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The development of Linux is unusual in that it was built with a practical rather
than a theoretical emphasis. While many of the algorithms in the Virtual Mem-
ory (VM) system were designed by theorists, the implementations have diverged
considerably. Instead of following the traditional development cycle of design to
implementation, changes are made based on �real world� behavior and intuitive de-
cisions by developers.

This has resulted in a poorly documented VM understood only by a small core
group of developers and is addressed only by overviews in a small number of books
or web sites. This requires that even a casual observer invest a large amount of
time to study code and the �eld of Memory Management to understand the VM
implementation. The problem is compounded by the fact that code only states what
occurs in a very small instance making it di�cult to see how the overall system
functions. This is analogous to using a microscope to identify a piece of furniture.

As Linux gains in popularity in the business and academic worlds, more de-
velopers are expressing an interest in the Linux Kernel and the lack of detailed
documentation is a signi�cant barrier to entry. The objective of this thesis is to
document fully how the VM in kernel 2.4.20 is implemented including its structure,
the algorithms used, the implementations thereof and the Linux speci�c features.
Combined with the companion document �Code Commentary on the Linux Virtual
Memory Manager� these documents represents a detailed tour of the VM explaining
line by line how the it operates, its theoretical basis and approaches to studying and
understanding the VM.

It is envisioned that this will drastically reduce the amount of time a developer
or researcher needs to invest to understand what is happening inside the Linux VM.
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Chapter 1

Introduction

Linux is a relatively new operating system that has begun to enjoy a lot of attention

from the business, academic and free software worlds. As the operating system

matures, its feature set, capabilities and performance grow but so, out of necessity

does its size and complexity. The table in Figure 1.1 shows the size of the kernel

source code in bytes and lines of code of the mm/ part of the kernel tree. This does

not include the machine dependent code or any of the bu�er management code and

does not even pretend to be an accurate metric for complexity but still serves as a

small indicator.

Version Release Date Total Size Size of mm/ Line count
1.0 March 13th, 1992 5.9MiB 96KiB 3109
1.2.13 February 8th, 1995 11MiB 136KiB 4531
2.0.39 January 9th 2001 35MiB 204KiB 6792
2.2.22 September 16th, 2002 93MiB 292KiB 9554
2.4.22 August 25th, 2003 181MiB 436KiB 15724
2.6.0-test4 August 22nd, 2003 261MiB 604KiB 21714

Table 1.1: Kernel size as an indicator of complexity

As is the habit of open source developers in general, new developers ask-

ing questions are sometimes told to refer directly to the source with the �po-

lite� acronym RTFS1 or else are referred to the kernel newbies mailing list

(http://www.kernelnewbies.org). With the Linux Virtual Memory (VM) manager,

this used to be a suitable response as the time required to understand the VM could

be measured in weeks and the books available devoted enough time to the memory

management chapters to make the relatively small amount of code easy to navigate.

The books that describe the operating system such as Understanding the Linux

1Read The Flaming Source. It doesn't really stand for Flaming but there could be children
watching.

1



1.1. Getting Started 2

Kernel [BC00] [BC03], Understanding the Linux Kernel tend to cover the en-

tire kernel rather than one topic with the notable exception of device drivers [RC01].

These books, particularly Understanding the Linux Kernel, provide invaluable in-

sight into kernel internals but they miss the details which are speci�c to the VM and

not of general interest. For example, it is detailed in this book why ZONE_NORMAL

is exactly 896MiB and exactly how per-cpu caches are implemented. Other aspects

of the VM, such as the boot memory allocator and the virtual memory �lesystem

which are not of general kernel interest are also covered by this book.

Increasingly, to get a comprehensive view on how the kernel functions, one is

required to read through the source code line by line. This book tackles the VM

speci�cally so that this investment of time to understand it will be measured in

weeks and not months. The details which are missed by the main part of the book

will be caught by the code commentary.

In this chapter, there will be in informal introduction to the basics of acquiring

information on an open source project and some methods for managing, browsing

and comprehending the code. If you do not intend to be reading the actual source,

you may skip to Chapter 2.

1.1 Getting Started

One of the largest initial obstacles to understanding code is deciding where to start

and how to easily manage, browse and get an overview of the overall code structure.

If requested on mailing lists, people will provide some suggestions on how to proceed

but a comprehensive methodology is rarely o�ered aside from suggestions to keep

reading the source until it makes sense. In the following sections, some useful rules

of thumb for open source code comprehension will be introduced and speci�cally on

how they may be applied to the kernel.

1.1.1 Con�guration and Building

Kernel Con�guration

With any open source project, the �rst step is to download the source and

read the installation documentation. By convention, the source will have a README

or INSTALL �le at the top-level of the source tree [FF02]. In fact, some automated

build tools such as automake require the install �le to exist. These �les will contain
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instructions for con�guring and installing the package or will give a reference to

where more information may be found. Linux is no exception as it includes a README

which describes how the kernel may be con�gured and built.

The second step is to build the software. In earlier days, the requirement for

many projects was to edit the Makefile by hand but this is rarely the case now.

Free software usually uses at leastautoconf autoconf2 to automate testing of the

build environment andautomake automake3 to simplify the creation of Makefiles

so building is often as simple as:

mel@joshua: project $ ./configure && make

Some older projects, such as the Linux kernel, use their own con�guration tools

and some large projects such as the Apache webserver have numerous con�guration

options but usually the con�gure script is the starting point. In the case of the

kernel, the con�guration is handled by the Makefiles and supporting tools. The

simplest means of con�guration is to:

mel@joshua: linux-2.4.22 $ make config

This asks a long series of questions on what type of kernel should be built. Once

all the questions have been answered, compiling the kernel is simply:

mel@joshua: linux-2.4.22 $ make bzImage && make modules

A comprehensive guide on con�guring and compiling a kernel is available with

the Kernel HOWTO4 and will not be covered in detail with this book. For now, we

will presume you have one fully built kernel and it is time to begin �guring out how

the new kernel actually works.

1.1.2 Sources of Information

Kernel Documentation

Open Source projects will usually have a home page, especially since free project

hosting sites such as http://www.sourceforge.netSourceforge.net are available.

The home site will contain links to available documentation and instructions on

how to join the mailing list, if one is available. Some sort of documentation will

2http://www.gnu.org/software/autoconf/
3http://www.gnu.org/software/automake/
4http://www.tldp.org/HOWTO/Kernel-HOWTO/index.html
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always exist, even if it is as minimal as a simple README �le, so read whatever is

available. If the project is old and reasonably large, the web site will probably

feature a Frequently Asked Questions (FAQ).

Next, join the development mailing list and lurk, which means to subscribe to a

mailing list and read it without posting. Mailing lists are the preferred form of devel-

oper communication followed by, to a lesser extent, Internet Relay Chat (IRC) and

online newgroups, commonly referred to as UseNet . As mailing lists often contain

discussions on implementation details, it is important to read at least the previous

months archives to get a feel for the developer community and current activity. The

mailing list archives should be the �rst place to search if you have a question or

query on the implementation that is not covered by available documentation. If you

have a question to ask the developers, take time to research the questions and ask

it the �Right Way� [RM01]. While there are people who will answer �obvious� ques-

tions, it will not do your credibility any favours to be constantly asking questions

that were answered a week previously or are clearly documented.

Now, how does all this apply to Linux? First, the documentation. There is a

README at the top of the source tree and a wealth of information is available in the

Documentation/ directory. There also is a number of books on UNIX design [Vah96],

Linux speci�cally [BC00] and of course this book to explain what to expect in the

code.

One of the best online sources of information available on kernel development is

the �Kernel Page� in the weekly edition of Linux Weekly News (http://www.lwn.net)Linux

Weekly News (LWN). It also reports on a wide range of Linux related topics and

is worth a regular read. The kernel does not have a home web site as such but the

closest equivalent is http://www.kernelnewbies.orgLinux Kernel Newbies which is

a vast source of information on the kernel that is invaluable to new and experienced

people alike.

There is a FAQ available for the Linux Kernel Mailing List (LKML) at

http://www.tux.org/lkml/ that covers questions, ranging from the kernel develop-

ment process to how to join the list itself. The list is archived at many sites

but a common choice to reference is http://marc.theaimsgroup.com/?l=linux-kernel.

Be aware that the mailing list is very high volume list which can be a very

daunting read but a weekly summary is provided by the Kernel Tra�c site at

http://kt.zork.net/kernel-tra�c/.
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The sites and sources mentioned so far contain general kernel information

but there are memory management speci�c sources. There is a Linux-MM

web siteLinux-MM Website at http://www.linux-mm.org which contains links

to memory management speci�c documentation and a linux-mm mailing list.

The list is relatively light in comparison to the main list and is archived at

http://mail.nl.linux.org/linux-mm/.

The last site that to consult is the Kernel Trap site at http://www.kerneltrap.org.

The site contains many useful articles on kernels in general. It is not speci�c to

Linux but it does contain many Linux related articles and interviews with kernel

developers.

As is clear, there is a vast amount of information that is available that may be

consulted before resorting to the code. With enough experience, it will eventually

be faster to consult the source directly but when getting started, check other sources

of information �rst.

1.2 Managing the Source

The mainline or stock kernel is principally distributed as a compressed tape archive

(.tar.bz) �le which is available from your nearest kernel source repository, in Ireland's

case ftp://ftp.ie.kernel.org/. The stock kernel is always considered to be the one

released by the tree maintainer. For example, at time of writing, the stock kernels

for 2.2.x are those released by Alan Cox5, for 2.4.x by Marcelo Tosatti and for 2.5.x by

Linus Torvalds. At each release, the full tar �le is available as well as a smaller patch

which contains the di�erences between the two releases. Patching is the preferred

method of upgrading because of bandwidth considerations. Contributions made to

the kernel are almost always in the form of patches which are uni�ed di�s generated

by the GNU tool di� .

Why patches Patch usageKernel Patching

Sending patches to the mailing list initially sounds clumsy but it is remarkable

e�cient in the kernel development environment. The principal advantage of patches

is that it is much easier to read what changes have been made than to compare two

full versions of a �le side by side. A developer familiar with the code can easily see

5Last minute update, Alan is just after announcing he was going on sabbatical and will no
longer maintain the 2.2.x tree. There is no maintainer at the moment.
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what impact the changes will have and if it should be merged. In addition, it is very

easy to quote the email that includes the patch and request more information about

it.

Subtrees Kernel SubtreesAt various intervals, individual in�uential developers

may have their own version of the kernel distributed as a large patch to the main

tree. These subtrees generally contain features or cleanups which have not been

merged to the mainstream yet or are still being tested. Two notable subtrees is the

-rmap tree maintained by Rik Van Riel, a long time in�uential VM developer and

the -mm tree maintained by Andrew Morton, the current maintainer of the stock

development VM. The -rmap tree contains a large set of features that for various

reasons are not available in the mainline. It is heavily in�uenced by the FreeBSD

VM and has a number of signi�cant di�erences to the stock VM. The -mm tree is

quite di�erent to -rmap in that it is a testing tree with patches that are being tested

before merging into the stock kernel.

BitKeeper BitKeeperIn more recent times, some developers have started using

a source code control system called BitKeeper (http://www.bitmover.com), a pro-

prietary version control system that was designed with the Linux as the principal

consideration. BitKeeper allows developers to have their own distributed version

of the tree and other users may �pull� sets of patches called changesets from each

others trees. This distributed nature is a very important distinction from traditional

version control software which depends on a central server.

BitKeeper allows comments to be associated with each patch which is displayed

as part of the release information for each kernel. For Linux, this means that the

email that originally submitted the patch is preserved making the progress of kernel

development and the meaning of di�erent patches a lot more transparent. On release,

a list of the patch titles from each developer is announced as well as a detailed list

of all patches included.

As BitKeeper is a proprietary product, email and patches are still considered the

only method for generating discussion on code changes. In fact, some patches will

not be considered for acceptance unless there is �rst some discussion on the main

mailing list as code quality is considered to be directly related to the amount of peer

review [Ray02]. As the BitKeeper maintained source tree is exported in formats
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accessible to open source tools like CVS, patches are still the preferred means of

discussion. It means that no developer is required to use BitKeeper for making

contributions to the kernel but the tool is still something that developers should be

aware of.

1.2.1 Di� and Patch

Patch Generation

The two tools for creating and applying patches are di� and patch, both of

which are GNU utilities available from the GNU website6. di� is used to generate

patches and patch is used to apply them. While the tools have numerous options,

there is a �preferred usage�.

Patches generated with di� should always be uni�ed di�, include the C function

that the change a�ects and be generated from one directory above the kernel source

root. A uni�ed di� include more information that just the di�erences between two

lines. It begins with a two line header with the names and creation date of the two

�les that di� is comparing. After that, the �di�� will consist of one or more �hunks�.

The beginning of each hunk is marked with a line beginning with @@ which includes

the starting line in the source code and how many lines there is before and after

the hunk is applied. The hunk includes �context� lines which show lines above and

below the changes to aid a human reader. Each line begins with a +, - or blank. If

the mark is +, the line is added. If a -, the line is removed and a blank is to leave

the line alone as it is there just to provide context. The reasoning behind generating

from one directory above the kernel root is that it is easy to see quickly what version

the patch has been applied against and it makes the scripting of applying patches

easier if each patch is generated the same way.

Let us take for example, a very simple change has been made to mm/page_alloc.c

which adds a small piece of commentary. The patch is generated as follows. Note

that this command should be all one one line minus the backslashes.

mel@joshua: kernels/ $ diff -up \

linux-2.4.22-clean/mm/page_alloc.c \

linux-2.4.22-mel/mm/page_alloc.c > example.patch

This generates a uni�ed context di� (-u switch) between two �les and places the

patch in example.patch as shown in Figure 1.2.1. It also displays the name of the

6http://www.gnu.org
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a�ected C function.

--- linux-2.4.22-clean/mm/page_alloc.c Thu Sep 4 03:53:15 2003

+++ linux-2.4.22-mel/mm/page_alloc.c Thu Sep 3 03:54:07 2003

@@ -76,8 +76,23 @@

* triggers coalescing into a block of larger size.

*

* -- wli

+ *

+ * There is a brief explanation of how a buddy algorithm works at

+ * http://www.memorymanagement.org/articles/alloc.html . A better idea

+ * is to read the explanation from a book like UNIX Internals by

+ * Uresh Vahalia

+ *

*/

+/**

+ *

+ * __free_pages_ok - Returns pages to the buddy allocator

+ * @page: The first page of the block to be freed

+ * @order: 2^order number of pages are freed

+ *

+ * This function returns the pages allocated by __alloc_pages and tries to

+ * merge buddies if possible. Do not call directly, use free_pages()

+ **/

static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));

static void __free_pages_ok (struct page *page, unsigned int order)

{

Figure 1.1: Example Patch

From this patch, it is clear even at a casual glance what �les are a�ected

(page_alloc.c), what line it starts at (76) and the new lines added are clearly

marked with a + . In a patch, there may be several �hunks� which are marked

with a line starting with @@ . Each hunk will be treated separately during patch

application.

Broadly speaking, patches come in two varieties; plain text such as the one above

which are sent to the mailing list and compressed patches that are compressed

with either gzip (.gz extension) or bzip2 (.bz2 extension). It is usually safe to

assume that patches were generated one directory above the root of the kernel source

tree. This means that while the patch is generated one directory above, it may be

applied with the option -p1 while the current directory is the kernel source tree root.
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Broadly speaking, this means a plain text patch to a clean tree can be easily

applied as follows:

mel@joshua: kernels/ $ cd linux-2.4.22-clean/

mel@joshua: linux-2.4.22-clean/ $ patch -p1 < ../example.patch

patching file mm/page_alloc.c

mel@joshua: linux-2.4.22-clean/ $

To apply a compressed patch, it is a simple extension to just decompress the

patch to standard out (stdout) �rst.

mel@joshua: linux-2.4.22-mel/ $ gzip -dc ../example.patch.gz | patch -p1

If a hunk can be applied but the line numbers are di�erent, the hunk number

and the number of lines needed to o�set will be output. These are generally safe

warnings and may be ignored. If there are slight di�erences in the context, it will be

applied and the level of �fuzziness� will be printed which should be double checked.

If a hunk fails to apply, it will be saved to filename.c.rej and the original �le will

be saved to filename.c.orig and have to be applied manually.

1.2.2 Basic Source Management with PatchSet

PatchSet

The untarring of sources, management of patches and building of kernels is ini-

tially interesting but quickly palls. To cut down on the tedium of patch man-

agement, a simple tool was developed while writing this book called PatchSet

which is designed the easily manage the kernel source and patches eliminating

a large amount of the tedium. It is fully documented and freely available from

http://www.csn.ul.ie/∼mel/projects/patchset/ and on the companion CD.

Downloading Downloading kernels and patches in itself is quite tedious and

scripts are provided to make the task simpler. First, the con�guration �le

etc/patchset.conf should be edited and the KERNEL_MIRROR parameter updated

for your local http://www.kernel.org/ mirror. Once that is done, use the script

download to download patches and kernel sources. A simple use of the script is as

follows
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mel@joshua: patchset/ $ download 2.4.18

# Will download the 2.4.18 kernel source

mel@joshua: patchset/ $ download -p 2.4.19

# Will download a patch for 2.4.19

mel@joshua: patchset/ $ download -p -b 2.4.20

# Will download a bzip2 patch for 2.4.20

Once the relevant sources or patches have been downloaded, it is time to con�gure

a kernel build.

Con�guring Builds Files called set con�guration �les are used to specify what

kernel source tar to use, what patches to apply, what kernel con�guration (generated

by make con�g) to use and what the resulting kernel is to be called. A sample

speci�cation �le to build kernel 2.4.20-rmap15f is;

linux-2.4.18.tar.gz

2.4.20-rmap15f

config_generic

1 patch-2.4.19.gz

1 patch-2.4.20.bz2

1 2.4.20-rmap15f

This �rst line says to unpack a source tree starting with linux-2.4.18.tar.gz.

The second line speci�es that the kernel will be called 2.4.20-rmap15f. 2.4.20

was selected for this example as rmap patches against a later stable release were

not available at the time of writing. To check for updated rmap patches, see

http://surriel.com/patches/. The third line speci�es which kernel .config �le to

use for compiling the kernel. Each line after that has two parts. The �rst part says

what patch depth to use i.e. what number to use with the -p switch to patch. As

discussed earlier in Section 1.2.1, this is usually 1 for applying patches while in the

source directory. The second is the name of the patch stored in the patches direc-

tory. The above example will apply two patches to update the kernel from 2.4.18 to

2.4.20 before building the 2.4.20-rmap15f kernel tree.

If the kernel con�guration �le required is very simple, then use the createset

script to generate a set �le for you. It simply takes a kernel version as a parameter

and guesses how to build it based on available sources and patches.
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mel@joshua: patchset/ $ createset 2.4.20

Building a Kernel The package comes with three scripts. The �rst script, called

make-kernel.sh, will unpack the kernel to the kernels/ directory and build it

if requested. If the target distribution is Debian, it can also create Debian pack-

ages for easy installation by specifying the -d switch. The second, called make-

gengraph.sh, will unpack the kernel but instead of building an installable kernel,

it will generate the �les required to use CodeViz, discussed in the next section, for

creating call graphs. The last, called make-lxr.sh, will install a kernel for use with

LXR.

Generating Di�s Ultimately, you will need to see the di�erence between �les in

two trees or generate a �di�� of changes you have made yourself. Three small scripts

are provided to make this task easier. The �rst is setclean which sets the source

tree to compare from. The second is setworking to set the path of the kernel tree

you are comparing against or working on. The third is di�tree which will generate

di�s against �les or directories in the two trees. To generate the di� shown in Figure

1.2.1, the following would have worked;

mel@joshua: patchset/ $ setclean linux-2.4.22-clean

mel@joshua: patchset/ $ setworking linux-2.4.22-mel

mel@joshua: patchset/ $ difftree mm/page_alloc.c

The generated di� is a uni�ed di� with the C function context included and

complies with the recommended usage of di�. Two additional scripts are available

which are very useful when tracking changes between two trees. They are di�struct

and di�func. These are for printing out the di�erences between individual struc-

tures and functions. When used �rst, the -f switch must be used to record what

source �le the structure or function is declared in but it is only needed the �rst time.

1.3 Browsing the Code

Browsing Code

When code is small and manageable, it is not particularly di�cult to browse

through the code as operations are clustered together in the same �le and there

is not much coupling between modules. The kernel unfortunately does not always

exhibit this behaviour. Functions of interest may be spread across multiple �les or
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contained as inline functions in headers. To complicate matters, �les of interest may

be buried beneath architecture speci�c directories making tracking them down time

consuming.

One solution for easy code browsing is ctags(http://ctags.sourceforge.net/ ) which

generates tag �les from a set of source �les. These tags can be used to jump to the C

�le and line where the identi�er is declared with editors such as Vi and Emacs. In

the event there is multiple instances of the same tag, such as with multiple functions

with the same name, the correct one may be selected from a list. This method works

best when one is editing the code as it allows very fast navigation through the code

to be con�ned to one terminal window.

A more friendly browsing method is available with the Linux Cross-Referencing

(LXR) tool hosted at http://lxr.linux.no/. This tool provides the ability to represent

source code as browsable web pages. Identi�ers such as global variables, macros

and functions become hyperlinks. When clicked, the location where it is de�ned is

displayed along with every �le and line referencing the de�nition. This makes code

navigation very convenient and is almost essential when reading the code for the

�rst time.

The tool is very simple to install and and browsable version of the kernel 2.4.22

source is available on the CD included with this book. All code extracts throughout

the book are based on the output of LXR so that the line numbers would be clearly

visible in excerpts.

1.3.1 Analysing Code Flow

As separate modules share code across multiple C �les, it can be di�cult to see

what functions are a�ected by a given code path without tracing through all the

code manually. For a large or deep code path, this can be extremely time consuming

to answer what should be a simple question.

One simple, but e�ective tool to use is CodeViz which is a call graph gener-

ator and is included with the CD. It uses a modi�ed compiler for either C or

C++ to collect information necessary to generate the graph. The tool is hosted

at http://www.csn.ul.ie/∼mel/projects/codeviz/.

