€•¾OŒsphinx.addnodes”Œdocument”“”)”}”(Œ rawsource”Œ”Œchildren”]”(Œ translations”Œ LanguagesNode”“”)”}”(hhh]”(hŒ pending_xref”“”)”}”(hhh]”Œdocutils.nodes”ŒText”“”ŒChinese (Simplified)”…””}”Œparent”hsbaŒ attributes”}”(Œids”]”Œclasses”]”Œnames”]”Œdupnames”]”Œbackrefs”]”Œ refdomain”Œstd”Œreftype”Œdoc”Œ reftarget”Œ./translations/zh_CN/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuŒtagname”hhh ubh)”}”(hhh]”hŒChinese (Traditional)”…””}”hh2sbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ./translations/zh_TW/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒItalian”…””}”hhFsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ./translations/it_IT/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒJapanese”…””}”hhZsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ./translations/ja_JP/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒKorean”…””}”hhnsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ./translations/ko_KR/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒSpanish”…””}”hh‚sbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ./translations/sp_SP/driver-api/nvdimm/security”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubeh}”(h]”h ]”h"]”h$]”h&]”Œcurrent_language”ŒEnglish”uh1h hhŒ _document”hŒsource”NŒline”NubhŒsection”“”)”}”(hhh]”(hŒtitle”“”)”}”(hŒNVDIMM Security”h]”hŒNVDIMM Security”…””}”(hh¨hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hh£hžhhŸŒH/var/lib/git/docbuild/linux/Documentation/driver-api/nvdimm/security.rst”h Kubh¢)”}”(hhh]”(h§)”}”(hŒ1. Introduction”h]”hŒ1. Introduction”…””}”(hhºhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hh·hžhhŸh¶h KubhŒ paragraph”“”)”}”(hXÄWith the introduction of Intel Device Specific Methods (DSM) v1.8 specification [1], security DSMs are introduced. The spec added the following security DSMs: "get security state", "set passphrase", "disable passphrase", "unlock unit", "freeze lock", "secure erase", and "overwrite". A security_ops data structure has been added to struct dimm in order to support the security operations and generic APIs are exposed to allow vendor neutral operations.”h]”hXàWith the introduction of Intel Device Specific Methods (DSM) v1.8 specification [1], security DSMs are introduced. The spec added the following security DSMs: “get security stateâ€, “set passphraseâ€, “disable passphraseâ€, “unlock unitâ€, “freeze lockâ€, “secure eraseâ€, and “overwriteâ€. A security_ops data structure has been added to struct dimm in order to support the security operations and generic APIs are exposed to allow vendor neutral operations.”…””}”(hhÊhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Khh·hžhubeh}”(h]”Œ introduction”ah ]”h"]”Œ1. introduction”ah$]”h&]”uh1h¡hh£hžhhŸh¶h Kubh¢)”}”(hhh]”(h§)”}”(hŒ2. Sysfs Interface”h]”hŒ2. Sysfs Interface”…””}”(hhãhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hhàhžhhŸh¶h KubhÉ)”}”(hŒThe "security" sysfs attribute is provided in the nvdimm sysfs directory. For example: /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/security”h]”hŒ¡The “security†sysfs attribute is provided in the nvdimm sysfs directory. For example: /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/security”…””}”(hhñhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KhhàhžhubhÉ)”}”(hŒóThe "show" attribute of that attribute will display the security state for that DIMM. The following states are available: disabled, unlocked, locked, frozen, and overwrite. If security is not supported, the sysfs attribute will not be visible.”h]”hŒ÷The “show†attribute of that attribute will display the security state for that DIMM. The following states are available: disabled, unlocked, locked, frozen, and overwrite. If security is not supported, the sysfs attribute will not be visible.”…””}”(hhÿhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KhhàhžhubhÉ)”}”(hX The "store" attribute takes several commands when it is being written to in order to support some of the security functionalities: update - enable or update passphrase. disable - disable enabled security and remove key. freeze - freeze changing of security states. erase - delete existing user encryption key. overwrite - wipe the entire nvdimm. master_update - enable or update master passphrase. master_erase - delete existing user encryption key.”h]”hXThe “store†attribute takes several commands when it is being written to in order to support some of the security functionalities: update - enable or update passphrase. disable - disable enabled security and remove key. freeze - freeze changing of security states. erase - delete existing user encryption key. overwrite - wipe the entire nvdimm. master_update - enable or update master passphrase. master_erase - delete existing user encryption key.”