care.

4.2 AIO-DIO specific races

The inclusion of AIO in Linux 2.6 added some
tricky scenarios to the above-described prob-
lems because of the potential races inherent in
returning without waiting for I/O completion.
The interplay of AIO-DIO writes and truncate
was a particular worry as it could lead to cor-
ruption of file data; for example, blocks could
get deallocated and reallocated to a new file
while an AIO-DIO write to the file was still in
progress. To avoid this, AIO-DIO had to return
with i_alloc_sem held, and only release it
as part of I/O completion post-processing. No-
tice that this also had implications for AIO can-
cellation.

File size updates for AIO-DIO file extends
could expose unwritten blocks if they hap-
pened before I/O completed asynchronously.
The case involving fallback to buffered I/O
was particularly non-trivial if a single request
spanned allocated and sparse regions of a
file. Specifically, part of the I/O could have
been initiated via DIO then continued asyn-
chronously, while the fallback to buffered I/O
occurred and signaled I/O completion to the
application. The application may thus have
reused its I/O buffer, overwriting it with other
data and potentially causing file data corrup-
tion if writeout to disk had still been pending.

It might appear that some of these problems

68 • Linux Symposium 2004 • Volume One

could be avoided if I/O schedulers guaranteed
the ordering of I/O requests issued to the same
disk block. However, this isn’t a simple propo-
sition in the current architecture, especially in
generalizing the design to all possible cases,
including network block devices. The use of
I/O barriers would be necessary and the costs
may not be justified for these special-case situ-
ations.

Instead, a pragmatic approach was taken in or-
der to address this based on the assumptions
that true asynchronous behaviour was really
meaningful in practice, mainly when perform-
ing I/O to already-allocated file blocks. For
example, databases typically preallocate files
at the time of creation, so that AIO writes
during normal operation and in performance-
critical paths do not extend the file or encounter
sparse regions. Thus, for the sake of correct-
ness, synchronous behaviour may be tolerable
for AIO writes involving sparse regions or file
extends. This compromise simplified the han-
dling of the scenarios described earlier. AIO-
DIO file extends now wait for I/O to complete
and update the file size. AIO-DIO writes span-
ning allocated and sparse regions now wait for
previously- issued DIO for that request to com-
plete before falling back to buffered I/O.

5 Concurrent I/O with synchro-
nized write guarantees

An application opts for synchronized writes
(by using theO_SYNCoption on file open)
when the I/O must be committed to disk be-
fore the write request completes. In the case
of DIO, writes directly go to disk anyway. For
buffered I/O, data is first copied into the page
cache and later written out to disk; if synchro-
nized I/O is specified then the request returns
only after the writeout is complete.

An application might also choose to synchro-

nize previously-issued writes to disk by invok-
ing fsync(), which writes back data from the
page cache to disk and waits for writeout to
complete before returning.

5.1 Concurrent DIO writes

DIO writes formerly held the inode semaphore
in exclusive mode until write completion. This
helped ensure atomicity of DIO writes and
protected against potential file data corruption
races with truncate. However, it also meant that
multiple threads or processes submitting par-
allel DIOs to different parts of the same file
effectively became serialized synchronously.
If the same behaviour were extended to AIO
(i.e., having thei_sem held through I/O com-
pletion for AIO-DIO writes), it would signif-
icantly degrade throughput of streaming AIO
writes as subsequent write submissions would
block until completion of the previous request.

With the fixes described in the previous sec-
tion, such synchronous serialization is avoid-
able without loss of correctness, as the inode
semaphore needs to be held only when looking
up the blocks to write, and not while actual I/O
is in progress on the data blocks. This could al-
low concurrent DIO writes on different parts of
a file to proceed simultaneously, and efficient
throughputs for streaming AIO-DIO writes.

5.2 Concurrent O_SYNCbuffered writes

In the original writeback design in the Linux
VFS, per-address space lists were maintained
for dirty pages and pages under writeback for
a given file. Synchronized write was imple-
mented by traversing these lists to issue write-
outs for the dirty pages and waiting for write-
back to complete on the pages on the writeback
list. The inode semaphore had to be held all
through to avoid possibilities of livelocking on
these lists as further writes streamed into the
same file. While this helped maintain atomicity

Linux Symposium 2004 • Volume One • 69

of writes, it meant that parallelO_SYNCwrites
to different parts of the file were effectively
serialized synchronously. Further, dependence
on i_sem -protected state in the address space
lists across I/O waits made it difficult to retry-
enable this code path for AIO support.

In order to allow concurrentO_SYNCwrites to
be active on a file, the range of pages to be
written back and waited on could instead be
obtained directly through a radix-tree lookup
for the range of offsets in the file that was be-
ing written out by the request [4]. This would
avoid traversal of the page lists and hence the
need to holdi_sem across the I/O waits. Such
an approach would also make it possible to
completeO_SYNCwrites as a sequence of non-
blocking retry iterations across the range of
bytes in a given request.

5.3 Data-integrity guarantees

Background writeout threads cannot block on
the inode semaphore like O_SYNC/fsync writ-
ers. Hence, with the per-address space lists
writeback model, some juggling involving
movement across multiple lists was required
to avoid livelocks. The implementation had
to make sure that pages which by chance got
picked up for processing by background write-
outs didn’t slip from consideration when wait-
ing for writeback to complete for a synchro-
nized write request. The latter would be partic-
ularly relevant for ensuring synchronized-write
guarantees that impacted data integrity for ap-
plications. However, as Daniel McNeil’s anal-
ysis would indicate [5], getting this right re-
quired the writeback code to write and wait
upon I/O and dirty pages which were initiated
by other processes, and that turned out to be
fairly tricky.

One solution that was explored was per-
address space serialization of writeback to en-
sure exclusivity to synchronous writers and

shared mode for background writers. It in-
volved navigating issues with busy-waits in
background writers and the code was begin-
ning to get complicated and potentially fragile.

This was one of the problems that finally
prompted Andrew Morton to change the entire
VFS writeback code to use radix-tree walks in-
stead of the per-address space pagelists. The
main advantage was that avoiding the need
for movement across lists during state changes
(e.g., when re-dirtying a page if its buffers were
locked for I/O by another process) reduced the
chances of pages getting missed from consid-
eration without the added serialization of entire
writebacks.

6 Tagged radix-tree based write-
back

For the radix-tree walk writeback design to per-
form as well as the address space lists-based
approach, an efficient way to get to the pages
of interest in the radix trees is required. This
is especially so when there are many pages in
the pagecache but only a few are dirty or under
writeback. Andrew Morton solved this prob-
lem by implementing tagged radix-tree lookup
support to enable lookup of dirty or writeback
pages in O(log64(n)) time [6].

This was achieved by adding tag bits for each
slot to each radix-tree node. If a node is
tagged, then the corresponding slots on all the
nodes above it in the tree are tagged. Thus,
to search for a particular tag, one would keep
going down sub-trees under slots which have
the tag bit set until the tagged leaf nodes are
accessed. A tagged gang lookup function is
used for in-order searches for dirty or write-
back pages within a specified range. These
lookups are used to replace the per-address-
space page lists altogether.

70 • Linux Symposium 2004 • Volume One

To synchronize writes to disk, a tagged radix-
tree gang lookup of dirty pages in the byte-
range corresponding to the write request is per-
formed and the resulting pages are written out.
Next, pages under writeback in the byte-range
are obtained through a tagged radix-tree gang
lookup of writeback pages, and we wait for
writeback to complete on these pages (without
having to hold the inode semaphore across the
waits). Observe how this logic lends itself to be
broken up into a series of non-blocking retry it-
erations proceeding in-order through the range.

The same logic can also be used for a whole
file sync, by specifying a byte-range that spans
the entire file.

Background writers also use tagged radix-tree
gang lookups of dirty pages. Instead of always
scanning a file from its first dirty page, the in-
dex where the last batch of writeout terminated
is tracked so the next batch of writeouts can be
started after that point.

7 Streaming AIO writes

The tagged radix-tree walk writeback approach
greatly simplifies the design of AIO support for
synchronized writes, as mentioned in the previ-
ous section,

7.1 Basic retry pattern for synchronized AIO
writes

The retry-based design for buffered AIOO_
SYNCwrites works by converting each block-
ing wait for writeback completion of a page
into a retry exit. The conversion point queues
an asynchronous notification callback and re-
turns to the caller of the filesystem’s AIO
write operation the number of bytes for which
writeback has completed so far without block-
ing. Then, when writeback completes for that
page, the callback kicks off a retry continuation
in task context which invokes the same AIO

write operation again using the caller’s address
space, but this time with arguments modified to
reflect the remaining part of the write request.

As writeouts for the range would have already
been issued the first time before the loop to
wait for writeback completion, the implemen-
tation takes care not to re-dirty pages or re-
issue writeouts during subsequent retries of
AIO write. Instead, when the code detects that
it is being called in a retry context, it simply
falls through directly to the step involving wait-
on-writeback for the remaining range as speci-
fied by the modified arguments.

7.2 Filtered waitqueues to avoid retry storms
with hashed wait queues

Code that is in a retry-exit path (i.e., the return
path following a blocking point where a retry is
queued) should in general take care not to call
routines that could wakeup the newly-queued
retry.

One thing that we had to watch for was calls
to unlock_page() in the retry-exit path.
This could cause a redundant wakeup if an
async wait-on-page writeback was just queued
for that page. The redundant wakeup would
arise if the kernel used the same waitqueue
on unlock as well as writeback completion for
a page, with the expectation that the waiter
would check for the condition it was waiting
for and go back to sleep if it hadn’t occurred. In
the AIO case, however, a wakeup of the newly-
queued callback in the same code path could
potentially trigger a retry storm, as retries kept
triggering themselves over and over again for
the wrong condition.

The interplay of unlock_page() and
wait_on_page_writeback() with
hashed waitqueues can get quite tricky for
retries. For example, consider what happens
when the following sequence in retryable code
is executed at the same time for 2 pages,px

Linux Symposium 2004 • Volume One • 71

and py, which happen to hash to the same
waitqueue (Table 1).

lock_page(p)
check condition and process
unlock_page(p)
if (wait_on_page_writeback_wq(p)

== -EIOCBQUEUED)
return bytes_done

The above code could keep cycling between
spurious retries onpx andpy until I/O is done,
wasting precious CPU time!

If we can ensure specificity of the wakeup with
hashed waitqueues then this problem can be
avoided. William Lee Irwin’s implementation
of filtered wakeup support in the recent Linux
2.6 kernels [7] achieves just that. The wakeup
routine specifies a key to match before invok-
ing the wakeup function for an entry in the
waitqueue, thereby limiting wakeups to those
entries which have a matching key. For page
waitqueues, the key is computed as a function
of the page and the condition (unlock or write-
back completion) for the wakeup.

7.3 Streaming AIO write microbenchmark
comparisons

The following graph compares aio-stress
throughputs for streaming random buffered
I/O O_SYNCwrites, with and without the
previously-described changes. The compari-
son was performed on the same setup used for
the streaming AIO read results discussed ear-
lier. The graph summarizes how the results var-
ied across individual request sizes of 4KB to
64KB, where I/O was targeted to a single file
of size 1GB and the depth of iocbs outstand-
ing at a time was 64KB. A third run was per-
formed to determine how the results compared
with equivalent runs using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

ai
o-

st
re

ss
 th

ro
ug

hp
ut

 (M
B

/s
)

request size (KB)

Streaming AIO O_SYNC write results with aio-stress

FSAIO 2.6.2 Vanilla
FSAIO 2.6.2 Patched
AIO-DIO 2.6.2 Vanilla

Figure 2: Comparisons of streaming random
AIO write throughputs.

block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.

8 AIO performance analysis for
database workloads

Large database systems leveraging AIO can
show marked performance improvements com-
pared to those systems that use synchronous
I/O alone. We use IBM® DB2® Universal
Database™ V8 running an online transaction
processing (OLTP) workload to illustrate the
performance improvement of AIO on raw de-
vices and on filesystems.

8.1 DB2 page cleaners

A DB2 page cleaner is a process responsible
for flushing dirty buffer pool pages to disk.
It simulates AIO by executing asynchronously
with respect to the agent processes. The num-
ber of page cleaners and their behavior can be
tuned according to the demands of the system.
The agents, freed from cleaning pages them-
selves, can dedicate their resources (e.g., pro-
cessor cycles) towards processing transactions,
thereby improving throughput.

72 • Linux Symposium 2004 • Volume One

CPU1 CPU2
lock_page(px)
...
unlock_page(px)

lock_page(py)
wait_on_page_writeback_wq(px) ...

unlock_page(py) -> wakes up p1
triggering

<----------------------------------- a retry
lock_page(px) wait_on_page_writeback_wq(py)
...
unlock_page(py) ---- wakes up py --- causes retry ---->

Table 1: Retry storm livelock with redundant wakeups on hashed wait queues

8.2 AIO performance analysis for raw devices

Two experiments were conducted to measure
the performance benefits of AIO on raw de-
vices for an update-intensive OLTP database
workload. The workload used was derived
from a TPC[8] benchmark, but is in no way
comparable to any TPC results. For the first ex-
periment, the database was configured with one
page cleaner using the native Linux AIO inter-
face. For the second experiment, the database
was configured with 55 page cleaners all using
the synchronous I/O interface. These experi-
ments showed that a database, properly con-
figured in terms of the number of page clean-
ers with AIO, can out-perform a properly con-
figured database using synchronous I/O page
cleaning.

For both experiments, the system configuration
consisted of DB2 V8 running on a 2-way AMD
Opteron system with Linux 2.6.1 installed. The
disk subsystem consisted of two FAStT 700
storage servers, each with eight disk enclo-
sures. The disks were configured as RAID-0
arrays with a stripe size of 256KB.

Table 2 shows the relative database perfor-
mance with and without AIO. Higher numbers
are better. The results show that the database
performed 9% better when configured with one

page cleaner using AIO, than when it was
configured with 55 page cleaners using syn-
chronous I/O.

Configuration Relative
Throughput

1 page cleaner with AIO 133
55 page cleaners without AIO 122

Table 2: Database performance with and with-
out AIO.

Analyzing the I/O write patterns (see Table 3),
we see that one page cleaner using AIO was
sufficient to keep the buffer pools clean un-
der a very heavy load, but that 55 page clean-
ers using synchronous I/O were not, as in-
dicated by the 30% agent writes. This data
suggests that more page cleaners should have
been configured to improve the performance of
the case with synchronous I/O. However, ad-
ditional page cleaners consumed more mem-
ory, requiring a reduction in bufferpool size
and thereby decreasing throughput. For the
test configuration, 55 cleaners was the optimal
number before memory constraints arose.

8.3 AIO performance analysis for filesystems

This section examines the performance im-
provements of AIO when used in conjunction
with filesystems. This experiment was per-

Linux Symposium 2004 • Volume One • 73

Configuration Page cleaner Agent
writes (%) writes (%)

1 page cleaner with
AIO

100 0

55 page cleaners with-
out AIO

70 30

Table 3: DB2 write patterns for raw device
configurations.

formed using the same OLTP benchmark as in
the previous section.

The test system consisted of two 1GHz AMD
Opteron processors, 4GB of RAM and two
QLogic 2310 FC controllers. Attached to the
server was a single FAStT900 storage server
and two disk enclosures with a total of 28 15K
RPM 18GB drives. The Linux kernel used
for the examination was 2.6.0+mm1, which in-
cludes the AIO filesystem support patches [9]
discussed in this paper.

The database tables were spread across multi-
ple ext2 filesystem partitions. Database logs
were stored on a single raw partition.

Three separate tests were performed, utilizing
different I/O methods for the database page
cleaners.

Test 1. Synchronous (Buffered) I/O.

Test 2. Asynchronous (Buffered) I/O.

Test 3. Direct I/O.

The results are shown in Table 4 as rela-
tive commercial processing scores using syn-
chronous I/O as the baseline (i.e., higher is bet-
ter).

Looking at the efficiency of the page clean-
ers (see Table 5), we see that the use of AIO
is more successful in keeping the buffer pools
clean. In the synchronous I/O and DIO cases,
the agents needed to spend more time cleaning

Configuration Commercial Processing
Scores

Synchronous I/O 100
AIO (Buffered) 113.7
DIO 111.9

Table 4: Database performance on filesystems
with and without AIO.

buffer pool pages, resulting in less time pro-
cessing transactions.

Configuration Page cleaner Agent
writes (%) writes (%)

Synchronous I/O 37 63
AIO (buffered) 100 0
DIO 49 51

Table 5: DB2 write patterns for filesystem con-
figurations.

8.4 Optimizing AIO for database workloads

Databases typically use AIO for streaming
batches of random, synchronized write re-
quests to disk (where the writes are directed
to preallocated disk blocks). This has been
found to improve the performance of OLTP
workloads, as it helps bring down the num-
ber of dedicated threads or processes needed
for flushing updated pages, and results in re-
duced memory footprint and better CPU uti-
lization and scaling.

The size of individual write requests is deter-
mined by the page size used by the database.
For example, a DB2 UDB installation might
use a database page size of 8KB.

As observed in previous sections, the use of
AIO helps reduce the number of database page
cleaner processes required to keep the buffer-
pool clean. To keep the disk queues maximally
utilized and limit contention, it may be prefer-
able to have requests to a given disk streamed
out from a single page cleaner. Typically a
set of of disks could be serviced by each page

74 • Linux Symposium 2004 • Volume One

cleaner if and when multiple page cleaners
need to be used.

Databases might also use AIO for reads, for ex-
ample, for prefetching data to service queries.
This usually helps improve the performance of
decision support workloads. The I/O pattern
generated in these cases is that of streaming
batches of large AIO reads, with sizes typically
determined by the file allocation extent size
used by the database (e.g., a DB2 installation
might use a database extent size of 256KB).
For installations using buffered AIO reads, tun-
ing the readahead setting for the corresponding
devices to be more than the extent size would
help improve performance of streaming AIO
reads (recall the discussion in Section 3.5).

9 Addressing AIO workloads in-
volving both disk and communi-
cations I/O

Certain applications need to handle both disk-
based AIO and communications I/O. For com-
munications I/O, the epoll interface—which
provides support for efficient scalable event
polling in Linux 2.6—could be used as ap-
propriate, possibly in conjunction withO_
NONBLOCKsocket I/O. Disk-based AIO on
the other hand, uses the native AIO APIio_
getevents for completion notification. This
makes it difficult to combine both types of I/O
processing within a single event loop, even
when such a model is a natural way to program
the application, as in implementations of the
application on other operating systems.

How do we address this issue? One option is to
extend epoll to enable it to poll for notification
of AIO completion events, so that AIO comple-
tion status can then be reaped in a non-blocking
manner. This involves mixing both epoll and
AIO API programming models, which is not
ideal.

9.1 AIO poll interface

Another alternative is to add support for
polling an event on a given file descriptor
through the AIO interfaces. This function, re-
ferred to as AIO poll, can be issued through
io_submit() just like other AIO opera-
tions, and specifies the file descriptor and
the eventset to wait for. When the event
occurs, notification is reported throughio_
getevents() .

The retry-based design of AIO poll works by
converting the blocking wait for the event into
a retry exit.

The generic synchronous polling code fits
nicely into the AIO retry design, so most of the
original polling code can be used unchanged.
The private data area of the iocb can be used
to hold polling-specific data structures, and a
few special cases can be added to the generic
polling entry points. This allows the AIO poll
case to proceed without additional memory al-
locations.

9.2 AIO operations for communications I/O

A third option is to add support for AIO op-
erations for communications I/O. For exam-
ple, AIO support for pipes has been imple-
mented by converting the blocking wait for
I/O on pipes to aretry exit. The generic pipe
code was also structured such that conversion
to AIO retries was quite simple, the only signif-
icant change was using the currentio_wait
context instead of a locally defined waitqueue,
and returning early if no data was available.

However, AIO pipe testing did show signifi-
cantly more context switches then the 2.4 AIO
pipe implementation, and this was coupled
with much lower performance. The AIO core
functions were relying on workqueues to do
most of the retries, and this resulted in constant

Linux Symposium 2004 • Volume One • 75

switching between the workqueue threads and
user processes.

The solution was to change the AIO core
to do retries inio_submit() and in io_
getevents() . This allowed the process to
do some of its own work while it is scheduled
in. Also, retries were switched to a delayed
workqueue, so that bursts of retries would trig-
ger fewer context switches.

While delayed wakeups helped with pipe
workloads, it also caused I/O stalls in filesys-
tem AIO workloads. This was because a de-
layed wakeup was being used even when a user
process was waiting inio_getevents() .
When user processes are actively waiting for
events, it proved best to trigger the worker
thread immediately.

General AIO support for network operations
has been considered but not implemented so far
because of lack of supporting study that pre-
dicts a significant benefit over what epoll and
non-blocking I/O can provide, except for the
scope for enabling potential zero-copy imple-
mentations. This is a potential area for future
research.

10 Conclusions

Our experience over the last year with AIO de-
velopment, stabilization and performance im-
provements brought us to design and imple-
mentation issues that went far beyond the ini-
tial concern of converting key I/O blocking
points to be asynchronous.

AIO uncovered scenarios and I/O patterns that
were unlikely or less significant with syn-
chronous I/O alone. For example, the issues we
discussed around streaming AIO performance
with readahead and concurrent synchronized
writes, as well as DIO vs buffered I/O com-
plexities in the presence of AIO. In retrospect,

this was the hardest part of supporting AIO—
modifiying code that was originally designed
only for synchronous I/O.

Interestingly, this also meant that AIO ap-
peared to magnify some problems early. For
example, issues with hashed waitqueues that
led to the filtered wakeup patches, and reada-
head window collapses with large random
reads which precipitated improvements to the
readahead code from Ramachandra Pai. Ul-
timately, many of the core improvements that
helped AIO have had positive benefits in al-
lowing improved concurrency for some of the
synchronous I/O paths.

In terms of benchmarking and optimizing
Linux AIO performance, there is room for
more exhaustive work. Requirements for AIO
fsync support are currently under considera-
tion. There is also a need for more widely used
AIO applications, especially those that take ad-
vantaged of AIO support for buffered I/O or
bring out additional requirements like network
I/O beyond epoll or AIO poll. Finally, investi-
gations into API changes to help enable more
efficient POSIX AIO implementations based
on kernel AIO support may be a worthwhile
endeavor.

11 Acknowledgements

We would like to thank the many people
on the linux-aio@kvack.org and
linux-kernel@vger.kernel.org
mailing lists who provided us with valu-
able comments and suggestions during our
development efforts.

We would especially like to acknowledge the
important contributions of Andrew Morton,
Daniel McNeil, Badari Pulavarty, Stephen
Tweedie, and William Lee Irwin towards sev-
eral pieces of work discussed in this paper.

76 • Linux Symposium 2004 • Volume One

This paper and the work it describes wouldn’t
have been possible without the efforts of Janet
Morgan in many different ways, starting from
review, test and debugging feedback to joining
the midnight oil camp to help with modifica-
tions and improvements to the text during the
final stages of the paper.

We also thank Brian Twitchell, Steve Pratt,
Gerrit Huizenga, Wayne Young, and John
Lumby from IBM for their help and discus-
sions along the way.

This work was a part of the Linux Scalabil-
ity Effort (LSE) on SourceForge, and further
information about Linux 2.6 AIO is available
at the LSE AIO web page [10]. All the ex-
ternal AIO patches including AIO support for
buffered filesystem I/O, AIO poll and AIO sup-
port for pipes are available at [9].

12 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM, DB2 and DB2 Universal Database are reg-
istered trademarks of International Business Ma-
chines Corporation in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Pentium is a trademark of Intel Corporation in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

13 Disclaimer

The benchmarks discussed in this paper were con-
ducted for research purposes only, under laboratory
conditions. Results will not be realized in all com-
puting environments.

References

[1] Suparna Bhattacharya, Badari
Pulavarthy, Steven Pratt, and Janet
Morgan. Asynchronous i/o support for
linux 2.5. InProceedings of the Linux
Symposium. Linux Symposium, Ottawa,
July 2003.http://archive.

linuxsymposium.org/ols2003/

Proceedings/All-Reprints/

Reprint-Pulavarty-OLS2003.pdf .

[2] Chris Mason. aio-stress
microbenchmark.
ftp://ftp.suse.com/pub/people/

mason/utils/aio-stress.c .

[3] Stephen C. Tweedie. Posting on dio races
in 2.4.http://marc.theaimsgroup.

com/?l=linux-fsdevel&m=

105597840711609&w=2 .

[4] Andrew Morton. O_sync speedup patch.
http:

//www.kernel.org/pub/linux/

kernel/people/akpm/patches/2.

6/2.6.0/2.6.0-mm1/broken-out/

O_SYNC-speedup-2.patch .

[5] Daniel McNeil. Posting on synchronized
writeback races.
http://marc.theaimsgroup.com/

?l=linux-aio&m=

107671729611002&w=2 .

[6] Andrew Morton. Posting on in-order
tagged radix tree walk based vfs
writeback.
http://marc.theaimsgroup.com/

?l=bk-commits-head&m=

108184544016117&w=2 .

[7] William Lee Irwin. Filtered wakeup
patch.http://marc.theaimsgroup.

com/?l=bk-commits-head&m=

108459430513660&w=2 .

Linux Symposium 2004 • Volume One • 77

[8] Transaction processing performance
council.http://www.tpc.org .

[9] Suparna Bhattacharya (with
contributions from Andrew Morton &
Chris Mason). Additional 2.6 Linux
Kernel Asynchronous I/O patches.
http:

//www.kernel.org/pub/linux/

kernel/people/suparna/aio .

[10] LSE team. Kernel Asynchronous I/O
(AIO) Support for Linux.http:
//lse.sf.net/io/aio.html .

78 • Linux Symposium 2004 • Volume One

Methods to Improve Bootup Time in Linux

Tim R. Bird
Sony Electronics

tim.bird@am.sony.com

Abstract

This paper presents several techniques for re-
ducing the bootup time of the Linux kernel, in-
cluding Execute-In-Place (XIP), avoidance of
calibrate_delay() , and reduced prob-
ing by certain drivers and subsystems. Using
a variety of techniques, the Linux kernel can
be booted on embedded hardware in under 500
milliseconds. Current efforts and future direc-
tions of work to improve bootup time are de-
scribed.

1 Introduction

Users of consumer electronics products expect
their devices to be available for use very soon
after being turned on. Configurations of Linux
for desktop and server markets exhibit boot
times in the range of 20 seconds to a few min-
utes, which is unacceptable for many consumer
products.

No single item is responsible for overall poor
boot time performance. Therefore a number
of techniques must be employed to reduce the
boot up time of a Linux system. This paper
presents several techniques which have been
found to be useful for embedded configurations
of Linux.

2 Overview of Boot Process

The entire boot process of Linux can be
roughly divided into 3 main areas: firmware,
kernel, and user space. The following is a list
of events during a typical boot sequence:

1. power on

2. firmware (bootloader) starts

3. kernel decompression starts

4. kernel start

5. user space start

6. RC script start

7. application start

8. first available use

This paper focuses on techniques for reducing
the bootup time up until the start of user space.
That is, techniques are described which reduce
the firmware time, and the kernel start time.
This includes activities through the completion
of event 4 in the list above.

The actual kernel execution begins with
the routinestart_kernel() , in the file
init/main.c .

An overview of major steps in the initialization
sequence of the kernel is as follows:

80 • Linux Symposium 2004 • Volume One

• start_kernel()

– init architecture

– init interrupts

– init memory

– start idle thread

– call rest_init()

* start ‘init’ kernel thread

The init kernel thread performs a few
other tasks, then callsdo_basic_setup() ,
which calls do_initcalls() , to run
through the array of initialization routines for
drivers statically linked in the kernel. Finally,
this thread switches to user space byexecve -
ing to the first user space program, usually
/sbin/init .

• init (kernel thread)

– call do_basic_setup()

* call do_initcalls()

· init buses and drivers

– prepare and mount root filesystem

– call run_init_process()

* call execve() to start user
space process

3 Typical Desktop Boot Time

The boot times for a typical desktop system
were measured and the results are presented
below, to give an indication of the major areas
in the kernel where time is spent. While the
numbers in these tests differ somewhat from
those for a typical embedded system, it is use-
ful to see these to get an idea of where some of
the trouble spots are for kernel booting.

3.1 System

An HP XW4100 Linux workstation system
was used for these tests, with the following
characteristics:

• Pentium 4 HT processor, running at 3GHz

• 512 MB RAM

• Western Digital 40G hard drive on hda

• Generic CDROM drive on hdc

3.2 Measurement method

The kernel used was 2.6.6, with the KFI patch
applied. KFI stands for “Kernel Function In-
strumentation”. This is an in-kernel system
to measure the duration of each function ex-
ecuted during a particular profiling run. It
uses the-finstrument-functions op-
tion of gcc to instrument kernel functions
with callouts on each function entry and exit.
This code was authored by developers at Mon-
taVista Software, and a patch for 2.6.6 is avail-
able, although the code is not ready (as of the
time of this writing) for general publication.
Information about KFI and the patch are avail-
able at:

http://tree.celinuxforum.org/pubwiki

/moin.cgi

/KernelFunctionInstrumentation

3.3 Key delays

The average time for kernel startup of the test
system was about 7 seconds. This was the
amount of time for just the kernel and NOT the
firmware or user space. It corresponds to the
period of time between events 4 and 5 in the
boot sequence listed in Section 2.

Linux Symposium 2004 • Volume One • 81

Some key delays were found in the kernel
startup on the test system. Table 1 shows
some of the key routines where time was spent
during bootup. These are the low-level rou-
tines where significant time was spent inside
the functions themselves, rather than in sub-
routines called by the functions.

Kernel Function No. of Avg. call Total
calls time time

delay_tsc 5153 1 5537
default_idle 312 1 325
get_cmos_time 1 500 500
psmouse_sendbyte 44 2.4 109
pci_bios_find_device 25 1.7 44
atkbd_sendbyte 7 3.7 26
calibrate_delay 1 24 24

Note: Times are in milliseconds.

Table 1: Functions consuming lots of time dur-
ing a typical desktop Linux kernel startup.

Note that over 80% of the total time of the
bootup (almost 6 seconds out of 7) was spent
busywaiting indelay_tsc() or spinning in
the routinedefault_idle() . It appears
that great reductions in total bootup time could
be achieved if these delays could be reduced,
or if it were possible to run some initialization
tasks concurrently.

Another interesting point is that the routine
get_cmos_time() was extremely variable
in the length of time it took. Measurements
of its duration ranged from under 100 millisec-
onds to almost one second. This routine, and
methods to avoid this delay and variability, are
discussed in section 9.

3.4 High-level delay areas

Since delay_tsc() is used (via various
delay mechanisms) for busywaiting by a
number of different subsystems, it is helpful to
identify the higher-level routines which end up
invoking this function.

Table 2 shows some high-level routines called
during kernel initialization, and the amount of
time they took to complete on the test ma-
chine. Duration times marked with a tilde de-
note functions which were highly variable in
duration.

Kernel Function Duration time

ide_init 3327
time_init ~500
isapnp_init 383
i8042_init 139
prepare_namespace ~50
calibrate_delay 24

Note: Times are in milliseconds.

Table 2: High-level delays during a typical
startup.

For a few of these, it is interesting to examine
the call sequences underneath the high-level
routines. This shows the connection between
the high-level routines that are taking a long
time to complete and the functions where the
time is actually being spent.

Figures 1 and 2 show some call sequences for
high-level calls which take a long time to com-
plete.

In each call tree, the number in parentheses is
the number of times that the routine was called
by the parent in this chain. Indentation shows
the call nesting level.

For example, in Figure 1,do_probe() is
called a total of 31 times byprobe_hwif() ,
and it callside_delay_50ms() 78 times,
andtry_to_identify() 8 times.

The timing data for the test system showed
that IDE initialization was a significant con-
tributor to overall bootup time. The call se-
quence underneathide_init() shows that
a large number of calls are made to the routine
ide_delay_50ms() , which in turn calls

82 • Linux Symposium 2004 • Volume One

ide_init->
probe_for_hwifs(1)->

ide_scan_pcibus(1)->
ide_scan_pci_dev(2)->

piix_init_one(2)->
init_setup_piix(2)->

ide_setup_pci_device(2)->
probe_hwif_init(2)->

probe_hwif(4)->
do_probe(31)->

ide_delay_50ms(78)->
__const_udelay(3900)->

__delay(3900)->
delay_tsc(3900)

try_to_identify(8)->
actual_try_to_identify(8)->

ide_delay_50ms(24)->
__const_udelay(1200)->

__delay(1200)->
delay_tsc(1200)

Figure 1: IDE init call tree

isapnp_init->
isapnp_isolate(1)->

isapnp_isolate_rdp_select(1)->
__const_udelay(25)->

__delay(25)->
delay_tsc(25)

isapnp_key(18)->
__const_udelay(18)->

__delay(18)->
delay_tsc(18)

Figure 2: ISAPnP init call tree

__const_udelay() very many times. The
busywaits inide_delay_50ms() alone ac-
counted for over 5 seconds, or about 70% of
the total boot up time.

Another significant area of delay was the ini-
tialization of the ISAPnP system. This took
about 380 milliseconds on the test machine.

Both the mouse and the keyboard drivers used
crude busywaits to wait for acknowledgements
from their respective hardware.

Finally, the routinecalibrate_delay()
took about 25 milliseconds to run, to compute
the value ofloops_per_jiffy and print
(the related)BogoMips for the machine.

The remaining sections of this paper discuss
various specific methods for reducing bootup
time for embedded and desktop systems. Some
of these methods are directly related to some of
the delay areas identified in this test configura-
tion.

4 Kernel Execute-In-Place

A typical sequence of events during bootup is
for the bootloader to load a compressed kernel
image from either disk or Flash, placing it into
RAM. The kernel is decompressed, either dur-
ing or just after the copy operation. Then the
kernel is executed by jumping to the function
start_kernel() .

Kernel Execute-In-Place (XIP) is a mechanism
where the kernel instructions are executed di-
rectly from ROM or Flash.

In a kernel XIP configuration, the step of copy-
ing the kernel code segment into RAM is omit-
ted, as well as any decompression step. In-
stead, the kernel image is stored uncompressed
in ROM or Flash. The kernel data segments
still need to be initialized in RAM, but by elim-
inating the text segment copy and decompres-
sion, the overall effect is a reduction in the time
required for the firmware phase of the bootup.

Table 3 shows the differences in time duration
for various parts of the boot stage for a sys-
tem booted with and without use of kernel XIP.
The times in the table are shown in millisec-
onds. The table shows that using XIP in this
configuration significantly reduced the time to
copy the kernel to RAM (because only the data
segments were copied), and completely elim-
inated the time to decompress the kernel (453
milliseconds). However, the kernel initializa-
tion time increased slightly in the XIP configu-
ration, for a net savings of 463 milliseconds.

In order to support an Execute-In-Place con-

Linux Symposium 2004 • Volume One • 83

Boot Stage Non-XIP time XIP time

Copy kernel to RAM 85 12
Decompress kernel 453 0
Kernel initialization 819 882
Total kernel boot time 1357 894

Note: Times are in milliseconds. Results are for
PowerPC 405 LP at 266 MHz

Table 3: Comparison of Non-XIP vs. XIP
bootup times

figuration, the kernel must be compiled and
linked so that the code is ready to be exe-
cuted from a fixed memory location. There
are examples of XIP configurations for ARM,
MIPS and SH platforms in the CELinux
source tree, available at:http://tree.
celinuxforum.org/

4.1 XIP Design Tradeoffs

There are tradeoffs involved in the use of XIP.
First, it is common for access times to flash
memory to be greater than access times to
RAM. Thus, a kernel executing from Flash
usually runs a bit slower than a kernel execut-
ing from RAM. Table 4 shows some of the re-
sults from running thelmbench benchmark
on system, with the kernel executing in a stan-
dard non-XIP configuration versus an XIP con-
figuration.

Operation Non-XIP XIP

stat() syscall 22.4 25.6
fork a process 4718 7106
context switching for 16
processes and 64k data size

932 1109

pipe communication 248 548

Note: Times are in microseconds. Results are for
lmbench benchmark run on OMAP 1510 (ARM9 at
168 MHz) processor

Table 4: Comparison of Non-XIP and XIP per-
formance

Some of the operations in the benchmark took
significantly longer with the kernel run in the
XIP configuration. Most individual operations
took about 20% to 30% longer. This perfor-
mance penalty is suffered permanently while
the kernel is running, and thus is a serious
drawback to the use of XIP for reducing bootup
time.

A second tradeoff with kernel XIP is between
the sizes of various types of memory in the
system. In the XIP configuration the kernel
must be stored uncompressed, so the amount
of Flash required for the kernel increases, and
is usually about doubled, versus a compressed
kernel image used with a non-XIP configura-
tion. However, the amount of RAM required
for the kernel is decreased, since the kernel
code segment is never copied to RAM. There-
fore, kernel XIP is also of interest for reducing
the runtime RAM footprint for Linux in em-
bedded systems.

There is additional research under way to in-
vestigate ways of reducing the performance
impact of using XIP. One promising technique
appears to be the use of “partial-XIP,” where a
highly active subset of the kernel is loaded into
RAM, but the majority of the kernel is executed
in place from Flash.

5 Delay Calibration Avoidance

One time-consuming operation inside the ker-
nel is the process of calibrating the value used
for delay loops. One of the first routines in
the kernel,calibrate_delay() , executes
a series of delays in order to determine the cor-
rect value for a variable calledloops_per_
jiffy , which is then subsequently used to ex-
ecute short delays in the kernel.

The cost of performing this calibration is, in-
terestingly, independent of processor speed.
Rather, it is dependent on the number of iter-

84 • Linux Symposium 2004 • Volume One

ations required to perform the calibration, and
the length of each iteration. Each iteration re-
quires 1 jiffy, which is the length of time de-
fined by the HZ variable.

In 2.4 versions of the Linux kernel, most plat-
forms defined HZ as 100, which makes the
length of a jiffy 10 milliseconds. A typical
number of iterations for the calibration opera-
tion is 20 to 25, making the total time required
for this operation about 250 milliseconds.

In 2.6 versions of the Linux kernel, a few plat-
forms (notably i386) have changed HZ to 1000,
making the length of a jiffy 1 millisecond. On
those platforms, the typical cost of this calibra-
tion operation has decreased to about 25 mil-
liseconds. Thus, the benefit of eliminating this
operation on most standard desktop systems
has been reduced. However, for many embed-
ded systems, HZ is still defined as 100, which
makes bypassing the calibration useful.

It is easy to eliminate the calibration operation.
You can directly edit the code ininit/main.

c:calibrate_delay() to hardcode a value
for loops_per_jiffy , and avoid the cali-
bration entirely. Alternatively, there is a patch
available athttp://tree.celinuxforum.

org/pubwiki/moin.cgi/PresetLPJ

This patch allows you to use a kernel config-
uration option to specify a value forloops_
per_jiffy at kernel compile time. Alterna-
tively, the patch also allows you to use a ker-
nel command line argument to specify a preset
value forloops_per_jiffy at kernel boot
time.

6 Avoiding Probing During Bootup

Another technique for reducing bootup time is
to avoid probing during bootup. As a general
technique, this can consist of identifying hard-
ware which is known not to be present on one’s

machine, and making sure the kernel is com-
piled without the drivers for that hardware.

In the specific case of IDE, the kernel sup-
ports options at the command line to allow the
user to avoid performing probing for specific
interfaces and devices. To do this, you can
use the IDE and harddrivenoprobe options
at the kernel command line. Please see the
file Documentation/ide.txt in the ker-
nel source tree for details on the syntax of using
these options.

On the test machine, IDEnoprobe options
were used to reduce the amount of probing dur-
ing startup. The test machine had only a hard
drive on hda (ide0 interface, first device) and
a CD-ROM drive on hdc (ide1 interface, first
device).

In one test,noprobe options were specified
to suppress probing of non-used interfaces and
devices. Specifically, the following arguments
were added to the kernel command line:

hdb=none hdd=none ide2=noprobe

The kernel was booted and the result was
that the functionide_delay_50ms() was
called only 68 times, anddelay_tsc() was
called only 3453 times. During a regular
kernel boot without these options specified,
the functionide_delay_50ms() is called
102 times, anddelay_tsc() is called 5153
times. Each call todelay_tsc() takes
about 1 millisecond, so the total time savings
from using these options was 1700 millisec-
onds.

These IDEnoprobe options have been avail-
able at least since the 2.4 kernel series, and are
an easy way to reduce bootup time, without
even having to recompile the kernel.

Linux Symposium 2004 • Volume One • 85

7 Reducing Probing Delays

As was noted on the test machine, IDE ini-
tialization takes a significant percentage of
the total bootup time. Almost all of this
time is spent busywaiting in the routineide_
delay_50ms() .

It is trivial to modify the value of the time-
out used in this routine. As an experiment,
this code (located in the filedrivers/ide/
ide.c) was modified to only delay 5 millisec-
onds instead of 50 milliseconds.

The results of this change were interesting.
When a kernel with this change was run on
the test machine, the total time for theide_
init() routine dropped from 3327 millisec-
onds to 339 milliseconds. The total time spent
in all invocations of ide_delay_50ms()
was reduced from 5471 milliseconds to 552
milliseconds. The overall bootup time was re-
duced accordingly, by about 5 seconds.

The ide devices were successfully detected,
and the devices operated without problem on
the test machine. However, this configuration
was not tested exhaustively.

Reducing the duration of the delay in theide_
delay_50ms() routine provides a substan-
tial reduction in the overall bootup time for the
kernel on a typical desktop system. It also has
potential use in embedded systems where PCI-
based IDE drives are used.

However, there are several issues with this
modification that need to be resolved. This
change may not support legacy hardware
which requires long delays for proper probing
and initializing. The kernel code needs to be
analyzed to determine if any callers of this rou-
tine really need the 50 milliseconds of delay
that they are requesting. Also, it should be de-
termined whether this call is used only in ini-
tialization context or if it is used during regular

runtime use of IDE devices also.

Also, it may be that 5 milliseconds does not
represent the lowest possible value for this de-
lay. It is possible that this value will need to
be tuned to match the hardware for a particular
machine. This type of tuning may be accept-
able in the embedded space, where the hard-
ware configuration of a product may be fixed.
But it may be too risky to use in desktop con-
figurations of Linux, where the hardware is not
known ahead of time.

More experimentation, testing and validation
are required before this technique should be
used.

IMPORTANT NOTE: You should probably not
experiment with this modification on produc-
tion hardware unless you have evaluated the
risks.

8 Using the “quiet” Option

One non-obvious method to reduce overhead
during booting is to use thequiet option on
the kernel command line. This option changes
the loglevel to 4, which suppresses the output
of regular (non-emergency) printk messages.
Even though the messages are not printed to
the system console, they are still placed in the
kernel printk buffer, and can be retrieved after
bootup using thedmesg command.

When embedded systems boot with a serial
console, the speed of printing the characters
to the console is constrained by the speed of
the serial output. Also, depending on the
driver, some VGA console operations (such as
scrolling the screen) may be performed in soft-
ware. For slow processors, this may take a sig-
nificant amount of time. In either case, the cost
of performing output of printk messages during
bootup may be high. But it is easily eliminated
using thequiet command line option.

86 • Linux Symposium 2004 • Volume One

Table 5 shows the difference in bootup time of
using thequiet option and not, for two dif-
ferent systems (one with a serial console and
one with a VGA console).

9 RTC Read Synchronization

One routine that potentially takes a long time
during kernel startup isget_cmos_time() .
This routine is used to read the value of the ex-
ternal real-time clock (RTC) when the kernel
boots. Currently, this routine delays until the
edge of the next second rollover, in order to en-
sure that the time value in the kernel is accurate
with respect to the RTC.

However, this operation can take up to one full
second to complete, and thus introduces up to
1 second of variability in the total bootup time.
For systems where the target bootup time is un-
der 1 second, this variability is unacceptable.

The synchronization in this routine is easy
to remove. It can be eliminated by re-
moving the first two loops in the function
get_cmos_time() , which is located in
include/asm-i386/mach-default/

mach_time.h for the i386 architecture. Sim-
ilar routines are present in the kernel source
tree for other architectures.

When the synchronization is removed, the rou-
tine completes very quickly.

One tradeoff in making this modification is that
the time stored by the Linux kernel is no longer
completely synchronized (to the boundary of a
second) with the time in the machine’s realtime
clock hardware. Some systems save the system
time back out to the hardware clock on system
shutdown. After numerous bootups and shut-
downs, this lack of synchronization will cause
the realtime clock value to drift from the cor-
rect time value.

Since the amount of un-synchronization is up
to a second per boot cycle, this drift can be
significant. However, for some embedded ap-
plications, this drift is unimportant. Also, in
some situations the system time may be syn-
chronized with an external source anyway, so
the drift, if any, is corrected under normal cir-
cumstances soon after booting.

10 User space Work

There are a number of techniques currently
available or under development for user space
bootup time reductions. These techniques are
(mostly) outside the scope of kernel develop-
ment, but may provide additional benefits for
reducing overall bootup time for Linux sys-
tems.

Some of these techniques are mentioned briefly
in this section.

10.1 Application XIP

One technique for improving application
startup speed is application XIP, which is sim-
ilar to the kernel XIP discussed in this paper.
To support application XIP the kernel must be
compiled with a file system where files can be
stored linearly (where the blocks for a file are
stored contiguously) and uncompressed. One
file system which supports this is CRAMFS,
with the LINEAR option turned on. This is a
read-only file system.

With application XIP, when a program is ex-
ecuted, the kernel program loader maps the
text segments for applications directly from the
flash memory of the file system. This saves the
time required to load these segments into sys-
tem RAM.

Linux Symposium 2004 • Volume One • 87

Platform Speed console w/o quiet with quiet difference
type option option

SH-4 SH7751R 240 MHz VGA 637 461 176
OMAP 1510 (ARM 9) 168 MHz serial 551 280 271

Note: Times are in milliseconds

Table 5: Bootup time with and without thequiet option

10.2 RC Script improvements

Also, there are a number of projects which
strive to decrease total bootup time of a system
by parallelizing the execution of the system
run-command scripts (“RC scripts”). There is
a list of resources for some of these projects at
the following web site:

http://tree.celinuxforum.org/
pubwiki/moin.cgi/

BootupTimeWorkingGroup

Also, there has been some research conducted
in reducing the overhead of running RC scripts.
This consists of modifying the multi-function
programbusybox to reduce the number and
cost of forks during RC script processing, and
to optimize the usage of functions builtin to the
busybox program. Initial testing has shown a
reduction from about 8 seconds to 5 seconds
for a particular set of Debian RC scripts on an
OMAP 1510 (ARM 9) processor, running at
168 MHz.

11 Results

By use of the some of the techniques men-
tioned in this paper, as well as additional tech-
niques, Sony was able to boot a 2.4.20-based
Linux system, from power on to user space dis-
play of a greeting image and sound playback,
in 1.2 seconds. The time from power on to the
end of kernel initialization (first user space in-
struction) in this configuration was about 110

milliseconds. The processor was a TI OMAP
1510 processor, with an ARM9-based core,
running at 168 MHz.

Some of the techniques used for reducing the
bootup time of embedded systems can also be
used for desktop or server systems. Often, it
is possible, with rather simple and small mod-
ifications, to decrease the bootup time of the
Linux kernel to only a few seconds. In the
desktop configuration of Linux presented here,
techniques from this paper were used to re-
duced the total bootup time from around 7 sec-
onds to around 1 second. This was with no
loss of functionality that the author could de-
tect (with limited testing).

12 Further Research

As stated in the beginning of the paper, numer-
ous techniques can be employed to reduce the
overall bootup time of Linux systems. Further
work continues or is needed in a number of ar-
eas.

12.1 Concurrent Driver Init

One area of additional research that seems
promising is to structure driver initializations
in the kernel so that they can proceed in par-
allel. For some items, like IDE initialization,
there are large delays as buses and devices are
probed and initialized. The time spent in such
busywaits could potentially be used to perform
other startup tasks, concurrently with the ini-

88 • Linux Symposium 2004 • Volume One

tializations waiting for hardware events to oc-
cur or time out.

The big problem to be addressed with con-
current initialization is to identify what ker-
nel startup activities can be allowed to occur
in parallel. The kernel init sequence is already
a carefully ordered sequence of events to make
sure that critical startup dependencies are ob-
served. Any system of concurrent driver ini-
tialization will have to provide a mechanism
to guarantee sequencing of initialization tasks
which have order dependencies.

12.2 Partial XIP

Another possible area of further investiga-
tion, which has already been mentioned, is
“partial XIP,” whereby the kernel is executed
mostlyin-place. Prototype code already exists
which demonstrates the mechanisms necessary
to move a subset of an XIP-configured kernel
into RAM, for faster code execution. The key
to making partial kernel XIP useful will be to
ensure correct identification (either statically or
dynamically) of the sections of kernel code that
need to be moved to RAM. Also, experimenta-
tion and testing need to be performed to deter-
mine the appropriate tradeoff between the size
of the RAM-based portion of the kernel, and
the effect on bootup time and system runtime
performance.

12.3 Pre-linking and Lazy Linking

Finally, research is needed into reducing the
time required to fixup links between programs
and their shared libraries.

Two systems that have been proposed and ex-
perimented with are pre-linking and lazy link-
ing. Pre-linking involves fixing the location in
virtual memory of the shared libraries for a sys-
tem, and performing fixups on the programs of
the system ahead of time. Lazy linking consists

of only performing fixups on demand as library
routines are called by a running program.

Additional research is needed with both of
these techniques to determine if they can pro-
vide benefit for current Linux systems.

13 Credits

This paper is the result of work performed by
the Bootup Time Working Group of the CE
Linux forum (of which the author is Chair).
I would like to thank developers at some of
CELF’s member companies, including Hitachi,
Intel, Mitsubishi, MontaVista, Panasonic, and
Sony, who contributed information or code
used in writing this paper.

Linux on NUMA Systems

Martin J. Bligh
mbligh@aracnet.com

Matt Dobson
colpatch@us.ibm.com

Darren Hart
dvhltc@us.ibm.com

Gerrit Huizenga
gh@us.ibm.com

Abstract

NUMA is becoming more widespread in the
marketplace, used on many systems, small or
large, particularly with the advent of AMD
Opteron systems. This paper will cover a sum-
mary of the current state of NUMA, and future
developments, encompassing the VM subsys-
tem, scheduler, topology (CPU, memory, I/O
layouts including complex non-uniform lay-
outs), userspace interface APIs, and network
and disk I/O locality. It will take a broad-based
approach, focusing on the challenges of creat-
ing subsystems that work for all machines (in-
cluding AMD64, PPC64, IA-32, IA-64, etc.),
rather than just one architecture.

1 What is a NUMA machine?

NUMA stands for non-uniform memory archi-
tecture. Typically this means that not all mem-
ory is the same “distance” from each CPU in
the system, but also applies to other features
such as I/O buses. The word “distance” in this
context is generally used to refer to both la-
tency and bandwidth. Typically, NUMA ma-
chines can access any resource in the system,
just at different speeds.

NUMA systems are sometimes measured with
a simple “NUMA factor” ratio of N:1—
meaning that the latency for a cache miss mem-
ory read from remote memory isN times the la-
tency for that from local memory (for NUMA
machines,N > 1). Whilst such a simple de-
scriptor is attractive, it can also be highly mis-
leading, as it describes latency only, not band-
width, on an uncontended bus (which is not
particularly relevant or interesting), and takes
no account of inter-node caches.

The termnodeis normally used to describe a
grouping of resources—e.g., CPUs, memory,
and I/O. On some systems, a node may con-
tain only some types of resources (e.g., only
memory, or only CPUs, or only I/O); on oth-
ers it may contain all of them. The intercon-
nect between nodes may take many different
forms, but can be expected to be higher latency
than the connection within a node, and typi-
cally lower bandwidth.

Programming for NUMA machines generally
implies focusing onlocality—the use of re-
sources close to the device in question, and
trying to reduce traffic between nodes; this
type of programming generally results in bet-
ter application throughput. On some machines
with high-speed cross-node interconnects, bet-

90 • Linux Symposium 2004 • Volume One

ter performance may be derived under certain
workloads by “striping” accesses across mul-
tiple nodes, rather than just using local re-
sources, in order to increase bandwidth. Whilst
it is easy to demonstrate a benchmark that
shows improvement via this method, it is dif-
ficult to be sure that the concept is generally
benefical (i.e., with the machine under full
load).

2 Why use a NUMA architecture to
build a machine?

The intuitive approach to building a large ma-
chine, with many processors and banks of
memory, would be simply to scale up the typ-
ical 2–4 processor machine with all resources
attached to a shared system bus. However, re-
strictions of electronics and physics dictate that
accesses slow as the length of the bus grows,
and the bus is shared amongst more devices.

Rather than accept this global slowdown for a
larger machine, designers have chosen to in-
stead give fast access to a limited set of local
resources, and reserve the slower access times
for remote resources.

Historically, NUMA architectures have only
been used for larger machines (more than 4
CPUs), but the advantages of NUMA have
been brought into the commodity marketplace
with the advent of AMD’s x86-64, which has
one CPU per node, and local memory for each
processor. Linux supports NUMA machines
of every size from 2 CPUs upwards (e.g., SGI
have machines with 512 processors).

It might help to envision the machine as a
group of standard SMP machines, connected
by a very fast interconnect somewhat like a net-
work connection, except that the transfers over
that bus are transparent to the operating sys-
tem. Indeed, some earlier systems were built

exactly like that; the older Sequent NUMA-
Q hardware uses a standard 450NX 4 proces-
sor chipset, with an SCI interconnect plugged
into the system bus of each node to unify them,
and pass traffic between them. The complex
part of the implementation is to ensure cache-
coherency across the interconnect, and such
machines are often referred to asCC-NUMA
(cache coherent NUMA). As accesses over the
interconnect are transparent, it is possible to
program such machines as if they were stan-
dard SMP machines (though the performance
will be poor). Indeed, this is exactly how the
NUMA-Q machines were first bootstrapped.

Often, we are asked why people do not use
clusters of smaller machines, instead of a large
NUMA machine, as clusters are cheaper, sim-
pler, and have a better price:performance ra-
tio. Unfortunately, it makes the programming
of applications much harder; all of the inter-
communication and load balancing now has to
be more explicit. Some large applications (e.g.,
database servers) do not split up across mul-
tiple cluster nodes easily—in those situations,
people often use NUMA machines. In addi-
tion, the interconnect for NUMA boxes is nor-
mally very low latency, and very high band-
width, yielding excellent performance. The
management of a single NUMA machine is
also simpler than that of a whole cluster with
multiple copies of the OS.

We could either have the operating system
make decisions about how to deal with the ar-
chitecture of the machine on behalf of the user
processes, or give the userspace application an
API to specify how such decisions are to be
made. It might seem, at first, that the userspace
application is in a better position to make such
decisions, but this has two major disadvan-
tages:

1. Every application must be changed to sup-
port NUMA machines, and may need to

Linux Symposium 2004 • Volume One • 91

be revised when a new hardware platform
is released.

2. Applications are not in a good position
to make global holistic decisions about
machine resources, coordinate themselves
with other applications, and balance deci-
sions between them.

Thus decisions on process, memory and I/O
placement are normally best left to the oper-
ating system, perhaps with some hints from
userspace about which applications group to-
gether, or will use particular resources heavily.
Details of hardware layout are put in one place,
in the operating system, and tuning and modi-
fication of the necessary algorithms are done
once in that central location, instead of in ev-
ery application. In some circumstances, the
application or system administrator will want
to override these decisions with explicit APIs,
but this should be the exception, rather than the
norm.

3 Linux NUMA Memory Support

In order to manage memory, Linux requires
a page descriptor structure (struct page)
for each physical page of memory present in
the system. This consumes approximately 1%
of the memory managed (assuming 4K page
size), and the structures are grouped into an ar-
ray calledmem_map. For NUMA machines,
there is a separate array for each node, called
lmem_map. The mem_mapand lmem_map
arrays are simple contiguous data structures ac-
cessed in a linear fashion by their offset from
the beginning of the node. This means that the
memory controlled by them is assumed to be
physically contiguous.

NUMA memory support is enabled by
CONFIG_DISCONTIGMEMand CONFIG_
NUMA. A node descriptor called astruct

pgdata_t is created for each node. Cur-
rently we do not support discontiguous mem-
ory within a node (though large gaps in the
physical address space are acceptable between
nodes). Thus we must still create page descrip-
tor structures for “holes” in memory within a
node (and then mark them invalid), which will
waste memory (potentially a problem for large
holes).

Dave McCracken has picked up Daniel
Phillips’ earlier work on a better data struc-
ture for holding the page descriptors, called
CONFIG_NONLINEAR. This will allow the
mapping of discontigous memory ranges in-
side each node, and greatly simplify the ex-
isting code for discontiguous memory on non-
NUMA machines.

CONFIG_NONLINEARsolves the problem by
creating an artificial layer of linear addresses.
It does this by dividing the physical address
space into fixed size sections (akin to very
large pages), then allocating an array to allow
translations from linear physical address to true
physical address. This added level of indirec-
tion allows memory with widely differing true
physical addresses to appear adjacent to the
page allocator and to be in the same zone, with
a single struct page array to describe them. It
also provides support for memory hotplug by
allowing new physical memory to be added to
an existing zone and struct page array.

Linux normally allocates memory for a process
on the local node, i.e., the node that the pro-
cess is currently running on.alloc_pages
will call alloc_pages_node for the cur-
rent processor’s node, which will pass the rele-
vant zonelist (pgdat->node_zonelists)
to the core allocator (__alloc_pages). The
zonelists are built bybuild_zonelists ,
and are set up to allocate memory in a round-
robin fashion, starting from the local node (this
creates a roughly even distribution of memory

92 • Linux Symposium 2004 • Volume One

pressure).

In the interest of reducing cross-node traffic,
and reducing memory access latency for fre-
quently accessed data and text, it is desirable
to replicate any such memory that is read-only
to each node, and use the local copy on any ac-
cesses, rather than a remote copy. The obvious
candidates for such replication are the kernel
text itself, and the text of shared libraries such
as libc. Of course, this faster access comes
at the price of increased memory usage, but
this is rarely a problem on large NUMA ma-
chines. Whilst it might be technically possible
to replicate read/write mappings, this is com-
plex, of dubious utility, and is unlikely to be
implemented.

Kernel text is assumed by the kernel itself to
appear at a fixed virtual address, and to change
this would be problematic. Hence the easiest
way to replicate it is to change the virtual to
physical mappings for each node to point at a
different address. On IA-64, this is easy, since
the CPU provides hardware assistance in the
form of a pinned TLB entry.

On other architectures this proves more diffi-
cult, and would depend on the structure of the
pagetables. On IA-32 with PAE enabled, as
long as the user-kernel split is aligned on a
PMD boundary, we can have a separate ker-
nel PMD for each node, and point the vmalloc
area (which uses small page mappings) back to
a globally shared set of PTE pages. The PMD
entries for theZONE_NORMALareas normally
never change, so this is not an issue, though
there is an issue withioremap_nocache
that can change them (GART trips over this)
and speculative execution means that we will
have to deal with that (this can be a slow-path
that updates all copies of the PMDs though).

Dave Hansen has created a patch to replicate
read only pagecache data, by adding a per-node
data structure to each node of the pagecache

radix tree. As soon as any mapping is opened
for write, the replication is collapsed, making
it safe. The patch gives a 5%–40% increase in
performance, depending on the workload.

In the 2.6 Linux kernel, we have a per-node
LRU for page management and a per-node
LRU lock, in place of the global structures
and locks of 2.4. Not only does this reduce
contention through finer grained locking, it
also means we do not have to search other
nodes’ page lists to free up pages on one node
which is under memory pressure. Moreover,
we get much better locality, as only the lo-
cal kswapd process is accessing that node’s
pages. Before splitting the LRU into per-node
lists, we were spending 50% of the system time
during a kernel compile just spinning wait-
ing for pagemap_lru_lock (which was the
biggest global VM lock at the time). Con-
tention for thepagemap_lru_lock is now
so small it is not measurable.

4 Sched Domains—a Topology-
aware Scheduler

The previous Linux scheduler, the O(1) sched-
uler, provided some needed improvements to
the 2.4 scheduler, but shows its age as more
complex system topologies become more and
more common. With technologies such as
NUMA, Symmetric Multi-Threading (SMT),
and variations and combinations of these, the
need for a more flexible mechanism to model
system topology is evident.

4.1 Overview

In answer to this concern, the mainline 2.6
tree (linux-2.6.7-rc1 at the time of this writing)
contains an updated scheduler with support for
generic CPU topologies with a data structure,
struct sched_domain , that models the
architecture and defines scheduling policies.

Linux Symposium 2004 • Volume One • 93

Simply speaking, sched domains group CPUs
together in a hierarchy that mimics that of the
physical hardware. Since CPUs at the bot-
tom of the hierarchy are most closely related
(in terms of memory access), the new sched-
uler performs load balancing most often at the
lower domains, with decreasing frequency at
each higher level.

Consider the case of a machine with two SMT
CPUs. Each CPU contains a pair of virtual
CPU siblings which share a cache and the core
processor. The machine itself has two physi-
cal CPUs which share main memory. In such
a situation, treating each of the four effective
CPUs the same would not result in the best
possible performance. With only two tasks,
for example, the scheduler should place one
on CPU0 and one on CPU2, and not on the
two virtual CPUs of the same physical CPU.
When running several tasks it seems natural to
try to place newly ready tasks on the CPU they
last ran on (hoping to take advantage of cache
warmth). However, virtual CPU siblings share
a cache; a task that was running on CPU0,
then blocked, and became ready when CPU0
was running another task and CPU1 was idle,
would ideally be placed on CPU1. Sched do-
mains provide the structures needed to realize
these sorts of policies. With sched domains,
each physical CPU represents a domain con-
taining the pair of virtual siblings, each repre-
sented in asched_group structure. These
two domains both point to a parent domain
which contains all four effective processors in
two sched_group structures, each contain-
ing a pair of virtual siblings. Figure 1 illus-
trates this hierarchy.

Next consider a two-node NUMA machine
with two processors per node. In this example
there are no virtual sibling CPUs, and there-
fore no shared caches. When a task becomes
ready and the processor it last ran on is busy,
the scheduler needs to consider waiting un-

Figure 1: SMT Domains

til that CPU is available to take advantage of
cache warmth. If the only available CPU is
on another node, the scheduler must carefully
weigh the costs of migrating that task to an-
other node, where access to its memory will
be slower. The lowest level sched domains in
a machine like this will contain the two pro-
cessors of each node. These two CPU level
domains each point to a parent domain which
contains the two nodes. Figure 2 illustrates this
hierarchy.

Figure 2: NUMA Domains

The next logical step is to consider an SMT
NUMA machine. By combining the previous
two examples, the resulting sched domain hier-
archy has three levels, sibling domains, physi-
cal CPU domains, and the node domain. Fig-
ure 3 illustrates this hierarchy.

The unique AMD Opteron architecture war-
rants mentioning here as it creates a NUMA
system on a single physical board. In this case,
however, each NUMA node contains only one

94 • Linux Symposium 2004 • Volume One

Figure 3: SMT NUMA Domains

physical CPU. Without careful consideration
of this property, a typical NUMA sched do-
mains hierarchy would perform badly, trying
to load balance single CPU nodes often (an ob-
vious waste of cycles) and between node do-
mains only rarely (also bad since these actually
represent the physical CPUs).

4.2 Sched Domains Implementation

4.2.1 Structure

The sched_domain structure stores pol-
icy parameters and flags and, along with
the sched_group structure, is the primary
building block in the domain hierarchy. Fig-
ure 4 describes these structures. Thesched_
domain structure is constructed into an up-
wardly traversable tree via the parent pointer,
the top level domain setting parent to NULL.
The groups list is a circular list of ofsched_
group structures which essentially define the
CPUs in each child domain and the relative
power of that group of CPUs (two physical
CPUs are more powerful than one SMT CPU).
The span member is simply a bit vector with a
1 for every CPU encompassed by that domain
and is always the union of the bit vector stored

in each element of the groups list. The remain-
ing fields define the scheduling policy to be fol-
lowed while dealing with that domain, see Sec-
tion 4.2.2.

While the hierarchy may seem simple, the de-
tails of its construction and resulting tree struc-
tures are not. For performance reasons, the
domain hierarchy is built on a per-CPU basis,
meaning each CPU has a unique instance of
each domain in the path from the base domain
to the highest level domain. These duplicate
structures do share thesched_group struc-
tures however. The resulting tree is difficult to
diagram, but resembles Figure 5 for the ma-
chine with two SMT CPUs discussed earlier.

In accordance with common practice, each
architecture may specify the construction of
the sched domains hierarchy and the pa-
rameters and flags defining the various poli-
cies. At the time of this writing, only i386
and ppc64 defined custom construction rou-
tines. Both architectures provide for SMT
processors and NUMA configurations. With-
out an architecture-specific routine, the kernel
uses the default implementations insched.c ,
which do take NUMA into account.

Linux Symposium 2004 • Volume One • 95

struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */
unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
int flags; /* See SD_* */

/* Runtime fields. */
unsigned long last_balance; /* init to jiffies. units in jiffies */
unsigned int balance_interval; /* initialise to 1. units in ms. */
unsigned int nr_balance_failed; /* initialise to 0 */

};

struct sched_group {
struct sched_group *next; /* Must be a circular list */
cpumask_t cpumask;
unsigned long cpu_power;

};

Figure 4: Sched Domains Structures

4.2.2 Policy

The new scheduler attempts to keep the sys-
tem load as balanced as possible by running re-
balance code when tasks change state or make
specific system calls, we will call thisevent
balancing, and at specified intervals measured
in jiffies, calledactive balancing. Tasks must
do something for event balancing to take place,
while active balancing occurs independent of
any task.

Event balance policy is defined in each
sched_domain structure by setting a com-
bination of the #defines of figure 6 in the flags
member.

