

The Linux Kernel

6.8.0-rc7

 Quick search

Contents

	A guide to the Kernel Development Process
	Submitting patches: the essential guide to getting your code into the kernel
	Code of conduct
	Kernel Maintainer Handbook
	All development-process docs

	Core API Documentation
	Driver implementer's API guide
	Kernel subsystem documentation
	Locking in the kernel

	Linux kernel licensing rules
	How to write kernel documentation	Using Sphinx for kernel documentation	Sphinx Install
	Sphinx Build
	Writing Documentation
	Figures & Images

	Writing kernel-doc comments
	Including kernel-doc comments
	Including uAPI header files
	How to help improve kernel documentation
	Documentation subsystem maintainer entry profile

	Development tools for the kernel
	Kernel Testing Guide
	Kernel Hacking Guides
	Linux Tracing Technologies
	fault-injection
	Kernel Livepatching
	Rust

	The Linux kernel user's and administrator's guide
	The kernel build system
	Reporting issues
	User-space tools
	The Linux kernel user-space API guide

	The Linux kernel firmware guide
	Open Firmware and Devicetree

	CPU Architectures

	Unsorted Documentation
	Reliability, Availability and Serviceability features

	Translations

 This Page

 	Show Source

English

	Chinese (Simplified)
	Italian

Using Sphinx for kernel documentation¶

The Linux kernel uses Sphinx to generate pretty documentation from
reStructuredText files under Documentation. To build the documentation in
HTML or PDF formats, use make htmldocs or make pdfdocs. The generated
documentation is placed in Documentation/output.

The reStructuredText files may contain directives to include structured
documentation comments, or kernel-doc comments, from source files. Usually these
are used to describe the functions and types and design of the code. The
kernel-doc comments have some special structure and formatting, but beyond that
they are also treated as reStructuredText.

Finally, there are thousands of plain text documentation files scattered around
Documentation. Some of these will likely be converted to reStructuredText
over time, but the bulk of them will remain in plain text.

Sphinx Install¶

The ReST markups currently used by the Documentation/ files are meant to be
built with Sphinx version 2.4.4 or higher.

There's a script that checks for the Sphinx requirements. Please see
Checking for Sphinx dependencies for further details.

Most distributions are shipped with Sphinx, but its toolchain is fragile,
and it is not uncommon that upgrading it or some other Python packages
on your machine would cause the documentation build to break.

A way to avoid that is to use a different version than the one shipped
with your distributions. In order to do so, it is recommended to install
Sphinx inside a virtual environment, using virtualenv-3
or virtualenv, depending on how your distribution packaged Python 3.

Note

	It is recommended to use the RTD theme for html output. Depending
on the Sphinx version, it should be installed separately,
with pip install sphinx_rtd_theme.

In summary, if you want to install Sphinx version 2.4.4, you should do:

$ virtualenv sphinx_2.4.4
$. sphinx_2.4.4/bin/activate
(sphinx_2.4.4) $ pip install -r Documentation/sphinx/requirements.txt

After running . sphinx_2.4.4/bin/activate, the prompt will change,
in order to indicate that you're using the new environment. If you
open a new shell, you need to rerun this command to enter again at
the virtual environment before building the documentation.

Image output¶

The kernel documentation build system contains an extension that
handles images on both GraphViz and SVG formats (see
Figures & Images).

For it to work, you need to install both GraphViz and ImageMagick
packages. If those packages are not installed, the build system will
still build the documentation, but won't include any images at the
output.

PDF and LaTeX builds¶

Such builds are currently supported only with Sphinx versions 2.4 and higher.

For PDF and LaTeX output, you'll also need XeLaTeX version 3.14159265.

Depending on the distribution, you may also need to install a series of
texlive packages that provide the minimal set of functionalities
required for XeLaTeX to work.

Math Expressions in HTML¶

Some ReST pages contain math expressions. Due to the way Sphinx works,
those expressions are written using LaTeX notation.
There are two options for Sphinx to render math expressions in html output.
One is an extension called imgmath which converts math expressions into
images and embeds them in html pages.
The other is an extension called mathjax which delegates math rendering
to JavaScript capable web browsers.
The former was the only option for pre-6.1 kernel documentation and it
requires quite a few texlive packages including amsfonts and amsmath among
others.

Since kernel release 6.1, html pages with math expressions can be built
without installing any texlive packages. See Choice of Math Renderer for
further info.

Checking for Sphinx dependencies¶

There's a script that automatically check for Sphinx dependencies. If it can
recognize your distribution, it will also give a hint about the install
command line options for your distro:

$./scripts/sphinx-pre-install
Checking if the needed tools for Fedora release 26 (Twenty Six) are available
Warning: better to also install "texlive-luatex85".
You should run:

 sudo dnf install -y texlive-luatex85
 /usr/bin/virtualenv sphinx_2.4.4
 . sphinx_2.4.4/bin/activate
 pip install -r Documentation/sphinx/requirements.txt

Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.

