€•GbŒsphinx.addnodes”Œdocument”“”)”}”(Œ rawsource”Œ”Œchildren”]”(Œ translations”Œ LanguagesNode”“”)”}”(hhh]”(hŒ pending_xref”“”)”}”(hhh]”Œdocutils.nodes”ŒText”“”ŒChinese (Simplified)”…””}”Œparent”hsbaŒ attributes”}”(Œids”]”Œclasses”]”Œnames”]”Œdupnames”]”Œbackrefs”]”Œ refdomain”Œstd”Œreftype”Œdoc”Œ reftarget”Œ*/translations/zh_CN/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuŒtagname”hhh ubh)”}”(hhh]”hŒChinese (Traditional)”…””}”hh2sbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ*/translations/zh_TW/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒItalian”…””}”hhFsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ*/translations/it_IT/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒJapanese”…””}”hhZsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ*/translations/ja_JP/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒKorean”…””}”hhnsbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ*/translations/ko_KR/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubh)”}”(hhh]”hŒSpanish”…””}”hh‚sbah}”(h]”h ]”h"]”h$]”h&]”Œ refdomain”h)Œreftype”h+Œ reftarget”Œ*/translations/sp_SP/arch/x86/kernel-stacks”Œmodname”NŒ classname”NŒ refexplicit”ˆuh1hhh ubeh}”(h]”h ]”h"]”h$]”h&]”Œcurrent_language”ŒEnglish”uh1h hhŒ _document”hŒsource”NŒline”NubhŒcomment”“”)”}”(hŒ SPDX-License-Identifier: GPL-2.0”h]”hŒ SPDX-License-Identifier: GPL-2.0”…””}”hh£sbah}”(h]”h ]”h"]”h$]”h&]”Œ xml:space”Œpreserve”uh1h¡hhhžhhŸŒD/var/lib/git/docbuild/linux/Documentation/arch/x86/kernel-stacks.rst”h KubhŒsection”“”)”}”(hhh]”(hŒtitle”“”)”}”(hŒ Kernel Stacks”h]”hŒ Kernel Stacks”…””}”(hh»hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¹hh¶hžhhŸh³h Kubhµ)”}”(hhh]”(hº)”}”(hŒKernel stacks on x86-64 bit”h]”hŒKernel stacks on x86-64 bit”…””}”(hhÌhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¹hhÉhžhhŸh³h KubhŒ paragraph”“”)”}”(hŒ/Most of the text from Keith Owens, hacked by AK”h]”hŒ/Most of the text from Keith Owens, hacked by AK”…””}”(hhÜhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K hhÉhžhubhÛ)”}”(hŒ#x86_64 page size (PAGE_SIZE) is 4K.”h]”hŒ#x86_64 page size (PAGE_SIZE) is 4K.”…””}”(hhêhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K hhÉhžhubhÛ)”}”(hXCLike all other architectures, x86_64 has a kernel stack for every active thread. These thread stacks are THREAD_SIZE (4*PAGE_SIZE) big. These stacks contain useful data as long as a thread is alive or a zombie. While the thread is in user space the kernel stack is empty except for the thread_info structure at the bottom.”h]”hXCLike all other architectures, x86_64 has a kernel stack for every active thread. These thread stacks are THREAD_SIZE (4*PAGE_SIZE) big. These stacks contain useful data as long as a thread is alive or a zombie. While the thread is in user space the kernel stack is empty except for the thread_info structure at the bottom.”…””}”(hhøhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhhÉhžhubhÛ)”}”(hXIn addition to the per thread stacks, there are specialized stacks associated with each CPU. These stacks are only used while the kernel is in control on that CPU; when a CPU returns to user space the specialized stacks contain no useful data. The main CPU stacks are:”h]”hXIn addition to the per thread stacks, there are specialized stacks associated with each CPU. These stacks are only used while the kernel is in control on that CPU; when a CPU returns to user space the specialized stacks contain no useful data. The main CPU stacks are:”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhhÉhžhubhŒ bullet_list”“”)”}”(hhh]”hŒ list_item”“”)”}”(hXÏInterrupt stack. IRQ_STACK_SIZE Used for external hardware interrupts. If this is the first external hardware interrupt (i.e. not a nested hardware interrupt) then the kernel switches from the current task to the interrupt stack. Like the split thread and interrupt stacks on i386, this gives more room for kernel interrupt processing without having