During compilation with the modi�ed compiler, �les with a .cdep extension are

generated for each C �le. This .cdep �le contains all function declarations and

calls made in the C �le. These �les are distilled with a program called genfull to
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generate a full call graph of the entire source code which can be rendered with dot,

part of the GraphViz project hosted at http://www.graphviz.org/.

In the kernel compiled for the computer this book was written on, there were a

total of 40,165 entries in the full.graph �le generated by genfull. This call graph

is essentially useless on its own because of its size so a second tool is provided called

gengraph. This program, at basic usage, takes the name of one or more functions

as an argument and generates postscript �le with the call graph of the requested

function as the root node. The postscript �le may be viewed with ghostview or

gv.

The generated graphs can be to unnecessary depth or show functions that the

user is not interested in, therefore there are three limiting options to graph genera-

tion. The �rst is limit by depth where functions that are greater than N levels deep

in a call chain are ignored. The second is to totally ignore a function so it will not

appear on the call graph or any of the functions they call. The last is to display

a function, but not traverse it which is convenient when the function is covered on

a separate call graph or is a known API whose implementation is not currently of

interest.

All call graphs shown in these documents are generated with the CodeViz tool

as it is often much easier to understand a subsystem at �rst glance when a call graph

is available. It has been tested with a number of other open source projects based

on C and has wider application than just the kernel.

1.3.2 Simple Graph Generation

Call graph generation

If both PatchSet and CodeViz are installed, the �rst call graph in this book

shown in Figure 3.4 can be generated and viewed with the following set of commands.

For brevity, the output of the commands is omitted:

mel@joshua: patchset $ download 2.4.22

mel@joshua: patchset $ createset 2.4.22

mel@joshua: patchset $ make-gengraph.sh 2.4.22

mel@joshua: patchset $ cd kernels/linux-2.4.22

mel@joshua: linux-2.4.22 $ gengraph -t -s "alloc_bootmem_low_pages \

zone_sizes_init" -f paging_init

mel@joshua: linux-2.4.22 $ gv paging_init.ps
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1.4 Reading the Code

Code Comprehension

When a new developer or researcher asks how to start reading the code, they

are often recommended to start with the initialisation code and work from there.

This may not be the best approach for everyone as initialisation is quite architecture

dependent and requires detailed hardware knowledge to decipher it. It also gives

very little information on how a subsystem like the VM works as it is during the late

stages of initialisation that memory is set up in the way the running system sees it.

The best starting point to understanding the VM is this book and the code

commentary. It describes a VM that is reasonably comprehensive without being

overly complicated. Later VMs are more complex but are essentially extensions of

the one described here.

For when the code has to be approached afresh with a later VM, it is always best

to start in an isolated region that has the minimum number of dependencies. In the

case of the VM, the best starting point is the Out Of Memory (OOM) manager in

mm/oom_kill.c. It is a very gentle introduction to one corner of the VM where a

process is selected to be killed in the event that memory in the system is low. It

is because it touches so many di�erent aspects of the VM that is covered last in

this book! The second subsystem to then examine is the non-contiguous memory

allocator located in mm/vmalloc.c and discussed in Chapter 7 as it is reasonably

contained within one �le. The third system should be physical page allocator located

in mm/page_alloc.c and discussed in Chapter 6 for similar reasons. The fourth

system of interest is the creation of VMAs and memory areas for processes discussed

in Chapter 4. Between these systems, they have the bulk of the code patterns that

are prevalent throughout the rest of the kernel code making the deciphering of more

complex systems such as the page replacement policy or the bu�er IO much easier

to comprehend.

Benchmarking kernslsKernel Benchmarking The second recommenda-

tion that is given by experienced developers is to benchmark and test the VM.

There are many benchmark programs available but commonly used ones are Con-

Test(http://members.optusnet.com.au/ckolivas/contest/ ), SPEC(http://www.specbench.org/ ),

lmbench(http://www.bitmover.com/lmbench/ and dbench(http://freshmeat.net/projects/dbench/ ).

For many purposes, these benchmarks will �t the requirements.
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Unfortunately it is di�cult to test just the VM accurately and benchmarking it

is frequently based on timing a task such as a kernel compile. A tool called VM

Regress is available at http://www.csn.ul.ie/∼mel/vmregress/ that lays the founda-

tion required to build a fully �edged testing, regression and benchmarking tool for

the VM. It uses a combination of kernel modules and userspace tools to test small

parts of the VM in a reproducible manner and has one benchmark for testing the

page replacement policy using a large reference string. It is intended as a framework

for the development of a testing utility and has a number of Perl libraries and helper

kernel modules to do much of the work but is still in the early stages of development

so use with care.

1.5 Submitting Patches

Patch submission

There are two �les, SubmittingPatches and CodingStyle, in the Documentation/

directory which cover the important basics. However, there is very little documenta-

tion describing how to get patches merged. This section will give a brief introduction

on how, broadly speaking, patches are managed.

First and foremost, the coding style of the kernel needs to be adhered to as

having a style inconsistent with the main kernel will be a barrier to getting merged

regardless of the technical merit. Once a patch has been developed, the �rst problem

is to decide where to send it. Kernel development has a de�nite, if non-apparent,

hierarchy of who handles patches and how to get them submitted. As an example,

we'll take the case of 2.5.x development.

The �rst check to make is if the patch is very small or trivial. If it is, post it

to the main kernel mailing list. If there is no bad reaction, it can be fed to what

is called the Trivial Patch Monkey7. The trivial patch monkey is exactly what it

sounds like, it takes small patches and feeds them en-masse to the correct people.

This is best suited for documentation, commentary or one-liner patches.

Patches are managed through what could be loosely called a set of rings with

Linus in the very middle having the �nal say on what gets accepted into the main

tree. Linus, with rare exceptions, accepts patches only from who he refers to as his

�lieutenants�, a group of around 10 people who he trusts to �feed� him correct code.

7http://www.kernel.org/pub/linux/kernel/people/rusty/trivial/
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An example lieutenant is Andrew Morton, the VM maintainer at time of writing.

Any change to the VM has to be accepted by Andrew before it will get to Linus.

These people are generally maintainers of a particular system but sometimes will

�feed� him patches from another subsystem if they feel it is important enough.

Each of the lieutenants are active developers on di�erent subsystems. Just like

Linus, they have a small set of developers they trust to be knowledgeable about the

patch they are sending but will also pick up patches which a�ect their subsystem

more readily. Depending on the subsystem, the list of people they trust will be

heavily in�uenced by the list of maintainers in the MAINTAINERS �le. The second

major area of in�uence will be from the subsystem speci�c mailing list if there is

one. The VM does not have a list of maintainers but it does have a mailing list8.

The maintainers and lieutenants are crucial to the acceptance of patches. Linus,

broadly speaking, does not appear to wish to be convinced with argument alone on

the merit for a signi�cant patch but prefers to hear it from one of his lieutenants,

which is understandable considering the volume of patches that exists.

In summary, a new patch should be emailed to the subsystem mailing list cc'd

to the main list to generate discussion. If there is no reaction, it should be sent to

the maintainer for that area of code if there is one and to the lieutenant if there is

not. Once it has been picked up by a maintainer or lieutenant, chances are it will

be merged. The important key is that patches and ideas must be released early and

often so developers have a chance to look at it while it is still manageable. There

are notable cases where massive patches merging with the main tree because there

were long periods of silence with little or no discussion. A recent example of this

is the Linux Kernel Crash Dump project which still has not been merged into the

main stream because there has not enough favorable feedback from lieutenants or

strong support from vendors.

8http://www.linux-mm.org/mailinglists.shtml



Chapter 2

Describing Physical Memory

Linux is available for a wide range of architectures so there needs to be an

architecture-independent way of describing memory. This chapter describes the

structures used to keep account of memory banks, pages and the �ags that a�ect

VM behaviour.

The �rst principal concept prevalent in the VM is Non-Uniform Memory Access

(NUMA)NUMA. With large scale machines, memory may be arranged into banks

that incur a di�erent cost to access depending on the �distance� from the processor.

For example, there might be a bank of memory assigned to each CPU or a bank of

memory very suitable for DMA near device cards.

Each bank is called a nodeNodes and the concept is represented under Linux

by a struct pglist_data even if the architecture is UMA. This struct is always

referenced to by it's typedef pg_data_t. Every node in the system is kept on a

NULL terminated list called pgdat_list and each node is linked to the next with

the �eld pg_data_t→node_next. For UMA architectures like PC desktops, only

one static pg_data_t structure called contig_page_data is used. Nodes will be

discussed further in Section 2.1.

Each node is divided up into a number of blocks called zonesZones which repre-

sent ranges within memory. Zones should not be confused with zone based allocators

as they are unrelated. A zone is described by a struct zone_struct, typede�ed

to zone_t and each one is of type ZONE_DMA, ZONE_NORMAL or ZONE_HIGHMEM. Each

zone type suitable a di�erent type of usage. ZONE_DMA is memory in the lower physi-

cal memory ranges which certain ISA devices require. Memory within ZONE_NORMAL

is directly mapped by the kernel into the upper region of the linear address space

which is discussed further in Section 4.1. ZONE_HIGHMEM is the remaining available

memory in the system and is not directly mapped by the kernel.

17
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With the x86 the zones are:Zone dimensions

ZONE_DMA First 16MiB of memory

ZONE_NORMAL 16MiB - 896MiB

ZONE_HIGHMEM 896 MiB - End

It is important to note that many kernel operations can only take place using

ZONE_NORMAL so it is the most performance critical zone. Zones are discussed further

in Section 2.2. Each physical page frame is represented by a struct page and all the

structs are kept in a global mem_map array which is usually stored at the beginning

of ZONE_NORMAL or just after the area reserved for the loaded kernel image in low

memory machines. struct pages are discussed in detail in Section 2.4 and the

global mem_map array is discussed in detail in Section 3.7. The basic relationship

between all these structs is illustrated in Figure 2.1.

Figure 2.1: Relationship Between Nodes, Zones and Pages

As the amount of memory directly accessible by the kernel (ZONE_NORMAL) is

limited in size, Linux supports the concept of High Memory which is discussed

further in Section 2.5. This chapter will discuss how nodes, zones and pages are

represented before introducing high memory management.

2.1 Nodes

Node structure

As we have mentioned, each node in memory is described by a pg_data_t which
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is a typedef for a struct pglist_data. When allocating a page, Linux uses a node-

local allocation policyNode-Local Allocation to allocate memory from the node

closest to the running CPU. As processes tend to run on the same CPU, it is likely

the memory from the current node will be used. The struct is declared as follows in

<linux/mmzone.h>:

129 typedef struct pglist_data {

130 zone_t node_zones[MAX_NR_ZONES];

131 zonelist_t node_zonelists[GFP_ZONEMASK+1];

132 int nr_zones;

133 struct page *node_mem_map;

134 unsigned long *valid_addr_bitmap;

135 struct bootmem_data *bdata;

136 unsigned long node_start_paddr;

137 unsigned long node_start_mapnr;

138 unsigned long node_size;

139 int node_id;

140 struct pglist_data *node_next;

141 } pg_data_t;

We now brie�y describe each of these �elds:

node_zones The zones for this node, ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA;

node_zonelists This is the order of zones that allocations are preferred from.

build_zonelists() in mm/page_alloc.c sets up the order when called by

free_area_init_core(). A failed allocation in ZONE_HIGHMEM may fall back

to ZONE_NORMAL or back to ZONE_DMA;Zone fallbacks

nr_zones Number of zones in this node, between 1 and 3. Not all nodes will

have three. A CPU bank may not have ZONE_DMA for example;

node_mem_map This is the �rst page of the struct page array representing

each physical frame in the node. It will be placed somewhere within the global

mem_map array;

valid_addr_bitmap A bitmap which describes �holes� in the memory node that

no memory exists for. In reality, this is only used by the Sparc and Sparc64

architectures and ignored by all others;

bdata This is only of interest to the boot memory allocator discussed in Chapter 5;
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node_start_paddr The starting physical address of the node. An unsigned

long does not work optimally as it breaks for ia32 with Physical Address

Extension (PAE) for example. PAE is discussed further in Section 2.5. A

more suitable solution would be to record this as a Page Frame Number

(PFN)PFN. A PFN is simply in index within physical memory that is counted

in page-sized units. PFN for a physical address could be trivially de�ned as

(page_phys_addr >> PAGE_SHIFT);

node_start_mapnr This gives the page o�set within the global mem_map. It

is calculated in free_area_init_core() by calculating the number of pages

between mem_map and the local mem_map for this node called lmem_map;

node_size The total number of pages in this zone;

node_id The Node ID (NID) of the node, starts at 0;

node_next Pointer to next node in a NULL terminated list.

All nodes in the system are maintained on a list called pgdat_list. The nodes

are placed on this list as they are initialised by the init_bootmem_core() function,

described later in Section 5.2.1. Up until late 2.4 kernels (> 2.4.18), blocks of code

that traversed the list looked something like:

pg_data_t * pgdat;

pgdat = pgdat_list;

do {

/* do something with pgdata_t */

...

} while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for_each_pgdat(), which is trivially de�ned as

a for loop, is provided to improve code readability.

2.2 Zones

Zone structure

Zones are described by a struct zone_struct and is usually referred to by it's

typedef zone_t. It keeps track of information like page usage statistics, free area

information and locks. It is declared as follows in <linux/mmzone.h>:
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37 typedef struct zone_struct {

41 spinlock_t lock;

42 unsigned long free_pages;

43 unsigned long pages_min, pages_low, pages_high;

44 int need_balance;

45

49 free_area_t free_area[MAX_ORDER];

50

76 wait_queue_head_t * wait_table;

77 unsigned long wait_table_size;

78 unsigned long wait_table_shift;

79

83 struct pglist_data *zone_pgdat;

84 struct page *zone_mem_map;

85 unsigned long zone_start_paddr;

86 unsigned long zone_start_mapnr;

87

91 char *name;

92 unsigned long size;

93 } zone_t;

This is a brief explanation of each �eld in the struct.

lock Spinlock to protect the zone from concurrent accesses;

free_pages Total number of free pages in the zone;

pages_min, pages_low, pages_high These are zone watermarks which are

described in the next section;

need_balance This �ag that tells the pageout kswapd to balance the zone. A

zone is said to need balance when the number of available pages reaches one

of the zone watermarks. Watermarks is discussed in the next section;

free_area Free area bitmaps used by the buddy allocator;

wait_table A hash table of wait queues of processes waiting on a page to be

freed. This is of importance to wait_on_page() and unlock_page(). While

processes could all wait on one queue, this would cause all waiting processes

to race for pages still locked when woken up. A large group of processes

contending for a shared resource like this is sometimes called a thundering

herd. Wait tables are discussed further in Section 2.2.3;

wait_table_size Number of queues in the hash table which is a power of 2;
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wait_table_shift De�ned as the number of bits in a long minus the binary

logarithm of the table size above;

zone_pgdat Points to the parent pg_data_t;

zone_mem_map The �rst page in the global mem_map this zone refers to;

zone_start_paddr Same principle as node_start_paddr;

zone_start_mapnr Same principle as node_start_mapnr;

name The string name of the zone, �DMA�, �Normal� or �HighMem�

size The size of the zone in pages.

2.2.1 Zone Watermarks

Zone watermarks Memory pressure Zone pressure

When available memory in the system is low, the pageout daemon kswapd

is woken up to start freeing pages (see Chapter 10). If the pressure is high, the

process will free up memory synchronously, sometimes referred to as the direct-

reclaim path. The parameters a�ecting pageout behaviour are similar to those by

FreeBSD [McK96] and Solaris [MM01].

Each zone has three watermarks called pages_low, pages_min and pages_high

which help track how much pressure a zone is under. The relationship between them

is illustrated in Figure 2.2. The number of pages for pages_min is calculated in the

function free_area_init_core() during memory init and is based on a ratio to

the size of the zone in pages. It is calculated initially as ZoneSizeInPages/128. The

lowest value it will be is 20 pages (80K on a x86) and the highest possible value is

255 pages (1MiB on a x86).

pages_low When pages_low number of free pages is reached, kswapd is woken

up by the buddy allocator to start freeing pages. This is equivalent to when

lotsfree is reached in Solaris and freemin in FreeBSD. The value is twice

the value of pages_min by default;

pages_min When pages_min is reached, the allocator will do the kswapd work

in a synchronous fashion, sometimes referred to as the direct-reclaim path.

There is no real equivalent in Solaris but the closest is the desfree or minfree

which determine how often the pageout scanner is woken up;
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Figure 2.2: Zone Watermarks

pages_high Once kswapd has been woken to start freeing pages it will not

consider the zone to be �balanced�Zone balance when pages_high pages are

free. Once the watermark has been reached, kswapd will go back to sleep.

In Solaris, this is called lotsfree and in BSD, it is called free_target. The

default for pages_high is three times the value of pages_min.

Whatever the pageout parameters are called in each operating system, the mean-

ing is the same, it helps determine how hard the pageout daemon or processes work

to free up pages.

2.2.2 Calculating The Size of Zones

Zone size calculation

The PFN is an o�set, counted in pages, within the physical memory map. The

�rst PFN usable by the system, min_low_pfn is located at the beginning of the �rst

page after _end which is the end of the loaded kernel image. The value is stored as

a �le scope variable in mm/bootmem.c for use with the boot memory allocator.
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Figure 2.3: Call Graph: setup_memory()

How the last page frame in the system, max_pfn, is calculated is quite archi-

tecture speci�c. In the x86 case, the function find_max_pfn() reads through the

whole e820 map for the highest page frame. The value is also stored as a �le scope

variable in mm/bootmem.c. The e820 is a table provided by the BIOS describing

what physical memory is available, reserved or non-existent.

The value of max_low_pfn is calculated on the x86 with find_max_low_pfn()

and it marks the end of ZONE_NORMAL. This is the physical memory directly ac-

cessible by the kernel and is related to the kernel/userspace split in the linear

address space marked by PAGE_OFFSET. The value, with the others, is stored in

mm/bootmem.c. Note that in low memory machines, the max_pfn will be the same

as the max_low_pfn.

With the three variables min_low_pfn, max_low_pfn and max_pfn, it is straight-

forward to calculate the start and end of high memory and place them as �le scope

variables in arch/i386/mm/init.c as highstart_pfn and highend_pfn. The val-

ues are used later to initialise the high memory pages for the physical page allocator

as we will much later in Section 5.5.

2.2.3 Zone Wait Queue Table

Page wait queuesWaiting on pages

When IO is being performed on a page, such are during page-in or page-out, it
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is locked to prevent accessing it with inconsistent data. Processes wishing to use

it have to join a wait queue before it can be accessed by calling wait_on_page().

When the IO is completed, the page will be unlocked with UnlockPage() and any

process waiting on the queue will be woken up. Each page could have a wait queue

but it would be very expensive in terms of memory to have so many separate queues

so instead, the wait queue is stored in the zone_t.

It is possible to have just one wait queue in the zone but that would mean that all

processes waiting on any page in a zone would be woken up when one was unlocked.

This would cause a serious thundering herd problem. Instead, a hash table of wait

queues is stored in zone_t→wait_table. In the event of a hash collision, processes

may still be woken unnecessarily but collisions are not expected to occur frequently.

Figure 2.4: Sleeping On a Locked Page

The table is allocated during free_area_init_core(). The size of the table

is calculated by wait_table_size() and stored in the zone_t→wait_table_size.

The maximum size it will be is 4096 wait queues. For smaller tables, the size of the

table is the minimum power of 2 required to store NoPages / PAGES_PER_WAITQUEUE

number of queues, where NoPages is the number of pages in the zone and

PAGE_PER_WAITQUEUE is de�ned to be 256. In other words, the size of the table

is calculated as the integer component of the following equation:

wait_table_size = log2(
NoPages ∗ 2

PAGE_PER_WAITQUEUE
− 1)

The �eld zone_t→wait_table_shift is calculated as the number of bits a page



2.3. Zone Initialisation 26

address must be shifted right to return an index within the table. The function

page_waitqueue() is responsible for returning which wait queue to use for a page

in a zone. It uses a simple multiplicative hashing algorithm based on the virtual

address of the struct page being hashed.

It works by simply multiplying the address by GOLDEN_RATIO_PRIME and shifting

the result zone_t→wait_table_shift bits right to index the result within the hash

table. GOLDEN_RATIO_PRIME[Lev00] is the largest prime that is closest to the golden

ratio[Knu68] of the largest integer that may be represented by the architecture.

2.3 Zone Initialisation

Zone initialisation

The zones are initialised after the kernel page tables have been fully setup by

paging_init(). Page table initialisation is covered in Section 3.6. Predictably,

each architecture performs this task di�erently but the objective is always the same,

to determine what parameters to send to either free_area_init() for UMA archi-

tectures or free_area_init_node() for NUMA. The only parameter required for

UMA is zones_size. The full list of parameters:

nid is the Node ID which is the logical identi�er of the node whose zones are being

initialised;

pgdat is the node's pg_data_t that is being initialised. In UMA, this will simply

be contig_page_data;

pmap is set later by free_area_init_core() to point to the beginning of the

local lmem_map array allocated for the node. In NUMA, this is ignored as

NUMA treats mem_map as a virtual array starting at PAGE_OFFSET. In UMA,

this pointer is the global mem_map variable which is now mem_map gets initialised

in UMA.

zones_sizes is an array containing the size of each zone in pages;

zone_start_paddr is the starting physical address for the �rst zone;

zone_holes is an array containing the total size of memory holes in the zones;
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It is the core function free_area_init_core() which is responsible for �lling in

each zone_t with the relevant information and the allocation of the mem_map array

for the node. Note that information on what pages are free for the zones is not

determined at this point. That information is not known until the boot memory

allocator is being retired which will be discussed much later in Chapter 5.

2.3.1 Initialising mem_map

mem_map initialisation

The mem_map area is created during system startup in one of two fashions.

On NUMA systems, the global mem_map is treated as a virtual array starting at

PAGE_OFFSET. free_area_init_node() is called for each active node in the system

which allocates the portion of this array for the node being initialised. On UMA

systems, free_area_init() is uses contig_page_data as the node and the global

mem_map as the �local� mem_map for this node. The callgraph for both functions is

shown in Figure 2.5.