To define the policy outlined for the dual SMT
processor machine in Section 4.1, the low-
est level domains would setSD_BALANCE_
NEWIDLEand SD_WAKE_IDLE(as there is
no cache penalty for running on a differ-
ent sibling within the same physical CPU),
SD_SHARE_CPUPOWERto indicate to the
scheduler that this is an SMT processor (the

scheduler will give full physical CPU ac-
cess to a high priority task by idling the
virtual sibling CPU), and a few common
flags SD_BALANCE_EXEC, SD_BALANCE_
CLONE, and SD_WAKE_AFFINE. The next
level domain represents the physical CPUs
and will not setSD_WAKE_IDLEsince cache
warmth is a concern when balancing across
physical CPUs, norSD_SHARE_CPUPOWER.
This domain adds theSD_WAKE_BALANCE
flag to compensate for the removal ofSD_
WAKE_IDLE. As discussed earlier, an SMT
NUMA system will have these two domains
and another node-level domain. This do-
main removes theSD_BALANCE_NEWIDLE
and SD_WAKE_AFFINEflags, resulting in
far fewer balancing across nodes than within
nodes. When one of these events occurs, the
scheduler search up the domain hierarchy and
performs the load balancing at the highest level
domain with the corresponding flag set.

Active balancing is fairly straightforward and
aids in preventing CPU-hungry tasks from hog-
ging a processor, since these tasks may only

96 • Linux Symposium 2004 • Volume One

#define SD_BALANCE_NEWIDLE 1 /* Balance when about to become idle */
#define SD_BALANCE_EXEC 2 /* Balance on exec */
#define SD_BALANCE_CLONE 4 /* Balance on clone */
#define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */
#define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */

Figure 6: Sched Domains Policies

Figure 5: Per CPU Domains

rarely trigger event balancing. At each re-
balance tick, the scheduler starts at the low-
est level domain and works its way up, check-
ing the balance_interval and last_
balance fields to determine if that domain
should be balanced. If the domain is already
busy, thebalance_interval is adjusted
using thebusy_factor field. Other fields
define how out of balance a node must be be-
fore rebalancing can occur, as well as some
sane limits on cache hot time and min and max
balancing intervals. As with the flags for event
balancing, the active balancing parameters are
defined to perform less balancing at higher do-
mains in the hierarchy.

4.3 Conclusions and Future Work

Figure 7: Kernbench Results

To compare the O(1) scheduler of mainline
with the sched domains implementation in the
mm tree, we ran kernbench (with the-j option
to make set to 8, 16, and 32) on a 16 CPU SMT
machine (32 virtual CPUs) on linux-2.6.6 and
linux-2.6.6-mm3 (the latest tree with sched do-
mains at the time of the benchmark) with and
without CONFIG_SCHED_SMTenabled. The
results are displayed in Figure 7. The O(1)
scheduler evenly distributed compile tasks ac-
cross virtual CPUs, forcing tasks to share cache
and computational units between virtual sib-
ling CPUs. The sched domains implementa-
tion with CONFIG_SCHED_SMTenabled bal-
anced the load accross physical CPUs, making
far better use of CPU resources when running
fewer tasks than CPUs (as in the j8 case) since
each compile task would have exclusive access
to the physical CPU. Surprisingly, sched do-
mains (which would seem to have more over-
head than the mainline scheduler) even showed
improvement for the j32 case, where it doesn’t

Linux Symposium 2004 • Volume One • 97

benefit from balancing across physical CPUs
before virtual CPUs as there are more tasks
than virtual CPUs. Considering the sched do-
mains implementation has not been heavily
tested or tweaked for performance, some fine
tuning is sure to further improve performance.

The sched domains structures replace the ex-
panding set of#ifdefs of the O(1) sched-
uler, which should improve readability and
maintainability. Unfortunately, the per CPU
nature of the domain construction results in a
non-intuitive structure that is difficult to work
with. For example, it is natural to discuss the
policy defined at “the” top level domain; un-
fortunately there areNR_CPUStop level do-
mains and, since they are self-adjusting, each
one could conceivably have a different set of
flags and parameters. Depending on which
CPU the scheduler was running on, it could be-
have radically differently. As an extension of
this research, an effort to analyze the impact of
a unified sched domains hierarchy is needed,
one which only creates one instance of each
domain.

Sched domains provides a needed structural
change to the way the Linux scheduler views
modern architectures, and provides the pa-
rameters needed to create complex scheduling
policies that cater to the strengths and weak-
nesses of these systems. Currently only i386
and ppc64 machines benefit from arch specific
construction routines; others must now step
forward and fill in the construction and param-
eter setting routines for their architecture of
choice. There is still plenty of fine tuning and
performance tweaking to be done.

5 NUMA API

5.1 Introduction

One of the biggest impediments to the ac-
ceptance of a NUMA API for Linux was a
lack of understanding of what its potential uses
and users would be. There are two schools
of thought when it comes to writing NUMA
code. One says that the OS should take care
of all the NUMA details, hide the NUMA-
ness of the underlying hardware in the ker-
nel and allow userspace applications to pre-
tend that it’s a regular SMP machine. Linux
does this by having a process scheduler and
a VMM that make intelligent decisions based
on the hardware topology presented by arch-
specific code. The other way to handle NUMA
programming is to provide as much detail as
possible about the system to userspace and
allow applications to exploit the hardware to
the fullest by giving scheduling hints, mem-
ory placement directives, etc., and the NUMA
API for Linux handles this. Many applications,
particularly larger applications with many con-
current threads of execution, cannot fully uti-
lize a NUMA machine with the default sched-
uler and VM behavior. Take, for example, a
database application that uses a large region of
shared memory and many threads. This appli-
cation may have a startup thread that initializes
the environment, sets up the shared memory
region, and forks off the worker threads. The
default behavior of Linux’s VM for NUMA is
to bring pages into memory on the node that
faulted them in. This behavior for our hy-
pothetical app would mean that many pages
would get faulted in by the startup thread on
the node it is executing on, not necessarily on
the node containing the processes that will ac-
tually use these pages. Also, the forked worker
threads would get spread around by the sched-
uler to be balanced across all the nodes and
their CPUs, but with no guarantees as to which

98 • Linux Symposium 2004 • Volume One

threads would be associated with which nodes.
The NUMA API and scheduler affinity syscalls
allow this application to specify that its threads
be pinned to particular CPUs and that its mem-
ory be placed on particular nodes. The appli-
cation knows which threads will be working
with which regions of memory, and is better
equipped than the kernel to make those deci-
sions.

The Linux NUMA API allows applications
to give regions of their own virtual memory
space specific allocation behaviors, called poli-
cies. Currently there are four supported poli-
cies: PREFERRED, BIND, INTERLEAVE,
and DEFAULT. The DEFAULT policy is the
simplest, and tells the VMM to do what it
would normally do (ie: pre-NUMA API) for
pages in the policied region, and fault them
in from the local node. This policy applies
to all regions, but is overridden if an appli-
cation requests a different policy. The PRE-
FERRED policy allows an application to spec-
ify one node that all pages in the policied re-
gion should come from. However, if the spec-
ified node has no available pages, the PRE-
FERRED policy allows allocation to fall back
to any other node in the system. The BIND
policy allows applications to pass in a node-
mask, a bitmap of nodes, that the VM is re-
quired to use when faulting in pages from a re-
gion. The fourth policy type, INTERLEAVE,
again requires applications to pass in a node-
mask, but with the INTERLEAVE policy, the
nodemask is used to ensure pages are faulted
in in a round-robin fashion from the nodes
in the nodemask. As with the PREFERRED
policy, the INTERLEAVE policy allows page
allocation to fall back to other nodes if nec-
essary. In addition to allowing a process to
policy a specific region of its VM space, the
NUMA API also allows a process to policy
its entire VM space with a process-wide pol-
icy, which is set with a different syscall:set_
mempolicy() . Note that process-wide poli-

cies are not persistent over swapping, however
per-VMA policies are. Please also note that
none of the policies will migrate existing (al-
ready allocated) pages to match the binding.

The actual implementation of the in-kernel
policies uses astruct mempolicy that is
hung off the struct vm_area_struct .
This choice involves some tradeoffs. The first
is that, previous to the NUMA API, the per-
VMA structure was exactly 32 bytes on 32-
bit architectures, meaning that multiplevm_
area_struct s would fit conveniently in a
single cacheline. The structure is now a lit-
tle larger, but this allowed us to achieve a per-
VMA granularity to policied regions. This is
important in that it is flexible enough to bind
a single page, a whole library, or a whole pro-
cess’ memory. This choice did lead to a sec-
ond obstacle, however, which was for shared
memory regions. For shared memory regions,
we really want the policy to be shared amongst
all processes sharing the memory, but VMAs
are not shared across separate tasks. The solu-
tion that was implemented to work around this
was to create a red-black tree of “shared pol-
icy nodes” for shared memory regions. Due
to this, calls were added to thevm_ops struc-
ture which allow the kernel to check if a shared
region has any policies and to easily retrieve
these shared policies.

5.2 Syscall Entry Points

1. sys_mbind(unsigned long start, unsigned
long len, unsigned long mode, unsigned
long *nmask, unsigned long maxnode,
unsigned flags);

Bind the region of memory[start,
start+len) according tomode and
flags on the nodes enumerated in
nmask and having a maximum possible
node number ofmaxnode .

2. sys_set_mempolicy(int mode, unsigned

Linux Symposium 2004 • Volume One • 99

long *nmask, unsigned long maxnode);

Bind the entire address space of the cur-
rent process according tomode on the
nodes enumerated innmask and hav-
ing a maximum possible node number of
maxnode .

3. sys_get_mempolicy(int *policy, unsigned
long *nmask, unsigned long maxnode,
unsigned long addr, unsigned long flags);

Return the current binding’s mode in
policy and node enumeration in
nmask based on themaxnode , addr ,
andflags passed in.

In addition to the raw syscalls discussed above,
there is a user-level library called “libnuma”
that attempts to present a more cohesive inter-
face to the NUMA API, topology, and sched-
uler affinity functionality. This, however, is
documented elsewhere.

5.3 At mbind() Time

After argument validation, the passed-in list of
nodes is checked to make sure they are all on-
line. If the node list is ok, a new memory policy
structure is allocated and populated with the
binding details. Next, the given address range
is checked to make sure the vma’s for the re-
gion are present and correct. If the region is ok,
we proceed to actually install the new policy
into all the vma’s in that range. For most types
of virtual memory regions, this involves simply
pointing thevma->vm_policy to the newly
allocated memory policy structure. For shared
memory, hugetlbfs, and tmpfs, however, it’s
not quite this simple. In the case of a memory
policy for a shared segment, a red-black tree
root node is created, if it doesn’t already exist,
to represent the shared memory segment and
is populated with “shared policy nodes.” This
allows a user to bind a single shared memory
segment with multiple different bindings.

5.4 At Page Fault Time

There are now several new and differ-
ent flavors ofalloc_pages() style func-
tions. Previous to the NUMA API, there
existedalloc_page() , alloc_pages()
and alloc_pages_node() . Without go-
ing into too much detail,alloc_page()
and alloc_pages() both calledalloc_
pages_node() with the current node id as
an argument.alloc_pages_node() allo-
cated2order pages from a specific node, and
was the only caller to thereal page allocator,
__alloc_pages() .

alloc_page() alloc_pages()

__alloc_pages()

alloc_pages_node()

Figure 8: oldalloc_pages

With the introduction of the NUMA API, non-
NUMA kernels still retain the oldalloc_
page*() routines, but the NUMA alloca-
tors have changed.alloc_pages_node()
and __alloc_pages() , the core routines
remain untouched, but all calls toalloc_
page() /alloc_pages() now end up call-
ing alloc_pages_current() , a new
function.

100 • Linux Symposium 2004 • Volume One

There has also been the addition
of two new page allocation func-
tions: alloc_page_vma() and
alloc_page_interleave() .
alloc_pages_current() checks that the
system is not currentlyin_interrupt() ,
and if it isn’t, uses the current pro-
cess’s process policy for allocation. If
the system is currently in interrupt con-
text, alloc_pages_current() falls
back to the old default allocation scheme.
alloc_page_interleave() allocates
pages from regions that are bound with an
interleave policy, and is broken out separately
because there are some statistics kept for
interleaved regions. alloc_page_vma()
is a new allocator that allocates only sin-
gle pages based on a per-vma policy. The
alloc_page_vma() function is the only
one of the new allocator functions that must be
called explicity, so you will notice that some
calls toalloc_pages() have been replaced
by calls toalloc_page_vma() throughout
the kernel, as necessary.

5.5 Problems/Future Work

There is no checking that the nodes re-
quested are online at page fault time, so in-
teractions with hotpluggable CPUs/memory
will be tricky. There is an asymmetry be-
tween how you bind a memory region and
a whole process’s memory: One call takes
a flags argument, and one doesn’t. Also
the maxnode argument is a bit strange,
the get/set_affinity calls take a number of
bytes to be read/written instead of a max-
imum CPU number. Thealloc_page_
interleave() function could be dropped if
we were willing to forgo the statistics that are
kept for interleaved regions. Again, a lack of
symmetry exists because other types of poli-
cies aren’t tracked in any way.

6 Legal statement

This work represents the view of the authors, and
does not necessarily represent the view of IBM.

IBM, NUMA-Q and Sequent are registerd trade-
marks of International Business Machines Corpo-
ration in the United States, other contries, or both.
Other company, product, or service names may be
trademarks of service names of others.

References

[LWN] LWN Editor, “Scheduling Domains,”
http://lwn.net/Articles/
80911/

[MM2] Linux 2.6.6-rc2/mm2 source,http:
//www.kernel.org

Linux Symposium 2004 • Volume One • 101

alloc_page()

alloc_pages()

__alloc_pages()

alloc_pages_node()

alloc_pages_current()

alloc_page_interleave()

alloc_page_vma()
Both UP/SMP & NUMA

NUMA only

UP/SMP only

Figure 9: newalloc_pages

102 • Linux Symposium 2004 • Volume One

Improving Kernel Performance by Unmapping the
Page Cache

James Bottomley
SteelEye Technology, Inc.

James.Bottomley@SteelEye.com

Abstract

The current DMA API is written on the found-
ing assumption that the coherency is being
done between the device and kernel virtual ad-
dresses. We have a different API for coherency
between the kernel and userspace. The upshot
is that every Process I/O must be flushed twice:
Once to make the user coherent with the kernel
and once to make the kernel coherent with the
device. Additionally, having to map all pages
for I/O places considerable resource pressure
on x86 (where any highmem page must be sep-
arately mapped).

We present a different paradigm: Assume that
by and large, read/write data is only required
by a single entity (the major consumers of large
multiply shared mappings are libraries, which
are read only) and optimise the I/O path for this
case. This means that any other shared con-
sumers of the data (including the kernel) must
separately map it themselves. The DMA API
would be changed to perform coherence to the
preferred address space (which could be the
kernel). This is a slight paradigm shift, because
now devices that need to peek at the data may
have to map it first. Further, to free up more
space for this mapping, we would break the as-
sumption that any page in ZONE_NORMAL
is automatically mapped into kernel space.

The benefits are that I/O goes straight from
the device into the user space (for processors

that have virtually indexed caches) and the ker-
nel has quite a large unmapped area for use in
kmapping highmem pages (for x86).

1 Introduction

In the Linux kernel1 there are two addressing
spaces: memory physical which is the location
in the actual memory subsystem and CPU vir-
tual, which is an address the CPU’s Memory
Management Unit (MMU) translates to a mem-
ory physical address internally. The Linux ker-
nel operates completely in CPU virtual space,
keeping separate virtual spaces for the kernel
and each of the current user processes. How-
ever, the kernel also has to manage the map-
pings between physical and virtual spaces, and
to do that it keeps track of where the physical
pages of memory currently are.

In the Linux kernel, memory is split into zones
in memory physical space:

• ZONE_DMA: A historical region where
ISA DMAable memory is allocated from.
On x86 this is all memory under 16MB.

• ZONE_NORMAL: This is where normally
allocated kernel memory goes. Where

1This is not quite true, there are kernels for proces-
sors without memory management units, but these are
very specialised and won’t be considered further

104 • Linux Symposium 2004 • Volume One

this zone ends depends on the architec-
ture. However, all memory in this zone
is mapped in kernel space (visible to the
kernel).

• ZONE_HIGHMEM: This is where the rest
of the memory goes. Its characteristic is
that it is not mapped in kernel space (thus
the kernel cannot access it without first
mapping it).

1.1 The x86 and Highmem

The main reason for the existence ofZONE_
HIGHMEMis a peculiar quirk on the x86 pro-
cessor which makes it rather expensive to have
different page table mappings between the ker-
nel and user space. The root of the problem
is that the x86 can only keep one set of physi-
cal to virtual mappings on-hand at once. Since
the kernel and the processes occupy different
virtual mappings, the TLB context would have
to be switched not only when the processor
changes current user tasks, but also when the
current user task calls on the kernel to per-
form an operation on its behalf. The time taken
to change mappings, called the TLB flushing
penalty, contributes to a degradation in process
performance and has been measured at around
30%[1]. To avoid this penalty, the Kernel and
user spaces share a partitioned virtual address
space so that the kernel is actually mapped into
user space (although protected from user ac-
cess) and vice versa.

The upshot of this is that the x86 userspace
is divided 3GB/1GB with the virtual ad-
dress range 0x00000000-0xbfffffff
being available for the user process and
0xc0000000-0xffffffff being reserved
for the kernel.

The problem, for the kernel, is that it now only
has 1GB of virtual address to play withinclud-
ing all memory mapped I/O regions. The re-
sult being thatZONE_NORMALactually ends

at around 850kb on most x86 boxes. Since
the kernel must also manage the mappings for
every user process (and these mappings must
be memory resident), the larger the physical
memory of the kernel becomes, the less of
ZONE_NORMALbecomes available to the ker-
nel. On a 64GB x86 box, the usable mem-
ory becomes minuscule and has lead to the
proposal[2] to use a 4G/4G split and just ac-
cept the TLB flushing penalty.

1.2 Non-x86 and Virtual Indexing

Most other architectures are rather better im-
plemented and are able to cope easily with sep-
arate virtual spaces for the user and the ker-
nel without imposing a performance penalty
transitioning from one virtual address space to
another. However, there are other problems
the kernel’s penchant for keeping all memory
mapped causes, notably with Virtual Indexing.

Virtual Indexing[3] (VI) means that the CPU
cache keeps its data indexed by virtual address
(rather than by physical address like the x86
does). The problem this causes is that if multi-
ple virtual address spaces have the same physi-
cal address mapped, but at different virtual ad-
dresses then the cache may contain duplicate
entries, called aliases. Managing these aliases
becomes impossible if there are multiple ones
that become dirty.

Most VI architectures find a solution to the
multiple cache line problem by having a “con-
gruence modulus” meaning that if two virtual
addresses are equal modulo this congruence
(usually a value around 4MB) then the cache
will detect the aliasing and keep only a single
copy of the data that will be seen by all the vir-
tual addresses.

The problems arise because, although archi-
tectures go to great lengths to make sure all
user mappings are congruent, because the ker-

Linux Symposium 2004 • Volume One • 105

nel memory is always mapped, it is highly un-
likely that any given kernel page would be con-
gruent to a user page.

1.3 The solution: UnmappingZONE_NORMAL

It has already been pointed out[4] that x86
could recover some of its preciousZONE_
NORMALspace simply by moving page table
entries into unmapped highmem space. How-
ever, the penalty of having to map and unmap
the page table entries to modify them turned
out to be unacceptable.

The solution, though, remains valid. There
are many pages of data currently inZONE_
NORMALthat the kernel doesn’t ordinarily use.
If these could be unmapped and their vir-
tual address space given up then the x86 ker-
nel wouldn’t be facing quite such a memory
crunch.

For VI architectures, the problems stem from
having unallocated kernel memory already
mapped. If we could keep the majority of ker-
nel memory unmapped, and map it only when
we really need to use it, then we would stand
a very good chance of being able to map the
memory congruently even in kernel space.

The solution this paper will explore is that of
keeping the majority of kernel memory un-
mapped, mapping it only when it is used.

2 A closer look at Virtual Indexing

As well as the aliasing problem, VI architec-
tures also have issues with I/O coherency on
DMA. The essence of the problem stems from
the fact that in order to make a device ac-
cess to physical memory coherent, any cache
lines that the processor is holding need to be
flushed/invalidates as part of the DMA trans-
action. In order to do DMA, a device simply
presents a physical address to the system with

a request to read or write. However, if the pro-
cessor indexes the caches virtually, it will have
no idea whether it is caching this physical ad-
dress or not. Therefore, in order to give the
processor an idea of where in the cache the data
might be, the DMA engines on VI architectures
also present a virtual index (called the “coher-
ence index”) along with the physical address.

2.1 Coherence Indices and DMA

The Coherence Index is computed by the pro-
cessor on a per page basis, and is used to iden-
tify the line in the cache belonging to the phys-
ical address the DMA is using.

One will notice that this means the coherence
index must be computed oneveryDMA trans-
action for aparticular address space (although,
if all the addresses are congruent, one may sim-
ply pick any one). Since, at the time the dma
mapping is done, the only virtual address the
kernel knows about is the kernel virtual ad-
dress, it means that DMA is always done co-
herently with the kernel.

In turn, since the kernel address is pretty much
not congruent with any user address, before the
DMA is signalled as being completed to the
user process, the kernel mapping and the user
mappings must likewise be made coherent (us-
ing theflush_dcache_page() function).
However, since the majority of DMA transac-
tions occur onuserdata in which the kernel has
no interest, the extra flush is simply an unnec-
essary performance penalty.

This performance penalty would be eliminated
if either we knew that the designated kernel ad-
dress was congruent to all the user addresses
or we didn’t bother to map the DMA region
into kernel space and simply computed the co-
herence index from a given user process. The
latter would be preferable from a performance
point of view since it eliminates an unneces-

106 • Linux Symposium 2004 • Volume One

sary map and unmap.

2.2 Other Issues with Non-Congruence

On the parisc architecture, there is an architec-
tural requirement that we don’t simultaneously
enable multiple read and write translations of
a non-congruent address. We can either enable
a single write translation or multiple read (but
no write) translations. With the current manner
of kernel operation, this is almost impossible
to satisfy without going to enormous lengths in
our page translation and fault routines to work
around the issues.

Previously, we were able to get away with
ignoring this restriction because the machine
would only detect it if we allowed multiple
aliases to become dirty (something Linux never
does). However, in the next generation sys-
tems, this condition will be detected when it
occurs. Thus, addressing it has become criti-
cal to providing a bootable kernel on these new
machines.

Thus, as well as being a simple performance
enhancement, removing non-congruence be-
comes vital to keeping the kernel booting on
next generation machines.

2.3 VIPT vs VIVT

This topic is covered comprehensively in [3].
However, there is a problem in VIPT caches,
namely that if we are reusing the virtual ad-
dress in kernel space, we must flush the pro-
cessor’s cache for that page on this re-use oth-
erwise it may fall victim to stale cache refer-
ences that were left over from a prior use.

Flushing a VIPT cache is easier said than done,
since in order to flush, a valid translation must
exist for the virtual address in order for the
flush to be effective. This causes particular
problems for pages that were mapped to a user

space process, since the address translations
are destroyedbeforethe page is finally freed.

3 Kernel Virtual Space

Although the kernel is nominally mapped in
the same way the user process is (and can the-
oretically be fragmented in physical space), in
fact it is usually offset mapped. This means
there is a simple mathematical relation be-
tween the physical and virtual addresses:

virtual = physical + __PAGE_OFFSET

where __PAGE_OFFSETis an architecture
defined quantity. This type of mapping makes
it very easy to calculate virtual addresses from
physical ones and vice versa without having to
go to all the bother (and CPU time) of having
to look them up in the kernel page tables.

3.1 Moving away from Offset Mapping

There’s another wrinkle on some architectures
in that if an interruption occurs, the CPU
turns off virtual addressing to begin process-
ing it. This means that the kernel needs to
save the various registers and turn virtual ad-
dressing back on, all in physical space. If
it’s no longer a simple matter of subtracting
__PAGE_OFFSETto get the kernel stack for
the process, then extra time will be consumed
in the critical path doing potentially cache cold
page table lookups.

3.2 Keeping track of Mapped pages

In general, when mapping a page we will ei-
ther require that it goes in the first available
slot (for x86), or that it goes at the first avail-
able slot congruent with a given address (for VI
architectures). All we really require is a sim-
ple mechanism for finding the first free page

Linux Symposium 2004 • Volume One • 107

virtual address given some specific constraints.
However, since the constraints are architecture
specific, the specifics of this tracking are also
implemented in architectures (see section 5.2
for details on parisc).

3.3 Determining Physical address from Virtual
and Vice-Versa

In the Linux kernel, the simple macros
__pa() and__va() are used to do physical
to virtual translation. Since we are now filling
the mappings in randomly, this is no longer a
simple offset calculation.

The kernel does have help for finding the vir-
tual address of a given page. There is an
optional virtual entry which is turned on
and populated with the page’s current virtual
address when the architecture definesWANT_

PAGE_VIRTUAL. The__va() macro can be
programmed simply to do this lookup.

To find the physical address, the best method is
probably to look the page up in the kernel page
table mappings. This is obviously less efficient
than a simple subtraction.

4 Implementing the unmapping of
ZONE_NORMAL

It is not surprising, given that the entire kernel
is designed to operate withZONE_NORMAL
mapped it is surprising that unmapping it turns
out to be fairly easy. The primary reason for
this is the existence of highmem. Since pages
in ZONE_HIGHMEMare always unmapped and
since they are usually assigned to user pro-
cesses, the kernel must proceed on the assump-
tion that it potentially has to map into its ad-
dress space any page from a user process that
it wishes to touch.

4.1 Booting

The kernel has an entire bootmem API whose
sole job is to cope with memory allocations
while the system is booting and before paging
has been initialised to the point where normal
memory allocations may proceed. On parisc,
we simply get the available page ranges from
the firmware, map them all and turn them over
lock stock and barrel to bootmem.

Then, when we’re ready to begin paging, we
simply release all the unallocated bootmem
pages for the kernel to use from itsmem_map2

array of pages.

We can implement the unmapping idea simply
by covering all our page ranges with an offset
map for bootmem, but then unmapping all the
unreserved pages that bootmem releases to the
mem_maparray.

This leaves us with the kernel text and data sec-
tions contiguously offset mapped, and all other
boot time

4.2 Pages Coming From User Space

The standard mechanisms for mapping poten-
tial highmem pages from user space for the
kernel to see arekmap, kunmap, kmap_
atomic , and kmap_atomic_to_page .
Simply hijacking them and divorcing their im-
plementation fromCONFIG_HIGHMEMis suf-
ficient to solve all user to kernel problems
that arise because of the unmapping ofZONE_
NORMAL.

4.3 In Kernel Problems: Memory Allocation

Since now every free page in the system will
be unmapped, they will have to be mapped

2This global array would be a set of per-zone arrays
on NUMA

108 • Linux Symposium 2004 • Volume One

before thekernel can use them (pages allo-
cated for use in user space have no need to
be mapped additionally in kernel space at al-
location time). The engine for doing this is a
single point in__alloc_pages() which is
the central routine for allocating every page in
the system. In the single successful page re-
turn, the page is mapped for the kernel to use it
if __GFP_HIGHis not set—this simple test is
sufficient to ensure that kernel pages only are
mapped here.

The unmapping is done in two separate rou-
tines: __free_pages_ok() for freeing bulk
pages (accumulations of contiguous pages) and
free_hot_cold_page() for freeing single
pages. Here, since we don’t know the gfp mask
the page was allocated with, we simply check
to see if the page is currently mapped, and un-
map it if it is before freeing it. There is another
side benefit to this: the routine that transfers all
the unreserved bootmem to themem_mapar-
ray does this via__free_pages() . Thus,
we additionally achieve the unmapping of all
the free pages in the system after booting with
virtually no additional effort.

4.4 Other Benefits: Variable size pages

Although it wasn’t the design of this structure
to provide variable size pages, one of the ben-
efits of this approach is now that the pages that
are mapped as they are allocated. Since pages
in the kernel are allocated with a specified or-
der (the power of two of the number of con-
tiguous pages), it becomes possible to cover
them with a TLB entry that is larger than the
usual page size (as long as the architecture sup-
ports this). Thus, we can take theorder ar-
gument to__alloc_pages() and work out
the smallest number of TLB entries that we
need to allocate to cover it.

Implementation of variable size pages is actu-
ally transparent to the system; as far as Linux

is concerned, the page table entries it deal with
describe 4k pages. However, we add additional
flags to the pte to tell the software TLB routine
that actually we’d like to use a larger size TLB
to access this region.

As a further optimisation, in the architecture
specific routines that free the boot mem, we can
remap the kernel text and data sections with the
smallest number of TLB entries that will en-
tirely cover each of them.

5 Achieving The VI architecture
Goal: Fully Congruent Aliasing

The system possesses every attribute it now
needs to implement this. We no-longer map
any user pages into kernel space unless the ker-
nel actually needs to touch them. Thus, the
pages will have congruent user addresses allo-
cated to them in user spacebeforewe try to
map them in kernel space. Thus, all we have
to do is track up the free address list in incre-
ments of the congruence modulus until we find
an empty place to map the page congruently.

5.1 Wrinkles in the I/O Subsystem

The I/O subsystem is designed to operate with-
out mapping pages into the kernelat all. This
becomes problematic for VI architectures be-
cause we have to know the user virtual address
to compute the coherence index for the I/O.
If the page is unmapped in kernel space, we
can no longer make it coherent with the kernel
mapping and, unfortunately, the information in
the BIO is insufficient to tell us the user virtual
address.

The proposal for solving this is to add an ar-
chitecture defined set of elements tostruct
bio_vec and an architecture specific func-
tion for populating this (possibly empty) set of
elements as the biovec is created. In parisc,

Linux Symposium 2004 • Volume One • 109

we need to add an extra unsigned long for
the coherence index, which we compute from
a pointer to the mm and the user virtual ad-
dress. The architecture defined components are
pulled into struct scatterlist by yet
another callout when the request is mapped for
DMA.

5.2 Tracking the Mappings in ZONE_DMA

Since the tracking requirements vary depend-
ing on architectures: x86 will merely wish to
find the first free pte to place a page into; how-
ever VI architectures will need to find the first
free pte satisfying the congruence requirements
(which vary by architecture), the actual mech-
anism for finding a free pte for the mapping
needs to be architecture specific.

On parisc, all of this can be done inkmap_
kernel() which merely uses rmap[5] to de-
termine if the page is mapped in user space
and find the congruent address if it is. We
use a simple hash table based bitmap with one
bucket representing the set of available congru-
ent pages. Thus, finding a page congruent to
any given virtual address is the simple compu-
tation of finding the first set bit in the congru-
ence bucket. To find an arbitrary page, we keep
a global bucket counter, allocating a page from
that bucket and then incrementing the counter3.

6 Implementation Details on PA-
RISC

Since the whole thrust of this project was to im-
prove the kernel on PA-RISC (and bring it back
into architectural compliance), it is appropriate
to investigate some of the other problems that
turned up during the implementation.

3This can all be done locklessly with atomic incre-
ments, since it doesn’t really matter if we get two allo-
cations from the same bucket because of race conditions

6.1 Equivalent Mapping

The PA architecture has a software TLB mean-
ing that in Virtual mode, if the CPU accesses
an address that isn’t in the CPU’s TLB cache,
it will take a TLB fault so the software routine
can locate the TLB entry (by walking the page
tables) and insert it into the CPU’s TLB. Ob-
viously, this type of interruption must be han-
dled purely by referencing physical addresses.
In fact, the PA CPU is designed to have fast and
slow paths for faults and interruptions. The fast
paths (since they cannot take another interrup-
tion, i.e. not a TLB miss fault) must all operate
on physical addresses. To assist with this, the
PA CPU even turns off virtual addressing when
it takes an interruption.

When the CPU turns off virtual address trans-
lation, it is said to be operating in absolute
mode. All address accesses in this mode are
physical. However, all accesses in this mode
also go through the CPU cache (which means
that for this particular mode the cache is ac-
tually Physically Indexed). Unfortunately, this
can also set up unwanted aliasing between the
physical address and its virtual translation. The
fix for this is to obey the architectural definition
for “equivalent mapping.” Equivalent mapping
is defined as virtual and physical addresses be-
ing equal; however, we benefit from the obvi-
ous loophole in that the physical and virtual ad-
dresses don’t have to be exactly equal, merely
equal modulo the congruent modulus.

All of this means that when a page is allocated
for use by the kernel, we must determine if it
will ever be used in absolute mode, and make it
equivalently mapped if it will be. At the time of
writing, this was simply implemented by mak-
ing all kernel allocated pages equivalent. How-
ever, really all that needs to be equivalently
mapped is

1. the page tables (pgd, pmd and pte),

110 • Linux Symposium 2004 • Volume One

2. the task structure and

3. the kernel stacks.

6.2 Physical to Virtual address Translation

In the interruption slow path, where we save
all the registers and transition to virtual mode,
there is a point where execution must be
switched (and hence pointers moved from
physical to virtual). Currently, with offset
mapping, this is simply done by and addition
of __PAGE_OFFSET. However, in the new
scheme we cannot do this, nor can we call
the address translation functions when in ab-
solute mode. Therefore, we had to reorgan-
ise the interruption paths in the PA code so
that both the physical and virtual address was
available. Currently parisc uses a control reg-
ister (%cr30) to store the virtual address of
thestruct thread_info . We altered all
paths to change%cr30 to contain the physi-
cal address ofstruct thread_info and
also added a physical address pointer to the
struct task_struct to the thread info.
This is sufficient to perform all the necessary
register saves in absolute addressing mode.

6.3 Flushing on Page Freeing

as was documented in section 2.3, we need to
find a way of flushing a user virtual addressaf-
ter its translation is gone. Actually, this turns
out to be quite easy on PARISC. We already
have an area of memory (called the tmpalias
space) that we use to copy to priming the user
cache (it is simply a 4MB memory area we dy-
namically program to map to the page). There-
fore, as long as we know the user virtual ad-
dress, we can simply flush the page through
the tmpalias space. In order to confound any
attempted kernel use of this page, we reserve
a separate 4MB virtual area that produces a
page fault if referenced, and point the page’s

virtual address into this when it isremoved
from process mappings (so that any kernel at-
tempt to use the page produces an immediate
fault). Then, when the page is freed, if its
virtual pointer is within this range, we con-
vert it to a tmpalias address and flush it using
the tmpalias mechanism.

7 Results and Conclusion

The best result is that on a parisc machine, the
total amount of memory the operational kernel
keeps mapped is around 10MB (although this
alters depending on conditions).

The current implementation makes all pages
congruent or equivalent, but the allocation rou-
tine containsBUG_ON()asserts to detect if we
run out of equivalent addresses. So far, under
fairly heavy stress, none of these has tripped.

Although the primary reason for the unmap-
ping was to move parisc back within its archi-
tectural requirements, it also produces a knock
on effect of speeding up I/O by eliminating the
cache flushing from kernel to user space. At
the time of writing, the effects of this were still
unmeasured, but expected to be around 6% or
so.

As a final side effect, the flush on free necessity
releases the parisc from a very stringent “flush
the entire cache on process death or exec” re-
quirement that was producing horrible laten-
cies in the parisc fork/exec. With this code in
place, we see a vast (50%) improvement in the
fork/exec figures.

References

[1] Andrea Arcangeli3:1 4:4 100HZ
1000HZ comparison with the HINT
benchmark7 April 2004
http://www.kernel.org/pub/

Linux Symposium 2004 • Volume One • 111

linux/kernel/people/andrea/
misc/31-44-100-1000/
31-44-100-1000.html

[2] Ingo Molnar[announce, patch] 4G/4G
split on x86, 64 GB RAM (and more)
support8 July 2003
http://marc.theaimsgroup.
com/?t=105770467300001

[3] James E.J. BottomleyUnderstanding
CachingLinux Journal January 2004,
Issue 117 p58

[4] Ingo Molnar[patch] simpler ‘highpte’
design18 February 2002
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
101406121032371

[5] Rik van RielRe: Rmap code?22 August
2001http:
//marc.theaimsgroup.com/?l=
linux-mm&m=99849912207578

112 • Linux Symposium 2004 • Volume One

Linux Virtualization on IBM POWER5 Systems

Dave Boutcher
IBM

boutcher@us.ibm.com

Dave Engebretsen
IBM

engebret@us.ibm.com

Abstract

In 2004 IBM® is releasing new systems based
on the POWER5™ processor. There is new
support in both the hardware and firmware for
virtualization of multiple operating systems on
a single platform. This includes the ability to
have multiple operating systems share a pro-
cessor. Additionally, a hypervisor firmware
layer supports virtualization of I/O devices
such as SCSI, LAN, and console, allowing
limited physical resources in a system to be
shared.

At its extreme, these new systems allow 10
Linux images per physical processor to run
concurrently, contending for and sharing the
system’s physical resources. All changes to
support these new functions are in the 2.4 and
2.6 Linux kernels.

This paper discusses the virtualization capabil-
ities of the processor and firmware, as well as
the changes made to the PPC64 kernel to take
advantage of them.

1 Introduction

IBM’s new POWER5∗∗ processor is being used
in both IBM iSeries® and pSeries® systems
capable of running any combination of Linux,
AIX®, and OS/400® in logical partitions. The
hardware and firmware, including ahypervisor
[AAN00], in these systems provide the ability
to create “virtual” system images with virtual

hardware. The virtualization technique used on
POWER™ hardware is known as paravirtual-
ization, where the operating system is modified
in select areas to make calls into the hypervi-
sor. PPC64 Linux has been enhanced to make
use of these virtualization interfaces. Note that
the same PPC64 Linux kernel binary works
on both virtualized systems and previous “bare
metal” pSeries systems that did not offer a hy-
pervisor.

All changes related to virtualization have been
made in the kernel, and almost exclusively in
the PPC64 portion of the code. One chal-
lenge has been keeping as much code common
as possible between POWER5 portions of the
code and other portions, such as those support-
ing the Apple G5.

Like previous generations of POWER proces-
sors such as the RS64 and POWER4™ fami-
lies, POWER5 includes hardware enablement
for logical partitioning. This includes features
such as a hypervisor state which is more priv-
ileged than supervisor state. This higher priv-
ilege state is used to restrict access to system
resources, such as the hardware page table, to
hypervisor only access. All current systems
based on POWER5 run in a hypervised envi-
ronment, even if only one partition is active on
the system.

114 • Linux Symposium 2004 • Volume One

Hypervisor

Linux OS/400 Linux AIX

CPU
0

CPU
1

CPU
2

CPU
3

1.50
CPU

0.50
CPU

1.0
CPU

1.0
CPU

Figure 1: POWER5 Partitioned System

2 Processor Virtualization

2.1 Virtual Processors

When running in a partition, the operating
system is allocated virtual processors (VP’s),
where each VP can be configured in either
shared or dedicated mode of operation. In
shared mode, as little as 10%, or 10process-
ing units, of a physical processor can be al-
located to a partition and the hypervisor layer
timeslices between the partitions. In dedicated
mode, 100% of the processor is given to the
partition such that its capacity is never multi-
plexed with another partition.

It is possible to create more virtual processors
in the partition than there are physical proces-
sors on the system. For example, a partition al-
located 100 processing units (the equivalent of
1 processor) of capacity could be configured to
have 10 virtual processors, where each VP has
10% of a physical processor’s time. While not
generally valuable, this extreme configuration
can be used to help test SMP configurations on
small systems.

On POWER5 systems with multiple logical
partitions, an important requirement is to be
able to move processors (either shared or ded-

icated) from one logical partition to another.
In the case of dedicated processors, this truly
means moving a CPU from one logical parti-
tion to another. In the case of shared proces-
sors, it means adjusting the number of proces-
sors used by Linux on the fly.

This “hotplug CPU” capability is far more in-
teresting in this environment than in the case
that the covers are going to be removed from a
real system and a CPU physically added. The
goal of virtualization on these systems is to dy-
namically create and adjust operating system
images as required. Much work has been done,
particularly by Rusty Russell, to get the archi-
tecture independent changes into the mainline
kernel to support hotplug CPU.

Hypervisor interfaces exist that help the operat-
ing system optimize its use of the physical pro-
cessor resources. The following sections de-
scribe some of these mechanisms.

2.2 Virtual Processor Area

Each virtual processor in the partition can cre-
ate avirtual processor area(VPA), which is a
small (one page) data structure shared between
the hypervisor and the operating system. Its
primary use is to communicate information be-
tween the two software layers. Examples of
the information that can be communicated in
the VPA include whether the OS is in the idle
loop, if floating point and performance counter
register state must be saved by the hypervi-
sor between operating system dispatches, and
whether the VP is running in the partition’s op-
erating system.

2.3 Spinlocks

The hypervisor provides an interface that helps
minimize wasted cycles in the operating sys-
tem when a lock is held. Rather than simply
spin on the held lock in the OS, a new hypervi-

Linux Symposium 2004 • Volume One • 115

sor call,h_confer , has been provided. This
interface is used to confer any remaining vir-
tual processor cycles from the lock requester
to the lock holder.

The PPC64 spinlocks were changed to iden-
tify the logical processor number of the lock
holder, examine that processor’s VPAyield
countfield to determine if it is not running in
the OS (even values indicate the VP is running
in the OS), and to make theh_confer call
to the hypervisor to give any cycles remaining
in the virtual processor’s timeslice to the lock
holder. Obviously, this more expensive leg of
spinlock processing is only taken if the spin-
lock cannot be immediately acquired. In cases
where the lock is available, no additional path-
length is incurred.

2.4 Idle

When the operating system no longer has ac-
tive tasks to run and enters its idle loop, the
h_cede interface is used to indicate to the hy-
pervisor that the processor is available for other
work. The operating system simply sets the
VPA idle bit and callsh_cede . Under this
call, the hypervisor is free to allocate the pro-
cessor resources to another partition, or even to
another virtual processor within the same par-
tition. The processor is returned to the operat-
ing system if an external, decrementer (timer),
or interprocessor interrupt occurs. As an alter-
native to sending an IPI, the ceded processor
can be awoken by another processor calling the
h_prodinterface, which has slightly less over-
head in this environment.

Making use of the cede interface is especially
important on systems where partitions config-
ured to rununcappedexist. In uncapped mode,
any physical processor cycles not used by other
partitions can be allocated by the hypervisor to
a non-idle partition, even if that partition has
already consumed its defined quantity of pro-

cessor units. For example, a partition that is
defined as uncapped, 2 virtual processors, and
20 processing units could consume 2 full pro-
cessors (200 processing units), if all other par-
titions are idle.

2.5 SMT

The POWER5 processor provides symmetric
multithreading (SMT) capabilities that allow
two threads of execution to simultaneously ex-
ecute on one physical processor. This re-
sults in twice as many processor contexts be-
ing presented to the operating system as there
are physical processors. Like other processor
threading mechanisms found in POWER RS64
and Intel® processors, the goal of SMT is to
enable higher processor utilization.

At Linux boot, each processor thread is dis-
covered in the open firmware device tree
and a logical processor is created for Linux.
A command line option,smt-enabled =

[on, off, dynamic] , has been added to al-
low the Linux partition to config SMT in one
of three states. Theon and off modes indi-
cate that the processor always runs with SMT
either on or off. The dynamic mode allows
the operating system and firmware to dynam-
ically configure the processor to switch be-
tween threaded (SMT) and a single threaded
(ST) mode where one of the processor threads
is dormant. The hardware implementation is
such that running in ST mode can provide ad-
ditional performance when only a single task is
executing.

Linux can cause the processor to switch be-
tween SMT and ST modes via theh_cede hy-
pervisor call interface. When entering its idle
loop, Linux sets the VPAidle state bit, and af-
ter a selectable delay, callsh_cede . Under
this interface, the hypervisor layer determines
if only one thread is idle, and if so, switches
the processor into ST mode. If both threads are

116 • Linux Symposium 2004 • Volume One

idle (as indicated by the VPAidle bit), then the
hypervisor keeps the processor in SMT mode
and returns to the operating system.

The processor switches back to SMT mode
if an external or decrementer interrupt is pre-
sented, or if another processor calls theh_
prod interface against the dormant thread.

3 Memory Virtualization

Memory is virtualized only to the extent that all
partitions on the system are presented a con-
tiguous range of logical addresses that start
at zero. Linux sees these logical addresses
as its real storage. The actual real memory
is allocated by the hypervisor from any avail-
able space throughout the system, managing
the storage inlogical memory blocks(LMB’s).
Each LMB is presented to the partition via
a memory node in the open firmware device
tree. When Linux creates a mapping in the
hardware page table for effective addresses, it
makes a call to the hypervisor (h_enter) in-
dicating the effective and partition logical ad-
dress. The hypervisor translates the logical ad-
dress to the corresponding real address and in-
serts the mapping into the hardware page table.

One additional layer of memory virtualization
managed by the hypervisor is areal mode off-
set(RMO) region. This is a 128 or 256 MB re-
gion of memory covering the first portion of the
logical address space within a partition. It can
be accessed by Linux when address relocation
is off, for example after an exception occurs.
When a partition is running relocation off and
accesses addresses within the RMO region, a
simple offset is added by the hardware to gen-
erate the actual storage access. In this manner,
each partition has what it considers logical ad-
dress zero.

4 I/O Virtualization

Once CPU and memory have been virtualized,
a key requirement is to provide virtualized I/O.
The goal of the POWER5 systems is to have,
for example, 10 Linux images running on a
small system with a single CPU, 1GB of mem-
ory, and a single SCSI adapter and Ethernet
adapter.

The approach taken to virtualize I/O is a co-
operative implementation between the hypervi-
sor and the operating system images. One op-
erating system image always “owns” physical
adapters and manages all I/O to those adapters
(DMA, interrupts, etc.)

The hypervisor and Open Firmware then pro-
vide “virtual” adapters to any operating sys-
tems that require them. Creation of virtual
adapters is done by the system administrator
as part of logically partitioning the system. A
key concept is that these virtual adapters do not
interact in any way with the physical adapters.
The virtual adapters interact with other operat-
ing systems in other logical partitions, which
may choose to make use of physical adapters.

Virtual adapters are presented to the operating
system in the Open Firmware device tree just
as physical adapters are. They have very sim-
ilar attributes as physical adapters, including
DMA windows and interrupts.

The adapters currently supported by the hyper-
visor are virtual SCSI adapters, virtual Ether-
net adapters, and virtual TTY adapters.

4.1 Virtual Bus

Virtual adapters, of course, exist on a virtual
bus. The bus has slots into which virtual
adapters are configured. The number of slots
available on the virtual bus is configured by
the system administrator. The goal is to make

Linux Symposium 2004 • Volume One • 117

the behavior of virtual adapters consistent with
physical adapters. The virtual bus isnot pre-
sented as a PCI bus, but rather as its own bus
type.

4.2 Virtual LAN

Virtual LAN adapters are conceptually the sim-
plest kind of virtual adapter. The hypervisor
implements a switch, which supports 802.1Q
semantics for having multiple VLANs share
a physical switch. Adapters can be marked
as 802.1Q aware, in which case the hypervi-
sor expects the operating system to handle the
802.1Q VLAN headers, or 802.1Q unaware, in
which case the hypervisor connects the adapter
to a single VLAN. Multiple virtual Ethernet
adapters can be created for a given partition.

Virtual Ethernet adapters have an additional at-
tribute called “Trunk Adapter.” An adapter
marked as a Trunk Adapter will be delivered
all frames that don’t match any MAC address
on the virtual Ethernet. This is similar, but
not identical, to promiscuous mode on a real
adapter.

For a logical partition to have network connec-
tivity to the outside world, the partition own-
ing a “real” network adapter generally has both
the real Ethernet adapter and a virtual Ether-
net adapter marked as a Trunk adapter. That
partition then performs either routing or bridg-
ing between the real adapter and the virtual
adapter. The Linux bridge-utils package works
well to bridge the two kinds of networks.

Note that there is no architected link between
the real and virtual adapters, it is the responsi-
bility of some operating system to route traffic
between them.

The implementation of the virtual Ethernet
adapters involves a number of hypervisor inter-
faces. Some of the more significant interfaces
are h_register_logical_lan to establish

the initial link between a device driver and
a virtual Ethernet device,h_send_logical_

lan to send a frame, andh_add_logical_

lan_buffer to tell the hypervisor about a
data buffer into which a received frame is to be
placed. The hypervisor interfaces then support
either polled or interrupt driven notification of
new frames arriving.

For additional information on the virtual Ether-
net implementation, the code is the documen-
tation (drivers/net/ibmveth.c).

4.3 Virtual SCSI

Unlike virtual Ethernet adapters, virtual SCSI
adapters come in two flavors. A “client” vir-
tual SCSI adapter behaves just as a regular
SCSI host bus adapter and is implemented
within the SCSI framework of the Linux ker-
nel. The SCSI mid-layer issues standard SCSI
commands such as Inquiry to determine de-
vices connected to the adapter, and issues reg-
ular SCSI operations to those devices.

A “server” virtual SCSI adapter, generally in a
different partition than the client, receives all
the SCSI commands from the client and is re-
sponsible for handling them. The hypervisor
is not involved in what the server does with
the commands. There is no requirement for
the server to link a virtual SCSI adapter to any
kind of real adapter. The server can process
and return SCSI responses in any fashion it
likes. If it happens to issue I/O operations to a
real adapter as part of satisfying those requests,
that is an implementation detail of the operat-
ing system containing the server adapter.

The hypervisor provides two very primitive
interpartition communication mechanisms on
which the virtual SCSI implementation is built.
There is a queue of 16 byte messages referred
to as a “Command/Response Queue” (CRQ).
Each partition provides the hypervisor with a

118 • Linux Symposium 2004 • Volume One

page of memory where its receive queue re-
sides, and a partition wishing to send a message
to its partner’s queue issues anh_send_crq
hypervisor call. When a message is received
on the queue, an interrupt is (optionally) gen-
erated in the receiving partition.

The second hypervisor mechanism is a facil-
ity for issuing DMA operations between par-
titions. Theh_copy_rdma call is used to
DMA a block of memory from the memory
space of one logical partition to the memory
space of another.

The virtual SCSI interpartition protocol is
implemented using the ANSI “SCSI RDMA
Protocol” (SRP) (available athttp://www.
t10.org). When the client wishes to issue a
SCSI operation, it builds an SRP frame, and
sends the address of the frame in a 16 byte
CRQ message. The server DMA’s the SRP
frame from the client, and processes it. The
SRP frame may itself contain DMA addresses
required for data transfer (read or write buffers,
for example) which may require additional in-
terpartition DMA operations. When the oper-
ation is complete, the server DMA’s the SRP
response back to the same location as the SRP
command came from and sends a 16 byte CRQ
message back indicating that the SCSI com-
mand has completed.

The current Linux virtual SCSI server de-
codes incoming SCSI commands and issues
block layer commands (generic_make_
request). This allows the SCSI server to
share any block device (e.g.,/dev/sdb6 or
/dev/loop0) with client partitions as a vir-
tual SCSI device.

Note that consideration was given to using pro-
tocols such as iSCSI for device sharing be-
tween partitions. The virtual SCSI SRP de-
sign above, however, is a much simpler design
that does not rely on riding above an existing
IP stack. Additionally, the ability to use DMA

operations between partitions fits much better
into the SRP model than an iSCSI model.

The Linux virtual SCSI client (drivers/

scsi/ibmvscsi/ibmvscsi.c) is close, at
the time of writing, to being accepted into the
Linux mainline. The Linux virtual SCSI server
is sufficiently unlike existing SCSI drivers that
it will require much more mailing list “discus-
sion.”

4.4 Virtual TTY

In addition to virtual Ethernet and SCSI
adapters, the hypervisor supports virtual serial
(TTY) adapters. As with SCSI adapter, these
can be configured as “client” adapters, and
“server” adapters and connected between par-
titions. The first virtual TTY adapter is used as
the system console, and is treated specially by
the hypervisor. It is automatically connected to
the partition console on the Hardware Manage-
ment Console.

To date, multiple concurrent “consoles” have
not been implemented, but they could be. Sim-
ilarly, this interface could be used for kernel
debugging as with any serial port, but such an
implementation has not been done.

5 Dynamic Resource Movement

As mentioned for processors, the logical par-
tition environment lends itself to moving re-
sources (processors, memory, I/O) between
partitions. In a perfect world, such movement
should be done dynamically while the operat-
ing system is running. Dynamic movement of
processors is currently being implemented, and
dynamic movement of I/O devices (including
dynamically adding and removing virtual I/O
devices) is included in the kernel mainline.

The one area for future work in Linux is the dy-
namic movement of memory into and out of an

Linux Symposium 2004 • Volume One • 119

active partition. This function is already sup-
ported on other POWER5 operating systems,
so there is an opportunity for Linux to catch
up.

6 Multiple Operating Systems

A key feature of the POWER5 systems is the
ability to run different operating systems in
different logical partitions on the same phys-
ical system. The operating systems currently
supported on the POWER5 hardware are AIX,
OS/400, and Linux.

While running multiple operating systems, all
of the functions for interpartion interaction de-
scribed above must work between operating
systems. For example, idle cycles from an AIX
partition can be given to Linux. A proces-
sor can be moved from OS/400 to Linux while
both operating systems are active.

For I/O, multiple operating systems must be
able to communicate over the virtual Ethernet,
and SCSI devices must be sharable from (say)
an AIX virtual SCSI server to a Linux virtual
SCSI client.

These requirements, along with the archi-
tected hypervisor interfaces, limit the ability to
change implementations just to fit a Linux ker-
nel internal behavior.

7 Conclusions

While many of the basic virtualization tech-
nologies described in this paper existed in the
Linux implementation provided on POWER
RS64 and POWER4 iSeries systems [Bou01],
they have been significantly enhanced for
POWER5 to better use the firmware provided
interfaces.

The introduction of POWER5-based systems

converged all of the virtualization interfaces
provided by firmware on legacy iSeries and
pSeries systems to a model in line with the
legacy pSeries partitioned system architecture.
As a result much of the PPC64 Linux virtual-
ization code was updated to use these new vir-
tualization interface definitions.

8 Acknowledgments

The authors would like to thank the entire
Linux/PPC64 team for the work that went into
the POWER5 virtualization effort. In partic-
ular Anton Blanchard, Paul Mackerras, Rusty
Rusell, Hollis Blanchard, Santiago Leon, Ryan
Arnold, Will Schmidt, Colin Devilbiss, Kyle
Lucke, Mike Corrigan, Jeff Scheel, and David
Larson.

9 Legal Statement

This paper represents the view of the authors, and
does not necessarily represent the view of IBM.

IBM, AIX, iSeries, OS/400, POWER, POWER4,
POWER5, and pSeries are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

Other company, product or service names may be
trademerks or service marks of others.

References

[AAN00] Bill Armstrong, Troy Armstrong,
Naresh Nayar, Ron Peterson, Tom Sand,
and Jeff Scheel.Logical Partitioning,
http://www-1.ibm.com/servers/

eserver/iseries/beyondtech/

lpar.htm .

120 • Linux Symposium 2004 • Volume One

[Bou01] David Boutcher,The iSeries Linux
Kernel 2001 Linux Symposium, (July
2001).

The State of ACPI in the Linux Kernel

A. Leonard Brown
Intel

len.brown@intel.com

Abstract

ACPI puts Linux in control of configuration
and power management. It abstracts the plat-
form BIOS and hardware so Linux and the
platform can interoperate while evolving inde-
pendently.

This paper starts with some background on the
ACPI specification, followed by the state of
ACPI deployment on Linux.

It describes the implementation architecture of
ACPI on Linux, followed by details on the con-
figuration and power management features.

It closes with a summary of ACPI bugzilla ac-
tivity, and a list of what is next for ACPI in
Linux.

1 ACPI Specification Background

“ACPI (Advanced Configuration and
Power Interface) is an open in-
dustry specification co-developed by
Hewlett-Packard, Intel, Microsoft,
Phoenix, and Toshiba.

ACPI establishes industry-standard
interfaces for OS-directed configura-
tion and power management on lap-
tops, desktops, and servers.

ACPI evolves the existing collec-
tion of power management BIOS
code, Advanced Power Manage-
ment (APM) application program-

ming interfaces (APIs, PNPBIOS
APIs, Multiprocessor Specification
(MPS) tables and so on into a well-
defined power management and con-
figuration interface specification.”1

ACPI 1.0 was published in 1996. 2.0 added
64-bit support in 2000. ACPI 3.0 is expected
in summer 2004.

2 Linux ACPI Deployment

Linux supports ACPI on three architectures:
ia64 , i386 , andx86_64 .

2.1 ia64 Linux/ACPI support

Most ia64 platforms require ACPI support,
as they do not have the legacy configuration
methods seen oni386 . All the Linux distribu-
tions that supportia64 include ACPI support,
whether they’re based on Linux-2.4 or Linux-
2.6.

2.2 i386 Linux/ACPI support

Not all Linux-2.4 distributions enabled ACPI
by default on i386 . Often they used
just enough table parsing to enable Hyper-
Threading (HT), alaacpi=ht below, and re-
lied on MPS and PIRQ routers to configure the

1http://www.acpi.info

122 • Linux Symposium 2004 • Volume One

setup_arch()
dmi_scan_machine()

Scan DMI blacklist
BIOS Date vs Jan 1, 2001

acpi_boot_init()
acpi_table_init()

locate and checksum all ACPI tables
print table headers to console

acpi_blacklisted()
ACPI table headers vs. blacklist

parse(BOOT) /* Simple Boot Flags */
parse(FADT) /* PM timer address */
parse(MADT) /* LAPIC, IOAPIC */
parse(HPET) /* HiPrecision Timer */
parse(MCFG) /* PCI Express base */

Figure 1: Early ACPI init oni386

machine. Some included ACPI support by de-
fault, but required the user to addacpi=on to
the cmdline to enable it.

So far, the major Linux 2.6 distributions all
support ACPI enabled by default oni386 .

Several methods are used to make it more prac-
tical to deploy ACPI ontoi386 installed base.
Figure 1 shows the early ACPI startup on the
i386 and where these methods hook in.

1. Most modern system BIOS support DMI,
which exports the date of the BIOS. Linux
DMI scan ini386 disables ACPI on plat-
forms with a BIOS older than January 1,
2001. There is nothing magic about this
date, except it allowed developers to focus
on recent platforms without getting dis-
tracted debugging issues on very old plat-
forms that:

(a) had been running Linux w/o ACPI
support for years.

(b) had virtually no chance of a BIOS
update from the OEM.

Boot parameteracpi=force is avail-
able to enable ACPI on platforms older
than the cutoff date.

2. DMI also exports the hardware man-
ufacturer, baseboard name, BIOS ver-

sion, etc. that you can observe with
dmidecode .2 dmi_scan.c has a gen-
eral purpose blacklist that keys off this in-
formation, and invokes various platform-
specific workarounds.acpi=off is the
most severe—disabling all ACPI support,
even the simple table parsing needed to
enable Hyper-Threading (HT).acpi=ht
does the same, excepts parses enough ta-
bles to enable HT.pci=noacpi disables
ACPI for PCI enumeration and interrupt
configuration. Andacpi=noirq dis-
ables ACPI just for interrupt configura-
tion.

3. The ACPI tables also contain header in-
formation, which you see near the top
of the kernel messages. ACPI maintains
a blacklist based on the table headers.
But this blacklist is somewhat primitive.
When an entry matches the system, it ei-
ther prints warnings or invokesacpi=
off .

All three of these methods share the problem
that if they are successful, they tend to hide
root-cause issues in Linux that should be fixed.
For this reason, adding to the blacklists is dis-
couraged in the upstream kernel. Their main
value is to allow Linux distributors to quickly
react to deployment issues when they need to
support deviant platforms.

2.3 x86_64 Linux/ACPI support

All x86_64 platforms I’ve seen include ACPI
support. The majorx86_64 Linux distribu-
tions, whether Linux-2.4 or Linux-2.6 based,
all support ACPI.

2http://www.nongnu.org/dmidecode

Linux Symposium 2004 • Volume One • 123

3 Implementation Overview

The ACPI specification describes platform reg-
isters, ACPI tables, and operation of the ACPI
BIOS. Figure 2 shows these ACPI components
logically as a layer above the platform specific
hardware and firmware.

The ACPI kernel support centers around the
ACPICA (ACPI Component Architecture3)
core. ACPICA includes the AML4 interpreter
that implements ACPI’s hardware abstraction.
ACPICA also implements other OS-agnostic
parts of the ACPI specification. The ACPICA
code does not implement any policy, that is the
realm of the Linux-specific code. A single file,
osl.c , glues ACPICA to the Linux-specific
functions it requires.

The box in Figure 2 labeled “Linux/ACPI” rep-
resents the Linux-specific ACPI code, includ-
ing boot-time configuration.

Optional “ACPI drivers,” such as Button, Bat-
tery, Processor, etc. are (optionally loadable)
modules that implement policy related to those
specific features and devices.

3.1 Events

ACPI registers for a “System Control Inter-
rupt” (SCI) and all ACPI events come through
that interrupt.

The kernel interrupt handler de-multiplexes the
possible events using ACPI constructs. In
some cases, it then delivers events to a user-
space application such asacpid via /proc/
acpi/events .

3http://www.intel.com/technology/
iapc/acpi

4AML, ACPI Machine Language.

�����
���	
�

�	��
����������
�������

�	��
����
�������

�����
�
����
��

�����
����

����������

����� ����

�!"��

 "��! �!"�

#�
�

$
��
	

���

������

���!
����

����
�%

��

�&
���	 ���

������"
!�
�!�����

�	��
����'

��
�

Figure 2: Implementation Architecture

4 ACPI Configuration

Interrupt configuration oni386 dominated the
ACPI bug fixing activity over the last year.

The algorithm to configure interrupts on an
i386 system with an IOAPIC is shown in Fig-
ure 3. ACPI mandates that all PIC mode IRQs
be identity mapped to IOAPIC pins. Excep-
tions are specified in MADT5 interrupt source
override entries.

Over-rides are often used, for example, to spec-
ify that the 8254 timer on IRQ0 in PIC mode
does not use pin0 on the IOAPIC, but uses
pin2. Over-rides also often move the ACPI SCI
to a different pin in IOAPIC mode than it had
in PIC mode, or change its polarity or trigger
from the default.

5MADT, Multiple APIC Description Table.

124 • Linux Symposium 2004 • Volume One

setup_arch()
acpi_boot_init()

parse(MADT);
parse(LAPIC); /* processors */
parse(IOAPIC)

parse(INT_SRC_OVERRIDE);
add_identity_legacy_mappings();
/* mp_irqs[] initialized */

init()
smp_boot_cpus()

setup_IO_APIC()
enable_IO_APIC();
setup_IO_APIC_irqs(); /* mp_irqs[] */

do_initcalls()
acpi_init()

"ACPI: Subsystem revision 20040326"
acpi_initialize_subsystem();
/* AML interpreter */
acpi_load_tables(); /* DSDT */
acpi_enable_subsystem();
/* HW into ACPI mode */

"ACPI: Interpreter enabled"
acpi_bus_init_irq();

AML(_PIC, PIC | IOAPIC | IOSAPIC);

acpi_pci_link_init()
for(every PCI Link in DSDT)

acpi_pci_link_add(Link)
AML(_PRS, Link);
AML(_CRS, Link);

"... Link [LNKA] (IRQs 9 10 *11)"

pci_acpi_init()
"PCI: Using ACPI for IRQ routing"

acpi_irq_penalty_init();
for (PCI devices)

acpi_pci_irq_enable(device)
acpi_pci_irq_lookup()

find _PRT entry
if (Link) {

acpi_pci_link_get_irq()
acpi_pci_link_allocate()

examine possible & current IRQs
AML(_SRS, Link)

} else {
use hard-coded IRQ in _PRT entry

}
acpi_register_gsi()

mp_register_gsi()
io_apic_set_pci_routing()

"PCI: PCI interrupt 00:06.0[A] ->
GSI 26 (level, low) -> IRQ 26"

Figure 3: Interrupt Initialization

So after identifying that the system will be in
IOAPIC mode, the 1st step is to record all the
Interrupt Source Overrides inmp_irqs[] .
The second step is to add the legacy identity
mappings where pins and IRQs have not been
consumed by the over-rides.

Step three is to digestmp_irqs[] in
setup_IO_APIC_irqs() , just like it
would be if the system were running in legacy
MPS mode.

But that is just the start of interrupt configu-
ration in ACPI mode. The system still needs
to enable the mappings for PCI devices, which
are stored in the DSDT6 _PRT7 entries. Fur-
ther, the _PRT can contain both static entries,
analogous to MPS table entries, or it can con-
tain dynamic _PRT entries that use PCI Inter-
rupt Link Devices.

So Linux enables the AML interpreter and in-
forms the ACPI BIOS that it plans to run the
system in IOAPIC mode.

Next the PCI Interrupt Link Devices are
parsed. These “links” are abstract versions of
what used to be called PIRQ-routers, though
they are more general.acpi_pci_link_
init() searches the DSDT for Link Devices
and queries each about the IRQs it can be set
to (_PRS)8 and the IRQ that it is already set to
(_CRS)9

A penalty table is used to help decide how
to program the PCI Interrupt Link Devices.
Weights are statically compiled into the ta-
ble to avoid programming the links to well
known legacy IRQs.acpi_irq_penalty_
init() updates the table to add penalties to
the IRQs where the Links have possible set-

6DSDT, Differentiated Services Description Table,
written in AML

7_PRT, PCI Routing Table
8PRS, Possible Resource Settings.
9CRS, Current Resource Settings.

Linux Symposium 2004 • Volume One • 125

tings. The idea is to minimize IRQ shar-
ing, while not conflicting with legacy IRQ use.
While it works reasonably well in practice, this
heuristic is inherently flawed because it as-
sumes the legacy IRQs rather than asking the
DSDT what legacy IRQs are actually in use.10

The PCI sub-system callsacpi_pci_irq_
enable() for every device. ACPI looks up
the device in the _PRT by device-id and if it
a simple static entry, programs the IOAPIC.
If it is a dynamic entry,acpi_pci_link_
allocate() chooses an IRQ for the link and
programs the link via AML (_SRS).11 Then the
associated IOAPIC entry is programmed.

Later, the drivers initialize and callrequest_
irq(IRQ) with the IRQ the PCI sub-system
told it to request.

One issue we have with this scheme is that it
can’t automatically recover when the heuris-
tic balancing act fails. For example when the
parallel port grabs IRQ7 and a PCI Interrupt
Links gets programmed to the same IRQ, then
request_irq(IRQ) correctly fails to put
ISA and PCI interrupts on the same pin. But
the system doesn’t realize that one of the con-
tenders could actually be re-programmed to a
different IRQ.