to increase the size of every per thread stack. The interrupt stack is also used when processing a softirq. ”h]”(hÛ)”}”(hŒ Interrupt stack. IRQ_STACK_SIZE”h]”hŒ Interrupt stack. IRQ_STACK_SIZE”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhjubhÛ)”}”(hXoUsed for external hardware interrupts. If this is the first external hardware interrupt (i.e. not a nested hardware interrupt) then the kernel switches from the current task to the interrupt stack. Like the split thread and interrupt stacks on i386, this gives more room for kernel interrupt processing without having to increase the size of every per thread stack.”h]”hXoUsed for external hardware interrupts. If this is the first external hardware interrupt (i.e. not a nested hardware interrupt) then the kernel switches from the current task to the interrupt stack. Like the split thread and interrupt stacks on i386, this gives more room for kernel interrupt processing without having to increase the size of every per thread stack.”…””}”(hj-hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhjubhÛ)”}”(hŒ;The interrupt stack is also used when processing a softirq.”h]”hŒ;The interrupt stack is also used when processing a softirq.”…””}”(hj;hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K"hjubeh}”(h]”h ]”h"]”h$]”h&]”uh1jhjhžhhŸh³h Nubah}”(h]”h ]”h"]”h$]”h&]”Œbullet”Œ*”uh1jhŸh³h KhhÉhžhubhÛ)”}”(hŒµSwitching to the kernel interrupt stack is done by software based on a per CPU interrupt nest counter. This is needed because x86-64 "IST" hardware stacks cannot nest without races.”h]”hŒ¹Switching to the kernel interrupt stack is done by software based on a per CPU interrupt nest counter. This is needed because x86-64 “IST†hardware stacks cannot nest without races.”…””}”(hjWhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K$hhÉhžhubhÛ)”}”(hXÙx86_64 also has a feature which is not available on i386, the ability to automatically switch to a new stack for designated events such as double fault or NMI, which makes it easier to handle these unusual events on x86_64. This feature is called the Interrupt Stack Table (IST). There can be up to 7 IST entries per CPU. The IST code is an index into the Task State Segment (TSS). The IST entries in the TSS point to dedicated stacks; each stack can be a different size.”h]”hXÙx86_64 also has a feature which is not available on i386, the ability to automatically switch to a new stack for designated events such as double fault or NMI, which makes it easier to handle these unusual events on x86_64. This feature is called the Interrupt Stack Table (IST). There can be up to 7 IST entries per CPU. The IST code is an index into the Task State Segment (TSS). The IST entries in the TSS point to dedicated stacks; each stack can be a different size.”…””}”(hjehžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K(hhÉhžhubhÛ)”}”(hXKAn IST is selected by a non-zero value in the IST field of an interrupt-gate descriptor. When an interrupt occurs and the hardware loads such a descriptor, the hardware automatically sets the new stack pointer based on the IST value, then invokes the interrupt handler. If the interrupt came from user mode, then the interrupt handler prologue will switch back to the per-thread stack. If software wants to allow nested IST interrupts then the handler must adjust the IST values on entry to and exit from the interrupt handler. (This is occasionally done, e.g. for debug exceptions.)”h]”hXKAn IST is selected by a non-zero value in the IST field of an interrupt-gate descriptor. When an interrupt occurs and the hardware loads such a descriptor, the hardware automatically sets the new stack pointer based on the IST value, then invokes the interrupt handler. If the interrupt came from user mode, then the interrupt handler prologue will switch back to the per-thread stack. If software wants to allow nested IST interrupts then the handler must adjust the IST values on entry to and exit from the interrupt handler. (This is occasionally done, e.g. for debug exceptions.)”