Figure 2.5: Call Graph: free_area_init()

The core function free_area_init_core() allocates a local lmem_map for the

node being initialised. The memory for the array is allocated from the boot memory

allocator with alloc_bootmem_node() (see Chapter 5). With UMA architectures,

this newly allocated memory becomes the global mem_map but it is slightly di�erent

for NUMA.

NUMA architectures allocate the memory for lmem_map within their own mem-

ory node. The global mem_map never gets explicitly allocated but instead is set to

PAGE_OFFSET where it is treated as a virtual array. The address of the local map
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is stored in pg_data_t→node_mem_map which exists somewhere within the virtual

mem_map. For each zone that exists in the node, the address within the virtual

mem_map for the zone is stored in zone_t→zone_mem_map. All the rest of the code

then treats mem_map as a real array as only valid regions within it will be used by

nodes.

2.4 Pages

Page structure

Every physical page frame in the system has an associated struct pagepage

struct which is used to keep track of its status. In the 2.2 kernel [BC00], this struc-

ture resembled it's equivalent in System V [GC94] but like the other UNIX variants,

the structure changed considerably. It is declared as follows in <linux/mm.h>:

152 typedef struct page {

153 struct list_head list;

154 struct address_space *mapping;

155 unsigned long index;

156 struct page *next_hash;

158 atomic_t count;

159 unsigned long flags;

161 struct list_head lru;

163 struct page **pprev_hash;

164 struct buffer_head * buffers;

175

176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)

177 void *virtual;

179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */

180 } mem_map_t;

Here is a brief description of each of the �elds:

list Page lists Pages may belong to many lists and this �eld is used as the list

head. For example, pages in a mapping will be in one of three circular linked

links kept by the address_space. These are clean_pages, dirty_pages and

locked_pages. In the slab allocator, this �eld is used to store pointers to the

slab and cache the page belongs to. It is also used to link blocks of free pages

together;

mapping When �les or devices are memory mapped, their inode has an associated

address_space. This �eld will point to this address space if the page belongs
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to the �le. If the page is anonymous and mapping is set, the address_space

is swapper_space which manages the swap address space;

index Page indexThis �eld has two uses and it depends on the state of the page

what it means. If the page is part of a �le mapping, it is the o�set within the

�le. If the page is part of the swap cache this will be the o�set within the

address_space for the swap address space (swapper_space). Secondly, if a

block of pages is being freed for a particular process, the order (power of two

number of pages being freed) of the block being freed is stored in index. This

is set in the function __free_pages_ok();

next_hash Pages that are part of a �le mapping are hashed on the inode and

o�set. This �eld links pages together that share the same hash bucket;

count The reference count to the page. If it drops to 0, it may be freed. Any

greater and it is in use by one or more processes or is in use by the kernel like

when waiting for IO;

�ags Page �ags These are �ags which describe the status of the page. All of

them are declared in <linux/mm.h> and are listed in Table 2.1. There are a

number of macros de�ned for testing, clearing and setting the bits which are

all listed in Table 2.2. The only really interesting one is SetPageUptodate()

which calls an architecture speci�c function arch_set_page_uptodate() if it

is de�ned before setting the bit;

lru For the page replacement policy, pages that may be swapped out will exist

on either the active_list or the inactive_list declared in page_alloc.c.

This is the list head for these LRU lists. These two lists are discussed in detail

in Chapter 10;

pprev_hash This complement to next_hash so that the hash can work as a

doubly linked list;

bu�ers If a page has bu�ers for a block device associated with it, this �eld is used

to keep track of the buffer_head. An anonymous page mapped by a process

may also have an associated buffer_head if it is backed by a swap �le. This

is necessary as the page has to be synced with backing storage in block sized

chunks de�ned by the underlying �lesystem;
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virtual Normally only pages from ZONE_NORMAL are directly mapped by the kernel.

To address pages in ZONE_HIGHMEM, kmap() is used to map the page for the

kernel which is described further in Chapter 9. There are only a �xed number

of pages that may be mapped. When it is mapped, this is its virtual address;

The type mem_map_t is a typedef for struct page so it can be easily referred to

within the mem_map array.

2.4.1 Mapping Pages to Zones

Page to zone mapping

Up until as recently as kernel 2.4.18, a struct page stored a reference to its

zone with page→zone which was later considered wasteful, as even such a small

pointer consumes a lot of memory when thousands of struct pages exist. In more

recent kernels, the zone �eld has been removed and instead the top ZONE_SHIFT (8

in the x86) bits of the page→flags are used to determine the zone a page belongs

to. First a zone_table of zones is set up. It is declared in mm/page_alloc.c as:

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];

34 EXPORT_SYMBOL(zone_table);

MAX_NR_ZONES is the maximum number of zones that can be in a node, i.e.

3. MAX_NR_NODES is the maximum number of nodes that may exist. The function

EXPORT_SYMBOL() makes zone_table accessible to loadable modules. This table

is treated like a multi-dimensional array. During free_area_init_core(), all the

pages in a node are initialised. First it sets the value for the table

733 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone_t struct. For

each page, the function set_page_zone() is called as

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

The parameter, page, is the page whose zone is being set. So, clearly the index

in the zone_table is stored in the page.
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Bit name Description
PG_active This bit Page �agsis set if a page is on the

active_list LRU and cleared when it is removed. It
marks a page as being hot

PG_arch_1 Quoting directly from the code: PG_arch_1 is an archi-
tecture speci�c page state bit. The generic code guar-
antees that this bit is cleared for a page when it �rst is
entered into the page cache. This allows an architec-
ture to defer the �ushing of the D-Cache (See Section
3.9) until the page is mapped by a process

PG_checked Only used by the Ext2 �lesystem
PG_dirty This indicates if a page needs to be �ushed to disk.

When a page is written to that is backed by disk, it is
not �ushed immediately, this bit is needed to ensure a
dirty page is not freed before it is written out

PG_error If an error occurs during disk I/O, this bit is set
PG_fs_1 Bit reserved for a �lesystem to use for it's own pur-

poses. Currently, only NFS uses it to indicate if a page
is in sync with the remote server or not

PG_highmem Pages in high memory cannot be mapped permanently
by the kernel. Pages that are in high memory are
�agged with this bit during mem_init()

PG_launder This bit is important only to the page replacement
policy. When the VM wants to swap out a page, it
will set this bit and call the writepage() function.
When scanning, if it encounters a page with this bit
and PG_locked set, it will wait for the I/O to complete

PG_locked This bit is set when the page must be locked in mem-
ory for disk I/O. When I/O starts, this bit is set and
released when it completes

PG_lru If a page is on either the active_list or the
inactive_list, this bit will be set

PG_referenced If a page is mapped and it is referenced through the
mapping, index hash table, this bit is set. It is used
during page replacement for moving the page around
the LRU lists

PG_reserved This is set for pages that can never be swapped out.
It is set by the boot memory allocator (See Chapter 5)
for pages allocated during system startup. Later it is
used to �ag empty pages or ones that do not even exist

PG_slab This will �ag a page as being used by the slab allocator
PG_skip Used by some architectures to skip over parts of the

address space with no backing physical memory
PG_unused This bit is literally unused
PG_uptodate When a page is read from disk without error, this bit

will be set.

Table 2.1: Flags Describing Page Status
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Bit name Set Test Clear
PG_active SetPageActive() PageActive() ClearPageActive()

PG_arch_1 n/a n/a n/a
PG_checked SetPageChecked() PageChecked() n/a
PG_dirty SetPageDirty() PageDirty() ClearPageDirty()

PG_error SetPageError() PageError() ClearPageError()

PG_highmem n/a PageHighMem() n/a
PG_launder SetPageLaunder() PageLaunder() ClearPageLaunder()

PG_locked LockPage() PageLocked() UnlockPage()

PG_lru TestSetPageLRU() PageLRU() TestClearPageLRU()

PG_referenced SetPageReferenced() PageReferenced() ClearPageReferenced()

PG_reserved SetPageReserved() PageReserved() ClearPageReserved()

PG_skip n/a n/a n/a
PG_slab PageSetSlab() PageSlab() PageClearSlab()

PG_unused n/a n/a n/a
PG_uptodate SetPageUptodate() PageUptodate() ClearPageUptodate()

Table 2.2: Macros For Testing, Setting and Clearing page→flags Status Bits

2.5 High Memory

High Memory

As the addresses space usable by the kernel (ZONE_NORMAL) is limited in size,

the kernel has support for the concept of High Memory. Two thresholds of high

memory exist on 32-bit x86 systems, one at 4GiB and a second at 64GiB. The

4GiB limit is related to the amount of memory that may be addressed by a 32-bit

physical address. To access memory between the range of 1GiB and 4GiB, the kernel

temporarily maps pages from high memory into ZONE_NORMAL with kmap(). This is

discussed further in Chapter 9.

The second limit at 64GiB is related to Physical Address Extension (PAE) which

is an Intel invention to allow more RAM to be used with 32 bit systems. It makes 4

extra bits available for the addressing of memory, allowing up to 236 bytes (64GiB)

of memory to be addressed.

PAE allows a processor to address up to 64GiB in theory but, in practice, pro-

cesses in Linux still cannot access that much RAM as the virtual address space is

still only 4GiB. This has led to some disappointment from users who have tried to

malloc() all their RAM with one process.

Secondly, PAE does not allow the kernel itself to have this much RAM available.

The struct page used to describe each page frame still requires 44 bytes and this

uses kernel virtual address space in ZONE_NORMAL. That means that to describe 1GiB
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of memory, approximately 11MiB of kernel memory is required. Thus, with 16GiB,

176MiB of memory is consumed, putting signi�cant pressure on ZONE_NORMAL. This

does not sound too bad until other structures are taken into account which use

ZONE_NORMAL. Even very small structures such as Page Table Entries (PTEs) require

about 16MiB in the worst case. This makes 16GiB about the practical limit for

available physical memory Linux on an x86. If more memory needs to be accessed,

the advice given is simple and straightforward, buy a 64 bit machine.

2.6 What's New In 2.6

Nodes At �rst glance, there has not been many changes made to how memory is

described but the seemingly minor changes are wide reaching. The node descriptor

pg_data_t has a few new �elds which are as follows:

node_start_pfn replaces the node_start_paddr �eld. The only di�erence is

that the new �eld is a PFN instead of a physical address. This was changed

as PAE architectures can address more memory than 32 bits can address so

nodes starting over 4GiB would be unreachable with the old �eld;

kswapd_wait is a new wait queue for kswapd. In 2.4, there was a global wait

queue for the page swapper daemon. In 2.6, there is one kswapdN for each

node where N is the node identi�er and each kswapd has its own wait queue

with this �eld.

The node_size �eld has been removed and replaced instead with two �elds. The

change was introduced to recognise the fact that nodes may have �holes� in them

where there is no physical memory backing the address.

node_present_pages is the total number of physical pages that are present in

the node.

node_spanned_pages is the total area that is addressed by the node, including

any holes that may exist.

Zones Even at �rst glance, zones look very di�erent. They are no longer called

zone_t but instead referred to as simply struct zone. The second major di�erence

is the LRU lists. As we'll see in Chapter 10, kernel 2.4 has a global list of pages
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that determine the order pages are freed or paged out. These lists are now stored

in the struct zone. The relevant �elds are:

lru_lock is the spinlock for the LRU lists in this zone. In 2.4, this is a global

lock called pagemap_lru_lock;

active_list is the active list for this zone. This list is the same as described in

Chapter 10 except it is now per-zone instead of global;

inactive_list is the inactive list for this zone. In 2.4, it is global;

re�ll_counter is the number of pages to remove from the active_list in one

pass. Only of interest during page replacement;

nr_active is the number of pages on the active_list;

nr_inactive is the number of pages on the inactive_list;

all_unreclaimable is set to 1 if the pageout daemon scans through all the pages

in the zone twice and still fails to free enough pages;

pages_scanned is the number of pages scanned since the last bulk amount of

pages has been reclaimed. In 2.6, lists of pages are freed at once rather than

freeing pages individually which is what 2.4 does;

pressure measures the scanning intensity for this zone. It is a decaying average

which a�ects how hard a page scanner will work to reclaim pages.

Three other �elds are new but they are related to the dimensions of the zone.

They are:

zone_start_pfn is the starting PFN of the zone. It replaces the zone_start_paddr

and zone_start_mapnr �elds in 2.4;

spanned_pages is the number of pages this zone spans, including holes in mem-

ory which exist with some architectures;

present_pages is the number of real pages that exist in the zone. For many

architectures, this will be the same value as spanned_pages.
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The next addition is struct per_cpu_pageset which is used to maintain lists

of pages for each CPU to reduce spinlock contention. The zone→pageset �eld is

a NR_CPU sized array of struct per_cpu_pageset where NR_CPU is the compiled

upper limit of number of CPUs in the system. The per-cpu struct is discussed

further at the end of the section.

The last addition to struct zone is the inclusion of padding of zeros in the

struct. Development of the 2.6 VM recognised that some spinlocks are very heavily

contended and are frequently acquired. As it is known that some locks are almost

always acquired in pairs, an e�ort should be made to ensure they use di�erent

cache lines which is a common cache programming trick [Sea00]. These padding

in the struct zone are marked with the ZONE_PADDING() macro and are used to

ensure the zone→lock, zone→lru_lock and zone→pageset �elds use di�erent

cache lines.

Pages The �rst noticeable change is that the ordering of �elds has been changed

so that related items are likely to be in the same cache line. The �elds are essentially

the same except for two additions. The �rst is a new union used to create a PTE

chainPTE chains. PTE chains are are related to page table management so will

be discussed at the end of Chapter 3. The second addition is of page→private

�eld which contains private information speci�c to the mapping. For example, the

�eld is used to store a pointer to a buffer_head if the page is a bu�er page. This

means that the page→buffers �eld has also been removed. The last important

change is that page→virtual is no longer necessary for high memory support and

will only exist if the architecture speci�cally requests it. How high memory pages

are supported is discussed further in Chapter 9.

Per-CPU Page Lists In 2.4, only one subsystem actively tries to maintain per-

cpu lists for any object and that is the Slab Allocator, discussed in Chapter 8. In

2.6, the concept is much more wide-spread and there is a formalised concept of hot

and cold pages.

The struct per_cpu_pageset, declared in <linux/mmzone.h> has one one

�eld which is an array with two elements of type per_cpu_pages. The zeroth

element of this array is for hot pages and the �rst element is for cold pages where

hot and cold determines how �active� the page is currently in the cache. When it
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is known for a fact that the pages are not to be referenced soon, such as with IO

readahead, they will be allocated as cold pages.

The struct per_cpu_pages maintains a count of the number of pages currently

in the list, a high and low watermark which determine when the set should be

re�lled or pages freed in bulk, a variable which determines how many pages should

be allocated in one block and �nally, the actual list head of pages.

To build upon the per-cpu page lists, there is also a per-cpu page accounting

mechanism. There is a struct page_state that holds a number of accounting vari-

ables such as the pgalloc �eld which tracks the number of pages allocated to this

CPU and pswpin which tracks the number of swap readins. The struct is heavily

commented in <linux/page-flags.h>. A single function mod_page_state() is

provided for updating �elds in the page_state for the running CPU and three

helper macros are provided called inc_page_state(), dec_page_state() and

sub_page_state().



Chapter 3

Page Table Management

Page table management

Linux layers the machine independent/dependent layer in an unusual manner

in comparison to other operating systems [CP99]. Other operating systems have

objects which manage the underlying physical pages such as the pmap object in BSD.

Linux instead maintains the concept of a three-level page table in the architecture

independent code even if the underlying architecture does not support it. While

this is conceptually easy to understand, it also means that the distinction between

di�erent types of pages is very blurry and page types are identi�ed by their �ags or

what lists they exist on rather than the objects they belong to.

Architectures that manage their Memory Management Unit (MMU)MMU dif-

ferently are expected to emulate the three-level page tables. For example, on the

x86 without PAE enabled, only two page table levels are available. The Page Middle

Directory (PMD)PMD is de�ned to be of size 1 and �folds back� directly onto the

Page Global Directory (PGD)PGD which is optimised out at compile time. Unfor-

tunately, for architectures that do not manage their cache or Translation Lookaside

Bu�er (TLB)TLB automatically, hooks for machine dependent have to be explicitly

left in the code for when the TLB and CPU caches need to be altered and �ushed

even if they are null operations on some architectures like the x86. These hooks are

discussed further in Section 3.8.

This chapter will begin by describing how the page table is arranged and what

types are used to describe the three separate levels of the page table followed by

how a virtual address is broken up into its component parts for navigating the table.

Once covered, it will be discussed how the lowest level entry, the Page Table Entry

(PTE)PTE and what bits are used by the hardware. After that, the macros used

for navigating a page table, setting and checking attributes will be discussed before

37



3.1. Describing the Page Directory 38

talking about how the page table is populated and how pages are allocated and freed

for the use with page tables. The initialisation stage is then discussed which shows

how the page tables are initialised during boot strapping. Finally, we will cover how

the TLB and CPU caches are utilised.

3.1 Describing the Page Directory

Page directory describing

Each process a pointer (mm_struct→pgd) to its own Page Global Directory

(PGD) which is a physical page frame. This frame contains an array of type pgd_t

which is an architecture speci�c type de�ned in <asm/page.h>. The page tables are

loaded di�erently depending on the architecture. On the x86, the process page table

is loaded by copying mm_struct→pgd into the cr3 register which has the side e�ect

of �ushing the TLB. In fact this is how the function __flush_tlb() is implemented

in the architecture dependent code.

Each active entry in the PGD table points to a page frame containing an array

of Page Middle Directory (PMD) entries of type pmd_t which in turn points to page

frames containing Page Table Entries (PTE) of type pte_t, which �nally points

to page frames containing the actual user data. In the event the page has been

swapped out to backing storage, the swap entry is stored in the PTE and used by

do_swap_page() during page fault to �nd the swap entry containing the page data.

The page table layout is illustrated in Figure 3.1Page table layout.

Any given linear address may be broken up into parts to yield o�sets within

these three page table levels and an o�set within the actual page. To help break

up the linear address into its component parts, a number of macros are provided in

triplets for each page table level, namely a SHIFT, a SIZE and a MASK macro. The

SHIFT macros speci�es the length in bits that are mapped by each level of the page

tables as illustrated in Figure 3.2Linear address macros.

The MASK values can be ANDd with a linear address to mask out all the upper

bits and is frequently used to determine if a linear address is aligned to a given level

within the page table. The SIZE macros reveal how many bytes are addressed by

each entry at each level. The relationship between the SIZE and MASK macros is

illustrated in Figure 3.3.

For the calculation of each of the triplets, only SHIFT is important as the other
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Figure 3.1: Page Table Layout

Figure 3.2: Linear Address Bit Size Macros

two are calculated based on it. For example, the three macros for page level on the

x86 are:

5 #define PAGE_SHIFT 12

6 #define PAGE_SIZE (1UL << PAGE_SHIFT)

7 #define PAGE_MASK (~(PAGE_SIZE-1))

PAGE_SHIFT is the length in bits of the o�set part of the linear address space

which is 12 bits on the x86. The size of a page is easily calculated as 2PAGE_SHIFT

which is the equivalent of the code above. Finally the mask is calculated as the

negation of the bits which make up the PAGE_SIZE - 1. If a page needs to be aligned

on a page boundary, PAGE_ALIGN() is used. This macro adds PAGE_SIZE - 1 to
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Figure 3.3: Linear Address Size and Mask Macros

the address before simply ANDing it with the PAGE_MASK to zero out the page o�set

bits.

PMD_SHIFT is the number of bits in the linear address which are mapped by the

second level part of the table. The PMD_SIZE and PMD_MASK are calculated in a

similar way to the page level macros.

PGDIR_SHIFT is the number of bits which are mapped by the top, or �rst level,

of the page table. The PGDIR_SIZE and PGDIR_MASK are calculated in the same

manner as above.

The last three macros of importance are the PTRS_PER_x which determine the

number of entries in each level of the page table. PTRS_PER_PGD is the number of

pointers in the PGD, 1024 on an x86 without PAE. PTRS_PER_PMD is for the PMD,

1 on the x86 without PAE and PTRS_PER_PTE is for the lowest level, 1024 on the

x86.

3.2 Describing a Page Table Entry

Page table protection PTE Protection Bits

As mentioned, each entry is described by the structs pte_t, pmd_t and pgd_t

for PTEs, PMDs and PGDs respectively. Even though these are often just unsigned

integers, they are de�ned as structs for two reasons. The �rst is for type protection

so that they will not be used inappropriately. The second is for features like PAE

on the x86 where an additional 4 bits is used for addressing more than 4GiB of

memory. To store the protection bits, pgprot_t is de�ned which holds the relevant

�ags and is usually stored in the lower bits of a page table entry.

For type casting, 4 macros are provided in asm/page.h, which takes the above

types and returns the relevant part of the structs. They are pte_val(), pmd_val(),
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pgd_val() and pgprot_val(). To reverse the type casting, 4 more macros are

provided __pte(), __pmd(), __pgd() and __pgprot().

Where exactly the protection bits are stored is architecture dependent. For

illustration purposes, we will examine the case of an x86 architecture without PAE

enabled but the same principles apply across architectures. On an x86 with no PAE,

the pte_t is simply a 32 bit integer within a struct. Each pte_t points to an address

of a page frame and all the addresses pointed to are guaranteed to be page aligned.

Therefore, there are PAGE_SHIFT (12) bits in that 32 bit value that are free for status

bits of the page table entry. A number of the protection and status bits are listed

in Table 3.1 but what bits exist and what they mean varies between architectures.

Bit Function
_PAGE_PRESENT Page is resident in memory and not swapped out
_PAGE_PROTNONE Page is resident but not accessable
_PAGE_RW Set if the page may be written to
_PAGE_USER Set if the page is accessible from user space
_PAGE_DIRTY Set if the page is written to
_PAGE_ACCESSED Set if the page is accessed

Table 3.1: Page Table Entry Protection and Status Bits

These bits are self-explanatory except for the _PAGE_PROTNONE which we will

discuss further. On the x86 with Pentium III and higher, this bit is called the Page

Attribute Table (PAT) while earlier architectures such as the Pentium II had this bit

reserved. The PAT bit is used to indicate the size of the page the PTE is referencing.