…””}”(hj hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Khhàhžhubeh}”(h]”Œsysfs-interface”ah ]”h"]”Œ2. sysfs interface”ah$]”h&]”uh1h¡hh£hžhhŸh¶h Kubh¢)”}”(hhh]”(h§)”}”(hŒ3. Key Management”h]”hŒ3. Key Management”…””}”(hj&hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hj#hžhhŸh¶h K%ubhÉ)”}”(hŒøThe key is associated to the payload by the DIMM id. For example: # cat /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/nfit/id 8089-a2-1740-00000133 The DIMM id would be provided along with the key payload (passphrase) to the kernel.”h]”hŒøThe key is associated to the payload by the DIMM id. For example: # cat /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/nfit/id 8089-a2-1740-00000133 The DIMM id would be provided along with the key payload (passphrase) to the kernel.”…””}”(hj4hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K'hj#hžhubhÉ)”}”(hXgThe security keys are managed on the basis of a single key per DIMM. The key "passphrase" is expected to be 32bytes long. This is similar to the ATA security specification [2]. A key is initially acquired via the request_key() kernel API call during nvdimm unlock. It is up to the user to make sure that all the keys are in the kernel user keyring for unlock.”h]”hXkThe security keys are managed on the basis of a single key per DIMM. The key “passphrase†is expected to be 32bytes long. This is similar to the ATA security specification [2]. A key is initially acquired via the request_key() kernel API call during nvdimm unlock. It is up to the user to make sure that all the keys are in the kernel user keyring for unlock.”…””}”(hjBhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K-hj#hžhubhÉ)”}”(hŒnA nvdimm encrypted-key of format enc32 has the description format of: nvdimm:”h]”hŒnA nvdimm encrypted-key of format enc32 has the description format of: nvdimm:”…””}”(hjPhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K3hj#hžhubhÉ)”}”(hŒ¼See file ``Documentation/security/keys/trusted-encrypted.rst`` for creating encrypted-keys of enc32 format. TPM usage with a master trusted key is preferred for sealing the encrypted-keys.”h]”(hŒ See file ”…””}”(hj^hžhhŸNh NubhŒliteral”“”)”}”(hŒ5``Documentation/security/keys/trusted-encrypted.rst``”h]”hŒ1Documentation/security/keys/trusted-encrypted.rst”…””}”(hjhhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1jfhj^ubhŒ~ for creating encrypted-keys of enc32 format. TPM usage with a master trusted key is preferred for sealing the encrypted-keys.”…””}”(hj^hžhhŸNh Nubeh}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K6hj#hžhubeh}”(h]”Œkey-management”ah ]”h"]”Œ3. key management”ah$]”h&]”uh1h¡hh£hžhhŸh¶h K%ubh¢)”}”(hhh]”(h§)”}”(hŒ 4. Unlocking”h]”hŒ 4. Unlocking”…””}”(hj‹hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hjˆhžhhŸh¶h K;ubhÉ)”}”(hXMWhen the DIMMs are being enumerated by the kernel, the kernel will attempt to retrieve the key from the kernel user keyring. This is the only time a locked DIMM can be unlocked. Once unlocked, the DIMM will remain unlocked until reboot. Typically an entity (i.e. shell script) will inject all the relevant encrypted-keys into the kernel user keyring during the initramfs phase. This provides the unlock function access to all the related keys that contain the passphrase for the respective nvdimms. It is also recommended that the keys are injected before libnvdimm is loaded by modprobe.”h]”hXMWhen the DIMMs are being enumerated by the kernel, the kernel will attempt to retrieve the key from the kernel user keyring. This is the only time a locked DIMM can be unlocked. Once unlocked, the DIMM will remain unlocked until reboot. Typically an entity (i.e. shell script) will inject all the relevant encrypted-keys into the kernel user keyring during the initramfs phase. This provides the unlock function access to all the related keys that contain the passphrase for the respective nvdimms. It is also recommended that the keys are injected before libnvdimm is loaded by modprobe.”