Memory Management APIs

User Space Memory Access

access_ok(addr, size)

Checks if a user space pointer is valid

Parameters

addr

User space pointer to start of block to check

size

Size of block to check

Context

User context only. This function may sleep if pagefaults are enabled.

Description

Checks if a pointer to a block of memory in user space is valid.

Note that, depending on architecture, this function probably just checks that the pointer is in the user space range - after calling this function, memory access functions may still return -EFAULT.

Return

true (nonzero) if the memory block may be valid, false (zero) if it is definitely invalid.

get_user(x, ptr)

Get a simple variable from user space.

Parameters

x

Variable to store result.

ptr

Source address, in user space.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

This macro copies a single simple variable from user space to kernel space. It supports simple types like char and int, but not larger data types like structures or arrays.

ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr must be assignable to x without a cast.

Return

zero on success, or -EFAULT on error. On error, the variable x is set to zero.

__get_user(x, ptr)

Get a simple variable from user space, with less checking.

Parameters

x

Variable to store result.

ptr

Source address, in user space.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

This macro copies a single simple variable from user space to kernel space. It supports simple types like char and int, but not larger data types like structures or arrays.

ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr must be assignable to x without a cast.

Caller must check the pointer with access_ok() before calling this function.

Return

zero on success, or -EFAULT on error. On error, the variable x is set to zero.

put_user(x, ptr)

Write a simple value into user space.

Parameters

x

Value to copy to user space.

ptr

Destination address, in user space.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

This macro copies a single simple value from kernel space to user space. It supports simple types like char and int, but not larger data types like structures or arrays.

ptr must have pointer-to-simple-variable type, and x must be assignable to the result of dereferencing ptr.

Return

zero on success, or -EFAULT on error.

__put_user(x, ptr)

Write a simple value into user space, with less checking.

Parameters

x

Value to copy to user space.

ptr

Destination address, in user space.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

This macro copies a single simple value from kernel space to user space. It supports simple types like char and int, but not larger data types like structures or arrays.

ptr must have pointer-to-simple-variable type, and x must be assignable to the result of dereferencing ptr.

Caller must check the pointer with access_ok() before calling this function.

Return

zero on success, or -EFAULT on error.

unsigned long clear_user(void __user *to, unsigned long n)

Zero a block of memory in user space.

Parameters

void __user *to

Destination address, in user space.

unsigned long n

Number of bytes to zero.

Description

Zero a block of memory in user space.

Return

number of bytes that could not be cleared. On success, this will be zero.

unsigned long __clear_user(void __user *to, unsigned long n)

Zero a block of memory in user space, with less checking.

Parameters

void __user *to

Destination address, in user space.

unsigned long n

Number of bytes to zero.

Description

Zero a block of memory in user space. Caller must check the specified block with access_ok() before calling this function.

Return

number of bytes that could not be cleared. On success, this will be zero.

int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages)

pin user pages in memory

Parameters

unsigned long start

starting user address

int nr_pages

number of pages from start to pin

unsigned int gup_flags

flags modifying pin behaviour

struct page **pages

array that receives pointers to the pages pinned. Should be at least nr_pages long.

Description

Attempt to pin user pages in memory without taking mm->mmap_lock. If not successful, it will fall back to taking the lock and calling get_user_pages().

Returns number of pages pinned. This may be fewer than the number requested. If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns -errno.

Memory Allocation Controls

typedef gfp_t

Memory allocation flags.

Description

GFP flags are commonly used throughout Linux to indicate how memory should be allocated. The GFP acronym stands for get_free_pages(), the underlying memory allocation function. Not every GFP flag is supported by every function which may allocate memory. Most users will want to use a plain GFP_KERNEL.

bool gfpflags_normal_context(const gfp_t gfp_flags)

is gfp_flags a normal sleepable context?

Parameters

const gfp_t gfp_flags

gfp_flags to test

Description

Test whether gfp_flags indicates that the allocation is from the current context and allowed to sleep.

An allocation being allowed to block doesn’t mean it owns the current context. When direct reclaim path tries to allocate memory, the allocation context is nested inside whatever current was doing at the time of the original allocation. The nested allocation may be allowed to block but modifying anything current owns can corrupt the outer context’s expectations.

true result from this function indicates that the allocation context can sleep and use anything that’s associated with current.

Page mobility and placement hints

These flags provide hints about how mobile the page is. Pages with similar mobility are placed within the same pageblocks to minimise problems due to external fragmentation.

__GFP_MOVABLE (also a zone modifier) indicates that the page can be moved by page migration during memory compaction or can be reclaimed.

__GFP_RECLAIMABLE is used for slab allocations that specify SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.

__GFP_WRITE indicates the caller intends to dirty the page. Where possible, these pages will be spread between local zones to avoid all the dirty pages being in one zone (fair zone allocation policy).

__GFP_HARDWALL enforces the cpuset memory allocation policy.

__GFP_THISNODE forces the allocation to be satisfied from the requested node with no fallbacks or placement policy enforcements.

__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.

Watermark modifiers – controls access to emergency reserves

__GFP_HIGH indicates that the caller is high-priority and that granting the request is necessary before the system can make forward progress. For example, creating an IO context to clean pages.

__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is high priority. Users are typically interrupt handlers. This may be used in conjunction with __GFP_HIGH

__GFP_MEMALLOC allows access to all memory. This should only be used when the caller guarantees the allocation will allow more memory to be freed very shortly e.g. process exiting or swapping. Users either should be the MM or co-ordinating closely with the VM (e.g. swap over NFS). Users of this flag have to be extremely careful to not deplete the reserve completely and implement a throttling mechanism which controls the consumption of the reserve based on the amount of freed memory. Usage of a pre-allocated pool (e.g. mempool) should be always considered before using this flag.

__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. This takes precedence over the __GFP_MEMALLOC flag if both are set.

Reclaim modifiers

Please note that all the following flags are only applicable to sleepable allocations (e.g. GFP_NOWAIT and GFP_ATOMIC will ignore them).

__GFP_IO can start physical IO.

__GFP_FS can call down to the low-level FS. Clearing the flag avoids the allocator recursing into the filesystem which might already be holding locks.

__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. This flag can be cleared to avoid unnecessary delays when a fallback option is available.

__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when the low watermark is reached and have it reclaim pages until the high watermark is reached. A caller may wish to clear this flag when fallback options are available and the reclaim is likely to disrupt the system. The canonical example is THP allocation where a fallback is cheap but reclaim/compaction may cause indirect stalls.

__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.

The default allocator behavior depends on the request size. We have a concept of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER). !costly allocations are too essential to fail so they are implicitly non-failing by default (with some exceptions like OOM victims might fail so the caller still has to check for failures) while costly requests try to be not disruptive and back off even without invoking the OOM killer. The following three modifiers might be used to override some of these implicit rules

__GFP_NORETRY: The VM implementation will try only very lightweight memory direct reclaim to get some memory under memory pressure (thus it can sleep). It will avoid disruptive actions like OOM killer. The caller must handle the failure which is quite likely to happen under heavy memory pressure. The flag is suitable when failure can easily be handled at small cost, such as reduced throughput

__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim procedures that have previously failed if there is some indication that progress has been made else where. It can wait for other tasks to attempt high level approaches to freeing memory such as compaction (which removes fragmentation) and page-out. There is still a definite limit to the number of retries, but it is a larger limit than with __GFP_NORETRY. Allocations with this flag may fail, but only when there is genuinely little unused memory. While these allocations do not directly trigger the OOM killer, their failure indicates that the system is likely to need to use the OOM killer soon. The caller must handle failure, but can reasonably do so by failing a higher-level request, or completing it only in a much less efficient manner. If the allocation does fail, and the caller is in a position to free some non-essential memory, doing so could benefit the system as a whole.

__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller cannot handle allocation failures. The allocation could block indefinitely but will never return with failure. Testing for failure is pointless. New users should be evaluated carefully (and the flag should be used only when there is no reasonable failure policy) but it is definitely preferable to use the flag rather than opencode endless loop around allocator. Using this flag for costly allocations is _highly_ discouraged.

Useful GFP flag combinations

Useful GFP flag combinations that are commonly used. It is recommended that subsystems start with one of these combinations and then set/clear __GFP_FOO flags as necessary.

GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower watermark is applied to allow access to “atomic reserves”. The current implementation doesn’t support NMI and few other strict non-preemptive contexts (e.g. raw_spin_lock). The same applies to GFP_NOWAIT.

GFP_KERNEL is typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone for direct access but can direct reclaim.

GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is accounted to kmemcg.

GFP_NOWAIT is for kernel allocations that should not stall for direct reclaim, start physical IO or use any filesystem callback.

GFP_NOIO will use direct reclaim to discard clean pages or slab pages that do not require the starting of any physical IO. Please try to avoid using this flag directly and instead use memalloc_noio_{save,restore} to mark the whole scope which cannot perform any IO with a short explanation why. All allocation requests will inherit GFP_NOIO implicitly.

GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. Please try to avoid using this flag directly and instead use memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn’t recurse into the FS layer with a short explanation why. All allocation requests will inherit GFP_NOFS implicitly.

GFP_USER is for userspace allocations that also need to be directly accessibly by the kernel or hardware. It is typically used by hardware for buffers that are mapped to userspace (e.g. graphics) that hardware still must DMA to. cpuset limits are enforced for these allocations.

GFP_DMA exists for historical reasons and should be avoided where possible. The flags indicates that the caller requires that the lowest zone be used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but it would require careful auditing as some users really require it and others use the flag to avoid lowmem reserves in ZONE_DMA and treat the lowest zone as a type of emergency reserve.

GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit address.

GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, do not need to be directly accessible by the kernel but that cannot move once in use. An example may be a hardware allocation that maps data directly into userspace but has no addressing limitations.

GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not need direct access to but can use kmap() when access is required. They are expected to be movable via page reclaim or page migration. Typically, pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.

GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are compound allocations that will generally fail quickly if memory is not available and will not wake kswapd/kcompactd on failure. The _LIGHT version does not attempt reclaim/compaction at all and is by default used in page fault path, while the non-light is used by khugepaged.

The Slab Cache

void * kmalloc(size_t size, gfp_t flags)

allocate memory

Parameters

size_t size

how many bytes of memory are required.

gfp_t flags

the type of memory to allocate.

Description

kmalloc is the normal method of allocating memory for objects smaller than page size in the kernel.

The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN bytes. For size of power of two bytes, the alignment is also guaranteed to be at least to the size.

The flags argument may be one of the GFP flags defined at include/linux/gfp.h and described at Memory Management APIs

The recommended usage of the flags is described at Memory Allocation Guide

Below is a brief outline of the most useful GFP flags

GFP_KERNEL

Allocate normal kernel ram. May sleep.

GFP_NOWAIT

Allocation will not sleep.

GFP_ATOMIC

Allocation will not sleep. May use emergency pools.

GFP_HIGHUSER

Allocate memory from high memory on behalf of user.

Also it is possible to set different flags by OR’ing in one or more of the following additional flags:

__GFP_HIGH

This allocation has high priority and may use emergency pools.

__GFP_NOFAIL

Indicate that this allocation is in no way allowed to fail (think twice before using).

__GFP_NORETRY

If memory is not immediately available, then give up at once.

__GFP_NOWARN

If allocation fails, don’t issue any warnings.

__GFP_RETRY_MAYFAIL

Try really hard to succeed the allocation but fail eventually.

void * kmalloc_array(size_t n, size_t size, gfp_t flags)

allocate memory for an array.

