
Ximian EvolutionTM:
The GNOME Groupware Suite

Ettore Perazzoli
Ximian, Inc.

ettore@ximian.com, http://www.ximian.com

Abstract

This paper describes Evolution, a complete, extensi-
ble groupware application for the GNOME Desktop
Environment.

1 Introduction

One of the big gaps between the world of proprietary
operating systems (such as Windows and MacOS)
and the free software world has been the lack of a
decent groupware application to allow users to han-
dle mail, appointments, to-do lists and contacts in
an integrated way. While applications such as Lotus
Notes and Microsoft Outlook are very popular and
widely deployed on the Windows and MacOS plat-
forms, for a long while there was simply no appli-
cation that could match their functionality on free
operating systems such as GNU/Linux and BSD.
That is why Evolution was born.

Originally started as the “GNOME Mailer” project
by the GNOME community and currently devel-
oped by Ximian, Evolution is meant to fill such gap,
and provide users with a solution that is competi-
tive, and even better to many respects, than those
used in proprietary operating system.

2 Design goals

The following design goals are the foundation for
the design and implementation of Evolution:

• Versatility. Evolution does all the things that
a modern groupware application is supposed to

do; it manages contact information, appoint-
ments and mail, and integrates this functional-
ity in an easy-to-use, integrated package. Evo-
lution acts as the central point of control for all
of the user’s communication needs.

• Compatibility. Evolution tries to support as
many protocols and standards as possible,
to facilitate integration into existing environ-
ments.

• Component-based design. Evolution is not a
monolithic application; it extensively uses the
Bonobo1 technology so that its various com-
ponent can be easily accessed and reused from
outside Evolution. Also, the design is exten-
sible so that it is very easy to implement new
components or add new functionality on top of
the existing framework. There are many ways
in which a groupware application can be cus-
tomized to suit the needs of a company, and
Evolution tries to make customization as easy
as possible.

• Integration. By providing public CORBA in-
terfaces to the core functionality of its compo-
nents, Evolution can be easily scripted and in-
tegrated with other desktop applications.

• Scalability. Evolution is meant to handle the
needs of today’s mail users. It is rather typi-
cal, for a hacker, to be subscribed to a num-
ber of mailing lists and consequently receive a
huge amount of mail; so one of the primary
goals of the Evolution mail component is to be
able to deal with huge loads gracefully, and give
users tools to nicely organize, read and search
through their mail in an efficient way.

• Freedom. Evolution is free software, released
under the GNU General Public License. Its
source code is developed on the GNOME CVS

1http://www.ximian.com/tech/bonobo.php3



server2 and is publically available at any time
to anyone who wants to contribute or simply
wants to look at it.

3 Shell and Components

Information in Evolution is organized into folders of
different types; Evolution itself is made up of differ-
ent components, each of which is able to handle a
certain type of folder.

The various components are managed by a container
component called the shell. The shell is what the
user actually invokes when he launches the applica-
tion, and its main purpose is to provide a framework
through which the components can live together and
cooperate. It also provides all the user interface
for the functionality that is not component-specific,
such as the shortcut bar, the folder management
commands (such as copy, move and rename), drag
and drop, and so on.

While the shell handles the framework, it’s actu-
ally the Evolution components that manipulate and
display the contents of the folders. Communication
between components and between the components
and the shell happens by using Bonobo and conse-
quently CORBA interfaces.

It is interesting to note that the various pieces of
Evolution are currently out-of-process components,
and that CORBA deals with the inter-process com-
munication nicely and transparently; it would be
possible to turn these components into shared li-
braries without any substantial changes to the code.

3.1 Defining an Evolution Component

The basic CORBA interface that an Evolu-
tion component has to implement is called
GNOME::Evolution::ShellComponent. When the
shell is activated, it performs a query through the
GNOME component activation service (which is
called OAF3), looking for all the objects that im-
plement that interface. These objects are then acti-
vated and initialized.

2A web interface to the GNOME CVS server is accessible
at http://cvs.gnome.org

3Object Activation Framework

Each component can then register a certain num-
ber of folder types, and is responsible for handling
them. For example, the mail component registers a
mail folder type, and the addressbook component
registers a contacts folder type.