The fix for this issue will be to delete the
heuristic weights from the IRQ penalty table.
Instead the kernel should scan the DSDT to
enumerate exactly what legacy devices reserve
exactly what IRQs.12

10In PIC mode, the default is to keep the BIOS pro-
vided current IRQ setting, unless cmdlineacpi_irq_
balance is used. Balancing is always enabled in
IOAPIC mode.

11SRS, Set Resource Setting
12bugzilla 2733

4.1 Issues With PCI Interrupt Link Devices

Most of the issues have been with PCI Interrupt
Link Devices, an ACPI mechanism primarily
used to replace the chip-set-specific Legacy
PIRQ code.

• The status (_STA) returned by a PCI Inter-
rupt Link Device does not matter. Some
systems mark the ones we should use as
enabled, some do not.

• The status set by Linux on a link is im-
portant on some chip sets. If we do
not explicitly disable some unused links,
they result in tying together IRQs and can
cause spurious interrupts.

• The current setting returned by a link
(_CRS) can not always be trusted. Some
systems return invalid settings always.
Linux must assume that when it sets a
link, the setting was successful.

• Some systems return a current setting that
is outside the list of possible settings. Per
above, this must be ignored and a new set-
ting selected from the possible-list.

4.2 Issues With ACPI SCI Configuration

Another area that was ironed out this year
was the ACPI SCI (System Control Interrupt).
Originally, the SCI was always configured as
level/low, but SCI failures didn’t stop until
we implemented the algorithm in Figure 4.
During debugging, the kernel gained the cmd-
line option that applies to either PIC or IOAPIC
mode: acpi_sci={level,edge,high,
low} but production systems seem to be work-
ing properly and this has seen use recently only
to work around prototype BIOS bugs.

126 • Linux Symposium 2004 • Volume One

if (PIC mode) {
set ELCR to level trigger();

} else { /* IOAPIC mode */
if (Interrupt Source Override) {

Use IRQ specified in override
if(trigger edge or level)

use edge or level
else (compatible trigger)

use level

if (polarity high or low)
use high or low

else
use low

} else { /* no Override */
use level-trigger
use low-polarity

}
}

Figure 4: SCI configuration algorithm

4.3 Unresolved: Local APIC Timer Issue

The most troublesome configuration issue to-
day is that many systems with no IO-APIC will
hang during boot unless their LOCAL-APIC
has been disabled, eg. by bootingnolapic .
While this issue has gone away on several sys-
tems with BIOS upgrades, entire product lines
from high-volume OEMS appear to be subject
to this failure. The current workaround to dis-
able the LAPIC timer for the duration of the
SMI-CMD update that enables ACPI mode.13

4.4 Wanted: Generic Linux Driver Manager

The ACPI DSDT enumerates motherboard de-
vices via PNP identifiers. This method is used
to load the ACPI specific devices today, eg.
battery, button, fan, thermal etc. as well as
8550_acpi . PCI devices are enumerated via
PCI-ids from PCI config space. Legacy devices
probe out using hard-coded address values.

But a device driver should not have to know or
13http://bugzilla.kernel.org 1269

�������
��	
��

������������

�����
����

������������

�����
����

�����
����

��	������

���� ���

������� ��!"

�#���
$�!�	� ��

������������

�����%��&
��'���''

���&�(�����''

)�
 �"

Figure 5: ACPI Global, CPU, and Sleep states.

care how it is enumerated by its parent bus. An
8250 driver should worry about the 8250 and
not if it is being discovered by legacy means,
ACPI enumeration, or PCI.

One fix would be to be to abstract the PCI-ids,
PNP-ids, and perhaps even some hard-coded
values into a generic device manager directory
that maps them to device drivers.

This would simply add a veneer to the PCI
device configuration, simplifying a very small
number of drivers that can be configured by
PCI or ACPI. However, it would also fix the
real issue that the configuration information in
the ACPI DSDT for most motherboard devices
is currently not parsed and not communicated
to any Linux drivers.

The Device driver manager would also be
able to tell the power management sub-system
which methods are used to power-manage the
device. Eg. PCI or ACPI.

5 ACPI Power Management

The Global System States defined by ACPI are
illustrated in Figure 5. G0 is the working state,
G1 is sleeping, G2 is soft-off and G3 is me-
chanical off. The “Legacy” state illustrates
where the system is not in ACPI mode.

Linux Symposium 2004 • Volume One • 127

5.1 P-states

In the context of G0 – Global Working State,
and C0 – CPU Executing State, P-states (Per-
formance states) are available to reduce power
of the running processor. P-states simultane-
ously modulate both the MHz and the voltage.
As power varies by voltage squared, P-states
are extremely effective at saving power.

While P-states are extremely important, the
cpufreq sub-system handles P-states on a
number of different platforms, and the topic is
best addressed in that larger context.

5.2 Throttling

In the context of the G0-Working, C0-
Executing state, Throttling states are defined to
modulate the frequency of the running proces-
sor.

Power varies (almost) directly with MHz, so
when the MHz is cut if half, so is the power.
Unfortunately, so is the performance.

Linux currently uses Throttling only in re-
sponse to thermal events where the processor
is too hot. However, in the future, Linux could
add throttling when the processor is already in
the lowest P-state to save additional power.

Note that most processors also include a
backup Thermal Monitor throttling mecha-
nism in hardware, set with higher temperature
thresholds than ACPI throttling. Most proces-
sors also have in hardware an thermal emer-
gency shutdown mechanism.

5.3 C-states

In the context of G0 Working system state, C-
state (CPU-state) C0 is used to refer to the exe-
cuting state. Higher number C-states are en-
tered to save successively more power when

the processor is idle. No instructions are ex-
ecuted when in C1, C2, or C3.

ACPI replaces the default idle loop so it can
enter C1, C2 or C3. The deeper the C-state,
the more power savings, but the higher the la-
tency to enter/exit the C-state. You can ob-
serve the C-states supported by the system and
the success at using them in/proc/acpi/
processor/CPU0/power

C1 is included in every processor and has
negligible latency. C1 is implemented with
the HALT or MONITOR/MWAIT instructions.
Any interrupt will automatically wake the pro-
cessor from C1.

C2 has higher latency (though always under
100 usec) and higher power savings than C1.
It is entered through writes to ACPI registers
and exits automatically with any interrupt.

C3 has higher latency (though always under
1000 usec) and higher power savings than C2.
It is entered through writes to ACPI registers
and exits automatically with any interrupt or
bus master activity. The processor does not
snoop its cache when in C3, which is why bus-
master (DMA) activity will wake it up. Linux
sees several implementation issues with C3 to-
day:

1. C3 is enabled even if the latency is up to
1000 usec. This compares with the Linux
2.6 clock tick rate of 1000Hz = 1ms =
1000usec. So when a clock tick causes
C3 to exit, it may take all the way to the
next clock tick to execute the next kernel
instruction. So the benefit of C3 is lost
because the system effectively pays C3 la-
tency and gets negligible C3 residency to
save power.

2. Some devices do not tolerate the DMA
latency introduced by C3. Their device
buffers underrun or overflow. This is cur-

128 • Linux Symposium 2004 • Volume One

rently an issue with the ipw2100 WLAN
NIC.

3. Some platforms can lie about C3 latency
and transparently put the system into a
higher latency C4 when we ask for C3—
particularly when running on batteries.

4. Many processors halt their local APIC
timer (a.k.a. TSC – Timer Stamp Counter)
when in C3. You can observe this
by watching LOC fall behind IRQ0 in
/proc/interrupts.

5. USB makes it virtually impossible to en-
ter C3 because of constant bus master ac-
tivity. The workaround at the moment is
to unplug your USB devices when idle.
Longer term, it will take enhancements
to the USB sub-system to address this is-
sue. Ie. USB software needs to recognize
when devices are present but idle, and re-
duce the frequency of bus master activity.

Linux decides which C-state to enter on idle
based on a promotion/demotion algorithm.
The current algorithm measures the residency
in the current C-state. If it meets a threshold
the processor is promoted to the deeper C-state
on re-entrance into idle. If it was too short, then
the processor is demoted to a lower-numbered
C-state.

Unfortunately, the demotion rules are overly
simplistic, as Linux tracks only its previous
success at being idle, and doesn’t yet account
for the load on the system.

Support for deeper C-states via the _CST
method is currently in prototype. Hopefully
this method will also give the OS more accu-
rate data than the FADT about the latency as-
sociated with C3. If it does not, then we may
need to consider discarding the table-provided
latencies and measuring the actual latency at
boot time.

5.4 Sleep States

ACPI names sleeps states S0 – S5. S0 is the
non-sleep state, synonymous with G0. S1 is
standby, it halts the processor and turns off the
display. Of course turning off the display on an
idle system saves the same amount of power
without taking the system off line, so S1 isn’t
worth much. S2 is deprecated. S3 is suspend to
RAM. S4 is hibernate to disk. S5 is soft-power
off, AKA G2.

Sleep states are unreliable enough on Linux to-
day that they’re best considered “experimen-
tal.” Suspend/Resume suffers from (at least)
two systematic problems:

• _init() and_initdata() on items
that may be referenced after boot, say,
during resume, is a bad idea.

• PCI configuration space is not uniformly
saved and restored either for devices or
for PCI bridges. This can be observed
by using lspci before and after a sus-
pend/resume cycle. Sometimessetpci
can be used to repair this damage from
user-space.

5.5 Device States

Not shown on the diagram, ACPI defines
power saving states for devices: D0 – D3. D0
is on, D3 is off, D1 and D2 are intermediate.
Higher device states have

1. more power savings,

2. less device context saved by hardware,

3. more device driver state restoring,

4. higher restore latency.

Linux Symposium 2004 • Volume One • 129

ACPI defines semantics for each device state in
each device class. In practice, D1 and D2 are
often optional - as many devices support only
on and off either because they are low-latency,
or because they are simple.

Linux-2.6 includes an updated device driver
model to accommodate power management.14

This model is highly compatible with PCI and
ACPI. However, this vision is not yet fully re-
alized. To do so, Linux needs a global power
policy manager.

5.6 Wanted: Generic Linux Run-time Power
Policy Manager

PCI device drivers today callpci_set_
power_state() to enter D-states. This uses
the power management capabilities in the PCI
power management specification.

The ACPI DSDT supplies methods for ACPI
enumerated devices to access ACPI D-states.
However, no driver calls into ACPI to enter D-
states today.15

Drivers shouldn’t have to care if they are power
managed by PCI or by ACPI. Drivers should be
able to up-call to a generic run-time power pol-
icy manager. That manager should know about
calling the PCI layer or the ACPI layer as ap-
propriate.

The power manager should also put those re-
quests in the context of user-specified power
policy. Eg. Does the user want maximum per-
formance, or maximum battery life? Currently
there is no method to specify the detailed pol-
icy, and the kernel wouldn’t know how to han-
dle it anyway.

In a related point, it appears that devices cur-

14Patrick Mochel, Linux Kernel Power Management,
OLS 2003.

15Actually, the ACPI hot-plug driver invokes D-states,
but that is the only exception.

rently only suspend upon system suspend. This
is probably not the path to industry leading bat-
tery life.

Device drivers should recognize when their de-
vice has gone idle. They should invoke a sus-
pend up-call to a power manager layer which
will decide if it really is a good idea to grant
that request now, and if so, how. In this case by
calling the PCI or ACPI layer as appropriate.

6 ACPI as seen by bugzilla

Over the last year the ACPI developers have
made heavy use of bugzilla16 to help prioritize
and track 460 bugs. 300 bugs are closed or re-
solved, 160 are open.17

We cc: acpi-bugzilla@lists.
sourceforge.net on these bugs, and
we encourage the community to add that alias
to ACPI-specific bugs in other bugzillas so that
the team can help out wherever the problems
are found.

We haven’t really used the bugzilla priority
field. Instead we’ve split the bugs into cate-
gories and have addressed the configuration is-
sues first. This explains why most of the in-
terrupt bugs are resolved, and most of the sus-
pend/resume bugs are unresolved.

We’ve seen an incoming bug rate of 10-
bugs/week for many months, but the new re-
ports favor the power management features
over configuration, so we’re hopeful that the
torrent of configuration issues is behind us.

16http://bugzilla.kernel.org/
17The resolved state indicates that a patch is available

for testing, but that it is not yet checked into the ker-
nel.org kernel.

130 • Linux Symposium 2004 • Volume One

����

�����

	
������

���

�������

�������

���

�������

	�
����
�

	
���
��

���

�
��� ���

���������

!
����

�� "�	#

��$���

% &' '% (')%%

���� *�"
�
�+��

��
���

Figure 6: ACPI bug profile

7 Future Work

7.1 Linux 2.4

Going forward, I expect to back-port only crit-
ical configuration related fixes to Linux-2.4.
For the latest power management code, users
need to migrate to Linux-2.6.

7.2 Linux 2.6

Linux-2.6 is a “stable” release, so it is not
appropriate to integrate significant new fea-
tures. However, the power management side
of ACPI is widely used in 2.6 and there will be
plenty of bug-fixes necessary. The most visi-
ble will probably be anything that makes Sus-
pend/Resume work on more platforms.

7.3 Linux 2.7

These feature gaps will not be addressed in
Linux 2.6, and so are candidates for Linux 2.7:

• Device enumeration is not abstracted in
a generic device driver manager that can
shield drivers from knowing if they’re
enumerated by ACPI, PCI, or other.

• Motherboard devices enumerated by
ACPI in the DSDT are ignored, and
probed instead via legacy methods. This
can lead to resource conflicts.

• Device power states are not abstracted in
a generic device power manager that can
shield drivers from knowing whether to
call ACPI or PCI to handle D-states.

• There is no power policy manager to
translate the user-requested power policy
into kernel policy.

• No devices invoke ACPI methods to enter
D-states.

• Devices do not detect that they are idle
and request of a power manager whether
they should enter power saving device
states.

• There is no MP/SMT coordination of P-
states. Today, P-states are disabled on
SMP systems. Coordination needs to ac-
count for multiple threads and multiple
cores per package.

• Coordinate P-states and T-states. Throt-
tling should be used only after the system
is put in the lowest P-state.

• Idle states above C1 are disabled on SMP.

• Enable Suspend in PAE mode.18

18PAE, Physical Address Extended—MMU mode to
handle > 4GB RAM—optional oni386 , always used
onx86_64 .

Linux Symposium 2004 • Volume One • 131

• Enable Suspend on SMP.

• Tick timer modulation for idle power sav-
ings.

• Video control extensions. Video is a large
power consumer. The ACPI spec Video
extensions are currently in prototype.

• Docking Station support is completely ab-
sent from Linux.

• ACPI 3.0 features. TBD after the specifi-
cation is published.

7.4 ACPI 3.0

Although ACPI 3.0 has not yet been published,
two ACPI 3.0 tidbits are already in Linux.

• PCI Express table scanning. This is the
basic PCI Express support, there will be
more coming. Those in the PCI SIG
can read all about it in the PCI Express
Firmware Specification.

• Several clarifications to the ACPI 2.0b
spec resulted directly from open source
development,19 and the text of ACPI 3.0
has been updated accordingly. For exam-
ple, some subtleties of SCI interrupt con-
figuration and device enumeration.

When the ACPI 3.0 specification is published
there will instantly be a multiple additions to
the ACPI/Linux feature to-do list.

7.5 Tougher Issues

• Battery Life on Linux is not yet compet-
itive. This single metric is the sum of all
the power savings features in the platform,
and if any of them are not working prop-
erly, it comes out on this bottom line.

19FreeBSD deserves kudos in addition to Linux

• Laptop Hot Keys are used to control
things such as video brightness, etc. ACPI
does not specify Hot Keys. But when they
work in APM mode and don’t work in
ACPI mode, ACPI gets blamed. There are
4 ways to implement hot keys:

1. SMI20 handler, the BIOS handles
interrupts from the keys, and con-
trols the device directly. This acts
like “hardware” control as the OS
doesn’t know it is happening. But
on many systems this SMI method is
disabled as soon as the system tran-
sitions into ACPI mode. Thus the
complaint “the button works in APM
mode, but doesn’t work in ACPI
mode.”
But ACPI doesn’t specify how hot
keys work, so in ACPI mode one of
the other methods listed here needs
to handle the keys.

2. Keyboard Extension driver, such as
i8k . Here the keys return scan
codes like any other keys on the key-
board, and the keyboard driver needs
to understand those scan code. This
is independent of ACPI, and gener-
ally OEM specific.

3. OEM-specific ACPI hot key driver.
Some OEMs enumerate the hot
keys as OEM-specific devices in the
ACPI tables. While the device is
described in AML, such devices are
not described in the ACPI spec so
we can’t build generic ACPI support
for them. The OEM must supply
the appropriate hot-key driver since
only they know how it is supposed
to work.

4. Platform-specific “ACPI” driver. To-
day Linux includes Toshiba and

20SMI, System Management Interrupt; invisible to the
OS, handled by the BIOS, generally considered evil.

132 • Linux Symposium 2004 • Volume One

Asus platform specific extension
drivers to ACPI. They do not use
portable ACPI compliant methods to
recognize and talk to the hot keys,
but generally use the methods above.

The correct solution to the the Hot Key is-
sue on Linux will require direct support
from the OEMs, either by supplying doc-
umentation, or code to the community.

8 Summary

This past year has seen great strides in the con-
figuration aspects of ACPI. Multiple Linux dis-
tributors now enable ACPI on multiple archi-
tectures.

This sets the foundation for the next era of
ACPI on Linux where we can evolve the more
advanced ACPI features to meet the expecta-
tions of the community.

9 Resources

The ACPI specification is published athttp:
//www.acpi.info .

The home page for the Linux ACPI de-
velopment community is here:http://
acpi.sourceforge.net/ It contains nu-
merous useful pointers, including one to the
acpi-devel mailing list.

The latest ACPI code can be found against var-
ious recent releases in the BitKeeper repos-
itories: http://linux-acpi.bkbits.
net/

Plain patches are available onkernel.
org .21 Note that Andrew Morton currently
includes the latest ACPI test tree in the-mm

21http://ftp.kernel.org/pub/linux/
kernel/people/lenb/acpi/patches/

patch, so you can test the latest ACPI code
combined with other recent updates there.22

10 Acknowledgments

Many thanks to the following people whose di-
rect contributions have significantly improved
the quality of the ACPI code in the last
year: Jesse Barnes, John Belmonte, Dominik
Brodowski, Bruno Ducrot, Bjorn Helgaas,
Nitin, Kamble, Andi Kleen, Karol Kozimor,
Pavel Machek, Andrew Morton, Jun Naka-
jima, Venkatesh Pallipadi, Nate Lawson, David
Shaohua Li, Suresh Siddha, Jes Sorensen, An-
drew de Quincey, Arjan van de Ven, Matt
Wilcox, and Luming Yu. Thanks also to all
the bug submitters, and the enthusiasts on
acpi-devel .

Special thanks to Intel’s Mobile Platforms
Group, which created ACPICA, particularly
Bob Moore and Andy Grover.

Linux is a trademark of Linus Torvalds. Bit-
Keeper is a trademark of BitMover, Inc.

22http://ftp.kernel.org/pub/linux/
kernel/people/akpm/patches/

Scaling Linux® to the Extreme
From 64 to 512 Processors

Ray Bryant
raybry@sgi.com

Jesse Barnes
jbarnes@sgi.com

John Hawkes
hawkes@sgi.com

Jeremy Higdon
jeremy@sgi.com

Jack Steiner
steiner@sgi.com

Silicon Graphics, Inc.

Abstract

In January 2003, SGI announced the SGI® Al-
tix® 3000 family of servers. As announced,
the SGI Altix 3000 system supported up to
64 Intel® Itanium® 2 processors and 512 GB
of main memory in a single Linux® image.
Altix now supports up to 256 processors in
a single Linux system, and we have a few
early-adopter customers who are running 512
processors in a single Linux system; others
are running with as much as 4 terabytes of
memory. This paper continues the work re-
ported on in our 2003 OLS paper by describ-
ing the changes necessary to get Linux to effi-
ciently run high-performance computing work-
loads on such large systems.

Introduction

At OLS 2003 [1], we discussed changes to
Linux that allowed us to make Linux scale to
64 processors for our high-performance com-
puting (HPC) workloads. Since then, we have
continued our scalability work, and we now
support up to 256 processors in a single Linux
image, and we have a few early-adopter cus-
tomers who are running 512 processors in a
single-system image; other customers are run-
ning with as much as 4 terabytes of memory.

As can be imagined, the type of changes neces-
sary to get a single Linux system to scale on a
512 processor system or to support 4 terabytes
of memory are of a different nature than those
necessary to get Linux to scale up to a 64 pro-
cessor system, and the majority of this paper
will describe such changes.

While much of this work has been done in
the context of a Linux 2.4 kernel, Altix is
now a supported platform in the Linux 2.6 se-
ries (www.kernel.org versions of Linux
2.6 boot and run well on many small to mod-
erate sized Altix systems), and our plan is to
port many of these changes to Linux 2.6 and
propose them as enhancements to the commu-
nity kernel. While some of these changes will
be unique to the Linux kernel for Altix, many
of the changes we propose will also improve
performance on smaller SMP and NUMA sys-
tems, so should be of general interest to the
Linux scalability community.

In the rest of this paper, we will first provide
a brief review of the SGI Altix 3000 hard-
ware. Next we will describe why we believe
that very large single-system image, shared-
memory machine can be more effective tools
for HPC than similar sized non-shared mem-
ory clusters. We will then discuss changes that
we made to Linux for Altix in order to make

134 • Linux Symposium 2004 • Volume One

that system a more effective system for HPC
on systems with as many as 512 processors.
A second large topic of discussion will be the
changes to support high-performance I/O on
Altix and some of the hardware underpinnings
for that support. We believe that the latter set
of problems are general in the sense that they
apply to any large scale NUMA system and the
solutions we have adopted should be of general
interest for this reason.

Even though this paper is focused on the
changes that we have made to Linux to ef-
fectively support very large Altix platforms, it
should be remembered that the total number of
such changes is small in relation to the over-
all size of the Linux kernel and its support-
ing software. SGI is committed to support-
ing the Linux community and continues to sup-
port Linux for Altix as a member of the Linux
family of kernels, and in general to support bi-
nary compatibility between Linux for Altix and
Linux on other Itanium Processor Family plat-
forms.

In many cases, the scaling changes described in
this paper have already been submitted to the
community for consideration for inclusion in
Linux 2.6. In other cases, the changes are un-
der evaluation to determine if they need to be
added to Linux 2.6, or whether they are fixes
for problems in Linux 2.4.21 (the current prod-
uct base for Linux for Altix) that are no longer
present in Linux 2.6.

Finally, this paper contains forward-looking
statements regarding SGI® technologies and
third-party technologies that are subject to
risks and uncertainties. The reader is cautioned
not to rely unduly on these forward-looking
statements, which are not a guarantee of future
or current performance, nor are they a guaran-
tee that features described herein will or will
not be available in future SGI products.

The SGI Altix Hardware

This section is condensed from [1]; the reader
should refer to that paper for additional details.

An Altix system consists of a configurable
number of rack-mounted units, each of which
SGI refers to as abrick. The most common
type of brick is the C-brick (or compute brick).
A fully configured C-brick consists of two sep-
arate dual-processor Intel Itanium 2 systems,
each of which is a bus-connected multiproces-
sor ornode.

In addition to the two processors on the bus,
there is also a SHUB chip on each bus. The
SHUB is a proprietary ASIC that (1) acts as
a memory controller for the local memory,
(2) provides the interface to the interconnec-
tion network, (3) manages the global cache co-
herency protocol, and (4) some other functions
as discussed in [1].

Memory accesses in an Altix system are either
local (i.e., the reference is to memory in the
same node as the processor) or remote. The
SHUB detects whether a reference is local, in
which case it directs the request to the mem-
ory on the node, or remote, in which case it
forwards the request across the interconnection
network to the SHUB chip where the memory
reference will be serviced.

Local memory references have lower latency;
the Altix system is thus a NUMA (non-uniform
memory access) system. The ratio of remote to
local memory access times on an Altix system
varies from 1.9 to 3.5, depending on the size
of the system and the relative locations of the
processor and memory module involved in the
transfer.

The cache-coherency policy in the Altix sys-
tem can be divided into two levels:local
andglobal. The local cache-coherency proto-
col is defined by the processors on the local

Linux Symposium 2004 • Volume One • 135

bus and is used to maintain cache-coherency
between the Itanium processors on the bus.
The global cache-coherency protocol is imple-
mented by the SHUB chip. The global proto-
col is directory-based and is a refinement of the
protocol originally developed for DASH [2].

The Altix system interconnection network uses
routing bricks to provide connectivity in sys-
tem sizes larger than 16 processors. In systems
with 128 or more processors a second layer
of routing bricks is used to forward requests
among subgroups of 32 processors each. The
routing topology is a fat-tree topology with ad-
ditional “express” links being inserted to im-
prove performance.

Why Big SSI?

In this section we discuss the rationale for
building such a large single-system image
(SSI) box as an Altix system with 512 CPU’s
and (potentially) several TB of main memory:

(1) Shared memory systems are more flexible
and easier to manage than a cluster. One can
simulate message passing on shared memory,
but not the other way around. Software for
cluster management and system maintenance
exists, but can be expensive or complex to use.

(2) Shared memory style programming is gen-
erally simpler and more easily understood than
message passing. Debugging of code is often
simpler on a SSI system than on a cluster.

(3) It is generally easier to port or write
codes from scratch using the shared memory
paradigm. Additionally it is often possible to
simply ignore large sections of the code (e.g.
those devoted to data input and output) and
only parallelize the part that matters.

(4) A shared memory system supports eas-
ier load balancing within a computation. The

mapping of grid points to a node determines
the computational load on the node. Some grid
points may be located near more rapidly chang-
ing parts of computation, resulting in higher
computational load. Balancing this over time
requires moving grid points from node to node
in a cluster, where in a shared memory system
such re-balancing is typically simpler.

(5) Access to large global data sets is simpli-
fied. Often, the parallel computation depends
on a large data set describing, for example, the
precise dimensions and characteristics of the
physical object that is being modeled. This
data set can be too large to fit into the node
memories available on a clustered machine, but
it can readily be loaded into memory on a large
shared memory machine.

(6) Not everything fits into the cluster model.
While many production codes have been con-
verted to message passing, the overall compu-
tation may still contain one or more phases that
are better performed using a large shared mem-
ory system. Or, there may be a subset of users
of the system who would prefer a shared mem-
ory paradigm to a message passing one. This
can be a particularly important consideration in
large data-center environments.

Kernel Changes

In this section we describe the most significant
kernel problems we have encountered in run-
ning Linux on a 512 processor Altix system.

Cache line and TLB Conflicts

Cache line conflicts occur in every cache-
coherent multiprocessor system, to one extent
or another, and whether or not the conflict ex-
hibits itself as a performance problem is depen-
dent on the rate at which the conflict occurs and
the time required by the hardware to resolve

136 • Linux Symposium 2004 • Volume One

the conflict. The latter time is typically propor-
tional to the number of processors involved in
the conflict. On Altix systems with 256 proces-
sors or more, we have encountered some cache
line conflicts that can effectively halt forward
progress of the machine. Typically, these con-
flicts involve global variables that are updated
at each timer tick (or faster) by every processor
in the system.

One example of this kind of problem is the de-
fault kernel profiler. When we first enabled
the default kernel profiler on a 512 CPU sys-
tem, the system would not boot. The reason
was that once per timer tick, each processor
in the system was trying to update the pro-
filer bin corresponding to the CPU idle routine.
A work around to this problem was to initial-
ize prof_cpu_mask to CPU_MASK_NONE
instead of the default. This disables profil-
ing on all processors until the user sets the
prof_cpu_mask .

Another example of this kind of problem was
when we imported some timer code from
Red Hat® AS 3.0. The timer code included
a global variable that was used to account for
differences between HZ (typically a power of
2) and the number of microseconds in a sec-
ond (nominally 1,000,000). This global vari-
able was updated by each processor on each
timer tick. The result was that on Altix sys-
tems larger than about 384 processors, forward
progress could not be made with this version
of the code. To fix this problem, we made this
global variable a per processor variable. The
result was that the adjustment for the differ-
ence between HZ and microseconds is done on
a per processor rather than on a global basis,
and now the system will boot.

Still other cache line conflicts were remedied
by identifying cases of false cache line sharing
i.e., those cache lines that inadvertently contain
a field that is frequently written by one CPU

and another field (or fields) that are frequently
read by other CPUs.

Another significant bottleneck is the ia64
do_gettimeofday() with its use of
cmpxchg . That operation is expensive on
most architectures, and concurrentcmpxchg
operations on a common memory location
scale worse than concurrent simple writes from
multiple CPUs. On Altix, four concurrent user
gettimeofday() system calls complete in
almost an order of magnitude more time than a
singlegettimeofday() ; eight are 20 times
slower than one; and the scaling deteriorates
nonlinearly to the point where 32 concurrent
system calls is 100 times slower than one. At
the present time, we are still exploring a way to
improve this scaling problem in Linux 2.6 for
Altix.

While moving data to per-processor storage is
often a solution to the kind of scaling problems
we have discussed here, it is not a panacea,
particularly as the number of processors be-
comes large. Often, the system will want to
inspect some data item in the per-processor
storage of each processor in the system. For
small numbers of processors this is not a prob-
lem. But when there are hundreds of proces-
sors involved, such loops can cause a TLB miss
each time through the loop as well as a cou-
ple of cache-line misses, with the result that
the loop may run quite slowly. (A TLB miss
is caused because the per-processor storage ar-
eas are typically isolated from one another in
the kernel’s virtual address space.)

If such loops turn out to be bottlenecks, then
what one must often do is to move the fields
that such loops inspect out of the per-processor
storage areas, and move them into a global
static array with one entry per CPU.

An example of this kind of problem in Linux
2.6 for Altix is the current allocation scheme
of the per-CPU run queue structures. Each

Linux Symposium 2004 • Volume One • 137

per-CPU structure on an Altix system requires
a unique TLB to address it, and each struc-
ture begins at the same virtual offset in a page,
which for a virtually indexed cache means that
the same fields will collide at the same in-
dex. Thus, a CPU scheduler that wishes to
do a quick peek at every other CPU’snr_
running or cpu_load will not only suffer a
TLB miss on every access, but will also likely
suffer a cache miss because these same virtual
offsets will collide in the cache. Cache col-
oring of these addresses would be one way to
solve this problem; we are still exploring ways
to fix this problem in Linux 2.6 for Altix.

Lock Conflicts

A cousin of cache line conflicts are the lock
conflicts. Indeed, the root mechanism of the
lock bottleneck is a cache line conflict. For
a spinlock_t the conflict is thecmpxchg
operation on the word that signifies whether or
not the lock is owned. For arwlock_t the
conflict is the cmpxchg or fetch-and-add op-
eration on the count of the number of read-
ers or the bit signifying whether or not the
lock is owned exclusively by a writer. For a
seqlock_t the conflict is the increment of
the sequence number.

For some lock conflicts, such as thercu_
ctrlblk.mutex , the remedy is to make the
spinlock more fine-grained, e.g., by making it
hierarchical or per-CPU. For other lock con-
flicts, the most effective remedy is to reduce
the use of the lock.

The O(1) CPU scheduler replaced the global
runqueue_lock with per-CPU run queue
locks, and replaced the global run queue with
per-CPU run queues. While this did substan-
tially decrease the CPU scheduling bottleneck
for CPU counts in the 8 to 32 range, additional
effort has been necessary to remedy additional
bottlenecks that appear with even large config-

urations.

For example, we discovered that at 256 pro-
cessors and above, we encountered a live lock
early in system boot because hundreds of idle
CPUs are load-balancing and are racing in con-
tention on one or a few busy CPUs. The con-
tention is so severe that the busy CPU’s sched-
uler cannot itself acquire its own run queue
lock, and thus the system live locks.

A remedy we applied in our Altix 2.4-based
kernel was to introduce a progressively longer
back off between successive load-balancing at-
tempts, if the load-balancing CPU continues
to be unsuccessful in finding a task to pull-
migrate. Perhaps all the busiest CPU’s tasks
are pinned to that CPU, or perhaps all the
tasks are still cache-hot. Regardless of the
reason, a load-balancing failure results in that
CPU delaying the next load-balance attempt
by another incremental increase in time. This
algorithm effectively solved the live lock, as
well as improved other high-contention con-
flicts on a busiest CPU’s run queue lock (e.g.,
always finding pinned tasks that can never be
migrated).

This load-balance back off algorithm did not
get accepted into the early 2.6 kernels. The lat-
est 2.6.7 CPU scheduler, as developed by Nick
Piggin, incorporates a similar back off algo-
rithm. However, this algorithm (at least as it
appears in 2.6.7-rc2) continues to cause a boot-
time live lock at 512 processors on Altix so we
are continuing to investigate this matter.

Page Cache

Managing the page cache in Altix has been a
challenging problem. The reason is that while
a large Altix system may have a lot of memory,
each node in the system only has a relatively
small fraction of that memory available as lo-
cal memory. For example, on a 512 CPU sys-

138 • Linux Symposium 2004 • Volume One

tem, if the entire system has 512 GB of mem-
ory, each node on the system has only 2 GB of
local memory; less than 0.4% of the available
memory on the system is local. When you con-
sider that it is quite common on such systems
to deal with files that are tens of GB in size, it
is easy to understand how the page cache could
consume all of the memory on several nodes in
the system just doing normal, buffered-file I/O.

Stated another way, this is the challenge of a
large NUMA system: all memory is address-
able, but only a tiny fraction of that memory
is local. Users of NUMA systems need to
place their most frequently accessed data in lo-
cal memory; this is crucial to obtain the max-
imum performance possible from the system.
Typically this is done by allocating pages on a
first-touch basis; that is, we attempt to allocate
a page on the node where it is first referenced.
If all of the local memory on a node is con-
sumed by the page cache, then these local stor-
age allocations will spill over to other (remote)
nodes, the result being a potentially significant
impact on program performance.

Similarly, it is important that the amount of
free memory be balanced across idle nodes in
the system. An imbalance could lead to some
components of a parallel computation running
slower than others because not all components
of the computation were able to allocate their
memory entirely out of local storage. Since the
overall speed of parallel computation is deter-
mined by the execution of its slowest compo-
nent, the performance of the entire application
can be impacted by a non-local storage alloca-
tion on only a few nodes.

One might think thatbdflush or kupdated
(in a Linux 2.4 system) would be responsi-
ble for cleaning up unused page-cache pages.
As the OLS reader knows, these daemons
are responsible not for deallocating page-cache
pages, but cleaning them. It is the swap dae-

mon kswapd that is responsible for causing
page-cache pages to be deallocated. However,
in many situations we have encountered, even
though multiple nodes of the system would be
completely out of local memory, there would
still be lots of free memory elsewhere in the
system. As a result,kswapd will never start.
Once the system gets into such a state, the
local memory on those nodes can remain al-
located entirely to page-cache pages for very
long stretches of time since as far as the ker-
nel is concerned there is no memory “pres-
sure”. To get around this problem, particu-
larly for benchmarking studies, users have of-
ten resorted to programs that allocate and touch
all of the memory on the system, thus causing
kswapd to wake up and free unneeded buffer
cache pages.

We have dealt with this problem in a number
of ways, but the first approach was to change
page_cache_alloc() so that instead
of allocating the page on the local node, we
spread allocations across all nodes in the
system. To do this, we added a new GFP
flag: GFP_ROUND_ROBINand a new proce-
dure: alloc_pages_round_robin() .
alloc_pages_round_robin() main-
tains a counter in per-CPU storage; the
counter is incremented on each call to
page_cache_alloc() . The value of the
counter, modulus the number of nodes in
the system, is used to select thezonelist
passed to__alloc_pages() . Like other
NUMA implementations, in Linux for Altix
there is azonelist for each node, and the
zonelist s are sorted in nearest neighbor
order with thezone for the local node as the
first entry of thezonelist . The result is that
each timepage_cache_alloc() is called,
the returned page is allocated on the next node
in sequence, or as close as possible to that
node.

The rationale for allocating page-cache pages

Linux Symposium 2004 • Volume One • 139

in this way is that while pages are local re-
sources, the page cache is a global resource, us-
able by all processes on the system. Thus, even
if a process is bound to a particular node, in
general it does not make sense to allocate page-
cache pages just on that node, since some other
process in the system may be reading that same
file and hence sharing the pages. So instead of
flooding the current node with the page-cache
pages for files that processes on that node have
opened, we “tax” every node in the system with
a fraction of the page-cache pages. In this
way, we try to conserve a scarce resource (local
memory) by spreading page-cache allocations
over all nodes in the system.

However, even this step was not enough to keep
local storage usage balanced among nodes in
the system. After reading a 10 GB file, for
example, we found that the node where the
reading process was running would have up to
40,000 pages more storage allocated than other
nodes in the system. It turned out the reason for
this was that buffer heads for the read opera-
tion were being allocated locally. To solve this
problem in our Linux 2.4.21 kernel for Altix,
we modifiedkmem_cache_grow() so that
it would pass theGFP_ROUND_ROBINflag to
kmem_getpages() with the result that the
slab caches on our systems are now also allo-
cated out of round-robin storage. Of course,
this is not a perfect solution, since there are sit-
uations where it makes perfect sense to allocate
a slab cache entry locally; but this was an expe-
dient solution appropriate for our product. For
Linux 2.6 for Altix we would like to see the
slab allocator be made NUMA aware. (Man-
fred Spraul has created some patches to do this
and we are currently evaluating these changes.)

The previous two changes solved many of the
cases where a local storage could be exhausted
by allocation of page-cache pages. However,
they still did not solve the problem of local al-
locations spilling off node, particularly in those

cases where storage allocation was tight across
the entire system. In such situations, the sys-
tem would often start running the synchronous
swapping code even though most (if not all) of
the page-cache pages on the system were clean
and unreferenced outside of the page-cache.
With the very-large memory sizes typical of
our larger Altix customers, entering the syn-
chronous swapping code needs to be avoided
if at all possible since this tends to freeze the
system for 10s of seconds. Additionally, the
round robin allocation fixes did not solve the
problem of poor and unrepeatable performance
on benchmarks due to the existence of signif-
icant amounts of page-cache storage left over
from previous executions.

To solve these problems, we introduced a rou-
tine calledtoss_buffer_cache_pages_
node() (referred to here astoss() , for
brevity). In a related change, we made the
active and inactive lists per node rather than
global. toss() first scans the inactive list
(on a particular node) looking for idle page-
cache pages to release back to the free page
pool. If not enough such pages are found
on the inactive list, then the active list is
also scanned. Finally, iftoss() has not
called shrink_slab_caches() recently,
that routine is also invoked in order to more
aggressively free unused slab-cache entries.
toss() was patterned after the main loop
of shrink_caches() except that it would
never callswap_out() and if it encountered
a page that didn’t look to be easily free able, it
would just skip that page and go on to the next
page.

A call to toss() was added in__alloc_
pages() in such a way that if allocation on
the current node fails, then before trying to al-
locate from some other node (i. e. spilling
to another node), the system will first see if
it can free enough page-cache pages from the
current node so that the current node alloca-

140 • Linux Symposium 2004 • Volume One

tion can succeed. In subsequent allocation
passes,toss() is also called to free page-
cache pages on nodes other than the current
one. The result of this change is that clean
page-cache pages are effectively treated as free
memory by the page allocator.

At the same time that thetoss() code
was added, we added a new user com-
mandbcfree that could be used to free all
idle page-cache pages. (On the__alloc_
pages() path, toss() would only try to
free 32 pages per node.) Thebcfree com-
mand was intended to be used only for reset-
ting the state of the page cache before running a
benchmark, and in lieu of rebooting the system
in order to get a clean system state. However,
our customers found that this command could
be used to reduce the size of the page cache
and to avoid situations where large amounts
of buffered-file I/O could force the system to
begin swapping. Sincebcfree kills the en-
tire page-cache, however, this was regarded
as a substandard solution that could also hurt
read performance of cached data and we began
looking for another way to solve this “BIGIO”
problem.

Just to be specific, the BIGIO problem we were
trying to solve was based on the behavior of our
Linux 2.4.21 kernel for Altix. A customer re-
ported that on a 256 GB Altix system, if 200
GB were allocated and 50 GB free, that if the
user program then tried to write 100 GB of data
out to disk, the system would start to swap,
and then in many cases fill up the swap space.
At that point our Out-of-memory (OOM) killer
would wake up and kill the user program! (See
the next section for discussion of our OOM
killer changes.)

Initially we were able to work around this
problem by increasing the amount of swap
space on the system. Our experiments showed
that with an amount of swap space equal to

one-quarter the main memory size, the 256 GB
example discussed above would continue to
completion without the OOM killer being in-
voked. I/O performance during this phase was
typically one-half of what the hardware could
deliver, since two I/O operations often had to
be completed: one to read the data in from
the swap device, and one to write the data to
the output file. Additionally, while the swap
scan was active, the system was very sluggish.
These problems led us to search for another so-
lution.

Eventually what we developed is an aggressive
method of trimming the page cache when it
started to grow too big. This solution involved
several steps:

(1) We first added a new page list, the
reclaim_list . This increased the size of
struct page by another 16 bytes. On our
system,struct page is allocated on cache-
aligned boundaries anyway, so this really did
not cause an increase in storage, since the cur-
rent struct page size was less than 112
bytes. Pages were added to the reclaim list
when they were inserted into the page cache.
The reclaim list is per node, with per node
locking. Pages were removed from the reclaim
list when they were no longer reclaimable; that
is, they were removed from the reclaim list
when they were marked as dirty due to buffer
file-I/O or when they were mapped into an ad-
dress space.

(2) We rewrotetoss() to scan the reclaim list
instead of the inactive and active lists. Herein
we will refer to the new version oftoss() as
toss_fast() .

(3) We introduced a variant ofpage_cache_
alloc() called page_cache_alloc_
limited() . Associated with this new
routine were two control variables settable
via sysctl() : page_cache_limit and
page_cache_limit_threshold .

Linux Symposium 2004 • Volume One • 141

(4) We modified the generic_file_
write() path to call page_cache_
alloc_limited() instead of page_
cache_alloc() . page_cache_alloc_
limited() examines the size of the page
cache. If the total amount of free memory
in the system is less thanpage_cache_
limit_threshold and the size of the page
cache is larger thanpage_cache_limit ,
then page_cache_alloc_limited()
calls page_cache_reduce() to free
enough page-cache pages on the system to
bring the page cache size down belowpage_
cache_limit . If this succeeds, thenpage_
cache_alloc_limited() calls page_
cache_alloc to allocate the page. If not,
then we wakeupbdflush and the current
thread is put to sleep for 30ms (a tunable
parameter)

The rationale for thereclaim_list and
toss_fast() was that when we needed to
trim the page cache, practically all pages in
the system would typically be on the inactive
list. The existingtoss() routine scanned
the inactive list and thus was too slow to call
from generic_file_write . Moreover,
most of the pages on the inactive list were
not reclaimable anyway. Most of the pages
on thereclaim_list are reclaimable. As
a resulttoss_fast() runs much faster and
is more efficient at releasing idle page-cache
pages than the old routine.

The rationale for thepage_cache_limit_
threshold in addition to the page_
cache_limit is that if there is lots of free
memory then there is no reason to trim the page
cache. One might think that because we only
trim the page cache on the file write path that
this approach would still let the page cache
to grow arbitrarily due to file reads. Unfortu-
nately, this is not the case, since the Linux ker-
nel in normal multiuser operation is constantly
writing something to the disk. So, a page cache

limit enforced at file write time is also an effec-
tive limit on the size of the page cache due to
file reads.

Finally, the rationale for delaying the calling
task whenpage_cache_reduce() fails is
that we do not want the system to start swap-
ping to make space for new buffered I/O pages,
since that will reduce I/O bandwidth by as
much as one-half anyway, as well as take a lot
of CPU time to figure out which pages to swap
out. So it is better to reduce the I/O bandwidth
directly, by limiting the rate of requested I/O,
instead of allowing that I/O to proceed at rate
that causes the system to be overrun by page-
cache pages.

Thus far, we have had good experience with
this algorithm. File I/O rates are not substan-
tially reduced from what the hardware can pro-
vide, the system does not start swapping, and
the system remains responsive and usable dur-
ing the period of time when the BIGIO is run-
ning.

Of course, this entire discussion is specific to
Linux 2.4.21. For Linux 2.6, we have plans to
evaluate whether this is a problem in the sys-
tem at all. In particular, we want to see if an
appropriate setting forvm_swappiness to
zero can eliminate the “BIGIO causes swap-
ping” problem. We also are interested in eval-
uating the recent set of VM patches that Nick
Piggin [6] has assembled to see if they elimi-
nate this problem for systems of the size of a
large Altix.

VM and Memory Allocation Fixes

In addition to the page-cache changes de-
scribed in the last section, we have made a
number of smaller changes related to virtual
memory and paging performance.

One set of such changes increased the paral-
lelism of page-fault handling for anonymous

142 • Linux Symposium 2004 • Volume One

pages in multi-threaded applications. These
applications allocate space using routines that
eventually call mmap() ; the result is that
when the application touches the data area for
the first time, it causes a minor page fault.
These faults are serviced while holding the
address space’spage_table_lock . If the
address space is large and there are a large
number of threads executing in the address
space, this spinlock can be an initialization-
time bottleneck for the application. Examina-
tion of the handle_mm_fault() path for
this case shows that thepage_table_lock
is acquired unconditionally but then released as
soon as we have determined that this is a not-
present fault for an anonymous page. So, we
reordered the code checks inhandle_mm_
fault() to determine in advance whether or
not this was the case we were in, and if so, to
skip acquiring the lock altogether.

The second place thepage_table_lock
was used on this path was in
do_anonymous_page() . Here, the
lock was re-acquired to make sure that the
process of allocating a page frame and filling
in the pte is atomic. On Itanium, stores to
page-table entries are normal stores (that is,
the set_pte macro evaluates to a simple
store). Thus, we can usecmpxchg to update
the pte and make sure that only one thread
allocates the page and fills in the pte. The
compare and exchange effectively lets us lock
on each individual pte. So, for Altix, we
have been able to completely eliminate the
page_table_lock from this particular
page-fault path.

The performance improvement from this
change is shown in Figure 1. Here we show the
time required to initially touch 96 GB of data.
As additional processors are added to the prob-
lem, the time required for both the baseline-
Linux and Linux for Altix versions decrease
until around 16 processors. At that point the

page_table_lock starts to become a sig-
nificant bottleneck. For the largest number of
processors, even the time for the Linux for Al-
tix case is starting to increase again. We be-
lieve that this is due to contention for the ad-
dress space’smmapsemaphore.

0

100

200

300

400

500

600

1 10 100

T
im

e
to

 T
ou

ch
 D

at
a

(S
ec

on
ds

)

Number of Processors

baseline 2.4
Linux 2.4 for Altix

Figure 1:Time to initially touch 96 GB of data.

This is particularly important for HPC applica-
tions since OpenMP™[5], a common parallel
programming model for FORTRAN, is imple-
mented using a single address space, multiple-
thread programming model. The optimization
described here is one of the reasons that Al-
tix has recently set new performance records
for the SPEC® SPEComp® L2001 benchmark
[7].

While the above measurements were taken us-
ing Linux 2.4.21 for Altix, a similar problem
exists in Linux 2.6. For many other architec-
tures, this same kind of change can be made;
i386 is one of the exceptions to this statement.
We are planning on porting our Linux 2.4.21
based changes to Linux 2.6 and submitting the
changes to the Linux community for inclusion
in Linux 2.6. This may require moving part
of do_anonymous_page() to architecture

Linux Symposium 2004 • Volume One • 143

dependent code to allow for the fact that not
all architectures can use the compare and ex-
change approach to eliminate the use of the
page_table_lock in do_anonymous_
page() . However, the performance improve-
ment shown in Figure 1 is significant for Altix
so we would we would like to explore some
way of incorporating this code into the main-
line kernel.

We have encountered similar scalability lim-
itations for other kinds of page-fault behav-
ior. Figure 2 shows the number of page faults
per second of wall clock time measured for
multiple processes running simultaneously and
faulting in a 1 GB/dev/zero mapping. Un-
like the previous case described here, in this
case each process has its own private mapping.
(Here the number of processes is equal to the
number of CPUs.) The dramatic difference be-
tween the baseline 2.4 and 2.6 cases and Linux
for Altix is due to elimination of a lock in the
super block for/dev/zero .

 10000

 100000

 1e+06

 1e+07

 1 10 100

Pa
ge

 F
au

lts
/s

ec
on

d
(w

al
l c

lo
ck

)

CPUS

2.4 baseline
Linux 2.4 for Altix

2.6 baseline

Figure 2: Page Faults per Second of Wall Clock
Time.

The lock in the super block protects two
counts: One count limits the maximum num-
ber of /dev/zero mappings to263; the sec-

ond count limits the number of pages assigned
to a /dev/zero mapping to263. Neither
one of these counts is particularly useful for
a /dev/zero mapping. We eliminated this
lock and obtained a dramatic performance im-
provement for this micro-benchmark (at 512
CPUs the improvement was in excess of 800x).
This optimization is important in decreasing
startup time for large message-passing appli-
cations on the Altix system.

A related change is to distribute the count of
pages in the page cache from a single global
variable to a per node variable. Because ev-
ery processor in the system needs to update
the page-cache count when adding or remov-
ing pages from the page cache, contention for
the cache line containing this global variable
becomes significant. We changed this global
count to a per-node count. When a page is in-
serted into (or removed from) the page cache,
we update the page cache-count on the same
node as the page itself. When we need the
total number of pages in the page cache (for
example if someone reads/proc/meminfo)
we run a loop that sums the per node counts.
However, since the latter operation is much less
frequent than insertions and deletions from the
page cache, this optimization is an overall per-
formance improvement.

Another change we have made in the VM
subsystem is in the out-of-memory (OOM)
killer for Altix. In Linux 2.4.21, the
OOM killer is called from the top of
memory-free and swap-out call chain.oom_
kill() is called from try_to_free_
pages_zone() when calls to shrink_
caches() at memory priority levels 6
through 0 have all failed. Insideoom_kill()
a number of checks are performed, and if any
of these checks succeed, the system is declared
to not be out-of-memory. One of those checks
is “if it has been more than 5 seconds since
oom_kill() was last called, then we are not

144 • Linux Symposium 2004 • Volume One

OOM.” On a large-memory Altix system, it can
easily take much longer than that to complete
the necessary calls toshrink_caches() .
The result is that an Altix system never goes
OOM in spite of the fact that swap space is full
and there is no memory to be allocated.

It seemed to us that part of the problem here
is the amount of time it can take for a swap
full condition (readily detectable intry_
to_swap_out() to bubble all the way up
to the top level intry_to_free_pages_
zone() , especially on a large memory ma-
chine. To solve this problem on Altix, we
decided to drive the OOM killer directly off
of detection of swap-space-full condition pro-
vided that the system also continues to try to
swap out additional pages. A count of the
number of successful swaps and unsuccess-
ful swap attempts is maintained intry_to_
swap_out() . If, in a 10 second interval, the
number of successful swap outs is less than
one percent of the number of attempted swap
outs, and the total number of swap out attempts
exceeds a specified threshold, thentry_to_
swap_out()) will directly wake the OOM
killer thread (also new in our implementation).
This thread will wait another 10 seconds, and
if the out-of-swap condition persists, it will in-
vokeoom_kill() to select a victim and kill
it. The OOM killer thread will repeat this sleep
and kill cycle until it appears that swap space
is no longer full or the number of attempts to
swap out new pages (since the thread went to
sleep) falls below the threshold.

In our experience, this has made invocation of
the OOM killer much more reliable than it was
before, at least on Altix. Once again, this im-
plementation was for Linux 2.4.21; we are in
the process of evaluating this problem and the
associated fix on Linux 2.6 at the present time.

Another fix we have made to the VM sys-
tem in Linux 2.4.21 for Altix is in handling

of HUGETLB pages. The existing implemen-
tation in Linux 2.4.21 allocates HUGETLB
pages to an address space atmmap() time (see
hugetlb_prefault()); it also zeroes the
pages at this time. This processing is done by
the thread that makes themmap() call. In
particular, this means that zeroing of the al-
located HUGETLB pages is done by a sin-
gle processor. On a machine with 4 TB of
memory and with as much memory allocated
to HUGETLB pages as possible, our measure-
ments have shown that it can take as long as
5,000 seconds to allocate and zero all available
HUGETLB pages. Worse yet, the thread that
does this operation holds the address space’s
mmap_semand thepage_table_lock for
the entire 5,000 seconds. Unfortunately, many
commands that query system state (such asps
andw) also wish to acquire one of these locks.
The result is that the system appears to be hung
for the entire 5,000 seconds.

We solved this problem on Altix by changing
the implementation of HUGETLB page allo-
cation fromprefault to allocate on fault. Many
others have created similar patches; our patch
was unique in that it also allowed zeroing of
pages to occur in parallel if the HUGETLB
page faults occurred on different processors.
This was crucial to allow a large HUGETLB
page region to be faulted into an address space
in parallel, using as many processors as possi-
ble. For example, we have observed speedups
of 25x using 16 processors to touch O(100 GB)
of HUGETLB pages. (The speedup is super
linear because if you use just one processor
it has to zero many remote pages, whereas if
you use more processors, at least some of the
pages you are zeroing are local or on nearby
nodes.) Assuming we can achieve the same
kind of speedup on a 4 TB system, we would
reduce the 5,000 second time stated above to
200 seconds.

Recently, we have worked with Kenneth Chen

Linux Symposium 2004 • Volume One • 145

to get a similar set of changes proposed for
Linux 2.6 [3]. Once this set of changes is ac-
cepted into the mainline this particular problem
will be solved for Linux 2.6. These changes are
also necessary for Andi Kleen’s NUMA place-
ment algorithms [4] to apply to HUGETLB
pages, since otherwise pages are placed at
hugetlb_prefault() time.

A final set of changes is related to large kernel
tables. As previously mentioned, on an Altix
system with 512 processors, less than 0.4% of
the available memory is local. Certain tables in
the Linux kernel are sized to be on the order of
one percent of available memory. (An exam-
ple of this is the TCP/IP hash table.) Allocat-
ing a table of this size can use all of the local
memory on a node, resulting in exactly the kind
of storage-allocation imbalance we developed
the page-cache changes to solve. To avoid this
problem, we also implement round-robin allo-
cation of these large tables. Our current tech-
nique usesvm_alloc() to do this. Unfor-
tunately, this is not portable across all archi-
tectures, since certain architectures have lim-
ited amounts of space that can be allocated by
vm_alloc() . Nonetheless, this is a change
that we need to make; we are still exploring
ways of making this change acceptable to the
Linux community.

Once we have solved the initial allocation
problem for these tables, there is still the prob-
lem of getting them appropriately sized for an
Altix system. Clearly if there are 4 TB of main
memory, it does not make much sense to allo-
cate a TCP/IP hash table of 40 GB, particularly
since the TCP/IP traffic into an Altix system
does not increase with memory size the way
one might expect it to scale with a traditional
Linux server. We have seen cases where sys-
tem performance is significantly hampered due
to lookups in these overly large tables. At the
moment, we are still exploring a solution ac-
ceptable to the community to solve this partic-

ular problem.

I/O Changes for Altix

One of the design goals for the Altix system
is that it support standard PCI devices and
their associated Linux drivers as much as pos-
sible. In this section we discuss the perfor-
mance improvements built into the Altix hard-
ware and supported through new driver inter-
faces in Linux that help us to meet this goal
with excellent performance even on very large
Altix systems.

According to the PCI specification, DMA
writes and PIO read responses are strongly or-
dered. On large NUMA systems, however,
DMA writes can take a long time to complete.
Since most PIO reads do not imply completion
of a previous DMA write, relaxing the ordering
rules of DMA writes and PIO read responses
can greatly improve system performance.

Another large system issue relates to initiating
PIO writes from multiple CPUs. PIO writes
from two different CPUs may arrive out of or-
der at a device. The usual way to ensure order-
ing is through a combination of locking and a
PIO read (see Documentation/io_ordering.txt).
On large systems, however, doing this read can
be very expensive, particularly if it must be or-
dered with respect to unrelated DMA writes.

Finally, the NUMA nature of large machines
make some optimizations obvious and desir-
able. Many devices use so-called consis-
tent system memory for retrieving commands
and storing status information; allocating that
memory close to its associated device makes
sense.

Making non–dependent PIO reads fast

In its I/O chipsets, SGI chose to relax the order-
ing between DMAs and PIOs, instead adding

146 • Linux Symposium 2004 • Volume One

a barrier attribute to certain DMA writes (to
consistent PCI allocations on Altix) and to in-
terrupts. This works well with controllers that
use DMA writes to indicate command com-
pletions (for example a SCSI controller with a
response queue, where the response queue is
allocated usingpci_alloc_consistent ,
so that writes to the response queue have the
barrier attribute). When we ported Linux to
Altix, this behavior became a problem, be-
cause many Linux PCI drivers use PIO read re-
sponses to imply a status of a DMA write. For
example, on an IDE controller, a bit status reg-
ister read is performed to find out if a command
is complete (command complete status implies
that DMA writes of that command’s data are
completed). As a result, SGI had to implement
a rather heavyweight mechanism to guarantee
ordering of DMA writes and PIO reads. This
mechanism involves doing an explicit flush of
DMA write data after each PIO read.

For the cases in which strong ordering of PIO
read responses and DMA writes are not nec-
essary, a new API was needed so that drivers
could communicate that a given PIO read re-
sponse could used relaxed ordering with re-
spect to prior DMA writes. Theread_
relaxed API [8] was added early in the 2.6
series for this purpose, and mirrors the normal
read routines, which have variants for various
sized reads.

The results below show how expensive a nor-
mal PIO read transaction can be, especially on
a system doing a lot of I/O (and thus DMA).

Type of PIO Time (ns)
normal PIO read 3875
relaxed PIO read 1299

Table 1: Normal vs. relaxed PIO reads on an
idle system

It remains to be seen whether this API will also
apply to the newly added RO bit in the PCI-

Type of PIO Time (ns)
normal PIO read 4889
relaxed PIO read 1646

Table 2: Normal vs. relaxed PIO reads on a
busy system

X specification—the author is hopeful! Either
way, it does give hardware vendors who want
to support Linux some additional flexibility in
their design.

Ordering posted writes efficiently

On many platforms, PIO writes from different
CPUs will not necessarily arrive in order (i.e.,
they may be intermixed) even when locking is
used. Since the platform has no way of know-
ing whether a given PIO read depends on pre-
ceding writes, it has to guarantee that all writes
have completed before allowing a read trans-
action to complete. So performing a read prior
to releasing a lock protecting a region doing
writes is sufficient to guarantee that the writes
arrive in the correct order.

However, performing PIO reads can be an ex-
pensive operation, especially if the device is on
a distant node. SGI chipset designers foresaw
this problem, however, and provided a way to
ensure ordering by simply reading a register
from the chipset on the local node. When the
register indicates that all PIO writes are com-
plete, it means they have arrived at the chipset
attached to the device, and so are guaranteed
to arrive at the device in the intended order.
The SGI sn2 specific portion of the Linux ia64
port (sn2 is the architecture name for Altix in
the Linux kernel source tree) provides a small
function,sn_mmiob() (for memory–mapped
I/O barrier, analogous to themb() macro), to
do just that. It can be used in place of reads
that are intended to deal with posted writes and
provides some benefit:

Linux Symposium 2004 • Volume One • 147

Type of flush Time (ns)
regular PIO read 5940
relaxed PIO read 2619
sn_mmiob() 1610
(local chipset read alone) 399

Table 3: Normal vs. fast flushing of 5 PIO
writes

Adding this API to Linux (i.e., making it non-
sn2-specific) was discussed some time ago [9],
and may need to be raised again, since it does
appear to be useful on Altix, and is probably
similarly useful on other platforms.

Local allocation of consistent DMA mappings

Consistent DMA mappings are used frequently
by drivers to store command and status buffers.
They are frequently read and written by the
device that owns them, so making sure they
can be accessed quickly is important. The ta-
ble below shows the difference in the num-
ber of operations per second that can be
achieved using local versus remote allocation
of consistent DMA buffers. Local alloca-
tions were guaranteed by changing thepci_
alloc_consistent function so that it calls
alloc_pages_node using the node closest
to the PCI device in question.

Type I/Os per second
Local consistent buffer 46231
Remote consistent buffer 41295

Table 4: Local vs. remote DMA buffer alloca-
tion

Although this change is platform specific, it
can be made generic if apci_to_node or
pci_to_nodemask routine is added to the
Linux topology API.

Concluding Remarks

Today, our Linux 2.4.21 kernel for Altix pro-
vides a productive platform for our high-
performance-computing users who desire to
exploit the features of the SGI Altix 3000 hard-
ware. To achieve this goal, we have made a
number of changes to our Linux for Altix ker-
nel. We are now in the process of either moving
those changes forward to Linux 2.6 for Altix,
or of evaluating the Linux 2.6 kernel on Altix
in order to determine if these changes are in-
deed needed at all. Our goal is to develop a
version of the Linux 2.6 kernel for Altix that
not only supports our HPC customers equally
well as our existing Linux 2.4.21 kernel, but
also consists as much as possible of commu-
nity supported code.

References

[1] Ray Bryant and John Hawkes, Linux
Scalability for Large NUMA Systems,
Proceedings of the 2003 Ottawa Linux
Symposium, Ottawa, Ontario, Canada,
(July 2003).

[2] Daniel Lenoski, James Laudon, Truman
Joe, David Nakahira, Luis Stevens,
Anoop Gupta, and John Hennesy, The
DASH prototype: Logic overhead and
performance,IEEE Transactions on
Parallel and Distributed Systems,
4(1):41-61, January 1993.

[3] Kenneth Chen, “hugetlb demand paging
patch part [0/3],”
linux-kernel@vger.kernel.org,
2004-04-13 23:17:04,
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
108189860419356&w=2

[4] Andi Kleen, “Patch: NUMA API for
Linux,” linux-kernel@vger.kernel.org,

148 • Linux Symposium 2004 • Volume One

Tue, 6 Apr 2004 15:33:22 +0200,
http:
//lwn.net/Articles/79100/

[5] http://www.openmp.org

[6] Nick Piggin, “MM patches,”
http://www.kerneltrap.org/
~npiggin/nickvm-267r1m1.gz

[7] http://www.spec.org/omp/
results/ompl2001.html

[8] http://linux.bkbits.net:
8080/linux-2.5/cset%
4040213ca0d3eIznHTPAR_
kLCsMZI9VQ?nav=index.html|
ChangeSet@-1d

[9] http://www.cs.helsinki.fi/
linux/linux-kernel/2002-01/
1540.html

© 2004 Silicon Graphics, Inc. Permission to re-
distribute in accordance with Ottawa Linux Sym-
posium paper submission guidelines is granted; all
other rights reserved. Silicon Graphics, SGI and
Altix are registered trademarks and OpenMP is a
trademark of Silicon Graphics, Inc., in the U.S.
and/or other countries worldwide. Linux is a regis-
tered trademark of Linus Torvalds in several coun-
tries. Intel and Itanium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries. Red Hat
and all Red Hat-based trademarks are trademarks
or registered trademarks of Red Hat, Inc. in the
United States and other countries. All other trade-
marks mentioned herein are the property of their
respective owners.

Get More Device Drivers out of the Kernel!

Peter Chubb∗

National ICT Australia
and

The University of New South Wales
peterc@gelato.unsw.edu.au

Abstract

Now that Linux has fast system calls, good
(and getting better) threading, and cheap con-
text switches, it’s possible to write device
drivers that live in user space for whole new
classes of devices. Of course, some device
drivers (Xfree, in particular) have always run
in user space, with a little bit of kernel support.
With a little bit more kernel support (a way to
set up and tear down DMA safely, and a gen-
eralised way to be informed of and control in-
terrupts) almost any PCI bus-mastering device
could have a user-mode device driver.

I shall talk about the benefits and drawbacks
of device drivers being in user space or ker-
nel space, and show that performance concerns
are not really an issue—in fact, on some plat-
forms, our user-mode IDE driver out-performs
the in-kernel one. I shall also present profiling
and benchmark results that show where time is
spent in in-kernel and user-space drivers, and
describe the infrastructure I’ve added to the
Linux kernel to allow portable, efficient user-
space drivers to be written.

∗This work was funded by HP, National ICT Aus-
tralia, the ARC, and the University of NSW through the
Gelato programme (http://www.gelato.unsw.
edu.au)

1 Introduction

Normal device drivers in Linux run in the ker-
nel’s address space with kernel privilege. This
is not the only place they can run—see Fig-
ure 1.

Kernel

Own

Client

A

B C

D

UserKernel

Privilege

A
dd

re
ss

 S
pa

ce

Figure 1: Where a Device Driver can Live

Point A is the normal Linux device driver,
linked with the kernel, running in the kernel
address space with kernel privilege.

Device drivers can also be linked directly with
the applications that use them (Point B)—
the so-called ‘in-process’ device drivers pro-
posed by [Keedy, 1979]—or run in a separate
process, and be talked to by an IPC mech-
anism (for example, an X server, point D).
They can also run with kernel privilege, but
with a separate kernel address space (Point

150 • Linux Symposium 2004 • Volume One

C) (as in the Nooks system described by
[Swift et al., 2002]).

2 Motivation

Traditionally, device drivers have been devel-
oped as part of the kernel source. As such, they
haveto be written in the C language, and they
have to conform to the (rapidly changing) in-
terfaces and conventions used by kernel code.
Even though drivers can be written as mod-
ules (obviating the need to reboot to try out
a new version of the driver1), in-kernel driver
code has access to all of kernel memory, and
runs with privileges that give it access to all in-
structions (not just unprivileged ones) and to
all I/O space. As such, bugs in drivers can eas-
ily cause kernel lockups or panics. And various
studies (e.g., [Chou et al., 2001]) estimate that
more than 85% of the bugs in an operating sys-
tem are driver bugs.