In a PGD entry, this same bit is instead called the Page Size Exception (PSE) bit

so obviously these bits are meant to be used in conjunction.

As Linux does not use the PSE bit for user pages, the PAT bit is free in the

PTE for other purposes. There is a requirement for having a page resident in

memory but inaccessible to the userspace process such as when a region is protected

with mprotect() with the PROT_NONE �ag. When the region is to be protected,

the _PAGE_PRESENT bit is cleared and the _PAGE_PROTNONE bit is set. The macro

pte_present() checks if either of these bits are set and so the kernel itself knows

the PTE is present, just inaccessible to userspace which is a subtle, but important

point. As the hardware bit _PAGE_PRESENT is clear, a page fault will occur if the

page is accessed so Linux can enforce the protection while still knowing the page is

resident if it needs to swap it out or the process exits.
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3.3 Using Page Table Entries

PTE macros

Macros are de�ned in <asm/pgtable.h> which are important for the naviga-

tion and examination of page table entries. To navigate the page directories, three

macros are provided which break up a linear address space into its component parts.

pgd_offset() takes an address and the mm_struct for the process and returns the

PGD entry that covers the requested address. pmd_offset() takes a PGD entry

and an address and returns the relevant PMD. pte_offset() takes a PMD and

returns the relevant PTE. The remainder of the linear address provided is the o�set

within the page. The relationship between these �elds is illustrated in Figure 3.1.

The second round of macros determine if the page table entries are present or

may be used.

• pte_none, pmd_none() and pgd_none() return 1 if the corresponding entry

does not exist;

• pte_present, pmd_present() and pgd_present() return 1 if the correspond-

ing page table entries have the PRESENT bit set;

• pte_clear, pmd_clear() and pgd_clear() will clear the corresponding page

table entry;

• pmd_bad and pgd_bad() are used to check entries when passed as input

parameters to functions that may change the value of the entries. Whether it

returns 1 varies between the few architectures that de�ne these macros but for

those that actually de�ne it, making sure the page entry is marked as present

and accessed are the two most important checks.

There are many parts of the VM which are littered with page table walk code

and it is important to recognise it. A very simple example of a page table walk is

the function follow_page() in mm/memory.c. The following is an excerpt from that

function, the parts unrelated to the page table walk are omitted:

407 pgd_t *pgd;

408 pmd_t *pmd;

409 pte_t *ptep, pte;

410

411 pgd = pgd_offset(mm, address);
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412 if (pgd_none(*pgd) || pgd_bad(*pgd))

413 goto out;

414

415 pmd = pmd_offset(pgd, address);

416 if (pmd_none(*pmd) || pmd_bad(*pmd))

417 goto out;

418

419 ptep = pte_offset(pmd, address);

420 if (!ptep)

421 goto out;

422

423 pte = *ptep;

It simply uses the three o�set macros to navigate the page tables and the _none()

and _bad() macros to make sure it is looking at a valid page table.

The third set of macros examine and set the permissions of an entry. The

permissions determine what a userspace process can and cannot do with a particular

page. For example, the kernel page table entries are never readable by a userspace

process.

• The read permissions for an entry are tested with pte_read(), set with

pte_mkread() and cleared with pte_rdprotect();

• The write permissions are tested with pte_write(), set with pte_mkwrite()

and cleared with pte_wrprotect();

• The execute permissions are tested with pte_exec(), set with pte_mkexec()

and cleared with pte_exprotect(). It is worth nothing that with the x86

architecture, there is no means of setting execute permissions on pages so

these three macros act the same way as the read macros;

• The permissions can be modi�ed to a new value with pte_modify() but its use

is almost non-existent. It is only used in the function change_pte_range()

in mm/mprotect.c.

The fourth set of macros examine and set the state of an entry. There are only

two bits that are important in Linux, the dirty bit and the accessed bit. To check

these bits, the macros pte_dirty() and pte_young() macros are used. To set the

bits, the macros pte_mkdirty() and pte_mkyoung() are used. To clear them, the

macros pte_mkclean() and pte_old() are available.
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3.4 Translating and Setting Page Table Entries

PTE instantiation

This set of functions and macros deal with the mapping of addresses and pages

to PTEs and the setting of the individual entries.

The macro mk_pte() takes a struct page and protection bits and combines

them together to form the pte_t that needs to be inserted into the page table.

A similar macro mk_pte_phys() exists which takes a physical page address as a

parameter.

The macro pte_page() returns the struct page which corresponds to the PTE

entry. pmd_page() returns the struct page containing the set of PTEs.

The macro set_pte() takes a pte_t such as that returned by mk_pte() and

places it within the processes page tables. pte_clear() is the reverse operation.

An additional function is provided called ptep_get_and_clear() which clears an

entry from the process page table and returns the pte_t. This is important when

some modi�cation needs to be made to either the PTE protection or the struct

page itself.

3.5 Allocating and Freeing Page Tables

PTE allocation

The last set of functions deal with the allocation and freeing of page tables. Page

tables, as stated, are physical pages containing an array of entries and the allocation

and freeing of physical pages is a relatively expensive operation, both in terms of

time and the fact that interrupts are disabled during page allocation. The allocation

and deletion of page tables, at any of the three levels, is a very frequent operation

so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of di�erent

lists called quicklists . Each architecture implements these caches di�erently but the

principles used are the same. For example, not all architectures cache PGDs because

the allocation and freeing of them only happens during process creation and exit.

As both of these are very expensive operations, the allocation of another page is

negligible.

PTE freeingPGDs, PMDs and PTEs have two sets of functions each for the

allocation and freeing of page tables. The allocation functions are pgd_alloc(),
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pmd_alloc() and pte_alloc() respectively and the free functions are, predictably

enough, called pgd_free(), pmd_free() and pte_free().

Broadly speaking, the three implement caching with the use of three caches

called pgd_quicklist, pmd_quicklist and pte_quicklist. Architectures imple-

ment these three lists in di�erent ways but one method is through the use of a

LIFO type structure. Ordinarily, a page table entry contains points to other pages

containing page tables or data. While cached, the �rst element of the list is used to

point to the next free page table. During allocation, one page is popped o� the list

and during free, one is placed as the new head of the list. A count is kept of how

many pages are used in the cache.

The quick allocation function from the pgd_quicklist is not externally de�ned

outside of the architecture although get_pgd_fast() is a common choice for the

function name. The cached allocation function for PMDs and PTEs are publicly

de�ned as pmd_alloc_one_fast() and pte_alloc_one_fast().

If a page is not available from the cache, a page will be allocated using the

physical page allocator (see Chapter 6). The functions for the three levels of page

tables are get_pgd_slow(), pmd_alloc_one() and pte_alloc_one().

Obviously a large number of pages may exist on these caches and so there is

a mechanism in place for pruning them. Each time the caches grow or shrink,

a counter is incremented or decremented and it has a high and low watermark.

check_pgt_cache() is called in two places to check these watermarks. When the

high watermark is reached, entries from the cache will be freed until the cache size

returns to the low watermark. The function is called after clear_page_tables()

when a large number of page tables are potentially reached and is also called by the

system idle task.

3.6 Kernel Page Tables

Page table initialisation Initialisinig page tables

When the system �rst starts, paging is not enabled as page tables do not magi-

cally initialise themselves. Each architecture implements this di�erently so only the

x86 case will be discussed. The page table initialisation is divided into two phases.

The bootstrap phase sets up page tables for just 8MiB so the paging unit can be

enabled. The second phase initialises the rest of the page tables. We discuss both
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of these phases below.

3.6.1 Bootstrapping

Kernel image location

The assembler function startup_32() is responsible for enabling the paging unit

in arch/i386/kernel/head.S. While all normal kernel code in vmlinuz is compiled

with the base address at PAGE_OFFSET + 1MiB, the kernel is actually loaded begin-

ning at the �rst megabyte (0x00100000) of memory. The �rst megabyte is used by

some devices for communication with the BIOS and is skipped. The bootstrap code

in this �le treats 1MiB as its base address by subtracting __PAGE_OFFSET from any

address until the paging unit is enabled so before the paging unit is enabled, a page

table mapping has to be established which translates the 8MiB of physical memory

to the virtual address PAGE_OFFSET.

Initialisation begins with statically de�ning at compile time an array called

swapper_pg_dir which is placed using linker directives at 0x00101000. It then

establishes page table entries for 2 pages, pg0 and pg1. If the processor supports

the Page Size Extension (PSE) bit, it will be set so that pages will be translated are

4MiB pages, not 4KiB as is the normal case. The �rst pointers to pg0 and pg1 are

placed to cover the region 1-9MiB the second pointers to pg0 and pg1 are placed at

PAGE_OFFSET+1MiB. This means that when paging is enabled, they will map to the

correct pages using either physical or virtual addressing for just the kernel image.

The rest of the kernel page tables will be initialised by paging_init().

Once this mapping has been established, the paging unit is turned on by setting a

bit in the cr0 register and a jump takes places immediately to ensure the Instruction

Pointer (EIP register) is correct.

3.6.2 Finalising

The function responsible for �nalising the page tables is called paging_init(). The

call graph for this function on the x86 can be seen on Figure 3.4.

The function �rst calls pagetable_init() to initialise the page tables necessary

to reference all physical memory in ZONE_DMA and ZONE_NORMAL. Remember that

high memory in ZONE_HIGHMEM cannot be directly referenced and mappings are set

up for it temporarily. For each pgd_t used by the kernel, the boot memory allocator

(see Chapter 5) is called to allocate a page for the PMDs and the PSE bit will
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Figure 3.4: Call Graph: paging_init()

be set if available to use 4MiB TLB entries instead of 4KiB. If the PSE bit is not

supported, a page for PTEs will be allocated for each pmd_t. If the CPU supports

the PGE �ag, it also will be set so that the page table entry will be global and

visible to all processes.

Next, pagetable_init() calls fixrange_init() to setup the �xed address

space mappings at the end of the virtual address space starting at FIXADDR_START.

These mappings are used for purposes such as the local APIC and the atomic kmap-

pings between FIX_KMAP_BEGIN and FIX_KMAP_END required by kmap_atomic(). Fi-

nally, the function calls fixrange_init() to initialise the page table entries required

for normal high memory mappings with kmap().

Once pagetable_init() returns, the page tables for kernel space are now full

initialised so the static PGD (swapper_pg_dir) is loaded into the CR3 register so

that the static table is now being used by the paging unit.

The next task of the paging_init() is responsible for calling kmap_init() to

initialise each of the PTEs with the PAGE_KERNEL protection �ags. The �nal task is

to call zone_sizes_init() which initialises all the zone structures used.

3.7 Mapping addresses to a struct page

Address mapping to pages

There is a requirement for Linux to have a fast method of mapping virtual

addresses to physical addresses and for mapping struct pages to their physical

address. Linux achieves this by knowing where, in both virtual and physical memory,

the global mem_map array is as the global array has pointers to all struct pages
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representing physical memory in the system. All architectures achieve this with

very similar mechanisms but for illustration purposes, we will only examine the x86

carefully. This section will �rst discuss how physical addresses are mapped to kernel

virtual addresses and then what this means to the mem_map array.

3.7.1 Mapping Physical to Virtual Kernel Addresses

Physical to virtual address mapping

As we saw in Section 3.6, Linux sets up a direct mapping from the physical

address 0 to the virtual address PAGE_OFFSET at 3GiB on the x86. This means that

any virtual address can be translated to the physical address by simply subtracting

PAGE_OFFSET which is essentially what the function virt_to_phys() with the macro

__pa() does:

/* from <asm-i386/page.h> */

132 #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

/* from <asm-i386/io.h> */

76 static inline unsigned long virt_to_phys(volatile void * address)

77 {

78 return __pa(address);

79 }

Obviously the reverse operation involves simply adding PAGE_OFFSET which is

carried out by the function phys_to_virt() with the macro __va(). Next we see

how this helps the mapping of struct pages to physical addresses.

3.7.2 Mapping struct pages to Physical Addresses

As we saw in Section 3.6.1, the kernel image is located at the physical address 1MiB,

which of course translates to the virtual address PAGE_OFFSET + 0x00100000 and a

virtual region totaling about 8MiB is reserved for the image which is the region that

can be addressed by two PGDs. This would imply that the �rst available memory to

use is located at 0xC0800000 but that is not the case. Linux tries to reserve the �rst

16MiB of memory for ZONE_DMA so �rst virtual area used for kernel allocations is

actually 0xC1000000. This is where the global mem_map is usually located. ZONE_DMA

will be still get used, but only when absolutely necessary.

Physical addresses are translated to struct pages by treating them as an index

into the mem_map array. Shifting a physical address PAGE_SHIFT bits to the right will
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treat it as a PFN from physical address 0 which is also an index within the mem_map

array. This is exactly what the macro virt_to_page() does which is declared as

follows in <asm-i386/page.h>:

#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

The macro virt_to_page() takes the virtual address kaddr, converts it to the

physical address with __pa(), converts it into an array index by bit shifting it right

PAGE_SHIFT bits and indexing into the mem_map by simply adding them together.

No macro is available for converting struct pages to physical addresses but at this

stage, it should be obvious to see how it could be calculated.

3.8 Translation Lookaside Bu�er (TLB)

TLBTranslation Lookaside Bu�er (TLB)

Initially, when the processor needs to map a virtual address to a physical ad-

dress, it must traverse the full page directory searching for the PTE of interest. This

would normally imply that each assembly instruction that references memory actu-

ally requires several separate memory references for the page table traversal [Tan01].

To avoid this considerable overhead, architectures take advantage of the fact that

most processes exhibit a locality of reference or, in other words, large numbers of

memory references tend to be for a small number of pages. They take advantage of

this reference locality by providing a Translation Lookaside Bu�er (TLB) which is

a small associative memory that caches virtual to physical page table resolutions.

Linux assumes that the most architectures support some type of TLB although

the architecture independent code does not cares how it works. Instead, architecture

dependant hooks are dispersed throughout the VM code at points where it is known

that some hardware with a TLB would need to perform a TLB related operation.

For example, when the page tables have been updated, such as after a page fault has

completed, the processor may need to be update the TLB for that virtual address

mapping.

Not all architectures require these type of operations but because some do, the

hooks have to exist. If the architecture does not require the operation to be per-

formed, the function for that TLB operation will a null operation that is optimised

out at compile time.
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A quite large list of TLB API hooks, most of which are declared in<asm/pgtable.h>,

are listed in Tables 3.2 and 3.3 and the APIs are quite well documented in the ker-

nel source by Documentation/cachetlb.txt [Mil00]. It is possible to have just one

TLB �ush function but as both TLB �ushes and TLB re�lls are very expensive op-

erations, unnecessary TLB �ushes should be avoided if at all possible. For example,

when context switching, Linux will avoid loading new page tables using Lazy TLB

Flushing, discussed further in Section 4.3.

void(flush_tlb_all)

void TLB APIThis �ushes the entire TLB on all processors running
in the system making it the most expensive TLB �ush operation. After
it completes, all modi�cations to the page tables will be visible globally.
This is required after the kernel page tables, which are global in nature,
have been modi�ed such as after vfree() (See Chapter 7) completes or
after the PKMap is �ushed (See Chapter 9).

void(flush_tlb_mm)

struct mm_struct *mm This �ushes all TLB entries related to the
userspace portion (i.e. below PAGE_OFFSET) for the requested mm con-
text. In some architectures, such as MIPS, this will need to be performed
for all processors but usually it is con�ned to the local processor. This is
only called when an operation has been performed that a�ects the entire
address space, such as after all the address mapping have been dupli-
cated with dup_mmap() for fork or after all memory mappings have been
deleted with exit_mmap().

void(flush_tlb_range)

struct mm_struct *mm, unsigned long start, unsigned long end As
the name indicates, this �ushes all entries within the requested userspace
range for the mm context. This is used after a new region has been moved
or changeh as during mremap() which moves regions or mprotect() which
changes the permissions. The function is also indirectly used during un-
mapping a region with munmap() which calls tlb_finish_mmu() which
tries to use flush_tlb_range() intelligently. This API is provided for
architectures that can remove ranges of TLB entries quickly rather than
iterating with flush_tlb_page().

Table 3.2: Translation Lookaside Bu�er Flush API

3.9 Level 1 CPU Cache Management

Level 1 CPU CPU Cache Management

As Linux manages the CPU Cache in a very similar fashion to the TLB, this
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void(flush_tlb_page)

struct vm_area_struct *vma, unsigned long addr Predictably, this
API is responsible for �ushing a single page from the TLB. The two most
common usage of it is for �ushing the TLB after a page has been faulted
in or has been paged out.

void(flush_tlb_pgtables)

struct mm_struct *mm, unsigned long start, unsigned long end This
API is called with the page tables are being torn down and freed. Some
platforms cache the lowest level of the page table, i.e. the actual page
frame storing entries, which needs to be �ushed when the pages are being
deleted. This is called when a region is being unmapped and the page
directory entries are being reclaimed.

void(update_mmu_cache)

struct vm_area_struct *vma, unsigned long addr, pte_t pte This
API is only called after a page fault completes. It tells the architecture
dependant code that a new translation now exists at pte for the virtual
address addr. It is up to each architecture how this information should
be used. For example, Sparc64 uses the information to decide if the local
CPU needs to �ush it's data cache or does it need to send an IPI to a
remote processor.

Table 3.3: Translation Lookaside Bu�er Flush API (cont)

section covers how Linux utilises and manages the CPU cache. CPU caches, like

TLB caches, take advantage of the fact that programs tend to exhibit a locality of

reference [Sea00] [CS98]. To avoid having to fetch data from main memory for each

reference, the CPU will instead cache very small amounts of data in the CPU cache.

Frequently, there is two levels called the Level 1 and Level 2 CPU caches. The Level

2 CPU caches are larger but slower than the L1 cache but Linux only concerns itself

with the Level 1 or L1 cache.

CPU caches are organised into linesCPU cache line. Each line is typically

quite small, usually 32 bytes and each line is aligned to it's boundary size. In other

words, a cache line of 32 bytes will be aligned on a 32 byte address. With Linux,

the size of the line is L1_CACHE_BYTES which is de�ned by each architecture.

How addresses are mapped to cache lines vary between architectures but the

mappings come under three headings, direct mapping , associative mapping and set

associative mapping . Direct mapping is the simpliest approach where each block

of memory maps to only one possible cache line. With associative mapping, any

block of memory can map to any cache line. Set associative mapping is a hybrid
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approach where any block of memory can may to any line but only within a subset

of the available lines. Regardless of the mapping scheme, they each have one thing

in common, addresses that are close together and aligned to the cache size are likely

to use di�erent lines. Hence Linux employs simple tricks to try and maximise cache

usage

• Frequently accessed structure �elds are at the start of the structure to increase

the chance that only one line is needed to address the common �elds;

• Unrelated items in a structure should try to be at least cache size bytes apart

to avoid false sharing between CPUs;

• Objects in the general caches, such as the mm_struct cache, are aligned to the

L1 CPU cache to avoid false sharing.

If the CPU references an address that is not in the cache, a cache miss occurs

and the data is fetched from main memory. The cost of cache misses is quite high as

a reference to cache can typically be performed in less than 10ns where a reference

to main memory typically will cost between 100ns and 200ns. The basic objective

is then to have as many cache hitsCPU cache hit and as few cache missesCPU

cache miss as possible.

Just as some architectures do not automatically manage their TLBs, some do not

automatically manage their CPU caches. The hooks are placed in locations where

the virtual to physical mapping changes, such as during a page table update. The

CPU cache �ushes should always take place �rst as some CPUs require a virtual to

physical mapping to exist when the virtual address is being �ushed from the cache.

The three operations that require proper ordering are important is listed in Table

3.4.

Flushing Full MM Flushing Range Flushing Page
flush_cache_mm() flush_cache_range() flush_cache_page()

Change all page tables Change page table range Change single PTE
flush_tlb_mm() flush_tlb_range() flush_tlb_page()

Table 3.4: Cache and TLB Flush Ordering

The API used for �ushing the caches are declared in <asm/pgtable.h> and are

listed in Tables 3.5. In many respects, it is very similar to the TLB �ushing API.
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void(flush_cache_all)

void This �ushes the entire CPU cache system making it the most
severe �ush operation to use. It is used when changes to the kernel page
tables, which are global in nature, are to be performed.

void(flush_cache_mm)

struct mm_struct mm This �ushes all entires related to the address
space. On completion, no cache lines will be associated with mm.

void(flush_cache_range)

struct mm_struct *mm, unsigned long start, unsigned long end This
�ushes lines related to a range of addresses in the address space. Like
it's TLB equivilant, it is provided in case the architecture has an e�cent
way of �ushing ranges instead of �ushing each individual page.

void(flush_cache_page)

struct vm_area_struct *vma, unsigned long vmaddr This is for �ush-
ing a single page sized region. The VMA is supplied as the mm_struct is
easily accessible via vma→vm_mm. Additionally, by testing for the VM_EXEC
�ag, the architecture will know if the region is executable for caches that
separate the instructions and data caches. VMAs are described further
in Chapter 4.

Table 3.5: CPU Cache Flush API

It does not end there though. A second set of interfaces is required to avoid

virtual aliasing problems. The problem is that some CPUs select lines based on the

virtual address meaning that one physical address can exist on multiple lines leading

to cache coherency problems. Architectures with this problem may try and ensure

that shared mappings will only use addresses as a stop-gap measure. However, a

proper API to address is problem is also supplied which is listed in Table 3.6.

3.10 What's New In 2.6

Most of the mechanics for page table management are essentially the same for 2.6

but the changes that have been introduced are quite wide reaching and the imple-

mentations in-depth.