Multiple folder types can be registered by the same
component; the component is also responsible for
creating the physical folders of the type it registers,
and for copy, move and delete operations.

3.2 Storages and the Folder Tree

Evolution displays the folder hierarchy as a folder
tree on the left side of its windows. The top-level
nodes of the folder tree are called storages, and they
identify a specific source of information. The follow-
ing are storages that are implemented by the current
Evolution components:

• The local storage, which is where all the folders
stored on the local file system are.

• The IMAP server storages. Each of the config-
ured IMAP servers gets a storage node which
contains all the folders stored on that specific
IMAP server.

• The LDAP server storage. This storage con-
tains all the configured LDAP servers.

• The vfolder storage. This contains all the con-
figured virtual folders (virtual folders are dis-
cussed in section 4.5).

Storages are either built in the shell (for example,
this is the case for the local storage), or are imple-
mented by components.

The main purpose of a storage is to provide a
tree of folders and provide the physical URIs for
each of them. For example, the INBOX folder
on IMAP server imap.foo.bar.net has to be
displayed under the imap.foo.bar.net node in
the folder tree, and needs to be mapped to the
imap://user@foo.bar.net/INBOX URI.

3.3 The Local Storage

The shell implements the mapping for the local stor-
age, which allows folders to be saved on a local file



system.

The local folders are all saved in the evolution di-
rectory in the user’s home directory. Folders of dif-
ferent types all live there, and every folder can have
one or more subfolders of arbitrary types.

In the case of the local storage, each folder is ac-
tually a directory whose name is the same as the
name of the folder in the storage. Each directory
contains a folder-metadata.xml file that contains
information about the folder, such as its type and
description. “Stock” folders (such as the Inbox or
the Drafts folder) also store additional information
there, such as the translations for the name of the
folder in various languages. Each folder directory
also contains a subfolder directory that contains
all its subfolders.

Besides the subfolders directory and the
folder-metadata.xml file, the Evolution compo-
nents are responsible for the rest of the contents
of the directory. When opening a folder, Evolution
will invoke the ShellComponent::createView
method on the component, with a file: URL to
the folder’s directory as the argument, and the
component will return a Bonobo Control for that
view.

4 Evolution Mail

4.1 The Camel Messaging Library

The foundation of the mail component is the Camel
messaging library. Loosely based on the design of
Sun’s JavaMail API, it provides an abstraction layer
through which mail messages are accessed.

4.2 Pluggable Architecture

Camel uses URIs such as
mbox://home/ettore/mbox to locate message
folders. The first part of the URI (mbox in
this case) represents the module that is used to
access the folder, and different modules can be
implemented easily and installed independently of
Evolution.

By using this mechanism, Camel currently supports

IMAP, POP-3 and NNTP through the same API.
SSL encription is also available for both the IMAP
and POP-3 protocols. Moreover, Camel supports
different mail storage mechanisms, including a stan-
dard unix mbox format which is the default, and a
one-file-per-message MH-like back-end.

New protocols and back-ends can be added by sub-
classing some specific classes and installing some
shared libraries in a specific location on the file sys-
tem.

4.3 Summarizing and Indexing

In order to speed up access to the mail contained
in the local folders, Camel creates a summary file
which contains the contents for some of the headers
(such as subject, author and recipients). The sum-
mary file is read when the folder is first opened, and
gets updated as messages get added and removed.
By using this method, Camel is able to read and ma-
nipulate mbox folders much faster than most other
mail clients.

In addition to this, Camel provides a custom in-
dexing library called libibex. When mail is im-
ported into a folder, libibex is used to create an
on-disk hash of all the words, together with pointers
to the messages that contain them. When a search
is performed on a folder, Evolution can thus just go
through the hash and obtain the list of matching
messages very quickly.