Device drivers that run as user code, how-
ever, can use any language, can be developed
using any IDE, and can use whatever inter-
nal threading, memory management, etc., tech-
niques are most appropriate. When the infras-
tructure for supporting user-mode drivers is ad-
equate, the processes implementing the driver
can be killed and restarted almost with im-
punity as far as the rest of the operating system
goes.

Drivers that run in the kernel have to be up-
dated regularly to match in-kernel interface
changes. Third party drivers are therefore usu-
ally shipped as source code (or with a compi-
lable stub encapsulating the interface) that has
to be compiled against the kernel the driver is
to be installed into.

This means that everyone who wants to run a

1except that many drivers currently cannot be un-
loaded

third-party driver also has to have a toolchain
and kernel source on his or her system, or ob-
tain a binary for their own kernel from a trusted
third party.

Drivers for uncommon devices (or devices that
the mainline kernel developers do not use reg-
ularly) tend to lag behind. For example, in the
2.6.6 kernel, there are 81 drivers known to be
broken because they have not been updated to
match the current APIs, and a number more
that are still using APIs that have been depre-
cated.

User/kernel interfaces tend to change much
more slowly than in-kernel ones; thus a
user-mode driver has much more chance of
not needing to be changed when the kernel
changes. Moreover, user mode drivers can be
distributed under licences other than the GPL,
which may make them more attractive to some
people2.

User-mode drivers can be either closely or
loosely coupled with the applications that use
them. Two obvious examples are the X server
(XFree86) which uses a socket to communicate
with its clients and so has isolation from ker-
nel and client address spaces and can be very
complex; and the Myrinet drivers, which are
usually linked into their clients to gain perfor-
mance by eliminating context switch overhead
on packet reception.

The Nooks work [Swift et al., 2002] showed
that by isolating drivers from the kernel ad-
dress space, the most common programming
errors could be made recoverable. In Nooks,
drivers are insulated from the rest of the kernel
by running each in a separate address space,
and replacing the driver↔ kernel interface
with a new one that uses cross-domain pro-
cedure calls to replace any procedure calls in
the ABI, and that creates shadow copies of any

2for example, the ongoing problems with the Nvidia
graphics card driver could possibly be avoided.

Linux Symposium 2004 • Volume One • 151

shared variables in the protected address space
of the driver.

This approach provides isolation, but also has
problems: as the driver model changes, there
is quite a lot of wrapper code that has to be
changed to accommodate the changed APIs.
Also, the value of any shared variable is frozen
for the duration of a driver ABI call. The
Nooks work is uniprocessor only; locking is-
sues therefore have not yet been addressed.

Windriver [Jungo, 2003] allows development
of user mode device drivers. It loads a pro-
prietary device module/dev/windrv6 ; user
code can interact with this device to setup and
teardown DMA, catch interrupts, etc.

Even from user space, of course, it is possi-
ble to make your machine unusable. Device
drivers have to be trusted to a certain extent to
do what they are advertised to do; this means
that they can program their devices, and possi-
bly corrupt or spy on the data that they transfer
between their devices and their clients. Mov-
ing a driver to user space does not change this.
It does however make it less likely that a fault
in a driver will affect anything other than its
clients

3 Existing Support

Linux has good support for user-mode drivers
that do not need DMA or interrupt handling—
see, e.g., [Nakatani, 2002].

The ioperm() andiopl() system calls al-
low access to the first 65536 I/O ports; and,
with a patch from Albert Calahan3 one can
map the appropriate parts of/proc/bus/pci/...to
gain access to memory-mapped registers. Or
on some architectures it is safe tommap()
/dev/mem.

3http://lkml.org/lkml/2003/7/13/258

It is usually best to use MMIO if it is avail-
able, because on many 64-bit platforms there
are more than 65536 ports—the PCI specifi-
cation says that there are232 ports available—
(and on many architectures the ports are emu-
lated by mapping memory anyway).

For particular devices—USB input devices,
SCSI devices, devices that hang off the paral-
lel port, and video drivers such as XFree86—
there is explicit kernel support. By opening a
file in /dev, a user-mode driver can talk through
the USB hub, SCSI controller, AGP controller,
etc., to the device. In addition, theinput han-
dler allows input events to be queued back into
the kernel, to allow normal event handling to
proceed.

libpci allows access to the PCI configuration
space, so that a driver can determine what in-
terrupt, IO ports and memory locations are be-
ing used (and to determine whether the device
is present or not).

Other recent changes—an improved scheduler,
better and faster thread creation and synchro-
nisation, a fully preemptive kernel, and faster
system calls—mean that it is possible to write
a driver that operates in user space that is al-
most as fast as an in-kernel driver.

4 Implementing the Missing Bits

The parts that are missing are:

1. the ability to claim a device from user
space so that other drivers do not try to
handle it;

2. The ability to deliver an interrupt from a
device to user space,

3. The ability to set up and tear-down DMA
between a device and some process’s
memory, and

152 • Linux Symposium 2004 • Volume One

4. the ability to loop a device driver’s con-
trol and data interfaces into the appropri-
ate part of the kernel (so that, for exam-
ple, an IDE driver can appear as a standard
block device), preferably without having
to copy any payload data.

The work at UNSW covers only PCI devices,
as that is the only bus available on all of the
architectures we have access to (IA64, X86,
MIPS, PPC, alpha and arm).

4.1 PCI interface

Each device should have only a single driver.
Therefore one needs a way to associate a driver
with a device, and to remove that association
automatically when the driver exits. This has
to be implemented in the kernel, as it is only
the kernel that can be relied upon to clean up
after a failed process. The simplest way to
keep the association and to clean it up in Linux
is to implement a new filesystem, using the
PCI namespace. Open files are automatically
closed when a process exits, so cleanup also
happens automatically.

A new system call,usr_pci_open(int
bus, int slot, int fn) returns a file
descriptor. Internally, it callspci_enable_
device() andpci_set_master() to set
up the PCI device after doing the standard
filesystem boilerplate to set up a vnode and a
struct file .

Attempts to open an already-opened PCI de-
vice will fail with -EBUSY.

When the file descriptor is finally closed, the
PCI device is released, and any DMA map-
pings removed. All files are closed when a pro-
cess dies, so if there is a bug in the driver that
causes it to crash, the system recovers ready for
the driver to be restarted.

4.2 DMA handling

On low-end systems, it’s common for the PCI
bus to be connected directly to the memory
bus, so setting up a DMA transfer means
merely pinning the appropriate bit of memory
(so that the VM system can neither swap it out
nor relocate it) and then converting virtual ad-
dresses to physical addresses.

There are, in general, two kinds of DMA, and
this has to be reflected in the kernel interface:

1. Bi-directional DMA, for holding scatter-
gather lists, etc., for communication with
the device. Both the CPU and the device
read and write to a shared memory area.
Typically such memory is uncached, and
on some architectures it has to be allo-
cated from particular physical areas. This
kind of mapping is calledPCI-consistent;
there is an internal kernel ABI function to
allocate and deallocate appropriate mem-
ory.

2. Streaming DMA, where, once the device
has either read or written the area, it has
no further immediate use for it.

I implemented a new system call4, usr_pci_
map() , that does one of three things:

1. Allocates an area of memory suitable for a
PCI-consistent mapping, and maps it into
the current process’s address space; or

2. Converts a region of the current process’s
virtual address space into a scatterlist in
terms of virtual addresses (one entry per
page), pins the memory, and converts the

4Although multiplexing system calls are in general
deprecated in Linux, they are extremely useful while de-
veloping, because it is not necessary to change every
architecture-dependententry.Swhen adding new func-
tionality

Linux Symposium 2004 • Volume One • 153

scatterlist into a list of addresses suitable
for DMA (by calling pci_map_sg() ,
which sets up the IOMMU if appropriate),
or

3. Undoes the mapping in point 2.

The file descriptor returned fromusr_pci_
open() is an argument tousr_pci_
map() . Mappings are tracked as part of the
private data for that open file descriptor, so that
they can be undone if the device is closed (or
the driver dies).

Underlyingusr_pci_map() are the kernel
routinespci_map_sg() andpci_unmap_
sg() , and the kernel routinepci_alloc_
consistent() .

Different PCI cards can address different
amounts of DMA address space. In the kernel
there is an interface to request that the dma ad-
dresses supplied are within the range address-
able by the card. The current implementation
assumes 32-bit addressing, but it would be pos-
sible to provide an interface to allow the real
capabilities of the device to be communicated
to the kernel.

4.2.1 The IOMMU

Many modern architectures have an IO mem-
ory management unit (see Figure 2), to convert
from physical to I/O bus addresses—in much
the same way that the processor’s MMU con-
verts virtual to physical addresses—allowing
even thirty-two bit cards to do single-cycle
DMA to anywhere in the sixty-four bit mem-
ory address space.

On such systems, after the memory has been
pinned, the IOMMU has to be set up to trans-
late from bus to physical addresses; and then
after the DMA is complete, the translation can
be removed from the IOMMU.

Device 1

Device 2

Device 3

IOMMU
Main

Memory

PCI bus

Figure 2: The IO MMU

The processor’s MMU also protects one virtual
address space from another. Currently ship-
ping IOMMU hardware does not do this: all
mappings are visible to all PCI devices, and
moreover for some physical addresses on some
architectures the IOMMU is bypassed.

For fully secure user-space drivers, one would
want this capability to be turned off, and also
to be able to associate a range of PCI bus ad-
dresses with a particular card, and disallow ac-
cess by that card to other addresses. Only thus
could one ensure that a card could perform
DMA only into memory areas explicitly allo-
cated to it.

4.3 Interrupt Handling

There are essentially two ways that interrupts
can be passed to user level.

They can be mapped onto signals, and sent
asynchronously, or a synchronous ‘wait-for-
signal’ mechanism can be used.

A signal is a good intuitive match for what an
interruptis, but has other problems:

1. One is fairly restricted in what one can do
in a signal handler, so a driver will usually

154 • Linux Symposium 2004 • Volume One

have to take extra context switches to re-
spond to an interrupt (into and out of the
signal handler, and then perhaps the inter-
rupt handler thread wakes up)

2. Signals can be slow to deliver on busy sys-
tems, as they require the process table to
be locked. It would be possible to short
circuit this to some extent.

3. One needs an extra mechanism for regis-
tering interest in an interrupt, and for tear-
ing down the registration when the driver
dies.

For these reasons I decided to map interrupts
onto file descriptors./proc already has a di-
rectory for each interrupt (containing a file that
can be written to to adjust interrupt routing to
processors); I added a new file to each such di-
rectory. Suitably privileged processes can open
and read these files. The files have open-once
semantics; attempts to open them while they
are open return−1 with EBUSY.

When an interrupt occurs, the in-kernel inter-
rupt handler masks just that interrupt in the in-
terrupt controller, and then does anup() op-
eration on a semaphore (well, actually, the im-
plementation now uses a wait queue, but the
effect is the same).

When a process reads from the file, then kernel
enables the interrupt, then callsdown() on a
semaphore, which will block until an interrupt
arrives.

The actual data transferred is immaterial, and
in fact none ever is transferred; theread()
operation is used merely as a synchronisation
mechanism.

poll() is also implemented, so a user pro-
cess is not forced into the ‘wait for interrupt’
model that we use.

Obviously, one cannot share interrupts be-

tween devices if there is a user process in-
volved. The in-kernel driver merely passes
the interrupt onto the user-mode process; as it
knows nothing about the underlying hardware,
it cannot tell if the interrupt isreally for this
driver or not. As such it always reports the in-
terrupt as ‘handled.’

This scheme works only for level-triggered in-
terrupts. Fortunately, all PCI interrupts are
level triggered.

If one really wants a signal when an interrupt
happens, one can arrange for aSIGIO using
fcntl() .

It may be possible, by more extensive rear-
rangement of the interrupt handling code, to
delay the end-of-interrupt to the interrupt con-
troller until the user process is ready to get an
interrupt. As masking and unmasking inter-
rupts is slow if it has to go off-chip, delay-
ing the EOI should be significantly faster than
the current code. However, interrupt delivery
to userspace turns out not to be a bottleneck,
so there’s not a lot of point in this optimisa-
tion (profiles show less than 0.5% of the time
is spent in the kernel interrupt handler and de-
livery even for heavy interrupt load—around
1000 cycles per interrupt).

5 Driver Structure

The user-mode drivers developed at UNSW are
structured as a preamble, an interrupt thread,
and a control thread (see Figure 3).

The preamble:

1. Useslibpci.a to find the device or devices
it is meant to drive,

2. Calls usr_pci_open() to claim the
device, and

3. Spawns the interrupt thread, then

Linux Symposium 2004 • Volume One • 155

Generic
IRQ Handler

usrdrv
Driver

Architecture−dependent
DMA support

Driver

pci_map_sg()
pci_unmap_sg()

pci_map()
pci_unmap()

Client

IPC or
function calls

pci_read_config()

read()

User

Kernel

libpci

Figure 3: Architecture of a User-Mode Device
Driver

4. Goes into a loop collecting client requests.

The interrupt thread:

1. Opens/proc/irq/irq /irq

2. Loops callingread() on the resulting
file descriptor and then calling the driver
proper to handle the interrupt.

3. The driver handles the interrupt, calls out
to the control thread(s) to say that work is
completed or that there has been an error,
queues any more work to the device, and
then repeats from step 2.

For the lowest latency, the interrupt thread can
be run as a real time thread. For our bench-
marks, however, this was not done.

The control thread queues work to the driver
then sleeps on a semaphore. When the driver,
running in the interrupt thread, determines that
a request is complete, it signals the semaphore

so that the control thread can continue. (The
semaphore is implemented as a pthreads mu-
tex).

The driver relies on system calls and threading,
so the fast system call support now available
in Linux, and the NPTL are very important to
get good performance. Each physical I/O in-
volves at least three system calls, plus what-
ever is necessary for client communication: a
read() on the interrupt FD, calls to set up
and tear down DMA, and maybe afutex()
operation to wake the client.

The system call overhead could be reduced by
combining DMA setup and teardown into a
single system call.

6 Looping the Drivers

An operating system has two functions with re-
gard to devices: firstly to drive them, and sec-
ondly to abstract them, so that all devices of the
same class have the same interface. While a
standalone user-level driver is interesting in its
own right (and could be used, for example, to
test hardware, or could be linked into an appli-
cation that doesn’t like sharing the device with
anyone), it is much more useful if the driver
can be used like any other device.

For the network interface, that’s easy: use
the tun/tap interface and copy frames between
the driver and/dev/net/tun. Having to copy
slows things down; others on the team here are
planning to develop a zero-copy equivalent of
tun/tap.

For the IDE device, there’s no standard Linux
way to have a user-level block device, so I im-
plemented one. It is a filesystem that has pairs
of directories: a master and a slave. When
the filesystem is mounted, creating a file in the
master directory creates a set of block device
special files, one for each potential partition, in

156 • Linux Symposium 2004 • Volume One

the slave directory. The file in the master di-
rectory can then be used to communicate via
a very simple protocol between a user level
block device and the kernel’s block layer. The
block device special files in the slave directory
can then be opened, closed, read, written or
mounted, just as any other block device.

The main reason for using a mounted filesys-
tem was to allow easy use of dynamic major
numbers.

I didn’t bother implementing ioctl; it was not
necessary for our performance tests, and when
the driver runs at user level, there are cleaner
ways to communicate out-of-band data with
the driver, anyway.

7 Results

Device drivers were coded up by
[Leslie and Heiser, 2003] for a CMD680
IDE disc controller, and by another PhD
student (Daniel Potts) for a DP83820 Gigabit
ethernet controller. Daniel also designed and
implemented the tuntap interface.

7.1 IDE driver

The disc driver was linked into a program that
read 64 Megabytes of data from a Maxtor 80G
disc into a buffer, using varying read sizes.
Measurements were also made using Linux’s
in-kernel driver, and a program that read 64M
of data from the same on-disc location using
O_DIRECTand the same read sizes.

We also measured write performance, but the
results are sufficiently similar that they are not
reproduced here.

At the same time as the tests, a low-
priority process attempted to increment a 64-
bit counter as fast as possible. The number of
increments was calibrated to processor time on

an otherwise idle system; reading the counter
before and after a test thus gives an indication
of how much processor time is available to pro-
cesses other than the test process.

The initial results were disappointing; the
user-mode drivers spent far too much time
in the kernel. This was tracked down to
kmalloc() ; so theusr_pci_map() func-
tion was changed to maintain a small cache
of free mapping structures instead of calling
kmalloc() and kfree() each time (we
could have used the slab allocator, but it’s eas-
ier to ensure that the same cache-hot descriptor
is reused by coding a small cache ourselves).
This resulted in the performance graphs in Fig-
ure 4.

The two drivers compared are the new
CMD680 driver running in user space, and
Linux’s in-kernel SIS680 driver. As can be
seen, there is very little to choose between
them.

The graphs show average of ten runs; the stan-
dard deviations were calculated, but are negli-
gible.

Each transfer request takes five system calls to
do, in the current design. The client queues
work to the driver, which then sets up DMA for
the transfer (system call one), starts the trans-
fer, then returns to the client, which then sleeps
on a semaphore (system call two). The in-
terrupt thread has been sleeping inread() ,
when the controller finishes its DMA, it cause
an interrupt, which wakes the interrupt thread
(half of system call three). The interrupt thread
then tears down the DMA (system call four),
and starts any queued and waiting activity, then
signals the semaphore (system call five) and
goes back to read the interrupt FD again (the
other half of system call three).

When the transfer is above 128k, the IDE con-
troller can no longer do a single DMA opera-

Linux Symposium 2004 • Volume One • 157

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536
 0

 10

 20

 30

 40

 50
C

P
U

 (%
)

Th
ro

ug
hp

ut
 (M

iB
/s

)

Transfer size (k)

kernel read
user read

Figure 4: Throughput and CPU usage for the user-mode IDE driver on Itanium-2, reading from a
disk

tion, so has to generate multiple transfers The
Linux kernel splits DMA requests above 64k,
thus increasing the overhead.

The time spent in this driver is divided as
shown in Figure 5.

Signal
Client

UserMode
Handler

Work

Queue
NewScheduler

Latency

IRQ

2.2 1

DMA...

Scheduler LatencyHardware

Kernel Stub 0.4

Figure 5: Timeline (inµseconds)

7.2 Gigabit Ethernet

The Gigabit driver results are more interest-
ing. We tested these using [ipbench, 2004]
with four clients, all with pause control turned
off. We ran three tests:

1. Packet receive performance, where pack-
ets were dropped and counted at the layer
immediately above the driver

2. Packet transmit performance, where pack-
ets were generated and fed to the driver,
and

3. Ethernet-layer packet echoing, where the
protocol layer swapped source and desti-
nation MAC-addresses, and fed received
packets back into the driver.

We did not want to start comparing IP stacks,
so none of these tests actually use higher level
protocols.

We measured three different configurations: a
standalone application linked with the driver,
the driver looped back into/dev/net/tapand
the standard in-kernel driver, all with interrupt

158 • Linux Symposium 2004 • Volume One

holdoff set to 0, 1, or 2. (By default, the normal
kernel driver sets the interrupt holdoff to 300
µseconds, which led to too many packets be-
ing dropped because of FIFO overflow) Not all
tests were run in all configurations—for exam-
ple the linux in-kernel packet generator is suf-
ficiently different from ours that no fair com-
parison could be made.

For the tests that had the driver residing in or
feeding into the kernel, we implemented a new
protocol module to count and either echo or
drop packets, depending on the benchmark.

In all cases, we used the amount of work
achieved by a low priority process to measure
time available for other work while the test was
going on.

The throughput graphs in all cases are the
same. The maximum possible speed on the
wire is given for raw ethernet by109 × p/(p +
38) bits per second (the parameter38 is the
ethernet header size (14 octets), plus a4 octet
frame check sequence, plus a7 octet pream-
ble, plus a 1 octet start frame delimiter plus
the minimum12 octet interframe gap;p is the
packet size in octets). For large packets the per-
formance in all cases was the same as the the-
oretical maximum. For small packet sizes, the
throughput is limited by the PCI bus; you’ll no-
tice that the slope of the throughput curve when
echoing packets is around half the slope when
discarding packets, because the driver has to do
twice as many DMA operations per packet.

The user-mode driver (‘Linux user’ on the
graph) outperforms the in-kernel driver
(‘Linux orig’)—not in terms of throughput,
where all the drivers perform identically, but
in usingmuchless processing time.

This result was so surprising that we repeated
the tests using an EEpro1000, purportedly a
card with a much better driver, but saw the
same effect—in fact the achieved echo perfor-

mance is worse than for the in-kernel ns83820
driver for some packet sizes.

The reason appears to be that our driver has
a fixed number of receive buffers, which are
reused when the client is finished with them—
they are allocated only once. This is to pro-
vide congestion control at the lowest possible
level—the card drops packets when the upper
layers cannot keep up.

The Linux kernel drivers have an essentially
unlimited supply of receive buffers. Overhead
involved in allocating and setting up DMA for
these buffers is excessive, and if the upper lay-
ers cannot keep up, congestion is detected and
the packets dropped in the protocol layer—
after significant work has been done in the
driver.

One sees the same problem with the user mode
driver feeding the tuntap interface, as there is
no feedback to throttle the driver. Of course,
here there is an extra copy for each packet,
which also reduces performance.

7.3 Reliability and Failure Modes

In general the user-mode drivers are very re-
liable. Bugs in the drivers that would cause
the kernel to crash (for example, a null pointer
reference inside an interrupt handler) cause the
driver to crash, but the kernel continues. The
driver can then be fixed and restarted.

8 Future Work

The main foci of our work now lie in:

1. Reducing the need for context switches
and system calls by merging system calls,
and by trying new driver structures.

2. A zero-copy implementation of tun/tap.

Linux Symposium 2004 • Volume One • 159

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut
 (b

/s
)

Packet size (octets)

Theoretical Max
Kernel EEPRO1000 driver

User mode driver, 100usec holdoff
Kernel NS83820 driver, 100usec holdoff

Figure 6: Receive Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut
 (b

/s
)

Packet size (octets)

Theoretical Max
User mode driver, 200 usec interrupt holdoff
User mode driver, 100 usec interrupt holdoff

User mode driver, 0 usec interrupt holdoff

Figure 7: Transmit Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

160 • Linux Symposium 2004 • Volume One

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut

Packet size

Theoretical Max
User mode driver

In-kernel EEPRO1000 driver
Normal kernel driver

user-mode driver -> /dev/tun/tap0

Figure 8: MAC-layer Echo Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

3. Improving robustness and reliability of
the user-mode drivers, by experimenting
with the IOMMU on the ZX1 chipset of
our Itanium-2 machines.

4. Measuring the reliability enhancements,
by using artificial fault injection to see
what problems that cause the kernel to
crash are recoverable in user space.

5. User-mode filesystems.

In addition there are some housekeeping tasks
to do before this infrastructure is ready for in-
clusion in a 2.7 kernel:

1. Replace the ad-hoc memory cache with a
proper slab allocator.

2. Clean up the system call interface

9 Where d’ya Get It?

Patches against the 2.6 kernel are sent to the
Linux kernel mailing list, and are onhttp://
www.gelato.unsw.edu.au/patches

Sample drivers will be made available from the
same website.

10 Acknowledgements

Other people on the team here did much work
on the actual implementation of the user level
drivers and on the benchmarking infrastruc-
ture. Prominent among them were Ben Leslie
(IDE driver, port of our dp83820 into the ker-
nel), Daniel Potts (DP83820 driver, tuntap in-
terface), and Luke McPherson and Ian Wien-
and (IPbench).

Linux Symposium 2004 • Volume One • 161

References

[Chou et al., 2001] Chou, A., Yang, J., Chelf,
B., Hallem, S., and Engler, D. R. (2001).
An empirical study of operating systems
errors. InSymposium on Operating
Systems Principles, pages 73–88.
http://citeseer.nj.nec.com/
article/chou01empirical.html .

[ipbench, 2004] ipbench (2004). ipbench — a
distributed framework for network
benchmarking.

http://ipbench.sf.net/ .

[Jungo, 2003] Jungo (2003). Windriver.

http://www.jungo.com/
windriver.html .

[Keedy, 1979] Keedy, J. L. (1979). A
comparison of two process structuring
models. MONADS Report 4, Dept.
Computer Science, Monash University.

[Leslie and Heiser, 2003] Leslie, B. and
Heiser, G. (2003). Towards untrusted
device drivers. Technical Report
UNSW-CSE-TR-0303, Operating Systems
and Distributed Systems Group, School of
Computer Science and Engineering, The
University of NSW. CSE techreports
website,
ftp://ftp.cse.unsw.edu.au/
pub/doc/papers/UNSW/0303.pdf .

[Nakatani, 2002] Nakatani, B. (2002).
ELJOnline: User mode drivers.

http://www.linuxdevices.com/
articles/AT5731658926.html .

[Swift et al., 2002] Swift, M., Martin, S.,
Leyand, H. M., and Eggers, S. J. (2002).
Nooks: an architecture for reliable device
drivers. InProceedings of the Tenth ACM
SIGOPS European Workshop,
Saint-Emilion, France.

162 • Linux Symposium 2004 • Volume One

Big Servers—2.6 compared to 2.4

Wim A. Coekaerts
Oracle Corporation

wim.coekaerts@oracle.com

Abstract

Linux 2.4 has been around in production en-
vironments at companies for a few years now,
we have been able to gather some good data
on how well (or not) things scale up. Number
of CPU’s, amount of memory, number of pro-
cesses, IO throughput, etc.

Most of the deployments in production today,
are on relatively small systems, 4- to 8-ways,
8–16GB of memory, in a few cases 32GB.
The architecture of choice has also been IA32.
64-bit systems are picking up in popularity
rapidly, however.

Now with 2.6, a lot of the barriers are supposed
to be gone. So, have they really? How much
memory can be used now, how is cpu scaling
these days, how good is IO throughput with
multiple controllers in 2.6.

A lot of people have the assumption that 2.6
resolves all of this. We will go into detail on
what we have found out, what we have tested
and some of the conclusions on how good the
move to 2.6 will really be.

1 Introduction

The comparison between the 2.4 and 2.6 ker-
nel trees are not solely based on performance.
A large part of the testsuites are performance
benchmarks however, as you will see, they
have been used to also measure stability. There

are a number of features added which improve
stability of the kernel under heavy workloads.
The goal of comparing the two kernel releases
was more to show how well the 2.6 kernel will
be able to hold up in a real world production
environment. Many companies which have de-
ployed Linux over the last two years are look-
ing forward to rolling out 2.6 and it is impor-
tant to show the benefits of doing such a move.
It will take a few releases before the required
stability is there however it’s clear so far that
the 2.6 kernel has been remarkably solid, so
early on.

Most of the 2.4 based tests have been run on
Red Hat Enterprise Linux 3, based on Linux
2.4.21. This is the enterprise release of Red
Hat’s OS distribution; it contains a large num-
ber of patches on top of the Linux 2.4 kernel
tree. Some of the tests have been run on the
kernel.org mainstream 2.4 kernel, to show
the benefit of having extra functionality. How-
ever it is difficult to even just boot up the main-
stream kernel on the test hardware due to lack
of support for drivers, or lack of stability to
complete the testsuite. The interesting thing to
keep in mind is that with the current Linux 2.6
main stream kernel, most of the testsuites ran
through completition. A number of test runs on
Linux 2.6 have been on Novell/SuSE SLES9
beta release.

164 • Linux Symposium 2004 • Volume One

2 Test Suites

The test suites used to compare the various ker-
nels are based on an IO simulator for Oracle,
called OraSim and a TPC-C like workload gen-
erator called OAST.

Oracle Simulator (OraSim) is a stand-alone
tool designed to emulate the platform-critical
activities of the Oracle database kernel. Oracle
designed Oracle Simulator to test and charac-
terize the input and output (I/O) software stack,
the storage system, memory management, and
cluster management of Oracle single instances
and clusters. Oracle Simulator supports both
pass-fail testing for validation, and analytical
testing for debugging and tuning. It runs mul-
tiple processes, with each process representing
the parameters of a particular type of system
load similar to the Oracle database kernel.

OraSim is a relatively straightforward IO
stresstest utility, similar to IOzone or tiobench,
however it is built to be very flexible and con-
figurable.

It has its own script language which allows one
to build very complex IO patterns. The tool is
not released under any open source license to-
day because it has some code linked in which is
part of the RDBMS itself. The jobfiles used for
the testing are available onlinehttp://oss.

oracle.com/external/ols/jobfiles/ .

The advantage of using OraSim over a real
database benchmark is mainly the simplicity.
It does not require large amounts of memory or
large installed software components. There is
one executable which is started with the jobfile
as a parameter.The jobfiles used can be easily
modified to turn on certain filesystem features,
such as asynchronous IO.

OraSim jobfiles were created to simulate a rel-
atively small database. 10 files are defined as
actual database datafiles and two files are used

to simulate database journals.

OAST on the other hand is a complete database
stress test kit, based on the TPC-C benchmark
workloads. It requires a full installation of
the database software and relies on an actual
database environment to be created. TPC-C
is an on-line transaction workload. The num-
bers represented during the testruns are not ac-
tual TPC-C benchmarks results and cannot or
should not be used as a measure of TPC-C
performance—they are TPC-C-like; however,
not the same.

The database engine which runs the OAST
benchmark allocates a large shared memory
segment which contains the database caches
for SQL and for data blocks (shared pool and
buffer cache). Every client connection can run
on the same server or the connection can be
over TCP. In case of a local connection, for
each client, 2 processes are spawned on the
system. One process is a dedicated database
process and the other is the client code which
communicates with the database server pro-
cess through IPC calls. Test run parameters in-
clude run time length in seconds and number of
client connections. As you can see in the result
pages, both remote and local connections have
been tested.

3 Hardware

A number of hardware configurations have
been used. We tried to include various CPU
architectures as well as local SCSI disk ver-
sus network storage (NAS) and fibre channel
(SAN).

Configuration 1 consists of an 8-way IA32
Xeon 2 GHz with 32GB RAM attached to an
EMC CX300 Clariion array with 30 147GB
disks using a QLA2300 fibre channel HBA.
The network cards are BCM5701 Broadcom
Gigabit Ethernet.

Linux Symposium 2004 • Volume One • 165

Configuration 2 consists of an 8-way Itanium 2
1.3 GHz with 8GB RAM attached to a JBOD
fibre channel array with 8 36GB disks using
a QLA2300 fibre channel HBA. The network
cards are BCM5701 Broadcom Gigabit Ether-
net.

Configuration 3 consists of a 2-way AMD64 2
GHz (Opteron 246) with 6GB RAM attached
to local SCSI disk (LSI Logic 53c1030).

4 Operating System

The Linux 2.4 test cases were created using
Red Hat Enterprise Linux 3 on all architec-
tures. Linux 2.6 was done with SuSE SLES9
on all architectures; however, in a number of
tests the kernel was replaced by the 2.6 main-
stream kernel for comparison.

The test suites and benchmarks did not have
to be recompiled to run on either RHEL3 or
SLES9. Of course different executables were
used on the three CPU architectures.

5 Test Results

At the time of writing a lot of changes were
still happening on the 2.6 kernel. As such,
the actual spreadsheets with benchmark data
has been published on a website, the data is
up-to-date with the current kernel tree and can
be found here:http://oss.oracle.com/

external/ols/results/

5.1 IO

If you want to build a huge database server,
which can handle thousands of users, it is im-
portant to be able to attach a large number of
disks. A very big shortcoming in Linux 2.4
was the fact that it could only handle 128 or
256.

With some patches SuSE got to around 3700
disks in SLES8, however that meant stealing
major numbers from other components. Re-
ally large database setups which also require
very high IO throughput, usually have disks at-
tached ranging from a few hundred to a few
thousand.

With the 64-bitdev_t in 2.6, it’s now possible
to attach plenty of disk. Without modifications
it can easily handle tens of thousands of de-
vices attached. This opens the world to really
large scale datawarehouses, tens of terabytes of
storage.

Another important change is the block IO
layer, the BIO code is much more efficient
when it comes to large IOs being submitted
down from the running application. In 2.4,
every IO got broken down into small chunks,
sometimes causing bottlenecks on allocating
accounting structures. Some of the tests com-
pared 1MBread() and write() calls in
2.4 and 2.6.

5.2 Asynchronous IO and DirectIO

If there is one feature that has always been on
top of the Must Have list for large database
vendors, it must be async IO. Asynchronous IO
allows processes to submit batches of IO oper-
ations and continue on doing different tasks in
the meantime. It improves CPU utilization and
can keep devices more busy. The Enterprise
distributions based on Linux 2.4 all ship with
the async IO patch applied on top of the main-
line kernel.

Linux 2.6 has async IO out of the box. It is
implemented a little different from Linux 2.4
however combined with support for direct IO it
is very performant. Direct IO is very useful as
it eliminates copying the userspace buffers into
kernel space. On systems that are constantly
overloaded, there is a nice performance im-

166 • Linux Symposium 2004 • Volume One

provement to be gained doing direct IO. Linux
2.4 did not have direct IO and async IO com-
bined. As you can see in the performance
graph on AIO+DIO, it provides a significant
reduction in CPU utilization.

5.3 Virtual Memory

There has been another major VM overhaul in
Linux 2.6, in fact, even after 2.6.0 was released
a large portion has been re-written. This was
due to large scale testing showing weaknesses
as it relates to number of users that could be
handled on a system. As you can see in the test
results, we were able to go from around 3000
users to over 7000 users. In particular on 32-
bit systems, the VM has been pretty much a
disaster when it comes to deploying a system
with more than 16GB of RAM. With the latest
VM changes it is now possible to push a 32GB
even up to 48GB system pretty reliably.

Support for large pages has also been a big
winner. HUGETLBFSreduces TLB misses by
a decent percentage. In some of the tests it
provides up to a 3% performance gain. In our
testsHUGETLBFSwould be used to allocate
the shared memory segment.

5.4 NUMA

Linux 2.6 is the first Linux kernel with real
NUMA support. As we see high-end cus-
tomers looking at deploying large SMP boxes
running Linux, this became a real requirement.
In fact even with the AMD64 design, NUMA
support becomes important for performance
even when looking at just a dual-CPU system.

NUMA support has two components; however,
one is the fact that the kernel VM allocates
memory for processes in a more efficient way.
On the other hand, it is possible for applica-
tions to use the NUMA API and tell the OS
where memory should be allocated and how.

Oracle has an extention for Itanium2 to support
the libnuma API from Andi Kleen. Making use
of this extention showed a significant improve-
ment, up to about 20%. It allows the database
engine to be smart about memory allocations
resulting in a significant performance gain.

6 Conclusion

It is very clear that many of the features that
were requested by the larger corporations pro-
viding enterprise applications actually help a
huge amount. The advantage of having Asyn-
chronous IO or NUMA support in the main-
stream kernel is obvious. It takes a lot of effort
for distribution vendors to maintain patches on
top of the mainline kernel and when functional-
ity makes sense it helps to have it be included
in mainline. Micro-optimizations are still be-
ing done and in particular the VM subsystem
can improve quite a bit. Most of the stability
issues are around 32-bit, where the LowMem
versus HighMem split wreaks havoc quite fre-
quently. At least with some of the features now
in the 2.6 kernel it is possible to run servers
with more than 16GB of memory and scale up.

The biggest surprise was the stability. It was
very nice to see a new stable tree be so solid
out of the box, this in contrast to earlier stable
kernel trees where it took quite a few iterations
to get to the same point.

The major benefit of 2.6 is being able to run on
really large SMP boxes: 32-way Itanium2 or
Power4 systems with large amounts of mem-
ory. This was the last stronghold of the tradi-
tional Unices and now Linux can play along-
side with them even there. Very exciting times.

Multi-processor and Frequency Scaling
Making Your Server Behave Like a Laptop

Paul Devriendt
AMD Software Research and Development

paul.devriendt@amd.com

Copyright © 2004 Advanced Micro Devices, Inc.

Abstract

This paper will explore a multi-processor im-
plementation of frequency management, using
an AMD Opteron™ processor 4-way server as
a test vehicle.

Topics will include:

• the benefits of doing this, and why server
customers are asking for this,

• the hardware, for case of the AMD
Opteron processor,

• the various software components that
make this work,

• the issues that arise, and

• some areas of exploration for follow on
work.

1 Introduction

Processor frequency management is common
on laptops, primarily as a mechanism for im-
proving battery life. Other benefits include a
cooler processor and reduced fan noise. Fans
also use a non-trivial amount of power.

This technology is spreading to desktop ma-
chines, driven both by a desire to reduce power
consumption and to reduce fan noise.

Servers and other multiprocessor machines can
equally benefit. The multiprocessor frequency
management scenario offers more complex-
ity (no surprise there). This paper discusses
these complexities, based upon a test imple-
mentation on an AMD Opteron processor 4-
way server. Details within this paper are AMD
processor specific, but the concepts are appli-
cable to other architectures.

The author of this paper would like to make
it clear that he is just the maintainer of the
AMD frequency driver, supporting the AMD
Athlon™ 64 and AMD Opteron processors.
This frequency driver fits into, and is totally de-
pendent, on the CPUFreq support. The author
has gratefully received much assistance and
support from the CPUFreq maintainer (Do-
minik Brodowski).

2 Abbreviations

BKDG: The BIOS and Kernel Developer’s
Guide. Document published by AMD contain-
ing information needed by system software de-
velopers. See the references section, entry 4.

MSR: Model Specific Register. Processor reg-
isters, accessable only from kernel space, used
for various control functions. These regis-
ters are expected to change across processor
families. These registers are described in the

168 • Linux Symposium 2004 • Volume One

BKDG[4].

VRM: Voltage Regulator Module. Hardware
external to the processor that controls the volt-
age supplied to the processor. The VRM has to
be capable of supplying different voltages on
command. Note that for multiprocessor sys-
tems, it is expected that each processor will
have its own independent VRM, allowing each
processor to change voltage independently. For
systems where more than one processor shares
a VRM, the processors have to be managed as
a group. The current frequency driver does not
have this support.

fid: Frequency Identifier. The values writ-
ten to the control MSR to select a core fre-
quency. These identifiers are processor family
specific. Currently, these are six bit codes, al-
lowing the selection of frequencies from 800
MHz to 5 Ghz. See the BKDG[4] for the map-
pings from fid to frequency. Note that the fre-
quency driver does need to “understand” the
mapping of fid to frequency, as frequencies are
exposed to other software components.

vid: Voltage Identifier. The values written to
the control MSR to select a voltage. These val-
ues are then driven to the VRM by processor
logic to achieve control of the voltage. These
identifiers are processor model specific. Cur-
rently these identifiers are five bit codes, of
which there are two sets—a standard set and
a low-voltage mobile set. The frequency driver
does not need to be able to “understand” the
mapping of vid to voltage, other than perhaps
for debug prints.

VST: Voltage Stabilization Time. The length
of time before the voltage has increased and is
stable at a newly increased voltage. The driver
has to wait for this time period when stepping
the voltage up. The voltage has to be stable
at the new level before applying a further step
up in voltage, or before transitioning to a new
frequency that requires the higher voltage.

MVS: Maximum Voltage Step. The maximum
voltage step that can be taken when increasing
the voltage. The driver has to step up voltage
in multiple steps of this value when increasing
the voltage. (When decreasing voltage it is not
necessary to step, the driver can merely jump
to the correct voltage.) A typical MVS value
would be 25mV.

RVO: Ramp Voltage Offset. When transition-
ing frequencies, it is necessary to temporarily
increase the nominal voltage by this amount
during the frequency transition. A typical RVO
value would be 50mV.

IRT: Isochronous Relief Time. During fre-
quency transitions, busmasters briefly lose ac-
cess to system memory. When making mul-
tiple frequency changes, the processor driver
must delay the next transition for this time
period to allow busmasters access to system
memory. The typical value used is 80us.

PLL: Phase Locked Loop. Electronic circuit
that controls an oscillator to maintain a con-
stant phase angle relative to a reference signal.
Used to synthesize new frequencies which are
a multiple of a reference frequency.

PLL Lock Time: The length of time, in mi-
croseconds, for the PLL to lock.

pstate: Performance State. A combination of
frequency/voltage that is supported for the op-
eration of the processor. A processor will typi-
cally have several pstates available, with higher
frequencies needing higher voltages. The pro-
cessor clock can not be set to any arbitrary fre-
quency; it may only be set to one of a limited
set of frequencies. For a given frequency, there
is a minimum voltage needed to operate reli-
ably at that frequency, and this is the correct
voltage, thus forming the frequency/voltage
pair.

ACPI: Advanced Configuration and Power In-

Linux Symposium 2004 • Volume One • 169

terface Specification. An industry specifica-
tion, initially developed by Intel, Microsoft,
Phoenix and Toshiba. See the reference sec-
tion, entry 5.

_PSS:Performance Supported States. ACPI
object that defines the performance states valid
for a processor.

_PPC: Performance Present Capabilities.
ACPI object that defines which of the _PSS
states are currently available, due to current
platform limitations.

PSBPerformance State Block. BIOS provided
data structure used to pass information, to the
driver, concerning the pstates available on the
processor. The PSB does not support multi-
processor systems (which use the ACPI _PSS
object instead) and is being deprecated. The
format of the PSB is defined in the BKDG.

3 Why Does Frequency Manage-
ment Affect Power Consump-
tion?

Higher frequency requires higher voltage.
As an example, data for part number
ADA3200AEP4AX:

2.2 GHz @ 1.50 volts, 58 amps max – 89 watts

2.0 GHz @ 1.40 volts, 48 amps max – 69 watts

1.8 GHz @ 1.30 volts, 37 amps max – 50 watts

1.0 GHz @ 1.10 volts, 18 amps max – 22 watts

These figures are worst case current/power fig-
ures, at maximum case temperature, and in-
clude I/O power of 2.2W.

Actual power usage is determined by:

• code currently executing (idle blocks in
the processor consume less power),

• activity from other processors (cache co-
herency, memory accesses, pass-through
traffic on the HyperTransport™ connec-
tions),

• processor temperature (current increases
with temperature, at constant workload
and voltage),

• processor voltage.

Increasing the voltage allows operation at
higher frequencies, at the cost of higher power
consumption and higher heat generation. Note
that relationship between frequency and power
consumption is not a linear relationship—a
10% frequency increase will cost more than
10% in power consumption (30% or more).

Total system power usage depends on other de-
vices in the system, such as whether disk drives
are spinning or stopped, and on the efficiency
of power supplies.

4 Why Should Your Server Behave
Like A Laptop?

• Save power. It is the right thing to do
for the environment. Note that power
consumed is largely converted into heat,
which then becomes a load on the air con-
ditioning in the server room.

• Save money. Power costs money. The
power savings for a single server are typi-
cally regarded as trivial in terms of a cor-
porate budget. However, many large or-
ganizations have racks of many thousands
of servers. The power bill is then far from
trivial.

• Cooler components last longer, and this
translates into improved server reliability.

• Government Regulation.

170 • Linux Symposium 2004 • Volume One

5 Interesting Scenarios

These are real world scenarios, where the ap-
plication of the technology is appropriate.

5.1 Save power in an idle cluster

A cluster would typically be kept running at
all times, allowing remote access on demand.
During the periods when the cluster is idle, re-
ducing the CPU frequency is a good way to
reduce power consumption (and therefore also
air conditioning load), yet be able to quickly
transition back up to full speed (<0.1 second)
when a job is submitted.

User space code (custom to the management of
that cluster) can be used to offer cluster speeds
of “fast” and “idle,” using the/proc or /sys
file systems to trigger frequency transitions.

5.2 The battery powered server

Or, the server running on a UPS.

Many production servers are connected
to a battery backup mechanism (UPS—
uninterruptible power supply) in case the
mains power fails. Action taken on a mains
power failure varies:

• Orderly shutdown.

• Stay up and running for as long as there
is battery power, but orderly shutdown if
mains power is not restored.

• Stay up and running, mains power will be
provided by backup generators as soon as
the generators can be started.

In these scenarios, transitioning to lower per-
formance states will maximize battery life, or
reduce the amount of generator/battery power
capacity required.

UPS notification of mains power loss to the
server for administrator alerts is well under-
stood technology. It is not difficult to add the
support for transitioning to a lower pstate. This
can be done by either a cpufreq governor or by
adding the simple user space controls to an ex-
isting user space daemon that is monitoring the
UPS alerts.

5.3 Server At Less Than Maximum Load

As an example, a busy server may be process-
ing 100 transactions per second, but only 5
transactions per second during quiet periods.
Reducing the CPU frequency from 2.2 GHz to
1.0 GHz is not going to impact the ability of
that server to process 5 transactions per second.

5.4 Processor is not the bottleneck

The bottleneck may not be the processor speed.
Other likely bottlenecks are disk access and
network access. Having the processor waiting
faster may not improve transaction throughput.

5.5 Thermal cutback to avoid over tempera-
ture situations

The processors are the main generators of heat
in a system. This becomes very apparent when
many processors are in close proximity, such
as with blade servers. The effectiveness of the
processor cooling is impacted when the proces-
sor heat sinks are being cooled with hot air. Re-
ducing processor frequency when idle can dra-
matically reduce the heat production.

5.6 Smaller Enclosures

The drive to build servers in smaller boxes,
whether as standalone machines or slim rack-
mount machines, means that there is less space
for air to circulate. Placing many slim rack-
mounts together in a rack (of which the most

Linux Symposium 2004 • Volume One • 171

demanding case is a blade server) aggravates
the cooling problem as the neighboring boxes
are also generating heat.

6 System Power Budget

The processors are only part of the system. We
therefore need to understand the power con-
sumption of the entire system to see how sig-
nificant processor frequency management is on
the power consumption of the whole system.

A system power budget is obviously plat-
form specific. This sample DC (direct cur-
rent) power budget is for a 4-processor AMD
Opteron processor based system. The system
has three 500W power supplies, of which one
is redundant. Analysis shows that for many
operating scenarios, the system could run on
a single power supply.

This analysis is of DC power. For the system
in question, the efficiency of the power sup-
plies are approximately linear across varying
loads, and thus the DC power figures expressed
as percentages are meaningful as predictors of
the AC (alternating current) power consump-
tion. For systems with power supplies that are
not linearly efficient across varying loads, the
calculations obviously have to be factored to
take account of power supply efficiency.

System components:

• 4 processors @ 89W = 356W in the maxi-
mum pstate, 4 @ 22W = 88W in the mini-
mum pstate. These are worst case figures,
at maximium case temperature, with the
worst case instruction mix. The figures in
Table1 are reduced from these maximums
by approximately 10% to account for a re-
duced case temperature and for a work-
load that does not keep all of the proces-
sors’ internal units busy.

• Two disk drives (Western Digital 250
GByte SATA), 16W read/write, 10W idle
(spinning), 1.3W sleep (not spinning).
Note SCSI drives typically consume more
power.

• DVD Drive, 10W read, 1W idle/sleep.

• PCI 2.2 Slots – absolute max of 25W per
slot, system will have a total power budget
that may not account for maximum power
in all slots. Estimate 2 slots occupied at a
total of 20W.

• VGA video card in a PCI slot. 5W. (AGP
would be more like 15W+).

• DDR DRAM, 10W max per DIMM, 40W
for 4 GBytes configured as 4 DIMMs.

• Network (built in) 5W.

• Motherboard and components 30W.

• 10 fans @ 6W each. 60W.

• Keyboard + Mouse 3W

See Table 1 for the sample power budget under
busy and light loads.

The light load without any frequency reduction
is baselined as 100%.

The power consumption is shown for the same
light load with frequency reduction enabled,
and again where the idle loop incorporates the
hlt instruction.

Using frequency management, the power con-
sumption drops to 43%, and adding the use of
the hlt instruction (assuming 50% time halted),
the power consumption drops further to 33%.

These are significant power savings, for sys-
tems that are under light load conditions at
times. The percentage of time that the system
is running under reduced load has to be known
to predict actual power savings.

172 • Linux Symposium 2004 • Volume One

system load 4 2 kbd
cpus disks dvd pci vga dram net planar fans mou total

busy 320 32 10 20 5 40 5 30 60 3 525W
90%

light load 310 22 1 15 5 38 5 20 60 3 479W
87% 100%

light load, using 79 22 1 15 5 38 5 20 20 3 208W
frequency reduction 90% 43%

light load, using 32 22 1 15 5 38 5 20 15 3 156
frequency reduction 40% 33%
and using hlt 50%

of the time

Table 1: Sample System Power Budget (DC), in watts

7 Hardware—AMD Opteron

7.1 Software Interface To The Hardware

There are two MSRs, the FIDVID_STATUS
MSR and the FIDVID_CONTROL MSR, that
are used for frequency voltage transitions.
These MSRs are the same for the single pro-
cessor AMD Athlon 64 processors and for the
AMD Opteron MP capable processors. These
registers are not compatible with the previ-
ous generation of AMD Athlon processors, and
will not be compatible with the next generation
of processors.

The CPU frequency driver for AMD proces-
sors therefore has to change across processor
revisions, as do the ACPI _PSS objects that de-
scribe pstates.

The status register reports the current fid and
vid, as well as the maximum fid, the start fid,
the maximum vid and the start vid of the par-
ticular processor.

These registers are documented in the
BKDG[4].

As MSRs can only be accessed by executing
code (the read msr or write msr instructions) on

the target processor, the frequency driver has to
use the processor affinity support to force exe-
cution on the correct processor.

7.2 Multiple Memory Controllers

In PC architectures, the memory controller is
a component of the northbridge, which is tra-
ditionally a separate component from the pro-
cessor. With AMD Opteron processors, the
northbridge is built into the processor. Thus,
in a multi-processor system there are multiple
memory controllers.

See Figure 1 for a block diagram of a two pro-
cessor system.

If a processor is accessing DRAM that is phys-
ically attached to a different processor, the
DRAM access (and any cache coherency traf-
fic) crosses the coherent HyperTransport inter-
processor links. There is a small performance
penalty in this case. This penalty is of the or-
der of a DRAM page hit versus a DRAM page
miss, about 1.7 times slower than a local ac-
cess.

This penalty is minimized by the processor
caches, where data/code residing in remote
DRAM is locally cached. It is also minimized

Linux Symposium 2004 • Volume One • 173

by Linux’s NUMA support.

Note that a single threaded application that
is memory bandwidth constrained may benefit
from multiple memory controllers, due to the
increase in memory bandwidth.

When the remote processor is transitioned to
a lower frequency, this performance penalty is
worse. An upper bound to the penalty may
be calculated as proportional to the frequency
slowdown. I.e., taking the remote processor
from 2.2 GHz to 1.0 GHz would take the 1.7
factor from above to a factor of 2.56. Note that
this is an absolute worst case, an upper bound
to the factor. Actual impact is workload depen-
dent.

A worst case scenario would be a memory
bound task, doing memory reads at addresses
that are pathologically the worst case for the
caches, with all accesses being to remote mem-
ory. A more typical scenario would see this
penalty alleviated by:

• processor caches, where 64 bytes will
be read and cached for a single access,
so applications that walk linearly through
memory will only see the penalty on 64
byte boundaries,

• memory writes do not take a penalty
(as processor execution continues without
waiting for a write to complete),

• memory may be interleaved,

• kernel NUMA optimizations for non-
interleaved memory (which allocate
memory local to the processor when
possible to avoid this penalty).

7.3 DRAM Interface Speed

The DRAM interface speed is impacted by the
core clock frequency. A full table is published

in the processor data sheet; Table 2 shows a
sample of actual DRAM frequencies for the
common specified DRAM frequencies, across
a range of core frequencies.

This table shows that certain DRAM speed /
core speed combinations are suboptimal.

Effective memory performance is influenced
by many factors:

• cache hit rates,

• effectiveness of NUMA memory alloca-
tion routines,

• load on the memory controller,

• size of penalty for remote memory ac-
cesses,

• memory speed,

• other hardware related items, such as
types of DRAM accesses.

It is therefore necessary to benchmark the ac-
tual workload to get meaningful data for that
workload.

7.4 UMA

During frequency transitions, and when Hy-
perTransport LDTSTOP is asserted, DRAM is
placed into self refresh mode. UMA graph-
ics devices therefore can not access DRAM.
UMA systems therefore need to limit the time
that DRAM is in self refresh mode. Time con-
straints are bandwidth dependent, with high
resolution displays needing higher memory
bandwidth. This is handled by the IRT delay
time during frequency transitions. When tran-
sitioning multiple steps, the driver waits an ap-
propriate length of time to allow external de-
vices to access memory.

174 • Linux Symposium 2004 • Volume One

AMD Opteron
TM

Processor

AMD Opteron
 TM

Processor

AMD 8151
TM

Graphics Tunnel

AMD 8131
TM

PCI-X Tunnel

AMD 8111
TM

I/O Hub

ncHT

ncHT

DDR

8X AGP

Legacy PCI

USB

LPC

AC ‘97

EIDE

DDR

PCI-X

cHT

ncHT

Figure 1: Two Processor System

Processor 100MHz 133MHz 166MHz 200MHz
Core DRAM DRAM DRAM DRAM

Frequency spec spec spec spec

800MHz 100.00 133.33 160.00 160.00
1000MHz 100.00 125.00 166.66 200.00
2000MHz 100.00 133.33 166.66 200.00
2200MHz 100.00 129.41 157.14 200.00

Table 2: DRAM Frequencies For A Range Of Processor Core Frequencies

Linux Symposium 2004 • Volume One • 175

7.5 TSC Varying

The Time Stamp Counter (TSC) register is
a register that increments with the processor
clock. Multiple reads of the register will see
increasing values. This register increments on
each core clock cycle in the current generation
of processors. Thus, the rate of increase of the
TSC when compared with “wall clock time”
varies as the frequency varies. This causes
problems in code that calibrates the TSC incre-
ments against an external time source, and then
attempts to use the TSC to measure time.

The Linux kernel uses the TSC for such tim-
ings, for example when a driver calls udelay().
In this case it is not a disaster if the udelay()
call waits for too long as the call is defined to
allow this behavior. The case of the udelay()
call returning too quickly can be fatal, and this
has been demonstrated during experimentation
with this code.

This particular problem is resolved by the
cpufreq driver correcting the kernel TSC cal-
ibration whenever the frequency changes.

This issue may impact other code that uses
the TSC register directly. It is interesting to
note that it is hard to define a correct behavior.
Code that calibrates the TSC against an exter-
nal clock will be thrown off if the rate of in-
crement of the TSC should change. However,
other code may expect a certain code sequence
to consistently execute in approximately the
same number of cycles, as measured by the
TSC, and this code will be thrown off if the be-
havior of the TSC changes relative to the pro-
cessor speed.

7.6 Measurement Of Frequency Transition
Times

The time required to perform a transition is a
combination of the software time to execute the

required code, and the hardware time to per-
form the transition.

Examples of hardware wait time are:

• waiting for the VRM to be stable at a
newer voltage,

• waiting for the PLL to lock at the new fre-
quency,

• waiting for DRAM to be placed into and
then taken out of self refresh mode around
a frequency transition.

The time taken to transition between two states
is dependent on both the initial state and the
target state. This is due to :

• multiple steps being required in some
cases,

• certain operations are lengthier (for ex-
ample, voltage is stepped up in multiple
stages, but stepped down in a single step),

• difference in code execution time depen-
dent on processor speed (although this is
minor).

Measurements, taken by calibrating the fre-
quency driver, show that frequency transitions
for a processor are taking less than 0.015 sec-
onds.

Further experimentation with multiple proces-
sors showed a worst case transition time of less
than 0.08 seconds to transition all 4 processors
from minimum to maximum frequency, and
slightly faster to transition from maximum to
minimum frequency.

Note, there is a driver optimization under
consideration that would approximately halve
these transition times.

176 • Linux Symposium 2004 • Volume One

7.7 Use of Hardware Enforced Throttling

The southbridge (I/O Hub, example AMD-
8111™ HyperTransport I/O Hub) is capable
of initiating throttling via the HyperTransport
stopclock message, which will ramp down the
CPU grid by the programmed amount. This
may be initiated by the southbridge for thermal
throttling or for other reasons.

This throttling is transparent to software, other
than the performance impact.

This throttling is of greatest value in the lowest
pstate, due to the reduced voltage.

The hardware enforced throttling is generally
not of relevance to the software management
of processor frequencies. However, a system
designer would need to take care to ensure
that the optimal scenarios occur—i.e., transi-
tion to a lower frequency/voltage in preference
to hardware throttling in high pstates. The
BIOS configurations are documented in the
BKDG[4].

For maximum power savings, the southbridge
would be configured to initiate throttling when
the processor executes thehlt instruction.

8 Software

The AMD frequency driver is a small part of
the software involved. The frequency driver
fits into the CPUFreq architecture, which is
part of the 2.6 kernel. It is also available as a
patch for the 2.4 kernel, and many distributions
do include it.

The CPUFreq architecture includes kernel sup-
port, the CPUFreq driver itself (drivers/
cpufreq), an architecture specific driver to
control the hardware (powernow-k8.ko is this
case), and/sys file system code for userland
access.

The kernel support code (linux/kernel/
cpufreq.c) handles timing changes such as
updating the kernel constantloops_per_
jiffies , as well as notifiers (system com-
ponents that need to be notified of a frequency
change).

8.1 History Of The AMD Frequency Driver

The CPU frequency driver for AMD Athlon
(the previous generation of processors) was
developed by Dave Jones. This driver sup-
ports single processor transitions only, as the
pstate transition capability was only enabled in
mobile processors. This driver used the PSB
mechanism to determine valid pstates for the
processor. This driver has subsequently been
enhanced to add ACPI support.

The initial AMD Athlon 64 and AMD Opteron
driver (developed by me, based upon Dave’s
earlier work, and with much input from Do-
minik and others), was also PSB based. This
was followed by a version of the driver that
added ACPI support.

The next release is intended to add a built-in
table of pstates that will allow the checking of
BIOS supplied data, and also allow an override
capability to provide pstate data when not sup-
plied by BIOS.

8.2 User Interface

The deprecated /proc/cpufreq (and
/proc/sys) file system offers control over
all processors or individual processors. By
echoing values into this file, the root user
can change policies and change the limits on
available frequencies.

Examples:

Constrain all processors to frequencies be-
tween 1.0 GHz and 1.6 GHz, with the perfor-
mance policy (effectively chooses 1.6 GHz):

Linux Symposium 2004 • Volume One • 177

echo -n "1000000:16000000:

performance" > /proc/cpufreq

Constrain processor 2 to run at only 2.0 GHz:

echo -n "2:2000000:2000000:

performance" > proc/cpufreq

The “performance” refers to a policy, with
the other policy available being “powersave.”
These policies simply forced the frequency to
be at the appropriate extreme of the available
range. With the 2.6 kernel, the choice is nor-
mally for a “userspace” governor, which allows
the (root) user or any user space code (running
with root privilege) to dynamically control the
frequency.

With the 2.6 kernel, a new interface in the
/sys filesystem is available to the root user,
deprecating the/proc/cpufreq method.

The control and status files exist under
/sys/devices/system/cpu/cpuN/
cpufreq , where N varies from 0 up-
wards, dependent on which processors are
online. Among the other files in each proces-
sor’s directory, scaling_min_freq and
scaling_max_freq control the minimum
and maximum of the ranges in which the fre-
quency may vary. Thescaling_governor
file is used to control the choice of gov-
ernor. See linux/Documentation/
cpu-freq/userguide.txt for more
information.

Examples:

Constrain processor 2 to run only in the range
1.6 GHz to 2.0 GHz:

cd /sys/devices/system/cpu

cd cpu2/cpufreq

echo 1600000 > scaling_min_freq

echo 2000000 > scaling_max_freq

8.3 Control From User Space And User Dae-
mons

The interface to the/sys filesystem allows
userland control and query functionality. Some
form of automation of the policy would nor-
mally be part of the desired complete imple-
mentation.

This automation is dependent on the reason for
using frequency management. As an example,
for the case of transitioning to a lower pstate
when running on a UPS, a daemon will be no-
tified of the failure of mains power, and that
daemon will trigger the frequency change by
writing to the control files in the/sys filesys-
tem.

The CPUFreq architecture has thus split the
implementation into multiple parts:

1. user space policy

2. kernel space driver for common function-
ality

3. kernel space driver for processor specific
implementation.

There are multiple user space automation
implementations, not all of which currently
support multiprocessor systems. One that
does, and that has been used in this
project is cpufreqd version 1.1.2 (http://

sourceforge.net/projects/cpufreqd).

This daemon is controlled by a configuration
file. Other than making changes to the con-
figuration file, the author of this paper has not
been involved in any of the development work
on cpufreqd, and is a mere user of this tool.

The configuration file specifies profiles and
rules. A profile is a description of the system
settings in that state, and my configuration file
is setup to map the profiles to the processor

178 • Linux Symposium 2004 • Volume One

pstates. Rules are used to dynamically choose
which profile to use, and my rules are setup
to transition profiles based on total processor
load.

My simple configuration file to change proces-
sor frequency dependent on system load is:

[General]
pidfile=/var/run/cpufreqd.pid
poll_interval=2
pm_type=acpi

2.2 GHz processor speed
[Profile]
name=hi_boost
minfreq=95%
maxfreq=100%
policy=performance

2.0 GHz processor speed
[Profile]
name=medium_boost
minfreq=90%
maxfreq=93%
policy=performance

1.0 GHz processor Speed
[Profile]
name=lo_boost
minfreq=40%
maxfreq=50%
policy=powersave

[Profile]
name=lo_power
minfreq=40%
maxfreq=50%
policy=powersave

[Rule]
#not busy 0%-40%
name=conservative
ac=on
battery_interval=0-100

cpu_interval=0-40
profile=lo_boost

#medium busy 30%-80%
[Rule]
name=lo_cpu_boost
ac=on
battery_interval=0-100
cpu_interval=30-80
profile=medium_boost

#really busy 70%-100%
[Rule]
name=hi_cpu_boost
ac=on
battery_interval=50-100
cpu_interval=70-100
profile=hi_boost

This approach actually works very well for
multiple small tasks, for transitioning the fre-
quencies of all the processors together based
on a collective loading statistic.

For a long running, single threaded task, this
approach does not work well as the load is only
high on a single processor, with the others be-
ing idle. The average load is thus low, and
all processors are kept at a slow speed. Such
a workload scenario would require an imple-
mentation that looked at the loading of individ-
ual processors, rather than the average. See the
section below on future work.

8.4 The Drivers Involved

powernow-k8.ko arch/i386/
kernel/cpu/cpufreq/powernow-k8.
c (the same source code is built as a 32-bit
driver in thei386 tree and as a 64-bit driver
in thex86_64 tree)

drivers/acpi

drivers/cpufreq

Linux Symposium 2004 • Volume One • 179

The Test Driver

Note that thepowernow-k8.ko driver does
not export any read, write, or ioctl interfaces.
For test purposes, a second driver exists with
an ioctl interface for test application use. The
test driver was a big part of the test effort on
powernow-k8.ko prior to release.

8.5 Frequency Driver Entry Points

powernowk8_init()

Driver late_initcall . Initialization is
late as the acpi driver needs to be initialized
first. Verifies that all processors in the system
are capable of frequency transitions, and that
all processors are supported processors. Builds
a data structure with the addresses of the four
entry points for cpufreq use (listed below), and
callscpufreq_register_driver() .

powernowk8_exit()

Called when the driver is to be unloaded. Calls
cpufreq_unregister_driver() .

8.6 Frequency Driver Entry Points For Use By
The CPUFreq driver

powernowk8_cpu_init()

This is a per-processor initialization routine.
As we are not guaranteed to be executing on
the processor in question, and as the driver
needs access to MSRs, the driver needs to force
itself to run on the correct processor by using
set_cpus_allowed() .

This pre-processor initialization allows for pro-
cessors to be taken offline or brought online dy-
namically. I.e., this is part of the software sup-
port that would be needed for processor hot-
plug, although this is not supported in the hard-
ware.

This routine finds the ACPI pstate data for this

processor, and extracts the (proprietary) data
from the ACPI_PSSobjects. This data is ver-
ified as far as is reasonable. Per-processor data
tables for use during frequency transitions are
constructed from this information.

powernowk8_cpu_exit()

Per-processor cleanup routine.

powernowk8_verify()

When the root user (or an application running
on behalf of the root user) requests a change to
the minimum/maximum frequencies, or to the
policy or governor, the frequency driver’s ver-
ification routine is called to verify (and correct
if necessary) the input values. For example,
if the maximum speed of the processor is 2.4
GHz and the user requests that the maximum
range be set to 3.0 GHz, the verify routine will
correct the maximum value to a value that is ac-
tually possible. The user can, however, chose a
value that is less than the hardware maximum,
for example 2.0 GHz in this case.

As this routine just needs to access the per-
processor data, and not any MSRs, it does not
matter which processor executes this code.

powernowk8_target()

This is the driver entry point that actually per-
forms a transition to a new frequency/voltage.
This entry point is called for each processor
that needs to transition to a new frequency.

There is therefore an optimization possible by
enhancing the interface between the frequency
driver and the CPUFreq driver for the case
where all processors are to be transitioned to
a new, common frequency. However, it is not
clear that such an optimization is worth the
complexity, as the functionality to transition a
single processor would still be needed.

This routine is invoked with the processor

180 • Linux Symposium 2004 • Volume One

number as a parameter, and there is no guaran-
tee as to which processor we are currently exe-
cuting on. As the mechanism for changing the
frequency involves accessing MSRs, it is nec-
essary to execute on the target processor, and
the driver forces its execution onto the target
processor by usingset_cpus_allowed() .

The CPUFreq helpers are then used to deter-
mine the correct target frequency. Once a cho-
sen targetfid andvid are identified:

• the cpufreq driver is called to warn that a
transition is about to occur,

• the actual transition code within
powernow-k8 is called, and then

• the cpufreq driver is called again to con-
firm that the transition was successful.

The actual transition is protected with a
semaphore that is used across all processors.
This is to prevent transitions on one proces-
sor from interfering with transitions on other
processors. This is due to the inter-processor
communication that occurs at a hardware level
when a frequency transition occurs.

8.7 CPUFreq Interface

The CPUFreq interface provides entry points,
that are required to make the system function.