Parameters

size_t n

number of elements.

size_t size

element size.

gfp_t flags

the type of memory to allocate (see kmalloc).

inline void * krealloc_array(void *p, size_t new_n, size_t new_size, gfp_t flags)

reallocate memory for an array.

Parameters

void *p

pointer to the memory chunk to reallocate

size_t new_n

new number of elements to alloc

size_t new_size

new size of a single member of the array

gfp_t flags

the type of memory to allocate (see kmalloc)

void * kcalloc(size_t n, size_t size, gfp_t flags)

allocate memory for an array. The memory is set to zero.

Parameters

size_t n

number of elements.

size_t size

element size.

gfp_t flags

the type of memory to allocate (see kmalloc).

void * kzalloc(size_t size, gfp_t flags)

allocate memory. The memory is set to zero.

Parameters

size_t size

how many bytes of memory are required.

gfp_t flags

the type of memory to allocate (see kmalloc).

void * kzalloc_node(size_t size, gfp_t flags, int node)

allocate zeroed memory from a particular memory node.

Parameters

size_t size

how many bytes of memory are required.

gfp_t flags

the type of memory to allocate (see kmalloc).

int node

memory node from which to allocate

void * kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)

Allocate an object

Parameters

struct kmem_cache *cachep

The cache to allocate from.

gfp_t flags

See kmalloc().

Description

Allocate an object from this cache. The flags are only relevant if the cache has no available objects.

Return

pointer to the new object or NULL in case of error

void * kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)

Allocate an object on the specified node

Parameters

struct kmem_cache *cachep

The cache to allocate from.

gfp_t flags

See kmalloc().

int nodeid

node number of the target node.

Description

Identical to kmem_cache_alloc but it will allocate memory on the given node, which can improve the performance for cpu bound structures.

Fallback to other node is possible if __GFP_THISNODE is not set.

Return

pointer to the new object or NULL in case of error

void kmem_cache_free(struct kmem_cache *cachep, void *objp)

Deallocate an object

Parameters

struct kmem_cache *cachep

The cache the allocation was from.

void *objp

The previously allocated object.

Description

Free an object which was previously allocated from this cache.

void kfree(const void *objp)

free previously allocated memory

Parameters

const void *objp

pointer returned by kmalloc.

Description

If objp is NULL, no operation is performed.

Don’t free memory not originally allocated by kmalloc() or you will run into trouble.

size_t __ksize(const void *objp)
  • Uninstrumented ksize.

Parameters

const void *objp

pointer to the object

Description

Unlike ksize(), __ksize() is uninstrumented, and does not provide the same safety checks as ksize() with KASAN instrumentation enabled.

Return

size of the actual memory used by objp in bytes

struct kmem_cache * kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *))

Create a cache with a region suitable for copying to userspace

Parameters

const char *name

A string which is used in /proc/slabinfo to identify this cache.

unsigned int size

The size of objects to be created in this cache.

unsigned int align

The required alignment for the objects.

slab_flags_t flags

SLAB flags

unsigned int useroffset

Usercopy region offset

unsigned int usersize

Usercopy region size

void (*ctor)(void *)

A constructor for the objects.

Description

Cannot be called within a interrupt, but can be interrupted. The ctor is run when new pages are allocated by the cache.

The flags are

SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) to catch references to uninitialised memory.

SLAB_RED_ZONE - Insert Red zones around the allocated memory to check for buffer overruns.

SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware cacheline. This can be beneficial if you’re counting cycles as closely as davem.

Return

a pointer to the cache on success, NULL on failure.

struct kmem_cache * kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *))

Create a cache.

Parameters

const char *name

A string which is used in /proc/slabinfo to identify this cache.

unsigned int size

The size of objects to be created in this cache.

unsigned int align

The required alignment for the objects.

slab_flags_t flags

SLAB flags

void (*ctor)(void *)

A constructor for the objects.

Description

Cannot be called within a interrupt, but can be interrupted. The ctor is run when new pages are allocated by the cache.

The flags are

SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) to catch references to uninitialised memory.

SLAB_RED_ZONE - Insert Red zones around the allocated memory to check for buffer overruns.

SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware cacheline. This can be beneficial if you’re counting cycles as closely as davem.

Return

a pointer to the cache on success, NULL on failure.

int kmem_cache_shrink(struct kmem_cache *cachep)

Shrink a cache.

Parameters

struct kmem_cache *cachep

The cache to shrink.

Description

Releases as many slabs as possible for a cache. To help debugging, a zero exit status indicates all slabs were released.

Return

0 if all slabs were released, non-zero otherwise

bool kmem_valid_obj(void *object)

does the pointer reference a valid slab object?

Parameters

void *object

pointer to query.

Return

true if the pointer is to a not-yet-freed object from kmalloc() or kmem_cache_alloc(), either true or false if the pointer is to an already-freed object, and false otherwise.

void kmem_dump_obj(void *object)

Print available slab provenance information

Parameters

void *object

slab object for which to find provenance information.

Description

This function uses pr_cont(), so that the caller is expected to have printed out whatever preamble is appropriate. The provenance information depends on the type of object and on how much debugging is enabled. For a slab-cache object, the fact that it is a slab object is printed, and, if available, the slab name, return address, and stack trace from the allocation of that object.

This function will splat if passed a pointer to a non-slab object. If you are not sure what type of object you have, you should instead use mem_dump_obj().

void * krealloc(const void *p, size_t new_size, gfp_t flags)

reallocate memory. The contents will remain unchanged.

Parameters

const void *p

object to reallocate memory for.

size_t new_size

how many bytes of memory are required.

gfp_t flags

the type of memory to allocate.

Description

The contents of the object pointed to are preserved up to the lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). If p is NULL, krealloc() behaves exactly like kmalloc(). If new_size is 0 and p is not a NULL pointer, the object pointed to is freed.

Return

pointer to the allocated memory or NULL in case of error

void kfree_sensitive(const void *p)

Clear sensitive information in memory before freeing

Parameters

const void *p

object to free memory of

Description

The memory of the object p points to is zeroed before freed. If p is NULL, kfree_sensitive() does nothing.

Note

this function zeroes the whole allocated buffer which can be a good deal bigger than the requested buffer size passed to kmalloc(). So be careful when using this function in performance sensitive code.

size_t ksize(const void *objp)

get the actual amount of memory allocated for a given object

Parameters

const void *objp

Pointer to the object

Description

kmalloc may internally round up allocations and return more memory than requested. ksize() can be used to determine the actual amount of memory allocated. The caller may use this additional memory, even though a smaller amount of memory was initially specified with the kmalloc call. The caller must guarantee that objp points to a valid object previously allocated with either kmalloc() or kmem_cache_alloc(). The object must not be freed during the duration of the call.

Return

size of the actual memory used by objp in bytes

void kfree_const(const void *x)

conditionally free memory

Parameters

const void *x

pointer to the memory

Description

Function calls kfree only if x is not in .rodata section.

void * kvmalloc_node(size_t size, gfp_t flags, int node)

attempt to allocate physically contiguous memory, but upon failure, fall back to non-contiguous (vmalloc) allocation.

Parameters

size_t size

size of the request.

gfp_t flags

gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.

int node

numa node to allocate from

Description

Uses kmalloc to get the memory but if the allocation fails then falls back to the vmalloc allocator. Use kvfree for freeing the memory.

Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is preferable to the vmalloc fallback, due to visible performance drawbacks.

Please note that any use of gfp flags outside of GFP_KERNEL is careful to not fall back to vmalloc.

Return

pointer to the allocated memory of NULL in case of failure

void kvfree(const void *addr)

Free memory.

Parameters

const void *addr

Pointer to allocated memory.

Description

kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). It is slightly more efficient to use kfree() or vfree() if you are certain that you know which one to use.

Context

Either preemptible task context or not-NMI interrupt.

Virtually Contiguous Mappings

void vm_unmap_aliases(void)

unmap outstanding lazy aliases in the vmap layer

Parameters

void

no arguments

Description

The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily to amortize TLB flushing overheads. What this means is that any page you have now, may, in a former life, have been mapped into kernel virtual address by the vmap layer and so there might be some CPUs with TLB entries still referencing that page (additional to the regular 1:1 kernel mapping).

vm_unmap_aliases flushes all such lazy mappings. After it returns, we can be sure that none of the pages we have control over will have any aliases from the vmap layer.

void vm_unmap_ram(const void *mem, unsigned int count)

unmap linear kernel address space set up by vm_map_ram

Parameters

const void *mem

the pointer returned by vm_map_ram

unsigned int count

the count passed to that vm_map_ram call (cannot unmap partial)

void * vm_map_ram(struct page **pages, unsigned int count, int node)

map pages linearly into kernel virtual address (vmalloc space)

Parameters

struct page **pages

an array of pointers to the pages to be mapped

unsigned int count

number of pages

int node

prefer to allocate data structures on this node

Description

If you use this function for less than VMAP_MAX_ALLOC pages, it could be faster than vmap so it’s good. But if you mix long-life and short-life objects with vm_map_ram(), it could consume lots of address space through fragmentation (especially on a 32bit machine). You could see failures in the end. Please use this function for short-lived objects.

Return

a pointer to the address that has been mapped, or NULL on failure

void vfree(const void *addr)

Release memory allocated by vmalloc()

Parameters

const void *addr

Memory base address

Description

Free the virtually continuous memory area starting at addr, as obtained from one of the vmalloc() family of APIs. This will usually also free the physical memory underlying the virtual allocation, but that memory is reference counted, so it will not be freed until the last user goes away.

If addr is NULL, no operation is performed.

Context

May sleep if called not from interrupt context. Must not be called in NMI context (strictly speaking, it could be if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling conventions for vfree() arch-dependent would be a really bad idea).

void vunmap(const void *addr)

release virtual mapping obtained by vmap()

Parameters

const void *addr

memory base address

Description

Free the virtually contiguous memory area starting at addr, which was created from the page array passed to vmap().

Must not be called in interrupt context.

void * vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)

map an array of pages into virtually contiguous space

Parameters

struct page **pages

array of page pointers

unsigned int count

number of pages to map

unsigned long flags

vm_area->flags

pgprot_t prot

page protection for the mapping

Description

Maps count pages from pages into contiguous kernel virtual space. If flags contains VM_MAP_PUT_PAGES the ownership of the pages array itself (which must be kmalloc or vmalloc memory) and one reference per pages in it are transferred from the caller to vmap(), and will be freed / dropped when vfree() is called on the return value.

Return

the address of the area or NULL on failure

void * vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)

map an array of PFNs into virtually contiguous space

Parameters

unsigned long *pfns

array of PFNs

unsigned int count

number of pages to map

pgprot_t prot

page protection for the mapping

Description

Maps count PFNs from pfns into contiguous kernel virtual space and returns the start address of the mapping.

void * __vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller)

allocate virtually contiguous memory

Parameters

unsigned long size

allocation size

unsigned long align

desired alignment

gfp_t gfp_mask

flags for the page level allocator

int node

node to use for allocation or NUMA_NO_NODE

const void *caller

caller’s return address

Description

Allocate enough pages to cover size from the page level allocator with gfp_mask flags. Map them into contiguous kernel virtual space.

Reclaim modifiers in gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL and __GFP_NOFAIL are not supported

Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.

