.. SPDX-License-Identifier: GPL-2.0 ===================== Fake NUMA For CPUSets ===================== :Author: David Rientjes Using numa=fake and CPUSets for Resource Management This document describes how the numa=fake x86_64 command-line option can be used in conjunction with cpusets for coarse memory management. Using this feature, you can create fake NUMA nodes that represent contiguous chunks of memory and assign them to cpusets and their attached tasks. This is a way of limiting the amount of system memory that are available to a certain class of tasks. For more information on the features of cpusets, see Documentation/admin-guide/cgroup-v1/cpusets.rst. There are a number of different configurations you can use for your needs. For more information on the numa=fake command line option and its various ways of configuring fake nodes, see Documentation/x86/x86_64/boot-options.rst. For the purposes of this introduction, we'll assume a very primitive NUMA emulation setup of "numa=fake=4*512,". This will split our system memory into four equal chunks of 512M each that we can now use to assign to cpusets. As you become more familiar with using this combination for resource control, you'll determine a better setup to minimize the number of nodes you have to deal with. A machine may be split as follows with "numa=fake=4*512," as reported by dmesg:: Faking node 0 at 0000000000000000-0000000020000000 (512MB) Faking node 1 at 0000000020000000-0000000040000000 (512MB) Faking node 2 at 0000000040000000-0000000060000000 (512MB) Faking node 3 at 0000000060000000-0000000080000000 (512MB) ... On node 0 totalpages: 130975 On node 1 totalpages: 131072 On node 2 totalpages: 131072 On node 3 totalpages: 131072 Now following the instructions for mounting the cpusets filesystem from Documentation/admin-guide/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory address spaces) to individual cpusets:: [root@xroads /]# mkdir exampleset [root@xroads /]# mount -t cpuset none exampleset [root@xroads /]# mkdir exampleset/ddset [root@xroads /]# cd exampleset/ddset [root@xroads /exampleset/ddset]# echo 0-1 > cpus [root@xroads /exampleset/ddset]# echo 0-1 > mems Now this cpuset, 'ddset', will only allowed access to fake nodes 0 and 1 for memory allocations (1G). You can now assign tasks to these cpusets to limit the memory resources available to them according to the fake nodes assigned as mems:: [root@xroads /exampleset/ddset]# echo $$ > tasks [root@xroads /exampleset/ddset]# dd if=/dev/zero of=tmp bs=1024 count=1G [1] 13425 Notice the difference between the system memory usage as reported by /proc/meminfo between the restricted cpuset case above and the unrestricted case (i.e. running the same 'dd' command without assigning it to a fake NUMA cpuset): ======== ============ ========== Name Unrestricted Restricted ======== ============ ========== MemTotal 3091900 kB 3091900 kB MemFree 42113 kB 1513236 kB ======== ============ ========== This allows for coarse memory management for the tasks you assign to particular cpusets. Since cpusets can form a hierarchy, you can create some pretty interesting combinations of use-cases for various classes of tasks for your memory management needs.