Evolution makes searching through folders very sim-
ple by providing a quicksearch bar. The quicksearch
bar contains an option menu through which the user
can select a criterion (such as “Message Body Con-
tains” or “Sender Contains”), and an entry in which
the user can specify a search string; when this func-
tionality gets activated, only the matching messages
are displayed in the message list. The user can also
further manipulate the search criteria by using an
advanced search dialog, and save the search so that
it appears as a pre-defined search criterion in a menu
on the quicksearch bar.

Camel also enables the application to associate
metadata to each message; for example, it is possi-
ble to associate keywords, scores or colors to specific
mail messages. This functionality allows the user to
expand his range of possibilities for mail organiza-
tion.



4.4 Filters

Camel also provides filtering of messages through
arbitrary rules. The rules are expressed as Lisp-like
s-expressions, and allow a broad range of possibili-
ties.

Matches are specified by expressions like the follow-
ing:

(header-contains "From" "john.smith")

This will match messages that contain the string
john.smith in the From header. Basic matches
such as header-contains can be combined by us-
ing boolean operators, such as and, or and not. For
example:

(not (or (header-contains

"To" "ettore@ximian.com")

(header-contains

"Cc" "ettore@ximian.com"))

(header-contains

"From" "john.smith"))

Actions are also specified as s-expressions. For ex-
ample:

• Copy to a folder:

(copy-to "mbox://home/jsmith/somefolder")

• Move to folder:

(move-to "mbox://home/jsmith/somefolder")

• Delete:

(delete)

• Set the colour:

(set-colour "rgb:ff/80/80")

• Set the flags:

(set-system-flag "Answered")

Actions can also be combined by using begin, and
other rules can be prevented from being applied to
the same message by using stop:

(begin

(copy-to "mbox://home/jsmith/Inbox")

(set-colour "red")

(move-to "mbox://home/jsmith/Important")

(stop))

These s-expressions are normally hidden to the user;
Evolution comes with a user-friendly GUI filter ed-
itor that allows editing of the rules in a simple way.

The same syntax is also used for performing searches
through the folders.

4.5 Virtual Folders

In addition to “traditional” filtering, Camel also
supports virtual folders, by using the indexing ca-
pabilities provided by libibex. A virtual folder (or
vfolder, for short) is a folder that doesn’t physically
exist on a storage media; rather, its content is dy-
namically generated through a search query on one
or more physical folders.

Camel is able to make virtual folders work just
like regular folders, allowing copying and moving
of messages, changing of their attributes and so on.
Changes to the messages actually affect the physi-
cal folders the messages are contained in; and since
resolving the query is very efficient due to the in-
dexing, using vfolders is not much slower than using
regular on-disk folders.

Users can use Virtual folders to organize their mail
in several different ways; for example, they can track
messages from/to a specific person, search for mes-
sages containing certain words, look for messages
with a certain score or associated to some specific
keyword.

Evolution encourages the user to create virtual fold-
ers by providing GUI hooks for the most common
operations; for example, it is possible to create a vir-
tual folder for messages sent by a certain author by
just right-clicking on a message by that author and
selecting the “Create Vfolder on Sender” command.

4.6 Mailing List Recognition

Evolution comes with a simple, yet effective system
to filter and create vfolders on mailing lists.



Evolution is able to recognize a certain number of
typical hidden mailing list headers that identify the
mailing list; when a message with such headers gets
imported, a mailing list ID gets extracted from them
and is put in the message summary, associated with
that message.

Examples of mailing list headers that Evolution
would recognize are:

Sender: owner-mailing-list@site.net

X-Mailing-List: mailing-list

List-Id: mailing list

By associating this mailing list ID automatically,
Evolution is able to both filter mailing list mes-
sages and create vfolders of them, without requir-
ing the user to actually specify the complex header
matches manually as it normally happens with tools
like procmail.

4.7 Encryption

Camel also includes support for S/MIME and PGP
based encryption, which are thus natively supported
by the mail component.

S/MIME support is based on the libnss library
originally developed for the Mozilla4 project.

4.8 Bonobo Integration

By using the Bonobo component technology, the
mailer component in Evolution is also able to dis-
play various kinds of email contents in-line. For
example, if you receive an attachment that is a
Gnumeric spreadsheet, Evolution is able to activate
and embed an instance of Gnumeric to display the
spreadsheet in-line, as if it was integral part of the
mail message.