…””}”(hjshžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K0hhÉhžhubhÛ)”}”(hXçEvents with different IST codes (i.e. with different stacks) can be nested. For example, a debug interrupt can safely be interrupted by an NMI. arch/x86_64/kernel/entry.S::paranoidentry adjusts the stack pointers on entry to and exit from all IST events, in theory allowing IST events with the same code to be nested. However in most cases, the stack size allocated to an IST assumes no nesting for the same code. If that assumption is ever broken then the stacks will become corrupt.”h]”hXçEvents with different IST codes (i.e. with different stacks) can be nested. For example, a debug interrupt can safely be interrupted by an NMI. arch/x86_64/kernel/entry.S::paranoidentry adjusts the stack pointers on entry to and exit from all IST events, in theory allowing IST events with the same code to be nested. However in most cases, the stack size allocated to an IST assumes no nesting for the same code. If that assumption is ever broken then the stacks will become corrupt.”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K:hhÉhžhubhÛ)”}”(hŒ&The currently assigned IST stacks are:”h]”hŒ&The currently assigned IST stacks are:”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KBhhÉhžhubj)”}”(hhh]”(j)”}”(hX[ESTACK_DF. EXCEPTION_STKSZ (PAGE_SIZE). Used for interrupt 8 - Double Fault Exception (#DF). Invoked when handling one exception causes another exception. Happens when the kernel is very confused (e.g. kernel stack pointer corrupt). Using a separate stack allows the kernel to recover from it well enough in many cases to still output an oops. ”h]”(hÛ)”}”(hŒ(ESTACK_DF. EXCEPTION_STKSZ (PAGE_SIZE).”h]”hŒ(ESTACK_DF. EXCEPTION_STKSZ (PAGE_SIZE).”…””}”(hj¤hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KDhj ubhÛ)”}”(hŒ4Used for interrupt 8 - Double Fault Exception (#DF).”h]”hŒ4Used for interrupt 8 - Double Fault Exception (#DF).”…””}”(hj²hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KFhj ubhÛ)”}”(hŒúInvoked when handling one exception causes another exception. Happens when the kernel is very confused (e.g. kernel stack pointer corrupt). Using a separate stack allows the kernel to recover from it well enough in many cases to still output an oops.”h]”hŒúInvoked when handling one exception causes another exception. Happens when the kernel is very confused (e.g. kernel stack pointer corrupt). Using a separate stack allows the kernel to recover from it well enough in many cases to still output an oops.”…””}”(hjÀhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KHhj ubeh}”(h]”h ]”h"]”h$]”h&]”uh1jhjhžhhŸh³h Nubj)”}”(hXESTACK_NMI. EXCEPTION_STKSZ (PAGE_SIZE). Used for non-maskable interrupts (NMI). NMI can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for NMI events avoids making assumptions about the previous state of the kernel stack. ”h]”(hÛ)”}”(hŒ)ESTACK_NMI. EXCEPTION_STKSZ (PAGE_SIZE).”h]”hŒ)ESTACK_NMI. EXCEPTION_STKSZ (PAGE_SIZE).”…””}”(hjØhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KMhjÔubhÛ)”}”(hŒ'Used for non-maskable interrupts (NMI).”h]”hŒ'Used for non-maskable interrupts (NMI).”…””}”(hjæhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KOhjÔubhÛ)”}”(hŒÃNMI can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for NMI events avoids making assumptions about the previous state of the kernel stack.”h]”hŒÃNMI can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for NMI events avoids making assumptions about the previous state of the kernel stack.”