Return

pointer to the allocated memory or NULL on error

void * vmalloc(unsigned long size)

allocate virtually contiguous memory

Parameters

unsigned long size

allocation size

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel virtual space.

For tight control over page level allocator and protection flags use __vmalloc() instead.

Return

pointer to the allocated memory or NULL on error

void * vmalloc_no_huge(unsigned long size)

allocate virtually contiguous memory using small pages

Parameters

unsigned long size

allocation size

Description

Allocate enough non-huge pages to cover size from the page level allocator and map them into contiguous kernel virtual space.

Return

pointer to the allocated memory or NULL on error

void * vzalloc(unsigned long size)

allocate virtually contiguous memory with zero fill

Parameters

unsigned long size

allocation size

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel virtual space. The memory allocated is set to zero.

For tight control over page level allocator and protection flags use __vmalloc() instead.

Return

pointer to the allocated memory or NULL on error

void * vmalloc_user(unsigned long size)

allocate zeroed virtually contiguous memory for userspace

Parameters

unsigned long size

allocation size

Description

The resulting memory area is zeroed so it can be mapped to userspace without leaking data.

Return

pointer to the allocated memory or NULL on error

void * vmalloc_node(unsigned long size, int node)

allocate memory on a specific node

Parameters

unsigned long size

allocation size

int node

numa node

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel virtual space.

For tight control over page level allocator and protection flags use __vmalloc() instead.

Return

pointer to the allocated memory or NULL on error

void * vzalloc_node(unsigned long size, int node)

allocate memory on a specific node with zero fill

Parameters

unsigned long size

allocation size

int node

numa node

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel virtual space. The memory allocated is set to zero.

Return

pointer to the allocated memory or NULL on error

void * vmalloc_32(unsigned long size)

allocate virtually contiguous memory (32bit addressable)

Parameters

unsigned long size

allocation size

Description

Allocate enough 32bit PA addressable pages to cover size from the page level allocator and map them into contiguous kernel virtual space.

Return

pointer to the allocated memory or NULL on error

void * vmalloc_32_user(unsigned long size)

allocate zeroed virtually contiguous 32bit memory

Parameters

unsigned long size

allocation size

Description

The resulting memory area is 32bit addressable and zeroed so it can be mapped to userspace without leaking data.

Return

pointer to the allocated memory or NULL on error

int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff)

map vmalloc pages to userspace

Parameters

struct vm_area_struct *vma

vma to cover (map full range of vma)

void *addr

vmalloc memory

unsigned long pgoff

number of pages into addr before first page to map

Return

0 for success, -Exxx on failure

Description

This function checks that addr is a valid vmalloc’ed area, and that it is big enough to cover the vma. Will return failure if that criteria isn’t met.

Similar to remap_pfn_range() (see mm/memory.c)

File Mapping and Page Cache

int read_cache_pages(struct address_space *mapping, struct list_head *pages, int (*filler)(void *, struct page *), void *data)

populate an address space with some pages & start reads against them

Parameters

struct address_space *mapping

the address_space

struct list_head *pages

The address of a list_head which contains the target pages. These pages have their ->index populated and are otherwise uninitialised.

int (*filler)(void *, struct page *)

callback routine for filling a single page.

void *data

private data for the callback routine.

Description

Hides the details of the LRU cache etc from the filesystems.

Return

0 on success, error return by filler otherwise

void page_cache_ra_unbounded(struct readahead_control *ractl, unsigned long nr_to_read, unsigned long lookahead_size)

Start unchecked readahead.

Parameters

struct readahead_control *ractl

Readahead control.

unsigned long nr_to_read

The number of pages to read.

unsigned long lookahead_size

Where to start the next readahead.

Description

This function is for filesystems to call when they want to start readahead beyond a file’s stated i_size. This is almost certainly not the function you want to call. Use page_cache_async_readahead() or page_cache_sync_readahead() instead.

Context

File is referenced by caller. Mutexes may be held by caller. May sleep, but will not reenter filesystem to reclaim memory.

void readahead_expand(struct readahead_control *ractl, loff_t new_start, size_t new_len)

Expand a readahead request

Parameters

struct readahead_control *ractl

The request to be expanded

loff_t new_start

The revised start

size_t new_len

The revised size of the request

Description

Attempt to expand a readahead request outwards from the current size to the specified size by inserting locked pages before and after the current window to increase the size to the new window. This may involve the insertion of THPs, in which case the window may get expanded even beyond what was requested.

The algorithm will stop if it encounters a conflicting page already in the pagecache and leave a smaller expansion than requested.

The caller must check for this by examining the revised ractl object for a different expansion than was requested.

void delete_from_page_cache(struct page *page)

delete page from page cache

Parameters

struct page *page

the page which the kernel is trying to remove from page cache

Description

This must be called only on pages that have been verified to be in the page cache and locked. It will never put the page into the free list, the caller has a reference on the page.

int filemap_flush(struct address_space *mapping)

mostly a non-blocking flush

Parameters

struct address_space *mapping

target address_space

Description

This is a mostly non-blocking flush. Not suitable for data-integrity purposes - I/O may not be started against all dirty pages.

Return

0 on success, negative error code otherwise.

bool filemap_range_has_page(struct address_space *mapping, loff_t start_byte, loff_t end_byte)

check if a page exists in range.

Parameters

struct address_space *mapping

address space within which to check

loff_t start_byte

offset in bytes where the range starts

loff_t end_byte

offset in bytes where the range ends (inclusive)

Description

Find at least one page in the range supplied, usually used to check if direct writing in this range will trigger a writeback.

Return

true if at least one page exists in the specified range, false otherwise.

int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, loff_t end_byte)

wait for writeback to complete

Parameters

struct address_space *mapping

address space structure to wait for

loff_t start_byte

offset in bytes where the range starts

loff_t end_byte

offset in bytes where the range ends (inclusive)

Description

Walk the list of under-writeback pages of the given address space in the given range and wait for all of them. Check error status of the address space and return it.

Since the error status of the address space is cleared by this function, callers are responsible for checking the return value and handling and/or reporting the error.

Return

error status of the address space.

int filemap_fdatawait_range_keep_errors(struct address_space *mapping, loff_t start_byte, loff_t end_byte)

wait for writeback to complete

Parameters

struct address_space *mapping

address space structure to wait for

loff_t start_byte

offset in bytes where the range starts

loff_t end_byte

offset in bytes where the range ends (inclusive)

Description

Walk the list of under-writeback pages of the given address space in the given range and wait for all of them. Unlike filemap_fdatawait_range(), this function does not clear error status of the address space.

Use this function if callers don’t handle errors themselves. Expected call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), fsfreeze(8)

int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)

wait for writeback to complete

Parameters

struct file *file

file pointing to address space structure to wait for

loff_t start_byte

offset in bytes where the range starts

loff_t end_byte

offset in bytes where the range ends (inclusive)

Description

Walk the list of under-writeback pages of the address space that file refers to, in the given range and wait for all of them. Check error status of the address space vs. the file->f_wb_err cursor and return it.

Since the error status of the file is advanced by this function, callers are responsible for checking the return value and handling and/or reporting the error.

Return

error status of the address space vs. the file->f_wb_err cursor.

int filemap_fdatawait_keep_errors(struct address_space *mapping)

wait for writeback without clearing errors

Parameters

struct address_space *mapping

address space structure to wait for

Description

Walk the list of under-writeback pages of the given address space and wait for all of them. Unlike filemap_fdatawait(), this function does not clear error status of the address space.

Use this function if callers don’t handle errors themselves. Expected call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), fsfreeze(8)

Return

error status of the address space.

bool filemap_range_needs_writeback(struct address_space *mapping, loff_t start_byte, loff_t end_byte)

check if range potentially needs writeback

Parameters

struct address_space *mapping

address space within which to check

loff_t start_byte

offset in bytes where the range starts

loff_t end_byte

offset in bytes where the range ends (inclusive)

Description

Find at least one page in the range supplied, usually used to check if direct writing in this range will trigger a writeback. Used by O_DIRECT read/write with IOCB_NOWAIT, to see if the caller needs to do filemap_write_and_wait_range() before proceeding.

Return

true if the caller should do filemap_write_and_wait_range() before doing O_DIRECT to a page in this range, false otherwise.

int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend)

write out & wait on a file range

Parameters

struct address_space *mapping

the address_space for the pages

loff_t lstart

offset in bytes where the range starts

loff_t lend

offset in bytes where the range ends (inclusive)

Description

Write out and wait upon file offsets lstart->lend, inclusive.

Note that lend is inclusive (describes the last byte to be written) so that this function can be used to write to the very end-of-file (end = -1).

Return

error status of the address space.

int file_check_and_advance_wb_err(struct file *file)

report wb error (if any) that was previously and advance wb_err to current one

Parameters

struct file *file

struct file on which the error is being reported

Description

When userland calls fsync (or something like nfsd does the equivalent), we want to report any writeback errors that occurred since the last fsync (or since the file was opened if there haven’t been any).

Grab the wb_err from the mapping. If it matches what we have in the file, then just quickly return 0. The file is all caught up.

If it doesn’t match, then take the mapping value, set the “seen” flag in it and try to swap it into place. If it works, or another task beat us to it with the new value, then update the f_wb_err and return the error portion. The error at this point must be reported via proper channels (a’la fsync, or NFS COMMIT operation, etc.).

While we handle mapping->wb_err with atomic operations, the f_wb_err value is protected by the f_lock since we must ensure that it reflects the latest value swapped in for this file descriptor.

Return

0 on success, negative error code otherwise.

int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)

write out & wait on a file range

Parameters

struct file *file

file pointing to address_space with pages

loff_t lstart

offset in bytes where the range starts

loff_t lend

offset in bytes where the range ends (inclusive)

Description

Write out and wait upon file offsets lstart->lend, inclusive.

Note that lend is inclusive (describes the last byte to be written) so that this function can be used to write to the very end-of-file (end = -1).

After writing out and waiting on the data, we check and advance the f_wb_err cursor to the latest value, and return any errors detected there.

Return

0 on success, negative error code otherwise.

void replace_page_cache_page(struct page *old, struct page *new)

replace a pagecache page with a new one

Parameters

struct page *old

page to be replaced

struct page *new

page to replace with

Description

This function replaces a page in the pagecache with a new one. On success it acquires the pagecache reference for the new page and drops it for the old page. Both the old and new pages must be locked. This function does not add the new page to the LRU, the caller must do that.

The remove + add is atomic. This function cannot fail.

int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)

add a locked page to the pagecache

Parameters

struct page *page

page to add

struct address_space *mapping

the page’s address_space

pgoff_t offset

page index

gfp_t gfp_mask

page allocation mode

Description

This function is used to add a page to the pagecache. It must be locked. This function does not add the page to the LRU. The caller must do that.

Return

0 on success, negative error code otherwise.

void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)

Add an arbitrary waiter to a page’s wait queue

Parameters

struct page *page

Page defining the wait queue of interest

wait_queue_entry_t *waiter

Waiter to add to the queue

Description

Add an arbitrary waiter to the wait queue for the nominated page.

void unlock_page(struct page *page)

unlock a locked page

Parameters

struct page *page

the page

Description

Unlocks the page and wakes up sleepers in wait_on_page_locked(). Also wakes sleepers in wait_on_page_writeback() because the wakeup mechanism between PageLocked pages and PageWriteback pages is shared. But that’s OK - sleepers in wait_on_page_writeback() just go back to sleep.