This mechanism works by using the built-in MIME
type handing mechanism of GNOME VFS5 to de-
tect what component(s) can be used to display the
contents in-line.

Due to the extensible nature of Bonobo and
GNOME VFS, it’s very easy to add several kinds

4http://www.mozilla.org
5http://www.ximian.com/tech/gnome-vfs.php3

of viewers for different types of documents; for ex-
ample, once the Bonobo integration of OpenOffice6

is complete, it will be possible to display contents
of Word, PowerPoint or Excel documents by using
OpenOffice’s ability to handle those proprietary for-
mats.

The calendar and addressbook components in Evo-
lution implement some viewer components them-
selves. For example, the calendar provides a viewer
for iTIP attachments that are used for sending
meeting requests. When a user receives an iTIP
attachment in a mail message, Evolution activates
the corresponding calendar control that displays in-
formation about the meeting request, and allows the
user to either reject the meeting (by sending a de-
nial message back to the author of the request), or
accept and add information about the meeting to
her own calendar automatically.

Likewise, the addressbook component implements a
viewer for the vCard format that is used to describe
contact information. The vCard control displays the
information and also allows the user to add the con-
tact to his contact database by clicking on a button
in the control itself.

4.9 The Mail Display and Composition
Engine

Evolution uses a library called GtkHTML to display
and compose mail messages. GtkHTML is a simple,
lightweight HTML engine which also comes with a
powerful editor featuring undo/redo support, con-
figurable keybindings and built-in spell checking (so
that it can highlight misspelled words automatically
as the user types).

By default, HTML is disabled in the message com-
poser. When HTML is disabled, the rich text at-
tributes don’t get displayed (so all text is displayed
in the same monospaced font), but automatic for-
matting of the inserted text still happens automat-
ically. This way, it is possible to align paragraphs,
make itemized lists and indent the text, while still
sending plaintext messages.

The composer is also able to switch back and forth
between HTML and non-HTML mode and than
back to HTML again without losing the text at-
tributes that the user has set.

6http://www.openoffice.org



5 The Wombat

The storage back-end for the Evolution’s address-
book and calendar components is provided by a sep-
arate component called the Wombat. The address-
book and calendar components are simply imple-
mented as views for the data stored into the Wom-
bat.

The Wombat is an out-of-process component; so the
Wombat works as a little stand-alone daemon which
the addressbook and the calendar connect to.

This data/view split is achieved by registering lis-
teners on the Wombat; a listener is an interface that
a Wombat client implements on his side to get notifi-
cations about changes in the data. When some data
in the Wombat changes, the Wombat goes through
all the registered listeners and reports the details of
the change to them so that the views can update
themselves.

5.1 Advantages of the Wombat

There are several advantages with this solution,
compared to a more simple approach based on a
monolythic component managing both the data and
the view:

• The Wombat is accessible by different appli-
cations, and can be accessed without running
Evolution.

• Since CORBA bindings are available for vari-
ous languages including scripting languages, it
is very easy to query or make changes on the
addressbook’s or the calendar’s contents by us-
ing a scripting language (for example, Perl).

• Access to the data is arbitrated by the Wom-
bat, so there is no need to lock the files or care
about conflicting changes. Likewise, since all
the changes go through the Wombat, the data
is always kept in a consistent state, and buggy
3d party applications cannot corrupt the phys-
ical files.

• Because of the data/view split and the fact
that the Wombat acts as an independent data
repository, it is possible to easily transform the
Wombat into a remote server.

• All the folders of the same type can be accessed
through a common Wombat interface. For ex-
ample, it is possible to access LDAP and local
folders by using the same addressbook inter-
faces (see 6).

5.2 The Wombat’s Structure

The Wombat is constituted by two subparts:

• The PAS, or Personal Addressbook Server, for
handling contact folders.

• The PCS, or Personal Calendar Server, for han-
dling task and calendar folders.

Each of these modules can provide different kinds
of backends through a simple pluggable architecture
based on dynamically linked modules.