MMU-less Architecture Support A new �le has been introduced called

mm/nommu.c. This source �le contains replacement code for functions that assume

the existence of a MMU like mmap() for example. This is to support architectures,

usually microcontrollers, that have no MMU. Much of the work in this area was



3.10. What's New In 2.6 54

void(flush_page_to_ram)

unsigned long address This is a deprecated API which should no longer
be used and in fact will be removed totally for 2.6. It is covered here for
completeness and because it is still used. The function is called when a
new physical page is about to be placed in the address space of a process.
It is required to avoid writes from kernel space being invisible to userspace
after the mapping occurs.

void(flush_dcache_page)

struct page *page This function is called when the kernel writes to
or copies from a page cache page as these are likely to be mapped by
multiple processes.

void(flush_icache_range)

unsigned long address, unsigned long endaddr This is called when the
kernel stores information in addresses that is likely to be executed, such
as when a kermel module has been loaded.

void(flush_icache_user_range)

struct vm_area_struct *vma, struct page *page, unsigned long addr,
int len This is similar to flush_icache_range() except it is called
when a userspace range is a�ected. Currently, this is only used for
ptrace() (used when debugging) when the address space is being ac-
cessed by access_process_vm().

void(flush_icache_page)

struct vm_area_struct *vma, struct page *page This is called when
a page-cache page is about to be mapped. It is up to the architecture to
use the VMA �ags to determine whether the I-Cache or D-Cache should
be �ushed.

Table 3.6: CPU D-Cache and I-Cache Flush API

developed by the uCLinux Project (http://www.uclinux.org).

Reverse Mapping Reverse mapping pages The most signi�cant and impor-

tant change to page table management is the introduction of Reverse Mapping

(rmap). Referring to it as �rmap� is deliberate as it is the common usage of the

�acronym� and should not be confused with the -rmap tree developed by Rik van

Riel which has many more alterations to the stock VM than just the reverse map-

ping.

In a single sentence, rmap grants the ability to locate all PTEs which map a

particular page given just the struct page. In 2.4, the only way to �nd all PTEs

which map a shared page, such as a memory mapped shared library, is to linearaly
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search all page tables belonging to all processes. This is far too expensive and Linux

tries to avoid the problem by using the swap cache (see Section 11.4). This means

that with many shared pages, Linux may have to swap out entire processes regardless

of the page age and usage patterns. 2.6 instead has a PTE chain associated with

every struct page which may be traversed to remove a page from all page tables

that reference it. This way, pages in the LRU can be swapped out in an intelligent

manner without resorting to swapping entire processes.

As might be imagined by the reader, the implementation of this simple concept

is a little involved. The �rst step in understanding the implementation is the union

pte that is a �eld in struct page. This has union has two �elds, a pointer to a

struct pte_chain called chain and a pte_addr_t called direct. The union is

an optisation whereby direct is used to save memory if there is only one PTE

mapping the entry, otherwise a chain is used. The type pte_addr_t varies between

architectures but whatever its type, it can be used to locate a PTE, so we will treat

it as a pte_t for simplicity.

The struct pte_chain is a little more complex. The struct itself is very simple

but it is compact with overloaded �elds and a lot of development e�ort has been spent

on making it small and e�cient. Fortunately, this does not make it indecipherable.

First, it is the responsibility of the slab allocator to allocate and manage struct

pte_chains as it is this type of task the slab allocator is best at. Each struct

pte_chain can hold up to NRPTE pointers to PTE structures. Once that many

PTEs have been �lled, a struct pte_chain is allocated and added to the chain.

The struct pte_chain has two �elds. The �rst is unsigned long next_and_idx

which has two purposes. When next_and_idx is ANDed with NRPTE, it returns the

number of PTEs currently in this struct pte_chain indicating where the next free

slot is. When next_and_idx is ANDed with the negation of NRPTE (i.e. ∼NRPTE),

a pointer to the next struct pte_chain in the chain is returned1. This is basically

how a PTE chain is implemented.

To give a taste of the rmap intricacies, we'll give an example of what happens

when a new PTE needs to map a page. The basic process is to have the caller

allocate a new pte_chain with pte_chain_alloc(). This allocated chain is passed

with the struct page and the PTE to page_add_rmap(). If the existing PTE

chain associated with the page has slots available, it will be used and the pte_chain

1Told you it was compact
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allocated by the caller returned. If no slots were available, the allocated pte_chain

will be added to the chain and NULL returned.

There is a quite substantial API associated with rmap, for tasks such as creat-

ing chains and adding and removing PTEs to a chain, but a full listing is beyond

the scope of this section. Fortunately, the API is con�ned to mm/rmap.c and the

functions are heavily commented so their purpose is clear.

There are two main bene�ts, both related to pageout, with the introduction

of reverse mapping. The �rst is with the setup and tear-down of pagetables. As

will be seen in Section 11.4, pages being paged out are placed in a swap cache and

information is written into the PTE necessary to �nd the page again. This can lead

to multiple minor faults as pages are put into the swap cache and then faulted again

by a process. With rmap, the setup and removal of PTEs is atomic. The second

major bene�t is when pages need to paged out, �nding all PTEs referencing the

pages is a simple operation but impractical with 2.4, hence the swap cache.

Reverse mapping is not without its cost though. The �rst, and obvious one, is the

additional space requirements for the PTE chains. Arguably, the second is a CPU

cost associated with reverse mapping but it has not been proved to be signi�cant.

What is important to note though is that reverse mapping is only a bene�t when

pageouts are frequent. If the machines workload does not result in much pageout

or memory is ample, reverse mapping is all cost with little or no bene�t. At the

time of writing, the merits and downsides to rmap is still the subject of a number

of discussions.

Object-Based Reverse Mapping Reverse mapping objects

The reverse mapping required for each page can have very expensive space re-

quirements. To compound the problem, many of the reverse mapped pages in a

VMA will be essentially identical. One way of addressing this is to reverse map

based on the VMAs rather than individual pages. That is, instead of having a re-

verse mapping for each page, all the VMAs which map a particular page would be

traversed and unmap the page from each. Note that objects in this case refers to

the VMAs, not an object in the object-orientated sense of the word2. At the time of

writing, this feature has not been merged yet and was last seen in kernel 2.5.68-mm1

2Don't blame me, I didn't name it. In fact the original patch for this feature came with the
comment �From Dave. Crappy name�
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but there is a strong incentive to have it available if the problems with it can be

resolved. For the very curious, the patch for just �le/device backed objrmap at this

release is available 3 but it is only for the very very curious reader.

There are two tasks that require all PTEs that map a page to be traversed. The

�rst task is page_referenced() which checks all PTEs that map a page to see if

the page has been referenced recently. The second task is when a page needs to be

unmapped from all processes with try_to_unmap(). To complicate matters further,

there are two types of mappings that must be reverse mapped, those that are backed

by a �le or device and those that are anonymous. In both cases, the basic objective

is to traverse all VMAs which map a particular page and then walk the page table

for that VMA to get the PTE. The only di�erence is how it is implemented. The

case where it is backed by some sort of �le is the easiest case and was implemented

�rst so we'll deal with it �rst. For the purposes of illustrating the implementation,

we'll discuss how page_referenced() is implemented.

page_referenced calls page_referenced_obj() which is the top level function

for �nding all PTEs within VMAs that map the page. As the page is mapped for

a �le or device, page→mapping contains a pointer to a valid address_space. The

address_space has two linked lists which contain all VMAs which use the mapping

with the address_space→i_mmap and address_space→i_mmap_shared �elds. For

every VMA that is on these linked lists, page_referenced_obj_one() is called with

the VMA and the page as parameters. The function page_referenced_obj_one()

�rst checks if the page is in an address managed by this VMA and if so, traverses

the page tables of the mm_struct using the VMA (vma→vm_mm) until it �nds the

PTE mapping the page for that mm_struct.

Anonymous page tracking is a lot trickier and was implented in a number of

stages. It only made a very brief appearance and was removed again in 2.5.65-mm4

as it con�icted with a number of other changes. The �rst stage in the implementation

was to use page→mapping and page→index �elds to track mm_struct and address

pairs. These �elds previously had been used to store a pointer to swapper_space

and a pointer to the swp_entry_t (See Chapter 11). Exactly how it is addressed is

beyond the scope of this section but the summary is that swp_entry_t is stored in

page→private

3ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.5/2.5.68/2.5.68-
mm2/experimental
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try_to_unmap_obj works in a similar fashion but obviously, all the PTEs that

reference a page with this method can do so without needing to reverse map the

individual pages. There is a serious search complexity problem that is preventing it

being merged. The scenario that describes the problem is as follows;

Take a case where 100 processes have 100 VMAs mapping a single �le. To

unmap a single page in this case with object-based reverse mapping would require

10,000 VMAs to be searched, most of which are totally unnecessary. With page

based reverse mapping, only 100 pte_chain slots need to be examined, one for each

process. An optimisation was introduced to order VMAs in the address_space

by virtual address but the search for a single page is still far too expensive for

object-based reverse mapping to be merged.

PTEs in High Memory PTEs in High Memory

In 2.4, page table entries exist in ZONE_NORMAL as the kernel needs to be able to

address them directly during a page table walk. This was acceptable until it was

found that, with high memory machines, ZONE_NORMAL was being consumed by the

third level page table PTEs. The obvious answer is to move PTEs to high memory

which is exactly what 2.6 does.

As we will see in Chapter 9, addressing information in high memory is far from

free, so moving PTEs to high memory is a compile time con�guration option. In

short, the problem is that the kernel must map pages from high memory into the

lower address space before it can be used but there is a very limited number of slots

available for these mappings introducing a troublesome bottleneck. However, for

applications with a large number of PTEs, there is little other option. At time of

writing, a proposal has been made for having a User Kernel Virtual Area (UKVA)

which would be a region in kernel space private to each process but it is unclear if

it will be merged for 2.6 or not.

To take the possibility of high memory mapping into account, the macro

pte_offset() from 2.4 has been replaced with pte_offset_map() in 2.6. If PTEs

are in low memory, this will behave the same as pte_offset() and return the ad-

dress of the PTE. If the PTE is in high memory, it will �rst be mapped into low

memory with kmap_atomic() so it can be used by the kernel. This PTE must be

unmapped as quickly as possible with pte_unmap().

In programming terms, this means that page table walk code looks slightly dif-



3.10. What's New In 2.6 59

ferent. In particular, to �nd the PTE for a given address, the code now reads as

(taken from mm/memory.c);

640 ptep = pte_offset_map(pmd, address);

641 if (!ptep)

642 goto out;

643

644 pte = *ptep;

645 pte_unmap(ptep);

Additionally, the PTE allocation API has changed. Instead of pte_alloc(),

there is now a pte_alloc_kernel() for use with kernel PTE mappings and

pte_alloc_map() for userspace mapping. The principal di�erence between them

is that pte_alloc_kernel() will never use high memory for the PTE.

In memory management terms, the overhead of having to map the PTE from

high memory should not be ignored. Only one PTE may be mapped per CPU

at a time, although a second may be mapped with pte_offset_map_nested().

This introduces a penalty when all PTEs need to be examined, such as during

zap_page_range() when all PTEs in a given range need to be unmapped.

At time of writing, a patch has been submitted which places PMDs in high

memory using essentially the same mechanism and API changes. It is likely that it

will be merged.

Huge TLB Filesystem Huge TLB Filesystem Most modern architectures

support more than one page size. For example, on many x86 architectures, there is

an option to use 4KiB pages or 4MiB pages. Traditionally, Linux only used large

pages for mapping the actual kernel image and no where else. As TLB slots are

a scarce resource, it is desirable to be able to take advantages of the large pages

especially on machines with large amounts of physical memory.

In 2.6, Linux allows processes to use �huge pages�, the size of which is determined

by HPAGE_SIZE. The number of available huge pages is determined by the system

administrator by using the /proc/sys/vm/nr_hugepages proc interface which ulti-

matly uses the function set_hugetlb_mem_size(). As the success of the allocation

depends on the availability of physically contiguous memory, the allocation should

be made during system startup.

The root of the implementation is a Huge TLB Filesystem (hugetlbfs) which is

a pseudo-�lesystem implemented in fs/hugetlbfs/inode.c. Basically, each �le in
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this �lesystem is backed by a huge page. During initialisation, init_hugetlbfs_fs()

registers the �le system and mounts it as an internal �lesystem with kern_mount().

There are two ways that huge pages may be accessed by a process. The �rst is

by using shmget() to setup a shared region backed by huge pages and the second

is the call mmap() on a �le opened in the huge page �lesystem.

When a shared memory region should be backed by huge pages, the process

should call shmget() and pass SHM_HUGETLB as one of the �ags. This results in

hugetlb_zero_setup() being called which creates a new �le in the root of the

internal hugetlb �lesystem. A �le is created in the root of the internal �lesystem.

The name of the �le is determined by an atomic counter called hugetlbfs_counter

which is incremented every time a shared region is setup.

To create a �le backed by huge pages, a �lesystem of type hugetlbfs must �rst be

mounted by the system administrator. Instructions on how to perform this task are

detailed in Documentation/vm/hugetlbpage.txt. Once the �lesystem is mounted,

�les can be created as normal with the system call open(). When mmap() is called

on the open �le, the file_operations struct hugetlbfs_file_operations ensures

that hugetlbfs_file_mmap() is called to setup the region properly.

Huge TLB pages have their own function for the management of page tables,

address space operations and �lesystem operations. The names of the functions for

page table management can all be seen in <linux/hugetlb.h> and they are named

very similar to their �normal� page equivalents. The implementation of the hugetlb

functions are located near their normal page equivalents so are easy to �nd.

Cache Flush Management The changes here are minimal. The API function

flush_page_to_ram() has being totally removed and a new API flush_dcache_range()

has been introduced.



Chapter 4

Process Address Space

Process address space Address space

One of the principal advantages of virtual memory is that each process has its

own virtual address space, which is mapped to physical memory by the operating

system. In this chapter we will discuss the process address space and how Linux

manages it.

Global zero pageZero pageThe kernel treats the userspace portion of the ad-

dress space very di�erently to the kernel portion. For example, allocations for the

kernel are satis�ed immediately and are visible globally no matter what process is

on the CPU. vmalloc() is partially an exception as a minor page fault will occur to

sync the process page tables with the reference page tables, but the page will still be

allocated immediately upon request. With a process, space is simply reserved in the

linear address space by pointing a page table entry to a read-only globally visible

page �lled with zeros. On writing, a page fault is triggered which results in a new

page being allocated, �lled with zeros, placed in the page table entry and marked

writable. It is �lled with zeros so that the new page will appear exactly the same

as the global zero-�lled page.

The userspace portion is not trusted or presumed to be constant. After each

context switch, the userspace portion of the linear address space can potentially

change except when a Lazy TLB switch is used as discussed later in Section 4.3. As

a result of this, the kernel must be prepared to catch all exception and addressing

errors raised from userspace. This is discussed in Section 4.5.

This chapter begins with how the linear address space is broken up and what

the purpose of each section is. We then cover the structures maintained to describe

each process, how they are allocated, initialised and then destroyed. Next, we will

cover how individual regions within the process space are created and all the various

61
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functions associated with them. That will bring us to exception handling related to

the process address space, page faulting and the various cases that occur to satisfy

a page fault. Finally, we will cover how the kernel safely copies information to and

from userspace.

4.1 Linear Address Space

Linear Address Space

From a user perspective, the address space is a �at linear address space but

predictably, the kernel's perspective is very di�erent. The address space is split into

two parts, the userspace part which potentially changes with each full context switch

and the kernel address space which remains constant. The location of the split is

determined by the value of PAGE_OFFSET which is at 0xC0000000 on the x86. This

means that 3GiB is available for the process to use while the remaining 1GiB is

always mapped by the kernel3GiB/1GiB Split. The linear virtual address space

as the kernel sees it is illustrated in Figure 4.1.

Figure 4.1: Kernel Address Space

Kernel Address Space

8MiB (the amount of memory addressed by two PGDs) is reserved at PAGE_OFFSET

for loading the kernel image to run. 8MiB is simply a reasonable amount of space

to reserve for the purposes of loading the kernel image. The kernel image is placed

in this reserved space during kernel page tables initialisation as discussed in Section

3.6.1. Somewhere shortly after the image, the mem_map for UMA architectures, as

discussed in Chapter 2, is stored. The location of the array is usually at the 16MiB

mark to avoid using ZONE_DMA but not always. With NUMA architectures, portions

of the virtual mem_map will be scattered throughout this region and where they are

actually located is architecture dependent.
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The region between PAGE_OFFSET and VMALLOC_START - VMALLOC_OFFSET is the

physical memory map and the size of the region depends on the amount of available

RAM. As we saw in Section 3.6, page table entries exist to map physical memory

to the virtual address range beginning at PAGE_OFFSET. Between the physical mem-

ory map and the vmalloc address space, there is a gap of space VMALLOC_OFFSET

in size, which on the x86 is 8MiB, to guard against out of bounds errors. For

illustration, on a x86 with 32MiB of RAM, VMALLOC_START will be located at

PAGE_OFFSET + 0x02000000 + 0x00800000.

In low memory systems, the remaining amount of the virtual address space,

minus a 2 page gap, is used by vmalloc() for representing non-contiguous mem-

ory allocations in a contiguous virtual address space. In high-memory systems,

the vmalloc area extends as far as PKMAP_BASE minus the two page gap and two

extra regions are introduced. The �rst, which begins at PKMAP_BASE, is an area

reserved for the mapping of high memory pages into low memory with kmap() as

discussed in Chapter 9. The second is for �xed virtual address mappings which

extends from FIXADDR_START to FIXADDR_TOP. Fixed virtual addresses are needed

for subsystems that need to know the virtual address at compile time such as the

Advanced Programmable Interrupt Controller (APIC). FIXADDR_TOP is statically de-

�ned to be 0xFFFFE000 on the x86 which is one page before the end of the virtual

address space. The size of the �xed mapping region is calculated at compile time in

__FIXADDR_SIZE and used to index back from FIXADDR_TOP to give the start of the

region FIXADDR_START

The region required for vmalloc(), kmap() and the �xed virtual address mapping

is what limits the size of ZONE_NORMAL. As the running kernel needs these functions,

a region of at least VMALLOC_RESERVE will be reserved at the top of the address space.

VMALLOC_RESERVE is architecture speci�c but on the x86, it is de�ned as 128MiB.

This is why ZONE_NORMAL is generally referred to being only 896MiB896MiB limit

of ZONE_NORMALZONE_NORMAL at 896MiB in size; it is the 1GiB of

the upper potion of the linear address space minus the minimum 128MiB that is

reserved for the vmalloc region.

4.2 Managing the Address Space

Address space management
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The address space usable by the process is managed by a high level mm_struct

which is roughly analogous to the vmspace struct in BSD [McK96].

Each address space consists of a number of page-aligned regions of memory that

are in use. They never overlap and represent a set of addresses which contain pages

that are related to each other in terms of protection and purpose. These regions

are represented by a struct vm_area_struct and are roughly analogous to the

vm_map_entry struct in BSD. For clarity, a region may represent the process heap

for use with malloc(), a memory mapped �le such as a shared library or a block

of anonymous memory allocated with mmap(). The pages for this region may still

have to be allocated, be active and resident or have been paged out.

If a region is backed by a �le, its vm_file �eld will be set. By traversing

vm_file→f_dentry→d_inode→i_mapping, the associated address_space for the

region may be obtained. The address_space has all the �lesystem speci�c infor-

mation required to perform page-based operations on disk.

The relationship between the di�erent address space related structures is illus-

traed in 4.2. A number of system calls are provided which a�ect the address space

and regions. These are listed in Table 4.1.

4.3 Process Address Space Descriptor

Process space descriptor

The process address space is described by the mm_struct struct meaning that

only one exists for each process and is shared between userspace threads. In fact,

threads are identi�ed in the task list by �nding all task_structs which have pointers

to the same mm_struct.Thread identi�cation

A unique mm_struct is not needed for kernel threads as they will never page

fault or access the userspace portion. The only exception is page faulting within

the vmalloc space. The page fault handling code treats this as a special case and

updates the current page table with information in the the master page table. As

a mm_struct is not needed for kernel threads, the task_struct→mm �eld for kernel

threads is always NULL. For some tasks such as the boot idle task, the mm_struct

is never setup but for kernel threads, a call to daemonize() will call exit_mm() to

decrement the usage counter.

TLB �ushingAs TLB �ushes are extremely expensive, especially with archi-
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Figure 4.2: Data Structures related to the Address Space

tectures such as the PPC, a technique called lazy TLB is employed which avoids

unnecessary TLB �ushes by processes which do not access the userspace page tables

as the kernel portion of the address space is always visible. The call to switch_mm(),

which results in a TLB �ush, is avoided by �borrowing� the mm_struct used by the

previous task and placing it in task_struct→active_mm. This technique has made

large improvements to context switches times.

When entering lazy TLB, the function enter_lazy_tlb() is called to ensure

that a mm_struct is not shared between processors in SMP machines, making it

a NULL operation on UP machines. The second time use of lazy TLB is during

process exit when start_lazy_tlb() is used brie�y while the process is waiting to

be reaped by the parent.

The struct has two reference counts called mm_users and mm_count for two types

of �users�. mm_users is a reference count of processes accessing the userspace portion

of for this mm_struct, such as the page tables and �le mappings. Threads and the

swap_out() code for instance will increment this count making sure a mm_struct is

not destroyed early. When it drops to 0, exit_mmap() will delete all mappings and
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System Call Description
fork() Creates a new process with a new address space. All the

pages are marked COW and are shared between the two
processes until a page fault occurs to make private copies

clone() clone allows a new process to be created that shares parts
of its context with its parent and is how threading is
implemented in Linux. clone() without the CLONE_VM

set will create a new address space which is essentially
the same as fork()

mmap() mmap creates a new region within the process linear ad-
dress space

mremap() Remaps or resizes a region of memory. If the virtual
address space is not available for the mapping, the region
may be moved unless the move is forbidden by the caller.

munmap() This destroys part or all of a region. If the region been
unmapped is in the middle of an existing region, the
existing region is split into two separate regions

shmat() This attaches a shared memory segment to a process ad-
dress space

shmdt() Removes a shared memory segment from an address
space

execve() This loads a new executable �le replacing the current
address space

exit() Destroys an address space and all regions

Table 4.1: System Calls Related to Memory Regions

tear down the page tables before decrementing the mm_count.

mm_count is a reference count of the �anonymous users� for the mm_struct ini-

tialised at 1 for the �real� user. An anonymous user is one that does not necessarily

care about the userspace portion and is just borrowing the mm_struct. Example

users are kernel threads which use lazy TLB switching. When this count drops

to 0, the mm_struct can be safely destroyed. Both reference counts exist because

anonymous users need the mm_struct to exist even if the userspace mappings get

destroyed and there is no point delaying the teardown of the page tables.