It also provides helper functions, which need
not be used, but are there to provide common
functionality across the set of all architecture
specific drivers. Elimination of duplicate good
is a good thing! An architecture specific driver
can build a table of available frequencies, and
pass this table to the CPUFreq driver. The
helper functions then simplify the architecture
driver code by manipulating this table.

cpufreq_register_driver()

Registers the frequency driver as being the
driver capable of performing frequency transi-
tions on this platform. Only one driver may be
registered.

cpufreq_unregister_driver()

Unregisters the driver, when it is being un-
loaded.

cpufreq_notify_transition()

Used to notify the CPUFreq driver, and thus the
kernel, that a frequency transition is occurring,
and triggering recalibration of timing specific
code.

cpufreq_frequency_table_target()

Helper function to find an appropriate table en-
try for a given target frequency. Used in the
driver’s target function.

cpufreq_frequency_table_verify()

Helper function to verify that an input fre-
quency is valid. This helper is effectively a
complete implementation of the driver’s verify
function.

cpufreq_frequency_table_cpuinfo()

Supplies the frequency table data that is used
on subsequent helper function calls. Also aids
with providing information as to the capabili-
ties of the processors.

8.8 Calls To The ACPI Driver

acpi_processor_register_performance()

acpi_processor_unregister_performance()

Helper functions used at per-processor initial-
ization time to gain access to the data from the
_PSS object for that processor. This is a prefer-
able solution to the frequency driver having to
walk the ACPI namespace itself.

Linux Symposium 2004 • Volume One • 181

8.9 The Single Processor Solution

Many of the kernel system calls collapse to
constants when the kernel is built without
multiprocessor support. For example,num_
online_cpus() becomes a macro with the
value 1. By the careful use of the defini-
tions in smp.h, the same driver code handles
both multiprocessor and single processor ma-
chines without the use of conditional compi-
lation. The multiprocessor support obviously
adds complexity to the code for a single proces-
sor code, but this code is negligible in the case
of transitioning frequencies. The driver ini-
tialization and termination code is made more
complex and lengthy, but this is not frequently
executed code. There is also a small penalty in
terms of code space.

The author does not feel that the penalty of the
multiple processor support code is noticeable
on a single processor system, but this is obvi-
ously debatable. The current choice is to have
a single driver that supports both single proces-
sor and multiple processor systems.

As the primary performance cost is in terms
of additional code space, it is true that a sin-
gle processor machine with highly constrained
memory may benefit from a simplified driver
without the additional multi-processor support
code. However, such a machine would see
greater benefit by eliminating other code that
would not be necessary on a chosen platform.
For example, the PSB support code could be
removed from a memory constrained single
processor machine that was using ACPI.

This approach of removing code unnecessary
for a particular platform is not a wonderful ap-
proach when it leads to multiple variants of
the driver, all of which have to be supported
and enhanced, and which makes Kconfig even
more complex.

8.10 Stages Of Development, Test And Debug
Of The Driver

The algorithm for transitioning to a new fre-
quency is complex. See the BKDG[4] for a
good description of the steps required, includ-
ing flowcharts. In order to test and debug the
frequency/voltage transition code thoroughly,
the author first wrote a simple simulation of the
processor. This simulation maintained a state
machine, verified that fid/vid MSR control ac-
tivity was legal, provided fid/vid status MSR
results, and wrote a log file of all activity. The
core driver code was then written as an appli-
cation and linked with this simulation code to
allow testing of all combinations.

The driver was then developed as a skele-
ton using printk to develop and test the
BIOS/ACPI interfaces without having the fre-
quency/voltage transition code present. This is
because attempts to actually transition to an in-
valid pstate often result in total system lock-
ups that offer no debug output—if the proces-
sor voltage is too low for the frequency, suc-
cessful code execution ceases.

When the skeleton was working correctly, the
actual transition code was dropped into place,
and tested on real hardware, both single pro-
cessor and multiple processor. (The single pro-
cessor driver was released many months before
the multi-processor capable driver as the multi-
processor capable hardware was not available
in the marketplace.) The functional driver was
tested, using printk to trace activity, and using
external hardware to track power usage, and
using a test driver to independently verify reg-
ister settings.

The functional driver was then made available
to various people in the community for their
feedback. The author is grateful for the ex-
tensive feedback received, which included the
changed code to implement suggestions. The
driver as it exists today is considerably im-

182 • Linux Symposium 2004 • Volume One

proved from the initial release, due to this feed-
back mechanism.

9 How To Determine Valid PStates
For A Given Processor

AMD defines pstates for each processor. A
performance state is a frequency/voltage pair
that is valid for operation of that processor.
These are specified as fid/vid (frequency iden-
tifier/voltage identifier values) pairs, and are
documented in the Processor Thermal and Data
Sheets (see references). The worst case proces-
sor power consumption for each pstate is also
characterized. The BKDG[4] contains tables
for mapping fid to frequency and vid to volt-
age.

Pstates are processor specific. I.e., 2.0 GHz at
1.45V may be correct for one model/revision
of processor, but is not necessarily correct for
a different/revision model of processor.

Code can determine whether a processor sup-
ports or does not support pstate transitions by
executing the cpuid instruction. (For details,
see the BKDG[4] or the source code for the
Linux frequency driver). This needs to be done
for each processor in an MP system.

Each processor in an MP system could theoret-
ically have different pstates.

Ideally, the processor frequency driver would
not contain hardcoded pstate tables, as the
driver would then need to be revised for new
processor revisions. The chosen solution is to
have the BIOS provide the tables of pstates,
and have the driver retrieve the pstate data from
the BIOS. There are two such tables defined for
use by BIOSs for AMD systems:

1. PSB, AMD’s original proprietary mech-
anism, which does not support MP. This
mechanism is being deprecated.

2. ACPI _PSS objects. Whereas the ACPI
specification is a standard, the data within
the_PSSobjects is AMD specific (and, in
fact, processor family specific), and thus
there is still a proprietary nature of this so-
lution.

The current AMD frequency driver obtains
data from the ACPI objects. ACPI does in-
troduce some limitations, which are discussed
later. Experimentation is ongoing with a built-
in database approach to the problem in an at-
tempt to bypass these issues, and also to allow
checking of validity of the ACPI provided data.

10 ACPI And Frequency Restric-
tions

ACPI[5] provides the_PPCobject, that is used
to constrain the pstates available. This object
is dynamic, and can therefore be used in plat-
forms for purposes such as:

• forcing frequency restrictions when oper-
ating on battery power,

• forcing frequency restrictions due to ther-
mal conditions.

For battery / mains power transitions, an ACPI-
compliant GPE (General Purpose Event) input
to the chipset (I/O hub) is dedicated to assign-
ing a SCI (System Control Interrupt) when the
power source changes. The ACPI driver will
then execute the ACPI control method (see the
_PSR power source ACPI object), which is-
sues a notify to the_CPUnobject, which trig-
gers the ACPI driver to re-evaluate the_PPC
object. If the current pstate exceeds that al-
lowed by this new evaluation of the_PPCob-
ject, the CPU frequency driver will be called to
transition to a lower pstate.

Linux Symposium 2004 • Volume One • 183

11 ACPI Issues

ACPI as a standard is not perfect. There is vari-
ation among different implementations, and
Linux ACPI support does not work on all ma-
chines.

ACPI does introduce some overhead, and some
users are not willing to enable ACPI.

ACPI requires that pstates be of equivalent
power usage and frequency across all proces-
sors. In a system with processors that are ca-
pable of different maximum frequencies (for
example, one processor capable of 2.0 GHz
and a second processor capable of 2.2 GHz),
compliance with the ACPI specification means
that the faster processor(s) will be restricted to
the maximum speed of the slowest processor.
Also, if one processor has 5 available pstates,
the presence of processor with only 4 available
pstates will restrict all processors to 4 pstates.

12 What Is There Today?

AMD is shipping pstate capable AMD Opteron
processors (revision CG). Server processors
prior to revision CG were not pstate capable.
All AMD Athlon 64 processors for mobile and
desktop are pstate capable.

BKDG[4] enhancements to describe the capa-
bility are in progress.

AMD internal BIOSs have the enhancements.
These enhancements are rolling out to the pub-
licly available BIOSs along with the BKDG
enhancements.

The multi-processor capable Linux frequency
driver has released under GPL.

The cpufreqd user-mode daemon, available
for download fromhttp://sourceforge.

net/projects/cpufreqd supports multiple

processors.

13 Other Software-directed Power
Saving Mechanisms

13.1 Use Of TheHLT Instruction

The hlt instruction is normally used when the
operating system has no code for the processor
to execute. This is the ACPI C1 state. Exe-
cution of instructions ceases, until the proces-
sor is restarted with an interrupt. The power
savings are maximized when the hlt state is en-
tered in the minimum pstate, due to the lower
voltage. The alternative to the use of the hlt
instruction is a do nothing loop.

13.2 Use of Power Managed Chipset Drivers

Devices on the planar board, such as a PCI-X
bridge or an AGP tunnel, may have the capabil-
ity to operate in lower power modes. Entering
and leaving the lower power modes is under the
control of the driver for that device.

Note that HyperTransport attached devices can
transition themselves to lower power modes
when certain messages are seen on the bus.
However, this functionality is typically config-
urable, so a chipset driver (or the system BIOS
during bootup) would need to enable this capa-
bility.

14 Items For Future Exploration

14.1 A Built-in Database

The theory is that the driver could have a built-
in database of processors and the pstates that
they support. The driver could then use this
database to obtain the pstate data without de-
pendencies on ACPI, or use it for enhanced

184 • Linux Symposium 2004 • Volume One

checking of the ACPI provided data. The dis-
advantage of this is the need to update the
database for new processor revisions. The ad-
vantages are the ability to overcome the ACPI
imposed restrictions, and also to allow the use
of the technology on systems where the ACPI
support is not enabled.

14.2 Kernel Scheduler—CPU Power

An enhanced scheduler for the 2.6 kernel
(2.6.6-bk1) is aware of groups of processors
with different processing power. The power
tating of each CPU group should be dynami-
cally adjusted using a cpufreq transition noti-
fier as the processor frequencies are changed.

See http://lwn.net/Articles/
80601/ for a detailed acount of the scheduler
changes.

14.3 Thermal Management, ACPI Thermal
Zones

Publicly available BIOSs for AMD machines
do not implement thermal zones. Obviously
this is one way to provide the input control for
frequency management based on thermal con-
ditions.

14.4 Thermal Management, Service Processor

Servers typically have a service processor,
which may be compliant to the IPMI specifi-
cation. This service processor is able to ac-
curately monitor temperature at different lo-
cations within the chassis. The 2.6 kernel
includes an IPMI driver. User space code
may use these thermal readings to control fan
speeds and generate administrator alerts. It
may make sense to also use these accurate ther-
mal readings to trigger frequency transitions.

The interaction between thermal events from
the service processor and ACPI thermal zones

may be a problem.

Hiding Thermal Conditions

One concern with the use of CPU frequency
manipulation to avoid overheating is that hard-
ware problems may not be noticed. Over tem-
perature conditions would normally cause ad-
ministrator alerts, but if the processor is first
taken to a lower frequency to hold temperature
down, then the alert may not be generated. A
failing fan (not spinning at full speed) could
therefore be missed. Some hardware compo-
nents fail gradually, and early warning of im-
minent failures is needed to perform planned
maintenance. Losing this data would be bad-
ness.

15 Legal Information

Copyright © 2004 Advanced Micro Devices, Inc

Permission to redistribute in accordance with Linux
Symposium submission guidelines is granted; all
other rights reserved.

AMD, the AMD Arrow logo, AMD Opteron,
AMD Athlon and combinations thereof, AMD-
8111, AMD-8131, and AMD-8151 are trademarks
of Advanced Micro Devices, Inc.

Linux is a registered trademark of Linus Torvalds.

HyperTransport is a licensed trademark of the Hy-
perTransport Technology Consortium.

Other product names used in this publication are for
identification purposes only and may be trademarks
of their respective companies.

16 References

1. AMD Opteron™ Processor Data Sheet,
publication 23932, available fromwww.
amd.com

2. AMD Opteron™ Processor Power And

Linux Symposium 2004 • Volume One • 185

Thermal Data Sheet, publication 30417,
available fromwww.amd.com

3. AMD Athlon™ 64 Processor Power And
Thermal Data Sheet, publication 30430,
available fromwww.amd.com

4. BIOS and Kernel Developer’s Guide (the
BKDG) for AMD Athlon™ 64 and AMD
Opteron™ Processors, publication 26094,
available fromwww.amd.com. Chapter
9 covers frequency management.

5. ACPI 2.0b Specification, fromwww.
acpi.info

6. Text documentation files in the kernel
linux/Documentation/cpu-freq/

directory:

• index.txt

• user-guide.txt

• core.txt

• cpu-drivers.txt

• governors.txt

186 • Linux Symposium 2004 • Volume One

Dynamic Kernel Module Support:
From Theory to Practice

Matt Domsch & Gary Lerhaupt
Dell Linux Engineering

Matt_Domsch@dell.com, Gary_Lerhaupt@dell.com

Abstract

DKMS is a framework which allows individual
kernel modules to be upgraded without chang-
ing your whole kernel. Its primary audience
is fourfold: system administrators who want
to update a single device driver rather than
wait for a new kernel from elsewhere with it
included; distribution maintainers, who want
to release a single targeted bugfix in between
larger scheduled updates; system manufactur-
ers who need single modules changed to sup-
port new hardware or to fix bugs, but do not
wish to test whole new kernels; and driver
developers, who must provide updated device
drivers for testing and general use on a wide
variety of kernels, as well as submit drivers to
kernel.org.

Since OLS2003, DKMS has gone from a good
idea to deployed and used. Based on end user
feedback, additional features have been added:
precompiled module tarball support to speed
factory installation; driver disks for Red Hat
distributions; 2.6 kernel support; SuSE ker-
nel support. Planned features include cross-
architecture build support and additional dis-
tribution driver disk methods.

In addition to overviewing DKMS and its fea-
tures, we explain how to create a dkms.conf file
to DKMS-ify your kernel module source.

1 History

Historically, Linux distributions bundle device
drivers into essentially one large kernel pack-
age, for several primary reasons:

• Completeness: The Linux kernel as dis-
tributed on kernel.org includes all the de-
vice drivers packaged neatly together in
the same kernel tarball. Distro kernels fol-
low kernel.org in this respect.

• Maintainer simplicity: With over 4000
files in the kerneldrivers/ directory,
each possibly separately versioned, it
would be impractical for the kernel main-
tainer(s) to provide a separate package for
each driver.

• Quality Assurance / Support organization
simplicity: It is easiest to ask a user “what
kernel version are you running,” and to
compare this against the list of approved
kernel versions released by the QA team,
rather than requiring the customer to pro-
vide a long and extensive list of package
versions, possibly one per module.

• End user install experience: End users
don’t care about which of the 4000 pos-
sible drivers they need to install, they just
want it to work.

This works well as long as you are able to make
the “top of the tree” contain the most current

188 • Linux Symposium 2004 • Volume One

and most stable device driver, and you are able
to convince your end users to always run the
“top of the tree.” Thekernel.org develop-
ment processes tend to follow this model with
great success.

But widely used distros cannot ask their users
to always update to the top of the kernel.org
tree. Instead, they start their products from the
top of the kernel.org tree at some point in time,
essentially freezing with that, to begin their test
cycles. The duration of these test cycles can
be as short as a few weeks, and as long as a
few years, but 3-6 months is not unusual. Dur-
ing this time, the kernel.org kernels march for-
ward, and some (but not all) of these changes
are backported into the distro’s kernel. They
then apply the minimal patches necessary for
them to declare the product finished, and move
the project into the sustaining phase, where
changes are very closely scrutinized before re-
leasing them to the end users.

1.1 Backporting

It is this sustaining phase that DKMS targets.
DKMS can be used to backport newer device
driver versions from the “top of the tree” ker-
nels where most development takes place to the
now-historical kernels of released products.

The PATCH_MATCHmechanism was specif-
ically designed to allow the application of
patches to a “top of the tree” device driver to
make it work with older kernels. This allows
driver developers to continue to focus their ef-
forts on keeping kernel.org up to date, while al-
lowing that same effort to be used on existing
products with minimal changes. See Section 6
for a further explanation of this feature.

1.2 Driver developers’ packaging

Driver developers have recognized for a long
time that they needed to provide backported

versions of their drivers to match their end
users’ needs. Often these requirements are
imposed on them by system vendors such
as Dell in support of a given distro release.
However, each driver developer was free to
provide the backport mechanism in any way
they chose. Some provided architecture-
specific RPMs which contained only precom-
piled modules. Some provided source RPMs
which could be rebuilt for the running ker-
nel. Some provided driver disks with precom-
piled modules. Some provided just source code
patches, and expected the end user to rebuild
the kernel themselves to obtain the desired de-
vice driver version. All provided their own
Makefiles rather than use the kernel-provided
build system.

As a result, different problems were encoun-
tered with each developers’ solution. Some
developers had not included their drivers in
the kernel.org tree for so long that that there
were discrepancies, e.g.CONFIG_SMPvs
__SMP__, CONFIG_2G vs. CONFIG_3G,
and compiler option differences which went
unnoticed and resulted in hard-to-debug issues.

Needless to say, with so many different mech-
anisms, all done differently, and all with differ-
ent problems, it was a nightmare for end users.

A new mechanism was needed to cleanly han-
dle applying updated device drivers onto an
end user’s system. Hence DKMS was created
as the one module update mechanism to re-
place all previous methods.

2 Goals

DKMS has several design goals.

• Implement only mechanism, not policy.

• Allow system administrators to easily
know what modules, what versions, for

Linux Symposium 2004 • Volume One • 189

what kernels, and in what state, they have
on their system.

• Keep module source as it would be found
in the “top of the tree” on kernel.org. Ap-
ply patches to backport the modules to
earlier kernels as necessary.

• Use the kernel-provided build mecha-
nism. This reduces the Makefile magic
that driver developers need to know, thus
the likelihood of getting it wrong.

• Keep additional DKMS knowledge a
driver developer must have to a minimum.
Only a small per-driver dkms.conf file is
needed.

• Allow multiple versions of any one mod-
ule to be present on the system, with only
one active at any given time.

• Allow DKMS-aware drivers to be
packaged in the Linux Standard Base-
conformant RPM format.

• Ease of use by multiple audiences: driver
developers, system administrators, Linux
distros, and system vendors.

We discuss DKMS as it applies to each of these
four audiences.

3 Distributions

All present Linux distributions distribute de-
vice drivers bundled into essentially one large
kernel package, for reasons outlined in Sec-
tion 1. It makes the most sense, most of the
time.

However, there are cases where it does not
make sense.

• Severity 1 bugs are discovered in a sin-
gle device driver between larger sched-
uled updates. Ideally you’d like your af-
fected users to be able to get the single
module update without having to release
and Q/A a whole new kernel. Only cus-
tomers who are affected by the particular
bug need to update “off-cycle.”

• Solutions vendors, for change control rea-
sons, often certify their solution on a par-
ticular distribution, scheduled update re-
lease, and sometimes specific kernel ver-
sion. The latter, combined with releasing
device driver bug fixes as whole new ker-
nels, puts the customer in the untenable
position of either updating to the new ker-
nel (and losing the certification of the so-
lution vendor), or forgoing the bug fix and
possibly putting their data at risk.

• Some device drivers are not (yet) included
in kernel.org nor a distro kernel, however
one may be required for a functional soft-
ware solution. The current support mod-
els require that the add-on driver “taint”
the kernel or in some way flag to the sup-
port organization that the user is running
an unsupported kernel module. Tainting,
while valid, only has three dimensions
to it at present: Proprietary—non-GPL
licensed; Forced—loaded viainsmod
-f ; and Unsafe SMP—for some CPUs
which are not designed to be SMP-
capable. A GPL-licensed device driver
which is not yet in kernel.org or provided
by the distribution may trigger none of
these taints, yet the support organization
needs to be aware of this module’s pres-
ence. To avoid this, we expect to see
the distros begin to cryptographically sign
kernel modules that they produce, and
taint on load of an unsigned module. This
would help reduce the support organiza-
tion’s work for calls about “unsupported”

190 • Linux Symposium 2004 • Volume One

configurations. With DKMS in use, there
is less a need for such methods, as it’s easy
to see which modules have been changed.

Note: this is not to suggest that driver au-
thors should not submit their drivers to
kernel.org —absolutely they should.

• The distro QA team would like to test up-
dates to specific drivers without waiting
for the kernel maintenance team to rebuild
the kernel package (which can take many
hours in some cases). Likewise, individ-
ual end users may be willing (and often be
required, e.g. if the distro QA team can’t
reproduce the users’s hardware and soft-
ware environment exactly) to show that a
particular bug is fixed in a driver, prior
to releasing the fix toall of that distro’s
users.

• New hardware support via driver disks:
Hardware vendors release new hardware
asynchronously to any software vendor
schedule, no matter how hard companies
may try to synchronize releases. OS dis-
tributions provide install methods which
use driver diskettes to enable new hard-
ware for previously-released versions of
the OS. Generating driver disks has al-
ways been a difficult and error-prone pro-
cedure, different for each OS distribution,
not something that the casual end-user
would dare attempt.

DKMS was designed to address all of these
concerns.

DKMS aims to provide a clear separation be-
tween mechanism (how one updates individual
kernel modules and tracks such activity) and
policy (when should one update individual ker-
nel modules).

3.1 Mechanism

DKMS provides only the mechanism for up-
dating individual kernel modules, not policy.
As such, it can be used by distributions (per
their policy) for updating individual device
drivers for individual users affected by Severity
1 bugs, without releasing a whole new kernel.

The first mechanism critical to a system admin-
istrator or support organization is thestatus
command, which reports the name, version,
and state of each kernel module under DKMS
control. By querying DKMS for this infor-
mation, system administrators and distribution
support organizations may quickly understand
when an updated device driver is in use to
speed resolution when issues are seen.

DKMS’s ability to generate driver diskettes
gives control to both novice and seasoned sys-
tem administrators alike, as they can now per-
form work which otherwise they would have
to wait for a support organization to do for
them. They can get their new hardware sys-
tems up-and-running quickly by themselves,
leaving the support organizations with time to
do other more interesting value-added work.

3.2 Policy

Suggested policy items include:

• Updates must pass QA. This seems ob-
vious, but it reduces broken updates (de-
signed to fix other problems) from being
released.

• Updates must be submitted, and ideally be
included already, upstream. For this we
expect kernel.org and the OS distribution
to include the update in their next larger
scheduled update. This ensures that when
the next kernel.org kernel or distro update

Linux Symposium 2004 • Volume One • 191

comes out, the short-term fix provided via
DKMS is incorporated already.

• TheAUTOINSTALLmechanism is set to
NOfor all modules which are shipped with
the target distro’s kernel. This prevents
the DKMS autoinstaller from installing
a (possibly older) kernel module onto a
newer kernel without being explicitly told
to do so by the system administrator. This
follows from the “all DKMS updates must
be in the next larger release” rule above.

• All issues for which DKMS is used are
tracked in the appropriate bug tracking
databases until they are included up-
stream, and are reviewed regularly.

• All DKMS packages are provided as
DKMS-enabled RPMs for easy installa-
tion and removal, per the Linux Standard
Base specification.

• All DKMS packages are posted to the dis-
tro’s support web site for download by
system administrators affected by the par-
tiular issue.

4 System Vendors

DKMS is useful to System Vendors such as
Dell for many of the same reasons it’s useful
to the Linux distributions. In addition, system
vendors face additional issues:

• Critical bug fixes for distro-provided
drivers: While we hope to never need
such, and we test extensively with distro-
provided drivers, occasionally we have
discovered a critical bug after the distri-
bution has cut their gold CDs. We use
DKMS to update just the affected device
drivers.

• Alternate drivers: Dell occasionally needs
to provide an alternate driver for a piece of
hardware rather than that provided by the
distribution natively. For example, Dell
provides the Intel iANS network channel
bonding and failover driver for customers
who have used iANS in the past, and wish
to continue using it rather than upgrading
to the native channel bonding driver resi-
dent in the distribution.

• Factory installation: Dell installs various
OS distribution releases onto new hard-
ware in its factories. We try not to up-
date from the gold release of a distribution
version to any of the scheduled updates,
as customers expect to receive gold. We
use DKMS to enable newer device drivers
to handle newer hardware than was sup-
ported natively in the gold release, while
keeping the gold kernel the same.

We briefly describe the policy Dell uses, in ad-
dition to the above rules suggested to OS dis-
tributions:

• Prebuilt DKMS tarballs are required for
factory installation use, for all kernels
used in the factory install process. This
prevents the need for the compiler to be
run, saving time through the factories.
Dell rarely changes the factory install im-
ages for a given OS release, so this is not
a huge burden on the DKMS packager.

• All DKMS packages are posted to sup-
port.dell.com for download by system ad-
ministrators purchasing systems without
Linux factory-installed.

192 • Linux Symposium 2004 • Volume One

Figure 1: DKMS state diagram.

5 System Administrators

5.1 Understanding the DKMS Life Cycle

Before diving into using DKMS to manage ker-
nel modules, it is helpful to understand the life
cycle by which DKMS maintains your kernel
modules. In Figure 1, each rectangle repre-
sents a state your module can be in and each
italicized word represents a DKMS action that
can used to switch between the various DKMS
states. In the following section we will look
further into each of these DKMS actions and
then continue on to discuss auxiliary DKMS
functionality that extends and improves upon
your ability to utilize these basic commands.

5.2 RPM and DKMS

DKMS was designed to work well with Red
Hat Package Manger (RPM). Many times us-
ing DKMS to install a kernel module is as easy
as installing a DKMS-enabled module RPM.
Internally in these RPMs, DKMS is used to
add , build , and install a module. By
wrapping DKMS commands inside of an RPM,
you get the benefits of RPM (package version-
ing, security, dependency resolution, and pack-
age distribution methodologies) while DKMS
handles the work RPM does not, versioning
and building of individual kernel modules.
For reference, a sample DKMS-enabled RPM
specfile can be found in the DKMS package.

5.3 Using DKMS

5.3.1 Add

DKMS manages kernel module versions at
the source code level. The first require-
ment of using DKMS is that the module
source be located on the build system and
that it be located in the directory/usr/src/
<module>-<module-version>/ . It
also requires that a dkms.conf file exists with
the appropriately formatted directives within
this configuration file to tell DKMS such things
as where to install the module and how to build
it. Once these two requirements have been
met and DKMS has been installed on your sys-
tem, you can begin using DKMS by adding a
module/module-version to the DKMS tree. For
example:

dkms add -m megaraid2 -v 2.10.3

This example add command would add
megaraid2/2.10.3 to the already existent
/var/dkms tree, leaving it in the Added
state.

5.3.2 Build

Once in the Added state, the module is ready
to be built. This occurs through the DKMS
build command and requires that the proper
kernel sources are located on the system from
the /lib/module/<kernel-version>
/build symlink. The make command that is

Linux Symposium 2004 • Volume One • 193

used to compile the module is specified in the
dkms.conf configuration file. Continuing with
the megaraid2/2.10.3 example:

dkms build -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

The build command compiles the module
but stops short of installing it. As can be seen
in the above example,build expects a kernel-
version parameter. If this kernel name is left
out, it assumes the currently running kernel.
However, it functions perfectly well to build
modules for kernels that are not currently run-
ning. This functionality is assured through use
of a kernel preparation subroutine that runs be-
fore any module build is performed in order
to ensure that the module being built is linked
against the proper kernel symbols.

Successful completion of abuild creates, for
this example, the/var/dkms/megaraid2/

2.10.3/2.4.21-4.ELsmp/ directory as
well as the log and module subdirectories
within this directory. The log directory holds
a log file of the module make and the module
directory holds copies of the resultant binaries.

5.3.3 Install

With the completion of abuild , the mod-
ule can now be installed on the kernel for
which it was built. Installation copies the com-
piled module binary to the correct location in
the /lib/modules/ tree as specified in the
dkms.conf file. If a module by that name is
already found in that location, DKMS saves it
in its tree as an original module so at a later
time it can be put back into place if the newer
module is uninstalled. An exampleinstall
command:

dkms install -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

If a module by the same name is already
installed, DKMS saves a copy in its
tree and does so in the/var/dkms/
<module-name>/original_module/
directory. In this case, it would be saved to
/var/dkms/megaraid2/original_
module/2.4.21-4.ELsmp/ .

5.3.4 Uninstall and Remove

To complete the DKMS cycle, you can also
uninstall or remove your module from the
tree. Theuninstall command deletes from
/lib/modules the module you installed
and, if applicable, replaces it with its original
module. In scenarios where multiple versions
of a module are located within the DKMS tree,
when one version is uninstalled, DKMS does
not try to understand or assume which of these
other versions to put in its place. Instead, if
a true “original_module” was saved from the
very first DKMS installation, it will be put back
into the kernel and all of the other module ver-
sions for that module will be left in the Built
state. An exampleuninstall would be:

dkms uninstall -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

Again, if the kernel version parameter is un-
set, the currently running kernel is assumed,
although, the same behavior does not occur
with theremove command. Theremove and
uninstall are very similar in thatremove
will do all of the same steps asuninstall .
However, whenremove is employed, if the
module-version being removed is the last in-
stance of that module-version for all kernels
on your system, after the uninstall portion of
the remove completes, it will delete all traces
of that module from the DKMS tree. To put it
another way, when anuninstall command
completes, your modules are left in the Built

194 • Linux Symposium 2004 • Volume One

state. However, when aremove completes,
you would be left in the Not in Tree state. Here
are two sampleremove commands:

dkms remove -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

dkms remove -m megaraid2
-v 2.10.3 --all

With the first exampleremove command,
your module would be uninstalled and if this
module/module-version were not installed on
any other kernel, all traces of it would be re-
moved from the DKMS tree all together. If,
say, megaraid2/2.10.3 was also installed on the
2.4.21-4.ELhugemem kernel, the firstremove
command would leave it alone and it would re-
main intact in the DKMS tree. In the second
example, that would not be the case. It would
uninstall all versions of the megaraid2/2.10.3
module from all kernels and then completely
expunge all references of megaraid2/2.10.3
from the DKMS tree. Thus,remove is what
cleans your DKMS tree.

5.4 Miscellaneous DKMS Commands

5.4.1 Status

DKMS also comes with a fully functional sta-
tus command that returns information about
what is currently located in your tree. If no
parameters are set, it will return all informa-
tion found. Logically, the specificity of infor-
mation returned depends on which parameters
are passed to your status command. Each sta-
tus entry returned will be of the state: “added,”
“built,” or “installed,” and if an original mod-
ule has been saved, this information will also
be displayed. Some example status commands
include:

dkms status
dkms status -m megaraid2
dkms status -m megaraid2 -v 2.10.3
dkms status -k 2.4.21-4.ELsmp
dkms status -m megaraid2

-v 2.10.3 -k 2.4.21-4.ELsmp

5.4.2 Match

Another major feature of DKMS is the match
command. The match command takes the con-
figuration of DKMS installed modules for one
kernel and applies this same configuration to
some other kernel. When the match completes,
the same module/module-versions that were
installed for one kernel are also then installed
on the other kernel. This is helpful when you
are upgrading from one kernel to the next, but
would like to keep the same DKMS modules in
place for the new kernel. Here is an example:

dkms match
--templatekernel 2.4.21-4.ELsmp
-k 2.4.21-5.ELsmp

As can be seen in the example, the
−−templatekernel is the “match-er”
kernel from which the configuration is based,
while the-k kernel is the “match-ee” upon
which the configuration is instated.

5.4.3 dkms_autoinstaller

Similar in nature to the match command is
the dkms_autoinstaller service. This service
gets installed as part of the DKMS RPM
in the /etc/init.d directory. Depending on
whether anAUTOINSTALL directive is set
within a module’s dkms.conf configuration
file, the dkms_autoinstaller will automatically
build and install that module as you boot your
system into new kernels which do not already
have this module installed.

5.4.4 mkdriverdisk

The last miscellaneous DKMS command is
mkdriverdisk . As can be inferred from its
name,mkdriverdisk will take the proper

Linux Symposium 2004 • Volume One • 195

sources in your DKMS tree and create a driver
disk image for use in providing updated drivers
to Linux distribution installations. A sample
mkdriverdisk might look like:

dkms mkdriverdisk -d redhat
-m megaraid2 -v 2.10.3
-k 2.4.21-4.ELBOOT

Currently, the only supported distribution
driver disk format is Red Hat. For more
information on the extra necessary files and
their formats for DKMS to create Red
Hat driver disks, seehttp://people.
redhat.com/dledford . These files
should be placed in your module source direc-
tory.

5.5 Systems Management with DKMS Tar-
balls

As we have seen, DKMS provides a simple
mechanism to build, install, and track device
driver updates. So far, all these actions have
related to a single machine. But what if you’ve
got many similar machines under your admin-
istrative control? What if you have a compiler
and kernel source on only one system (your
master build system), but you need to deploy
your newly built driver to all your other sys-
tems? DKMS provides a solution to this as
well—in the mktarball and ldtarball
commands.

Themktarball command rolls up copies of
each device driver module file which you’ve
built using DKMS into a compressed tar-
ball. You may then copy this tarball to each
of your target systems, and use the DKMS
ldtarball command to load those into your
DKMS tree, leaving each module in the Built
state, ready to be installed. This avoids the
need for both kernel source and compilers to
be on every target system.

For example:

You have built the megaraid2 device driver,
version 2.10.3, for two different kernel fami-
lies (here 2.4.20-9 and 2.4.21-4.EL), on your
master build system.

dkms status
megaraid2, 2.10.3, 2.4.20-9: built
megaraid2, 2.10.3, 2.4.20-9bigmem: built
megaraid2, 2.10.3, 2.4.20-9BOOT: built
megaraid2, 2.10.3, 2.4.20-9smp: built
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

You wish to deploy this version of the
driver to several systems, without rebuilding
from source each time. You can use the
mktarball command to generate one tarball
for each kernel family:

dkms mktarball -m megaraid2
-v 2.10.3
-k 2.4.21-4.EL,2.4.21-4.ELsmp,
2.4.21-4.ELBOOT,2.4.21-4.ELhugemem

Marking /usr/src/megaraid2-2.10.3 for archiving...
Marking kernel 2.4.21-4.EL for archiving...
Marking kernel 2.4.21-4.ELBOOT for archiving...
Marking kernel 2.4.21-4.ELhugemem for archiving...
Marking kernel 2.4.21-4.ELsmp for archiving...
Tarball location:

/var/dkms/megaraid2/2.10.3/tarball/
megaraid2-2.10.3-manykernels.tgz
Done.

You can make one big tarball containing mod-
ules for both families by omitting the -k ar-
gument and kernel list; DKMS will include a
module for every kernel version found.

You may then copy the tarball (renaming it if
you wish) to each of your target systems using
any mechanism you wish, and load the mod-
ules in. First, see that the target DKMS tree
does not contain the modules you’re loading:

dkms status
Nothing found within the DKMS tree for
this status command. If your modules were
not installed with DKMS, they will not show
up here.

Then, load the tarball on your target system:

196 • Linux Symposium 2004 • Volume One

dkms ldtarball
--archive=megaraid2-2.10.3-manykernels.tgz

Loading tarball for module:
megaraid2 / version: 2.10.3

Loading /usr/src/megaraid2-2.10.3...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.EL...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELBOOT...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELhugemem...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELsmp...
Creating /var/dkms/megaraid2/2.10.3/source symlink...

Finally, verify the modules are present, and in
the Built state:

dkms status
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

DKMS ldtarball leaves the modules in the
Built state, not the Installed state. For each ker-
nel version you want your modules to be in-
stalled into, follow the install steps as above.

6 Driver Developers

As the maintainer of a kernel module, the only
thing you need to do to get DKMS interoper-
ability is place a small dkms.conf file in your
driver source tarball. Once this has been done,
any user of DKMS can simply do:

dkms ldtarball --archive /path/to/foo-1.0.tgz

That’s it. We could discuss at length (which
we will not rehash in this paper) the best meth-
ods to utilizing DKMS within a dkms-enabled
module RPM, but for simple DKMS usability,
the buck stops here. With the dkms.conf file
in place, you have now positioned your source
tarball to be usable by all manner and skill level
of Linux users utilizing your driver. Effec-
tively, you have widely increased your testing
base without having to wade into package man-
agement or pre-compiled binaries. DKMS will
handle this all for you. Along the same line,

by leveraging DKMS you can now easily allow
more widespread testing of your driver. Since
driver versions can now be cleanly tracked out-
side of the kernel tree, you no longer must wait
for the next kernel release in order for the com-
munity to register the necessary debugging cy-
cles against your code. Instead, DKMS can be
counted on to manage various versions of your
kernel module such that any catastrophic errors
in your code can be easily mitigated by a sin-
gular dkms uninstall command.

This leaves the composition of the dkms.conf
as the only interesting piece left to discuss
for the driver developer audience. With that
in mind, we will now explicate over two
dkms.conf examples ranging from that which
is minimally required (Figure 2) to that which
expresses maximal configuration (Figure 3).

6.1 Minimal dkms.conf for 2.4 kernels

Referring to Figure 2, the first thing that is dis-
tinguishable is the definition of the version of
the package and the make command to be used
to compile your module. This is only neces-
sary for 2.4-based kernels, and lets the devel-
oper specify their desired make incantation.

Reviewing the rest of the dkms.conf,
PACKAGE_NAMEand BUILT_MODULE_
NAME[0] appear to be duplicate in nature,
but this is only the case for a package which
contains only one kernel module within it.
Had this example been for something like
ALSA, the name of the package would be
“alsa,” but theBUILT_MODULE_NAMEarray
would instead be populated with the names of
the kernel modules within the ALSA package.

The final required piece of this minimal ex-
ample is theDEST_MODULE_LOCATIONar-
ray. This simply tells DKMS where in the
/lib/modules tree it should install your module.

Linux Symposium 2004 • Volume One • 197

PACKAGE_NAME="megaraid2"
PACKAGE_VERSION="2.10.3"

MAKE[0]="make -C ${kernel_source_dir}
SUBDIRS=${dkms_tree}/${PACKAGE_NAME}/${PACKAGE_VERSION}/build modules"

BUILT_MODULE_NAME[0]="megaraid2"
DEST_MODULE_LOCATION[0]="/kernel/drivers/scsi/"

Figure 2: A minimal dkms.conf

6.2 Minimal dkms.conf for 2.6 kernels

In the current version of DKMS, for 2.6 kernels
the MAKE command listed in the dkms.conf
is wholly ignored, and instead DKMS will al-
ways use:

make -C /lib/modules/$kernel_version/build \
M=$dkms_tree/$module/$module_version/build

This jibes with the new external module build
infrastructure supported by Sam Ravnborg’s
kernel Makefile improvements, as DKMS will
always build your module in a build subdi-
rectory it creates for each version you have
installed. Similarly, an impending future
version of DKMS will also begin to ig-
nore thePACKAGE_VERSIONas specified in
dkms.conf in favor of the new modinfo pro-
vided information as implemented by Rusty
Russell.

With regard to removing the requirement for
DEST_MODULE_LOCATIONfor 2.6 kernels,
given that similar information should be lo-
cated in the install target of the Makefile pro-
vided with your package, it is theoretically pos-
sible that DKMS could one day glean such
information from the Makefile instead. In
fact, in a simple scenario as this example, it
is further theoretically possible that the name
of the package and of the built module could
also be determined from the package Make-
file. In effect, this would completely remove

any need for a dkms.conf whatsoever, thus en-
abling all simple module tarballs to be auto-
matically DKMS enabled.

Though, as these features have not been ex-
plored and as package maintainers would
likely want to use some of the other dkms.conf
directive features which are about to be elab-
orated upon, it is likely that requiring a
dkms.conf will continue for the foreseeable fu-
ture.

6.3 Optional dkms.conf directives

In the real-world version of the Dell’s DKMS-
enabled megaraid2 package, we also specify
the optional directives:

MODULES_CONF_ALIAS_TYPE[0]=
"scsi_hostadapter"

MODULES_CONF_OBSOLETES[0]=
"megaraid,megaraid_2002"

REMAKE_INITRD="yes"

These directives tell DKMS to remake the ker-
nel’s initial ramdisk after every DKMS install
or uninstall of this module. They further spec-
ify that before this happens, /etc/modules.conf
(or /etc/sysconfig/kernel) should be edited in-
telligently so that the initrd is properly assem-
bled. In this case, if /etc/modules.conf already
contains a reference to either “megaraid” or
“megaraid_2002,” these will be switched to
“megaraid2.” If no such references are found,

198 • Linux Symposium 2004 • Volume One

then a new “scsi_hostadapter” entry will be
added as the last such scsi_hostadapter num-
ber.

On the other hand, if it had also included:

MODULES_CONF_OBSOLETES_ONLY="yes"

then had no obsolete references been found,
a new “scsi_hostadapter” line would not have
been added. This would be useful in scenarios
where you instead want to rely on something
like Red Hat’s kudzu program for adding ref-
erences for your kernel modules.

As well one could hypothetically also specify
within the dkms.conf:

DEST_MODULE_NAME[0]="megaraid"

This would cause the resultant megaraid2 ker-
nel module to be renamed to “megaraid” be-
fore being installed. Rather than having to
propagate various one-off naming mechanisms
which include the version as part of the mod-
ule name in /lib/modules as has been previous
common practice, DKMS could instead be re-
lied upon to manage all module versioning to
avoid such clutter. Was megaraid_2002 a ver-
sion or just a special year in the hearts of the
megaraid developers? While you and I might
know the answer to this, it certainly confused
Dell’s customers.

Continuing with hypothetical additions to the
dkms.conf in Figure 2, one could also include:

BUILD_EXCLUSIVE_KERNEL="^2\.4.*"
BUILD_EXCLUSIVE_ARCH="i.86"

In the event that you know the code you pro-
duced is not portable, this is how you can tell
DKMS to keep people from trying to build it

elsewhere. The above restrictions would only
allow the kernel module to be built on 2.4 ker-
nels on x86 architectures.

Continuting with optional dkms.conf direc-
tives, the ALSA example in Figure 3 is taken
directly from a DKMS-enabled package that
Dell released to address sound issues on the
Precision 360 workstation. It is slightly
abridged as the alsa-driver as delivered actually
installs 13 separate kernel modules, but for the
sake of this example, only 9 are shown.

In this example, we have:

AUTOINSTALL="yes"

This tells the boot-time service
dkms_autoinstaller that this package should be
built and installed as you boot into a new ker-
nel that DKMS has not already installed this
package upon. By general policy, Dell only
allows AUTOINSTALL to be set if the kernel
modules are not already natively included
with the kernel. This is to avoid the scenario
where DKMS might automatically install
over a newer version of the kernel module as
provided by some newer version of the kernel.
However, given the 2.6 modinfo changes,
DKMS can now be modified to intelligently
check the version of a native kernel module
before clobbering it with some older version.
This will likely result in a future policy change
within Dell with regard to this feature.

In this example, we also have:

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

These two directives indicate to DKMS that
if the kernel that the kernel module is being
built for is >=2.4.22 (but still of the 2.4 fam-
ily), the included adriver.h.patch should first be

Linux Symposium 2004 • Volume One • 199

PACKAGE_NAME="alsa-driver"
PACKAGE_VERSION="0.9.0rc6"

MAKE="sh configure --with-cards=intel8x0 --with-sequencer=yes \
--with-kernel=/lib/modules/$kernelver/build \
--with-moddir=/lib/modules/$kernelver/kernel/sound > /dev/null; make"

AUTOINSTALL="yes"

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

POST_INSTALL="alsa-driver-dkms-post.sh"
MODULES_CONF[0]="alias char-major-116 snd"
MODULES_CONF[1]="alias snd-card-0 snd-intel8x0"
MODULES_CONF[2]="alias char-major-14 soundcore"
MODULES_CONF[3]="alias sound-slot-0 snd-card-0"
MODULES_CONF[4]="alias sound-service-0-0 snd-mixer-oss"
MODULES_CONF[5]="alias sound-service-0-1 snd-seq-oss"
MODULES_CONF[6]="alias sound-service-0-3 snd-pcm-oss"
MODULES_CONF[7]="alias sound-service-0-8 snd-seq-oss"
MODULES_CONF[8]="alias sound-service-0-12 snd-pcm-oss"
MODULES_CONF[9]="post-install snd-card-0 /usr/sbin/alsactl restore >/dev/null 2>&1 || :"
MODULES_CONF[10]="pre-remove snd-card-0 /usr/sbin/alsactl store >/dev/null 2>&1 || :"

BUILT_MODULE_NAME[0]="snd-pcm"
BUILT_MODULE_LOCATION[0]="acore"
DEST_MODULE_LOCATION[0]="/kernel/sound/acore"

BUILT_MODULE_NAME[1]="snd-rawmidi"
BUILT_MODULE_LOCATION[1]="acore"
DEST_MODULE_LOCATION[1]="/kernel/sound/acore"

BUILT_MODULE_NAME[2]="snd-timer"
BUILT_MODULE_LOCATION[2]="acore"
DEST_MODULE_LOCATION[2]="/kernel/sound/acore"

BUILT_MODULE_NAME[3]="snd"
BUILT_MODULE_LOCATION[3]="acore"
DEST_MODULE_LOCATION[3]="/kernel/sound/acore"

BUILT_MODULE_NAME[4]="snd-mixer-oss"
BUILT_MODULE_LOCATION[4]="acore/oss"
DEST_MODULE_LOCATION[4]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[5]="snd-pcm-oss"
BUILT_MODULE_LOCATION[5]="acore/oss"
DEST_MODULE_LOCATION[5]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[6]="snd-seq-device"
BUILT_MODULE_LOCATION[6]="acore/seq"
DEST_MODULE_LOCATION[6]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[7]="snd-seq-midi-event"
BUILT_MODULE_LOCATION[7]="acore/seq"
DEST_MODULE_LOCATION[7]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[8]="snd-seq-midi"
BUILT_MODULE_LOCATION[8]="acore/seq"
DEST_MODULE_LOCATION[8]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[9]="snd-seq"
BUILT_MODULE_LOCATION[9]="acore/seq"
DEST_MODULE_LOCATION[9]="/kernel/sound/acore/seq"

Figure 3: An elaborate dkms.conf

200 • Linux Symposium 2004 • Volume One

applied to the module source before a module
build occurs. In this way, by including vari-
ous patches needed for various kernel versions,
you can distribute one source tarball and en-
sure it will always properly build regardless of
the end user target kernel. If no corresponding
PATCH_MATCH[0] entry were specified for
PATCH[0] , then the adriver.h.patch would al-
ways get applied before a module build. As
DKMS always starts off each module build
with pristine module source, you can always
ensure the right patches are being applied.

Also seen in this example is:

MODULES_CONF[0]=
"alias char-major-116 snd"

MODULES_CONF[1]=
"alias snd-card-0 snd-intel8x0"

Unlike the previous discussion of
/etc/modules.conf changes, any entries
placed into theMODULES_CONFarray are
automatically added into /etc/modules.conf
during a module install. These are later only
removed during the final module uninstall.

Lastly, we have:

POST_INSTALL="alsa-driver-dkms-post.sh"

In the event that you have other scripts that
must be run during various DKMS events,
DKMS includesPOST_ADD, POST_BUILD,
POST_INSTALL and POST_REMOVEfunc-
tionality.

7 Future

As you can tell from the above, DKMS is very
much ready for deployment now. However, as
with all software projects, there’s room for im-
provement.

7.1 Cross-Architecture Builds

DKMS today has no concept of a platform ar-
chitecture such as i386, x86_64, ia64, sparc,
and the like. It expects that it is building ker-
nel modules with a native compiler, not a cross
compiler, and that the target architecture is the
native architecture. While this works in prac-
tice, it would be convenient if DKMS were able
to be used to build kernel modules for non-
native architectures.

Today DKMS handles the cross-architecture
build process by having separate /var/dkms di-
rectory trees for each architecture, and using
thedkmstree option to specify a using a dif-
ferent tree, and theconfig option to specify
to use a different kernel configuration file.

Going forward, we plan to add an−−arch
option to DKMS, or have it glean it from the
kernel config file and act accordingly.

7.2 Additional distribution driver disks

DKMS today supports generating driver disks
in the Red Hat format only. We recognize that
other distributions accomplish the same goal
using other driver disk formats. This should
be relatively simple to add once we understand
what the additional formats are.

8 Conclusion

DKMS provides a simple and unified mech-
anism for driver authors, Linux distributions,
system vendors, and system administrators to
update the device drivers on a target system
without updating the whole kernel. It allows
driver developers to keep their work aimed at
the “top of the tree,” and to backport that work
to older kernels painlessly. It allows Linux dis-
tributions to provide updates to single device
drivers asynchronous to the release of a larger

Linux Symposium 2004 • Volume One • 201

scheduled update, and to know what drivers
have been updated. It lets system vendors
ship newer hardware than was supported in a
distribution’s “gold” release without invalidat-
ing any test or certification work done on the
“gold” release. It lets system administrators
update individual drivers to match their envi-
ronment and their needs, regardless of whose
kernel they are running. It lets end users track
which module versions have been added to
their system.

We believe DKMS is a project whose time has
come, and encourage everyone to use it.

9 References

DKMS is licensed under the GNU General
Public License. It is available at

http://linux.dell.com/dkms/ ,

and has a mailing list dkms-devel@
lists.us.dell.com to which you may
subscribe at http://lists.us.dell.
com/ .

202 • Linux Symposium 2004 • Volume One

e100 Weight Reduction Program
Writing for Maintainability

Scott Feldman
Intel Corporation

scott.feldman@intel.com

Abstract

Corporate-authored device drivers are
bloated/buggy with dead code, HW and
OS abstraction layers, non-standard user
controls, and support for complicated HW
features that provide little or no value. e100
in 2.6.4 has been rewritten to address these
issues and in the process lost 75% of the lines
of code, with no loss of functionality. This
paper gives guidelines to other corporate driver
authors.

Introduction

This paper gives some basic guidelines to cor-
porate device driver maintainers based on ex-
periences I had while re-writing the e100 net-
work device driver for Intel’s PRO/100+ Eth-
ernet controllers. By corporate maintainer, I
mean someone employed by a corporation to
provide Linux driver support for that corpora-
tion’s device. Of course, these guidelines may
apply to non-corporate individuals as well, but
the intended audience is the corporate driver
author.

The assumption behind these guidelines is that
the device driver is intended for inclusion in
the Linux kernel. For a driver to be accepted
into the Linux kernel, it must meet both tech-
nical and non-technical requirements. This pa-
per focuses on the non-technical requirements,

specifically maintainability.

Guideline #1: Maintainability over
Everything Else

Corporate marketing requirements documents
specify priority order to features and per-
formance and schedule (time-to-market), but
rarely specify maintainability. However, main-
tainability is themost important requirement
for Linux kernel drivers.

Why?

• You will not be the long-term driver main-
tainer.

• Your company will not be the long-term
driver maintainer.

• Your driver will out-live your interest in it.

Driver code should be written so a like-skilled
kernel maintainer can fix a problem in a rea-
sonable amount of time without you or your re-
sources. Here are a few items to keep in mind
to improve maintainability.

• Use kernel coding style over corporate
coding style

• Document how the driver/device works, at
a high level, in a “Theory of Operation”
comment section

204 • Linux Symposium 2004 • Volume One

old driver v2 new driver v3

VLANs tagging/
stripping

use SW VLAN sup-
port in kernel

Tx/Rx checksum of
loading

use SW checksum
support in kernel

interrupt moderation use NAPI support in
kernel

Table 1: Feature migration in e100

• Document hardware workarounds

Guideline #2: Don’t Add Features
for Feature’s Sake

Consider the code complexity to support the
feature versus the user’s benefit. Is the de-
vice still usable without the feature? Is the de-
vice performing reasonably for the 80% use-
case without the feature? Is the hardware of-
fload feature working against ever increasing
CPU/memory/IO speeds? Is there a software
equivalent to the feature already provided in
the OS?

If the answer is yes to any of these questions, it
is better to not implement the feature, keeping
the complexity in the driver low and maintain-
ability high.

Table 1 shows features removed from the driver
during the re-write of e100 because the OS al-
ready provides software equivalents.

Guideline #3: Limit User-Controls—
Use What’s Built into the OS

Most users will use the default settings, so be-
fore adding a user-control, consider:

1. If the driver model for your device class
already provides a mechanism for the
user-control, enable that support in the

old driver v2 new driver v3

BundleMax not needed – NAPI
BundleSmallFr not needed – NAPI
IntDelay not needed – NAPI
ucode not needed – NAPI
RxDescriptors ethtool -G
TxDescriptors ethtool -G
XsumRX not needed – check-

sum in OS
IFS always enabled
e100_speed_duplex ethtool -s

Table 2: User-control migration in e100

driver rather than adding a custom user-
control.

2. If the driver model doesn’t provide a user-
control, but the user-control is potentially
useful to other drivers, extend the driver
model to include user-control.

3. If the user-control is to enable/disable a
workaround, enable the workaround with-
out the use of a user-control. (Solve
the problem without requiring a decision
from the user).

4. If the user-control is to tune performance,
tune the driver for the 80% use-case and
remove the user-control.

Table 2 shows user-controls (implemented as
module parameters) removed from the driver
during the re-write of e100 because the OS
already provides built-in user-controls, or the
user-control was no longer needed.

Guideline #4: Don’t Write Code
that’s Already in the Kernel

Look for library code that’s already used by
other drivers and adapt that to your driver.
Common hardware is often used between ven-
dors’ devices, so shared code will work for all
(and be debugged by all).

Linux Symposium 2004 • Volume One • 205

For example, e100 has a highly MDI-
compliant PHY interface, so usemii.c for
standard PHY access and remove custom code
from the driver.

For another example, e100 v2 used/proc/
net/IntelPROAdapter to report driver
information. This functionality was replaced
with ethtool , sysfs , lspci , etc.

Look for opportunities to move code out of the
driver into generic code.

Guideline #5: Don’t Use OS-
abstraction Layers

A common corporate design goal is to reuse
driver code as much as possible between OSes.
This allows a driver to be brought up on one OS
and “ported” to another OS with little work.
After all, the hardware interface to the device
didn’t change from one OS to the next, so
all that is required is an OS-abstraction layer
that wraps the OS’s native driver model with a
generic driver model. The driver is then written
to the generic driver model and it’s just a mat-
ter of porting the OS-abstraction layer to each
target OS.

There are problems when doing this with
Linux:

1. The OS-abstraction wrapper code means
nothing to an outside Linux maintainer
and just obfuscates the real meaning be-
hind the code. This makes your code
harder to follow and therefore harder to
maintain.

2. The generic driver model may not map 1:1
with the native driver model leaving gaps
in compatibility that you’ll need to fix up
with OS-specific code.

3. Limits your ability to back-port contribu-
tions given under GPL to non-GPL OSes.

Guideline #6: Use kcompat Tech-
niques to Move Legacy Kernel Sup-
port out of the Driver (and Kernel)

Users may not be able to move to the lat-
est kernel.org kernel, so there is a need
to provide updated device drivers that can be
installed against legacy kernels. The need is
driven by 1) bug fixes, 2) new hardware sup-
port that wasn’t included in the driver when the
driver was included in the legacy kernel.

The best strategy is to:

1. Maintain your driver code to work against
the latest kernel.org development
kernel API. This will make it easier to
keep the driver in thekernel.org ker-
nel synchronized with your code base as
changes (patches) are almost always in
reference to the latestkernel.org ker-
nel.

2. Provide a kernel-compat-layer (kcompat)
to translate the latest API to the supported
legacy kernel API. The driver code is void
of anyifdef code for legacy kernel sup-
port. All of the ifdef logic moves to the
kcompat layer. The kcompat layer is not
included in the latestkernel.org ker-
nel (by definition).

Here is an example with e100.

In driver code, use the latest API:

s = pci_name(pdev);
...
free_netdev(netdev);

206 • Linux Symposium 2004 • Volume One

In kcompat code, translate to legacy kernel
API:

#if (LINUX_VERSION_CODE < \
KERNEL_VERSION(2,4,22))

#define pci_name(x) ((x)->slot_name)
#endif

#ifndef HAVE_FREE_NETDEV
#define free_netdev(x) kfree(x)
#endif

Guideline #7: Plan to Re-write the
Driver at Least Once

You will not get it right the first time. Plan on
rewriting the driver from scratch at least once.
This will cleanse the code, removing dead code
and organizing/consolidating functionality.

For example, the last e100 re-write reduced the
driver size by 75% without loss of functional-
ity.

Conclusion

Following these guidelines will result in more
maintainable device drivers with better accep-
tance into the Linux kernel tree. The basic
idea is to remove as much as possible from the
driver without loss of functionality.

References

• The latest e100 driver code is available at
linux/driver/net/e100.c (2.6.4
kernel or higher).

• An example of kcompat is here:
http://sf.net/projects/
gkernel

NFSv4 andrpcsec_gss for linux

J. Bruce Fields
University of Michigan
bfields@umich.edu

Abstract

The 2.6 Linux kernels now include support for
version 4 of NFS. In addition to built-in lock-
ing and ACL support, and features designed to
improve performance over the Internet, NFSv4
also mandates the implementation of strong
cryptographic security. This security is pro-
vided by rpcsec_gss, a standard, widely imple-
mented protocol that operates at the rpc level,
and hence can also provide security for NFS
versions 2 and 3.

1 The rpcsec_gss protocol

The rpc protocol, which all version of NFS
and related protocols are built upon, includes
generic support for authentication mecha-
nisms: each rpc call has two fields, the cre-
dential and the verifier, each consisting of a
32-bit integer, designating a “security flavor,”
followed by 400 bytes of opaque data whose
structure depends on the specified flavor. Sim-
ilarly, each reply includes a single “verifier.”

Until recently, the only widely implemented
security flavor has been the auth_unix flavor,
which uses the credential to pass uid’s and
gid’s and simply asks the server to trust them.
This may be satisfactory given physical secu-
rity over the clients and the network, but for
many situations (including use over the Inter-
net), it is inadequate.

Thus rfc 2203 defines the rpcsec_gss protocol,

which uses rpc’s opaque security fields to carry
cryptographically secure tokens. The crypto-
graphic services are provided by the GSS-API
(“Generic Security Service Application Pro-
gram Interface,” defined by rfc 2743), allowing
the use of a wide variety of security mecha-
nisms, including, for example, Kerberos.

Three levels of security are provided by rpc-
sec_gss:

1. Authentication only: The rpc header of
each request and response is signed.

2. Integrity: The header and body of each re-
quest and response is signed.

3. Privacy: The header of each request is
signed, and the body is encrypted.

The combination of a security level with a
GSS-API mechanism can be designated by a
32-bit “pseudoflavor.” The mount protocol
used with NFS versions 2 and 3 uses a list
of pseudoflavors to communicate the security
capabilities of a server. NFSv4 does not use
pseudoflavors on the wire, but they are still use-
ful in internal interfaces.

Security protocols generally require some ini-
tial negotiation, to determine the capabilities
of the systems involved and to choose session
keys. The rpcsec_gss protocol uses calls with
procedure number 0 for this purpose. Nor-
mally such a call is a simple “ping” with no
side-effects, useful for measuring round-trip

208 • Linux Symposium 2004 • Volume One

latency or testing whether a certain service is
running. However a call with procedure num-
ber 0, if made with authentication flavor rpc-
sec_gss, may use certain fields in the credential
to indicate that it is part of a context-initiation
exchange.

2 Linux implementation of rpc-
sec_gss

The Linux implementation of rpcsec_gss con-
sists of several pieces:

1. Mechanism-specific code, currently for
two mechanisms: krb5 and spkm3.

2. A stripped-down in-kernel version of the
GSS-API interface, with an interface that
allows mechanism-specific code to regis-
ter support for various pseudoflavors.

3. Client and server code which uses the
GSS-API interface to encode and decode
rpc calls and replies.

4. A userland daemon, gssd, which performs
context initiation.

2.1 Mechanism-specific code

The NFSv4 RFC mandates the implementation
(though not the use) of three GSS-API mecha-
nisms: krb5, spkm3, and lipkey.

Our krb5 implementation supports three
pseudoflavors: krb5, krb5i, and krb5p, pro-
viding authentication only, integrity, and
privacy, respectively. The code is derived from
MIT’s Kerberos implementation, somewhat
simplified, and not currently supporting the
variety of encryption algorithms that MIT’s
does. The krb5 mechanism is also supported
by NFS implementations from Sun, Network

Appliance, and others, which it interoperates
with.

The Low Infrastructure Public Key Mechanism
(“lipkey,” specified by rfc 2847), is a public key
mechanism built on top of the Simple Public
Key Mechanism (spkm), which provides func-
tionality similar to that of TLS, allowing a se-
cure channel to be established using a server-
side certificate and a client-side password.

We have a preliminary implementation of
spkm3 (without privacy), but none yet of lip-
key. Other NFS implementors have not yet
implemented either of these mechanisms, but
there appears to be sufficient interest from the
grid community for us to continue implemen-
tation even if it is Linux-only for now.

2.2 GSS-API

The GSS-API interface as specified is very
complex. Fortunately, rpcsec_gss only requires
a subset of the GSS-API, and even less is re-
quired for per-packet processing.

Our implementation is derived by the im-
plementation in MIT Kerberos, and initially
stayed fairly close the the GSS-API specifica-
tion; but over time we have pared it down to
something quite a bit simpler.

The kernel gss interface also provides APIs
by which code implementing particular mech-
anisms can register itself to the gss-api code
and hence can be safely provided by modules
loaded at runtime.

2.3 RPC code

The RPC code has been enhanced by the addi-
tion of a new rpcsec_gss mechanism which au-
thenticates calls and replies and which wraps
and unwraps rpc bodies in the case of integrity
and privacy.

Linux Symposium 2004 • Volume One • 209

This is relatively straightforward, though
somewhat complicated by the need to handle
discontiguous buffers containing page data.

Caches for session state are also required on
both client and server; on the client a preex-
isting rpc credentials cache is used, and on the
server we use the same caching infrastructure
used for caching of client and export informa-
tion.

2.4 Userland daemon

We had no desire to put a complete implemen-
tation of Kerberos version 5 or the other mech-
anisms into the kernel. Fortunately, the work
performed by the various GSS-API mecha-
nisms can be divided neatly into context ini-
tiation and per-packet processing. The former
is complex and is performed only once per ses-
sion, while the latter is simple by comparison
and needs to be performed on every packet.
Therefore it makes sense to put the packet pro-
cessing in the kernel, and have the context ini-
tiation performed in userspace.

Since it is the kernel that knows when context
initiation is necessary, we require a mechanism
allowing the kernel to pass the necessary pa-
rameters to a userspace daemon whenever con-
text initiation is needed, and allowing the dae-
mon to respond with the completed security
context.

This problem was solved in different ways
on the client and server, but both use spe-
cial files (the former in a dedicated filesystem,
rpc_pipefs, and the latter in the proc filesys-
tem), which our userspace daemon, gssd, can
poll for requests and then write responses back
to.

In the case of Kerberos, the sequence of events
will be something like this:

1. The user gets Kerberos credentials using

kinit, which are cached on a local filesys-
tem.

2. The user attempts to perform an operation
on an NFS filesystem mounted with krb5
security.

3. The kernel rpc client looks for the a secu-
rity context for the user in its cache; not
finding any, it does an upcall to gssd to re-
quest one.

4. Gssd, on receiving the upcall, reads the
user’s Kerberos credentials from the lo-
cal filesystem and uses them to construct
a null rpc request which it sends to the
server.

5. The server kernel makes an upcall which
passes the null request to its gssd.

6. At this point, the server gssd has all it
needs to construct a security context for
this session, consisting mainly of a ses-
sion key. It passes this context down to
the kernel rpc server, which stores it in its
context cache.

7. The server’s gssd then constructs the null
rpc reply, which it gives to the kernel to
return to the client gssd.

8. The client gssd uses this reply to construct
its own security context, and passes this
context to the kernel rpc client.

9. The kernel rpc client then uses this con-
text to send the first real rpc request to the
server.

10. The server uses the new context in its
cache to verify the rpc request, and to
compose its reply.

210 • Linux Symposium 2004 • Volume One

3 The NFSv4 protocol

While rpcsec_gss works equally well on all ex-
isting versions of NFS, much of the work on
rpcsec_gss has been motivated by NFS version
4, which is the first version of NFS to make
rpcsec_gss mandatory to implement.

This new version of NFS is specified by rfc
3530, which says:

“Unlike earlier versions, the NFS version 4
protocol supports traditional file access while
integrating support for file locking and the
mount protocol. In addition, support for strong
security (and its negotiation), compound oper-
ations, client caching, and internationalization
have been added. Of course, attention has been
applied to making NFS version 4 operate well
in an Internet environment.”

Descriptions of some of these features follow,
with some notes about their implementation in
Linux.

3.1 Compound operations

Each rpc request includes a procedure number,
which describes the operation to be performed.
The format of the body of the rpc request (the
arguments) and of the reply depend on the pro-
gram number. Procedure 0 is reserved as a no-
op (except when it is used for rpcsec_gss con-
text initiation, as described above).

The NFSv4 protocol only supports one non-
zero procedure, procedure 1, the compound
procedure.

The body of a compound is a list of opera-
tions, each with its own arguments. For exam-
ple, a compound request performing a lookup
might consist of 3 operations: a PUTFH, with
a filehandle, which sets the “current filehandle”
to the provided filehandle; a LOOKUP, with a
name, which looks up the name in the directory

given by the current filehandle and then modi-
fies the current filehandle to be the filehandle of
the result; a GETFH, with no arguments, which
returns the new value of the current filehandle;
and a GETATTR, with a bitmask specifying a
set of attributes to return for the looked-up file.

The server processes these operations in order,
but with no guarantee of atomicity. On encoun-
tering any error, it stops and returns the results
of the operations up to and including the oper-
ation that failed.

In theory complex operations could therefore
be done by long compounds which perform
complex series of operations.

In practice, the compounds sent by the Linux
client correspond very closely to NFSv2/v3
procedures—the VFS and the POSIX filesys-
tem API make it difficult to do otherwise—and
our server, like most NFSv4 servers we know
of, rejects overly long or complex compounds.

3.2 Well-known port for NFS

RPC allows services to be run on different
ports, using the “portmap” service to map pro-
gram numbers to ports. While flexible, this
system complicates firewall management; so
NFSv4 recommends the use of port 2049.

In addition, the use of sideband protocols for
mounting, locking, etc. also complicates fire-
wall management, as multiple connections to
multiple ports are required for a single NFS
mount. NFSv4 eliminates these extra proto-
cols, allowing all traffic to pass over a single
connection using one protocol.