Note that this depends on PG_waiters being the sign bit in the byte that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to clear the PG_locked bit and test PG_waiters at the same time fairly portably (architectures that do LL/SC can test any bit, while x86 can test the sign bit).

void end_page_private_2(struct page *page)

Clear PG_private_2 and release any waiters

Parameters

struct page *page

The page

Description

Clear the PG_private_2 bit on a page and wake up any sleepers waiting for this. The page ref held for PG_private_2 being set is released.

This is, for example, used when a netfs page is being written to a local disk cache, thereby allowing writes to the cache for the same page to be serialised.

void wait_on_page_private_2(struct page *page)

Wait for PG_private_2 to be cleared on a page

Parameters

struct page *page

The page to wait on

Description

Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.

int wait_on_page_private_2_killable(struct page *page)

Wait for PG_private_2 to be cleared on a page

Parameters

struct page *page

The page to wait on

Description

Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a fatal signal is received by the calling task.

Return

  • 0 if successful.

  • -EINTR if a fatal signal was encountered.

void end_page_writeback(struct page *page)

end writeback against a page

Parameters

struct page *page

the page

void __lock_page(struct page *__page)

get a lock on the page, assuming we need to sleep to get it

Parameters

struct page *__page

the page to lock

pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan)

Find the next gap in the page cache.

Parameters

struct address_space *mapping

Mapping.

pgoff_t index

Index.

unsigned long max_scan

Maximum range to search.

Description

Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the gap with the lowest index.

This function may be called under the rcu_read_lock. However, this will not atomically search a snapshot of the cache at a single point in time. For example, if a gap is created at index 5, then subsequently a gap is created at index 10, page_cache_next_miss covering both indices may return 10 if called under the rcu_read_lock.

Return

The index of the gap if found, otherwise an index outside the range specified (in which case ‘return - index >= max_scan’ will be true). In the rare case of index wrap-around, 0 will be returned.

pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan)

Find the previous gap in the page cache.

Parameters

struct address_space *mapping

Mapping.

pgoff_t index

Index.

unsigned long max_scan

Maximum range to search.

Description

Search the range [max(index - max_scan + 1, 0), index] for the gap with the highest index.

This function may be called under the rcu_read_lock. However, this will not atomically search a snapshot of the cache at a single point in time. For example, if a gap is created at index 10, then subsequently a gap is created at index 5, page_cache_prev_miss() covering both indices may return 5 if called under the rcu_read_lock.

Return

The index of the gap if found, otherwise an index outside the range specified (in which case ‘index - return >= max_scan’ will be true). In the rare case of wrap-around, ULONG_MAX will be returned.

struct page * pagecache_get_page(struct address_space *mapping, pgoff_t index, int fgp_flags, gfp_t gfp_mask)

Find and get a reference to a page.

Parameters

struct address_space *mapping

The address_space to search.

pgoff_t index

The page index.

int fgp_flags

FGP flags modify how the page is returned.

gfp_t gfp_mask

Memory allocation flags to use if FGP_CREAT is specified.

Description

Looks up the page cache entry at mapping & index.

fgp_flags can be zero or more of these flags:

  • FGP_ACCESSED - The page will be marked accessed.

  • FGP_LOCK - The page is returned locked.

  • FGP_HEAD - If the page is present and a THP, return the head page rather than the exact page specified by the index.

  • FGP_ENTRY - If there is a shadow / swap / DAX entry, return it instead of allocating a new page to replace it.

  • FGP_CREAT - If no page is present then a new page is allocated using gfp_mask and added to the page cache and the VM’s LRU list. The page is returned locked and with an increased refcount.

  • FGP_FOR_MMAP - The caller wants to do its own locking dance if the page is already in cache. If the page was allocated, unlock it before returning so the caller can do the same dance.

  • FGP_WRITE - The page will be written

  • FGP_NOFS - __GFP_FS will get cleared in gfp mask

  • FGP_NOWAIT - Don’t get blocked by page lock

If FGP_LOCK or FGP_CREAT are specified then the function may sleep even if the GFP flags specified for FGP_CREAT are atomic.

If there is a page cache page, it is returned with an increased refcount.

Return

The found page or NULL otherwise.

unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, unsigned int nr_pages, struct page **pages)

gang contiguous pagecache lookup

Parameters

struct address_space *mapping

The address_space to search

pgoff_t index

The starting page index

unsigned int nr_pages

The maximum number of pages

struct page **pages

Where the resulting pages are placed

Description

find_get_pages_contig() works exactly like find_get_pages(), except that the returned number of pages are guaranteed to be contiguous.

Return

the number of pages which were found.

unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages)

Find and return head pages matching tag.

Parameters

struct address_space *mapping

the address_space to search

pgoff_t *index

the starting page index

pgoff_t end

The final page index (inclusive)

xa_mark_t tag

the tag index

unsigned int nr_pages

the maximum number of pages

struct page **pages

where the resulting pages are placed

Description

Like find_get_pages(), except we only return head pages which are tagged with tag. index is updated to the index immediately after the last page we return, ready for the next iteration.

Return

the number of pages which were found.

ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, ssize_t already_read)

Read data from the page cache.

Parameters

struct kiocb *iocb

The iocb to read.

struct iov_iter *iter

Destination for the data.

ssize_t already_read

Number of bytes already read by the caller.

Description

Copies data from the page cache. If the data is not currently present, uses the readahead and readpage address_space operations to fetch it.

Return

Total number of bytes copied, including those already read by the caller. If an error happens before any bytes are copied, returns a negative error number.

ssize_t generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)

generic filesystem read routine

Parameters

struct kiocb *iocb

kernel I/O control block

struct iov_iter *iter

destination for the data read

Description

This is the “read_iter()” routine for all filesystems that can use the page cache directly.

The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be returned when no data can be read without waiting for I/O requests to complete; it doesn’t prevent readahead.

The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests shall be made for the read or for readahead. When no data can be read, -EAGAIN shall be returned. When readahead would be triggered, a partial, possibly empty read shall be returned.

Return

  • number of bytes copied, even for partial reads

  • negative error code (or 0 if IOCB_NOIO) if nothing was read

vm_fault_t filemap_fault(struct vm_fault *vmf)

read in file data for page fault handling

Parameters

struct vm_fault *vmf

struct vm_fault containing details of the fault

Description

filemap_fault() is invoked via the vma operations vector for a mapped memory region to read in file data during a page fault.

The goto’s are kind of ugly, but this streamlines the normal case of having it in the page cache, and handles the special cases reasonably without having a lot of duplicated code.

vma->vm_mm->mmap_lock must be held on entry.

If our return value has VM_FAULT_RETRY set, it’s because the mmap_lock may be dropped before doing I/O or by lock_page_maybe_drop_mmap().

If our return value does not have VM_FAULT_RETRY set, the mmap_lock has not been released.

We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.

Return

bitwise-OR of VM_FAULT_ codes.

struct page * read_cache_page(struct address_space *mapping, pgoff_t index, int (*filler)(void *, struct page *), void *data)

read into page cache, fill it if needed

Parameters

struct address_space *mapping

the page’s address_space

pgoff_t index

the page index

int (*filler)(void *, struct page *)

function to perform the read

void *data

first arg to filler(data, page) function, often left as NULL

Description

Read into the page cache. If a page already exists, and PageUptodate() is not set, try to fill the page and wait for it to become unlocked.

If the page does not get brought uptodate, return -EIO.

Return

up to date page on success, ERR_PTR() on failure.

struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp)

read into page cache, using specified page allocation flags.

Parameters

struct address_space *mapping

the page’s address_space

pgoff_t index

the page index

gfp_t gfp

the page allocator flags to use if allocating

Description

This is the same as “read_mapping_page(mapping, index, NULL)”, but with any new page allocations done using the specified allocation flags.

If the page does not get brought uptodate, return -EIO.

Return

up to date page on success, ERR_PTR() on failure.

ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)

write data to a file

Parameters

struct kiocb *iocb

IO state structure (file, offset, etc.)

struct iov_iter *from

iov_iter with data to write

Description

This function does all the work needed for actually writing data to a file. It does all basic checks, removes SUID from the file, updates modification times and calls proper subroutines depending on whether we do direct IO or a standard buffered write.

It expects i_mutex to be grabbed unless we work on a block device or similar object which does not need locking at all.

This function does not take care of syncing data in case of O_SYNC write. A caller has to handle it. This is mainly due to the fact that we want to avoid syncing under i_mutex.

Return

  • number of bytes written, even for truncated writes

  • negative error code if no data has been written at all

ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)

write data to a file

Parameters

struct kiocb *iocb

IO state structure

struct iov_iter *from

iov_iter with data to write

Description

This is a wrapper around __generic_file_write_iter() to be used by most filesystems. It takes care of syncing the file in case of O_SYNC file and acquires i_mutex as needed.

Return

  • negative error code if no data has been written at all of vfs_fsync_range() failed for a synchronous write

  • number of bytes written, even for truncated writes

int try_to_release_page(struct page *page, gfp_t gfp_mask)

release old fs-specific metadata on a page

Parameters

struct page *page

the page which the kernel is trying to free

gfp_t gfp_mask

memory allocation flags (and I/O mode)

Description

The address_space is to try to release any data against the page (presumably at page->private).

This may also be called if PG_fscache is set on a page, indicating that the page is known to the local caching routines.

The gfp_mask argument specifies whether I/O may be performed to release this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).

Return

1 if the release was successful, otherwise return zero.

void balance_dirty_pages_ratelimited(struct address_space *mapping)

balance dirty memory state

Parameters

struct address_space *mapping

address_space which was dirtied

Description

Processes which are dirtying memory should call in here once for each page which was newly dirtied. The function will periodically check the system’s dirty state and will initiate writeback if needed.

On really big machines, get_writeback_state is expensive, so try to avoid calling it too often (ratelimiting). But once we’re over the dirty memory limit we decrease the ratelimiting by a lot, to prevent individual processes from overshooting the limit by (ratelimit_pages) each.

void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end)

tag pages to be written by write_cache_pages

Parameters

struct address_space *mapping

address space structure to write

pgoff_t start

starting page index

pgoff_t end

ending page index (inclusive)

Description

This function scans the page range from start to end (inclusive) and tags all pages that have DIRTY tag set with a special TOWRITE tag. The idea is that write_cache_pages (or whoever calls this function) will then use TOWRITE tag to identify pages eligible for writeback. This mechanism is used to avoid livelocking of writeback by a process steadily creating new dirty pages in the file (thus it is important for this function to be quick so that it can tag pages faster than a dirtying process can create them).

int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data)

walk the list of dirty pages of the given address space and write all of them.

Parameters

struct address_space *mapping

address space structure to write

struct writeback_control *wbc

subtract the number of written pages from *wbc->nr_to_write

writepage_t writepage

function called for each page

void *data

data passed to writepage function

Description

If a page is already under I/O, write_cache_pages() skips it, even if it’s dirty. This is desirable behaviour for memory-cleaning writeback, but it is INCORRECT for data-integrity system calls such as fsync(). fsync() and msync() need to guarantee that all the data which was dirty at the time the call was made get new I/O started against them. If wbc->sync_mode is WB_SYNC_ALL then we were called for data integrity and we must wait for existing IO to complete.

To avoid livelocks (when other process dirties new pages), we first tag pages which should be written back with TOWRITE tag and only then start writing them. For data-integrity sync we have to be careful so that we do not miss some pages (e.g., because some other process has cleared TOWRITE tag we set). The rule we follow is that TOWRITE tag can be cleared only by the process clearing the DIRTY tag (and submitting the page for IO).