…””}”(hjôhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KQhjÔubeh}”(h]”h ]”h"]”h$]”h&]”uh1jhjhžhhŸh³h Nubj)”}”(hXbESTACK_DB. EXCEPTION_STKSZ (PAGE_SIZE). Used for hardware debug interrupts (interrupt 1) and for software debug interrupts (INT3). When debugging a kernel, debug interrupts (both hardware and software) can occur at any time. Using IST for these interrupts avoids making assumptions about the previous state of the kernel stack. To handle nested #DB correctly there exist two instances of DB stacks. On #DB entry the IST stackpointer for #DB is switched to the second instance so a nested #DB starts from a clean stack. The nested #DB switches the IST stackpointer to a guard hole to catch triple nesting. ”h]”(hÛ)”}”(hŒ(ESTACK_DB. EXCEPTION_STKSZ (PAGE_SIZE).”h]”hŒ(ESTACK_DB. EXCEPTION_STKSZ (PAGE_SIZE).”…””}”(hj hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KUhjubhÛ)”}”(hŒZUsed for hardware debug interrupts (interrupt 1) and for software debug interrupts (INT3).”h]”hŒZUsed for hardware debug interrupts (interrupt 1) and for software debug interrupts (INT3).”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KWhjubhÛ)”}”(hŒÅWhen debugging a kernel, debug interrupts (both hardware and software) can occur at any time. Using IST for these interrupts avoids making assumptions about the previous state of the kernel stack.”h]”hŒÅWhen debugging a kernel, debug interrupts (both hardware and software) can occur at any time. Using IST for these interrupts avoids making assumptions about the previous state of the kernel stack.”…””}”(hj(hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KZhjubhÛ)”}”(hXTo handle nested #DB correctly there exist two instances of DB stacks. On #DB entry the IST stackpointer for #DB is switched to the second instance so a nested #DB starts from a clean stack. The nested #DB switches the IST stackpointer to a guard hole to catch triple nesting.”h]”hXTo handle nested #DB correctly there exist two instances of DB stacks. On #DB entry the IST stackpointer for #DB is switched to the second instance so a nested #DB starts from a clean stack. The nested #DB switches the IST stackpointer to a guard hole to catch triple nesting.”…””}”(hj6hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K_hjubeh}”(h]”h ]”h"]”h$]”h&]”uh1jhjhžhhŸh³h Nubj)”}”(hX'ESTACK_MCE. EXCEPTION_STKSZ (PAGE_SIZE). Used for interrupt 18 - Machine Check Exception (#MC). MCE can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for MCE events avoids making assumptions about the previous state of the kernel stack. ”h]”(hÛ)”}”(hŒ)ESTACK_MCE. EXCEPTION_STKSZ (PAGE_SIZE).”h]”hŒ)ESTACK_MCE. EXCEPTION_STKSZ (PAGE_SIZE).”…””}”(hjNhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KdhjJubhÛ)”}”(hŒ6Used for interrupt 18 - Machine Check Exception (#MC).”h]”hŒ6Used for interrupt 18 - Machine Check Exception (#MC).”…””}”(hj\hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KfhjJubhÛ)”}”(hŒÃMCE can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for MCE events avoids making assumptions about the previous state of the kernel stack.”h]”hŒÃMCE can be delivered at any time, including when the kernel is in the middle of switching stacks. Using IST for MCE events avoids making assumptions about the previous state of the kernel stack.”…””}”(hjjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhhjJubeh}”(h]”h ]”h"]”h$]”h&]”uh1jhjhžhhŸh³h Nubeh}”(h]”h ]”h"]”h$]”h&]”jUjVuh1jhŸh³h KDhhÉhžhubhÛ)”}”(hŒFFor more details see the Intel IA32 or AMD AMD64 architecture manuals.”h]”hŒFFor more details see the Intel IA32 or AMD AMD64 architecture manuals.”…””}”(hj„hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KlhhÉhžhubeh}”(h]”Œkernel-stacks-on-x86-64-bit”ah ]”h"]”Œkernel stacks on x86-64 bit”ah$]”h&]”uh1h´hh¶hžhhŸh³h Kubhµ)”}”(hhh]”(hº)”}”(hŒPrinting backtraces on x86”h]”hŒPrinting backtraces on x86”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1h¹hjšhžhhŸh³h KpubhÛ)”}”(hŒóThe question about the '?' preceding function names in an x86 stacktrace keeps popping up, here's an indepth explanation. It helps if the reader stares at print_context_stack() and the whole machinery in and around arch/x86/kernel/dumpstack.c.”h]”hŒùThe question about the ‘?’ preceding function names in an x86 stacktrace keeps popping up, here’s an indepth explanation. It helps if the reader stares at print_context_stack() and the whole machinery in and around arch/x86/kernel/dumpstack.c.”…””}”(hj«hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KrhjšhžhubhÛ)”}”(hŒIAdapted from Ingo's mail, Message-ID: <20150521101614.GA10889@gmail.com>:”h]”(hŒ)Adapted from Ingo’s mail, Message-ID: <”…””}”(hj¹hžhhŸNh NubhŒ reference”“”)”}”(hŒ 20150521101614.GA10889@gmail.com”h]”hŒ 20150521101614.GA10889@gmail.com”…””}”(hjÃhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”Œrefuri”Œ'mailto:20150521101614.GA10889@gmail.com”uh1jÁhj¹ubhŒ>:”…””}”(hj¹hžhhŸNh Nubeh}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KwhjšhžhubhÛ)”}”(hŒ½We always scan the full kernel stack for return addresses stored on the kernel stack(s) [1]_, from stack top to stack bottom, and print out anything that 'looks like' a kernel text address.”h]”(hŒXWe always scan the full kernel stack for return addresses stored on the kernel stack(s) ”…””}”(hjÝhžhhŸNh NubhŒfootnote_reference”“”)”}”(hŒ[1]_”h]”hŒ1”…””}”(hjçhžhhŸNh Nubah}”(h]”Œid1”ah ]”h"]”h$]”h&]”Œrefid”Œid2”Œdocname”Œarch/x86/kernel-stacks”uh1jåhjÝŒresolved”KubhŒe, from stack top to stack bottom, and print out anything that ‘looks like’ a kernel text address.”…””}”(hjÝhžhhŸNh Nubeh}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KyhjšhžhubhÛ)”}”(hŒ{If it fits into the frame pointer chain, we print it without a question mark, knowing that it's part of the real backtrace.”h]”hŒ}If it fits into the frame pointer chain, we print it without a question mark, knowing that it’s part of the real backtrace.”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K}hjšhžhubhÛ)”}”(hŒ€If the address does not fit into our expected frame pointer chain we still print it, but we print a '?'. It can mean two things:”h]”hŒ„If the address does not fit into our expected frame pointer chain we still print it, but we print a ‘?’. It can mean two things:”…””}”(hjhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K€hjšhžhubhŒ block_quote”“”)”}”(hX- either the address is not part of the call chain: it's just stale values on the kernel stack, from earlier function calls. This is the common case. - or it is part of the call chain, but the frame pointer was not set up properly within the function, so we don't recognize it. ”h]”j)”}”(hhh]”(j)”}”(hŒ”either the address is not part of the call chain: it's just stale values on the kernel stack, from earlier function calls. This is the common case. ”h]”hÛ)”}”(hŒ“either the address is not part of the call chain: it's just stale values on the kernel stack, from earlier function calls. This is the common case.”h]”hŒ•either the address is not part of the call chain: it’s just stale values on the kernel stack, from earlier function calls. This is the common case.”…””}”(hj.hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h Kƒhj*ubah}”(h]”h ]”h"]”h$]”h&]”uh1jhj'ubj)”}”(hŒ~or it is part of the call chain, but the frame pointer was not set up properly within the function, so we don't recognize it. ”h]”hÛ)”}”(hŒ}or it is part of the call chain, but the frame pointer was not set up properly within the function, so we don't recognize it.”h]”hŒor it is part of the call chain, but the frame pointer was not set up properly within the function, so we don’t recognize it.”…””}”(hjFhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K‡hjBubah}”(h]”h ]”h"]”h$]”h&]”uh1jhj'ubeh}”(h]”h ]”h"]”h$]”h&]”jUŒ-”uh1jhŸh³h Kƒhj#ubah}”(h]”h ]”h"]”h$]”h&]”uh1j!hŸh³h KƒhjšhžhubhÛ)”}”(hX7This way we will always print out the real call chain (plus a few more entries), regardless of whether the frame pointer was set up correctly or not - but in most cases we'll get the call chain right as well. The entries printed are strictly in stack order, so you can deduce more information from that as well.”h]”hX9This way we will always print out the real call chain (plus a few more entries), regardless of whether the frame pointer was set up correctly or not - but in most cases we’ll get the call chain right as well. The entries printed are strictly in stack order, so you can deduce more information from that as well.”