The mm_struct is de�ned in <linux/sched.h> as follows:
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206 struct mm_struct {

207 struct vm_area_struct * mmap;

208 rb_root_t mm_rb;

209 struct vm_area_struct * mmap_cache;

210 pgd_t * pgd;

211 atomic_t mm_users;

212 atomic_t mm_count;

213 int map_count;

214 struct rw_semaphore mmap_sem;

215 spinlock_t page_table_lock;

216

217 struct list_head mmlist;

221

222 unsigned long start_code, end_code, start_data, end_data;

223 unsigned long start_brk, brk, start_stack;

224 unsigned long arg_start, arg_end, env_start, env_end;

225 unsigned long rss, total_vm, locked_vm;

226 unsigned long def_flags;

227 unsigned long cpu_vm_mask;

228 unsigned long swap_address;

229

230 unsigned dumpable:1;

231

232 /* Architecture-specific MM context */

233 mm_context_t context;

234 };

The meaning of each of the �eld in this sizeable struct is as follows:

mmap The head of a linked list of all VMA regions in the address space;

mm_rb The VMAs are arranged in a linked list and in a red-black tree for fast

lookups. This is the root of the tree;

mmap_cache The VMA found during the last call to find_vma() is stored in

this �eld on the assumption that the area will be used again soon;

pgd The Page Global Directory for this process;

mm_users A reference count of users accessing the userspace portion of the ad-

dress space as explained at the beginning of the section;

mm_count A reference count of the anonymous users for the mm_struct starting

at 1 for the �real� user as explained at the beginning of this section;

map_count Number of VMAs in use;
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mmap_sem This is a long lived lock which protects the VMA list for readers

and writers. As users of this lock require it for a long time and may need to

sleep, a spinlock is inappropriate. A reader of the list takes this semaphore

with down_read(). If they need to write, it is taken with down_write() and

the page_table_lock spinlock is later acquired while the VMA linked lists

are being updated;

page_table_lock This protects most �elds on the mm_struct. As well as the page

tables, it protects the RSS (see below) count and the VMA from modi�cation;

mmlist All mm_structs are linked together via this �eld;

start_code, end_code The start and end address of the code section;

start_data, end_data The start and end address of the data section;

start_brk, brk The start and end address of the heap;

start_stack Predictably enough, the start of the stack region;

arg_start, arg_end The start and end address of command line arguments;

env_start, env_end The start and end address of environment variables;

rss Resident Set Size (RSS) is the number of resident pages for this process. It

should be noted that the global zero page is not accounted for by RSS;

total_vm The total memory space occupied by all VMA regions in the process;

locked_vm The number of resident pages locked in memory;

def_�ags Only one possible value, VM_LOCKED. It is used to determine if all future

mappings are locked by default or not;

cpu_vm_mask A bitmask representing all possible CPUs in an SMP system.

The mask is used by an InterProcessor Interrupt (IPI) to determine if a pro-

cessor should execute a particular function or not. This is important during

TLB �ush for each CPU;

swap_address Used by the pageout daemon to record the last address that was

swapped from when swapping out entire processes;
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dumpable Set by prctl(), this �ag is important only when tracing a process;

context Architecture speci�c MMU context.

There are a small number of functions for dealing with mm_structs. They are

described in Table 4.2.

Function Description
mm_init() Initialises a mm_struct by setting starting values for

each �eld, allocating a PGD, initialising spinlocks etc.
allocate_mm() Allocates a mm_struct() from the slab allocator
mm_alloc() Allocates a mm_struct using allocate_mm() and calls

mm_init() to initialise it
exit_mmap() Walks through a mm_struct and unmaps all VMAs as-

sociated with it
copy_mm() Makes an exact copy of the current tasks mm_struct

for a new task. This is only used during fork
free_mm() Returns the mm_struct to the slab allocator

Table 4.2: Functions related to memory region descriptors

4.3.1 Allocating a Descriptor

Process descriptor allocation

Two functions are provided to allocate a mm_struct. To be slightly confusing,

they are essentially the same but with small important di�erences. allocate_mm()

is just a preprocessor macro which allocates a mm_struct from the slab allocator (see

Chapter 8). mm_alloc() allocates from slab and then calls mm_init() to initialise

it.

4.3.2 Initialising a Descriptor

Initialising mm_struct

The initial mm_struct in the system is called init_mm() and is statically ini-

tialised at compile time using the macro INIT_MM().

238 #define INIT_MM(name) \

239 { \

240 mm_rb: RB_ROOT, \

241 pgd: swapper_pg_dir, \

242 mm_users: ATOMIC_INIT(2), \

243 mm_count: ATOMIC_INIT(1), \

244 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \

245 page_table_lock: SPIN_LOCK_UNLOCKED, \
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246 mmlist: LIST_HEAD_INIT(name.mmlist), \

247 }

Once it is established, new mm_structs are created using their parent mm_struct

as a template. The function responsible for the copy operation is copy_mm() and it

uses init_mm() to initialise process speci�c �elds.

4.3.3 Destroying a Descriptor

While a new user increments the usage count with atomic_inc(&mm->mm_users),

it is decremented with a call to mmput(). If the mm_users count reaches zero, all

the mapped regions are destroyed with exit_mmap() and the page tables destroyed

as there is no longer any users of the userspace portions. The mm_count count

is decremented with mmdrop() as all the users of the page tables and VMAs are

counted as one mm_struct user. When mm_count reaches zero, the mm_struct will

be destroyed.

4.4 Memory Regions

Address space regions Memory regions VMA Virtual Memory Area

The full address space of a process is rarely used, only sparse regions are. Each

region is represented by a vm_area_struct which never overlap and represent a set

of addresses with the same protection and purpose. Examples of a region include

a read-only shared library loaded into the address space or the process heap. A

full list of mapped regions a process has may be viewed via the proc interface at

/proc/PID/maps where PID is the process ID of the process that is to be examined.

The region may have a number of di�erent structures associated with it as illus-

trated in Figure 4.2. At the top, there is the vm_area_struct which on its own is

enough to represent anonymous memory.

If the region is backed by a �le, the struct file is available through the vm_file

�eld which has a pointer to the struct inode. The inode is used to get the struct

address_space which has all the private information about the �le including a set

of pointers to �lesystem functions which perform the �lesystem speci�c operations

such as reading and writing pages to disk.

The struct vm_area_struct is declared as follows in <linux/mm.h>:
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44 struct vm_area_struct {

45 struct mm_struct * vm_mm;

46 unsigned long vm_start;

47 unsigned long vm_end;

49

50 /* linked list of VM areas per task, sorted by address */

51 struct vm_area_struct *vm_next;

52

53 pgprot_t vm_page_prot;

54 unsigned long vm_flags;

55

56 rb_node_t vm_rb;

57

63 struct vm_area_struct *vm_next_share;

64 struct vm_area_struct **vm_pprev_share;

65

66 /* Function pointers to deal with this struct. */

67 struct vm_operations_struct * vm_ops;

68

69 /* Information about our backing store: */

70 unsigned long vm_pgoff;

72 struct file * vm_file;

73 unsigned long vm_raend;

74 void * vm_private_data;

75 };

vm_mm The mm_struct this VMA belongs to;

vm_start The starting address of the region;

vm_end The end address of the region;

vm_next All the VMAs in an address space are linked together in an address-

ordered singly linked list via this �eld It is interesting to note that the VMA

list is one of the very rare cases where a singly linked list is used in the kernel;

vm_page_prot The protection �ags that are set for each PTE in this VMA. The

di�erent bits are described in Table 3.1;

vm_�ags A set of �ags describing the protections and properties of the VMA.

They are all de�ned in <linux/mm.h> and are described in Table 4.3

vm_rb As well as being in a linked list, all the VMAs are stored on a red-black tree

for fast lookups. This is important for page fault handling when �nding the
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correct region quickly is important, especially for a large number of mapped

regions;

vm_next_share Shared VMA regions based on �le mappings (such as shared

libraries) linked together with this �eld;

vm_pprev_share The complement of vm_next_share;

vm_ops The vm_ops �eld contains functions pointers for open(), close() and

nopage(). These are needed for syncing with information from the disk;

vm_pgo� This is the page aligned o�set within a �le that is memory mapped;

vm_�le The struct file pointer to the �le being mapped;

vm_raend This is the end address of a read-ahead window. When a fault occurs,

a number of additional pages after the desired page will be paged in. This

�eld determines how many additional pages are faulted in;

vm_private_data Used by some device drivers to store private information. Not

of concern to the memory manager.

All the regions are linked together on a linked list ordered by address via the

vm_next �eld. When searching for a free area, it is a simple matter of traversing the

list but a frequent operation is to search for the VMA for a particular address such

as during page faulting for example. In this case, the red-black tree is traversed as

it has O( log N) search time on average. The tree is ordered so that lower addresses

than the current node are on the left leaf and higher addresses are on the right.

4.4.1 Memory Region Operations

VMA operations

There are three operations which a VMA may support called open(), close()

and nopage(). It supports these with a vm_operations_struct in the VMA called

vma→vm_ops. The struct contains three function pointers and is declared as follows

in <linux/mm.h>:

133 struct vm_operations_struct {

134 void (*open)(struct vm_area_struct * area);

135 void (*close)(struct vm_area_struct * area);

136 struct page * (*nopage)(struct vm_area_struct * area,
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Protection Flags
Flags Description
VM_READ Pages may be read
VM_WRITE Pages may be written
VM_EXEC Pages may be executed
VM_SHARED Pages may be shared
VM_DONTCOPY VMA will not be copied on fork
VM_DONTEXPAND Prevents a region being resized. Flag is unused

mmap Related Flags
VM_MAYREAD Allow the VM_READ �ag to be set
VM_MAYWRITE Allow the VM_WRITE �ag to be set
VM_MAYEXEC Allow the VM_EXEC �ag to be set
VM_MAYSHARE Allow the VM_SHARE �ag to be set
VM_GROWSDOWN Shared segment (probably stack) may grow down
VM_GROWSUP Shared segment (probably heap) may grow up
VM_SHM Pages are used by shared SHM memory segment
VM_DENYWRITE What MAP_DENYWRITE for mmap() translates to. Now

unused
VM_EXECUTABLE What MAP_EXECUTABLE for mmap() translates to. Now

unused
VM_STACK_FLAGS Flags used by setup_arg_flags() to setup the stack

Locking Flags
VM_LOCKED If set, the pages will not be swapped out. Set by mlock()
VM_IO Signals that the area is a mmaped region for IO to a

device. It will also prevent the region being core dumped
VM_RESERVED Do not swap out this region, used by device drivers

madvise() Flags
VM_SEQ_READ A hint that pages will be accessed sequentially
VM_RAND_READ A hint stating that readahead in the region is useless

Figure 4.3: Memory Region Flags
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unsigned long address,

int unused);

137 };

The open() and close() functions are will be called every time a region is

created or deleted. These functions are only used by a small number of devices, one

�lesystem and System V shared regions which need to perform additional operations

when regions are opened or closed. For example, the System V open() callback will

increment the number of VMAs using a shared segment (shp→shm_nattch).

The main operation of interest is the nopage() callback. This callback is used

during a page-fault by do_no_page(). The callback is responsible for locating the

page in the page cache or allocating a page and populating it with the required data

before returning it.

Most �les that are mapped will use a generic vm_operations_struct() called

generic_file_vm_ops. It registers only a nopage() function called filemap_nopage().

This nopage() function will either locating the page in the page cache or read the

information from disk. The struct is declared as follows in mm/filemap.c:

2243 static struct vm_operations_struct generic_file_vm_ops = {

2244 nopage: filemap_nopage,

2245 };

4.4.2 File/Device backed memory regions

File backed regions Device backed regions

In the event the region is backed by a �le, the vm_file leads to an associated

address_space as shown in Figure 4.2. The struct contains information of relevance

to the �lesystem such as the number of dirty pages which must be �ushed to disk.

It is declared as follows in <linux/fs.h>:

406 struct address_space {

407 struct list_head clean_pages;

408 struct list_head dirty_pages;

409 struct list_head locked_pages;

410 unsigned long nrpages;

411 struct address_space_operations *a_ops;

412 struct inode *host;

413 struct vm_area_struct *i_mmap;

414 struct vm_area_struct *i_mmap_shared;

415 spinlock_t i_shared_lock;

416 int gfp_mask;

417 };
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A brief description of each �eld is as follows:

clean_pages List of clean pages that need no synchronisation with backing

stoarge;

dirty_pages List of dirty pages that need synchronisation with backing storage;

locked_pages List of pages that are locked in memory;

nrpages Number of resident pages in use by the address space;

a_ops A struct of function for manipulating the �lesystem. Each �lesystem

provides it's own address_space_operations although they sometimes use

generic functions;

host The host inode the �le belongs to;

i_mmap A list of private mappings using this address_space;

i_mmap_shared A list of VMAs which share mappings in this address_space;

i_shared_lock A spinlock to protect this structure;

gfp_mask The mask to use when calling __alloc_pages() for new pages.

Periodically the memory manager will need to �ush information to disk. The

memory manager does not know and does not care how information is written to

disk, so the a_ops struct is used to call the relevant functions. It is declared as

follows in <linux/fs.h>:
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385 struct address_space_operations {

386 int (*writepage)(struct page *);

387 int (*readpage)(struct file *, struct page *);

388 int (*sync_page)(struct page *);

389 /*

390 * ext3 requires that a successful prepare_write() call be

391 * followed by a commit_write() call - they must be balanced

392 */

393 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);

394 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);

395 /* Unfortunately this kludge is needed for FIBMAP.

* Don't use it */

396 int (*bmap)(struct address_space *, long);

397 int (*flushpage) (struct page *, unsigned long);

398 int (*releasepage) (struct page *, int);

399 #define KERNEL_HAS_O_DIRECT

400 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);

401 #define KERNEL_HAS_DIRECT_FILEIO

402 int (*direct_fileIO)(int, struct file *, struct kiobuf *,

unsigned long, int);

403 void (*removepage)(struct page *);

404 };

These �elds are all function pointers which are described as follows;

writepage Write a page to disk. The o�set within the �le to write to is stored

within the page struct. It is up to the �lesystem speci�c code to �nd the block.

See buffer.c:block_write_full_page();

readpage Read a page from disk. See buffer.c:block_read_full_page();

sync_page Sync a dirty page with disk. See buffer.c:block_sync_page();

prepare_write This is called before data is copied from userspace into a page that

will be written to disk. With a journaled �lesystem, this ensures the �lesystem

log is up to date. With normal �lesystems, it makes sure the needed bu�er

pages are allocated. See buffer.c:block_prepare_write();

commit_write After the data has been copied from userspace, this function is

called to commit the information to disk. See buffer.c:block_commit_write();
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bmap Maps a block so that raw IO can be performed. Mainly of concern to

�lesystem speci�c code although it is also when swapping out pages that are

backed by a swap �le instead of a swap partition;

�ushpage This makes sure there is no IO pending on a page before releasing it.

See buffer.c:discard_bh_page();

releasepage This tries to �ush all the bu�ers associated with a page before freeing

the page itself. See try_to_free_buffers().

direct_IO This function is used when performing direct IO to an inode. The

#define exists so that external modules can determine at compile-time if the

function is available as it was only introduced in 2.4.21

direct_�leIO Used to perform direct IO with a struct file. Again, the #define

exists for external modules as this API was only introduced in 2.4.22

removepage An optional callback that is used when a page is removed from the

page cache in remove_page_from_inode_queue()

4.4.3 Creating A Memory Region

VMA CreationCreating VMAs

The system call mmap() is provided for creating new memory regions within

a process. For the x86, the function calls sys_mmap2() which calls do_mmap2()

directly with the same parameters. do_mmap2() is responsible for acquiring the

parameters needed by do_mmap_pgoff(), which is the principle function for creating

new areas for all architectures.

do_mmap2 �rst clears the MAP_DENYWRITE and MAP_EXECUTABLE bits from

the flags parameter as they are ignored by Linux, which is con�rmed by the

mmap() manual page. If a �le is being mapped, do_mmap2() will look up the

struct file based on the �le descriptor passed as a parameter and acquire the

mm_struct→mmap_sem semaphore before calling do_mmap_pgoff().

do_mmap_pgo� begins by performing some basic sanity checks. It �rst checks

the appropriate �lesystem or device functions are available if a �le or device is being

mapped. It then ensures the size of the mapping is page aligned and that it does

not attempt to create a mapping in the kernel portion of the address space. It then
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Figure 4.4: Call Graph: sys_mmap2()

makes sure the size of the mapping does not over�ow the range of pgoff and �nally

that the process does not have too many mapped regions already.

This rest of the function is large but broadly speaking it takes the following

steps:

• Sanity check the parameters;

• Find a free linear address space large enough for the memory mapping. If

a �lesystem or device speci�c get_unmapped_area() function is provided, it

will be used otherwise arch_get_unmapped_area() is called;

• Calculate the VM �ags and check them against the �le access permissions;

• If an old area exists where the mapping is to take place, �x it up so that it is

suitable for the new mapping;

• Allocate a vm_area_struct from the slab allocator and �ll in its entries;

• Link in the new VMA;

• Call the �lesystem or device speci�c mmap function;

• Update statistics and exit.

4.4.4 Finding a Mapped Memory Region

VMA searching

A common operation is to �nd the VMA a particular address belongs to, such

as during operations like page faulting, and the function responsible for this is

find_vma(). The function find_vma() and other API functions a�ecting memory

regions are listed in Table 4.3.
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It �rst checks the mmap_cache �eld which caches the result of the last call to

find_vma() as it is quite likely the same region will be needed a few times in

succession. If it is not the desired region, the red-black tree stored in the mm_rb �eld

is traversed. If the desired address is not contained within any VMA, the function

will return the VMA closest to the requested address so it is important callers double

check to ensure the returned VMA contains the desired address.

A second function called find_vma_prev() is provided which is functionally the

same as find_vma() except that it also returns a pointer to the VMA preceding the

desired VMA which is required as the list is a singly linked list. find_vma_prev() is

rarely used but notably, it is used when two VMAs are being compared to determine

if they may be merged. It is also used when removing a memory region so that the

singly linked list may be updated.

The last function of note for searching VMAs is find_vma_intersection()

which is used to �nd a VMA which overlaps a given address range. The most

notable use of this is during a call to do_brk() when a region is growing up. It is

important to ensure that the growing region will not overlap an old region.

4.4.5 Finding a Free Memory Region

When a new area is to be memory mapped, a free region has to be found that is

large enough to contain the new mapping. The function responsible for �nding a

free area is get_unmapped_area().

As the call graph in Figure 4.5 indicates, there is little work involved with �nding

an unmapped area. The function is passed a number of parameters. A struct file

is passed representing the �le or device to be mapped as well as pgoff which is the

o�set within the �le that is been mapped. The requested address for the mapping

is passed as well as its length. The last parameter is the protection flags for the

area.

If a device is being mapped, such as a video card, the associated

f_op→get_unmapped_area() is used. This is because devices or �les may have

additional requirements for mapping that generic code can not be aware of, such as

the address having to be aligned to a particular virtual address.

If there are no special requirements, the architecture speci�c function

arch_get_unmapped_area() is called. Not all architectures provide their own func-

tion. For those that don't, there is a generic version provided in mm/mmap.c.
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Figure 4.5: Call Graph: get_unmapped_area()

4.4.6 Inserting a memory region

VMA insertionInserting a memory region

The principal function for inserting a new memory region is insert_vm_struct()

whose call graph can be seen in Figure 4.6. It is a very simple function which �rst

calls find_vma_prepare() to �nd the appropriate VMAs the new region is to be

inserted between and the correct nodes within the red-black tree. It then calls

__vma_link() to do the work of linking in the new VMA.

Figure 4.6: Call Graph: insert_vm_struct()

The function insert_vm_struct() is rarely used as it does not increase the
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map_count �eld. Instead, the function commonly used is __insert_vm_struct()

which performs the same tasks except that it increments map_count.

Two varieties of linking functions are provided, vma_link() and __vma_link().

vma_link() is intended for use when no locks are held. It will acquire all the

necessary locks, including locking the �le if the VMA is a �le mapping before calling

__vma_link() which places the VMA in the relevant lists.

It is important to note that many functions do not use the insert_vm_struct()

functions but instead prefer to call find_vma_prepare() themselves followed by a

later vma_link() to avoid having to traverse the tree multiple times.

The linking in __vma_link() consists of three stages which are contained in

three separate functions. __vma_link_list() inserts the VMA into the linear,

singly linked list. If it is the �rst mapping in the address space (i.e. prev is NULL),

it will become the red-black tree root node. The second stage is linking the node

into the red-black tree with __vma_link_rb(). The �nal stage is �xing up the �le

share mapping with __vma_link_file() which basically inserts the VMA into the

linked list of VMAs via the vm_pprev_share and vm_next_share �elds.

4.4.7 Merging contiguous regions

VMA mergingMerging VMAs

Linux used to have a function called merge_segments() [Hac02] which was re-

sponsible for merging adjacent regions of memory together if the �le and permissions

matched. The objective was to remove the number of VMAs required, especially

as many operations resulted in a number of mappings been created such as calls

to sys_mprotect(). This was an expensive operation as it could result in large

portions of the mappings been traversed and was later removed as applications,

especially those with many mappings, spent a long time in merge_segments().

The equivalent function which exists now is called vma_merge() and it is only

used in two places. The �rst is user is sys_mmap() which calls it if an anonymous

region is being mapped, as anonymous regions are frequently mergable. The second

time is during do_brk() which is expanding one region into a newly allocated one

where the two regions should be merged. Rather than merging two regions, the

function vma_merge() checks if an existing region may be expanded to satisfy the

new allocation negating the need to create a new region. A region may be expanded

if there are no �le or device mappings and the permissions of the two areas are the
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same.

Regions are merged elsewhere, although no function is explicitly called to perform

the merging. The �rst is during a call to sys_mprotect() during the �xup of areas

where the two regions will be merged if the two sets of permissions are the same

after the permissions in the a�ected region change. The second is during a call to

move_vma() when it is likely that similar regions will be located beside each other.

4.4.8 Remapping and moving a memory region

VMA remappingMoving VMAsRemapping VMAs

mremap is a system call provided to grow or shrink an existing memory mapping.