…””}”(hj™hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K ”h]”hXóWhen doing an update, it is expected that the existing key is removed from the kernel user keyring and reinjected as different (old) key. It’s irrelevant what the key description is for the old key since we are only interested in the keyid when doing the update operation. It is also expected that the new key is injected with the description format described from earlier in this document. The update command written to the sysfs attribute will be with the format: update ”…””}”(hjÀhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KGhj¯hžhubhÉ)”}”(hŒRIf there is no old keyid due to a security enabling, then a 0 should be passed in.”h]”hŒRIf there is no old keyid due to a security enabling, then a 0 should be passed in.”…””}”(hjÎhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KPhj¯hžhubeh}”(h]”Œupdate”ah ]”h"]”Œ 5. update”ah$]”h&]”uh1h¡hh£hžhhŸh¶h KFubh¢)”}”(hhh]”(h§)”}”(hŒ 6. Freeze”h]”hŒ 6. Freeze”…””}”(hjçhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hjähžhhŸh¶h KTubhÉ)”}”(hŒpThe freeze operation does not require any keys. The security config can be frozen by a user with root privilege.”h]”hŒpThe freeze operation does not require any keys. The security config can be frozen by a user with root privilege.”…””}”(hjõhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KUhjähžhubeh}”(h]”Œfreeze”ah ]”h"]”Œ 6. freeze”ah$]”h&]”uh1h¡hh£hžhhŸh¶h KTubh¢)”}”(hhh]”(h§)”}”(hŒ 7. Disable”h]”hŒ 7. Disable”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hj hžhhŸh¶h KYubhÉ)”}”(hŒ7The security disable command format is: disable ”h]”hŒ7The security disable command format is: disable ”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KZhj hžhubhÉ)”}”(hŒkAn key with the current passphrase payload that is tied to the nvdimm should be in the kernel user keyring.”h]”hŒkAn key with the current passphrase payload that is tied to the nvdimm should be in the kernel user keyring.”…””}”(hj*hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K]hj hžhubeh}”(h]”Œdisable”ah ]”h"]”Œ 7. disable”ah$]”h&]”uh1h¡hh£hžhhŸh¶h KYubh¢)”}”(hhh]”(h§)”}”(hŒ8. Secure Erase”h]”hŒ8. Secure Erase”…””}”(hjChžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hj@hžhhŸh¶h KaubhÉ)”}”(hŒ=The command format for doing a secure erase is: erase ”h]”hŒ=The command format for doing a secure erase is: erase ”…””}”(hjQhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Kbhj@hžhubhÉ)”}”(hŒkAn key with the current passphrase payload that is tied to the nvdimm should be in the kernel user keyring.”h]”hŒkAn key with the current passphrase payload that is tied to the nvdimm should be in the kernel user keyring.”…””}”(hj_hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Kehj@hžhubeh}”(h]”Œ secure-erase”ah ]”h"]”Œ8. secure erase”ah$]”h&]”uh1h¡hh£hžhhŸh¶h Kaubh¢)”}”(hhh]”(h§)”}”(hŒ 9. Overwrite”h]”hŒ 9. Overwrite”…””}”(hjxhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hjuhžhhŸh¶h KiubhÉ)”}”(hŒ?The command format for doing an overwrite is: overwrite ”h]”hŒ?The command format for doing an overwrite is: overwrite ”…””}”(hj†hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KjhjuhžhubhÉ)”}”(hŒvOverwrite can be done without a key if security is not enabled. A key serial of 0 can be passed in to indicate no key.”h]”hŒvOverwrite can be done without a key if security is not enabled. A key serial of 0 can be passed in to indicate no key.”…””}”(hj”hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KmhjuhžhubhÉ)”}”(hŒ’The sysfs attribute "security" can be polled to wait on overwrite completion. Overwrite can last tens of minutes or more depending on nvdimm size.”h]”hŒ–The sysfs attribute “security†can be polled to wait on overwrite completion. Overwrite can last tens of minutes or more depending on nvdimm size.”…””}”(hj¢hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KphjuhžhubhÉ)”}”(hŒŒAn encrypted-key with the current user passphrase that is tied to the nvdimm should be injected and its keyid should be passed in via sysfs.”h]”hŒŒAn encrypted-key with the current user passphrase that is tied to the nvdimm should be injected and its keyid should be passed in via sysfs.”…””}”(hj°hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Kshjuhžhubeh}”(h]”Œ overwrite”ah ]”h"]”Œ 9. overwrite”ah$]”h&]”uh1h¡hh£hžhhŸh¶h Kiubh¢)”}”(hhh]”(h§)”}”(hŒ10. Master Update”h]”hŒ10. Master Update”…””}”(hjÉhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hjÆhžhhŸh¶h KwubhÉ)”}”(hŒOThe command format for doing a master update is: update ”h]”hŒOThe command format for doing a master update is: update ”…””}”(hj×hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KxhjÆhžhubhÉ)”}”(hŒ³The operating mechanism for master update is identical to update except the master passphrase key is passed to the kernel. The master passphrase key is just another encrypted-key.”h]”hŒ³The operating mechanism for master update is identical to update except the master passphrase key is passed to the kernel. The master passphrase key is just another encrypted-key.”