3.3 No more mount protocol

Earlier versions of NFS use a separate protocol
for mount. The mount protocol exists primarily
to map path names, presented to the server as

Linux Symposium 2004 • Volume One • 211

strings, to filehandles, which may then be used
in the NFS protocol.

NFSv4 instead uses a single operation, PUT-
ROOTFH, that returns a filehandle; clients can
then use ordinary lookups to traverse to the
filesystem they wish to mount. This changes
the behavior of NFS in a few subtle ways: for
example, the special status of mounts in the old
protocol meant that mounting/usr and then
looking up local might get you a different
object than would mounting/usr/local ;
under NFSv4 this can no longer happen.

A server that exports multiple filesystems must
knit them together using a single “pseud-
ofilesystem” which links them to a common
root.

On Linux’s nfsd the pseudofilesystem is a
real filesystem, marked by the export option
“fsid=0”. An adminstrator that is content to
export a single filesystem can export it with
“fsid=0”, and clients will find it just by mount-
ing the path “/”.

The expected use for “fsid=0”, however, is to
designate a filesystem that is used just a collec-
tion of empty directories used as mountpoints
for exported filesystems, which are mounted
usingmount ---bind ; thus an administra-
tor could export/bin and/local/src by:

mkdir -p /exports/home
mkdir -p /exports/bin/
mount --bind /home /exports/home
mount --bind /bin/ /exports/bin

and then using an exports file something like:

/exports *.foo.com(fsid=0,crossmnt)
/exports/home *.foo.com
/exports/bin *.foo.com

Clients in foo.com can then mount
server.foo.com:/bin or server.

foo.com:/home . However the relationship
between the original mountpoint on the server
and the mountpoint under/exports (which
determines the path seen by the client) is
arbitrary, so the administrator could just as
well export/home as/some/other/path
if desired.

This gives maximum flexibility at the expense
of some confusion for adminstrators used to
earlier NFS versions.

3.4 No more lock protocol

Locking has also been absorbed into the
NFSv4 protocol. In addition to advantages
enumerated above, this allows servers to sup-
port mandatory locking if desired. Previously
this was impossible because it was impos-
sible to tell whether a given read or write
should be ordered before or after a lock re-
quest. NFSv4 enforces such sequencing by
providing a stateid field on each read or write
which identifies the locking state that the oper-
ation was performed under; thus for example a
write that occurred while a lock was held, but
that appeared on the server to have occurred af-
ter an unlock, can be identified as belonging to
a previous locking context, and can therefore
be correctly rejected.

The additional state required to manage lock-
ing is the source of much of the additional com-
plexity in NFSv4.

3.5 String representations of user and group
names

Previous versions of NFS use integers to rep-
resent users and groups; while simple to han-
dle, they can make NFS installations difficult to
manage, particularly across adminstrative do-
mains. Version 4, therefore, uses string names
of the formuser@domain .

This poses some challenges for the kernel im-

212 • Linux Symposium 2004 • Volume One

plementation. In particular, while the protocol
may use string names, the kernel still needs to
deal with uid’s, so it must map between NFSv4
string names and integers.

As with rpcsec_gss context initation, we solve
this problem by making upcalls to a userspace
daemon; with the mapping in userspace, it is
easy to use mechanisms such as NIS or LDAP
to do the actual mapping without introducing
large amounts of code into the kernel. So as not
to degrade performance by requiring a context
switch every time we process a packet carrying
a name, we cache the results of this mapping in
the kernel.

3.6 Delegations

NFSv4, like previous versions of NFS, does
not attempt to provide full cache consistency.
Instead, all that is guaranteed is that if an open
follows a close of the same file, then data read
after the open will reflect any modifications
performed before the close. This makes both
open and close potentially high latency oper-
ations, since they must wait for at least one
round trip before returning–in the close case,
to flush out any pending writes, and in the
open case, to check the attributes of the file in
question to determine whether the local cache
should be invalidated.

Locks provide similar semantics—writes are
flushed on unlock, and cache consistency is
verified on lock—and hence lock operations
are also prone to high latencies.

To mitigate these concerns, and to encourage
the use of NFS’s locking features, delegations
have been added to NFSv4. Delegations are
granted or denied by the server in response to
open calls, and give the client the right to per-
form later locks and opens locally, without the
need to contact the server. A set of callbacks
is provided so that the server can notify the

client when another client requests an open that
would confict with the open originally obtained
by the client.

Thus locks and opens may be performed
quickly by the client in the common case when
files are not being shared, but callbacks ensure
that correct close-to-open (and unlock-to-lock)
semantics may be enforced when there is con-
tention.

To allow other clients to proceed when a client
holding a delegation reboots, clients are re-
quired to periodically send a “renew” opera-
tion to the server, indicating that it is still alive;
a client that fails to send a renew operation
within a given lease time (established when the
client first contacts the server) may have all of
its delegations and other locking state revoked.

Most implementations of NFSv4 delegations,
including Linux’s, are still young, and we
haven’t yet gathered good data on the perfor-
mance impact.

Nevertheless, further extensions, including
delegations over directories, are under consid-
eration for future versions of the protocol.

3.7 ACLs

ACL support is integrated into the protocol,
with ACLs that are more similar to those found
in NT than to the POSIX ACLs supported by
Linux.

Thus while it is possible to translate an arbi-
trary Linux ACL to an NFS4 ACL with nearly
identical meaning, most NFS ACLs have no
reasonable representation as Linux ACLs.

Marius Eriksen has written a draft describing
the POSIX to NFS4 ACL translation. Cur-
rently the Linux implementation uses this map-
ping, and rejects any NFS4 ACL that isn’t ex-
actly in the image of this mapping. This en-

Linux Symposium 2004 • Volume One • 213

sures userland support from all tools that cur-
rently support POSIX ACLs, and simplifies
ACL management when an exported filesys-
tem is also used by local users, since both nfsd
and the local users can use the backend filesys-
tem’s POSIX ACL implementation. However
it makes it difficult to interoperate with NFSv4
implementations that support the full ACL pro-
tocol. For that reason we will eventually also
want to add support for NFSv4 ACLs.

4 Acknowledgements and Further
Information

This work has been sponsored by Sun Mi-
crosystems, Network Appliance, and the
Accelerated Strategic Computing Initiative
(ASCI). For further information, seewww.
citi.umich.edu/projects/nfsv4/ .

214 • Linux Symposium 2004 • Volume One

Comparing and Evaluating epoll, select, and poll
Event Mechanisms

Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag
University of Waterloo

{lgammo,brecht,ashukla,db2pariag}@cs.uwaterloo.ca

Abstract

This paper uses a high-performance, event-
driven, HTTP server (theµserver) to compare
the performance of the select, poll, and epoll
event mechanisms. We subject theµserver to
a variety of workloads that allow us to expose
the relative strengths and weaknesses of each
event mechanism.

Interestingly, initial results show that the se-
lect and poll event mechanisms perform com-
parably to the epoll event mechanism in the
absence of idle connections. Profiling data
shows a significant amount of time spent in ex-
ecuting a large number ofepoll_ctl sys-
tem calls. As a result, we examine a variety
of techniques for reducingepoll_ctl over-
head including edge-triggered notification, and
introducing a new system call (epoll_ctlv)
that aggregates severalepoll_ctl calls into
a single call. Our experiments indicate that al-
though these techniques are successful at re-
ducingepoll_ctl overhead, they only im-
prove performance slightly.

1 Introduction

The Internet is expanding in size, number of
users, and in volume of content, thus it is im-
perative to be able to support these changes
with faster and more efficient HTTP servers.

A common problem in HTTP server scala-
bility is how to ensure that the server han-
dles a large number of connections simultane-
ously without degrading the performance. An
event-driven approach is often implemented in
high-performance network servers [14] to mul-
tiplex a large number of concurrent connec-
tions over a few server processes. In event-
driven servers it is important that the server
focuses on connections that can be serviced
without blocking its main process. An event
dispatch mechanism such asselect is used
to determine the connections on which for-
ward progress can be made without invok-
ing a blocking system call. Many different
event dispatch mechanisms have been used
and studied in the context of network applica-
tions. These mechanisms range fromselect ,
poll , /dev/poll , RT signals, and epoll
[2, 3, 15, 6, 18, 10, 12, 4].

The epoll event mechanism [18, 10, 12] is de-
signed to scale to larger numbers of connec-
tions thanselect and poll . One of the
problems withselect and poll is that in
a single call they must both inform the kernel
of all of the events of interest and obtain new
events. This can result in large overheads, par-
ticularly in environments with large numbers
of connections and relatively few new events
occurring. In a fashion similar to that described
by Banga et al. [3] epoll separates mech-
anisms for obtaining events (epoll_wait)
from those used to declare and control interest

216 • Linux Symposium 2004 • Volume One

in events (epoll_ctl).

Further reductions in the number of generated
events can be obtained by using edge-triggered
epoll semantics. In this mode events are only
provided when there is a change in the state of
the socket descriptor of interest. For compat-
ibility with the semantics offered byselect
andpoll , epoll also provides level-triggered
event mechanisms.

To compare the performance of epoll with
select andpoll , we use theµserver [4, 7]
web server. Theµserver facilitates compara-
tive analysis of different event dispatch mech-
anisms within the same code base through
command-line parameters. Recently, a highly
tuned version of the single process event driven
µserver usingselect has shown promising
results that rival the performance of the in-
kernel TUX web server [4].

Interestingly, in this paper, we found that for
some of the workloads consideredselect
andpoll perform as well as or slightly bet-
ter than epoll. One such result is shown in
Figure 1. This motivated further investigation
with the goal of obtaining a better understand-
ing of epoll’s behaviour. In this paper, we de-
scribe our experience in trying to determine
how to best use epoll, and examine techniques
designed to improve its performance.

The rest of the paper is organized as follows:
In Section 2 we summarize some existing work
that led to the development of epoll as a scal-
able replacement forselect . In Section 3 we
describe the techniques we have tried to im-
prove epoll’s performance. In Section 4 we de-
scribe our experimental methodology, includ-
ing the workloads used in the evaluation. In
Section 5 we describe and analyze the results
of our experiments. In Section 6 we summarize
our findings and outline some ideas for future
work.

2 Background and Related Work

Event-notification mechanisms have a long
history in operating systems research and de-
velopment, and have been a central issue in
many performance studies. These studies have
sought to improve mechanisms and interfaces
for obtaining information about the state of
socket and file descriptors from the operating
system [2, 1, 3, 13, 15, 6, 18, 10, 12]. Some
of these studies have developed improvements
to select , poll andsigwaitinfo by re-
ducing the amount of data copied between the
application and kernel. Other studies have re-
duced the number of events delivered by the
kernel, for example, the signal-per-fd scheme
proposed by Chandra et al. [6]. Much of the
aforementioned work is tracked and discussed
on the web site, “The C10K Problem” [8].

Early work by Banga and Mogul [2] found
that despite performing well under laboratory
conditions, popular event-driven servers per-
formed poorly under real-world conditions.
They demonstrated that the discrepancy is due
the inability of the select system call to
scale to the large number of simultaneous con-
nections that are found in WAN environments.

Subsequent work by Banga et al. [3] sought to
improve onselect ’s performance by (among
other things) separating the declaration of in-
terest in events from the retrieval of events on
that interest set. Event mechanisms like se-
lect and poll have traditionally combined these
tasks into a single system call. However, this
amalgamation requires the server to re-declare
its interest set every time it wishes to retrieve
events, since the kernel does not remember the
interest sets from previous calls. This results in
unnecessary data copying between the applica-
tion and the kernel.

The /dev/poll mechanism was adapted
from Sun Solaris to Linux by Provos et al. [15],

Linux Symposium 2004 • Volume One • 217

and improved on poll’s performance by intro-
ducing a new interface that separated the decla-
ration of interest in events from retrieval. Their
/dev/poll mechanism further reduced data
copying by using a shared memory region to
return events to the application.

The kqueue event mechanism [9] addressed
many of the deficiencies ofselect andpoll
for FreeBSD systems. In addition to sep-
arating the declaration of interest from re-
trieval, kqueue allows an application to re-
trieve events from a variety of sources includ-
ing file/socket descriptors, signals, AIO com-
pletions, file system changes, and changes in
process state.

The epoll event mechanism [18, 10, 12] inves-
tigated in this paper also separates the declara-
tion of interest in events from their retrieval.
The epoll_create system call instructs
the kernel to create an event data structure
that can be used to track events on a number
of descriptors. Thereafter, theepoll_ctl
call is used to modify interest sets, while the
epoll_wait call is used to retrieve events.

Another drawback ofselect and poll is
that they perform work that depends on the
size of the interest set, rather than the number
of events returned. This leads to poor perfor-
mance when the interest set is much larger than
the active set. The epoll mechanisms avoid this
pitfall and provide performance that is largely
independent of the size of the interest set.

3 Improving epoll Performance

Figure 1 in Section 5 shows the throughput
obtained when using theµserver with the se-
lect, poll, and level-triggered epoll (epoll-LT)
mechanisms. In this graph the x-axis shows
increasing request rates and the y-axis shows
the reply rate as measured by the clients that
are inducing the load. This graph shows re-

sults for the one-byte workload. These re-
sults demonstrate that theµserver with level-
triggered epoll does not perform as well as
select under conditions that stress the event
mechanisms. This led us to more closely ex-
amine these results. Usinggprof , we ob-
served thatepoll_ctl was responsible for a
large percentage of the run-time. As can been
seen in Table 1 in Section 5 over 16% of the
time is spent inepoll_ctl . The gprof out-
put also indicates (not shown in the table) that
epoll_ctl was being called a large num-
ber of times because it is called for every state
change for each socket descriptor. We exam-
ine several approaches designed to reduce the
number ofepoll_ctl calls. These are out-
lined in the following paragraphs.

The first method uses epoll in an edge-
triggered fashion, which requires theµserver
to keep track of the current state of the socket
descriptor. This is required because with the
edge-triggered semantics, events are only re-
ceived for transitions on the socket descriptor
state. For example, once the server reads data
from a socket, it needs to keep track of whether
or not that socket is still readable, or if it will
get another event fromepoll_wait indicat-
ing that the socket is readable. Similar state
information is maintained by the server regard-
ing whether or not the socket can be written.
This method is referred to in our graphs and
the rest of the paperepoll-ET .

The second method, which we refer to as
epoll2, simply callsepoll_ctl twice per
socket descriptor. The first to register with the
kernel that the server is interested in read and
write events on the socket. The second call oc-
curs when the socket is closed. It is used to
tell epoll that we are no longer interested in
events on that socket. All events are handled
in a level-triggered fashion. Although this ap-
proach will reduce the number ofepoll_ctl
calls, it does have potential disadvantages.

218 • Linux Symposium 2004 • Volume One

One disadvantage of the epoll2 method is that
because many of the sockets will continue to be
readable or writableepoll_wait will return
sooner, possibly with events that are currently
not of interest to the server. For example, if the
server is waiting for a read event on a socket it
will not be interested in the fact that the socket
is writable until later. Another disadvantage is
that these calls return sooner, with fewer events
being returned per call, resulting in a larger
number of calls. Lastly, because many of the
events will not be of interest to the server, the
server is required to spend a bit of time to de-
termine if it is or is not interested in each event
and in discarding events that are not of interest.

The third method uses a new system call named
epoll_ctlv . This system call is designed to
reduce the overhead of multipleepoll_ctl
system calls by aggregating several calls to
epoll_ctl into one call toepoll_ctlv .
This is achieved by passing an array of epoll
events structures toepoll_ctlv , which then
callsepoll_ctl for each element of the ar-
ray. Events are generated in level-triggered
fashion. This method is referred to in the fig-
ures and the remainder of the paper as epoll-
ctlv.

We useepoll_ctlv to add socket descrip-
tors to the interest set, and for modifying
the interest sets for existing socket descrip-
tors. However, removal of socket descriptors
from the interest set is done by explicitly call-
ing epoll_ctl just before the descriptor is
closed. We do not aggregate deletion oper-
ations because by the timeepoll_ctlv is
invoked, theµserver has closed the descriptor
and theepoll_ctl invoked on that descrip-
tor will fail.

Theµserver does not attempt to batch the clos-
ing of descriptors because it can run out of
available file descriptors. Hence, the epoll-
ctlv method uses both theepoll_ctlv and

the epoll_ctl system calls. Alternatively,
we could rely on theclose system call to
remove the socket descriptor from the inter-
est set (and we did try this). However, this
increases the time spent by theµserver in
close , and does not alter performance. We
verified this empirically and decided to explic-
itly call epoll_ctl to perform the deletion
of descriptors from the epoll interest set.

4 Experimental Environment

The experimental environment consists of a
single server and eight clients. The server con-
tains dual 2.4 GHz Xeon processors, 1 GB of
RAM, a 10,000 rpm SCSI disk, and two one
Gigabit Ethernet cards. The clients are iden-
tical to the server with the exception of their
disks which are EIDE. The server and clients
are connected with a 24-port Gigabit switch.
To avoid network bottlenecks, the first four
clients communicate with the server’s first Eth-
ernet card, while the remaining four use a dif-
ferent IP address linked to the second Ethernet
card. The server machine runs a slightly mod-
ified version of the 2.6.5 Linux kernel in uni-
processor mode.

4.1 Workloads

This section describes the workloads that we
used to evaluate performance of theµserver
with the different event notification mecha-
nisms. In all experiments, we generate HTTP
loads usinghttperf [11], an open-loop work-
load generator that uses connection timeouts to
generate loads that can exceed the capacity of
the server.

Our first workload is based on the widely used
SPECweb99 benchmarking suite [17]. We use
httperf in conjunction with a SPECweb99 file
set and synthetic HTTP traces. Our traces
have been carefully generated to recreate the

Linux Symposium 2004 • Volume One • 219

file classes, access patterns, and number of re-
quests issued per (HTTP 1.1) connection that
are used in the static portion of SPECweb99.
The file set and server caches are sized so that
the entire file set fits in the server’s cache. This
ensures that differences in cache hit rates do
not affect performance.

Our second workload is called the one-byte
workload. In this workload, the clients repeat-
edly request the same one byte file from the
server’s cache. We believe that this workload
stresses the event dispatch mechanism by min-
imizing the amount of work that needs to be
done by the server in completing a particular
request. By reducing the effect of system calls
such asread andwrite , this workload iso-
lates the differences due to the event dispatch
mechanisms.

To study the scalability of the event dispatch
mechanisms as the number of socket descrip-
tors (connections) is increased, we useidle-
conn, a program that comes as part of the
httperf suite. This program maintains a steady
number of idle connections to the server (in ad-
dition to the active connections maintained by
httperf). If any of these connections are closed
idleconn immediately re-establishes them. We
first examine the behaviour of the event dis-
patch mechanisms without any idle connec-
tions to study scenarios where all of the con-
nections present in a server are active. We then
pre-load the server with a number of idle con-
nections and then run experiments. The idle
connections are used to increase the number
of simultaneous connections in order to sim-
ulate a WAN environment. In this paper we
present experiments using 10,000 idle connec-
tions, our findings with other numbers of idle
connections were similar and they are not pre-
sented here.

4.2 Server Configuration

For all of our experiments, theµserver is run
with the same set of configuration parameters
except for the event dispatch mechanism. The
µserver is configured to usesendfile to take
advantage of zero-copy socket I/O while writ-
ing replies. We use TCP_CORK in conjunc-
tion with sendfile . The same server op-
tions are used for all experiments even though
the use of TCP_CORK andsendfile may
not provide benefits for the one-byte workload
when compared with simply usingwritev .

4.3 Experimental Methodology

We measure the throughput of theµserver us-
ing different event dispatch mechanisms. In
our graphs, each data point is the result of a
two minute experiment. Trial and error re-
vealed that two minutes is sufficient for the
server to achieve a stable state of operation. A
two minute delay is used between consecutive
experiments, which allows the TIME_WAIT
state on all sockets to be cleared before the sub-
sequent run. All non-essential services are ter-
minated prior to running any experiment.

5 Experimental Results

In this section we first compare the throughput
achieved when using level-triggered epoll with
that observed when usingselect andpoll
under both the one-byte and SPECweb99-
like workloads with no idle connections. We
then examine the effectiveness of the differ-
ent methods described for reducing the num-
ber of epoll_ctl calls under these same
workloads. This is followed by a compari-
son of the performance of the event dispatch
mechanisms when the server is pre-loaded with
10,000 idle connections. Finally, we describe
the results of experiments in which we tune the

220 • Linux Symposium 2004 • Volume One

accept strategy used in conjunction with epoll-
LT and epoll-ctlv to further improve their per-
formance.

We initially ran the one byte and the
SPECweb99-like workloads to compare the
performance of the select, poll and level-
triggered epoll mechanisms.

As shown in Figure 1 and Figure 2, for both
of these workloads select and poll perform as
well as epoll-LT. It is important to note that be-
cause there are no idle connections for these
experiments the number of socket descriptors
tracked by each mechanism is not very high.
As expected, the gap between epoll-LT and se-
lect is more pronounced for the one byte work-
load because it places more stress on the event
dispatch mechanism.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
poll

epoll-LT

Figure 1: µserver performance on one byte
workload using select, poll, and epoll-LT

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
poll

epoll-LT

Figure 2: µserver performance on
SPECweb99-like workload using select,
poll, and epoll-LT

We tried to improve the performance of the
server by exploring different techniques for us-

ing epoll as described in Section 3. The effect
of these techniques on the one-byte workload
is shown in Figure 3. The graphs in this figure
show that for this workload the techniques used
to reduce the number ofepoll_ctl calls do
not provide significant benefits when compared
with their level-triggered counterpart (epoll-
LT). Additionally, the performance of select
and poll is equal to or slightly better than each
of the epoll techniques. Note that we omit the
line for poll from Figures 3 and 4 because it is
nearly identical to the select line.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
epoll-LT
epoll-ET

epoll-ctlv
epoll2

Figure 3: µserver performance on one byte
workload with no idle connections

We further analyze the results from Figure 3
by profiling theµserver using gprof at the re-
quest rate of 22,000 requests per second. Table
1 shows the percentage of time spent in sys-
tem calls (rows) under the various event dis-
patch methods (columns). The output for sys-
tem calls andµserver functions which do not
contribute significantly to the total run-time is
left out of the table for clarity.

If we compare the select and poll columns
we see that they have a similar breakdown in-
cluding spending about 13% of their time in-
dicating to the kernel events of interest and
obtaining events. In contrast the epoll-LT,
epoll-ctlv, and epoll2 approaches spend about
21 – 23% of their time on their equivalent
functions (epoll_ctl , epoll_ctlv and
epoll_wait). Despite these extra overheads
the throughputs obtained using the epoll tech-
niques compare favourably with those obtained

Linux Symposium 2004 • Volume One • 221

select epoll-LT epoll-ctlv epoll2 epoll-ET poll
read 21.51 20.95 21.41 20.08 22.19 20.97
close 14.90 14.05 14.90 13.02 14.14 14.79
select 13.33 - - - - -
poll - - - - - 13.32
epoll_ctl - 16.34 5.98 10.27 11.06 -
epoll_wait - 7.15 6.01 12.56 6.52 -
epoll_ctlv - - 9.28 - - -
setsockopt 11.17 9.13 9.13 7.57 9.08 10.68
accept 10.08 9.51 9.76 9.05 9.30 10.20
write 5.98 5.06 5.10 4.13 5.31 5.70
fcntl 3.66 3.34 3.37 3.14 3.34 3.61
sendfile 3.43 2.70 2.71 3.00 3.91 3.43

Table 1: gprof profile data for theµserver under the one-byte workload at 22,000 requests/sec

usingselect andpoll . We note that when
using select and poll the application re-
quires extra manipulation, copying, and event
scanning code that is not required in the epoll
case (and does not appear in the gprof data).

The results in Table 1 also show that the
overhead due toepoll_ctl calls is re-
duced in epoll-ctlv, epoll2 and epoll-ET, when
compared with epoll-LT. However, in each
case these improvements are offset by in-
creased costs in other portions of the code.
The epoll2 technique spends twice as much
time in epoll_wait when compared with
epoll-LT. With epoll2 the number of calls
to epoll_wait is significantly higher, the
average number of descriptors returned is
lower, and only a very small proportion of
the calls (less than 1%) return events that
need to be acted upon by the server. On the
other hand, when compared with epoll-LT the
epoll2 technique spends about 6% less time
on epoll_ctl calls so the total amount of
time spent dealing with events is comparable
with that of epoll-LT. Despite the significant
epoll_wait overheads epoll2 performance
compares favourably with the other methods
on this workload.

Using the epoll-ctlv technique, gprof indicates
that epoll_ctlv and epoll_ctl com-
bine for a total of 1,949,404 calls compared
with 3,947,769epoll_ctl calls when us-
ing epoll-LT. While epoll-ctlv helps to reduce
the number of user-kernel boundary cross-
ings, the net result is no better than epoll-
LT. The amount of time taken by epoll-ctlv
in epoll_ctlv and epoll_ctl system
calls is about the same (around 16%) as
that spent by level-triggered epoll in invoking
epoll_ctl.

When comparing the percentage of time epoll-
LT and epoll-ET spend inepoll_ctl we see
that it has been reduced using epoll-ET from
16% to 11%. Although theepoll_ctl time
has been reduced it does not result in an ap-
preciable improvement in throughput. We also
note that about 2% of the run-time (which is
not shown in the table) is also spent in the
epoll-ET case checking, and tracking the state
of the request (i.e., whether the server should
be reading or writing) and the state of the
socket (i.e., whether it is readable or writable).
We expect that this can be reduced but that it
wouldn’t noticeably impact performance.

Results for the SPECweb99-like workload are

222 • Linux Symposium 2004 • Volume One

shown in Figure 4. Here the graph shows that
all techniques produce very similar results with
a very slight performance advantage going to
epoll-ET after the saturation point is reached.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
epoll-LT
epoll-ET

epoll2

Figure 4: µserver performance on
SPECweb99-like workload with no idle
connections

5.1 Results With Idle Connections

We now compare the performance of the event
mechanisms with 10,000 idle connections. The
idle connections are intended to simulate the
presence of larger numbers of simultaneous
connections (as might occur in a WAN envi-
ronment). Thus, the event dispatch mechanism
has to keep track of a large number of descrip-
tors even though only a very small portion of
them are active.

By comparing results in Figures 3 and 5 one
can see that the performance of select and poll
degrade by up to 79% when the 10,000 idle
connections are added. The performance of
epoll2 with idle connections suffers similarly
to select and poll. In this case, epoll2 suffers
from the overheads incurred by making a large
number ofepoll_wait calls the vast major-
ity of which return events that are not of cur-
rent interest to the server. Throughput with
level-triggered epoll is slightly reduced with
the addition of the idle connections while edge-
triggered epoll is not impacted.

The results for the SPECweb99-like workload
with 10,000 idle connections are shown in Fig-

ure 6. In this case each of the event mecha-
nisms is impacted in a manner similar to that
in which they are impacted by idle connections
in the one-byte workload case.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
poll

epoll-ET
epoll-LT

epoll2

Figure 5: µserver performance on one byte
workload and 10,000 idle connections

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select
poll

epoll-ET
epoll-LT

epoll2

Figure 6: µserver performance on
SPECweb99-like workload and 10,000
idle connections

5.2 Tuning Accept Strategy for epoll

The µserver’s accept strategy has been tuned
for use withselect . Theµserver includes a
parameter that controls the number of connec-
tions that are accepted consecutively. We call
this parameter the accept-limit. Parameter val-
ues range from one to infinity (Inf). A value of
one limits the server to accepting at most one
connection when notified of a pending connec-
tion request, while Inf causes the server to con-
secutively accept all currently pending connec-
tions.

To this point we have used the accept strategy
that was shown to be effective forselect by

Linux Symposium 2004 • Volume One • 223

Brecht et al. [4] (i.e., accept-limit is Inf). In
order to verify whether the same strategy per-
forms well with the epoll-based methods we
explored their performance under different ac-
cept strategies.

Figure 7 examines the performance of level-
triggered epoll after the accept-limit has been
tuned for the one-byte workload (other val-
ues were explored but only the best values
are shown). Level-triggered epoll with an ac-
cept limit of 10 shows a marked improve-
ment over the previous accept-limit of Inf,
and now matches the performance of select
on this workload. The accept-limit of 10 also
improves peak throughput for the epoll-ctlv
model by 7%. This gap widens to 32% at
21,000 requests/sec. In fact the best accept
strategy for epoll-ctlv fares slightly better than
the best accept strategy for select.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Requests/s

select accept=Inf
epoll-LT accept=Inf
epoll-LT accept=10

epoll-ctlv accept=Inf
epoll-ctlv accept=10

Figure 7: µserver performance on one byte
workload with different accept strategies and
no idle connections

Varying the accept-limit did not improve the
performance of the edge-triggered epoll tech-
nique under this workload and it is not shown
in the graph. However, we believe that the ef-
fects of the accept strategy on the various epoll
techniques warrants further study as the effi-
cacy of the strategy may be workload depen-
dent.

6 Discussion

In this paper we use a high-performance event-
driven HTTP server, theµserver, to compare
and evaluate the performance of select, poll,
and epoll event mechanisms. Interestingly,
we observe that under some of the work-
loads examined the throughput obtained using
select andpoll is as good or slightly bet-
ter than that obtained with epoll. While these
workloads may not utilize representative num-
bers of simultaneous connections they do stress
the event mechanisms being tested.

Our results also show that a main source of
overhead when using level-triggered epoll is
the large number ofepoll_ctl calls. We
explore techniques which significantly reduce
the number ofepoll_ctl calls, including
the use of edge-triggered events and a system
call, epoll_ctlv , which allows theµserver
to aggregate large numbers ofepoll_ctl
calls into a single system call. While these
techniques are successful in reducing the num-
ber of epoll_ctl calls they do not appear
to provide appreciable improvements in perfor-
mance.

As expected, the introduction of idle connec-
tions results in dramatic performance degrada-
tion when usingselect andpoll , while not
noticeably impacting the performance when
using epoll. Although it is not clear that
the use of idle connections to simulate larger
numbers of connections is representative of
real workloads, we find that the addition of
idle connections does not significantly alter
the performance of the edge-triggered and
level-triggered epoll mechanisms. The edge-
triggered epoll mechanism performs best with
the level-triggered epoll mechanism offer-
ing performance that is very close to edge-
triggered.

In the future we plan to re-evaluate some of

224 • Linux Symposium 2004 • Volume One

the mechanisms explored in this paper un-
der more representative workloads that include
more representative wide area network condi-
tions. The problem with the technique of us-
ing idle connections is that the idle connections
simply inflate the number of connections with-
out doing any useful work. We plan to explore
tools similar to Dummynet [16] and NIST Net
[5] in order to more accurately simulate traffic
delays, packet loss, and other wide area net-
work traffic characteristics, and to re-examine
the performance of Internet servers using dif-
ferent event dispatch mechanisms and a wider
variety of workloads.

7 Acknowledgments

We gratefully acknowledge Hewlett Packard,
the Ontario Research and Development Chal-
lenge Fund, and the National Sciences and En-
gineering Research Council of Canada for fi-
nancial support for this project.

References

[1] G. Banga, P. Druschel, and J.C. Mogul.
Resource containers: A new facility for
resource management in server systems.
In Operating Systems Design and
Implementation, pages 45–58, 1999.

[2] G. Banga and J.C. Mogul. Scalable
kernel performance for Internet servers
under realistic loads. InProceedings of
the 1998 USENIX Annual Technical
Conference, New Orleans, LA, 1998.

[3] G. Banga, J.C. Mogul, and P. Druschel.
A scalable and explicit event delivery
mechanism for UNIX. InProceedings of
the 1999 USENIX Annual Technical
Conference, Monterey, CA, June 1999.

[4] Tim Brecht, David Pariag, and Louay
Gammo. accept()able strategies for

improving web server performance. In
Proceedings of the 2004 USENIX Annual
Technical Conference (to appear), June
2004.

[5] M. Carson and D. Santay. NIST Net – a
Linux-based network emulation tool.
Computer Communication Review, to
appear.

[6] A. Chandra and D. Mosberger.
Scalability of Linux event-dispatch
mechanisms. InProceedings of the 2001
USENIX Annual Technical Conference,
Boston, 2001.

[7] HP Labs. The userver home page, 2004.
Available athttp://hpl.hp.com/
research/linux/userver .

[8] Dan Kegel. The C10K problem, 2004.
Available athttp:
//www.kegel.com/c10k.html .

[9] Jonathon Lemon. Kqueue—a generic
and scalable event notification facility. In
Proceedings of the USENIX Annual
Technical Conference, FREENIX Track,
2001.

[10] Davide Libenzi. Improving (network)
I/O performance. Available at
http://www.xmailserver.org/
linux-patches/nio-improve.
html .

[11] D. Mosberger and T. Jin. httperf: A tool
for measuring web server performance.
In The First Workshop on Internet Server
Performance, pages 59–67, Madison,
WI, June 1998.

[12] Shailabh Nagar, Paul Larson, Hanna
Linder, and David Stevens. epoll
scalability web page. Available at
http://lse.sourceforge.net/
epoll/index.html .

Linux Symposium 2004 • Volume One • 225

[13] M. Ostrowski. A mechanism for scalable
event notification and delivery in Linux.
Master’s thesis, Department of Computer
Science, University of Waterloo,
November 2000.

[14] Vivek S. Pai, Peter Druschel, and Willy
Zwaenepoel. Flash: An efficient and
portable Web server. InProceedings of
the USENIX 1999 Annual Technical
Conference, Monterey, CA, June 1999.
http://citeseer.nj.nec.com/
article/pai99flash.html .

[15] N. Provos and C. Lever. Scalable
network I/O in Linux. InProceedings of
the USENIX Annual Technical
Conference, FREENIX Track, June 2000.

[16] Luigi Rizzo. Dummynet: a simple
approach to the evaluation of network
protocols.ACM Computer
Communication Review, 27(1):31–41,
1997.
http://citeseer.ist.psu.
edu/rizzo97dummynet.html .

[17] Standard Performance Evaluation
Corporation.SPECWeb99 Benchmark,
1999. Available athttp://www.
specbench.org/osg/web99 .

[18] David Weekly. /dev/epoll – a highspeed
Linux kernel patch. Available at
http://epoll.hackerdojo.com .

226 • Linux Symposium 2004 • Volume One

The (Re)Architecture of the X Window System

James Gettys
jim.gettys@hp.com

Keith Packard
keithp@keithp.com

HP Cambridge Research Laboratory

Abstract

The X Window System, Version 11, is the stan-
dard window system on Linux and UNIX sys-
tems. X11, designed in 1987, was “state of
the art” at that time. From its inception, X has
been a network transparent window system in
which X client applications can run on any ma-
chine in a network using an X server running
on any display. While there have been some
significant extensions to X over its history (e.g.
OpenGL support), X’s design lay fallow over
much of the 1990’s. With the increasing inter-
est in open source systems, it was no longer
sufficient for modern applications and a sig-
nificant overhaul is now well underway. This
paper describes revisions to the architecture of
the window system used in a growing fraction
of desktops and embedded systems

1 Introduction

While part of this work on the X window sys-
tem [SG92] is “good citizenship” required by
open source, some of the architectural prob-
lems solved ease the ability of open source ap-
plications to print their results, and some of
the techniques developed are believed to be in
advance of the commercial computer industry.
The challenges being faced include:

• X’s fundamentally flawed font architec-

ture made it difficult to implement good
WYSIWYG systems

• Inadequate 2D graphics, which had al-
ways been intended to be augmented
and/or replaced

• Developers are loathe to adopt any new
technology that limits the distribution of
their applications

• Legal requirements for accessibility for
screen magnifiers are difficult to imple-
ment

• Users desire modern user interface eye
candy, which sport translucent graphics
and windows, drop shadows, etc.

• Full integration of applications into 3 D
environments

• Collaborative shared use of X (e.g. multi-
ple simultaneous use of projector walls or
other shared applications)

While some of this work has been published
elsewhere, there has never been any overview
paper describing this work as an integrated
whole, and the compositing manager work de-
scribed below is novel as of fall 2003. This
work represents a long term effort that started
in 1999, and will continue for several years
more.

228 • Linux Symposium 2004 • Volume One

2 Text and Graphics

X’s obsolete 2D bit-blit based text and graph-
ics system problems were most urgent. The de-
velopment of the Gnome and KDE GUI envi-
ronments in the period 1997-2000 had shown
X11’s fundamental soundness, but confirmed
the authors’ belief that the rendering system in
X was woefully inadequate. One of us par-
ticipated in the original X11 design meetings
where the intent was to augment the rendering
design at a later date; but the “GUI Wars” of the
late 1980’s doomed effort in this area. Good
printing support has been particularly difficult
to implement in X applications, as fonts have
were opaque X server side objects not directly
accessible by applications.

Most applications now composite images in
sophisticated ways, whether it be in Flash me-
dia players, or subtly as part of anti-aliased
characters. Bit-Blit is not sufficient for these
applications, and these modern applications
were (if only by their use of modern toolk-
its) all resorting to pixel based image manip-
ulation. The screen pixels are retrieved from
the window system, composited in clients, and
then restored to the screen, rather than directly
composited in hardware, resulting in poor per-
formance. Inspired by the model first imple-
mented in the Plan 9 window system, a graph-
ics model based on Porter/Duff [PD84] image
compositing was chosen. This work resulted in
the X Render extension [Pac01a].

X11’s core graphics exposed fonts as a server
side abstraction. This font model was, at best,
marginally adequate by 1987 standards. Even
WYSIWYG systems of that era found them in-
sufficient. Much additional information em-
bedded in fonts (e.g. kerning tables) were not
available from X whatsoever. Current com-
petitive systems implement anti-aliased outline
fonts. Discovering the Unicode coverage of a
font, required by current toolkits for interna-

tionalization, was causing major performance
problems. Deploying new server side font
technology is slow, as X is a distributed sys-
tem, and many X servers are seldom (or never)
updated.

Therefore, a more fundamental change in X’s
architecture was undertaken: to no longer use
server side fonts at all, but to allow applications
direct access to font files and have the window
system cache and composite glyphs onto the
screen.

The first implementation of the new font sys-
tem [Pac01b] taught a vital lesson. Xft1
provided anti-aliased text and proper font
naming/substitution support, but reverted to
the core X11 bitmap fonts if the Render
extension was not present. Xft1 included
the first implementation what is called “sub-
pixel decimation,” which provides higher qual-
ity subpixel based rendering than Microsoft’s
ClearType [Pla00] technology in a completely
general algorithm.

Despite these advances, Xft1 received at best
a lukewarm reception. If an application devel-
oper wanted anti-aliased text universally, Xft1
did not help them, since it relied on the Render
extension which had not yet been widely de-
ployed; instead, the developer would be faced
with two implementations, and higher mainte-
nance costs. This (in retrospect obvious) ratio-
nal behavior of application developers shows
the high importance of backwards compatibil-
ity; X extensions intended for application de-
velopers’ use must be designed in a down-
ward compatible form whenever possible, and
should enable a complete conversion to a new
facility, so that multiple code paths in appli-
cations do not need testing and maintenance.
These principles have guided later develop-
ment.

The font installation, naming, substitution,
and internationalization problems were sepa-

Linux Symposium 2004 • Volume One • 229

rated from Xft into a library named Fontcon-
fig [Pac02], (since some printer only appli-
cations need this functionality independent of
the window system.) Fontconfig provides in-
ternationalization features in advance of those
in commercial systems such as Windows or
OS X, and enables trivial font installation with
good performance even when using thousands
of fonts. Xft2 was also modified to operate
against legacy X servers lacking the Render ex-
tension.

Xft2 and Fontconfig’s solving of several ma-
jor problems and lack of deployment barriers
enabled rapid acceptance and deployment in
the open source community, seeing almost uni-
versal use and uptake in less than one calen-
dar year. They have been widely deployed on
Linux systems since the end of 2002. They also
“future proof” open source systems against
coming improvements in font systems (e.g.
OpenType), as the window system is no longer
a gating item for font technology.

Sun Microsystems implemented a server side
font extension over the last several years; for
the reasons outlined in this section, it has not
been adopted by open source developers.

While Xft2 and Fontconfig finally freed ap-
plication developers from the tyranny of
X11’s core font system, improved perfor-
mance [PG03], and at a stroke simplified their
printing problems, it has still left a substantial
burden on applications. The X11 core graph-
ics, even augmented by the Render extension,
lack convenient facilities for many applications
for even simple primitives like splines, tasteful
wide lines, stroking paths, etc, much less pro-
vide simple ways for applications to print the
results on paper.

3 Cairo

The Cairo library [WP03], developed by one of
the authors in conjunction with by Carl Worth
of ISI, is designed to solve this problem. Cairo
provides a state full user-level API with sup-
port for the PDF 1.4 imaging model. Cairo pro-
vides operations including stroking and filling
Bézier cubic splines, transforming and com-
positing translucent images, and anti-aliased
text rendering. The PostScript drawing model
has been adapted for use within applications.
Extensions needed to support much of the PDF
1.4 imaging operations have been included.
This integration of the familiar PostScript op-
erational model within the native application
language environments provides a simple and
powerful new tool for graphics application de-
velopment.

Cairo’s rendering algorithms use work done
in the 1980’s by Guibas, Ramshaw, and
Stolfi [GRS83] along with work by John
Hobby [Hob85], which has never been ex-
ploited in Postscript or in Windows. The im-
plementation is fast, precise, and numerically
stable, supports hardware acceleration, and is
in advance of commercial systems.

Of particular note is the current development of
Glitz [NR04], an OpenGL backend for Cairo,
being developed by a pair of master’s students
in Sweden. Not only is it showing that a high
speed implementation of Cairo is possible, it
implements an interface very similar to the X
Render extension’s interface. More about this
in the OpenGL section below.

Cairo is in the late stages of development and
is being widely adopted in the open source
community. It includes the ability to render
to Postscript and a PDF back end is planned,
which should greatly improve applications’
printing support. Work to incorporate Cairo in
the Gnome and KDE desktop environments is

230 • Linux Symposium 2004 • Volume One

well underway, as are ports to Windows and
Apple’s MacIntosh, and it is being used by the
Mono project. As with Xft2, Cairo works with
all X servers, even those without the Render
extension.

4 Accessibility and Eye-Candy

Several years ago, one of us implemented a
prototype X system that used image composit-
ing as the fundamental primitive for construct-
ing the screen representation of the window hi-
erarchy contents. Child window contents were
composited to their parent windows which
were incrementally composed to their parents
until the final screen image was formed, en-
abling translucent windows. The problem with
this simplistic model was twofold—first, a
naïve implementation consumed enormous re-
sources as each window required two com-
plete off screen buffers (one for the window
contents themselves, and one for the window
contents composited with the children) and
took huge amounts of time to build the final
screen image as it recursively composited win-
dows together. Secondly, the policy govern-
ing the compositing was hardwired into the X
server. An architecture for exposing the same
semantics with less overhead seemed almost
possible, and pieces of it were implemented
(miext/layer). However, no complete system
was fielded, and every copy of the code tracked
down and destroyed to prevent its escape into
the wild.

Both Mac OS X and DirectFB [Hun04] per-
form window-level compositing by creating
off-screen buffers for each top-level window
(in OS X, the window system is not nested,
so there are only top-level windows). The
screen image is then formed by taking the re-
sulting images and blending them together on
the screen. Without handling the nested win-
dow case, both of these systems provide the

desired functionality with a simple implemen-
tation. This simple approach is inadequate
for X as some desktop environments nest the
whole system inside a single top-level win-
dow to allow panning, and X’s long history
has shown the value of separating mechanism
from policy (Gnome and KDE were developed
over 10 years after X11’s design). The fix is
pretty easy—allow applications to select which
pieces of the window hierarchy are to be stored
off-screen and which are to be drawn to their
parent storage.

With window hierarchy contents stored in off-
screen buffers, an external application can now
control how the screen contents are constructed
from the constituent sub-windows and what-
ever other graphical elements are desired. This
eliminated the complexities surrounding pre-
cisely what semantics would be offered in
window-level compositing within the X server
and the design of the underlying X extensions.
They were replaced by some concerns over the
performance implications of using an external
agent (the “Compositing Manager”) to execute
the requests needed to present the screen im-
age. Note that every visible pixel is under the
control of the compositing manager, so screen
updates are limited to how fast that application
can get the bits painted to the screen.

The architecture is split across three new ex-
tensions:

• Composite, which controls which sub-
hierarchies within the window tree are
rendered to separate buffers.

• Damage, which tracks modified areas
with windows, informing the Composting
Manager which areas of the off-screen hi-
erarchy components have changed.

• Xfixes, which includes new Region ob-
jects permitting all of the above computa-
tion to be performed indirectly within the

Linux Symposium 2004 • Volume One • 231

X server, avoiding round trips.

Multiple applications can take advantage of the
off screen window contents, allowing thumb-
nail or screen magnifier applications to be in-
cluded in the desktop environment.

To allow applications other than the composit-
ing manager to present alpha-blended content
to the screen, a new X Visual was added to the
server. At 32 bits deep, it provides 8 bits of
red, green and blue along with 8 bits of alpha
value. Applications can create windows using
this visual and the compositing manager can
composite them onto the screen.

Nothing in this fundamental design indicates
that it is used for constructing translucent win-
dows; redirection of window contents and no-
tification of window content change seems
pretty far removed from one of the final goals.
But note the compositing manger can use what-
ever X requests it likes to paint the com-
bined image, including requests from the Ren-
der extension, which does know how to blend
translucent images together. The final image
is constructed programmatically so the possi-
ble presentation on the screen is limited only
by the fertile imagination of the numerous eye-
candy developers, and not restricted to any pol-
icy imposed by the base window system. And
vital to rapid deployment, most applications
can be completely oblivious to this background
legerdemain.

In this design, such sophisticated effects need
only be applied at frame update rates on only
modified sections of the screen rather than at
the rate applications perform graphics; this
constant behavior is highly desirable in sys-
tems.

There is very strong “pull” from both commer-
cial and non-commercial users of X for this
work and the current early version will likely
be shipped as part of the next X.org Foun-

dation X Window System release, sometime
this summer. Since there has not been suffi-
cient exposure through widespread use, further
changes will certainly be required further expe-
rience with the facilities are gained in a much
larger audience; as these can be made without
affecting existing applications, immediate de-
ployment is both possible and extremely desir-
able.

The mechanisms described above realize a fun-
damentally more interesting architecture than
either Windows or Mac OSX, where the com-
positing policy is hardwired into the window
system. We expect a fertile explosion of ex-
perimentation, experience (both good and bad),
and a winnowing of ideas as these facilities
gain wider exposure.

5 Input Transformation

In the “naïve,” eye-candy use of the new com-
positing functions, no transformation of input
events are required, as input to windows re-
mains at the same geometric position on the
screen, even though the windows are first ren-
dered off screen. More sophisticated use, for
example, screen readers or immersive environ-
ments such as Croquet [SRRK02], or Sun’s
Looking Glass [KJ04] requires transformation
of input events from where they first occur
on the visible screen to the actual position in
the windows (being rendered from off screen),
since the window’s contents may have been ar-
bitrarily transformed or even texture mapped
onto shapes on the screen.

As part of Sun Microsystem’s award winning
work on accessibility in open source for screen
readers, Sun has developed the XEvIE exten-
sion [Kre], which allows external clients to
transform input events. This looks like a good
starting point for the somewhat more general
problem that 3D systems pose, and with some

232 • Linux Symposium 2004 • Volume One

modification can serve both the accessibility
needs and those of more sophisticated applica-
tions.

6 Synchronization

Synchronization is probably the largest re-
maining challenge posed by compositing.
While composite has eliminated much flashing
of the screen since window exposure is elimi-
nated, this does not solve the challenge of the
compositing manager happening to copy an ap-
plication’s window to the frame buffer in the
middle of an application painting a sequence
of updates. No “tearing” of single graphics op-
erations take place since the X server is single
threaded, and all graphics operations are run to
completion.

The X Synchronization extension
(XSync) [GCGW92], widely available
but to date seldom used, provides a general set
of mechanisms for applications to synchronize
with each other, with real time, and potentially
with other system provided counters. XSync’s
original design intent intended system pro-
vided counters for vertical retrace interrupts,
audio sample clocks, and similar system
facilities, enabling very tight synchronization
of graphics operations with these time bases.
Work has begun on Linux to provide these
counters at long last, when available, to flesh
out the design originally put in place and tested
in the early 1990’s.

A possible design for solving the application
synchronization problem at low overhead may
be to mark sections of requests with incre-
ments of XSync counters: if the count is odd
(or even) the window would be unstable/stable.
The compositing manager might then copy the
window only if the window is in a stable state.
Some details and possibly extensions to XSync
will need to be worked out, if this approach is

pursued.

7 Next Steps

We believe we are slightly more than half way
through the process of rearchitecting and reim-
plementing the X Window System. The ex-
isting prototype needs to become a produc-
tion system requiring significant infrastructure
work as described in this section.

7.1 OpenGL based X

Current X-based systems which support
OpenGL do so by encapsulating the OpenGL
environment within X windows. As such,
an OpenGL application cannot manipulate X
objects with OpenGL drawing commands.

Using OpenGL as the basis for the X server it-
self will place X objects such as pixmaps and
off-screen window contents inside OpenGL
objects allowing applications to use the full
OpenGL command set to manipulate them.

A “proof of concept” of implementation of the
X Render extension is being done as part of
the Glitz back-end for Cairo, which is showing
very good performance for render based appli-
cations. Whether the “core” X graphics will re-
quire any OpenGL extensions is still somewhat
an open question.

In concert with the new compositing exten-
sions, conventional X applications can then be
integrated into 3D environments such as Cro-
quet, or Sun’s Looking Glass. X application
contents can be used as textures and mapped
onto any surface desired in those environments.

This work is underway, but not demonstrable
at this date.

Linux Symposium 2004 • Volume One • 233

7.2 Kernel support for graphics cards

In current open source systems, graphics cards
are supported in a manner totally unlike that
of any other operating system, and unlike pre-
vious device drivers for the X Window System
on commercial UNIX systems. There is no sin-
gle central kernel driver responsible for manag-
ing access to the hardware. Instead, a large set
of cooperating user and kernel mode systems
are involved in mutual support of the hardware,
including the X server (for 2D graphic), the
direct-rendering infrastructure (DRI) (for ac-
celerated 3D graphics), the kernel frame buffer
driver (for text console emulation), the Gen-
eral ATI TV and Overlay Software (GATOS)
(for video input and output) and alternate 2D
graphics systems like DirectFB.

Two of these systems, the kernel frame buffer
driver and the X server both include code to
configure the graphics card “video mode”—
the settings needed to send the correct video
signals to monitors connected to the card.
Three of these systems, DRI, the X server
and GATOS, all include code for managing
the memory space within the graphics card.
All of these systems directly manipulate hard-
ware registers without any coordination among
them.

The X server has no kernel component for
2D graphics. Long-latency operations cannot
use interrupts, instead the X server spins while
polling status registers. DMA is difficult or im-
possible to configure in this environment. Per-
haps the most egregious problem is that the
X server reconfigures the PCI bus to correct
BIOS mapping errors without informing the
operating system kernel. Kernel access to de-
vices while this remapping is going on may
find the related devices mismapped.

To rationalize this situation, various groups and
vendors are coordinating efforts to create a sin-

gle kernel-level entity responsible for basic de-
vice management, but this effort has just be-
gun.

7.3 Housecleaning and Latency Elimination
and Latency Hiding

Serious attempts were made in the early 1990’s
to multi-thread the X server itself, with the dis-
covery that the threading overhead in the X
server is a net performance loss [Smi92].

Applications, however, often need to be multi-
threaded. The primary C binding to the X pro-
tocol is called Xlib, and its current implemen-
tation by one of us dates from 1987. While it
was partially developed on a Firefly multipro-
cessor workstation of that era, something al-
most unheard of at that date, and some con-
sideration of multi-threaded applications were
taken in its implementation, its internal trans-
port facilities were never expected/intended to
be preserved when serious multi-threaded op-
erating systems became available. Unfortu-
nately, rather than a full rewrite as one of us ex-
pected, multi-threaded support was debugged
into existence using the original code base and
the resulting code is very bug-prone and hard to
maintain. Additionally, over the years, Xlib be-
came a “kitchen sink” library, including func-
tionality well beyond its primary use as a bind-
ing to the X protocol. We have both seri-
ously regretted the precedents both of us set
introducing extraneous functionality into Xlib,
causing it to be one of the largest libraries on
UNIX/Linux systems. Due to better facilities
in modern toolkits and system libraries, more
than half of Xlib’s current footprint is obsolete
code or data.

While serious work was done in X11’s design
to mitigate latency, X’s performance, particu-
larly over low speed networks, is often lim-
ited by round trip latency, and with retrospect
much more can be done [PG03]. As this

234 • Linux Symposium 2004 • Volume One

work shows, client side fonts have made a sig-
nificant improvement in startup latency, and
work has already been completed in toolkits
to mitigate some of the other hot spots. Much
of the latency can be retrieved by some sim-
ple techniques already underway, but some re-
quire more sophisticated techniques that the
current Xlib implementation is not capable of.
Potentially 90the latency as of 2003 can be
recovered by various techniques. The XCB
library [MS01] by Bart Massey and Jamey
Sharp is both carefully engineered to be mul-
tithreaded and to expose interfaces that will al-
low for latency hiding.

Since libraries linked against different basic
X transport systems would cause havoc in the
same address space, a Xlib compatibility layer
(XCL) has been developed that provides the
“traditional” X library API, using the original
Xlib stubs, but replacing the internal transport
and locking system, which will allow for much
more useful latency hiding interfaces. The
XCB/XCL version of Xlib is now able to run
essentially all applications, and after a shake-
down period, should be able to replace the ex-
isting Xlib transport soon. Other bindings than
the traditional Xlib bindings then become pos-
sible in the same address space, and we may
see toolkits adopt those bindings at substantial
savings in space.

7.4 Mobility, Collaboration, and Other Topics

X’s original intended environment included
highly mobile students, and a hope, never gen-
erally realized for X, was the migration of ap-
plications between X servers.

The user should be able to travel between sys-
tems running X and retrieve your running ap-
plications (with suitable authentication and au-
thorization). The user should be able to log out
and “park” applications somewhere for later
retrieval, either on the same display, or else-

where. Users should be able to replicate an
application’s display on a wall projector for
presentation. Applications should be able to
easily survive the loss of the X server (most
commonly caused by the loss of the underly-
ing TCP connection, when running remotely).

Toolkit implementers typically did not under-
stand and share this poorly enunciated vision
and were primarily driven by pressing imme-
diate needs, and X’s design and implemen-
tation made migration or replication difficult
to implement as an afterthought. As a re-
sult, migration (and replication) was seldom
implemented, and early toolkits such as Xt
made it even more difficult. Emacs is the only
widespread application capable of both migra-
tion and replication, and it avoided using any
toolkit. A more detailed description of this vi-
sion is available in [Get02].

Recent work in some of the modern toolkits
(e.g. GTK+) and evolution of X itself make
much of this vision demonstrable in current ap-
plications. Some work in the X infrastructure
(Xlib) is underway to enable the prototype in
GTK+ to be finished.

Similarly, input devices need to become full-
fledged network data sources, to enable much
looser coupling of keyboards, mice, game con-
soles and projectors and displays; the challenge
here will be the authentication, authorization
and security issues this will raise. The HAL
and DBUS projects hosted at freedesktop.org
are working on at least part of the solutions for
the user interface challenges posed by hotplug
of input devices.

7.5 Color Management

The existing color management facilities in
X are over 10 years old, have never seen
widespread use, and do not meet current needs.
This area is ripe for revisiting. Marti Maria Sa-

Linux Symposium 2004 • Volume One • 235

guer’s LittleCMS [Mar] may be of use here.
For the first time, we have the opportunity to
“get it right” from one end to the other if we
choose to make the investment.

7.6 Security and Authentication

Transport security has become an burning is-
sue; X is network transparent (applications can
run on any system in a network, using remote
displays), yet we dare no longer use X over the
network directly due to password grabbing kits
in the hands of script kiddies. SSH [BS01] pro-
vides such facilities via port forwarding and
is being used as a temporary stopgap. Ur-
gent work on something better is vital to en-
able scaling and avoid the performance and la-
tency issues introduced by transit of extra pro-
cesses, particularly on (Linux Terminal Server
Project (LTSP [McQ02]) servers, which are be-
ginning break out of their initial use in schools
and other non security sensitive environments
into very sensitive commercial environments.

Another aspect of security arises between ap-
plications sharing a display. In the early and
mid 1990’s efforts were made as a result of the
compartmented mode workstation projects to
make it much more difficult for applications to
share or steal data from each other on a X dis-
play. These facilities are very inflexible, and
have gone almost unused.

As projectors and other shared displays be-
come common over the next five years, appli-
cations from multiple users sharing a display
will become commonplace. In such environ-
ments, different people may be using the same
display at the same time and would like some
level of assurance that their application’s data
is not being grabbed by the other user’s appli-
cation.

Eamon Walsh has, as part of the SELinux
project [Wal04], been working to replace the

existing X Security extension with an exten-
sion that, as in SELinux, will allow multiple
different security policies to be developed ex-
ternal to the X server. This should allow multi-
ple different policies to be available to suit the
varied uses: normal workstations, secure work-
stations, shared displays in conference rooms,
etc.

7.7 Compression and Image Transport

Many/most modern applications and desktops,
including the most commonly used application
(a web browser) are now intensive users of syn-
thetic and natural images. The previous at-
tempt (XIE [SSF+96]) to provide compressed
image transport failed due to excessive com-
plexity and over ambition of the designers, has
never been significantly used, and is now in
fact not even shipped as part of current X dis-
tributions.

Today, many images are being read from disk
or the network in compressed form, uncom-
pressed into memory in the X client, moved
to the X server (where they often occupy an-
other copy of the uncompressed data). If we
add general data compression to X (or run X
over ssh with compression enabled) the data
would be both compressed and uncompressed
on its way to the X server. A simple replace-
ment for XIE (if the complexity slippery slope
can be avoided in a second attempt) would be
worthwhile, along with other general compres-
sion of the X protocol.

Results in our 2003 Usenix X Network Per-
formance paper show that, in real applica-
tion workloads (the startup of a Gnome desk-
top), using even simple GZIP [Gai93] style
compression can make a tremendous differ-
ence in a network environment, with a fac-
tor of 300(!) savings in bandwidth. Appar-
ently the synthetic images used in many cur-
rent UI’s are extremely good candidates for

236 • Linux Symposium 2004 • Volume One

compression. A simple X extension that could
encapsulate one or more X requests into the
extension request would avoid multiple com-
pression/uncompression of the same data in
the system where an image transport extension
was also present. The basic X protocol frame-
work is actually very byte efficient relative to
most conventional RPC systems, with a basic
X request only occupying 4 bytes (contrast this
with HTTP or CORBA, in which a simple re-
quest is more than 100 bytes).

With the great recent interest in LTSP in com-
mercial environments, work here would be ex-
tremely well spent, saving both memory and
CPU, and network bandwidth.

We are more than happy to hear from anyone
interested in helping in this effort to bring X
into the new millennium.

References

[BS01] Daniel J. Barrett and Richard
Silverman.SSH, The Secure
Shell: The Definitive Guide.
O’Reilly & Associates, Inc.,
2001.

[Gai93] Jean-Loup Gailly.Gzip: The
Data Compression Program.
iUniverse.com, 1.2.4 edition,
1993.

[GCGW92] Tim Glauert, Dave Carver, James
Gettys, and David Wiggins. X
Synchronization Extension
Protocol, Version 3.0. X
consortium standard, 1992.

[Get02] James Gettys. The Future is
Coming, Where the X Window
System Should Go. InFREENIX
Track, 2002 Usenix Annual
Technical Conference, Monterey,
CA, June 2002. USENIX.

[GRS83] Leo Guibas, Lyle Ramshaw, and
Jorge Stolfi. A kinetic framework
for computational geometry. In
Proceedings of the IEEE 1983
24th Annual Symposium on the
Foundations of Computer
Science, pages 100–111. IEEE
Computer Society Press, 1983.

[Hob85] John D. Hobby.Digitized Brush
Trajectories. PhD thesis,
Stanford University, 1985. Also
Stanford Report
STAN-CS-85-1070.

[Hun04] A. Hundt. DirectFB Overview
(v0.2 for DirectFB 0.9.21),
February 2004.
http://www.directfb.
org/documentation .

[KJ04] H. Kawahara and D. Johnson.
Project Looking Glass: 3D
Desktop Exploration. InX
Developers Conference,
Cambridge, MA, April 2004.

[Kre] S. Kreitman. XEvIE - X Event
Interception Extension.http:
//freedesktop.org/
~stukreit/xevie.html .

[Mar] M. Maria. Little CMS Engine
1.12 API Definition. Technical
report.
http://www.littlecms.
com/lcmsapi.txt .

[McQ02] Jim McQuillan. LTSP - Linux
Terminal Server Project, Version
3.0. Technical report, March
2002.http://www.ltsp.
org/documentation/
ltsp-3.0-4-en.html .

[MS01] Bart Massey and Jamey Sharp.
XCB: An X protocol c binding.

Linux Symposium 2004 • Volume One • 237

In XFree86 Technical
Conference, Oakland, CA,
November 2001. USENIX.

[NR04] Peter Nilsson and David
Reveman. Glitz: Hardware
Accelerated Image Compositing
using OpenGL. InFREENIX
Track, 2004 Usenix Annual
Technical Conference, Boston,
MA, July 2004. USENIX.

[Pac01a] Keith Packard. Design and
Implementation of the X
Rendering Extension. In
FREENIX Track, 2001 Usenix
Annual Technical Conference,
Boston, MA, June 2001.
USENIX.

[Pac01b] Keith Packard. The Xft Font
Library: Architecture and Users
Guide. InXFree86 Technical
Conference, Oakland, CA,
November 2001. USENIX.

[Pac02] Keith Packard. Font
Configuration and Customization
for Open Source Systems. In
2002 Gnome User’s and
Developers European
Conference, Seville, Spain, April
2002. Gnome.

[PD84] Thomas Porter and Tom Duff.
Compositing Digital Images.
Computer Graphics,
18(3):253–259, July 1984.

[PG03] Keith Packard and James Gettys.
X Window System Network
Performance. InFREENIX
Track, 2003 Usenix Annual
Technical Conference, San
Antonio, TX, June 2003.
USENIX.

[Pla00] J. Platt. Optimal filtering for
patterned displays.IEEE Signal
Processing Letters,
7(7):179–180, 2000.

[SG92] Robert W. Scheifler and James
Gettys.X Window System.
Digital Press, third edition, 1992.

[Smi92] John Smith. The Multi-Threaded
X Server.The X Resource,
1:73–89, Winter 1992.

[SRRK02] D. Smith, A. Raab, D. Reed, and
A. Kay. Croquet: The Users
Manual, October 2002.
http://glab.cs.
uni-magdeburg.de/
~croquet/downloads/
Croquet0.1.pdf .

[SSF+96] Robert N.C. Shelley, Robert W.
Scheifler, Ben Fahy, Jim Fulton,
Keith Packard, Joe Mauro,
Richard Hennessy, and Tom
Vaughn. X Image Extension
Protocol Version 5.02. X
consortium standard, 1996.

[Wal04] Eamon Walsh. Integrating
XFree86 With
Security-Enhanced Linux. InX
Developers Conference,
Cambridge, MA, April 2004.
http://freedesktop.
org/Software/XDevConf/
x-security-walsh.pdf .

[WP03] Carl Worth and Keith Packard.
Xr: Cross-device Rendering for
Vector Graphics. InProceedings
of the Ottawa Linux Symposium,
Ottawa, ON, July 2003. OLS.

238 • Linux Symposium 2004 • Volume One

IA64-Linux perf tools for IO dorks
Examples of IA-64 PMU usage

Grant Grundler
Hewlett-Packard
iod00d@hp.com

grundler@parisc-linux.org

Abstract

Itanium processors have very sophisticated
performance monitoring tools integrated into
the CPU. McKinley and Madison Itanium
CPUs have over three hundred different types
of events they can filter, trigger on, and count.
The restrictions on which combinations of trig-
gers are allowed is daunting and varies across
CPU implementations. Fortunately, the tools
hide this complicated mess. While the tools
prevent us from shooting ourselves in the foot,
it’s not obvious how to use those tools for mea-
suring kernel device driver behaviors.

IO driver writers can use pfmon to measure two
key areas generally not obvious from the code:
MMIO read and write frequency and precise
addresses of instructions regularly causing L3
data cache misses. Measuring MMIO reads has
some nuances related to instruction execution
which are relevant to understanding ia64 and
likely ia32 platforms. Similarly, the ability to
pinpoint exactly which data is being accessed
by drivers enables driver writers to either mod-
ify the algorithms or add prefetching directives
where feasible. I include some examples on
how I used pfmon to measure NIC drivers and
give some guidelines on use.

q-syscollect is a “gprof without the pain” kind
of tool. While q-syscollect uses the same ker-
nel perfmon subsystem as pfmon, the former

works at a higher level. With some knowledge
about how the kernel operates, q-syscollect can
collect call-graphs, function call counts, and
percentage of time spent in particular routines.
In other words, pfmon can tell us how much
time the CPU spends stalled on d-cache misses
and q-syscollect can give us the call-graph for
the worst offenders.

Updated versions of this paper will be avail-
able from http://iou.parisc-linux.

org/ols2004/

1 Introduction

Improving the performance of IO drivers is re-
ally not that easy. It usually goes something
like:

1. Determine which workload is relevant

2. Set up the test environment

3. Collect metrics

4. Analyze the metrics

5. Change the code based on theories about
the metrics

6. Iterate on Collect metrics

This paper attempts to make the collect-
analyze-change loop more efficient for three

240 • Linux Symposium 2004 • Volume One

obvious things: MMIO reads, MMIO writes,
and cache line misses.

MMIO reads and writes are easier to locate in
Linux code than for other OSs which support
memory-mapped IO—just search forreadl()
andwritel() calls. Butpfmon [1] can provide
statistics of actual behavior and not just where
in the code MMIO space is touched.

Cache line misses are hard to detect. None
of the regular performance tools I’ve used
can precisely tell where CPU stalls are taking
place. We can guess some of them based on
data usage—like spin locks ping-ponging be-
tween CPUs. This requires a level of under-
standing that most of us mere mortals don’t
possess. Again,pfmon can help out here.