This is implemented by the function sys_mremap() which may move a memory

region if it is growing or it would overlap another region and MREMAP_FIXED is not

speci�ed in the �ags. The call graph is illustrated in Figure 4.7.

Figure 4.7: Call Graph: sys_mremap()

If a region is to be moved, do_mremap() �rst calls get_unmapped_area() to �nd

a region large enough to contain the new resized mapping and then calls move_vma()

to move the old VMA to the new location. See Figure 4.8 for the call graph to

move_vma().

Figure 4.8: Call Graph: move_vma()

First move_vma() checks if the new location may be merged with the VMAs

adjacent to the new location. If they can not be merged, a new VMA is allocated
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literally one PTE at a time. Next move_page_tables() is called(see Figure 4.9 for

its call graph) which copies all the page table entries from the old mapping to the

new one. While there may be better ways to move the page tables, this method

makes error recovery trivial as backtracking is relatively straight forward.

Figure 4.9: Call Graph: move_page_tables()

The contents of the pages are not copied. Instead, zap_page_range() is called

to swap out or remove all the pages from the old mapping and the normal page fault

handling code will swap the pages back in from backing storage or from �les or will

call the device speci�c do_nopage() function.

4.4.9 Locking a Memory Region

VMA lockingLocking regions

Linux can lock pages from an address range into memory via the system call

mlock() which is implemented by sys_mlock() whose call graph is shown in Figure

4.10. At a high level, the function is simple; it creates a VMA for the address range

to be locked, sets the VM_LOCKED �ag on it and forces all the pages to be present

with make_pages_present(). A second system call mlockall() which maps to

sys_mlockall() is also provided which is a simple extension to do the same work

as sys_mlock() except for every VMA on the calling process. Both functions rely

on the core function do_mlock() to perform the real work of �nding the a�ected

VMAs and deciding what function is needed to �x up the regions as described later.

There are some limitations to what memory may be locked. The address range

must be page aligned as VMAs are page aligned. This is addressed by simply



4.4.10. Unlocking the region 84

Figure 4.10: Call Graph: sys_mlock()

rounding the range up to the nearest page aligned range. The second proviso is

that the process limit RLIMIT_MLOCK imposed by the system administrator may not

be exceeded. The last proviso is that each process may only lock half of physical

memory at a time. This is a bit non-functional as there is nothing to stop a process

forking a number of times and each child locking a portion but as only root processes

are allowed to lock pages, it does not make much di�erence. It is safe to presume

that a root process is trusted and knows what it is doing. If it does not, the system

administrator with the resulting broken system probably deserves it and gets to keep

both parts of it.

4.4.10 Unlocking the region

VMA unlockingUnlocking VMAs

The system calls munlock() and munlockall() provide the corollary for the

locking functions and map to sys_munlock() and sys_munlockall() respectively.

The functions are much simpler than the locking functions as they do not have to

make numerous checks. They both rely on the same do_mmap() function to �x up

the regions.

4.4.11 Fixing up regions after locking

When locking or unlocking, VMAs will be a�ected in one of four ways, each of

which must be �xed up by mlock_fixup(). The locking may a�ect the whole
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VMA in which case mlock_fixup_all() is called. The second condition, handled

by mlock_fixup_start(), is where the start of the region is locked, requiring that

a new VMA be allocated to map the new area. The third condition, handled by

mlock_fixup_end(), is predictably enough where the end of the region is locked.

Finally, mlock_fixup_middle() handles the case where the middle of a region is

mapped requiring two new VMAs to be allocated.

It is interesting to note that VMAs created as a result of locking are never

merged, even when unlocked. It is presumed that processes which lock regions will

need to lock the same regions over and over again and it is not worth the processor

power to constantly merge and split regions.

4.4.12 Deleting a memory region

The function responsible for deleting memory regions, or parts thereof, is do_munmap()munmap().

It is a relatively simple operation in comparison to the other memory region related

operations and is basically divided up into three parts. The �rst is to �x up the

red-black tree for the region that is about to be unmapped. The second is to release

the pages and PTEs related to the region to be unmapped and the third is to �x up

the regions if a hole has been generated.

Figure 4.11: Call Graph: do_munmap()

To ensure the red-black tree is ordered correctly, all VMAs to be a�ected by the

unmap are placed on a linked list called free and then deleted from the red-black

tree with rb_erase(). The regions if they still exist will be added with their new

addresses later during the �xup.

Next the linked list VMAs on free is walked through and checked to en-

sure it is not a partial unmapping. Even if a region is just to be partially un-

mapped, remove_shared_vm_struct() is still called to remove the shared �le map-

ping. Again, if this is a partial unmapping, it will be recreated during �xup.
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zap_page_range() is called to remove all the pages associated with the region about

to be unmapped before unmap_fixup() is called to handle partial unmappings.

Lastly free_pgtables() is called to try and free up all the page table entries

associated with the unmapped region. It is important to note that the page table

entry freeing is not exhaustive. It will only unmap full PGD directories and their

entries so for example, if only half a PGD was used for the mapping, no page table

entries will be freed. This is because a �ner grained freeing of page table entries

would be too expensive to free up data structures that are both small and likely to

be used again.

4.4.13 Deleting all memory regions

VMA deletionDeleting a VMA

During process exit, it is necessary to unmap all VMAs associated with a

mm_struct. The function responsible is exit_mmap(). It is a very simply func-

tion which �ushes the CPU cache before walking through the linked list of VMAs,

unmapping each of them in turn and freeing up the associated pages before �ushing

the TLB and deleting the page table entries. It is covered in detail in the Code

Commentary.

4.5 Exception Handling

Exception handling

A very important part of VM is how kernel address space exceptions that are

not bugs are caught. This section does not cover the exceptions that are raised

with errors such as divide by zero, we are only concerned with the exception raised

as the result of a page fault. There are two situations where a bad reference may

occur. The �rst is where a process sends an invalid pointer to the kernel via a

system call which the kernel must be able to safely trap as the only check made

initially is that the address is below PAGE_OFFSET. The second is where the kernel

uses copy_from_user() or copy_to_user() to read or write data from userspace.

At compile time, the linker creates an exception table in the __ex_table sec-

tion of the kernel code segment which starts at __start___ex_table and ends at

__stop___ex_table. Each entry is of type exception_table_entry which is a pair

consisting of an execution point and a �xup routine. When an exception occurs that
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the page fault handler cannot manage, it calls search_exception_table() to see if

a �xup routine has been provided for an error at the faulting instruction. If module

support is compiled, each modules exception table will also be searched.

If the address of the current exception is found in the table, the corresponding

location of the �xup code is returned and executed. We will see in Section 4.7 how

this is used to trap bad reads and writes to userspace.

4.6 Page Faulting

Page faults

Pages in the process linear address space are not necessarily resident in memory.

For example, allocations made on behalf of a process are not satis�ed immediately

as the space is just reserved within the vm_area_struct. Other examples of non-

resident pages include the page having been swapped out to backing storage or

writing a read-only page.

Linux, like most operating systems, has a Demand Fetch policy as its fetch

policy for dealing with pages that are not resident. This states that the page is only

fetched from backing storage when the hardware raises a page fault exception which

the operating system traps and allocates a page. The characteristics of backing

storage imply that some sort of page prefetching policy would result in less page

faults [MM87] but Linux is fairly primitive in this respect. When a page is paged

in from swap space, a number of pages after it, up to 2page_cluster are read in by

swapin_readahead() and placed in the swap cache. Unfortunately there is only a

chance that pages likely to be used soon will be adjacent in the swap area making

it a poor prepaging policy. Linux would likely bene�t from a prepaging policy that

adapts to program behaviour [KMC02].

There are two types of page fault, major and minor faults. Major page

faultsMajor page faults occur when data has to be read from disk which is an ex-

pensive operation, else the fault is referred to as a minorMinor page faults, or soft

page fault. Linux maintains statistics on the number of these types of page faults

with the task_struct→maj_flt and task_struct→min_flt �elds respectively.

The page fault handler in Linux is expected to recognise and act on a number

of di�erent types of page faults listed in Table 4.4 which will be discussed in detail

later in this chapter.
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Each architecture registers an architecture-speci�c function for the handling of

page faults. While the name of this function is arbitrary, a common choice is

do_page_fault() whose call graph for the x86 is shown in Figure 4.12.

Figure 4.12: Call Graph: do_page_fault()

This function is provided with a wealth of information such as the address of

the fault, whether the page was simply not found or was a protection error, whether

it was a read or write fault and whether it is a fault from user or kernel space. It

is responsible for determining which type of fault has occurred and how it should

be handled by the architecture-independent code. The �ow chart, in Figure 4.13,

shows broadly speaking what this function does. In the �gure, identi�ers with a

colon after them corresponds to the label as shown in the code.

handle_mm_faulthandle_mm_fault() is the architecture independent top level

function for faulting in a page from backing storage, performing COW and so on. If

it returns 1, it was a minor fault, 2 was a major fault, 0 sends a SIGBUS error and

any other value invokes the out of memory handler.

4.6.1 Handling a Page Fault

Once the exception handler has decided the fault is a valid page fault in a valid

memory region, the architecture-independent function handle_mm_fault(), whose

call graph is shown in Figure 4.14, takes over. It allocates the required page table

entries if they do not already exist and calls handle_pte_fault().

Based on the properties of the PTE, one of the handler functions shown in Figure

4.14 will be used. The �rst stage of the decision is to check if the PTE is marked



4.6.1. Handling a Page Fault 89

Figure 4.13: do_page_fault() Flow Diagram

not present or if it has been allocated with which is checked by pte_present()

and pte_none(). If no PTE has been allocated (pte_none() returned true),

do_no_page() is called which handles Demand Allocation. Otherwise it is a page

that has been swapped out to disk and do_swap_page() performs Demand Paging .

There is a rare exception where swapped out pages belonging to a virtual �le are

handled by do_no_page(). This particular case is covered in Section ??.

The second option is if the page is being written to. If the PTE is write protected,

then do_wp_page() is called as the page is a Copy-On-Write (COW) page. A COW

page is one which is shared between multiple processes(usually a parent and child)

until a write occurs after which a private copy is made for the writing process. A

COW page is recognised because the VMA for the region is marked writable even

though the individual PTE is not. If it is not a COW page, the page is simply
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Figure 4.14: Call Graph: handle_mm_fault()

marked dirty as it has been written to.

The last option is if the page has been read and is present but a fault still

occurred. This can occur with some architectures that do not have a three level

page table. In this case, the PTE is simply established and marked young.

4.6.2 Demand Allocation

Demand allocation

When a process accesses a page for the very �rst time, the page has to be

allocated and possibly �lled with data by the do_no_page() function. If the

vm_operations_struct associated with the parent VMA (vma→vm_ops) provides

a nopage() function, it is called. This is of importance to a memory mapped device

such as a video card which needs to allocate the page and supply data on access or

to a mapped �le which must retrieve its data from backing storage. We will �rst

discuss the case where the faulting page is anonymous as this is the simpliest case.

Handling anonymous pages Anonymous pages

If vm_area_struct→vm_ops �eld is not �lled or a nopage() function is not sup-

plied, the function do_anonymous_page() is called to handle an anonymous access.

There are only two cases to handle, �rst time read and �rst time write. As it is an

anonymous page, the �rst read is an easy case as no data exists. In this case, the

system-wide empty_zero_page, which is just a page of zeros, is mapped for the PTE

and the PTE is write protected. The write protection is set so that another page

fault will occur if the process writes to the page. On the x86, the global zero-�lled
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page is zerod out in the function mem_init().

Figure 4.15: Call Graph: do_no_page()

If this is the �rst write to the page alloc_page() is called to allocate a free page

(see Chapter 6) and is zero �lled by clear_user_highpage(). Assuming the page

was successfully allocated, the Resident Set Size (RSS) �eld in the mm_struct will

be incremented; flush_page_to_ram() is called as required when a page has been

inserted into a userspace process by some architectures to ensure cache coherency.

The page is then inserted on the LRU lists so it may be reclaimed later by the page

reclaiming code. Finally the page table entries for the process are updated for the

new mapping.

Handling �le/device backed pages File/device backed pages

If backed by a �le or device, a nopage() function will be provided within the

VMAs vm_operations_struct. In the �le-backed case, the function filemap_nopage()

is frequently the nopage() function for allocating a page and reading a page-sized

amount of data from disk. Pages backed by a virtual �le, such as those provided by

shmfs, will use the function shmem_nopage() (See Chapter ??). Each device driver

provides a di�erent nopage() whose internals are unimportant to us here as long as

it returns a valid struct page to use.

On return of the page, a check is made to ensure a page was successfully allocated

and appropriate errors returned if not. A check is then made to see if an early COW

break should take place. An early COW break will take place if the fault is a write

to the page and the VM_SHARED �ag is not included in the managing VMA. An early

break is a case of allocating a new page and copying the data across before reducing

the reference count to the page returned by the nopage() function.
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In either case, a check is then made with pte_none() to ensure there is not a

PTE already in the page table that is about to be used. It is possible with SMP

that two faults would occur for the same page at close to the same time and as the

spinlocks are not held for the full duration of the fault, this check has to be made at

the last instant. If there has been no race, the PTE is assigned, statistics updated

and the architecture hooks for cache coherency called.

4.6.3 Demand Paging

Demand paging

When a page is swapped out to backing storage, the function do_swap_page()

is responsible for reading the page back in, with the exception of virtual �les which

are covered in Section ??. The information needed to �nd it is stored within the

PTE itself. The information within the PTE is enough to �nd the page in swap. As

pages may be shared between multiple processes, they can not always be swapped

out immediately. Instead, when a page is swapped out, it is placed within the swap

cache.

Figure 4.16: Call Graph: do_swap_page()

A shared page can not be swapped out immediately because there is no way of

mapping a struct page to the PTEs of each process it is shared between. Searching

the page tables of all processes is simply far too expensive. It is worth noting that

the late 2.5.x kernels and 2.4.x with a custom patch have what is called Reverse

Mapping (RMAP) which is discussed at the end of the chapter.

With the swap cache existing, it is possible that when a fault occurs it still exists

in the swap cache. If it is, the reference count to the page is simply increased and it

is placed within the process page tables again and registers as a minor page fault.

If the page exists only on disk swapin_readahead() is called which reads in the

requested page and a number of pages after it. The number of pages read in is
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determined by the variable page_cluster de�ned in mm/swap.c. On low memory

machines with less than 16MiB of RAM, it is initialised as 2 or 3 otherwise. The

number of pages read in is 2page_cluster unless a bad or empty swap entry is encoun-

tered. This works on the premise that a seek is the most expensive operation in

time so once the seek has completed, the succeeding pages should also be read in.

4.6.4 Copy On Write (COW) Pages

Copy-On-Write (COW)

Once upon time, the full parent address space was duplicated for a child when

a process forked. This was an extremely expensive operation as it is possible a

signi�cant percentage of the process would have to be swapped in from backing

storage. To avoid this considerable overhead, a technique called Copy-On-Write

(COW) is employed.

Figure 4.17: Call Graph: do_wp_page()

During fork, the PTEs of the two processes are made read-only so that when

a write occurs there will be a page fault. Linux recognises a COW page because

even though the PTE is write protected, the controlling VMA shows the region is

writable. It uses the function do_wp_page() to handle it by making a copy of the

page and assigning it to the writing process. If necessary, a new swap slot will be

reserved for the page. With this method, only the page table entries have to be

copied during a fork.

4.7 Copying To/From Userspace

Copying to/from userspace Userspace accessing Accessing userspace

It is not safe to access memory in the process address space directly as there is
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no way to quickly check if the page addressed is resident or not. Linux relies on

the MMU to raise exceptions when the address is invalid and have the Page Fault

Exception handlerPage fault exception handler catch the exception and �x it

up. In the x86 case, assembler is provided by the __copy_user() to trap exceptions

where the address is totally useless. The location of the �xup code is found when

the function search_exception_table() is called. Linux provides an ample API

(mainly macros) for copying data to and from the user address space safely as shown

in Table 4.5.

All the macros map on to assembler functions which all follow similar patterns of

implementation so for illustration purposes, we'll just trace how copy_from_user()

is implemented on the x86.

If the size of the copy is known at compile time, copy_from_user() calls

__constant_copy_from_user() else __generic_copy_from_user() is used. If the

size is known, there are di�erent assembler optimisations to copy data in 1, 2 or 4

byte strides otherwise the distinction between the two copy functions is not impor-

tant.

The generic copy function eventually calls the function __copy_user_zeroing()

in <asm-i386/uaccess.h> which has three important parts. The �rst part is the

assembler for the actual copying of size number of bytes from userspace. If any

page is not resident, a page fault will occur and if the address is valid, it will get

swapped in as normal. The second part is ��xup� code and the third part is the

__ex_table mapping the instructions from the �rst part to the �xup code in the

second part.

These pairings, as described in Section 4.5, copy the location of the copy instruc-

tions and the location of the �xup code the kernel exception handle table by the

linker. If an invalid address is read, the function do_page_fault() will fall through,

call search_exception_table() and �nd the EIP where the faulty read took place

and jump to the �xup code which copies zeros into the remaining kernel space, �xes

up registers and returns. In this manner, the kernel can safely access userspace with

no expensive checks and letting the MMU hardware handle the exceptions.

All the other functions that access userspace follow a similar pattern.
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4.8 What's New in 2.6

Linear Address Space The linear address space remains essentially the same as

2.4 with no modi�cations that cannot be easily recognised. The main change is the

addition of a new page usable from userspace that has been entered into the �xed

address virtual mappings. On the x86, this page is located at 0xFFFFF000 and called

the vsyscall page. Code is located at this page which provides the optimal method

for entering kernel-space from userspace. A userspace program now should use call

0xFFFFF000 instead of the traditional int 0x80 when entering kernel space.

struct mm_struct This struct has not changed signi�cantly. The �rst change is

the addition of a free_area_cache �eld which is initialised as TASK_UNMAPPED_BASE.

This �eld is used to remember where the �rst hole is in the linear address space to

improve search times. A small number of �elds have been added at the end of the

struct which are related to core dumping and beyond the scope of this book.

struct vm_area_struct This struct also has not changed signi�cantly. The main

di�erences is that the vm_next_share and vm_pprev_share has been replaced

with a proper linked list with a new �eld called simply shared. The vm_raend

has been removed altogether as �le readahead is implemented very di�erently in

2.6. Readahead is mainly managed by a struct file_ra_state struct stored in

struct file→f_ra. How readahead is implemented is described in a lot of detail

in mm/readahead.c.

struct address_space The �rst change is relatively minor. The gfp_mask �eld

has been replaced with a flags �eld where the �rst __GFP_BITS_SHIFT bits are

used as the gfp_mask and accessed with mapping_gfp_mask(). The remaining bits

are used to store the status of asynchronous IO. The two �ags that may be set are

AS_EIO to indicate an IO error and AS_ENOSPC to indicate the �lesystem ran out of

space during an asynchronous write.

This struct has a number of signi�cant additions, mainly related to the page

cache and �le readahead. As the �elds are quite unique, we'll introduce them in

detail:

page_tree This is a radix tree of all pages in the page cache for this mapping

indexed by the block the data is located on the physical disk. In 2.4, searching
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the page cache involved traversing a linked list, in 2.6, it is a radix tree lookup

which considerably reduces search times. The radix tree is implemented in

lib/radix-tree.c;

page_lock Spinlock protecting page_tree;

io_pages When dirty pages are to be written out, they are added to this

list before do_writepages() is called. As explained in the comment above

mpage_writepages() in fs/mpage.c, pages to be written out are placed on

this list to avoid deadlocking by locking already locked by IO;

dirtied_when This �eld records, in ji�es, the �rst time an inode was dirtied.

This �eld determines where the inode is located on the super_block→s_dirty

list. This prevents a frequently dirtied inode remaining at the top of the list

and starving writeout on other inodes;

backing_dev_info This �eld records readahead related information. The struct

is declared in include/linux/backing-dev.h with comments explaining the

�elds;

private_list This is a private list available to the address_space. If the helper

functions mark_buffer_dirty_inode() and sync_mapping_buffers() are

used, this list links buffer_heads via the buffer_head→b_assoc_buffers

�eld;

private_lock This spinlock is available for the address_space. The use of

this lock is very convoluted but some of the uses are explained in the long

ChangeLog for 2.5.17 (http://lwn.net/2002/0523/a/2.5.17.php3 ). but it is

mainly related to protecting lists in other mappings which share bu�ers in

this mapping. The lock would not protect this private_list, but it would

protect the private_list of another address_space sharing bu�ers with this

mapping;

assoc_mapping This is the address_space which backs bu�ers contained in

this mappings private_list;

truncate_count is incremented when a region is being truncated by the function

invalidate_mmap_range(). The counter is examined during page fault by

do_no_page() to ensure that a page is not faulted in that was just invalidated.
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struct address_space_operations Most of the changes to this struct initially

look quite simple but are actually quite involved. The changed �elds are:

writepage The writepage() callback has been changed to take an additional pa-

rameter struct writeback_control. This struct is responsible for recording

information about the writeback such as if it is congested or not, if the writer

is the page allocator for direct reclaim or kupdated and contains a handle to

the backing backing_dev_info to control readahead;

writepages Moves all pages from dirty_pages to io_pages before writing them

all out;

set_page_dirty is an address_space speci�c method of dirtying a page. This

is mainly used by the backing storage address_space_operations and for

anonymous shared pages where there are no bu�ers associated with the page

to be dirtied;

readpages Used when reading in pages so that readahead can be accurately

controlled;

bmap This has been changed to deal with disk sectors rather than unsigned longs

for devices larger than 232 bytes.

invalidatepage This is a renaming change. block_flushpage() and the

callback flushpage() has been renamed to block_invalidatepage() and

invalidatepage();

direct_IO This has been changed to use the new IO mechanisms in 2.6. The

new mechanisms are beyond the scope of this book;

Memory Regions The operation of mmap() has two important changes. The

�rst is that it is possible for security modules to register a callback. This callback

is called security_file_mmap() which looks up a security_ops struct for the

relevant function. By default, this will be a NULL operation.