To avoid deadlocks between range_cyclic writeback and callers that hold pages in PageWriteback to aggregate IO until write_cache_pages() returns, we do not loop back to the start of the file. Doing so causes a page lock/page writeback access order inversion - we should only ever lock multiple pages in ascending page->index order, and looping back to the start of the file violates that rule and causes deadlocks.

Return

0 on success, negative error code otherwise

int generic_writepages(struct address_space *mapping, struct writeback_control *wbc)

walk the list of dirty pages of the given address space and writepage() all of them.

Parameters

struct address_space *mapping

address space structure to write

struct writeback_control *wbc

subtract the number of written pages from *wbc->nr_to_write

Description

This is a library function, which implements the writepages() address_space_operation.

Return

0 on success, negative error code otherwise

int write_one_page(struct page *page)

write out a single page and wait on I/O

Parameters

struct page *page

the page to write

Description

The page must be locked by the caller and will be unlocked upon return.

Note that the mapping’s AS_EIO/AS_ENOSPC flags will be cleared when this function returns.

Return

0 on success, negative error code otherwise

void wait_for_stable_page(struct page *page)

wait for writeback to finish, if necessary.

Parameters

struct page *page

The page to wait on.

Description

This function determines if the given page is related to a backing device that requires page contents to be held stable during writeback. If so, then it will wait for any pending writeback to complete.

void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, loff_t lend)

truncate range of pages specified by start & end byte offsets

Parameters

struct address_space *mapping

mapping to truncate

loff_t lstart

offset from which to truncate

loff_t lend

offset to which to truncate (inclusive)

Description

Truncate the page cache, removing the pages that are between specified offsets (and zeroing out partial pages if lstart or lend + 1 is not page aligned).

Truncate takes two passes - the first pass is nonblocking. It will not block on page locks and it will not block on writeback. The second pass will wait. This is to prevent as much IO as possible in the affected region. The first pass will remove most pages, so the search cost of the second pass is low.

We pass down the cache-hot hint to the page freeing code. Even if the mapping is large, it is probably the case that the final pages are the most recently touched, and freeing happens in ascending file offset order.

Note that since ->invalidatepage() accepts range to invalidate truncate_inode_pages_range is able to handle cases where lend + 1 is not page aligned properly.

void truncate_inode_pages(struct address_space *mapping, loff_t lstart)

truncate all the pages from an offset

Parameters

struct address_space *mapping

mapping to truncate

loff_t lstart

offset from which to truncate

Description

Called under (and serialised by) inode->i_mutex.

Note

When this function returns, there can be a page in the process of deletion (inside __delete_from_page_cache()) in the specified range. Thus mapping->nrpages can be non-zero when this function returns even after truncation of the whole mapping.

void truncate_inode_pages_final(struct address_space *mapping)

truncate all pages before inode dies

Parameters

struct address_space *mapping

mapping to truncate

Description

Called under (and serialized by) inode->i_mutex.

Filesystems have to use this in the .evict_inode path to inform the VM that this is the final truncate and the inode is going away.

unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end)

Invalidate all the unlocked pages of one inode

Parameters

struct address_space *mapping

the address_space which holds the pages to invalidate

pgoff_t start

the offset ‘from’ which to invalidate

pgoff_t end

the offset ‘to’ which to invalidate (inclusive)

Description

This function only removes the unlocked pages, if you want to remove all the pages of one inode, you must call truncate_inode_pages.

invalidate_mapping_pages() will not block on IO activity. It will not invalidate pages which are dirty, locked, under writeback or mapped into pagetables.

Return

the number of the pages that were invalidated

int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end)

remove range of pages from an address_space

Parameters

struct address_space *mapping

the address_space

pgoff_t start

the page offset ‘from’ which to invalidate

pgoff_t end

the page offset ‘to’ which to invalidate (inclusive)

Description

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Return

-EBUSY if any pages could not be invalidated.

int invalidate_inode_pages2(struct address_space *mapping)

remove all pages from an address_space

Parameters

struct address_space *mapping

the address_space

Description

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Return

-EBUSY if any pages could not be invalidated.

void truncate_pagecache(struct inode *inode, loff_t newsize)

unmap and remove pagecache that has been truncated

Parameters

struct inode *inode

inode

loff_t newsize

new file size

Description

inode’s new i_size must already be written before truncate_pagecache is called.

This function should typically be called before the filesystem releases resources associated with the freed range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk format, and the filesystem would not have to deal with situations such as writepage being called for a page that has already had its underlying blocks deallocated.

void truncate_setsize(struct inode *inode, loff_t newsize)

update inode and pagecache for a new file size

Parameters

struct inode *inode

inode

loff_t newsize

new file size

Description

truncate_setsize updates i_size and performs pagecache truncation (if necessary) to newsize. It will be typically be called from the filesystem’s setattr function when ATTR_SIZE is passed in.

Must be called with a lock serializing truncates and writes (generally i_mutex but e.g. xfs uses a different lock) and before all filesystem specific block truncation has been performed.

void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)

update pagecache after extension of i_size

Parameters

struct inode *inode

inode for which i_size was extended

loff_t from

original inode size

loff_t to

new inode size

Description

Handle extension of inode size either caused by extending truncate or by write starting after current i_size. We mark the page straddling current i_size RO so that page_mkwrite() is called on the nearest write access to the page. This way filesystem can be sure that page_mkwrite() is called on the page before user writes to the page via mmap after the i_size has been changed.

The function must be called after i_size is updated so that page fault coming after we unlock the page will already see the new i_size. The function must be called while we still hold i_mutex - this not only makes sure i_size is stable but also that userspace cannot observe new i_size value before we are prepared to store mmap writes at new inode size.

void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)

unmap and remove pagecache that is hole-punched

Parameters

struct inode *inode

inode

loff_t lstart

offset of beginning of hole

loff_t lend

offset of last byte of hole

Description

This function should typically be called before the filesystem releases resources associated with the freed range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk format, and the filesystem would not have to deal with situations such as writepage being called for a page that has already had its underlying blocks deallocated.

void mapping_set_error(struct address_space *mapping, int error)

record a writeback error in the address_space

Parameters

struct address_space *mapping

the mapping in which an error should be set

int error

the error to set in the mapping

Description

When writeback fails in some way, we must record that error so that userspace can be informed when fsync and the like are called. We endeavor to report errors on any file that was open at the time of the error. Some internal callers also need to know when writeback errors have occurred.

When a writeback error occurs, most filesystems will want to call mapping_set_error to record the error in the mapping so that it can be reported when the application calls fsync(2).

void attach_page_private(struct page *page, void *data)

Attach private data to a page.

Parameters

struct page *page

Page to attach data to.

void *data

Data to attach to page.

Description

Attaching private data to a page increments the page’s reference count. The data must be detached before the page will be freed.

void * detach_page_private(struct page *page)

Detach private data from a page.

Parameters

struct page *page

Page to detach data from.

Description

Removes the data that was previously attached to the page and decrements the refcount on the page.

Return

Data that was attached to the page.

struct page * find_get_page(struct address_space *mapping, pgoff_t offset)

find and get a page reference

Parameters

struct address_space *mapping

the address_space to search

pgoff_t offset

the page index

Description

Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned with an increased refcount.

Otherwise, NULL is returned.

struct page * find_lock_page(struct address_space *mapping, pgoff_t index)

locate, pin and lock a pagecache page

Parameters

struct address_space *mapping

the address_space to search

pgoff_t index

the page index

Description

Looks up the page cache entry at mapping & index. If there is a page cache page, it is returned locked and with an increased refcount.

Context

May sleep.

Return

A struct page or NULL if there is no page in the cache for this index.

struct page * find_lock_head(struct address_space *mapping, pgoff_t index)

Locate, pin and lock a pagecache page.

Parameters

struct address_space *mapping

The address_space to search.

pgoff_t index

The page index.

Description

Looks up the page cache entry at mapping & index. If there is a page cache page, its head page is returned locked and with an increased refcount.

Context

May sleep.

Return

A struct page which is !PageTail, or NULL if there is no page in the cache for this index.

struct page * find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask)

locate or add a pagecache page

Parameters

struct address_space *mapping

the page’s address_space

pgoff_t index

the page’s index into the mapping

gfp_t gfp_mask

page allocation mode

Description

Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned locked and with an increased refcount.

If the page is not present, a new page is allocated using gfp_mask and added to the page cache and the VM’s LRU list. The page is returned locked and with an increased refcount.

On memory exhaustion, NULL is returned.

find_or_create_page() may sleep, even if gfp_flags specifies an atomic allocation!

struct page * grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)

returns locked page at given index in given cache

Parameters

struct address_space *mapping

target address_space

pgoff_t index

the page index

Description

Same as grab_cache_page(), but do not wait if the page is unavailable. This is intended for speculative data generators, where the data can be regenerated if the page couldn’t be grabbed. This routine should be safe to call while holding the lock for another page.

Clear __GFP_FS when allocating the page to avoid recursion into the fs and deadlock against the caller’s locked page.

void set_page_private_2(struct page *page)

Set PG_private_2 on a page and take a ref

Parameters

struct page *page

The page.

Description

Set the PG_private_2 flag on a page and take the reference needed for the VM to handle its lifetime correctly. This sets the flag and takes the reference unconditionally, so care must be taken not to set the flag again if it’s already set.

struct readahead_control

Describes a readahead request.

Definition

struct readahead_control {
  struct file *file;
  struct address_space *mapping;
  struct file_ra_state *ra;
};

Members

file

The file, used primarily by network filesystems for authentication. May be NULL if invoked internally by the filesystem.

mapping

Readahead this filesystem object.

ra

File readahead state. May be NULL.

Description

A readahead request is for consecutive pages. Filesystems which implement the ->readahead method should call readahead_page() or readahead_page_batch() in a loop and attempt to start I/O against each page in the request.

Most of the fields in this struct are private and should be accessed by the functions below.

void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count)

generic file readahead

Parameters

struct address_space *mapping

address_space which holds the pagecache and I/O vectors

struct file_ra_state *ra

file_ra_state which holds the readahead state

struct file *file

Used by the filesystem for authentication.

pgoff_t index

Index of first page to be read.

unsigned long req_count

Total number of pages being read by the caller.

Description

page_cache_sync_readahead() should be called when a cache miss happened: it will submit the read. The readahead logic may decide to piggyback more pages onto the read request if access patterns suggest it will improve performance.

void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count)

file readahead for marked pages

Parameters

struct address_space *mapping

address_space which holds the pagecache and I/O vectors

struct file_ra_state *ra

file_ra_state which holds the readahead state

struct file *file

Used by the filesystem for authentication.

struct page *page

The page at index which triggered the readahead call.

pgoff_t index

Index of first page to be read.

unsigned long req_count

Total number of pages being read by the caller.

Description

page_cache_async_readahead() should be called when a page is used which is marked as PageReadahead; this is a marker to suggest that the application has used up enough of the readahead window that we should start pulling in more pages.

struct page * readahead_page(struct readahead_control *rac)

Get the next page to read.

Parameters

struct readahead_control *rac

The current readahead request.

Context

The page is locked and has an elevated refcount. The caller should decreases the refcount once the page has been submitted for I/O and unlock the page once all I/O to that page has completed.

Return

A pointer to the next page, or NULL if we are done.

readahead_page_batch(rac, array)

Get a batch of pages to read.