5.3 Palm Synchronization

Evolution also comes with the ability to synchronize
the addressbook and calendar folders to a PDA de-
vice running the PalmOS operating system.

This feature is based on GNOME’s PalmOS syn-
chronization technology, called gnome-pilot, which
is a generic framework for providing PDA synchro-
nization conduits. gnome-pilot provides a small
daemon, called gpilotd, that watches the cradle de-
vice connected to either the serial or the USB port;
when the hotsync button on the cradle gets acti-
vated, gpilotd activates all the conduits, one by
one, so that they can perform the synchronization
of the data.

Evolution provides addressbook and calendar con-
duits that simply talk to the Wombat, reading and
synchronizing the data through its CORBA inter-
faces. If Evolution is running when synchronization
happens and the user has calendar and/or address-
book views open, they will get updated automati-
cally through the listener mechanism.



6 Evolution Addressbook

The addressbook backend (PAS, see section 5.2)
in the Wombat includes support for both LDAP
servers and local contact databases.

In the local case, it uses Sleepycat’s Berkeley DB
library7; the information is stored on the database
as a set of vCards, indexed by the name. Since the
widespread vCard format is being used, it’s really
easy to migrate contact information from/to other
applications.

For accessing LDAP servers, it uses the OpenL-
DAP8 implementation of the LDAP protocol.

The data of the addressbook can be displayed both
in a traditional list view, and in a multicard view si-
miliar to that used in Microsoft Outlook; both views
can be printed, using the GNOME printing archi-
tecture.

The addressbook also implements address picker
controls that allow a user to select one or more ad-
dresses from the contacts folders (both local and
LDAP), either through a simple entry widget with
automatic completion, or through a simple point-
and-click picker dialog similiar to that found in other
mail applications. These controls are used both in
the message composer (to specify the recipients of
a message) and in the calendar (to pick attendee
addresses in the meeting request dialog).

7 Evolution Calendar

The Evolution calendar allows the user to manage
his to-do lists and appointments. Its implementa-
tion is based on the libical library and the data
is saved in the standard iCalendar format, which
makes it easily interoperable with other similiar ap-
plications.

It supports different styles of views and also sup-
ports printing of the calendar with a nice layout.
The to-do list supports setting priorities, deadlines
and categories and is highly configurable.

The calendar also comes with a quicksearch bar that
7http://www.sleepycat.com
8http://www.openldap.org

the user can use to look for events and to-do items.

Currently it only supports local calendars, but at
some point support for a shared calendar server so-
lution will be added.

Evolution is also provided with a per-user alarm
daemon for getting notification of events even when
Evolution isn’t running. The alarm daemon just
connects to the Wombat to get the list of pending
events, and then wakes up as soon as the specified
time is reached.

8 Importing Tools

Evolution provides a generic Bonobo-based frame-
work for creating importing tools, to facilitate mi-
gration from other applications. When the user first
runs Evolution, the installed import plugins are ac-
tivated and check for the canonical locations where
data from other applications is stored (for example,
/home/user/mail for Pine, or /home/user/nsmail
for Netscape Communicator).

Evolution currently supports automatic importing
from the following applications:

• Elm

• Netscape Communicator

• Pine

• GnomeCard

• Generic unix mbox (which, for example, can be
used with Mutt)

Other importers (such as one for Gnus9, the Emacs
mail and news reading application) are being worked
on.

9 Conclusion

Evolution 1.0 is scheduled to be released some time
in Autumn 2001. Binary snapshots are available

9http://www.gnus.org



through Ximian Red Carpet, the package manage-
ment application of the the Ximian GNOME desk-
top. The Ximian GNOME desktop can be down-
loaded from http://www.ximian.com/desktop/.

Alternatively, the Evolution source code can be
downloaded from the regular GNOME FTP site
(ftp://ftp.gnome.org/pub/GNOME/unstable/
source) or from the GNOME CVS server; in-
structions for using the GNOME CVS server are
available on the GNOME Developer’s web site at
http://developer.gnome.org.

More information about Evolution is avail-
able on the Ximian Evolution home page at
http://www.ximian.com/apps/evolution.php3.