…””}”(hjåhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K{hjÆhžhubhÉ)”}”(hŒ9This command is only available when security is disabled.”h]”hŒ9This command is only available when security is disabled.”…””}”(hjóhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KhjÆhžhubeh}”(h]”Œ master-update”ah ]”h"]”Œ10. master update”ah$]”h&]”uh1h¡hh£hžhhŸh¶h Kwubh¢)”}”(hhh]”(h§)”}”(hŒ11. Master Erase”h]”hŒ11. Master Erase”…””}”(hj hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¦hj hžhhŸh¶h K‚ubhÉ)”}”(hŒLThe command format for doing a master erase is: master_erase ”h]”hŒLThe command format for doing a master erase is: master_erase ”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Kƒhj hžhubhÉ)”}”(hŒ©This command has the same operating mechanism as erase except the master passphrase key is passed to the kernel. The master passphrase key is just another encrypted-key.”h]”hŒ©This command has the same operating mechanism as erase except the master passphrase key is passed to the kernel. The master passphrase key is just another encrypted-key.”…””}”(hj(hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h K†hj hžhubhÉ)”}”(hŒnThis command is only available when the master security is enabled, indicated by the extended security status.”h]”hŒnThis command is only available when the master security is enabled, indicated by the extended security status.”…””}”(hj6hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h KŠhj hžhubhÉ)”}”(hŒ<[1]: https://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf”h]”(hŒ[1]: ”…””}”(hjDhžhhŸNh NubhŒ reference”“”)”}”(hŒ7https://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf”h]”hŒ7https://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf”…””}”(hjNhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”Œrefuri”jPuh1jLhjDubeh}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Khj hžhubhÉ)”}”(hŒd[2]: http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf”h]”(hŒ[2]: ”…””}”(hjchžhhŸNh NubjM)”}”(hŒ_http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf”h]”hŒ_http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf”…””}”(hjkhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”Œrefuri”jmuh1jLhjcubeh}”(h]”h ]”h"]”h$]”h&]”uh1hÈhŸh¶h Khj hžhubeh}”(h]”Œ master-erase”ah ]”h"]”Œ11. master erase”ah$]”h&]”uh1h¡hh£hžhhŸh¶h K‚ubeh}”(h]”Œnvdimm-security”ah ]”h"]”Œnvdimm security”ah$]”h&]”uh1h¡hhhžhhŸh¶h Kubeh}”(h]”h ]”h"]”h$]”h&]”Œsource”h¶uh1hŒcurrent_source”NŒ current_line”NŒsettings”Œdocutils.frontend”ŒValues”“”)”}”(h¦NŒ generator”NŒ datestamp”NŒ source_link”NŒ source_url”NŒ toc_backlinks”Œentry”Œfootnote_backlinks”KŒ sectnum_xform”KŒstrip_comments”NŒstrip_elements_with_classes”NŒ strip_classes”NŒ report_level”KŒ halt_level”KŒexit_status_level”KŒdebug”NŒwarning_stream”NŒ traceback”ˆŒinput_encoding”Œ utf-8-sig”Œinput_encoding_error_handler”Œstrict”Œoutput_encoding”Œutf-8”Œoutput_encoding_error_handler”j³Œerror_encoding”Œutf-8”Œerror_encoding_error_handler”Œbackslashreplace”Œ language_code”Œen”Œrecord_dependencies”NŒconfig”NŒ id_prefix”hŒauto_id_prefix”Œid”Œ dump_settings”NŒdump_internals”NŒdump_transforms”NŒdump_pseudo_xml”NŒexpose_internals”NŒstrict_visitor”NŒ_disable_config”NŒ_source”h¶Œ _destination”NŒ _config_files”]”Œ7/var/lib/git/docbuild/linux/Documentation/docutils.conf”aŒfile_insertion_enabled”ˆŒ raw_enabled”KŒline_length_limit”M'Œpep_references”NŒ pep_base_url”Œhttps://peps.python.org/”Œpep_file_url_template”Œpep-%04d”Œrfc_references”NŒ rfc_base_url”Œ&https://datatracker.ietf.org/doc/html/”Œ tab_width”KŒtrim_footnote_reference_space”‰Œsyntax_highlight”Œlong”Œ smart_quotes”ˆŒsmartquotes_locales”]”Œcharacter_level_inline_markup”‰Œdoctitle_xform”‰Œ docinfo_xform”KŒsectsubtitle_xform”‰Œ image_loading”Œlink”Œembed_stylesheet”‰Œcloak_email_addresses”ˆŒsection_self_link”‰Œenv”NubŒreporter”NŒindirect_targets”]”Œsubstitution_defs”}”Œsubstitution_names”}”Œrefnames”}”Œrefids”}”Œnameids”}”(jjŠhÝhÚj jj…j‚j¬j©jájÞjjj=j:jrjojÃjÀjjj…j‚uŒ nametypes”}”(j‰h݉j ‰j…‰j¬‰já‰j‰j=‰jr‰jÉj‰j…‰uh}”(jŠh£hÚh·jhàj‚j#j©jˆjÞj¯jjäj:j joj@jÀjujjÆj‚j uŒ footnote_refs”}”Œ citation_refs”}”Œ autofootnotes”]”Œautofootnote_refs”]”Œsymbol_footnotes”]”Œsymbol_footnote_refs”]”Œ footnotes”]”Œ citations”]”Œautofootnote_start”KŒsymbol_footnote_start”KŒ id_counter”Œ collections”ŒCounter”“”}”…”R”Œparse_messages”]”Œtransform_messages”]”Œ transformer”NŒ include_log”]”Œ decoration”Nhžhub.