…””}”(hjghžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KŠhjšhžhubhÛ)”}”(hX,The most important property of this method is that we _never_ lose information: we always strive to print _all_ addresses on the stack(s) that look like kernel text addresses, so if debug information is wrong, we still print out the real call chain as well - just with more question marks than ideal.”h]”hX,The most important property of this method is that we _never_ lose information: we always strive to print _all_ addresses on the stack(s) that look like kernel text addresses, so if debug information is wrong, we still print out the real call chain as well - just with more question marks than ideal.”…””}”(hjuhžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h KhjšhžhubhŒfootnote”“”)”}”(hŒ»For things like IRQ and IST stacks, we also scan those stacks, in the right order, and try to cross from one stack into another reconstructing the call chain. This works most of the time.”h]”(hŒlabel”“”)”}”(hŒ1”h]”hŒ1”…””}”(hj‹hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1j‰hj…ubhÛ)”}”(hŒ»For things like IRQ and IST stacks, we also scan those stacks, in the right order, and try to cross from one stack into another reconstructing the call chain. This works most of the time.”h]”hŒ»For things like IRQ and IST stacks, we also scan those stacks, in the right order, and try to cross from one stack into another reconstructing the call chain. This works most of the time.”…””}”(hj™hžhhŸNh Nubah}”(h]”h ]”h"]”h$]”h&]”uh1hÚhŸh³h K–hj…ubeh}”(h]”j÷ah ]”h"]”Œ1”ah$]”h&]”jñajøjùuh1jƒhŸh³h K–hjšhžhjúKubeh}”(h]”Œprinting-backtraces-on-x86”ah ]”h"]”Œprinting backtraces on x86”ah$]”h&]”uh1h´hh¶hžhhŸh³h Kpubeh}”(h]”Œ kernel-stacks”ah ]”h"]”Œ kernel stacks”ah$]”h&]”uh1h´hhhžhhŸh³h Kubeh}”(h]”h ]”h"]”h$]”h&]”Œsource”h³uh1hŒcurrent_source”NŒ current_line”NŒsettings”Œdocutils.frontend”ŒValues”“”)”}”(h¹NŒ generator”NŒ datestamp”NŒ source_link”NŒ source_url”NŒ toc_backlinks”Œentry”Œfootnote_backlinks”KŒ sectnum_xform”KŒstrip_comments”NŒstrip_elements_with_classes”NŒ strip_classes”NŒ report_level”KŒ halt_level”KŒexit_status_level”KŒdebug”NŒwarning_stream”NŒ traceback”ˆŒinput_encoding”Œ utf-8-sig”Œinput_encoding_error_handler”Œstrict”Œoutput_encoding”Œutf-8”Œoutput_encoding_error_handler”jáŒerror_encoding”Œutf-8”Œerror_encoding_error_handler”Œbackslashreplace”Œ language_code”Œen”Œrecord_dependencies”NŒconfig”NŒ id_prefix”hŒauto_id_prefix”Œid”Œ dump_settings”NŒdump_internals”NŒdump_transforms”NŒdump_pseudo_xml”NŒexpose_internals”NŒstrict_visitor”NŒ_disable_config”NŒ_source”h³Œ _destination”NŒ _config_files”]”Œ7/var/lib/git/docbuild/linux/Documentation/docutils.conf”aŒfile_insertion_enabled”ˆŒ raw_enabled”KŒline_length_limit”M'Œpep_references”NŒ pep_base_url”Œhttps://peps.python.org/”Œpep_file_url_template”Œpep-%04d”Œrfc_references”NŒ rfc_base_url”Œ&https://datatracker.ietf.org/doc/html/”Œ tab_width”KŒtrim_footnote_reference_space”‰Œsyntax_highlight”Œlong”Œ smart_quotes”ˆŒsmartquotes_locales”]”Œcharacter_level_inline_markup”‰Œdoctitle_xform”‰Œ docinfo_xform”KŒsectsubtitle_xform”‰Œ image_loading”Œlink”Œembed_stylesheet”‰Œcloak_email_addresses”ˆŒsection_self_link”‰Œenv”NubŒreporter”NŒindirect_targets”]”Œsubstitution_defs”}”Œsubstitution_names”}”Œrefnames”}”Œ1”]”jçasŒrefids”}”Œnameids”}”(j»j¸j—j”j³j°j«j÷uŒ nametypes”}”(j»‰j—‰j³‰j«ˆuh}”(j¸h¶j”hÉj°jšjñjçj÷j…uŒ footnote_refs”}”j!]”jçasŒ citation_refs”}”Œ autofootnotes”]”Œautofootnote_refs”]”Œsymbol_footnotes”]”Œsymbol_footnote_refs”]”Œ footnotes”]”j…aŒ citations”]”Œautofootnote_start”KŒsymbol_footnote_start”KŒ id_counter”Œ collections”ŒCounter”“”}”jïKs…”R”Œparse_messages”]”Œtransform_messages”]”Œ transformer”NŒ include_log”]”Œ decoration”Nhžhub.