Parameters

rac

The current readahead request.

array

An array of pointers to struct page.

Context

The pages are locked and have an elevated refcount. The caller should decreases the refcount once the page has been submitted for I/O and unlock the page once all I/O to that page has completed.

Return

The number of pages placed in the array. 0 indicates the request is complete.

loff_t readahead_pos(struct readahead_control *rac)

The byte offset into the file of this readahead request.

Parameters

struct readahead_control *rac

The readahead request.

size_t readahead_length(struct readahead_control *rac)

The number of bytes in this readahead request.

Parameters

struct readahead_control *rac

The readahead request.

pgoff_t readahead_index(struct readahead_control *rac)

The index of the first page in this readahead request.

Parameters

struct readahead_control *rac

The readahead request.

unsigned int readahead_count(struct readahead_control *rac)

The number of pages in this readahead request.

Parameters

struct readahead_control *rac

The readahead request.

size_t readahead_batch_length(struct readahead_control *rac)

The number of bytes in the current batch.

Parameters

struct readahead_control *rac

The readahead request.

int page_mkwrite_check_truncate(struct page *page, struct inode *inode)

check if page was truncated

Parameters

struct page *page

the page to check

struct inode *inode

the inode to check the page against

Description

Returns the number of bytes in the page up to EOF, or -EFAULT if the page was truncated.

unsigned int i_blocks_per_page(struct inode *inode, struct page *page)

How many blocks fit in this page.

Parameters

struct inode *inode

The inode which contains the blocks.

struct page *page

The page (head page if the page is a THP).

Description

If the block size is larger than the size of this page, return zero.

Context

The caller should hold a refcount on the page to prevent it from being split.

Return

The number of filesystem blocks covered by this page.

Memory pools

void mempool_exit(mempool_t *pool)

exit a mempool initialized with mempool_init()

Parameters

mempool_t *pool

pointer to the memory pool which was initialized with mempool_init().

Description

Free all reserved elements in pool and pool itself. This function only sleeps if the free_fn() function sleeps.

May be called on a zeroed but uninitialized mempool (i.e. allocated with kzalloc()).

void mempool_destroy(mempool_t *pool)

deallocate a memory pool

Parameters

mempool_t *pool

pointer to the memory pool which was allocated via mempool_create().

Description

Free all reserved elements in pool and pool itself. This function only sleeps if the free_fn() function sleeps.

int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data)

initialize a memory pool

Parameters

mempool_t *pool

pointer to the memory pool that should be initialized

int min_nr

the minimum number of elements guaranteed to be allocated for this pool.

mempool_alloc_t *alloc_fn

user-defined element-allocation function.

mempool_free_t *free_fn

user-defined element-freeing function.

void *pool_data

optional private data available to the user-defined functions.

Description

Like mempool_create(), but initializes the pool in (i.e. embedded in another structure).

Return

0 on success, negative error code otherwise.

mempool_t * mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data)

create a memory pool

Parameters

int min_nr

the minimum number of elements guaranteed to be allocated for this pool.

mempool_alloc_t *alloc_fn

user-defined element-allocation function.

mempool_free_t *free_fn

user-defined element-freeing function.

void *pool_data

optional private data available to the user-defined functions.

Description

this function creates and allocates a guaranteed size, preallocated memory pool. The pool can be used from the mempool_alloc() and mempool_free() functions. This function might sleep. Both the alloc_fn() and the free_fn() functions might sleep - as long as the mempool_alloc() function is not called from IRQ contexts.

Return

pointer to the created memory pool object or NULL on error.

int mempool_resize(mempool_t *pool, int new_min_nr)

resize an existing memory pool

Parameters

mempool_t *pool

pointer to the memory pool which was allocated via mempool_create().

int new_min_nr

the new minimum number of elements guaranteed to be allocated for this pool.

Description

This function shrinks/grows the pool. In the case of growing, it cannot be guaranteed that the pool will be grown to the new size immediately, but new mempool_free() calls will refill it. This function may sleep.

Note, the caller must guarantee that no mempool_destroy is called while this function is running. mempool_alloc() & mempool_free() might be called (eg. from IRQ contexts) while this function executes.

Return

0 on success, negative error code otherwise.

void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)

allocate an element from a specific memory pool

Parameters

mempool_t *pool

pointer to the memory pool which was allocated via mempool_create().

gfp_t gfp_mask

the usual allocation bitmask.

Description

this function only sleeps if the alloc_fn() function sleeps or returns NULL. Note that due to preallocation, this function never fails when called from process contexts. (it might fail if called from an IRQ context.)

Note

using __GFP_ZERO is not supported.

Return

pointer to the allocated element or NULL on error.

void mempool_free(void *element, mempool_t *pool)

return an element to the pool.

Parameters

void *element

pool element pointer.

mempool_t *pool

pointer to the memory pool which was allocated via mempool_create().

Description

this function only sleeps if the free_fn() function sleeps.

DMA pools

struct dma_pool * dma_pool_create(const char *name, struct device *dev, size_t size, size_t align, size_t boundary)

Creates a pool of consistent memory blocks, for dma.

Parameters

const char *name

name of pool, for diagnostics

struct device *dev

device that will be doing the DMA

size_t size

size of the blocks in this pool.

size_t align

alignment requirement for blocks; must be a power of two

size_t boundary

returned blocks won’t cross this power of two boundary

Context

not in_interrupt()

Description

Given one of these pools, dma_pool_alloc() may be used to allocate memory. Such memory will all have “consistent” DMA mappings, accessible by the device and its driver without using cache flushing primitives. The actual size of blocks allocated may be larger than requested because of alignment.

If boundary is nonzero, objects returned from dma_pool_alloc() won’t cross that size boundary. This is useful for devices which have addressing restrictions on individual DMA transfers, such as not crossing boundaries of 4KBytes.

Return

a dma allocation pool with the requested characteristics, or NULL if one can’t be created.

void dma_pool_destroy(struct dma_pool *pool)

destroys a pool of dma memory blocks.

Parameters

struct dma_pool *pool

dma pool that will be destroyed

Context

!in_interrupt()

Description

Caller guarantees that no more memory from the pool is in use, and that nothing will try to use the pool after this call.

void * dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle)

get a block of consistent memory

Parameters

struct dma_pool *pool

dma pool that will produce the block

gfp_t mem_flags

GFP_* bitmask

dma_addr_t *handle

pointer to dma address of block

Return

the kernel virtual address of a currently unused block, and reports its dma address through the handle. If such a memory block can’t be allocated, NULL is returned.

void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)

put block back into dma pool

Parameters

struct dma_pool *pool

the dma pool holding the block

void *vaddr

virtual address of block

dma_addr_t dma

dma address of block

Description

Caller promises neither device nor driver will again touch this block unless it is first re-allocated.

struct dma_pool * dmam_pool_create(const char *name, struct device *dev, size_t size, size_t align, size_t allocation)

Managed dma_pool_create()

Parameters

const char *name

name of pool, for diagnostics

struct device *dev

device that will be doing the DMA

size_t size

size of the blocks in this pool.

size_t align

alignment requirement for blocks; must be a power of two

size_t allocation

returned blocks won’t cross this boundary (or zero)

Description

Managed dma_pool_create(). DMA pool created with this function is automatically destroyed on driver detach.

Return

a managed dma allocation pool with the requested characteristics, or NULL if one can’t be created.

void dmam_pool_destroy(struct dma_pool *pool)

Managed dma_pool_destroy()

Parameters

struct dma_pool *pool

dma pool that will be destroyed

Description

Managed dma_pool_destroy().

More Memory Management Functions

void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size)

remove ptes mapping the vma

Parameters

struct vm_area_struct *vma

vm_area_struct holding ptes to be zapped

unsigned long address

starting address of pages to zap

unsigned long size

number of bytes to zap

Description

This function only unmaps ptes assigned to VM_PFNMAP vmas.

The entire address range must be fully contained within the vma.

int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num)

insert multiple pages into user vma, batching the pmd lock.

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target start user address of these pages

struct page **pages

source kernel pages

unsigned long *num

in: number of pages to map. out: number of pages that were not mapped. (0 means all pages were successfully mapped).

Description

Preferred over vm_insert_page() when inserting multiple pages.

In case of error, we may have mapped a subset of the provided pages. It is the caller’s responsibility to account for this case.

The same restrictions apply as in vm_insert_page().

int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)

insert single page into user vma

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target user address of this page

struct page *page

source kernel page

Description

This allows drivers to insert individual pages they’ve allocated into a user vma.

The page has to be a nice clean _individual_ kernel allocation. If you allocate a compound page, you need to have marked it as such (__GFP_COMP), or manually just split the page up yourself (see split_page()).

NOTE! Traditionally this was done with “remap_pfn_range()” which took an arbitrary page protection parameter. This doesn’t allow that. Your vma protection will have to be set up correctly, which means that if you want a shared writable mapping, you’d better ask for a shared writable mapping!

The page does not need to be reserved.

Usually this function is called from f_op->mmap() handler under mm->mmap_lock write-lock, so it can change vma->vm_flags. Caller must set VM_MIXEDMAP on vma if it wants to call this function from other places, for example from page-fault handler.

Return

0 on success, negative error code otherwise.

int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num)

maps range of kernel pages starts with non zero offset

Parameters

struct vm_area_struct *vma

user vma to map to

struct page **pages

pointer to array of source kernel pages

unsigned long num

number of pages in page array

Description

Maps an object consisting of num pages, catering for the user’s requested vm_pgoff

If we fail to insert any page into the vma, the function will return immediately leaving any previously inserted pages present. Callers from the mmap handler may immediately return the error as their caller will destroy the vma, removing any successfully inserted pages. Other callers should make their own arrangements for calling unmap_region().

Context

Process context. Called by mmap handlers.

Return

0 on success and error code otherwise.

int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num)

map range of kernel pages starts with zero offset

Parameters

struct vm_area_struct *vma

user vma to map to

struct page **pages

pointer to array of source kernel pages

unsigned long num

number of pages in page array

Description

Similar to vm_map_pages(), except that it explicitly sets the offset to 0. This function is intended for the drivers that did not consider vm_pgoff.

Context

Process context. Called by mmap handlers.

Return

0 on success and error code otherwise.

vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot)

insert single pfn into user vma with specified pgprot

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target user address of this page

unsigned long pfn

source kernel pfn

pgprot_t pgprot

pgprot flags for the inserted page

Description

This is exactly like vmf_insert_pfn(), except that it allows drivers to override pgprot on a per-page basis.

This only makes sense for IO mappings, and it makes no sense for COW mappings. In general, using multiple vmas is preferable; vmf_insert_pfn_prot should only be used if using multiple VMAs is impractical.

See vmf_insert_mixed_prot() for a discussion of the implication of using a value of pgprot different from that of vma->vm_page_prot.

Context

Process context. May allocate using GFP_KERNEL.

Return

vm_fault_t value.

vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)

insert single pfn into user vma

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target user address of this page

unsigned long pfn

source kernel pfn

Description

Similar to vm_insert_page, this allows drivers to insert individual pages they’ve allocated into a user vma. Same comments apply.

This function should only be called from a vm_ops->fault handler, and in that case the handler should return the result of this function.

vma cannot be a COW mapping.

As this is called only for pages that do not currently exist, we do not need to flush old virtual caches or the TLB.

Context

Process context. May allocate using GFP_KERNEL.