By default, it checks all the requirements for both html and PDF, including
the requirements for images, math expressions and LaTeX build, and assumes
that a virtual Python environment will be used. The ones needed for html
builds are assumed to be mandatory; the others to be optional.

It supports two optional parameters:

	--no-pdf
	Disable checks for PDF;

	--no-virtualenv
	Use OS packaging for Sphinx instead of Python virtual environment.

Sphinx Build¶

The usual way to generate the documentation is to run make htmldocs or
make pdfdocs. There are also other formats available: see the documentation
section of make help. The generated documentation is placed in
format-specific subdirectories under Documentation/output.

To generate documentation, Sphinx (sphinx-build) must obviously be
installed. For PDF output you'll also need XeLaTeX and convert(1)
from ImageMagick (https://www.imagemagick.org).1 All of these are
widely available and packaged in distributions.

To pass extra options to Sphinx, you can use the SPHINXOPTS make
variable. For example, use make SPHINXOPTS=-v htmldocs to get more verbose
output.

It is also possible to pass an extra DOCS_CSS overlay file, in order to customize
the html layout, by using the DOCS_CSS make variable.

By default, the "Alabaster" theme is used to build the HTML documentation;
this theme is bundled with Sphinx and need not be installed separately.
The Sphinx theme can be overridden by using the DOCS_THEME make variable.

There is another make variable SPHINXDIRS, which is useful when test
building a subset of documentation. For example, you can build documents
under Documentation/doc-guide by running
make SPHINXDIRS=doc-guide htmldocs.
The documentation section of make help will show you the list of
subdirectories you can specify.

To remove the generated documentation, run make cleandocs.

	1
	Having inkscape(1) from Inkscape (https://inkscape.org)
as well would improve the quality of images embedded in PDF
documents, especially for kernel releases 5.18 and later.

Choice of Math Renderer¶

Since kernel release 6.1, mathjax works as a fallback math renderer for
html output.2

Math renderer is chosen depending on available commands as shown below:

Math Renderer Choices for HTML¶	Math renderer
	Required commands
	Image format

	imgmath
	latex, dvipng
	PNG (raster)

	mathjax
		

The choice can be overridden by setting an environment variable
SPHINX_IMGMATH as shown below:

Effect of Setting SPHINX_IMGMATH¶	Setting
	Renderer

	SPHINX_IMGMATH=yes
	imgmath

	SPHINX_IMGMATH=no
	mathjax

	2
	Fallback of math renderer requires Sphinx >=1.8.

Writing Documentation¶

Adding new documentation can be as simple as:

	Add a new .rst file somewhere under Documentation.

	Refer to it from the Sphinx main TOC tree in Documentation/index.rst.

This is usually good enough for simple documentation (like the one you're
reading right now), but for larger documents it may be advisable to create a
subdirectory (or use an existing one). For example, the graphics subsystem
documentation is under Documentation/gpu, split to several .rst files,
and has a separate index.rst (with a toctree of its own) referenced from
the main index.

See the documentation for Sphinx and reStructuredText on what you can do
with them. In particular, the Sphinx reStructuredText Primer is a good place
to get started with reStructuredText. There are also some Sphinx specific
markup constructs.

Specific guidelines for the kernel documentation¶

Here are some specific guidelines for the kernel documentation:

	Please don't go overboard with reStructuredText markup. Keep it
simple. For the most part the documentation should be plain text with
just enough consistency in formatting that it can be converted to
other formats.

	Please keep the formatting changes minimal when converting existing
documentation to reStructuredText.

	Also update the content, not just the formatting, when converting
documentation.

	Please stick to this order of heading adornments:

	= with overline for document title:

==============
Document title
==============

	= for chapters:

Chapters
========

	- for sections:

Section

	~ for subsections:

Subsection
~~~~~~~~~~








Although RST doesn't mandate a specific order ("Rather than imposing a fixed
number and order of section title adornment styles, the order enforced will be
the order as encountered."), having the higher levels the same overall makes
it easier to follow the documents.


	For inserting fixed width text blocks (for code examples, use case
examples, etc.), use :: for anything that doesn't really benefit
from syntax highlighting, especially short snippets. Use
.. code-block:: <language> for longer code blocks that benefit
from highlighting. For a short snippet of code embedded in the text, use ``.





the C domain¶

The Sphinx C Domain (name c) is suited for documentation of C API. E.g. a
function prototype:

.. c:function:: int ioctl( int fd, int request )





The C domain of the kernel-doc has some additional features. E.g. you can
rename the reference name of a function with a common name like open or
ioctl:

.. c:function:: int ioctl( int fd, int request )
   :name: VIDIOC_LOG_STATUS





The func-name (e.g. ioctl) remains in the output but the ref-name changed from
ioctl to VIDIOC_LOG_STATUS. The index entry for this function is also
changed to VIDIOC_LOG_STATUS.

Please note that there is no need to use c:func: to generate cross
references to function documentation.  Due to some Sphinx extension magic,
the documentation build system will automatically turn a reference to
function() into a cross reference if an index entry for the given
function name exists.  If you see c:func: use in a kernel document,
please feel free to remove it.



Tables¶

ReStructuredText provides several options for table syntax. Kernel style for
tables is to prefer simple table syntax or grid table syntax. See the
reStructuredText user reference for table syntax for more details.


list tables¶

The list-table formats can be useful for tables that are not easily laid
out in the usual Sphinx ASCII-art formats.  These formats are nearly
impossible for readers of the plain-text documents to understand, though,
and should be avoided in the absence of a strong justification for their
use.

The flat-table is a double-stage list similar to the list-table with
some additional features:

	column-span: with the role cspan a cell can be extended through
additional columns

	row-span: with the role rspan a cell can be extended through
additional rows

	auto span rightmost cell of a table row over the missing cells on the right
side of that table-row.  With Option :fill-cells: this behavior can
changed from auto span to auto fill, which automatically inserts (empty)
cells instead of spanning the last cell.



options:

	:header-rows:   [int] count of header rows

	:stub-columns:  [int] count of stub columns

	:widths:        [[int] [int] ... ] widths of columns

	:fill-cells:    instead of auto-spanning missing cells, insert missing cells



roles:

	:cspan: [int] additional columns (morecols)

	:rspan: [int] additional rows (morerows)



The example below shows how to use this markup.  The first level of the staged
list is the table-row. In the table-row there is only one markup allowed,
the list of the cells in this table-row. Exceptions are comments ( .. )
and targets (e.g. a ref to :ref:`last row <last row>` / last row).

.. flat-table:: table title
   :widths: 2 1 1 3

   * - head col 1
     - head col 2
     - head col 3
     - head col 4

   * - row 1
     - field 1.1
     - field 1.2 with autospan

   * - row 2
     - field 2.1
     - :rspan:`1` :cspan:`1` field 2.2 - 3.3

   * .. _`last row`:

     - row 3





Rendered as:


table title¶	head col 1
	head col 2
	head col 3
	head col 4

	row 1
	field 1.1
	field 1.2 with autospan

	row 2
	field 2.1
	  field 2.2 - 3.3

	row 3

	








Cross-referencing¶

Cross-referencing from one documentation page to another can be done simply by
writing the path to the document file, no special syntax required. The path can
be either absolute or relative. For absolute paths, start it with
"Documentation/". For example, to cross-reference to this page, all the
following are valid options, depending on the current document's directory (note
that the .rst extension is required):

See Documentation/doc-guide/sphinx.rst. This always works.
Take a look at sphinx.rst, which is at this same directory.
Read ../sphinx.rst, which is one directory above.





If you want the link to have a different rendered text other than the document's
title, you need to use Sphinx's doc role. For example:

See :doc:`my custom link text for document sphinx <sphinx>`.





For most use cases, the former is preferred, as it is cleaner and more suited
for people reading the source files. If you come across a :doc: usage that
isn't adding any value, please feel free to convert it to just the document
path.

For information on cross-referencing to kernel-doc functions or types, see
Writing kernel-doc comments.


Referencing commits¶

References to git commits are automatically hyperlinked given that they are
written in one of these formats:

commit 72bf4f1767f0
commit 72bf4f1767f0 ("net: do not leave an empty skb in write queue")









Figures & Images¶

If you want to add an image, you should use the kernel-figure and
kernel-image directives. E.g. to insert a figure with a scalable
image format, use SVG (SVG image example):

.. kernel-figure::  svg_image.svg
   :alt:    simple SVG image

   SVG image example







SVG image example¶



The kernel figure (and image) directive supports DOT formatted files, see

	DOT: http://graphviz.org/pdf/dotguide.pdf

	Graphviz: http://www.graphviz.org/content/dot-language



A simple example (DOT's hello world example):

.. kernel-figure::  hello.dot
   :alt:    hello world

   DOT's hello world example







DOT's hello world example¶



Embedded render markups (or languages) like Graphviz's DOT are provided by the
kernel-render directives.:

.. kernel-render:: DOT
   :alt: foobar digraph
   :caption: Embedded **DOT** (Graphviz) code

   digraph foo {
    "bar" -> "baz";
   }





How this will be rendered depends on the installed tools. If Graphviz is
installed, you will see a vector image. If not, the raw markup is inserted as
literal-block (Embedded DOT (Graphviz) code).



Embedded DOT (Graphviz) code¶



The render directive has all the options known from the figure directive,
plus option caption.  If caption has a value, a figure node is
inserted. If not, an image node is inserted. A caption is also needed, if
you want to refer to it (Embedded SVG markup).

Embedded SVG:

.. kernel-render:: SVG
   :caption: Embedded **SVG** markup
   :alt: so-nw-arrow

   <?xml version="1.0" encoding="UTF-8"?>
   <svg xmlns="http://www.w3.org/2000/svg" version="1.1" ...>
      ...
   </svg>







Embedded SVG markup¶







          

          
        

      

    

  

    
      ©The kernel development community.
      
      |
      Powered by Sphinx 5.0.1
      & Alabaster 0.7.12
      
      |
      Page source
    


    

    
  