Lastly, getting an overview of system perfor-
mance and getting run-time call graph usually
requires compiler support that gcc doesn’t pro-
vide. q-tools[4] can provide that information.
Driver writers can then manually adjust the
code knowing where the “hot spots” are.

1.1 pfmon

The author ofpfmon , Stephane Eranian [2],
describespfmon as “the performance tool
for IA64-Linux which exploits all the features
of the IA-64 Performance Monitoring Unit
(PMU).” pfmon uses a command line inter-
face and does not require any special privilege
to run. pfmon can monitor a single process, a
multi-threaded process, multi-processes work-
loads and the entire system.

pfmon is the user command line interface to
the kernel perfmon subsystem. perfmon does
the ugly work of programming the PMU. Perf-
mon is versioned separately frompfmon com-
mand. When in doubt, use the perfmon in the
latest 2.6 kernel.

There are two major types of measurements:

counting and sampling. For counting,pfmon
simply reports the number of occurrences of
the desired events during the monitoring pe-
riod. pfmon can also be configured to sample
at certain intervals information about the exe-
cution of a command or for the entire system.
It is possible to sample any events provided by
the underlying PMU.

The information recorded by the PMU depends
on what the user wants.pfmon contains a few
preset measurements but for the most part the
user is free to set up custom measurements.
On Itanium2,pfmon provides access to all the
PMU advanced features such as opcode match-
ing, range restrictions, the Event Address Reg-
isters (EAR) and the Branch Trace Buffer.

1.2 pfmon command line options

Here is a summary of command line options
used in the examples later in this paper:

–us-c use the US-style comma separator for
large numbers.

–cpu-list=0 bind pfmon to CPU 0 and only
count on CPU 0

–pin-command bind the command at the end
of the command line to the same CPU as
pfmon .

–resolve-addr look up addresses and print the
symbols

–long-smpl-periods=2000take a sample of
every 2000th event.

–smpl-periods-random=0xfff:10 randomize
the sampling period. This is necessary
to avoid bias when sampling repetitive
behaviors. The first value is the mask
of bits to randomize (e.g., 0xfff) and the
second value is initial seed (e.g., 10).

-k kernel only.

Linux Symposium 2004 • Volume One • 241

–system-widemeasure the entire system (all
processes and kernel)

Parameters only available on a to-be-released
pfmon v3.1:

–smpl-module=dear-hist-itanium2 This par-
ticular module is to be used ONLY in
conjunction with the Data EAR (Event
Address Registers) and presents recorded
samples as histograms about the cache
misses. By default, the information is pre-
sented in the instruction view but it is pos-
sible to get the data view of the misses
also.

-e data_ear_cache_lat64pseudo event for
memory loads with latency≥ 64 cy-
cles. The real event isDATA_EAR_EVENT

(counts the number of times Data EAR
has recorded something) and the pseudo
event expresses the latency filter for the
event. Use “pfmon -ldata_ear_
cache* ” to list all valid values. Valid
values with McKinley CPU are powers of
two (4 – 4096).

1.3 q-tools

The author of q-tools, David Mosberger [5],
has described q-tools as “gprof without the
pain.”

q-tools package containsq-syscollect ,
q-view , qprof , and q-dot .
q-syscollect collects profile infor-
mation using kernel perfmon subsystem to
sample the PMU.q-view will present the
data collected in both flat-profile and call
graph form. q-dot displays the call-graph
in graphical form. Please see theqprof [6]
website for details onqprof .

q-syscollect depends on the kernel perf-
mon subsystem which is included in all 2.6

Linux kernels. Becauseq-syscollect uses
the PMU, it has the following advantages over
other tools:

• no special kernel support needed (besides
perfmon subsystem).

• provides call-graph of kernel functions

• can collect call-graphs of the kernel while
interrupts are blocked.

• measures multi-threaded applications

• data is collected per-CPU and can be
merged

• instruction level granularity (not bundles)

2 Measuring MMIO Reads

Nearly every driver uses MMIO reads to ei-
ther flush MMIO writes, flush in-flight DMA,
or (most obviously) collect status data from the
IO device directly. While use of MMIO read is
necessary in most cases, it should be avoided
where possible.

2.1 Why worry about MMIO Reads?

MMIO reads are expensive—how expensive
depends on speed of the IO bus, the number
bridges the read (and its corresponding read re-
turn) has to cross, how “busy” each bus is, and
finally how quickly the device responds to the
read request. On most architectures, one can
precisely measure the cost by measuring a loop
of MMIO reads and callingget_cycles()
before/after the loop.

I’ve measured anywhere from 1µs to 2µs per
read. In practical terms:

• ∼ 500–600 cycles on an otherwise-idle
400 MHz PA-RISC machine.

242 • Linux Symposium 2004 • Volume One

• ∼ 1000 cycles on a 450 MHz Pentium ma-
chine which included crossing a PCI-PCI
bridge.

• ∼ 900–1000 cycles on a 800 MHz IA64
HP ZX1 machine.

And for those who still don’t believe me, try
watching a DVD movie after turning DMA off
for an IDE DVD player:

hdparm -d 0 /dev/cdrom

By switching the IDE controller to use PIO
(Programmed I/O) mode, all data will be trans-
ferred to/from host memory under CPU con-
trol, byte (or word) at a time.pfmon can mea-
sure this. Andpfmon looks broken when it
displays three and four digit “Average Cycles
Per Instruction” (CPI) output.

2.2 Eh? Memory Reads don’t stall?

They do. But the CPU and PMU don’t “real-
ize” the stall until the next memory reference.
The CPU continues execution until memory or-
der is enforced by the acquire semantics in the
MMIO read. This means theData Event Ad-
dress Registers record the next stalled mem-
ory reference due to memory ordering con-
straints, not the MMIO read . One has to look
at the instruction stream carefully to determine
which instruction actually caused the stall.

This also means the following sequence
doesn’t work exactly like we expect:

writel(CMD,addr);
readl(addr);
udelay(1);
y = buf->member;

The problem is the value returned by
read(x) is never consumed. Memory

ordering imposes no constraint on non-
load/store instructions. Henceudelay(1)
begins before the CPU stalls. The CPU will
stall on buf->member because of memory
ordering restrictions if theudelay(1) com-
pletes beforereadl(x) is retired. Drop the
udelay(1) call andpfmon will always see
the stall caused by MMIO reads on the next
memory reference.

Unfortunately, the IA32 Software Developer’s
Manual[3] Volume 3, Chapter 7.2 “MEMORY
ORDERING” is silent on the issue of how
MMIO (uncached accesses) will (or will not)
stall the instruction stream. This document
is very clear on how “IO Operations” (e.g.,
IN/OUT) will stall the instruction pipeline until
the read return arrives at the CPU. A direct re-
sponse from Intel(R) indicatedreadl() does
not stall like IN or OUT do and IA32 has the
same problem. The Intel® architect who re-
sponded did hedge the above statement claim-
ing a “udelay(10) will be as close as expected”
for an example similar to mine. Anyone who
has access to a frontside bus analyzer can ver-
ify the above statement by measuring timing
loops between uncached accesses. I’m not that
privileged and have to trust Intel® in this case.

For IA64, we considered putting an extra bur-
den onudelay to stall the instruction stream
until previous memory references were retired.
We could use dummy loads/stores before and
after the actual delay loop so memory ordering
could be used to stall the instruction pipeline.
That seemed excessive for something that we
didn’t have a bug report for.

Consensus was addingmf.a (memory fence)
instruction toreadl() should be sufficient.
The architecture only requiresmf.a serve as
an ordering token and need not cause any de-
lays of its own. In other words, the imple-
mentation is platform specific.mf.a has not
been added toreadl() yet because every-

Linux Symposium 2004 • Volume One • 243

thing was working without so far.

2.3 pfmon -e uc_loads_retired

IO accesses are generally the only uncached
references made on IA64-linux and normally
will represent MMIO reads. The basic mea-
surement will tell us roughly how many cycles
the CPU stalls for MMIO reads. Get the num-
ber of MMIO reads per sample period and then
multiply by the actual cycle counts a MMIO
read takes for the given device. One needs to
measure MMIO read cost by using a CPU in-
ternal cycle counter and hacking the kernel to
read a harmless address from the target device
a few thousand times.

In order to make statements about per trans-
action or per interrupt, we need to know
the cumulative number of transactions or
interrupts processed for the sample period.
pktgen is straightforward in this regard since
pktgen will print transaction statistics when
a run is terminated. And one can record
/proc/interrupts contents before and
after eachpfmon run to collect interrupt
events as well.

Drawbacks to the above are one assumes a ho-
mogeneous driver environment; i.e., only one
type of driver is under load during the test. I
think that’s a fair assumption for development
in most cases. Bridges (e.g., routing traffic
across different interconnects) are probably the
one case it’s not true. One has to work a bit
harder to figure out what the counts mean in
that case.

For other benchmarks, like SpecWeb, we want
to grab/proc/interrupt and networking
stats before/afterpfmon runs.

2.4 tg3 Memory Reads

In summary, Figure 1 shows tg3 is do-
ing 2749675/(1834959 − 918505) ≈ 3
MMIO reads per interrupt and averaging about
5000000/(1834959 − 918505) ≈ 5 packets
per interrupt. This is with the BCM5701 chip
running in PCI mode at 66MHz:64-bit.

Based on code inspection, here is a break down
of where the MMIO reads occur in temporal
order:

1. tg3_interrupt() flushes MMIO
write toMAILBOX_INTERRUPT_0

2. tg3_poll() → tg3_enable_
ints() → tw32(TG3PCI_MISC_
HOST_CTRL)

3. tg3_enable_ints() flushes MMIO
write to MAILBOX_INTERRUPT_0

It’s obvious when inspectingtw32() , the
BCM5701 chip has a serious bug. Every call
to tw32() on BCM5701 requires a MMIO
read to follow the MMIO write. Only writes to
mailbox registers don’t require this and a dif-
ferent routine is used for mailbox writes.

Given the NIC was designed for zero MMIO
reads, this is pretty poor performance. Us-
ing a BCM5703 or BCM5704 would avoid the
MMIO read in tw32().

I’ve exchanged email with David Miller and
Jeff Garzik (tg3 driver maintainers). They have
valid concerns with portability. We agree tg3
could be reduced to one MMIO read after the
last MMIO write (to guarantee interrupts get
re-enabled).

One would need to use the “tag” field in the
status block when writing the mail box register
to indicate which “tag” the CPU most recently

244 • Linux Symposium 2004 • Volume One

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 918505 0 IO-SAPIC-level eth1
Result: OK: 7613693(c7613006+d687) usec, 5000000 (64byte) 656771pps 320Mb/sec
(336266752bps) errors: 0

57: 1834959 0 IO-SAPIC-level eth1
CPU0 2749675 UC_LOADS_RETIRED
CPU1 1175 UC_LOADS_RETIRED
}

Figure 1: tg3 v3.6 MMIO reads with pktgen/IRQ on same CPU

saw. Using Message Signaled Interrupts (MSI)
instead of Line based IRQs would guarantee
the most recent status block update (transferred
via DMA writes) would be visible to the CPU
beforetg3_interrupt() gets called.

The protocol would allow correct operation
without using MSI, too.

2.5 Benchmarking,pfmon , and CPU bindings

The purpose of bindingpktgen to CPU1 is
to verify the transmit code path is NOT doing
any MMIO reads. We split the transmit code
path and interrupt handler across CPUs to nar-
row down which code path is performing the
MMIO reads. This change is not obvious from
Figure 2 output since tg3 only performs MMIO
reads from CPU 0 (tg3_interrupt()).

But in Figure 2, performance goes up 30%!
Offhand, I don’t know if this is due to CPU
utilization (pktgen andtg3_interrupt()
contending for CPU cycles) or if DMA is more
efficient because of cache-line flows. When I
don’t have any deadlines looming, I’d like to
determine the difference.

2.6 e1000 Memory Reads

e1000 version 5.2.52-k4 has a more efficient
implementation than tg3 driver. In a nut shell,
MMIO reads are pretty much irrelevant to the
pktgen workload with e1000 driver using de-
fault values.

Figure 3 shows e1000 performs
173315/(703829 − 622143) ≈ 2 MMIO
reads per interrupt and5000000/(703829 −
622143) ≈ 61 packets per interrupt.

Being the curious soul I am, I tracked down
the two MMIO reads anyway. One is in the in-
terrupt handler and the second when interrupts
are re-enabled. It looks like e1000 will always
need at least 2 MMIO reads per interrupt.

3 Measuring MMIO Writes

3.1 Why worry about MMIO Writes?

MMIO writes are clearly not as significant as
MMIO reads. Nonetheless, every time a driver
writes to MMIO space, some subtle things hap-
pen. There are four minor issues to think about:
memory ordering, PCI bus utilization, filling
outbound write queues, and stalling MMIO
reads longer than necessary.

Linux Symposium 2004 • Volume One • 245

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5809687 0 IO-SAPIC-level eth1
Result: OK: 5914889(c5843865+d71024) usec, 5000000 (64byte) 845451pps 412Mb/se
c (432870912bps) errors: 0

57: 6427969 0 IO-SAPIC-level eth1
CPU0 1855253 UC_LOADS_RETIRED
CPU1 950 UC_LOADS_RETIRED

Figure 2: tg3 v3.6 MMIO reads with pktgen/IRQ on diff CPU

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-e1000
Configuring devices
Running... ctrl^C to stop

59: 622143 0 IO-SAPIC-level eth3
Result: OK: 10228738(c9990105+d238633) usec, 5000000 (64byte) 488854pps 238Mb/
sec (250293248bps) errors: 81669

59: 703829 0 IO-SAPIC-level eth3
CPU0 173315 UC_LOADS_RETIRED
CPU1 1422 UC_LOADS_RETIRED

Figure 3: MMIO reads for e1000 v5.2.52-k4

246 • Linux Symposium 2004 • Volume One

First, memory ordering is enforced since PCI
requires strong ordering of MMIO writes. This
means the MMIO write will push all previous
regular memory writes ahead. This is not a se-
rious issue but it can make a MMIO write take
longer.

MMIO writes are short transactions (i.e., much
less than a cache-line). The PCI bus setup time
to select the device, send the target address and
data, and disconnect measurably reduces PCI
bus utilization. It typically results in six or
more PCI bus cycles to send four (or eight)
bytes of data. On systems which strongly or-
der DMA Read Returns and MMIO Writes, the
latter will also interfere with DMA flows by in-
terrupting in-flight, outbound DMA.

If the IO bridge (e.g., PCI Bus controller) near-
est the CPU has a full write queue, the CPU
will stall. The bridge would normally queue
the MMIO write and then tell the CPU it’s
done. The chip designers normally make the
write queue deep enough so the CPU never
needs to stall. But drivers that perform many
MMIO writes (e.g., use door bells) and burst
many of MMIO writes at a time, could run into
a worst case.

The last concern, stalling MMIO reads longer
than normal, exists because of PCI ordering
rules. MMIO reads and MMIO writes are
strongly ordered. E.g., if four MMIO writes
are queued before a MMIO read, the read will
wait until all four MMIO write transactions
have completed. So instead of say 1000 CPU
cycles, the MMIO read might take more than
2000 CPU cycles on current platforms.

3.2 pfmon -e uc_stores_retired

pfmon counts MMIO Writes with no sur-
prises.

3.3 tg3 Memory Writes

Figure 4 shows tg3 does about 10M MMIO
writes to send 5M packets. However, we
can break the MMIO writes down into base
level (feed packets onto transmit queue) and
tg3_interrupt which handles TX (and
RX) completions. Knowing which code path
the MMIO writes are in helps track down us-
age in the source code.

Output in Figure 5 is after hacking the
pktgen-single-tg3 script to bind
pktgen kernel thread to CPU 1 when
eth1 is directing interrupts to CPU 0.
The distribution between TX queue setup
and interrupt handling is obvious now.
CPU 0 is handling interrupts and performs
3013580/(5803789 − 5201193) ≈ 5 MMIO
writes per interrupt. CPU 1 is handling TX
setup and performs5000376/5000000 ≈ 1
MMIO write per packet.

Again, as noted in section 2.5, binding pktgen
thread to one CPU and interrupts to another,
changes the performance dramatically.

3.4 e1000 Memory Writes

Figure 6 shows 248891/(991082 −
908366) ≈ 3 MMIO writes per inter-
rupt and5001303/5000000 ≈ 1 MMIO write
per packet. In other words, slightly better than
tg3 driver. Nonetheless, the hardware can’t
push as many packets. One difference is the
e1000 driver is pushing data to a NIC behind a
PCI-PCI Bridge.

Figure 7 shows a≈40% improvement in
throughput1 for pktgen without a PCI-PCI
Bridge in the way. Note the ratios of MMIO
writes per interrupt and MMIO writes per

1This demonstrates how the distance between the IO
device and CPU (and memory) directly translates into
latency and performance.

Linux Symposium 2004 • Volume One • 247

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 4284466 0 IO-SAPIC-level eth1
Result: OK: 7611689(c7610900+d789) usec, 5000000 (64byte) 656943pps 320Mb/sec
(336354816bps) errors: 0

57: 5198436 0 IO-SAPIC-level eth1
CPU0 9570269 UC_STORES_RETIRED
CPU1 445 UC_STORES_RETIRED

Figure 4: tg3 v3.6 MMIO writes

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5201193 0 IO-SAPIC-level eth1
Result: OK: 5880249(c5811180+d69069) usec, 5000000 (64byte) 850340pps 415Mb
/sec (435374080bps) errors: 0

57: 5803789 0 IO-SAPIC-level eth1
CPU0 3013580 UC_STORES_RETIRED
CPU1 5000376 UC_STORES_RETIRED

Figure 5: tg3 v3.6 MMIO writes with pktgen/IRQ split across CPUs

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-e1000
Running... ctrl^C to stop

59: 908366 0 IO-SAPIC-level eth3
Result: OK: 10340222(c10104719+d235503) usec, 5000000 (64byte) 483558pps 236Mb
/sec (247581696bps) errors: 82675

59: 991082 0 IO-SAPIC-level eth3
CPU0 248891 UC_STORES_RETIRED
CPU1 5001303 UC_STORES_RETIRED

Figure 6: MMIO writes for e1000 v5.2.52-k4

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-e1000
Running... ctrl^C to stop

71: 3 0 IO-SAPIC-level eth7
Result: OK: 7491358(c7342756+d148602) usec, 5000000 (64byte) 667467pps 325Mb/s
ec (341743104bps) errors: 59870

71: 59907 0 IO-SAPIC-level eth7
CPU0 180406 UC_STORES_RETIRED
CPU1 5000939 UC_STORES_RETIRED

Figure 7: e1000 v5.2.52-k4 MMIO writes without PCI-PCI Bridge

248 • Linux Symposium 2004 • Volume One

packet are the same. I doubt the MMIO
reads and MMIO writes are the limiting fac-
tors. More likely DMA access to memory
(and thus TX/RX descriptor rings) limits NIC
packet processing.

4 Measuring Cache-line Misses

The Event Address Registers2 (EAR) can only
record one event at a time. What is so interest-
ing about them is that they record precise infor-
mation about data cache misses. For instance
for a data cache miss, you get the:

• address of the instruction, likely a load

• address of the target data

• latency in cycles to resolve the miss

The information pinpoints the source of the
miss, not the consequence (i.e., the stall).

The Data EAR (DEAR) can also tell us about
MMIO reads via sampling. The DEAR can
only record loads that miss, not stores. Of
course, MMIO reads always miss because they
are uncached. This is interesting if we want to
track down which MMIO addresses are “hot.”
It’s usually easier to track down usage in source
code knowing which MMIO address is refer-
enced.

Collecting with DEAR sampling requires two
parameters be tweaked to statistically improve
the samples. One is the frequency at which
Data Addresses are recorded and the other is
the threshold (how many CPU cycles latency).

Because we know the latency to L3 is about
21 cycles, setting the EAR threshold to a value
higher (e.g., 64 cycles) ensures only the load

2pfmon v3.1 is the first version to support EAR
and is expected to be available in August, 2004.

misses accessing main memory will be cap-
tured. This is how to select which level of
cacheline misses one samples.

While high threshholds (e.g., 64 cycles) will
show us where the longest delays occur, it will
not show us the worst offenders. Doing a sec-
ond run with a lower threshold (e.g., 4 cycles)
shows all L1, L2, and L3 cache misses and pro-
vides a much broader picture of cache utiliza-
tion.

When sampling events with low threshholds,
we will get saturated with events and need to
reduce the number of events actually sampled
to every 5000th. The appropriate value will
depend on the workload and how patient one
is. The workload needs to be run long enough
to be statistically significant and the sampling
period needs to be high enough to not signifi-
cantly perturb the workload.

4.1 tg3 Data Cache misses > 64 cycles

For the output in Figure 8, I’ve iteratively de-
creased the smpl-periods until I noticed the to-
tal pktgen throughput starting to drop. Fig-
ure 8 output only shows the tg3 interrupt code
path sincepfmon is bound to CPU 0. Nor-
mally, it would be useful to run this again with
cpu-list=1 . We could then see what the
TX code path and pktgen are doing.

Also, the pin-command option in
this example doesn’t do anything since
pktgen-single-tg3 directs a pktgen
kernel thread bound CPU 1 to do the real
work. I’ve included the option only to make
people aware of it.

4.2 tg3 Data Cache misses > 4 cycles

Figure 9 puts thelat64 output in Figure 8
into better perspective. It shows tg3 is spending
more time for L1 and L2 misses than L3 misses

Linux Symposium 2004 • Volume One • 249

gsyprf3:~# pfmon31 --us-c --cpu-list=0 --pin-command --resolve-addr \
--smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat64 --long-smpl-periods=500 \
--smpl-periods-random=0xfff:10 --system-wide \
-k -- /usr/src/pktgen-testing/pktgen-single-tg3

added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 7209769 0 IO-SAPIC-level eth1
Result: OK: 5915877(c5845032+d70845) usec, 5000000 (64byte) 845308pps 412Mb/sec
(432797696bps) errors: 0

57: 7827812 0 IO-SAPIC-level eth1
total_samples 672
instruction addr view
sorted by count
showing per per distinct value
%L2 : percentage of L1 misses that hit L2
%L3 : percentage of L1 misses that hit L3
%RAM : percentage of L1 misses that hit memory
L2 : 5 cycles load latency
L3 : 12 cycles load latency
sampling period: 500
#count %self %cum %L2 %L3 %RAM instruction addr

38 5.65% 5.65% 0.00% 0.00% 100.00% 0xa000000100009141 ia64_spinlock_contention
+0x21<kernel>

36 5.36% 11.01% 0.00% 0.00% 100.00% 0xa00000020003e580 tg3_interrupt[tg3]+0xe0<kernel>
32 4.76% 15.77% 0.00% 0.00% 100.00% 0xa000000200034770 tg3_write_indirect_reg32[tg3]

+0x90<kernel>
32 4.76% 20.54% 0.00% 0.00% 100.00% 0xa00000020003e640 tg3_interrupt[tg3]+0x1a0<kernel>
30 4.46% 25.00% 0.00% 0.00% 100.00% 0xa000000200034e91 tg3_enable_ints[tg3]+0x91<kernel>
29 4.32% 29.32% 0.00% 0.00% 100.00% 0xa00000020003e510 tg3_interrupt[tg3]+0x70<kernel>
28 4.17% 33.48% 0.00% 0.00% 100.00% 0xa00000020003d1a0 tg3_tx[tg3]+0x2e0<kernel>
27 4.02% 37.50% 0.00% 0.00% 100.00% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
24 3.57% 41.07% 0.00% 0.00% 100.00% 0xa00000020003cfd1 tg3_tx[tg3]+0x111<kernel>
21 3.12% 44.20% 0.00% 0.00% 100.00% 0xa000000200034e60 tg3_enable_ints[tg3]+0x60<kernel>

.

.

.
level 0 : counts=0 avg_cycles=0.0ms 0.00%
level 1 : counts=0 avg_cycles=0.0ms 0.00%
level 2 : counts=672 avg_cycles=0.0ms 100.00%
approx cost: 0.0s

Figure 8: tg3 v3.6 lat64 output

250 • Linux Symposium 2004 • Volume One

gsyprf3:~# pfmon31 --us-c --cpu-list=0 --resolve-addr --smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat4 --long-smpl-periods=5000 --smpl-periods-random=0xfff:10 \
--system-wide -k -- /usr/src/pktgen-testing/pktgen-single-tg3
added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 8484552 0 IO-SAPIC-level eth1
Result: OK: 5938001(c5866437+d71564) usec, 5000000 (64byte) 842034pps 411Mb/sec

(431121408bps) errors: 0
57: 9093642 0 IO-SAPIC-level eth1

total_samples 795
instruction addr view
sorted by count
showing per per distinct value
%L2 : percentage of L1 misses that hit L2
%L3 : percentage of L1 misses that hit L3
%RAM : percentage of L1 misses that hit memory
L2 : 5 cycles load latency
L3 : 12 cycles load latency
sampling period: 5000
#count %self %cum %L2 %L3 %RAM instruction addr

95 11.95% 11.95% 0.00% 98.95% 1.05% 0xa00000020003d150 tg3_tx[tg3]+0x290<kernel>
83 10.44% 22.39% 93.98% 4.82% 1.20% 0xa00000020003d030 tg3_tx[tg3]+0x170<kernel>
21 2.64% 25.03% 0.00% 95.24% 4.76% 0xa0000001000180f0 ia64_handle_irq+0x170<kernel>
20 2.52% 27.55% 5.00% 80.00% 15.00% 0xa00000020003d040 tg3_tx[tg3]+0x180<kernel>
18 2.26% 29.81% 50.00% 11.11% 38.89% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
17 2.14% 31.95% 0.00% 0.00% 100.00% 0xa00000020003e671 tg3_interrupt[tg3]

+0x1d1<kernel>
17 2.14% 34.09% 0.00% 100.00% 0.00% 0xa00000020003e700 tg3_interrupt[tg3]

+0x260<kernel>
16 2.01% 36.10% 56.25% 43.75% 0.00% 0xa000000100012160 ia64_leave_kernel

+0x180<kernel>
16 2.01% 38.11% 62.50% 0.00% 37.50% 0xa00000020003cf60 tg3_tx[tg3]+0xa0<kernel>
15 1.89% 40.00% 86.67% 6.67% 6.67% 0xa00000020003cfd0 tg3_tx[tg3]+0x110<kernel>
15 1.89% 41.89% 0.00% 0.00% 100.00% 0xa000000100016041 do_IRQ+0x1a1<kernel>
15 1.89% 43.77% 0.00% 53.33% 46.67% 0xa00000020003e370 tg3_poll[tg3]+0x350<kernel>
.
.
.

level 0 : counts=226 avg_cycles=0.0ms 28.43%
level 1 : counts=264 avg_cycles=0.0ms 33.21%
level 2 : counts=305 avg_cycles=0.0ms 38.36%
approx cost: 0.0s

Figure 9: tg3 v3.6 lat4 output

Linux Symposium 2004 • Volume One • 251

and in only two locations. Adding one prefetch
to pull data from L3 into L2 would help for the
top offender. One needs to figure out which bit
of data each recorded access refers to and de-
termine how early one can prefetch that data.

We can also rule out MMIO accesses as the top
culprit. tg3_interrupt+0x1d1 could be
an MMIO read but it doesn’t show up in Fig-
ure 8 like tg3_write_indirect_reg32
does.

Note smpl-periods is 10x higher in Fig-
ure 9 than in Figure 8. Collecting 10x more
samples with lat4 definitely disturbs the
workload.

5 q-tools

q-syscollect and q-view are trivial to
use. An example and brief explanation for ker-
nel usage follow.

Please remember most applications spend most
of the time in user space and not in the kernel.
q-tools is especially good in user space.

5.1 q-syscollect

q-syscollect -c 5000 -C 5000 -t
20 -k

This will collect system wide kernel data dur-
ing the 20 second period. Twenty to thrity sec-
onds is usually long enough to get sufficient ac-
curacy3. However, if the workload generates
a very wide call graph with even distribution,
one will likely need to sample for longer peri-
ods to get accuracy in the±1% range. When
in doubt, try sampling for longer periods to see
if the call-counts change significantly.

3See Page 7 of the David Mosberger’s Gelato talk
[4] for a nice graph on accuracy whichonly applies to
his example.

The -c and -C set the call sample rate and
code sample rate respectively. The call sam-
ple rate is used to collect function call counts.
This is one of the key differences compared to
traditional profiling tools: q-syscollect obtains
call-counts in a statistical fashion, just as has
been done traditionally for the execution-time
profile. The code sample rate is used to collect
a flat profile (CPU_CYCLESby default).

The -e option allows one to change the event
used to sample for the flat profile. The default
is to sample CPU_CYCLES event. This pro-
vides traditional execution time in the flat pro-
file.

The data is stored in the current directory under
.q/ directory. The next section demonstrates
howq-view displays the data.

5.2 q-view

I was running the netperf [7] TCP_RR test in
the background to another server when I col-
lected the following data. As Figure 10 shows,
this particular TCP_RR test isn’t costing many
cycles in tg3 driver. Or, at least not ones I can
measure.

tg3_interrupt() shows up in the flat pro-
file with 0.314 seconds time associated with
it. The time measurement is only possible
becausehandle_IRQ_event() re-enables
interrupts if the IRQ handler is not regis-
tered with SA_INTERRUPT(to indicate la-
tency sensitive IRQ handler).do_IRQ() and
other functions in that same call graph do NOT
have any time measurements because inter-
rupts are disabled. As noted before, the call-
graph is sampled using a different part of the
PMU than the part which samples the flat pro-
file.

Lastly, I’ve omitted the trailing output of
q-view which explains the fields and
columns more completely. Read that first be-

252 • Linux Symposium 2004 • Volume One

gsyprf3:~# q-view .q/kernel-cpu0.info | more
Flat profile of CPU_CYCLES in kernel-cpu0.hist#0:

Each histogram sample counts as 200.510u seconds
% time self cumul calls self/call tot/call name

68.88 13.41 13.41 215k 62.5u 62.5u default_idle
2.90 0.56 13.97 431k 1.31u 1.31u finish_task_switch
2.50 0.49 14.46 233k 2.09u 4.89u tg3_poll
1.77 0.35 14.80 1.38M 251n 268n ipt_do_table
1.61 0.31 15.12 240k 1.31u 1.31u tg3_interrupt
1.51 0.29 15.41 240k 1.22u 5.95u net_rx_action
.
.
.

Call-graph table:
index %time self children called name

<spontaneous>
[176] 69.4 30.5m 13.4 - cpu_idle

29.5m 0.285 231k/457k schedule [164]
10.0m 0.00 244k/244k check_pgt_cache [178]

13.4 0.00 215k/215k default_idle [177]
--

.

.

.
--

0.293 1.14 240k __do_softirq [40]
[56] 7.4 0.293 1.14 240k net_rx_action

0.487 0.649 233k/233k tg3_poll [57]
--

0.487 0.649 233k net_rx_action [56]
[57] 5.9 0.487 0.649 233k tg3_poll

- 0.00 229k/229k tg3_enable_ints [133]
97.7m 0.552 225k/225k tg3_rx [61]

- 0.00 227k/227k tg3_tx [58]
--

.

.

.
--

- 1.88 348k ia64_leave_kernel [10]
[11] 9.7 - 1.88 348k ia64_handle_irq

- 1.52 239k/240k do_softirq [39]
- 0.367 356k/356k do_IRQ [12]

--
.
.
.

Figure 10:q-view output for TCP_RR over tg3 v3.6

Linux Symposium 2004 • Volume One • 253

fore going through the rest of the output.

6 Conclusion

6.1 More pfmon examples

CPU L2 cache misses in one kernel function
pfmon --verb -k \
--irange=sba_alloc_range \
-el2_misses --system-wide \
--session-timeout=10
Show all L2 cache misses in
sba_alloc_range . This is interesting
since sba_alloc_range() walks
a bitmap to look for “free” resources.
One can instead specify-el3_misses
since L3 cache misses are much more
expensive.

CPU 1 memory loads
pfmon --us-c \
--cpu-list=1 \
-e loads_retired \
-k --system-wide \
-- /tmp/pktgen-single Only
count memory loads on CPU 1. This is
useful for when we can bind the interrupt
to CPU 1 and the workload to a different
CPU. This lets us separate interrupt path
from base level code, i.e., when is the
load happening (before or after DMA
occurred) and which code path should
one be looking more closely at.

List EAR events supported pfmon -lear
List all EAR types supported bypfmon 4.

More info on Event pfmon -i DATA_EAR_

TLB_ALL pfmon can provide more info
on particular events it supports.

4EAR isn’t supported untilpfmon v3.1

6.2 And thanks to. . .

Special thanks to Stephane Eranian [2] for ded-
icating so much time to the perfmon kernel
driver and associated tools. People might think
the PMU does it all—but only with a lot of SW
driving it. His review of this paper caught some
good bloopers. This talk only happened be-
cause I sit across the aisle from him and could
pester him regularly.

Thanks to David Mosberger[5] for putting to-
gether q-tools and making it so trivial to use.

In addition, in no particular order:
Christophe de Dinechin, Bjorn Helgaas,
Matthew Wilcox, Andrew Patterson, Al Stone,
Asit Mallick, and James Bottomley for review-
ing this document or providing technical guid-
ance.

Thanks also to the OLS staff for making this
event happen every year.

My apologies if I omitted other contributors.

References

[1] perfmon homepage,
http://www.hpl.hp.com/
research/linux/
perfmon/

[2] Stephane Eranian,
http://www.gelato.org/
community/gelato_
meeting.php?id=CU2004#
talk22

[3] The IA-32 Intel(R) Architecture
Software Developer’s Manuals,
http://www.intel.com/
design/pentium4/
manuals/253668.htm

[4] q-tools homepage,
http://www.hpl.hp.com/

254 • Linux Symposium 2004 • Volume One

research/linux/
q-tools/

[5] David Mosberger,
http://www.gelato.org/
community/gelato_
meeting.php?id=CU2004#
talk19

[6] qprof homepage,
http://www.hpl.hp.com/
research/linux/qprof/

[7] netperf homepage,http:
//www.netperf.org/

Carrier Grade Server Features in the Linux Kernel
Towards Linux-based Telecom Plarforms

Ibrahim Haddad
Ericsson Research

ibrahim.haddad@ericsson.com

Abstract

Traditionally, communications and data ser-
vice networks were built on proprietary plat-
forms that had to meet very specific availabil-
ity, reliability, performance, and service re-
sponse time requirements. Today, communica-
tion service providers are challenged to meet
their needs cost-effectively for new architec-
tures, new services, and increased bandwidth,
with highly available, scalable, secure, and
reliable systems that have predictable perfor-
mance and that are easy to maintain and up-
grade. This paper presents the technological
trend of migrating from proprietary to open
platforms based on software and hardware
building blocks. It also focuses on the ongo-
ing work by the Carrier Grade Linux working
group at the Open Source Development Labs,
examines the CGL architecture, the require-
ments from the latest specification release, and
presents some of the needed kernel features
that are not currently supported by Linux such
as a Linux cluster communication mechanism,
a low-level kernel mechanism for improved re-
liability and soft-realtime performance, sup-
port for multi-FIB, and support for additional
security mechanisms.

1 Open platforms

The demand for rich media and enhanced
communication services is rapidly leading to

significant changes in the communication in-
dustry, such as the convergence of data and
voice technologies. The transition to packet-
based, converged, multi-service IP networks
require a carrier grade infrastructure based on
interoperable hardware and software building
blocks, management middleware, and appli-
cations, implemented with standard interfaces.
The communication industry is witnessing a
technology trend moving away from propri-
etary systems toward open and standardized
systems that are built using modular and flex-
ible hardware and software (operating system
and middleware) common off the shelf com-
ponents. The trend is to proceed forward de-
livering next generation and multimedia com-
munication services, using open standard car-
rier grade platforms. This trend is motivated
by the expectations that open platforms are go-
ing to reduce the cost and risk of developing
and delivering rich communications services.
Also, they will enable faster time to market and
ensure portability and interoperability between
various components from different providers.
One frequently asked question is: ’How can we
meet tomorrow’s requirements using existing
infrastructures and technologies?’. Proprietary
platforms are closed systems, expensive to de-
velop, and often lack support of the current
and upcoming standards. Using such closed
platforms to meet tomorrow’s requirements for
new architectures and services is almost impos-
sible. A uniform open software environment
with the characteristics demanded by telecom

256 • Linux Symposium 2004 • Volume One

applications, combined with commercial off-
the-shelf software and hardware components
is a necessary part of these new architectures.
The following key industry consortia are defin-
ing hardware and software high availability
specifications that are directly related to tele-
com platforms:

1. The PCI Industrial Computer Manufactur-
ers Group [1] (PICMG) defines standards
for high availability (HA) hardware.

2. The Open Source Development Labs [2]
(OSDL) Carrier Grade Linux [3] (CGL)
working group was established in Jan-
uary 2002 with the goal of enhancing the
Linux operating system, to achieve an
Open Source platform that is highly avail-
able, secure, scalable and easily main-
tained, suitable for carrier grade systems.

3. The Service Availability Forum [4] (SA
Forum) defines the interfaces of HA mid-
dleware and focusing on APIs for hard-
ware platform management and for appli-
cation failover in the application API. SA
compliant middleware will provide ser-
vices to an application that needs to be HA
in a portable way.

Figure 1: From Proprietary to Open Solutions

The operating system is a core component in
such architectures. In the remaining of this pa-
per, we will be focusing on CGL, its architec-
ture and specifications.

2 The term Carrier Grade

In this paper, we refer to the term Carrier Grade
on many occasions. Carrier grade is a term
for public network telecommunications prod-
ucts that require a reliability percentage up to 5
or 6 nines of uptime.

• 5 nines refers to 99.999% of uptime per
year (i.e., 5 minutes of downtime per
year). This level of availability is usually
associated with Carrier Grade servers.

• 6 nines refers to 99.9999% of uptime per
year (i.e., 30 seconds of downtime per
year). This level of availability is usually
associated with Carrier Grade switches.

3 Linux versus proprietary operat-
ing systems

This section describes briefly the motivating
reasons in favor of using Linux on Carrier
Grade systems, versus continuing with propri-
etary operating systems. These motivations in-
clude:

• Cost: Linux is available free of charge in
the form of a downloadable package from
the Internet.

• Source code availability: With Linux, you
gain full access to the source code allow-
ing you to tailor the kernel to your needs.

• Open development process (Figure 2):
The development process of the kernel is
open to anyone to participate and con-
tribute. The process is based on the con-
cept of "release early, release often."

• Peer review and testing resources: With
access to the source code, people using a

Linux Symposium 2004 • Volume One • 257

wide variety of platform, operating sys-
tems, and compiler combinations; can
compile, link, and run the code on their
systems to test for portability, compatibil-
ity and bugs.

• Vendor independent: With Linux, you no
longer have to be locked into a specific
vendor. Linux is supported on multiple
platforms.

• High innovation rate: New features are
usually implemented on Linux before they
are available on commercial or propri-
etary systems.

Figure 2: Open development process of the
Linux kernel

Other contributing factors include Linux’ sup-
port for a broad range of processors and
peripherals, commercial support availability,
high performance networking, and the proven
record of being a stable, and reliable server
platform.

4 Carrier Grade Linux

The Linux kernel is missing several features
that are needed in a telecom environment. It
is not adapted to meet telecom requirements
in various areas such as reliability, security,
and scalability. To help the advancement of

Linux in the telecom space, OSDL established
the CGL working group. The group specifies
and helps implement an Open Source platform
targeted for the communication industry that
is highly available, secure, scalable and easily
maintained. The CGL working group is com-
posed of several members from network equip-
ment providers, system integrators, platform
providers, and Linux distributors. They all
contribute to the requirement definition of Car-
rier Grade Linux, help Open Source projects
to meet these requirements, and in some cases
start new Open Source projects. Many of
the CGL members companies have contributed
pieces of technologies to Open Source in order
to make the Linux Kernel a more viable option
for telecom platforms. For instance, the Open
Systems Lab [5] from Ericsson Research has
contributed three key technologies: the Trans-
parent IPC [6], the Asynchronous Event Mech-
anism [7], and the Distributed Security Infras-
tructure [8]. There are already Linux distri-
butions, MontaVista [9] for instance, that are
providing CGL distribution based on the CGL
requirement definition. Many companies are
also either deploying CGL, or at least evaluat-
ing and experimenting with it.

Consequently, CGL activities are giving much
momentum for Linux in the telecom space
allowing it to be a viable option to propri-
etary operating system. Member companies of
CGL are releasing code to Open Source and
are making some of their proprietary technolo-
gies open, which leads to going forward from
closed platforms to open platforms that use
CGL Linux.

5 Target CGL applications

The CGL Working Group has identified three
main categories of application areas into which
they expect the majority of applications imple-
mented on CGL platforms to fall. These appli-

258 • Linux Symposium 2004 • Volume One

cation areas are gateways, signaling, and man-
agement servers.

• Gateways are bridges between two dif-
ferent technologies or administration do-
mains. For example, a media gateway per-
forms the critical function of converting
voice messages from a native telecommu-
nications time-division-multiplexed net-
work, to an Internet protocol packet-
switched network. A gateway processes a
large number of small messages received
and transmitted over a large number of
physical interfaces. Gateways perform
in a timely manner very close to hard
real-time. They are implemented on ded-
icated platforms with replicated (rather
than clustered) systems used for redun-
dancy.

• Signaling servers handle call control, ses-
sion control, and radio recourse control.
A signaling server handles the routing and
maintains the status of calls over the net-
work. It takes the request of user agents
who want to connect to other user agents
and routes it to the appropriate signaling.
Signaling servers require soft real time re-
sponse capabilities less than 80 millisec-
onds, and may manage tens of thousands
of simultaneous connections. A signaling
server application is context switch and
memory intensive due to requirements for
quick switching and a capacity to manage
large numbers of connections.

• Management servers handle traditional
network management operations, as well
as service and customer management.
These servers provide services such as: a
Home Location Register and Visitor Lo-
cation Register (for wireless networks)
or customer information (such as per-
sonal preferences including features the

customer is authorized to use). Typi-
cally, management applications are data
and communication intensive. Their re-
sponse time requirements are less strin-
gent by several orders of magnitude, com-
pared to those of signaling and gateway
applications.

6 Overview of the CGL working
group

The CGL working group has the vision that
next-generation and multimedia communica-
tion services can be delivered using Linux
based open standards platforms for carrier
grade infrastructure equipment. To achieve this
vision, the working group has setup a strat-
egy to define the requirements and architecture
for the Carrier Grade Linux platform, develop
a roadmap for the platform, and promote the
development of a stable platform upon which
commercial components and services can be
deployed.

In the course of achieving this strategy, the
OSDL CGL working group, is creating the re-
quirement definitions, and identifying existing
Open Source projects that support the roadmap
to implement the required components and in-
terfaces of the platform. When an Open Source
project does not exist to support a certain re-
quirement, OSDL CGL is launching (or sup-
port the launch of) new Open Source projects
to implement missing components and inter-
faces of the platform.

The CGL working group consists of three dis-
tinct sub-groups that work together. These sub-
groups are: specification, proof-of-concept,
and validation. Responsibilities of each sub-
group are as follows:

1. Specifications: The specifications sub-
group is responsible for defining a set of

Linux Symposium 2004 • Volume One • 259

requirements that lead to enhancements in
the Linux kernel, that are useful for car-
rier grade implementations and applica-
tions. The group collects, categorizes, and
prioritizes the requirements from partici-
pants to allow reasonable work to proceed
on implementations. The group also in-
teracts with other standard defining bod-
ies, open source communities, develop-
ers and distributions to ensure that the re-
quirements identify useful enhancements
in such a way, that they can be adopted
into the base Linux kernel.

2. Proof-of-Concept: This sub-group gener-
ates documents covering the design, fea-
tures, and technology relevant to CGL. It
drives the implementation and integration
of core Carrier Grade enhancements to
Linux as identified and prioritized by the
requirement document. The group is also
responsible for ensuring the integrated en-
hancements pass, the CGL validation test
suite and for establishing and leading an
open source umbrella project to coordi-
nate implementation and integration ac-
tivities for CGL enhancements.

3. Validation: This sub-group defines stan-
dard test environments for developing val-
idation suites. It is responsible for co-
ordinating the development of validation
suites, to ensure that all of the CGL re-
quirements are covered. This group is
also responsible for the development of
an Open Source project CGL validation
suite.

7 CGL architecture

Figure 3 presents the scope of the CGL Work-
ing Group, which covers two areas:

• Carrier Grade Linux: Various require-
ments such as availability and scalability

Figure 3: CGL architecture and scope

are related to the CGL enhancements to
the operating system. Enhancements may
also be made to hardware interfaces, inter-
faces to the user level or application code
and interfaces to development and debug-
ging tools. In some cases, to access the
kernel services, user level library changes
will be needed.

• Software Development Tools: These tools
will include debuggers and analyzers.

On October 9, 2003, OSDL announced
the availability of the OSDL Carrier
Grade Linux Requirements Definition,
Version 2.0 (CGL 2.0). This latest re-
quirement definition for next-generation
carrier grade Linux offers major advances
in security, high availability, and cluster-
ing.

8 CGL requirements

The requirement definition document of CGL
version 2.0 introduced new and enhanced fea-
tures to support Linux as a carrier grade plat-
form. The CGL requirement definition divides
the requirements in main categories described
briefly below:

260 • Linux Symposium 2004 • Volume One

8.1 Clustering

These requirements support the use of multi-
ple carrier server systems to provide higher lev-
els of service availability through redundant re-
sources and recovery capabilities, and to pro-
vide a horizontally scaled environment sup-
porting increased throughput.

8.2 Security

The security requirements are aimed at main-
taining a certain level of security while not en-
dangering the goals of high availability, perfor-
mance, and scalability. The requirements sup-
port the use of additional security mechanisms
to protect the systems against attacks from both
the Internet and intranets, and provide special
mechanisms at kernel level to be used by tele-
com applications.

8.3 Standards

CGL specifies standards that are required for
compliance for carrier grade server systems.
Examples of these standards include:

• Linux Standard Base

• POSIX Timer Interface

• POSIX Signal Interface

• POSIX Message Queue Interface

• POSIX Semaphore Interface

• IPv6 RFCs compliance

• IPsecv6 RFCs compliance

• MIPv6 RFCs compliance

• SNMP support

• POSIX threads

8.4 Platform

OSDL CGL specifies requirements that sup-
port interactions with the hardware platforms
making up carrier server systems. Platform ca-
pabilities are not tied to a particular vendor’s
implementation. Examples of the platform re-
quirements include:

• Hot insert: supports hot-swap insertion of
hardware components

• Hot remove: supports hot-swap removal
of hardware components

• Remote boot support: supports remote
booting functionality

• Boot cycle detection: supports detecting
reboot cycles due to recurring failures.
If the system experiences a problem that
causes it to reboot repeatedly, the system
will go offline. This is to prevent addi-
tional difficulties from occurring as a re-
sult of the repeated reboots

• Diskless systems: Provide support for
diskless systems loading their ker-
nel/application over the network

• Support remote booting across common
LAN and WAN communication media

8.5 Availability

The availability requirements support height-
ened availability of carrier server systems, such
as improving the robustness of software com-
ponents or by supporting recovery from failure
of hardware or software. Examples of these re-
quirements include:

• RAID 1: support for RAID 1 offers mir-
roring to provide duplicate sets of all data
on separate hard disks

Linux Symposium 2004 • Volume One • 261

• Watchdog timer interface: support for
watchdog timers to perform certain speci-
fied operations when timeouts occur

• Support for Disk and volume manage-
ment: to allow grouping of disks into vol-
umes

• Ethernet link aggregation and link
failover: support bonding of multiple NIC
for bandwidth aggregation and provide
automatic failover of IP addresses from
one interface to another

• Support for application heartbeat moni-
tor: monitor applications availability and
functionality.

8.6 Serviceability

The serviceability requirements support servic-
ing and managing hardware and software on
carrier server systems. These are wide-ranging
set requirements, put together, help support the
availability of applications and the operating
system. Examples of these requirements in-
clude:

• Support for producing and storing kernel
dumps

• Support for dynamic debug to allow dy-
namically the insertion of software instru-
mentation into a running system in the
kernel or applications

• Support for platform signal handler en-
abling infrastructures to allow interrupts
generated by hardware errors to be logged
using the event logging mechanism

• Support for remote access to event log in-
formation

8.7 Performance

OSDL CGL specifies the requirements that
support performance levels necessary for the
environments expected to be encountered by
carrier server systems. Examples of these re-
quirements include:

• Support for application (pre) loading.

• Support for soft real time performance
through configuring the scheduler to pro-
vide soft real time support with latency of
10 ms.

• Support Kernel preemption.

• Raid 0 support: RAID Level 0 pro-
vides "disk striping" support to enhance
performance for request-rate-intensive or
transfer-rate-intensive environments

8.8 Scalability

These requirements support vertical and hori-
zontal scaling of carrier server systems such as
the addition of hardware resources to result in
acceptable increases in capacity.

8.9 Tools

The tools requirements provide capabilities to
facilitate diagnosis. Examples of these require-
ments include:

• Support the usage of a kernel debugger.

• Support for Kernel dump analysis.

• Support for debugging multi-threaded
programs

262 • Linux Symposium 2004 • Volume One

9 CGL 3.0

The work on the next version of the OSDL
CGL requirements, version 3.0, started in Jan-
uary 2004 with focus on advanced require-
ment areas such as manageability, serviceabil-
ity, tools, security, standards, performance,
hardware, clustering and availability. With the
success of CGL’s first two requirement docu-
ments, OSDL CGL working group anticipates
that their third version will be quite beneficial
to the Carrier Grade ecosystem. Official re-
lease of the CGL requirement document Ver-
sion 3.0 is expected in October 2004.

10 CGL implementations

There are several enhancements to the Linux
Kernel that are required by the communication
industry, to help adopt Linux on their carrier
grade platforms, and support telecom applica-
tions. These enhancements (Figure 4) fall into
the following categories availability, security,
serviceability, performance, scalability, relia-
bility, standards, and clustering.

Figure 4: CGL enhancements areas

The implementations providing theses en-
hancements are Open Source projects and
planned for integration with the Linux ker-
nel when the implementations are mature, and
ready for merging with the kernel code. In

some cases, bringing some projects into matu-
rity levels takes a considerable amount of time
before being able to request its integration into
the Linux kernel. Nevertheless, some of the en-
hancements are targeted for inclusion in kernel
version 2.7. Other enhancements will follow in
later kernel releases. Meanwhile, all enhance-
ments, in the form of packages, kernel modules
and patches, are available from their respective
project web sites. The CGL 2.0 requirements
are in-line with the Linux development com-
munity. The purpose of this project is to form a
catalyst to capture common requirements from
end-users for a CGL distribution. With a com-
mon set of requirements from the major Net-
work Equipment Providers, developers can be
much more productive and efficient within de-
velopment projects. Many individuals within
the CGL initiative are also active participants
and contributors in the Open Source develop-
ment community.

11 Examples of needed features in
the Linux Kernel

In this section, we provide some examples
of missing features and mechanisms from the
Linux kernel that are necessary in a telecom
environment.

11.1 Transparent Inter-Process and Inter-
Processor Communication Protocol for
Linux Clusters

Today’s telecommunication environments are
increasingly adopting clustered servers to gain
benefits in performance, availability, and scal-
ability. The resulting benefits of a cluster
are greater or more cost-efficient than what a
single server can provide. Furthermore, the
telecommunications industry interest in clus-
tering originates from the fact that clusters
address carrier grade characteristics such as
guaranteed service availability, reliability and

Linux Symposium 2004 • Volume One • 263

scaled performance, using cost-effective hard-
ware and software. Without being absolute
about these requirements, they can be divided
in these three categories: short failure detection
and failure recovery, guaranteed availability of
service, and short response times. The most
widely adopted clustering technique is use of
multiple interconnected loosely coupled nodes
to create a single highly available system.

One missing feature from the Linux kernel in
this area is a reliable, efficient, and transpar-
ent inter-process and inter-processor commu-
nication protocol. Transparent Inter Process
Communication (TIPC) [6] is a suitable Open
Source implementation that fills this gap and
provides an efficient cluster communication
protocol. This leverages the particular condi-
tions present within loosely coupled clusters.
It runs on Linux and is provided as a portable
source code package implementing a loadable
kernel module.

TIPC is unique because there seems to be no
other protocol providing a comparable com-
bination of versatility and performance. It
includes some original innovations such as
the functional addressing, the topology sub-
scription services, and the reactive connec-
tion concept. Other important TIPC fea-
tures include full location transparency, sup-
port for lightweight connections, reliable mul-
ticast, signaling link protocol, topology sub-
scription services and more.

TIPC should be regarded as a useful toolbox
for anyone wanting to develop or use Carrier
Grade or Highly Available Linux clusters. It
provides the necessary infrastructure for clus-
ter, network and software management func-
tionality, as well as a good support for de-
signing site-independent, scalable, distributed,
high-availability and high-performance appli-
cations.

It is also worthwhile to mention that the

ForCES (Forwarding and Control Element
WG) [11] working group within IETF has
agreed that their router internal protocol (the
ForCES protocol) must be possible to carry
over different types of transport protocols.
There is consensus on that TCP is the pro-
tocol to be used when ForCES messages are
transported over the Internet, while TIPC is
the protocol to be used in closed environments
(LANs), where special characteristics such as
high performance and multicast support is de-
sirable. Other protocols may also be added as
options.

TIPC is a contribution from Ericsson [5] to
the Open Source community. TIPC was an-
nounced on LKML on June 28, 2004; it is li-
censed under a dual GPL and BSD license.

11.2 IPv4, IPv6, MIPv6 forwarding tables fast
access and compact memory with multi-
ple FIB support

Routers are core elements of modern telecom
networks. They propagate and direct billion
of data packets from their source to their des-
tination using air transport devices or through
high-speed links. They must operate as fast as
the medium in order to deliver the best qual-
ity of service and have a negligible effect on
communications. To give some figures, it is
common for routers to manage between 10.000
to 500.000 routes. In these situations, good
performance is achievable by handling around
2000 routes/sec. The actual implementation of
the IP stack in Linux works fine for home or
small business routers. However, with the high
expectation of telecom operators and the new
capabilities of telecom hardware, it appears as
barely possible to use Linux as an efficient
forwarding and routing element of a high-end
router for large network (core/border/access
router) or a high-end server with routing capa-
bilities.

264 • Linux Symposium 2004 • Volume One

One problem with the networking stack in
Linux is the lack of support for multiple
forward-ing information bases (multi-FIB) wit
h overlapping interface’s IP address, and the
lack of appropriate interfaces for addressing
FIB. Another problem with the curren t imple-
mentation is the limited scalability of the rout-
ing table.

The solution to these problems is to provide
support for multi-FIB with overlapping IP ad-
dress. As such, we can have on differe nt
VLAN or different physical interfaces, inde-
pendent network in the same Linux box. For
example, we can have two HTTP servers serv-
ing two different networks with potentially the
same IP address. One HTTP server will serve
the network/FIB 10, and the othe r HTTP
server will serves the network/FIB 20. The ad-
vantage gained is to have one Linux box serv-
ing two different customers usi ng the same IP
address. ISPs adopt this approach by provid-
ing services for multiple customers sharing the
same server (server pa rtitioning), instead of
using a server per customer.

The way to achieve this is to have an ID (an
identifier that identifies the customer or user of
the service) to completely separ ate the rout-
ing table in memory. Two approaches exist:
the first is to have a separate routing tables,
each routing table is looked up by their ID and
within tha t table the lookup is done one the
prefix. The second approach is to have one ta-
ble, and the lookup is done on the combined
key = prefix + ID.

A different kind of problem arises when we are
not able to predict access time, with the chain-
ing in the hash table of the routi ng cache (and
FIB). This problem is of particular inter-est in
an environment that requires predictable per-
formance.

Another aspect of the problem is that the route
cache and the routing table are not kept syn-

chronized most of the time (path MTU, just
to name one). The route cache flush is exe-
cuted regularly; therefore, any updates on the
cache are lost. For example, if you have a rout-
ing cache flush, you have to rebuild every route
that you are currently talking to, by going for
every route in the hash/try table and rebuilding
the information. First, you have to lookup in
the routing cache, and if you have a miss, then
you need to go in the hash/try table. This pro-
cess is very slow and not predictable since the
hash/try table is implemented wi th linked list
and there is high potential for collisions when a
large number of routes are present. This design
is suitable fo r a home PC with a few routes, but
it is not scalable for a large server.

To support the various routing requirements
of server nodes operating in high perfor-
mance and mission critical envrionments,
Linux should support the following:

• Implementation of multi-FIB using tree
(radix, patricia, etc.): It is very impor-
tant to have predictable performance in in-
sert/delete/lookup from 10.000 to 500.000
routes. In addition, it is favourable to have
the same data structure for both IPv4 and
IPv6.

• Socket and ioctl interfaces for addressing
multi-FIB.

• Multi-FIB support for neighbors (arp).

Providing these implementations in Linux will
affect a large part of net/core, net/ipv4 and
net/ipv6; these subsystems (mostly network
layer) will need to be re-written. Other areas
will have minimal impact at the source code
level, mostly at the transport layer (socket,
TCP, UDP, RAW, NAT, IPIP, IGMP, etc.).

As for the availability of an Open Source
project that can provide these functionalities,

Linux Symposium 2004 • Volume One • 265

there exists a project called "Linux Virtual
Routing and Forwarding" [12]. This project
aims to implement a flexible and scalable
mechanism for providing multiple routing in-
stances within the Linux kernel. The project
has some potential in providing the needed
functionalities, however no progress has been
made since 2002 and the project seems to be
inactive.

11.3 Run-time Authenticity Verification for Bi-
naries

Linux has generally been considered immune
to the spread of viruses, backdoors and Tro-
jan programs on the Internet. However, with
the increasing popularity of Linux as a desk-
top platform, the risk of seeing viruses or Tro-
jans developed for this platform are rapidly
growing. To alleviate this problem, the sys-
tem should prevent on run time the execu-
tion of un-trusted software. One solution is
to digitally sign the trusted binaries and have
the system check the digital signature of bina-
ries before running them. Therefore, untrusted
(not signed) binaries are denied the execution.
This can improve the security of the system
by avoiding a wide range of malicious bina-
ries like viruses, worms, Trojan programs and
backdoors from running on the system.

DigSig [13] is a Linux kernel module that
checks the signature of a binary before running
it. It inserts digital signatures inside the ELF
binary and verifies this signature before load-
ing the binary. It is based on the Linux Security
Module hooks (LSM has been integrated with
the Linux kernel since 2.5.X and higher).

Typically, in this approach, vendors do not sign
binaries; the control of the system remains with
the local administrator. The responsible ad-
ministrator is to sign all binaries they trust with
their private key. Therefore, DigSig guarantees
two things: (1) if you signed a binary, nobody

else other than yourself can modify that binary
without being detected. (2) Nobody can run a
binary which is not signed or badly signed.

There has already been several initiatives in
this domain, such as Tripwire [14], BSign [15],
Cryptomark [16], but we believe the DigSig
project is the first to be both easily accessible to
all (available on SourceForge, under the GPL
license) and to operate at kernel level on run
time. The run time is very important for Car-
rier Grade Linux as this takes into account the
high availability aspects of the system.

The DigSig approach has been using exist-
ing solutions like GnuPG [17] and BSign (a
Debian package) rather than reinventing the
wheel. However, in order to reduce the over-
head in the kernel, the DigSig project only took
the minimum code necessary from GnuPG.
This helped much to reduce the amount of code
imported to the kernel in source code of the
original (only 1/10 of the original GnuPG 1.2.2
source code has been imported to the kernel
module).

DigSig is a contribution from Ericsson [5] to
the Open Source community. It was released
under the GPL license and it is available from
[8].

DigSig has been announced on LKML [18] but
it not yet integrated in the Linux Kernel.

11.4 Efficient Low-Level Asynchronous Event
Mechanism

Carrier grade systems must provide a 5-nines
availability, a maximum of five minutes per
year of downtime, which includes hardware,
operating system, software upgrade and main-
tenance. Operating systems for such systems
must ensure that they can deliver a high re-
sponse rate with minimum downtime. In ad-
dition, carrier-grade systems must take into
account such characteristics such as scalabil-

266 • Linux Symposium 2004 • Volume One

ity, high availability and performance. In car-
rier grade systems, thousands of requests must
be handled concurrently without affecting the
overall system’s performance, even under ex-
tremely high loads. Subscribers can expect
some latency time when issuing a request, but
they are not willing to accept an unbounded
response time. Such transactions are not han-
dled instantaneously for many reasons, and it
can take some milliseconds or seconds to re-
ply. Waiting for an answer reduces applica-
tions abilities to handle other transactions.

Many different solutions have been envisaged
to improve Linux’s capabilities in this area us-
ing different types of software organization,
such as multithreaded architectures, imple-
menting efficient POSIX interfaces, or improv-
ing the scalability of existing kernel routines.

One possible solution that is adequate for car-
rier grade servers is the Asynchronous Event
Mechanism (AEM), which provides asyn-
chronous execution of processes in the Linux
kernel. AEM implements a native support
for asynchronous events in the Linux kernel
and aims to bring carrier-grade characteristics
to Linux in areas of scalability and soft real-
time responsiveness. In addition, AEM offers
event-based development framework, scalabil-
ity, flexibility, and extensibility.

Ericsson [5] released AEM to Open Source in
February 2003 under the GPL license. AEM
was announced on the Linux Kernel Mailing
List (LKML) [20], and received feedback that
resulted in some changes to the design and im-
plementation. AEM is not yet integrated with
the Linux kernel.

12 Conclusion

There are many challenges accompanying the
migration from proprietary to open platforms.
The main challenge remains to be the availabil-

ity of the various kernel features and mecha-
nisms needed for telecom platforms and inte-
grating these features in the Linux kernel.

References

[1] PCI Industrial Computer Manufacturers
Group,
http://www.picmg.org

[2] Open Source Development Labs,
http://www.osdl.org

[3] Carrier Grade Linux,
http://osdl.org/lab_activities

[4] Service Availability Forum,
http://www.saforum.org

[5] Open System Lab,
http://www.linux.ericsson.ca

[6] Transparent IPC,
http://tipc.sf.net

[7] Asynchronous Event Mechanism,
http://aem.sf.net

[8] Distributed Security Infrastructure,
http://disec.sf.net

[9] MontaVista Carrier Grade Edition,
http://www.mvista.com/cge

[10] Make Clustering Easy with TIPC,
LinuxWorld Magazine, April 2004

[11] IETF ForCES working group,
http://www.sstanamera.com/~forces

[12] Linux Virtual Routing and Forwarding
project,
http://linux-vrf.sf.net

[13] Stop Malicious Code Execution at
Kernel Level, LinuxWorld Magazine,
January 2004

Linux Symposium 2004 • Volume One • 267

[14] Tripwire,
http://www.tripwire.com

[15] Bsign,
http://packages.debian.org/bsign

[16] Cryptomark,
http://immunix.org/cryptomark.html

[17] GnuPG,
http://www.gnupg.org

[18] DigSig announcement on LKML,
http://lwn.net/Articles/51007

[19] An Event Mechanism for Linux, Linux
Journal, July 2003

[20] AEM announcement on LKML,
http://lwn.net/Articles/45633

Acknowledgments

Thank you to Ludovic Beliveau, Mathieu
Giguere, Magnus Karlson, Jon Maloy, Mats
Naslund, Makan Pourzandi, and Frederic
Rossi, for their valuable contributions and re-
views.

268 • Linux Symposium 2004 • Volume One

Demands, Solutions, and Improvements for Linux
Filesystem Security

Michael Austin Halcrow
International Business Machines, Inc.

mike@halcrow.us

Abstract

Securing file resources under Linux is a team
effort. No one library, application, or kernel
feature can stand alone in providing robust se-
curity. Current Linux access control mecha-
nisms work in concert to provide a certain level
of security, but they depend upon the integrity
of the machine itself to protect that data. Once
the data leaves that machine, or if the machine
itself is physically compromised, those access
control mechanisms can no longer protect the
data in the filesystem. At that point, data pri-
vacy must be enforced via encryption.

As Linux makes inroads in the desktop market,
the need for transparent and effective data en-
cryption increases. To be practically deploy-
able, the encryption/decryption process must
be secure, unobtrusive, consistent, flexible, re-
liable, and efficient. Most encryption mecha-
nisms that run under Linux today fail in one
or more of these categories. In this paper, we
discuss solutions to many of these issues via
the integration of encryption into the Linux
filesystem. This will provide access control en-
forcement on data that is not necessarily un-
der the control of the operating environment.
We also explore how stackable filesystems, Ex-
tended Attributes, PAM, GnuPG web-of-trust,
supporting libraries, and applications (such as
GNOME/KDE) can all be orchestrated to pro-
vide robust encryption-based access control
over filesystem content.

1 Development Efforts

This paper is motivated by an effort on the part
of the IBM Linux Technology Center to en-
hance Linux filesystem security through bet-
ter integration of encryption technology. The
author of this paper is working together with
the external community and several members
of the LTC in the design and development of
a transparent cryptographic filesystem layer in
the Linux kernel. The “we” in this paper refers
to immediate members of the author’s devel-
opment team who are working together on this
project, although many others outside that de-
velopment team have thus far had a significant
part in this development effort.

2 The Filesystem Security

2.1 Threat Model

Computer users tend to be overly concerned
about protecting their credit card numbers from
being sniffed as they are transmitted over the
Internet. At the same time, many do not think
twice when sending equally sensitive informa-
tion in the clear via an email message. A
thief who steals a removable device, laptop, or
server can also read the confidential files on
those devices if they are left unprotected. Nev-
ertheless, far too many users neglect to take the
necessary steps to protect their files from such
an event. Your liability limit for unauthorized

270 • Linux Symposium 2004 • Volume One

charges to your credit card is $50 (and most
credit card companies waive that liability for
victims of fraud); on the other hand, confiden-
tiality cannot be restored once lost.