Return

vm_fault_t value.

vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot)

insert single pfn into user vma with specified pgprot

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target user address of this page

pfn_t pfn

source kernel pfn

pgprot_t pgprot

pgprot flags for the inserted page

Description

This is exactly like vmf_insert_mixed(), except that it allows drivers to override pgprot on a per-page basis.

Typically this function should be used by drivers to set caching- and encryption bits different than those of vma->vm_page_prot, because the caching- or encryption mode may not be known at mmap() time. This is ok as long as vma->vm_page_prot is not used by the core vm to set caching and encryption bits for those vmas (except for COW pages). This is ensured by core vm only modifying these page table entries using functions that don’t touch caching- or encryption bits, using pte_modify() if needed. (See for example mprotect()). Also when new page-table entries are created, this is only done using the fault() callback, and never using the value of vma->vm_page_prot, except for page-table entries that point to anonymous pages as the result of COW.

Context

Process context. May allocate using GFP_KERNEL.

Return

vm_fault_t value.

int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)

remap kernel memory to userspace

Parameters

struct vm_area_struct *vma

user vma to map to

unsigned long addr

target page aligned user address to start at

unsigned long pfn

page frame number of kernel physical memory address

unsigned long size

size of mapping area

pgprot_t prot

page protection flags for this mapping

Note

this is only safe if the mm semaphore is held when called.

Return

0 on success, negative error code otherwise.

int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)

remap memory to userspace

Parameters

struct vm_area_struct *vma

user vma to map to

phys_addr_t start

start of the physical memory to be mapped

unsigned long len

size of area

Description

This is a simplified io_remap_pfn_range() for common driver use. The driver just needs to give us the physical memory range to be mapped, we’ll figure out the rest from the vma information.

NOTE! Some drivers might want to tweak vma->vm_page_prot first to get whatever write-combining details or similar.

Return

0 on success, negative error code otherwise.

void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows)

unmap the portion of all mmaps in the specified address_space corresponding to the specified byte range in the underlying file.

Parameters

struct address_space *mapping

the address space containing mmaps to be unmapped.

loff_t const holebegin

byte in first page to unmap, relative to the start of the underlying file. This will be rounded down to a PAGE_SIZE boundary. Note that this is different from truncate_pagecache(), which must keep the partial page. In contrast, we must get rid of partial pages.

loff_t const holelen

size of prospective hole in bytes. This will be rounded up to a PAGE_SIZE boundary. A holelen of zero truncates to the end of the file.

int even_cows

1 when truncating a file, unmap even private COWed pages; but 0 when invalidating pagecache, don’t throw away private data.

int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp)

look up PTE at a user virtual address

Parameters

struct mm_struct *mm

the mm_struct of the target address space

unsigned long address

user virtual address

pte_t **ptepp

location to store found PTE

spinlock_t **ptlp

location to store the lock for the PTE

Description

On a successful return, the pointer to the PTE is stored in ptepp; the corresponding lock is taken and its location is stored in ptlp. The contents of the PTE are only stable until ptlp is released; any further use, if any, must be protected against invalidation with MMU notifiers.

Only IO mappings and raw PFN mappings are allowed. The mmap semaphore should be taken for read.

KVM uses this function. While it is arguably less bad than follow_pfn, it is not a good general-purpose API.

Return

zero on success, -ve otherwise.

int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn)

look up PFN at a user virtual address

Parameters

struct vm_area_struct *vma

memory mapping

unsigned long address

user virtual address

unsigned long *pfn

location to store found PFN

Description

Only IO mappings and raw PFN mappings are allowed.

This function does not allow the caller to read the permissions of the PTE. Do not use it.

Return

zero and the pfn at pfn on success, -ve otherwise.

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write)

generic implementation for iomem mmap access

Parameters

struct vm_area_struct *vma

the vma to access

unsigned long addr

userspace address, not relative offset within vma

void *buf

buffer to read/write

int len

length of transfer

int write

set to FOLL_WRITE when writing, otherwise reading

Description

This is a generic implementation for vm_operations_struct.access for an iomem mapping. This callback is used by access_process_vm() when the vma is not page based.

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, unsigned long mask)

Return the requested group of flags for the pageblock_nr_pages block of pages

Parameters

struct page *page

The page within the block of interest

unsigned long pfn

The target page frame number

unsigned long mask

mask of bits that the caller is interested in

Return

pageblock_bits flags

void set_pfnblock_flags_mask(struct page *page, unsigned long flags, unsigned long pfn, unsigned long mask)

Set the requested group of flags for a pageblock_nr_pages block of pages

Parameters

struct page *page

The page within the block of interest

unsigned long flags

The flags to set

unsigned long pfn

The target page frame number

unsigned long mask

mask of bits that the caller is interested in

void __putback_isolated_page(struct page *page, unsigned int order, int mt)

Return a now-isolated page back where we got it

Parameters

struct page *page

Page that was isolated

unsigned int order

Order of the isolated page

int mt

The page’s pageblock’s migratetype

Description

This function is meant to return a page pulled from the free lists via __isolate_free_page back to the free lists they were pulled from.

void __free_pages(struct page *page, unsigned int order)

Free pages allocated with alloc_pages().

Parameters

struct page *page

The page pointer returned from alloc_pages().

unsigned int order

The order of the allocation.

Description

This function can free multi-page allocations that are not compound pages. It does not check that the order passed in matches that of the allocation, so it is easy to leak memory. Freeing more memory than was allocated will probably emit a warning.

If the last reference to this page is speculative, it will be released by put_page() which only frees the first page of a non-compound allocation. To prevent the remaining pages from being leaked, we free the subsequent pages here. If you want to use the page’s reference count to decide when to free the allocation, you should allocate a compound page, and use put_page() instead of __free_pages().

Context

May be called in interrupt context or while holding a normal spinlock, but not in NMI context or while holding a raw spinlock.

void * alloc_pages_exact(size_t size, gfp_t gfp_mask)

allocate an exact number physically-contiguous pages.

Parameters

size_t size

the number of bytes to allocate

gfp_t gfp_mask

GFP flags for the allocation, must not contain __GFP_COMP

Description

This function is similar to alloc_pages(), except that it allocates the minimum number of pages to satisfy the request. alloc_pages() can only allocate memory in power-of-two pages.

This function is also limited by MAX_ORDER.

Memory allocated by this function must be released by free_pages_exact().

Return

pointer to the allocated area or NULL in case of error.

void * alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)

allocate an exact number of physically-contiguous pages on a node.

Parameters

int nid

the preferred node ID where memory should be allocated

size_t size

the number of bytes to allocate

gfp_t gfp_mask

GFP flags for the allocation, must not contain __GFP_COMP

Description

Like alloc_pages_exact(), but try to allocate on node nid first before falling back.

Return

pointer to the allocated area or NULL in case of error.

void free_pages_exact(void *virt, size_t size)

release memory allocated via alloc_pages_exact()

Parameters

void *virt

the value returned by alloc_pages_exact.

size_t size

size of allocation, same value as passed to alloc_pages_exact().

Description

Release the memory allocated by a previous call to alloc_pages_exact.

unsigned long nr_free_zone_pages(int offset)

count number of pages beyond high watermark

Parameters

int offset

The zone index of the highest zone

Description

nr_free_zone_pages() counts the number of pages which are beyond the high watermark within all zones at or below a given zone index. For each zone, the number of pages is calculated as:

nr_free_zone_pages = managed_pages - high_pages

Return

number of pages beyond high watermark.

unsigned long nr_free_buffer_pages(void)

count number of pages beyond high watermark

Parameters

void

no arguments

Description

nr_free_buffer_pages() counts the number of pages which are beyond the high watermark within ZONE_DMA and ZONE_NORMAL.

Return

number of pages beyond high watermark within ZONE_DMA and ZONE_NORMAL.

int find_next_best_node(int node, nodemask_t *used_node_mask)

find the next node that should appear in a given node’s fallback list

Parameters

int node

node whose fallback list we’re appending

nodemask_t *used_node_mask

nodemask_t of already used nodes

Description

We use a number of factors to determine which is the next node that should appear on a given node’s fallback list. The node should not have appeared already in node’s fallback list, and it should be the next closest node according to the distance array (which contains arbitrary distance values from each node to each node in the system), and should also prefer nodes with no CPUs, since presumably they’ll have very little allocation pressure on them otherwise.

Return

node id of the found node or NUMA_NO_NODE if no node is found.

void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn)

Return the start and end page frames for a node

Parameters

unsigned int nid

The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.

unsigned long *start_pfn

Passed by reference. On return, it will have the node start_pfn.

unsigned long *end_pfn

Passed by reference. On return, it will have the node end_pfn.

Description

It returns the start and end page frame of a node based on information provided by memblock_set_node(). If called for a node with no available memory, a warning is printed and the start and end PFNs will be 0.

unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn)

Return number of page frames in holes within a range

Parameters

unsigned long start_pfn

The start PFN to start searching for holes

unsigned long end_pfn

The end PFN to stop searching for holes

Return

the number of pages frames in memory holes within a range.

unsigned long node_map_pfn_alignment(void)

determine the maximum internode alignment

Parameters

void

no arguments

Description

This function should be called after node map is populated and sorted. It calculates the maximum power of two alignment which can distinguish all the nodes.

For example, if all nodes are 1GiB and aligned to 1GiB, the return value would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the nodes are shifted by 256MiB, 256MiB. Note that if only the last node is shifted, 1GiB is enough and this function will indicate so.

This is used to test whether pfn -> nid mapping of the chosen memory model has fine enough granularity to avoid incorrect mapping for the populated node map.

Return

the determined alignment in pfn’s. 0 if there is no alignment requirement (single node).

unsigned long find_min_pfn_with_active_regions(void)

Find the minimum PFN registered

Parameters

void

no arguments

Return

the minimum PFN based on information provided via memblock_set_node().

void free_area_init(unsigned long *max_zone_pfn)

Initialise all pg_data_t and zone data

Parameters

unsigned long *max_zone_pfn

an array of max PFNs for each zone

Description

This will call free_area_init_node() for each active node in the system. Using the page ranges provided by memblock_set_node(), the size of each zone in each node and their holes is calculated. If the maximum PFN between two adjacent zones match, it is assumed that the zone is empty. For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed that arch_max_dma32_pfn has no pages. It is also assumed that a zone starts where the previous one ended. For example, ZONE_DMA32 starts at arch_max_dma_pfn.

void set_dma_reserve(unsigned long new_dma_reserve)

set the specified number of pages reserved in the first zone

Parameters

unsigned long new_dma_reserve

The number of pages to mark reserved

Description

The per-cpu batchsize and zone watermarks are determined by managed_pages. In the DMA zone, a significant percentage may be consumed by kernel image and other unfreeable allocations which can skew the watermarks badly. This function may optionally be used to account for unfreeable pages in the first zone (e.g., ZONE_DMA). The effect will be lower watermarks and smaller per-cpu batchsize.

void setup_per_zone_wmarks(void)

called when min_free_kbytes changes or when memory is hot-{added|removed}

Parameters

void

no arguments

Description

Ensures that the watermark[min,low,high] values for each zone are set correctly with respect to min_free_kbytes.

int alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype, gfp_t gfp_mask)
  • tries to allocate given range of pages

Parameters

unsigned long start

start PFN to allocate

unsigned long end

one-past-the-last PFN to allocate

unsigned migratetype

migratetype of the underlying pageblocks (either #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks in range must have the same migratetype and it must be either of the two.

gfp_t gfp_mask

GFP mask to use during compaction

Description

The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES aligned. The PFN range must belong to a single zone.

The first thing this routine does is attempt to MIGRATE_ISOLATE all pageblocks in the range. Once isolated, the pageblocks should not be modified by others.

Return

zero on success or negative error code. On success all pages which PFN is in [start, end) are allocated for the caller and need to be freed with free_contig_range().

struct page * alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, int nid, nodemask_t *nodemask)
  • tries to find and allocate contiguous range of pages

Parameters

unsigned long nr_pages

Number of contiguous pages to allocate

gfp_t gfp_mask

GFP mask to limit search and used during compaction

int nid

Target node

nodemask_t *nodemask

Mask for other possible nodes

Description

This routine is a wrapper around alloc_contig_range(). It scans over zones on an applicable zonelist to find a contiguous pfn range which can then be tried for allocation with alloc_contig_range(). This routine is intended for allocation requests which can not be fulfilled with the buddy allocator.

The allocated memory is always aligned to a page boundary. If nr_pages is a power of two then the alignment is guaranteed to be to the given nr_pages (e.g. 1GB request would be aligned to 1GB).

Allocated pages can be freed with free_contig_range() or by manually calling __free_page() on each allocated page.

Return

pointer to contiguous pages on success, or NULL if not successful.

int numa_map_to_online_node(int node)

Find closest online node

Parameters

int node

Node id to start the search

Description

Lookup the next closest node by distance if nid is not online.

struct page * alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage)

Allocate a page for a VMA.

Parameters

gfp_t gfp

GFP flags.

int order

Order of the GFP allocation.

struct vm_area_struct *vma

Pointer to VMA or NULL if not available.

unsigned long addr

Virtual address of the allocation. Must be inside vma.

int node

Which node to prefer for allocation (modulo policy).

bool hugepage

For hugepages try only the preferred node if possible.

Description

Allocate a page for a specific address in vma, using the appropriate NUMA policy. When vma is not NULL the caller must hold the mmap_lock of the mm_struct of the VMA to prevent it from going away. Should be used for all allocations for pages that will be mapped into user space.

Return

The page on success or NULL if allocation fails.

struct page * alloc_pages(gfp_t gfp, unsigned order)

Allocate pages.

Parameters

gfp_t gfp

GFP flags.

unsigned order

Power of two of number of pages to allocate.

Description

Allocate 1 << order contiguous pages. The physical address of the first page is naturally aligned (eg an order-3 allocation will be aligned to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current process is honoured when in process context.

Context

Can be called from any context, providing the appropriate GFP flags are used.

Return

The page on success or NULL if allocation fails.

int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)

check whether current page node is valid in policy

Parameters

struct page *page

page to be checked

struct vm_area_struct *vma

vm area where page mapped

unsigned long addr

virtual address where page mapped

Description

Lookup current policy node id for vma,addr and “compare to” page’s node id. Policy determination “mimics” alloc_page_vma(). Called from fault path where we know the vma and faulting address.

Return

-1 if the page is in a node that is valid for this policy, or a suitable node ID to allocate a replacement page from.

void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)

initialize shared policy for inode

Parameters

struct shared_policy *sp

pointer to inode shared policy

struct mempolicy *mpol

struct mempolicy to install

Description

Install non-NULL mpol in inode’s shared policy rb-tree. On entry, the current task has a reference on a non-NULL mpol. This must be released on exit. This is called at get_inode() calls and we can use GFP_KERNEL.

int mpol_parse_str(char *str, struct mempolicy **mpol)

parse string to mempolicy, for tmpfs mpol mount option.

Parameters

char *str

string containing mempolicy to parse

struct mempolicy **mpol

pointer to struct mempolicy pointer, returned on success.

Description

Format of input:

<mode>[=<flags>][:<nodelist>]

On success, returns 0, else 1

void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)

format a mempolicy structure for printing

Parameters

char *buffer

to contain formatted mempolicy string

int maxlen

length of buffer

struct mempolicy *pol

pointer to mempolicy to be formatted

Description

Convert pol into a string. If buffer is too short, truncate the string. Recommend a maxlen of at least 32 for the longest mode, “interleave”, the longest flag, “relative”, and to display at least a few node ids.

typedef vm_fault_t

Return type for page fault handlers.

Description

Page fault handlers return a bitmask of VM_FAULT values.

enum vm_fault_reason

Page fault handlers return a bitmask of these values to tell the core VM what happened when handling the fault. Used to decide whether a process gets delivered SIGBUS or just gets major/minor fault counters bumped up.

Constants

VM_FAULT_OOM

Out Of Memory

VM_FAULT_SIGBUS

Bad access

VM_FAULT_MAJOR

Page read from storage

VM_FAULT_WRITE

Special case for get_user_pages

VM_FAULT_HWPOISON

Hit poisoned small page

VM_FAULT_HWPOISON_LARGE

Hit poisoned large page. Index encoded in upper bits

VM_FAULT_SIGSEGV

segmentation fault

VM_FAULT_NOPAGE

->fault installed the pte, not return page

VM_FAULT_LOCKED

->fault locked the returned page

VM_FAULT_RETRY

->fault blocked, must retry

VM_FAULT_FALLBACK

huge page fault failed, fall back to small

VM_FAULT_DONE_COW

->fault has fully handled COW

VM_FAULT_NEEDDSYNC

->fault did not modify page tables and needs fsync() to complete (for synchronous page faults in DAX)

VM_FAULT_HINDEX_MASK

mask HINDEX value

enum fault_flag

Fault flag definitions.

Constants

FAULT_FLAG_WRITE

Fault was a write fault.

FAULT_FLAG_MKWRITE

Fault was mkwrite of existing PTE.

FAULT_FLAG_ALLOW_RETRY

Allow to retry the fault if blocked.

FAULT_FLAG_RETRY_NOWAIT

Don’t drop mmap_lock and wait when retrying.

FAULT_FLAG_KILLABLE

The fault task is in SIGKILL killable region.

FAULT_FLAG_TRIED

The fault has been tried once.

FAULT_FLAG_USER

The fault originated in userspace.

FAULT_FLAG_REMOTE

The fault is not for current task/mm.

FAULT_FLAG_INSTRUCTION

The fault was during an instruction fetch.

FAULT_FLAG_INTERRUPTIBLE

The fault can be interrupted by non-fatal signals.

Description

About FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED: we can specify whether we would allow page faults to retry by specifying these two fault flags correctly. Currently there can be three legal combinations:

  1. ALLOW_RETRY and !TRIED: this means the page fault allows retry, and

    this is the first try

  2. ALLOW_RETRY and TRIED: this means the page fault allows retry, and

    we’ve already tried at least once

  3. !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry

The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never be used. Note that page faults can be allowed to retry for multiple times, in which case we’ll have an initial fault with flags (a) then later on continuous faults with flags (b). We should always try to detect pending signals before a retry to make sure the continuous page faults can still be interrupted if necessary.

bool fault_flag_allow_retry_first(enum fault_flag flags)

check ALLOW_RETRY the first time

Parameters

enum fault_flag flags

Fault flags.

Description

This is mostly used for places where we want to try to avoid taking the mmap_lock for too long a time when waiting for another condition to change, in which case we can try to be polite to release the mmap_lock in the first round to avoid potential starvation of other processes that would also want the mmap_lock.

Return

true if the page fault allows retry and this is the first attempt of the fault handling; false otherwise.

bool page_maybe_dma_pinned(struct page *page)

Report if a page is pinned for DMA.

Parameters

struct page *page

The page.

Description

This function checks if a page has been pinned via a call to a function in the pin_user_pages() family.

For non-huge pages, the return value is partially fuzzy: false is not fuzzy, because it means “definitely not pinned for DMA”, but true means “probably pinned for DMA, but possibly a false positive due to having at least GUP_PIN_COUNTING_BIAS worth of normal page references”.

False positives are OK, because: a) it’s unlikely for a page to get that many refcounts, and b) all the callers of this routine are expected to be able to deal gracefully with a false positive.

For huge pages, the result will be exactly correct. That’s because we have more tracking data available: the 3rd struct page in the compound page is used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS scheme).

For more information, please see pin_user_pages() and related calls.

Return

True, if it is likely that the page has been “dma-pinned”. False, if the page is definitely not dma-pinned.

bool vma_is_special_huge(const struct vm_area_struct *vma)

Are transhuge page-table entries considered special?

Parameters

const struct vm_area_struct *vma

Pointer to the struct vm_area_struct to consider

Description

Whether transhuge page-table entries are considered “special” following the definition in vm_normal_page().

Return

true if transhuge page-table entries should be considered special, false otherwise.

int seal_check_future_write(int seals, struct vm_area_struct *vma)

Check for F_SEAL_FUTURE_WRITE flag and handle it

Parameters

int seals

the seals to check

struct vm_area_struct *vma

the vma to operate on

Description

Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on the vma flags. Return 0 if check pass, or <0 for errors.

int is_highmem(struct zone *zone)

helper function to quickly check if a struct zone is a highmem zone or not. This is an attempt to keep references to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.

Parameters

struct zone *zone

pointer to struct zone variable

Return

1 for a highmem zone, 0 otherwise

for_each_online_pgdat(pgdat)

helper macro to iterate over all online nodes

Parameters

pgdat

pointer to a pg_data_t variable

for_each_zone(zone)

helper macro to iterate over all memory zones

Parameters

zone

pointer to struct zone variable

Description

The user only needs to declare the zone variable, for_each_zone fills it in.

struct zoneref * next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes)

Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point

Parameters

struct zoneref *z

The cursor used as a starting point for the search

enum zone_type highest_zoneidx

The zone index of the highest zone to return

nodemask_t *nodes

An optional nodemask to filter the zonelist with

Description

This function returns the next zone at or below a given zone index that is within the allowed nodemask using a cursor as the starting point for the search. The zoneref returned is a cursor that represents the current zone being examined. It should be advanced by one before calling next_zones_zonelist again.

Return

the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point

struct zoneref * first_zones_zonelist(struct zonelist *zonelist, enum zone_type highest_zoneidx, nodemask_t *nodes)

Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist

Parameters

struct zonelist *zonelist

The zonelist to search for a suitable zone

enum zone_type highest_zoneidx

The zone index of the highest zone to return

nodemask_t *nodes

An optional nodemask to filter the zonelist with

Description

This function returns the first zone at or below a given zone index that is within the allowed nodemask. The zoneref returned is a cursor that can be used to iterate the zonelist with next_zones_zonelist by advancing it by one before calling.

When no eligible zone is found, zoneref->zone is NULL (zoneref itself is never NULL). This may happen either genuinely, or due to concurrent nodemask update due to cpuset modification.

Return

Zoneref pointer for the first suitable zone found

for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask)

helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask

Parameters

zone

The current zone in the iterator

z

The current pointer within zonelist->_zonerefs being iterated

zlist

The zonelist being iterated

highidx

The zone index of the highest zone to return

nodemask

Nodemask allowed by the allocator

Description

This iterator iterates though all zones at or below a given zone index and within a given nodemask

for_each_zone_zonelist(zone, z, zlist, highidx)

helper macro to iterate over valid zones in a zonelist at or below a given zone index

Parameters

zone

The current zone in the iterator

z

The current pointer within zonelist->zones being iterated

zlist

The zonelist being iterated

highidx

The zone index of the highest zone to return

Description

This iterator iterates though all zones at or below a given zone index.