Today, we see countless examples of neglect
to use encryption to protect the integrity and
the confidentiality of sensitive data. Those
who are trusted with sensitive information rou-
tinely send that information as unencrypted
email attachments. They also store that infor-
mation in clear text on disks, USB keychain
drives, backup tapes, and other removable me-
dia. GnuPG[7] and OpenSSL[8] provide all the
encryption tools necessary to protect this infor-
mation, but these tools are not used nearly as
often as they ought to be.

If required to go through tedious encryption or
decryption steps every time they need to work
with a file or share it, people will select inse-
cure passwords, transmit passwords in an inse-
cure manner, fail to consider or use public key
encryption options, or simply stop encrypting
their files altogether. If security is overly ob-
structive, people will remove it, work around
it, or misuse it (thus rendering it less effective).
As Linux gains adoption in the desktop market,
we need integrated file integrity and confiden-
tiality that is seamless, transparent, easy to use,
and effective.

2.2 Integration of File Encryption into the
Filesystem

Several solutions exist that solve separate
pieces of the problem. In one example high-
lighting transparency, employees within an or-
ganization that uses IBM™ Lotus Notes™ [9]
for its email will not even notice the complex
PKI or the encryption process that is integrated
into the product. Encryption and decryption
of sensitive email messages is seamless to the
end user; it involves checking an “Encrypt”
box, specifying a recipient, and sending the

message. This effectively addresses a signifi-
cant file in-transit confidentiality problem. If
the local replicated mailbox database is also
encrypted, then it also addresses confidential-
ity on the local storage device, but the protec-
tion is lost once the data leaves the domain of
Notes (for example, if an attached file is saved
to disk). The process must be seamlessly in-
tegrated intoall relevant aspects of the user’s
operating environment.

In Section 4, we discuss filesystem security
in general under Linux, with an emphasis
on confidentiality and integrity enforcement
via cryptographic technologies. In Section
6, we propose a mechanism to integrate en-
cryption of files at the filesystem level, in-
cluding integration of GnuPG[7] web-of-trust,
PAM[10], a stackable filesystem model[2], Ex-
tended Attributes[6], and libraries and applica-
tions, in order to make the entire process as
transparent as possible to the end user.

3 A Team Effort

Filesystem security encompasses more than
just the filesystem itself. It is a team effort,
involving the kernel, the shells, the login pro-
cesses, the filesystems, the applications, the ad-
ministrators, and the users. When we speak of
“filesystem security,” we refer to the security
of the files in a filesystem, no matter what ends
up providing that security.

For any filesystem security problem that ex-
ists, there are usually several different ways of
solving it. Solutions that involve modifications
in the kernel tend to introduce less overhead.
This is due to the fact that context switches and
copying of data between kernel and user mem-
ory is reduced. However, changes in the ker-
nel may reduce the efficiency of the kernel’s
VFS while making it both harder to maintain
and more bug-prone. As notable exceptions,

Linux Symposium 2004 • Volume One • 271

Erez Zadok’s stackable filesystem framework,
FiST[3], and Loop-aes, require no change to
the current Linux kernel VFS. Solutions that
exist entirely in userspace do not complicate
the kernel, but they tend to have more overhead
and may be limited in the functionality they are
able to provide, as they are limited by the inter-
face to the kernel from userspace. Since they
are in userspace, they are also more prone to
attack.

4 Aspects of Filesystem Security

Computer security can be decomposed into
several areas:

• Identifying who you are and having the
machine recognize that identification (au-
thentication).

• Determining whether or not you should be
granted access to a resource such as a sen-
sitive file (authorization). This is often
based on the permissions associated with
the resource by its owner or an adminis-
trator (access control).

• Transforming your data into an encrypted
format in order to make it prohibitively
costly for unauthorized users to decrypt
and view (confidentiality).

• Performing checksums, keyed hashes,
and/or signing of your data to make unau-
thorized modifications of your data de-
tectable (integrity).

4.1 Filesystem Integrity

When people consider filesystem security, they
traditionally think about access control (file
permissions) and confidentiality (encryption).
File integrity, however, can be just as impor-
tant as confidentiality, if not more so. If a script

that performs an administrative task is altered
in an unauthorized fashion, the script may per-
form actions that violate the system’s security
policies. For example, many rootkits modify
system startup and shutdown scripts to facili-
tate the attacker’s attempts to record the user’s
keystrokes, sniff network traffic, or otherwise
infiltrate the system.

More often than not, the value of the data
stored in files is greater than that of the ma-
chine that hosts the files. For example, if an
attacker manages to insert false data into a fi-
nancial report, the alteration to the report may
go unnoticed until substantial damage has been
done; jobs could be at stake and in more ex-
treme cases even criminal charges against the
user could result . If trojan code sneaks into the
source repository for a major project, the pub-
lic release of that project may contain a back-
door.1

Many security professionals foresee a night-
mare scenario wherein a widely propagated In-
ternet worm quietly alters the contents of word
processing and spreadsheet documents. With-
out any sort of integrity mechanism in place
in the vast majority of the desktop machines
in the world, nobody would know if any data
that traversed vulnerable machines could be
trusted. This threat could be very effectively
addressed with a combination of a kernel-level
mandatory access control (MAC)[11] protec-
tion profile and a filesystem that provides in-
tegrity and auditing capabilities. Such a com-
bination would be resistant to damage done by
a root compromise, especially if aided by a
Trusted Platform Module (TPM)[13] using at-
testation.

1A high-profile example of an attempt to do this oc-
curred with the Linux kernel last year. Fortunately, the
source code management process used by the kernel de-
velopers allowed them to catch the attempted insertion
of the trojan code before it made it into the actual ker-
nel.

272 • Linux Symposium 2004 • Volume One

One can approach filesystem integrity from
two angles. The first is to have strong au-
thentication and authorization mechanisms in
place that employ sufficiently flexible policy
languages. The second is to have an auditing
mechanism, to detect unauthorized attempts at
modifying the contents of a filesystem.

4.1.1 Authentication and Authorization

The filesystem must contain support for the
kernel’s security structure, which requires
stateful security attributes on each file. Most
GNU/Linux applications today use PAM[10]
(see Section 4.1.2 below) for authentication
and process credentials to represent their au-
thorization; policy language is limited to
what can be expressed using the file owner
and group, along with the owner/group/world
read/write/execute attributes of the file. The
administrator and the current owner have the
authority to set the owner of the file or the
read/write/execute policies for that file. In
many filesystems, files may also contain addi-
tional security flags, such as an immutable or
append-only flag.

Posix Access Control Lists (ACL’s)[6] provide
for more stringent delegations of access author-
ity on a per-file basis. In an ACL, individ-
ual read/write/execute permissions can be as-
signed to the owner, the owning group, indi-
vidual users, or groups. Masks can also be ap-
plied that indicate the maximum effective per-
missions for a class.

For those who require even more flexible ac-
cess control, SE Linux[15] uses a powerful
policy language that can express a wide va-
riety of access control policies for files and
filesystem operations. In fact, Linux Security
Module (LSM)[14] hooks (see Section 4.1.3
below) exist for most of the security-relevant
filesystem operations, which makes it easier to

implement custom filesystem-agnostic security
models. Authentication and authorization are
pretty well covered with a combination of ex-
isting filesystem, kernel, and user-space solu-
tions that are part of most GNU/Linux distribu-
tions. Many distributions could, however, do a
better job of aiding both the administrator and
the user in understanding and using all the tools
that they have available to them.

Policies that safeguard sensitive data should in-
clude timeouts, whereby the user must period-
ically re-authenticate in order to continue to
access the data. In the event that the autho-
rized users neglect to lock down the machine
before leaving work for the day, timeouts help
to keep the custodial staff from accessing the
data when they come in at night to clean the
office. As usual, this must be implemented in
such a way as to be unobtrusive to the user. If a
user finds a security mechanism overly impos-
ing or inconvenient, he will usually disable or
circumvent it.

4.1.2 PAM

Pluggable Authentication Modules (PAM)[10]
implement authentication-related security poli-
cies. PAM offers discretionary access control
(DAC)[12]; applications must defer to PAM in
order to authenticate a user. If the authenticat-
ing PAM function that is called returns an af-
firmative answer, then the application can use
that response to authorize the action, and vice
versa. The exact mechanism that the PAM
function uses to evaluate the authentication is
dependent on the module called.2

In the case of filesystem security and encryp-
tion, PAM can be employed to obtain and for-
ward keys to a filesystem encryption layer in
kernel space. This would allow seamless inte-

2This is parameterizable in the configuration files
found under/etc/pam.d/

Linux Symposium 2004 • Volume One • 273

gration with any key retrieval mechanism that
can be coded as a Pluggable Authentication
Module.

4.1.3 LSM

Linux Security Modules (LSM) can provide
customized security models. One possible use
of LSM is to allow decryption of certain files
only when a physical device is connected to the
machine. This could be, for example, a USB
keychain device, a Smartcard, or an RFID de-
vice. Some devices of these classes can also be
used to house the encryption keys (retrievable
via PAM, as previously discussed).

4.1.4 Auditing

The second angle to filesystem integrity is au-
diting. Auditing should only fill in where au-
thentication and authorization mechanisms fall
short. In a utopian world, where security sys-
tems are perfect and trusted people always act
trustworthily, auditing does not have much of
a use. In reality, code that implements security
has defects and vulnerabilities. Passwords can
be compromised, and authorized people can
act in an untrustworthy manner. Auditing can
involve keeping a log of all changes made to
the attributes of the file or to the file data itself.
It can also involve taking snapshots of the at-
tributes and/or contents of the file and compar-
ing the current state of the file with what was
recorded in a prior snapshot.

Intrusion detection systems (IDS), such as
Tripwire[16], AIDE[17], or Samhain[18], per-
form auditing functions. As an example, Trip-
wire periodically scans the contents of the
filesystem, checking file attributes, such as the
size, the modification time, and the crypto-
graphic hash of each file. If any attributes for
the files being checked are found to be altered,

Tripwire will report it. This approach can work
fairly well in cases where the files are not ex-
pected to change very often, as is the case with
most system scripts, shared libraries, executa-
bles, or configuration files. However, care must
be taken to assure that the attacker cannot also
modify Tripwire’s database when he modifies
a system file; the integrity of the IDS system
itself must also be assured.

In cases where a file changes often, such as
a database file or a spreadsheet file in an ac-
tive project, we see a need for a more dy-
namic auditing solution - one which is per-
haps more closely integrated with the filesys-
tem itself. In many cases, the simple fact that
the file has changed does not imply a secu-
rity violation. We must also know who made
the change. More robust security require-
ments also demand that we know what parts
of the file were changed and when the changes
were made. One could even imagine scenarios
where the context of the change must also be
taken into consideration (i.e., who was logged
in, which processes were running, or what net-
work activity was taking place at the time the
change was made).

File integrity, particularly in the area of au-
diting, is perhaps the security aspect of Linux
filesystems that could use the most improve-
ment. Most efforts in secure filesystem devel-
opment have focused on confidentiality more
so than integrity, and integrity has been reg-
ulated to the domain of userland utilities that
must periodically scan the entire filesystem.
Sometimes, just knowing that a file has been
changed is insufficient. Administrators would
like to know exactly how the attacker made
the changes and under what circumstances they
were made.

Cryptographic hashes are often used. These
can detect unauthorized circumvention of the
filesystem itself, as long as the attacker forgets

274 • Linux Symposium 2004 • Volume One

(or is unable) to update the hashes when mak-
ing unauthorized changes to the files. Some
auditing solutions, such as the Linux Audit-
ing System (LAuS)3 that is part of SuSE Linux
Enterprise Server, can track system calls that
affect the filesystem. Another recent addition
to the 2.6 Linux kernel is the Light-weight
Auditing Framework written by Rik Faith[28].
These are implemented independently of the
filesystem itself, and the level of detail in the
records is largely limited to the system call pa-
rameters and return codes. It is advisable that
you keep your log files on a separate machine
than the one being audited, since the attacker
could modify the audit logs themselves once
he has compromised the machine’s security.

4.1.5 Improvements on Integrity

Extended Attributes provide for a convenient
way to attach metadata relating to a file to the
file itself. On the premise that possession of
a secret equates to authentication, every time
an authenticated subject makes an authorized
write to a file, a hash over the concatenation of
that secret to the file contents (keyed hashing;
HMAC is one popular standard) can be writ-
ten as an Extended Attribute on that file. Since
this action would be performed on the filesys-
tem level, the user would not have to conscien-
tiously re-run userspace tools to perform such
an operation every time he wants to generate
an integrity verifier on the file.

This is an expensive operation to perform over
large files, and so it would be a good idea to
define extent sizes over which keyed hashes are
formed, with the Extended Attributes including
extent descriptors along with the keyed hashes.
That way, a small change in the middle of a

3Note that LAuS is being covered in more detail in
the 2004 Ottawa Linux Symposium by Doc Shankar,
Emily Ratliff, and Olaf Kirch as part of their presenta-
tion regarding CAPP/EAL3+ Certification.

large file would only require the keyed hash
to be re-generated over the extent in which the
change occurs. A keyed hash over the sequen-
tial set of the extent hashes would also keep an
attacker from swapping around extents unde-
tected.

4.2 File Confidentiality

Confidentiality means that only authorized
users can read the contents of a file. Sometimes
the names of the files themselves or a directory
structure can be sensitive. In other cases, the
sizes of the files or the modification times can
betray more information than one might want
to be known. Even the security policies pro-
tecting the files can reveal sensitive informa-
tion. For example, “Only employees of Novell
and SuSE can read this file” would imply that
Novell and SuSE are collaborating on some-
thing, and neither of them may want this fact
to be public knowledge as of yet. Many inter-
esting protocols have been developed that can
address these sorts of issues; some of them are
easier to implement than others.

When approaching the question of confiden-
tiality, we assume that the block device that
contains the file is vulnerable to physical com-
promise. For example, a laptop that contains
sensitive material might be lost, or a database
server might be stolen in a burglary. In either
event, the data on the hard drive must not be
readable by an unauthorized individual. If any
individual must be authenticated before he is
able to access to the data, then the data is pro-
tected against unauthorized access.

Surprisingly, many users surrender their own
data’s confidentiality (and more often than not
they do so unwittingly). It has been my per-
sonal observation that most people do not fully
understand the lack of confidentiality afforded
their data when they send it over the Inter-
net. To compound this problem, comprehend-

Linux Symposium 2004 • Volume One • 275

ing and even using most encryption tools takes
considerable time and effort on the part of most
users. If sensitive files could beencrypted by
default, only to be decrypted by those autho-
rized at the time of access, then the user would
not have to expend so much effort toward pro-
tecting the data’s confidentiality.

By putting the encryption at the filesystem
layer, this model becomes possible without any
modifications to the applications or libraries.
A policy at that layer can dictate that certain
processes, such as the mail client, are to re-
ceive the encrypted version any files that are
read from disk.

4.2.1 Encryption

File confidentiality is most commonly accom-
plished through encryption. For performance
reasons, secure filesystems use symmetric key
cryptography, like AES or Triple-DES, al-
though an asymmetric public/private keypair
may be used to encrypt the symmetric key in
some key management schemes. This hybrid
approach is in common use through SSL and
PGP encryption protocols.

One of our proposals to extend Cryptfs is to
mirror the techniques used in GnuPG encryp-
tion. If the symmetric key that protects the con-
tents of a file is encrypted with the public key
of the intended recipient of the file and stored
as an Extended Attribute of the file, then that
file can be transmitted in multiple ways (e.g.,
physical device such as removable storage); as
long as the Extended Attributes of the file are
preserved across filesystem transfers, then the
recipient with the corresponding private key
has all the information that his Cryptfs layer
needs to transparently decrypt the contents of
the file.

4.2.2 Key Management

Key management will make or break a cryp-
tographic filesystem.[5] If the key can be eas-
ily compromised, then even the strongest ci-
pher will provide weak protection. If your
key is accessible in an unencrypted file or in
an unprotected region of memory, or if it is
ever transmitted over the network in the clear,
a rogue user can capture that key and use
it later. Most passwords have poor entropy,
which means that an attacker can have pretty
good success with a brute force attack against
the password. Thus the weakest link in the
chain for password-based encryption is usu-
ally the password itself. The Cryptographic
Filesystem (CFS)[22] mandates that the user
choose a password with a length of at least 16
characters.4

Ideally, the key would be kept in password-
encrypted form on a removable device (like a
USB keychain drive) that is stored separately
from the files that the key is used to encrypt.
That way, an attacker would have to both com-
promise the password and gain physical access
to the removable device before he could de-
crypt your files.

Filesystem encryption is one of the most ex-
citing applications for the Trusted Computing
Platform. Given that the attacker has physi-
cal access to a machine with a Trusted Plat-
form Module, it is significantly more difficult
to compromise the key. By using secret sharing
(otherwise known askey splitting)[4], the ac-
tual key used to decrypt a file on the filesystem
can be contained as both the user’s key and the
machine’s key (as contained in the TPM). In
order to decrypt the files, an attacker must not

4The subject of secure password selection, al-
though an important one, is beyond the scope of this
article. Recommended reading on this subject is at
http://www.alw.nih.gov/Security/Docs/
passwd.html .

276 • Linux Symposium 2004 • Volume One

only compromise the user key, but he must also
have access to the machine on which the TPM
chip is installed. This “binds” the encrypted
files to the machine. This is especially useful
for protecting files on removable backup me-
dia.

4.2.3 Cryptanalysis

All block ciphers and most stream ciphers are,
to various degrees, vulnerable to successful
cryptanalysis. If a cipher is used improperly,
then it may become even easier to discover the
plaintext and/or the key. For example, with
certain ciphers operating in certain modes, an
attacker could discover information that aids
in cryptanalysis by getting the filesystem to
re-encrypt an already encrypted block of data.
Other times, a cryptanalyst can deduce infor-
mation about the type of data in the encrypted
file when that data has predictable segments of
data, like a common header or footer (thus al-
lowing for a known-plaintext attack).

4.2.4 Cipher Modes

A block encryption mode that is resistant to
cryptanalysis can involve dependencies among
chains of bytes or blocks of data. Cipher-
block-chaining (CBC) mode, for example, pro-
vides adequate encryption in many circum-
stances. In CBC mode, a change to one block
of data will require that all subsequent blocks
of data be re-encrypted. One can see how this
would impact performance for large files, as a
modification to data near the beginning of the
file would require that all subsequent blocks be
read, decrypted, re-encrypted, and written out
again.

This particular inefficiency can be effectively
addressed by defining chaining extents. By
limiting regions of the file that encompass

chained blocks, it is feasible to decrypt and re-
encrypt the smaller segments. For example, if
the block size for a cipher is 64 bits (8 bytes)
and the block size, which is (we assume) the
minimum unit of data that the block device
driver can transfer at a time (512 bytes) then
one could limit the number of blocks in any ex-
tent to 64 blocks. Depending on the plaintext
(and other factors), this may be too few to ef-
fectively counter cryptanalysis, and so the ex-
tent size could be set to a small multiple of the
page size without severely impacting overall
performance. The optimal extent size largely
depends on the access patterns and data pat-
terns for the file in question; we plan on bench-
marking against varying extent lengths under
varying access patterns.

4.2.5 Key Escrow

The proverbial question, “What if the sysad-
min gets hit by a bus?” is one that no organi-
zation should ever stop asking. In fact, some-
times no one person should alone have inde-
pendent access to the sensitive data; multiple
passwords may be required before the data is
decrypted. Shareholders should demand that
no single person in the company have full ac-
cess to certain valuable data, in order to miti-
gate the damage to the company that could be
done by a single corrupt administrator or exec-
utive. Methods for secret sharing can be em-
ployed to assure that multiple keys be required
for file access, and (m,n)-threshold schemes [4]
can ensure that the data is retrievable, even if a
certain number of the keys are lost. Secret shar-
ing would be easily implementable as part of
any of the existing cryptographic filesystems.

4.3 File Resilience

The loss of a file can be just as devastating
as the compromise of a file. There are many

Linux Symposium 2004 • Volume One • 277

well-established solutions to performing back-
ups of your filesystem, but some cryptographic
filesystems preclude the ability to efficiently
and/or securely use them. Backup tapes tend
to be easier to steal than secure computer sys-
tems are, and if unencrypted versions of se-
cure files exist on the tapes, that constitutes an
often-overlooked vulnerability.

The Linux 2.6 kernel cryptoloop device5

filesystem is an all-or-nothing approach. Most
backup utilities must be given free reign on
the unencrypted directory listings in order to
perform incremental backups. Most other
encrypted filesystems keep sets of encrypted
files in directories in the underlying filesys-
tem, which makes incremental backups possi-
ble without giving the backup tools access to
the unencrypted content of the files.

The backup utilities must, however, maintain
backups of the metadata in the directories con-
taining the encrypted files in addition to the
files themselves. On the other hand, when the
filesystem takes the approach of storing the
cryptographic metadata as Extended Attributes
for each file, then backup utilities need only
worry about copying just the file in question to
the backup medium (preserving the Extended
Attributes, of course).

4.4 Advantages of FS-Level, EA-Guided En-
cryption

Most encrypted filesystem solutions either op-
erate on the entire block device or operate on
entire directories. There are several advantages
to implementing filesystem encryption at the
filesystem level and storing encryption meta-
data in the Extended Attributes of each file:

• Granularity: Keys can be mapped to in-
dividual files, rather than entire block de-

5Note that this is deprecated and is in the process of
being replaced with the Device Mapper crypto target.

vices or entire directories.

• Backup Utilities: Incremental backup
tools can correctly operate without having
to have access to the decrypted content of
the files it is backing up.

• Performance: In most cases, only cer-
tain files need to be encrypted. System
libraries and executables, in general, do
not need to be encrypted. By limiting the
actual encryption and decryption to only
those files that really need it, system re-
sources will not be taxed as much.

• Transparent Operation: Individual en-
crypted files can be easily transfered off of
the block device without any extra trans-
formation, and others with authorization
will be able to decrypt those files. The
userspace applications and libraries do not
need to be modified and recompiled to
support this transparency.

Since all the information necessary to decrypt
a file is contained in the Extended Attributes
of the file, it is possible for a user on a ma-
chine that is not running Cryptfs to use user-
land utilities to access the contents of the file.
This also applies to other security-related op-
erations, like verifying keyed hashes. This ad-
dresses compatibility issues with machines that
are not running the encrypted filesystem layer.

5 Survey of Linux Encrypted
Filesystems

5.1 Encrypted Loopback Filesystems

5.1.1 Loop-aes

The most well-known method of encrypt-
ing a filesystem is to use a loopback en-

278 • Linux Symposium 2004 • Volume One

crypted filesystem.6 Loop-aes[20] is part
of the 2.6 Linux kernel (CONFIG_BLK_DEV_

CRYPTOLOOP). It performs encryption at the
block device level. With Loop-aes, the admin-
istrator can choose whatever cipher he wishes
to use with the filesystem. Themountpack-
age on most popular GNU/Linux distributions
contains thelosetuputility, which can be used
to set up the encrypted loopback mount (you
can choose whatever cipher that the kernel sup-
ports; we use blowfish in this example):

root# modprobe cryptoloop
root# modprobe blowfish
root# dd if=/dev/urandom of=encrypted.img \

bs=4k count=1000
root# losetup -e blowfish /dev/loop0 \

encrypted.img
root# mkfs.ext3 /dev/loop0
root# mkdir /mnt/unencrypted-view
root# mount /dev/loop0 /mnt/unencrypted-view

The loopback encrypted filesystem falls short
in the fact that it is an all-or-nothing solution.
It is impossible for most standard backup util-
ities to perform incremental backups on sets
of encrypted files without being given access
to the unencrypted files. In addition, remote
users will need to use IPSec or some other net-
work encryption layer when accessing the files,
which must be exported from the unencrypted
mount point on the server. Loop-aes is, how-
ever, the best performing encrypted filesystem
that is freely available and integrated with most
GNU/Linux distributions. It is an adequate so-
lution for many who require little more than
basic encryption of their entire filesystems.

5.1.2 BestCrypt

BestCrypt[23] is a non-free product that uses a
loopback approach, similar to Loop-aes.

6Note that Loop-aes is being deprecated, in favor of
Device Mapping (DM) Crypt, which also does encryp-
tion at the block device layer.

5.1.3 PPDD

PPDD[21] is a block device driver that en-
crypts and decrypts data as it goes to and comes
from another block device. It works very much
like Loop-aes; in fact, in the 2.4 kernel, it uses
the loopback device, as Loop-aes does. PPDD
has not been ported to the 2.6 kernel. Loop-aes
takes the same approach, and Loop-aes ships
with the 2.6 kernel itself.

5.2 CFS

The Cryptographic Filesystem (CFS)[22] by
Matt Blaze is a well established transparent en-
crypted filesystem, originally written for BSD
platforms. CFS is implemented entirely in
userspace and operates similarly to NFS. A
userspace daemon, cfsd, acts as a pseudo-NFS
server, and the kernel makes RPC calls to the
daemon. The CFS daemon performs trans-
parent encryption and decryption when writ-
ing and reading data. Just as NFS can export a
directory from any exportable filesystem, CFS
can do the same, while managing the encryp-
tion on top of that filesystem.

In the background, CFS stores the metadata
necessary to encrypt and decrypt files with
the files being encrypted or decrypted on the
filesystem. If you were to look at those di-
rectories directly, you would see a set of files
with encrypted values for filenames, and there
would be a handful of metadata files mixed in.
When accessed through CFS, those metadata
files are hidden, and the files are transparently
encrypted and decrypted for the user appli-
cations (with the proper credentials) to freely
work with the data.

While CFS is capable of acting as a remote
NFS server, this is not recommended for many
reasons, some of which include performance
and security issues with plaintext passwords
and unencrypted data being transmitted over

Linux Symposium 2004 • Volume One • 279

the network. You would be better off, from a
security perspective (and perhaps also perfor-
mance, depending on the number of clients),
to use a regular NFS server to handle remote
mounts of the encrypted directories, with local
CFS mounts off of the NFS mounts.

Perhaps the most attractive attribute of CFS
is the fact that it does not require any mod-
ifications to the standard Linux kernel. The
source code for CFS is freely obtainable. It is
packaged in the Debian repositories and is also
available in RPM form. Using apt, CFS is per-
haps the easiest encrypted filesystem for a user
to set up and start using:

root# apt-get install cfs
user# cmkdir encrypted-data
user# cattach encrypted-data unencrypted-view

The user will be prompted for his pass-
word at the requisite stages. At this point,
anything the user writes to or reads from
/crypt/unencrypted-viewwill be transparently
encrypted to and decrypted from files in
encrypted-data. Note that any user on the sys-
tem can make a new encrypted directory and
attach it. It is not necessary to initialize and
mount an entire block device, as is the case
with Loop-aes.

5.3 TCFS

TCFS[24] is a variation on CFS that includes
secure integrated remote access and file in-
tegrity features. TCFS assumes the client’s
workstation is trusted, and the server cannot
necessarily be trusted. Everything sent to and
from the server is encrypted. Encryption and
decryption take place on the client side.

Note that this behavior can be mimicked with
a CFS mount on top of an NFS mount. How-
ever, because TCFS works within the kernel
(thus requiring a patch) and does not necessi-

tate two levels of mounting, it is faster than an
NFS+CFS combination.

TCFS is no longer an actively maintained
project. The last release was made three years
ago for the 2.0 kernel.

5.4 Cryptfs

As a proof-of-concept for the FiST stackable
filesystem framework, Erez Zadok, et. al. de-
veloped Cryptfs[1]. Under Cryptfs, symmet-
ric keys are associated with groups of files
within a single directory. The key is generated
with a password that is entered at the time that
the filesystem is mounted. The Cryptfs mount
point provides an unencrypted view of the di-
rectory that contains the encrypted files.

The authors of this paper are currently work-
ing on extending Cryptfs to provide seamless
integration into the user’s desktop environment
(see Section 6).

5.5 Userspace Encrypted Filesystems

EncFS[25] utilizes the Filesystem in Userspace
(FUSE) library and kernel module to imple-
ment an encrypted filesystem in userspace.
Like CFS, EncFS encrypts on a per-file basis.

CryptoFS[26] is similar to EncFS, except it
uses the Linux Userland Filesystem (LUFS) li-
brary instead of FUSE.

SSHFS[27], like CryptoFS, uses the LUFS ker-
nel module and userspace daemon. It limits it-
self to encrypting the files via SFTP as they are
transfered over a network; the files stored on
disk are unencrypted. From the user perspec-
tive, all file accesses take place as though they
were being performed on any regular filesys-
tem (opens, read, writes, etc.). SSHFS trans-
fers the files back and forth via SFTP with the
file server as these operations occur.

280 • Linux Symposium 2004 • Volume One

5.6 Reiser4

ReiserFS version 4 (Reiser4)[29], while still in
the development stage, features pluggable se-
curity modules. There are currently proposed
modules for Reiser4 that will perform encryp-
tion and auditing.

5.7 Network Filesystem Security

Much research has taken place in the domain of
networking filesystem security. CIFS, NFSv4,
and other networking filesystems face special
challenges in relation to user identification, ac-
cess control, and data secrecy. The NFSv4 pro-
tocol definition in RFC 3010 contains descrip-
tions of security mechanisms in section 3[30].

6 Proposed Extensions to Cryptfs

Our proposal is to place file encryption meta-
data into the Extended Attributes (EA’s) of the
file itself. Extended Attributes are a generic
interface for attaching metadata to files. The
Cryptfs layer will be extended to extract that
information and to use the information to di-
rect the encrypting and decrypting of the con-
tents of the file. In the event that the filesys-
tem does not support Extended Attributes, an-
other filesystem layer can provide that func-
tionality. The stackable framework effectively
allows Cryptfs to operate on top ofanyfilesys-
tem.

The encryption process is very similar to that of
GnuPG and other public key cryptography pro-
grams that use a hybrid approach to encrypt-
ing data. By integrating the process into the
filesystem, we can achieve a greater degree of
transparency, without requiring any changes to
userspace applications or libraries.

Under our proposed design, when a new file is
created as an encrypted file, the Cryptfs layer

generates a new symmetric keyKs for the en-
cryption of the data that will be written. File
creation policy enacted by Cryptfs can be dic-
tated by directory attributes or globally defined
behavior. The owner of the file is automati-
cally authorized to access the file, and so the
symmetric key is encrypted with the public key
of the owner of the fileKu, which was passed
into the Cryptfs layer at the time that the user
logged in by a Pluggable Authentication Mod-
ule linked against libcryptfs. The encrypted
symmetric key is then added to the Extended
Attribute set of the file:

{Ks}Ku

Suppose that the user at this point wants to
grant Alice access to the file. Alice’s public
key, Ka, is in the user’s GnuPG keyring. He
can run a utility that selects Alice’s key, ex-
tracts it from the GnuPG keyring, and passes
it to the Cryptfs layer, with instructions to
add Alice as an authorized user for the file.
The new key list in the Extended Attribute set
for the file then contains two copies of the
symmetric key, encrypted with different public
keys:

{Ks}Ku

{Ks}Ka

Note that this is not an access control directive;
it is rather a confidentiality enforcement mech-
anism that extends beyond the local machine’s
access control. Without either the user’s or Al-
ice’s private key, no entity will be able to access
the decrypted contents of the file. The machine
that harbors such keys will enact its own ac-
cess control over the decrypted file, based on
standard UNIX file permissions and/or ACL’s.

When that file is copied to a removable media
or attached to an email, as long as the Extended
Attributes are preserved, Alice will have all
the information that she needs in order to re-
trieve the symmetric key for the file and de-

Linux Symposium 2004 • Volume One • 281

Kernel User

Cryptfs layer

Filesystem

Additional layers
(optional)

Keystore

PAM

VFS syscall

Security Attributes

File Structure

Kernel
crypto API

Key retrieval
PAM Module

cryptfs
library

Login/GNOME/KDE/...

Authentication
PAM Module

Prompt for
user authentication
action (conversation)

Change file
encryption attributes

USB Keychain device,
Smartcard, TPM,

GnuPG Keyring, etc...

Figure 1: Overview of proposed extended Cryptfs architecture

crypt it. If Alice is also running Cryptfs, when
she launches an application that accesses the
file, the decryption process is entirely trans-
parent to her, since her Cryptfs layer received
her private key from PAM at the time that she
logged in.

If the user requires the ability to encrypt a file
for access by a group of users, then the user
can associate sets of public keys with groups
and refer to the groups when granting access.
The userspace application that links against
libcryptfs can then pass in the public keys to
Cryptfs for each member of the group and in-
struct Cryptfs to add the associated key record
to the Extended Attributes. Thus no special
support for groups is needed within the Cryptfs
layer itself.

6.1 Kernel-level Changes

No modifications to the 2.6 kernel itself are
necessary to support the stackable Cryptfs
layer. The Cryptfs module’s logical divi-
sions include a sysfs interface, a keystore, and
the VFS operation routines that perform the
encryption and the decryption on reads and

writes.

By working with a userspace daemon, it would
be possible for Cryptfs to export public key
cryptographic operations to userspace. In or-
der to avoid the need for such a daemon while
using public key cryptography, the kernel cryp-
tographic API must be extended to support it.

6.2 PAM

At login, the user’s public and private keys
need to find their way into the kernel
Cryptfs layer. This can be accomplished by
writing a Pluggable Authentication Module,
pamcryptfs.so. This module will link against
libcryptfs and will extract keys from the user’s
GnuPG keystore. The libcryptfs library will
use the sysfs interface to pass the user’s keys
into the Cryptfs layer.

6.3 libcryptfs

The libcryptfs library works with the Cryptfs’s
sysfs interface. Userspace utilities, such as
pamcryptfs.so, GNOME/KDE, or stand-alone
utilities, will link against this library and use it

282 • Linux Symposium 2004 • Volume One

Extended
Attributes

Cryptfs Layer

Keystore

File Security
Attributes

EA’s are parsed
into cryptfs layer’s
file attribute
structure

File

Data

Calls to kernel
Crypto API

Crypto calls
parameterized
by file security
attributes

Keys retrieved
from the keystore

Kernel Crypto APIVFS Syscalls

sysfs

Set
private/public

keys

Symmetric keys used
for encryption of file
data may need
decrypting with the
authorized user’s
private key.

Userspace
libcryptfs

Figure 2: Structure of Cryptfs layer in kernel

to communicate with the kernel Cryptfs layer.

6.4 User Interface

Desktop environments such as GNOME or
KDE can link against libcryptfs to provide
users with a convenient interface through
which to work with the files. For example,
by right-clicking on an icon representing the
file and selecting “Security”, the user will be
presented with a window that can be used to
control the encryption status of the file. Such
options will include whether or not the file is
encrypted, which users should be able to en-
crypt and decrypt the file (identified by their
public keys from the user’s GnuPG keyring),
what cipher is used, what keylength is used,
an optional password that encrypts the sym-

metric key, whether or not to use keyed hash-
ing over extents of the file for integrity, the
hash algorithm to use, whether accesses to the
file when no key is available should result in
an error or in the encrypted blocks being re-
turned (perhaps associated with UID’s - good
for backup utilities), and other properties that
are controlled by the Cryptfs layer.

6.5 Example Walkthrough

When a file’s encryption attribute is set, the
first thing that the Cryptfs layer will do will be
to generate a new symmetric key, which will be
used for all encryption and decryption of the
file in question. Any data in that file is then
immediately encrypted with that key. When
using public key-enforced access control, that

Linux Symposium 2004 • Volume One • 283

key will be encrypted with the process owner’s
private key and stored as an EA of the file.
When the process owner wishes to allow oth-
ers to access the file, he encrypts the symmet-
ric key with the their public keys. From the
user’s perspective, this can be done by right-
clicking on an icon representing the file, select-
ing “Security→Add Authorized User Key”,
and having the user specify the authorized user
while using PAM to retrieve the public key for
that user.

When using password-enforced access control,
the symmetric key is instead encrypted using a
key generated from a password. The user can
then share that password with everyone who
he authorized to access the file. In either case
(public key-enforced or password-enforced ac-
cess control), revocation of access to future
versions of the file will necessitate regenera-
tion and re-encryption of the symmetric key.

Suppose the encrypted file is then copied to a
removable device and delivered to an autho-
rized user. When that user logged into his ma-
chine, his private key was retrieved by the key
retrieval Pluggable Authentication Module and
sent to the Cryptfs keystore. When that user
launches any arbitrary application and attempts
to access the encrypted file from the removable
media, Cryptfs retrieves the encrypted sym-
metric key correlating with that user’s public
key, uses the authenticated user’s private key
to decrypt the symmetric key, associates that
symmetric key with the file, and then proceeds
to use that symmetric key for reading and writ-
ing the file. This is done in an entirely trans-
parent manner from the perspective of the user,
and the file maintains its encrypted status on
the removable media throughout the entire pro-
cess. No modification to the application or ap-
plications accessing the file are necessary to
implement such functionality.

In the case where a file’s symmetric key is en-

crypted with a password, it will be necessary
for the user to launch a daemon that listens for
password queries from the kernel cryptfs layer.
Without such a daemon, the user’s initial at-
tempt to access the file will be denied, and the
user will have to use a password set utility to
send the password to the cryptfs layer in the
kernel.

6.6 Other Considerations

Sparse files present a challenge to encrypted
filesystems. Under traditional UNIX seman-
tics, when a user seeks more than a block be-
yond the end of a file to write, then that space
is not stored on the block device at all. These
missing blocks are known as “holes.”

When holes are later read, the kernel simply
fills in zeros into the memory without actually
reading the zeros from disk (recall that they
do not exist on the disk at all; the filesystem
“fakes it”). From the point of view of what-
ever is asking for the data from the filesystem,
the section of the file being read appears to be
all zeros. This presents a problem when the
file is supposed to be encrypted. Without tak-
ing sparse files into consideration, the encryp-
tion layer will naïvely assume that the zeros be-
ing passed to it from the underlying filesystem
are actually encrypted data, and it will attempt
to decrypt the zeros. Obviously, this will re-
sult in something other that zeros being pre-
sented above the encryption layer, thus violat-
ing UNIX sparse file semantics.

One solution to this problem is to abandon the
concept of “holes” altogether at the Cryptfs
layer. Whenever we seek past the end of the
file and write, we can actually encrypt blocks
of zeros and write them out to the underlying
filesystem. While this allows Cryptfs to ad-
here to UNIX semantics, it is much less effi-
cient. One possible solution might be to store a
“hole bitmap” as an Extended Attribute of the

284 • Linux Symposium 2004 • Volume One

file. Each bit would correspond with a block of
the file; a “1” might indicate that the block is a
“hole” and should be zero’d out rather than de-
crypted, and a “0” might indicate that the block
should be normally decrypted.

Our proposed extensions to Cryptfs in the near
future do not currently address the issues of di-
rectory structure and file size secrecy. We rec-
ognize that this type of confidentiality is im-
portant to many, and we plan to explore ways
to integrate such features into Cryptfs, possibly
by employing extra filesystem layers to aid in
the process.

Extended Attribute content can also be sensi-
tive. Technically, only enough information to
retrieve the symmetric decryption key need be
accessible by authorized individuals; all other
attributes can be encrypted with that key, just
as the contents of the file are encrypted.

Processes that are not authorized to access the
decrypted content will either be denied access
to the file or will receive the encrypted con-
tent, depending on how the Cryptfs layer is pa-
rameterized. This behavior permits incremen-
tal backup utilities to function properly, with-
out requiring access to the unencrypted content
of the files they are backing up.

At some point, we would like to include file in-
tegrity information in the Extended Attributes.
As previously mentioned, this can be accom-
plished via sets of keyed hashes over extents
within the file:

H0 = H{O0, D0, Ks}
H1 = H{O1, D1, Ks}
. . .
Hn = H{On, Dn, Ks}
Hf = H{H0, H1, . . . , Hn, n, s, Ks}

wheren is the number of extents in the file,
s is the extent size (also contained as another
EA), Oi is the offset numberi within the file,

Di is the data from offsetOi to Oi + s, Ks is
the key that one must possess in order to make
authorized changes to the file, andHf is the
hash of the hashes, the number of extents, the
extent size, and the secret key, to help detect
when an attacker swaps around extents or alters
the extent size.

Keyed hashes prove that whoever modified the
data had access to the shared secret, which is,
in this case, the symmetric key. Digital sig-
natures can also be incorporated into Cryptfs.
Executables downloaded over the Internet can
often be of questionable origin or integrity. If
you trust the person who signed the executable,
then you can have a higher degree of certainty
that the executable is safe to run if the digital
signature is verifiable. The verification of the
digital signature can be dynamically performed
at the time of execution.

As previously mentioned, in addition to the ex-
tensions to the Cryptfs stackable layer, this ef-
fort is requiring the development of a cryptfs
library, a set of PAM modules, hooks into
GNOME and KDE, and some utilities for man-
aging file encryption. Applications that copy
files with Extended Attributes must take steps
to make sure that they preserve the Extended
Attributes.7

7 Conclusion

Linux currently has a comprehensive frame-
work for managing filesystem security. Stan-
dard file security attributes, process creden-
tials, ACL, PAM, LSM, Device Mapping (DM)
Crypt, and other features together provide good
security in a contained environment. To ex-
tend access control enforcement over individ-
ual files beyond the local environment, you
must use encryption in a way that can be easily

7See http://www.suse.de/~agruen/
ea-acl-copy/

Linux Symposium 2004 • Volume One • 285

applied to individual files. The currently em-
ployed processes of encrypting and decrypting
files, however, is inconvenient and often ob-
structive.

By integrating the encryption and the decryp-
tion of the individual files into the filesystem
itself, associating encryption metadata with the
individual files, we can extend Linux security
to provide seamless encryption-enforced ac-
cess control and integrity auditing.

8 Recognitions

We would like to express our appreciation for
the contributions and input on the part of all
those who have laid the groundwork for an ef-
fort toward transparent filesystem encryption.
This includes contributors to FiST and Cryptfs,
GnuPG, PAM, and many others from which
we are basing our development efforts, as well
as several members of the kernel development
community.

9 Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM and Lotus Notes are registered trade-
marks of International Business Machines Cor-
poration in the United States, other countries,
or both.

Other company, product, and service names
may be trademarks or service marks of others.

References

[1] E. Zadok, L. Badulescu, and A. Shender.
Cryptfs: A stackable vnode level
encryption file system.Technical Report
CUCS-021-98, Computer Science
Department, Columbia University, 1998.

[2] J.S. Heidemann and G.J. Popek. File
system development with stackable layers.
ACM Transactions on Computer Systems,
12(1):58–89, February 1994.

[3] E. Zadok and J. Nieh. FiST: A Language
for Stackable File Systems.Proceedings
of the Annual USENIX Technical
Conference, pp. 55–70, San Diego, June
2000.

[4] S.C. Kothari, Generalized Linear
Threshold Scheme,Advances in
Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 231–241.

[5] Matt Blaze. “Key Management in an
Encrypting File System,” Proc.Summer
’94 USENIX Tech. Conference, Boston,
MA, June 1994.

[6] For more information on Extended
Attributes (EA’s) and Access Control Lists
(ACL’s), see
http://acl.bestbits.at/ or
http://www.suse.de/~agruen/
acl/chapter/fs_acl-en.pdf

[7] For more information on GnuPG, see
http://www.gnupg.org/

[8] For more information on OpenSSL, see
http://www.openssl.org/

[9] For more information on IBM Lotus
Notes, seehttp://www-306.ibm.
com/software/lotus/ . Information
on Notes security can be obtained from
http://www-10.lotus.com/ldd/
today.nsf/f01245ebfc115aaf
8525661a006b86b9/
232e604b847d2cad8
8256ab90074e298?OpenDocument

[10] For more information on Pluggable
Authentication Modules (PAM), see
http://www.kernel.org/pub/
linux/libs/pam/

286 • Linux Symposium 2004 • Volume One

[11] For more information on Mandatory
Access Control (MAC), seehttp://
csrc.nist.gov/publications/
nistpubs/800-7/node35.html

[12] For more information on Discretionary
Access Control (DAC), seehttp://
csrc.nist.gov/publications/
nistpubs/800-7/node25.html

[13] For more information on the Trusted
Computing Platform Alliance (TCPA), see
http://www.trustedcomputing.
org/home

[14] For more information on Linux Security
Modules (LSM’s), see
http://lsm.immunix.org/

[15] For more information on
Security-Enhanced Linux (SE Linux), see
http://www.nsa.gov/selinux/
index.cfm

[16] For more information on Tripwire, see
http://www.tripwire.org/

[17] For more information on AIDE, see
http://www.cs.tut.fi/
~rammer/aide.html

[18] For more information on Samhain, see
http://la-samhna.de/samhain/

[19] For more information on Logcrypt, see
http:
//www.lunkwill.org/logcrypt/

[20] For more information on Loop-aes, see
http://sourceforge.net/
projects/loop-aes/

[21] For more information on PPDD, see
http://linux01.gwdg.de/
~alatham/ppdd.html

[22] For more information on CFS, see
http://sourceforge.net/
projects/cfsnfs/

[23] For more information on BestCrypt, see
http://www.jetico.com/index.
htm#/products.htm

[24] For more information on TCFS, see
http://www.tcfs.it/

[25] For more information on EncFS, see
http://arg0.net/users/
vgough/encfs.html

[26] For more information on CryptoFS, see
http://reboot.animeirc.de/
cryptofs/

[27] For more information on SSHFS, see
http://lufs.sourceforge.net/
lufs/fs.html

[28] For more information on the
Light-weight Auditing Framework, see
http:
//lwn.net/Articles/79326/

[29] For more information on Reiser4, see
http:
//www.namesys.com/v4/v4.html

[30] NFSv4 RFC 3010 can be obtained from
http://www.ietf.org/rfc/
rfc3010.txt

Hotplug Memory and the Linux VM

Dave Hansen, Mike Kravetz, with Brad Christiansen
IBM Linux Technology Center

haveblue@us.ibm.com, kravetz@us.ibm.com, bradc1@us.ibm.com

Matt Tolentino
Intel

matthew.e.tolentino@intel.com

Abstract

This paper will describe the changes needed to
the Linux memory management system to cope
with adding or removing RAM from a running
system. In addition to support for physically
adding or removing DIMMs, there is an ever-
increasing number of virtualized environments
such as UML or the IBM pSeries™ Hypervi-
sor which can transition RAM between virtual
system images, based on need. This paper will
describe techniques common to all supported
platforms, as well as challenges for specific ar-
chitectures.

1 Introduction

As Free Software Operating Systems continue
to expand their scope of use, so do the de-
mands placed upon them. One area of con-
tinuing growth for Linux is the adaptation to
incessantly changing hardware configurations
at runtime. While initially confined to com-
monly removed devices such as keyboards,
digital cameras or hard disks, Linux has re-
cently begun to grow to include the capability
to hot-plug integral system components. This
paper describes the changes necessary to en-
able Linux to adapt to dynamic changes in one
of the most critical system resource—system

RAM.

2 Motivation

The underlying reason for wanting to change
the amount of RAM is very simple: availabil-
ity. The systems that support memory hot-plug
operations are designed to fulfill mission crit-
ical roles; significant enough that the cost of
a reboot cycle for the sole purpose of adding
or replacing system RAM is simply too expen-
sive. For example, some large ppc64 machines
have been reported to take well over thirty min-
utes for a simple reboot. Therefore, the down-
time necessary for an upgrade may compro-
mise the five nine uptime requirement critical
to high-end system customers [1].

However, memory hotplug is not just impor-
tant for big-iron. The availability of high
speed, commodity hardware has prompted a
resurgence of research into virtual machine
monitors—layers of software such as Xen
[2], VMWare [3], and conceptually even User
Mode Linux that allow for multiple operating
system instances to be run in isolated, virtual
domains. As computing hardware density has
increased, so has the possibility of splitting up
that computing power into more manageable
pieces. The capability for an operating sys-
tem to expand or contract the range of physical

288 • Linux Symposium 2004 • Volume One

memory resources available presents the pos-
sibility for virtual machine implementations to
balance memory requirements and improve the
management of memory availability between
domains1. This author currently leases a small
User Mode Linux partition for small Internet
tasks such as DNS and low-traffic web serving.
Similar configurations with an approximately
100 MHz processor and 64 MB of RAM are
not uncommon. Imagine, in the case of an acci-
dental Slashdotting, how useful radically grow-
ing such a machine could be.

3 Linux’s Hotplug Shortcomings

Before being able to handle the full wrath of
Slashdot. we have to consider Linux’s cur-
rent design. Linux only has two data structures
that absolutely limit the amount of RAM that
Linux can handle: the page allocator bitmaps,
andmem_map[] (on contiguous memory sys-
tems). The page allocator bitmaps are very
simple in concept, have a bit set one way when
a page is available, and the opposite when it
has been allocated. Since there needs to be one
bit available for each page, it obviously has to
scale with the size of the system’s total RAM.
The bitmap memory consumption is approxi-
mately 1 bit of memory for each page of sys-
tem RAM.

4 Resizingmem_map[]

Themem_map[] structure is a bit more com-
plicated. Conceptually, it is an array, with one
struct page for each physical page which
the system contains. These structures contain
bookkeeping information such as flags indicat-
ing page usage and locking structures. The
complexity with thestruct page s is asso-
ciated when their size. They have a size of

1err, I could write a lot about this, so I won’t go any
further

40 bytes each on i386 (in the 2.6.5 kernel).
On a system with 4096 byte hardware pages,
this implies that about 1% of the total sys-
tem memory will be consumed bystruct
page s alone. This use of 1% of the system
memory is not a problem in and of itself. But,
it does other problems.

The Linux page allocator has a limitation on
the maximum amounts of memory that it can
allocate to a single request. On i386, this
is 4MB, while on ppc64, it is 16MB. It is
easy to calculate that anything larger than a
4GB i386 system will be unable to allocate
its mem_map[] with the normal page alloca-
tor. Normally, this problem withmem_mapis
avoided by using a boot-time allocator which
does not have the same restrictions as the allo-
cator used at runtime. However, memory hot-
plug requires the ability to grow the amount of
mem_map[] used at runtime. It is not feasible
to use the same approach as the page allocator
bitmaps because, in contrast, they are kept to
small-enough sizes to not impinge on the max-
imum size allocation limits.

4.1 mem_map[] preallocation

A very simple way around the runtime alloca-
tor limitations might be to allocate sufficient
memory formmem_map[] at boot-time to ac-
count for any amount of RAM that could pos-
sibly be added to the system. But, this ap-
proach quickly breaks down in at least one im-
portant case. Themem_map[] must be allo-
cated in low memory, an area on i386 which
is approximately 896MB in total size. This
is very important memory which is commonly
exhausted [4],[5],[6]. Consider an 8GB system
which could be expanded to 64GB in the fu-
ture. Its normalmem_map[] use would be
around 84MB, an acceptable 10% use of low
memory. However, hadmem_map[] been
preallocated to handle a total capacity of 64GB
of system memory, it would use an astound-

Linux Symposium 2004 • Volume One • 289

ing 71% of low memory, giving any 8GB sys-
tem all of the low memory problems associated
with much larger systems.

Preallocation also has the disadvantage of im-
posing limitations possibly making the user
decide how large they expect the system to
be, either when the kernel is compiled, or
when it is booted. Perhaps the administra-
tor of the above 8GB machine knows that it
will never get any larger than 16GB. Does that
make the low memory usage more acceptable?
It would likely solve the immediate problem,
however, such limitations and user interven-
tion are becoming increasingly unacceptable
to Linux vendors, as they drastically increase
possible user configurations, and support costs
along with it.

4.2 Breakingmem_map[] up

Instead of preallocation, another solution is
to break upmem_map[] . Instead of need-
ing massive amounts of memory, smaller ones
could be used to piece togethermem_map[]
from more manageable allocations Interest-
ingly, there is already precedent in the Linux
kernel for such an approach. The discontigu-
ous memory support code tries to solve a dif-
ferent problem (large holes in the physical ad-
dress space), but a similar solution was needed.
In fact, there has been code released to use the
current discontigmem support in Linux to im-
plement memory hotplug. But, this has sev-
eral disadvantages. Most importantly, it re-
quires hijacking the NUMA code for use with
memory hotplug. This would exclude the use
of NUMA and memory hotplug on the same
system, which is likely an unacceptable com-
promise due to the vast performance benefits
demonstrated from using the Linux NUMA
code for its intended use [6].

Using the NUMA code for memory hotplug is
a very tempting proposition because in addi-

tion to splitting upmem_map[] the NUMA
support also handles discontiguous memory.
Discontiguous memory simply means that the
system does not lay out all of its physical mem-
ory in a single block, rather there are holes.
Handling these holes with memory hotplug is
very important, otherwise the only memory
that could be added or removed would be on
the end.

Although an approch similar to this “node hot-
plug” approach will be needed when adding or
removing entire NUMA nodes, using it on a
regular SMP hotplug system could be disas-
trous. Each discontiguous area is represented
by several data structures but each has at least
onestructzone . This structure is the basic
unit which Linux uses to pool memory. When
the amounts of memory reach certain low lev-
els, Linux will respond by trying to free or
swap memory. Artificially creating too many
zones causes these events to be triggered much
too early, degrading system performance and
under-utilizing available RAM.

5 CONFIG_NONLINEAR

The solution to both themem_map[] and dis-
contiguous memory problems comes in a sin-
gle package: nonlinear memory. First imple-
mented by Daniel Phillips in April of 2002 as
an alternative to discontiguous memory, non-
linear solves a similar set of problems.

Laying outmem_map[] as an array has sev-
eral advantages. One of the most important
is the ability to quickly determine the physi-
cal address of any arbitrarystruct page .
Sincemem_map[N] represents the Nth page
of physical memory, the physical address of the
memory represented by thatstruct page
can be determined by simple pointer arith-
metic:

Oncemem_map[] is broken up these simple

290 • Linux Symposium 2004 • Volume One

physical_address = (&mem_map[N] - &mem_map[0]) * sizeof(struct page)

struct page N = mem_map[(physical_address / sizeof(struct page)]

Figure 1: Physical Address Calculations

calculations are no longer possible, thus an-
other approach is required. The nonlinear ap-
proach is to use a set of two lookup tables, each
one complementing the above operations: one
for convertingstruct page to physical ad-
dresses, the other for doing the opposite. While
it would be possible to have a table with an en-
try for every single page, that approach wastes
far too much memory. As a result, nonlinear
handles pages in uniformly sized sections, each
of which has its ownmem_map[] and an asso-
ciated physical address range. Linux has some
interesting conventions about how addresses
are represented, and this has serious implica-
tions for how the nonlinear code functions.

5.1 Physical Address Representations

There are, in fact, at least three different ways
to represent a physical address in Linux: a
physical address, astruct page , and a
page frame number (pfn). A pfn is traditionally
just the physical address divided by the size
of a physical page (theN in the above in Fig-
ure 1). Many parts of the kernel prefer to use
a pfn as opposed to astruct page pointer
to keep track of pages because pfn’s are eas-
ier to work with, being conceptually just array
indexes. The page allocator bitmaps discussed
above are just such a part of the kernel. To al-
locate or free a page, the page allocator toggles
a bit at an index in one of the bitmaps. That
index is based on a pfn, not astruct page
or a physical address.

Being so easily transposed, that decision does
not seem horribly important. But it does cause
a serious problem for memory hotplug. Con-

sider a system with 100 1GB DIMM slots
that support hotplug. When the system is first
booted, only one of these DIMM slots is pop-
ulated. Later on, the owner decides to hotplug
another DIMM, but puts it in slot 100 instead
of slot 2. Now, nonlinear has a bit of a problem:
the new DIMM happens to appear at a physical
address 100 times higher address than the first
DIMM. The mem_map[] for the new DIMM
is split up properly, but the allocator bitmap’s
length is directly tied to the pfn, and thus the
physical address of the memory.

Having already stated that the allocator bitmap
stays at manageable sizes, this still does not
seem like much of an issue. However, the
physical address of that new memorycould
have an even greater range than 100 GB; it has
the capability to have many, many terabytes of
range, based on the hardware. Keeping allo-
cator bitmaps for terabytes of memory could
conceivably consume all system memory on a
small machine, which is quite unacceptable.
Nonlinear offers a solution to this by intro-
ducing a new way to represent a physical ad-
dress: a fourth addressing scheme. With three
addressing schemes already existing, a fourth
seems almost comical, until its small scope is
considered. The new scheme is isolated to use
inside of a small set of core allocator functions
a single place in the memory hotplug code it-
self. A simple lookup table converts these new
“linear” pfns into the more familiar physical
pfns.

Linux Symposium 2004 • Volume One • 291

5.2 Issues withCONFIG_NONLINEAR

Although it greatly simplifies several issues,
nonlinear is not without its problems. Firstly,
it does require the consultation of a small num-
ber of lookup tables during critical sections of
code. Random access of these tables is likely to
cause cache overhead. The more finely grained
the units of hotplug, the larger these tables will
grow, and the worse the cache effects.

Another concern arises with the size of the
nonlinear tables themselves. While they allow
pfns andmem_map[] to have nonlinear rela-
tionships, the nonlinear structures themselves
remain normal, everyday, linear arrays. If
hardware is encountered with sufficiently small
hotplug units, and sufficiently large ranges of
physical addresses, an alternate scheme to the
arrays may be required. However, it is the au-
thors’ desire to keep the implementation sim-
ple, until such a need is actually demonstrated.

6 Memory Removal

While memory addition is a relatively black-
and-white problem, memory removal has many
more shades of gray. There are many differ-
ent ways to use memory, and each of them has
specific challenges forunusing it. We will first
discuss the kinds of memory that Linux has
which are relevant to memory removal, along
with strategies to go about unusing them.

6.1 “Easy” User Memory

Unusing memory is a matter of either mov-
ing data or simply throwing it away. The eas-
iest, most straightforward kind of memory to
remove is that whose contents can just be dis-
carded. The two most common manifestations
of this are clean page cache pages and swapped
pages. Page cache pages are either dirty (con-
taining information which has not been writ-

ten to disk) or clean pages, which are simply a
copy of something thatis present on the disk.
Memory removal logic that encounters a clean
page cache page is free to have it discarded,
just as the low memory reclaim code does to-
day. The same is true of swapped pages; a page
of RAM which has been written to disk is safe
to discard. (Note: there is usually a brief pe-
riod between when a page is written to disk,
and when it is actually removed from memory.)
Any page thatcanbe swapped is also an easy
candidate for memory removal, because it can
easily be turned into a swapped page with ex-
isting code.

6.2 Swappable User Memory

Another type of memory which is very simi-
lar to the two types above is something which
is only used by user programs, but is for
some reason not a candidate for swapping.
This at least includes pages which have been
mlock() ’d (which is a system call to prevent
swapping). Instead of discarding these pages
out of RAM, they must instead be moved. The
algorithm to accomplish this should be very
similar to the algorithm for a complete page
swapping: freeze writes to the page, move the
page’s contents to another place in memory,
change all references to the page, and re-enable
writing. Notice that this is the same process as
a complete swap cycle except that the writes to
the disk are removed.

6.3 Kernel Memory

Now comes the hard part. Up until now, we
have discussed memory which is being used
by user programs. There is also memory that
Linux sets aside for its own use and this comes
in many more varieties than that used by user
programs. The techniques for dealing with this
memory are largely still theoretical, and do not
have existing implementations.

292 • Linux Symposium 2004 • Volume One

Remember how the Linux page allocator can
only keep track of pages in powers of two? The
Linux slab cache was designed to make up for
that [6], [7]. It has the ability to take those pow-
ers of two pages, and chop them up into smaller
pieces. There are some fixed-size groups for
common allocations like 1024, 1532, or 8192
bytes, but there are also caches for certain
kinds of data structures. Some of these caches
have the ability to attempt to shrink themselves
when the system needs some memory back, but
even that is relatively worthless for memory
hotplug.

6.4 Removing Slab Cache Pages

The problem is that the slab cache’s shrinking
mechanism does not concentrate on shrinking
any particular memory, it just concentrates on
shrinking, period. Plus, there’s currently no
mechanism to tellwhichslab a particular page
belongs to. It could just as easily be a simply
discarded dcache entry as it could be a com-
pletely immovable entry like apte_chain .
Linux will need mechanisms to allow the slab
cache shrinking to be much more surgical.

However, there will always be slab cache mem-
ory which is not covered by any of the shrink-
ing code, like for generickmalloc() alloca-
tions. The slab cache could also make efforts
to keep these “mystery” allocations away from
those for which it knows how to handle.

While the record-keeping for some slab-cache
pages is sparse, there is memory with even
more mysterious origins. Some is allocated
early in the boot process, while other uses pull
pages directly out of the allocator never to be
seen again. If hot-removal of these areas is re-
quired, then a different approach must be em-
ployed: direct replacement. Instead of simply
reducing the usage of an area of memory until
it is unused, a one-to-one replacement of this
memory is required. With the judicious use of

page tables, the best that can be done is to pre-
serve the virtual address of these areas. While
this is acceptable for most use, it is not without
its pitfalls.

6.5 Removing DMA Memory

One unacceptable place to change the phys-
ical address of some data is for a device’s
DMA buffer. Modern disk controllers and net-
work devices can transfer their data directly
into the system’s memory without the CPU’s
direct involvement. However, since the CPU
is not involved, the devices lack access to the
CPU’s virtual memory architecture. For this
reason, all DMA-capable devices’ transfers are
based on the physical address of the memory
to which they are transferring. Every user of
DMA in Linux will either need to be guar-
anteed to not be affected by memory replace-
ment, or to be notified of such a replacement
so that it can take corrective action. It should
be noted, however, that the virtualization layer
on ppc64 can properly handle this remapping
in its IOMMU. Other architectures with IOM-
MUs should be able to employ similar tech-
niques.

6.6 Removal and the Page Allocator

The Linux page allocator works by keeping
lists of groups of pages in sizes that are pow-
ers of two times the size of a page. It keeps a
list of groups that are available for each power
of two. However, when a request for a page
is made, the only real information provided is
for thesizerequired, there is no component for
specifically specifying which particular mem-
ory is required.

The first thing to consider before removing
memory is to make sure that no other part
of the system is using that piece of memory.
Thankfully, that’s exactly what a normal al-
location does: make sure that it is alone in

Linux Symposium 2004 • Volume One • 293

its use of the page. So, making the page al-
locator support memory removal will simply
involve walking the same lists that store the
page groups. But, instead of simply taking the
first available pages, it will be more finicky,
only “allocating” pages that are among those
about to be removed. In addition, the allocator
should have checks in thefree_pages()
path to look for pages which were selected for
removal.

1. Inform allocator to catch any pages in the
area being removed.

2. Go into allocator, and remove any pages
in that area.

3. Trigger page reclaim mechanisms to trig-
gerfree() s, and hopefully unuse all tar-
get pages.

4. If not complete, goto 3.

6.7 Page Groupings

As described above, the page allocator is the
basis for all memory allocations. However,
when it comes time to remove memory a fixed
size block of memory is what is removed.
These blocks correspond to the sections de-
fined in the the implementation of nonlinear
memory. When removing a section of mem-
ory, the code performing the remove opera-
tion will first try to essentially allocate all the
pages in the section. To remove the section,
all pages within the section must be made free
of use by some mechanism as described above.
However, it should be noted that some pages
will not be able to be made available for re-
moval. For example, pages in use for kernel
allocations, DMA or via the slab-cache. Since
the page allocator makes no attempt to group
pages based on usage, it is possible in a worst
case situation that every section contains one
in-use page that can not be removed. Ideally,

we would like to group pages based on their us-
age to allow the maximum number of sections
to be removed.

Currently, the definition of zones provides
some level of grouping on specific architec-
tures. For example, on i386, three zones are
defined: DMA, NORMAL and HIGHMEM.
With such definitions, one would expect most
non-removable pages to be allocated out of the
DMA and NORMAL zones. In addition, one
would expect most HIGHMEM allocations to
be associated with userspace pages and thus
removable. Of course, when the page allo-
cator is under memory pressure it is possible
that zone preferences will be ignored and allo-
cations may come from an alternate zone. It
should also be noted that on some architec-
tures, such as ppc64, only one zone (DMA) is
defined. Hence, zones can not provide group-
ing of pages on every architecture. It ap-
pears that zones do provide some level of page
grouping, but possibly not sufficient for mem-
ory hotplug.

Ideally, we would like to experiment with
teaching the page allocator about the use of
pages it is handing out. A simple thought
would be to introduce the concept of sections
to the allocator. Allocations of a specific type
are directed to a section that is primarily used
for allocations of that same type. For example,
when allocations for use within the kernel are
needed the allocator will attempt to allocate the
page from a section that contains other inter-
nal kernel allocations. If no such pages can be
found, then a new section is marked for internal
kernel allocations. In this way pages which can
not be easily freed are grouped together rather
than spread throughout the system. In this way
the page allocator’s use of sections would be
analogous to the slab caches use of pages.

294 • Linux Symposium 2004 • Volume One

7 Conclusion

The prevalence of hotplug-capable Linux sys-
tems is only expanding. Support for these sys-
tems will make Linux more flexible and will
make additional capabilities available to other
parts of the system.

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM or
Intel.

IBM is a trademarks or registered trademarks of In-
ternational Business Machines Corporation in the
United States and/or other countries.

Intel and i386 are trademarks or registered trade-
marks of Intel Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

VMware is a trademark of VMware, Inc.

References

[1] Five Nine at the IP Edge
http://www.iec.org/online/

tutorials/five-nines

[2] Barham, Paul, et al.Xen and the Art of
VirtualizationProceedings of the ACM
Symposium on Operating System
Principles (SOSP), October 2003.

[3] Waldspurger, CarlMemory Resource
Management in VMware ESX Server
Proceedings of the USENIX Association
Symposium on Operating System Design
and Implementation, 2002. pp 181–194.

[4] Dobson, Matthew and Gaughen, Patricia
and Hohnbaum, Michael.Linux Support
for NUMA HardwareProceedings of the

Ottawa Linux Symposium. July 2003. pp
181–196.

[5] Gorman, MelUnderstanding the Linux
Virtual Memory ManagerPrentice Hall,
NJ. 2004.

[6] Martin Bligh and Dave HansenLinux
Memory Management on Larger
MachinesProceeedings of the Ottawa
Linux Symposium 2003. pp 53–88.

[7] Bonwick, JeffThe Slab Allocator: An
Object-Caching Kernel Memory
Allocator Proceedings of USENIX
Summer 1994 Technical Conference
http://www.usenix.org/

publications/library/

proceedings/bos94/bonwick.html