The second is that there is much stricter address space accounting code in place.

vm_area_structs which are to be accounted will have the VM_ACCOUNT �ag set,

which will be all userspace mappings. When userspace regions are created or de-

stroyed, the functions vm_acct_memory() and vm_unacct_memory() update the
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variable vm_committed_space. This gives the kernel a much better view of how

much memory has been committed to userspace.

4GiB/4GiB User/Kernel Split One limitation that exists for the 2.4.x kernels

is that the kernel has only 1GiB of virtual address space available which is visible

to all processes. At time of writing, a patch has been developed by Ingo Molnar1

which allows the kernel to optionally have it's own full 4GiB address space. The

patches are available from http://redhat.com/ mingo/4g-patches/ and are included

in the -mm test trees but it is unclear if it will be merged into the mainstream or

not.

This feature is intended for 32 bit systems that have very large amounts (>

16GiB) of RAM. The traditional 3/1 split adequately supports up to 1GiB of RAM.

After that, high-memory support allows larger amounts to be supported by tem-

porarily mapping high-memory pages but with more RAM, this forms a signi�cant

bottleneck. For example, as the amount of physical RAM approached the 60GiB

range, almost the entire of low memory is consumed by mem_map. By giving the

kernel it's own 4GiB virtual address space, it is much easier to support the memory

but the serious penalty is that there is a per-syscall TLB �ush which heavily impacts

performance.

With the patch, there is only a small 16MiB region of memory shared between

userspace and kernelspace which is used to store the GDT, IDT, TSS, LDT, vsyscall

page and the kernel stack. The code for doing the actual switch between the pageta-

bles is then contained in the trampoline code for entering/existing kernelspace.

There are a few changes made to the core core such as the removal of direct pointers

for accessing userspace bu�ers but, by and large, the core kernel is una�ected by

this patch.

Non-Linear VMA Population In 2.4, a VMA backed by a �le is populated in

a linear fashion. This can be optionally changed in 2.6 with the introduction of

the MAP_POPULATE �ag to mmap() and the new system call remap_file_pages(),

implemented by sys_remap_file_pages(). This system call allows arbitrary pages

in an existing VMA to be remapped to an arbitrary location on the backing �le by

manipulating the page tables.

1See http://lwn.net/Articles/39283/ for the �rst announcement of the patch.
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On page-out, the non-linear address for the �le is encoded within the PTE so that

it can be installed again correctly on page fault. How it is encoded is architecture

speci�c so two macros are de�ned called pgoff_to_pte() and pte_to_pgoff() for

the task.

This feature is largely of bene�t to applications with a large number of mappings

such as database servers and virtualising applications such as emulators. It was

introduced for a number of reasons. First, VMAs are per-process and can have

considerable space requirements, especially for applications with a large number of

mappings. Second, the search get_unmapped_area() uses for �nding a free area

in the virtual address space is a linear search which is very expensive for large

numbers of mappings. Third, non-linear mappings will prefault most of the pages

into memory where as normal mappings may cause a major fault for each page

although can be avoided by using the new �ag MAP_POPULATE �ag with mmap() or

my using mlock(). The last reason is to avoid sparse mappings which, at worst

case, would require one VMA for every �le page mapped.

However, this feature is not without some serious drawbacks. The �rst is that

the system calls truncate() and mincore() are broken with respect to non-linear

mappings. Both system calls depend depend on vm_area_struct→vm_pgoff which

is meaningless for non-linear mappings. If a �le mapped by a non-linear mapping

is truncated, the pages that exists within the VMA will still remain. It has been

proposed that the proper solution is to leave the pages in memory but make them

anonymous but at the time of writing, no solution has been implemented.

The second major drawback is TLB invalidations. Each remapped page will re-

quire that the MMU be told the remapping took place with flush_icache_page()

but the more important penalty is with the call to flush_tlb_page(). Some pro-

cessors are able to invalidate just the TLB entries related to the page but other

processors implement this by �ushing the entire TLB. If re-mappings are frequent,

the performance will degrade due to increased TLB misses and the overhead of con-

stantly entering kernel space. In some ways, these penalties are the worst as the

impact is heavily processor dependant.

It is currently unclear what the future of this feature, if it remains, will be. At

the time of writing, there is still on-going arguments on how the issues with the

feature will be �xed but it is likely that non-linear mappings are going to be treated

very di�erently to normal mappings with respect to pageout, truncation and the
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reverse mapping of pages. As the main user of this feature is likely to be databases,

this special treatment is not likely to be a problem.

Page Faulting The changes to the page faulting routines are more cosmetic than

anything else other than the necessary changes to support reverse mapping and PTEs

in high memory. The main cosmetic change is that the page faulting routines return

self explanatory compile time de�nitions rather than magic numbers. The possi-

ble return values for handle_mm_fault() are VM_FAULT_MINOR, VM_FAULT_MAJOR,

VM_FAULT_SIGBUS and VM_FAULT_OOM.
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struct vm_area_struct *(find_vma)

struct mm_struct * mm, unsigned long addr Finds the VMA that
covers a given address. If the region does not exist, it returns the VMA
closest to the requested address

struct vm_area_struct *(find_vma_prev)

struct mm_struct * mm, unsigned long addr, struct vm_area_struct
**pprev Same as find_vma() except it also also gives the VMA point-
ing to the returned VMA. It is not often used, with sys_mprotect()

being the notable exception, as it is usually find_vma_prepare() that is
required

struct vm_area_struct *(find_vma_prepare)

struct mm_struct * mm, unsigned long addr, struct vm_area_struct **
pprev, rb_node_t *** rb_link, rb_node_t ** rb_parent Same as
find_vma() except that it will also the preceeding VMA in the linked
list as well as the red-black tree nodes needed to perform an insertion
into the tree

struct vm_area_struct *(find_vma_intersection)

struct mm_struct * mm, unsigned long start_addr, unsigned long
end_addr Returns the VMA which intersects a given address range.
Useful when checking if a linear address region is in use by any VMA

int(vma_merge)

struct mm_struct * mm, struct vm_area_struct * prev, rb_node_t
* rb_parent, unsigned long addr, unsigned long end, unsigned long
vm_�ags Attempts to expand the supplied VMA to cover a new ad-
dress range. If the VMA can not be expanded forwards, the next VMA
is checked to see if it may be expanded backwards to cover the address
range instead. Regions may be merged if there is no �le/device mapping
and the permissions match

unsigned long(get_unmapped_area)

struct �le *�le, unsigned long addr, unsigned long len, unsigned long
pgo�, unsigned long �ags Returns the address of a free region of mem-
ory large enough to cover the requested size of memory. Used principally
when a new VMA is to be created

void(insert_vm_struct)

struct mm_struct *, struct vm_area_struct * Inserts a new VMA
into a linear address space

Table 4.3: Memory Region VMA API
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Exception Type Action
Region valid but page not allo-
cated

Minor Allocate a page frame from the
physical page allocator

Region not valid but is beside
an expandable region like the
stack

Minor Expand Stack Expan-
sionExpanding the stack
the region and allocate a page

Page swapped out but present
in swap cache

Minor Re-establish the page in the
process page tables and drop a
reference to the swap cache

Page swapped out to backing
storage

Major Find where the page with infor-
mation stored in the PTE and
read it from disk

Page write when marked read-
only

Minor If the page is a COW page,
make a copy of it, mark it
writable and assign it to the
process. If it is in fact a bad
write, send a SIGSEGV signal

Region is invalid or process has
no permissions to access

Error Send a SEGSEGV signal to the
process

Fault occurred in the kernel
portion address space

Minor If the fault occurred in the
vmalloc area of the address
space, the current process page
tables are updated against the
master page table held by
init_mm. This is the only valid
kernel page fault that may oc-
cur

Fault occurred in the userspace
region while in kernel mode

Error If a fault occurs, it means a ker-
nel system did not copy from
userspace properly and caused
a page fault. This is a ker-
nel bug which is treated quite
severely.

Table 4.4: Reasons For Page Faulting
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unsigned long(copy_from_user)

void *to, const void *from, unsigned long n Copies n bytes from the
user address(from) to the kernel address space(to)

unsigned long(copy_to_user)

void *to, const void *from, unsigned long n Copies n bytes from the
kernel address(from) to the user address space(to)

void(copy_user_page)

void *to, void *from, unsigned long address This copies data to an
anonymous or COW page in userspace. Ports are responsible for avoiding
D-cache alises. It can do this by using a kernel virtual address that would
use the same cache lines as the virtual address.

void(clear_user_page)

void *page, unsigned long address Similar to copy_user_page() ex-
cept it is for zeroing a page

void(get_user)

void *to, void *from Copies an integer value from userspace (from) to
kernel space (to)

void(put_user)

void *from, void *to Copies an integer value from kernel space (from)
to userspace (to)

long(strncpy_from_user)

char *dst, const char *src, long count Copies a null terminated string
of at most count bytes long from userspace (src) to kernel space (dst)

long(strlen_user)

const char *s, long n Returns the length, upper bound by n, of the
userspace string including the terminating NULL

int(access_ok)

int type, unsigned long addr, unsigned long size Returns non-zero if
the userspace block of memory is valid and zero otherwise

Table 4.5: Accessing Process Address Space API



Chapter 5

Boot Memory Allocator

It is impractical to statically initialise all the core kernel memory structures at com-

pile time as there are simply far too many permutations of hardware con�gurations.

Yet to set up even the basic structures requires memory as even the physical page

allocator, discussed in the next chapter, needs to allocate memory to initialise itself.

But how can the physical page allocator allocate memory to initialise itself?

To address this, a specialised allocator called the Boot Memory Allocator is used.

It is based on the most basic of allocators, a First Fit allocator which uses a bitmap

to represent memory [Tan01] instead of linked lists of free blocks. If a bit is 1, the

page is allocated and 0 if unallocated. To satisfy allocations of sizes smaller than

a page, the allocator records the Page Frame Number (PFN) of the last allocation

and the o�set the allocation ended at. Subsequent small allocations are �merged�

together and stored on the same page.

The reader may ask why this allocator is not used for the running system. One

compelling reason is that although the �rst �t allocator does not su�er badly from

fragmentation [JW98], memory frequently has to linearly searched to satisfy an

allocation. As this is examining bitmaps, it gets very expensive, especially as the

�rst �t algorithm tends to leave many small free blocks at the beginning of physical

memory which still get scanned for large allocations, thus making the process very

wasteful [WJNB95].

There are two very similar but distinct APIs for the allocator. One is for UMA

architectures, listed in Table 5.1 and the other is for NUMA, listed in Table 5.2. The

principle di�erence is that the NUMA API must be supplied with the node a�ected

by the operation but as the callers of these APIs exist in the architecture dependant

layer, it is not a signi�cant problem.

This chapter will begin with a description of the structure the allocator uses

104
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to describe the physical memory available for each node. We will then illustrate

how the limits of physical memory and the sizes of each zone are discovered before

talking about how the information is used to initialised the boot memory allocator

structures. The allocation and free routines will then be discussed before �nally

talking about how the boot memory allocator is retired.

5.1 Representing the Boot Map

Boot map representation

A bootmem_data struct exists for each node of memory in the system. It contains

the information needed for the boot memory allocator to allocate memory for a node

such as the bitmap representing allocated pages and where the memory is located.

It is declared as follows in <linux/bootmem.h>:

25 typedef struct bootmem_data {

26 unsigned long node_boot_start;

27 unsigned long node_low_pfn;

28 void *node_bootmem_map;

29 unsigned long last_offset;

30 unsigned long last_pos;

31 } bootmem_data_t;

The �elds of this struct are as follows:

node_boot_start This is the starting physical address of the represented block;

node_low_pfn This is the end physical address, in other words, the end of the

ZONE_NORMAL this node represents;

node_bootmem_map This is the location of the bitmap representing allocated

or free pages with each bit;

last_o�set This is the o�set within the the page of the end of the last allocation.

If 0, the page used is full;

last_pos This is the the PFN of the page used with the last allocation. Using

this with the last_offset �eld, a test can be made to see if allocations can

be merged with the page used for the last allocation rather than using up a

full new page.
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5.2 Initialising the Boot Memory Allocator

Initialising the boot memory allocator Boot allocator initialisation

Each architecture is required to supply a setup_arch() function which, among

other tasks, is responsible for acquiring the necessary parameters to initialise the

boot memory allocator.

Each architecture has its own function to get the necessary parameters. On

the x86, it is called setup_memory(), as discussed in Section 2.2.2, but on other

architectures such as MIPS or Sparc, it is called bootmem_init() or the case of the

PPC, do_init_bootmem(). Regardless of the architecture, the tasks are essentially

the same. The parameters it calculates are:

min_low_pfn This is the lowest PFN that is available in the system;

max_low_pfn This is the highest PFN that may be addressed by low memory

(ZONE_NORMAL);

highstart_pfn This is the PFN of the beginning of high memory (ZONE_HIGHMEM);

highend_pfn This is the last PFN in high memory;

max_pfn Finally, this is the last PFN available to the system.

5.2.1 Initialising bootmem_data

Once the limits of usable physical memory are discovered by setup_memory(), one

of two boot memory initialisation functions is selected and provided with the start

and end PFN for the node to be initialised. init_bootmem(), which initialises

contig_page_data, is used by UMA architectures, while init_bootmem_node()

is for NUMA to initialise a speci�ed node. Both function are trivial and rely on

init_bootmem_core() to do the real work.

The �rst task of the core function is to insert this pgdat_data_t into the

pgdat_list as at the end of this function, the node is ready for use. It then

records the starting and end address for this node in its associated bootmem_data_t

and allocates the bitmap representing page allocations. The size in bytes, hence the

division by 8, of the bitmap required is calculated as:

mapsize =
(end_pfn− start_pfn) + 7

8
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The bitmap in stored at the physical address pointed to by

bootmem_data_t→node_boot_start and the virtual address to the map is placed in

bootmem_data_t→node_bootmem_map. As there is no architecture independent way

to detect �holes� in memory, the entire bitmap is initialised to 1, e�ectively marking

all pages allocated. It is up to the architecture dependent code to set the bits of us-

able pages to 0 although, in reality, the Sparc architecture is the only one which uses

this bitmap. In the case of the x86, the function register_bootmem_low_pages()

reads through the e820 map and calls free_bootmem() for each usable page to set

the bit to 0 before using reserve_bootmem() to reserve the pages needed by the

actual bitmap.

5.3 Allocating Memory

The reserve_bootmem() function may be used to reserve pages for use by the

caller but is very cumbersome to use for general allocations. There are four func-

tions provided for easy allocations on UMA architectures called alloc_bootmem(),

alloc_bootmem_low(), alloc_bootmem_pages() and alloc_bootmem_low_pages()

which are fully described in Table 5.1. All of these macros call __alloc_bootmem()

with di�erent parameters. The call graph for these functions is shown in in Figure

5.1.

Figure 5.1: Call Graph: alloc_bootmem()

Similar functions exist for NUMA which take the node as an additional

parameter, as listed in Table 5.2. They are called alloc_bootmem_node(),

alloc_bootmem_pages_node() and alloc_bootmem_low_pages_node(). All of

these macros call __alloc_bootmem_node() with di�erent parameters.

The parameters to either __alloc_bootmem() and __alloc_bootmem_node()
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are essentially the same. They are

pgdat This is the node to allocate from. It is omitted in the UMA case as it is

assumed to be contig_page_data;

size This is the size in bytes of the requested allocation;

align This is the number of bytes that the request should be aligned to. For small

allocations, they are aligned to SMP_CACHE_BYTES, which on the x86 will align

to the L1 hardware cache;

goal This is the preferred starting address to begin allocating from. The �low�

functions will start from physical address 0 where as the others will begin

from MAX_DMA_ADDRESS which is the maximum address DMA transfers may

be made from on this architecture.

The core function for all the allocation APIs is __alloc_bootmem_core(). It

is a large function but with simple steps that can be broken down. The function

linearly scans memory starting from the goal address for a block of memory large

enough to satisfy the allocation. With the API, this address will either be 0 for

DMA-friendly allocations or MAX_DMA_ADDRESS otherwise.

The clever part, and the main bulk of the function, deals with deciding if this new

allocation can be merged with the previous one. It may be merged if the following

conditions hold:

• The page used for the previous allocation (bootmem_data→pos) is adjacent

to the page found for this allocation;

• The previous page has some free space in it (bootmem_data→offset != 0);

• The alignment is less than PAGE_SIZE.

Regardless of whether the allocations may be merged or not, the pos and offset

�elds will be updated to show the last page used for allocating and how much of the

last page was used. If the last page was fully used, the o�set is 0.
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5.4 Freeing Memory

In contrast to the allocation functions, only two free function are provided which

are free_bootmem() for UMA and free_bootmem_node() for NUMA. They both

call free_bootmem_core() with the only di�erence being that a pgdat is supplied

with NUMA.

The core function is relatively simple in comparison to the rest of the allocator.

For each full page a�ected by the free, the corresponding bit in the bitmap is set

to 0. If it already was 0, BUG() is called to show a double-free occured. BUG() is

used when an unrecoverable error due to a kernel bug occurs. It terminates the

running process and causes a kernel oops which shows a stack trace and debugging

information that a developer can use to �x the bug.

An important restriction with the free functions is that only full pages may be

freed. It is never recorded when a page is partially allocated so if only partially

freed, the full page remains reserved. This is not as major a problem as it appears

as the allocations always persist for the lifetime of the system; However, it is still

an important restriction for developers during boot time.

5.5 Retiring the Boot Memory Allocator

Finalising memory bootstrapping Bootstrap �nialisation Retiring boot

memory

Late in the bootstrapping process, the function start_kernel() is called which

knows it is safe to remove the boot allocator and all its associated data structures.

Each architecture is required to provide a function mem_init() that is responsible

for destroying the boot memory allocator and its associated structures.

The purpose of the function is quite simple. It is responsible for calculating the

dimensions of low and high memory and printing out an informational message to

the user as well as performing �nal initialisations of the hardware if necessary. On

the x86, the principal function of concern for the VM is the free_pages_init().

This function �rst tells the boot memory allocator to retire itself by call-

ing free_all_bootmem() for UMA architectures or free_all_bootmem_node() for

NUMA. Both call the core function free_all_bootmem_core() with di�erent pa-

rameters. The core function is simple in principle and performs the following tasks:
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Figure 5.2: Call Graph: mem_init()

• For all unallocated pages known to the allocator for this node;

� Clear the PG_reserved �ag in its struct page;

� Set the count to 1;

� Call __free_pages() so that the buddy allocator (discussed next chap-

ter) can build its free lists.

• Free all pages used for the bitmap and give them to the buddy allocator.

At this stage, the buddy allocator now has control of all the pages in low mem-

ory which leaves only the high memory pages. After free_all_bootmem() returns,

it �rst counts the number of reserved pages for accounting purposes. The remain-

der of the free_pages_init() function is responsible for the high memory pages.

However, at this point, it should be clear how the global mem_map array is allocated,

initialised and the pages given to the main allocator. The basic �ow used to initialise

pages in low memory in a single node system is shown in Figure 5.3.

Once free_all_bootmem() returns, all the pages in ZONE_NORMAL have been

given to the buddy allocator. To initialise the high memory pages, free_pages_init()

calls one_highpage_init() for every page between highstart_pfn and highend_pfn.

one_highpage_init() simple clears the PG_reserved �ag, sets the PG_highmem
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Figure 5.3: Initialising mem_map and the Main Physical Page Allocator

�ag, sets the count to 1 and calls __free_pages() to release it to the buddy allo-

cator in the same manner free_all_bootmem_core() did.

Initialising buddy allocatorAt this point, the boot memory allocator is no

longer required and the buddy allocator is the main physical page allocator for

the system. An interesting feature to note is that not only is the data for the

boot allocator removed but also all code that was used to bootstrap the system.

All initilisation function that are required only during system start-up are marked

__init such as the following;

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On

the x86, the function free_initmem() walks through all pages from __init_begin

to __init_end and frees up the pages to the buddy allocator. With this method,

Linux can free up a considerable amount of memory that is used by bootstrapping

code that is no longer required. For example, 27 pages were freed while booting the

kernel running on the machine this document is composed on.

5.6 What's New in 2.6

The boot memory allocator has not changed signi�cantly since 2.4 and is mainly

concerned with optimisations and some minor NUMA related modi�cations. The
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�rst optimisation is the addition of a last_success �eld to the bootmem_data_t

struct. As the name suggests, it keeps track of the location of the last successful

allocation to reduce search times. If an address is freed before last_success, it will

be changed to the freed location.

The second optimisation is also related to the linear search. When searching

for a free page, 2.4 test every bit which is expensive. 2.6 instead tests if a block of

BITS_PER_LONG is all ones. If it's not, it will test each of the bits individually in

that block. To help the linear search, nodes are ordered in order of their physical

addresses by init_bootmem().

The last change is related to NUMA and contiguous architectures. Contiguous

architectures now de�ne their own init_bootmem() function and any architecture

can optionally de�ne their own reserve_bootmem() function.
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unsigned long(init_bootmem)

unsigned long start, unsigned long page This initialises the memory
between 0 and the PFN page. The beginning of usable memory is at the
PFN start

void(reserve_bootmem)

unsigned long addr, unsigned long size Mark the pages between the
address addr and addr+size reserved. Requests to partially reserve a
page will result in the full page being reserved

void(free_bootmem)

unsigned long addr, unsigned long size Mark the pages between the
address addr and addr+size free

void *(alloc_bootmem)

unsigned long size Allocate size number of bytes from ZONE_NORMAL.
The allocation will be aligned to the L1 hardware cache to get the max-
imum bene�t from the hardware cache

void *(alloc_bootmem_low)

unsigned long size Allocate size number of bytes from ZONE_DMA. The
allocation will be aligned to the L1 hardware cache

void *(alloc_bootmem_pages)

unsigned long size Allocate size number of bytes from ZONE_NORMAL

aligned on a page size so that full pages will be returned to the caller

void *(alloc_bootmem_low_pages)

unsigned long size Allocate size number of bytes from ZONE_NORMAL

aligned on a page size so that full pages will be returned to the caller

unsigned long(bootmem_bootmap_pages)

unsigned long pages Calculate the number of pages required to store
a bitmap representing the allocation state of pages number of pages

unsigned long(free_all_bootmem)

Used at the boot allocator end of life. It cycles through all pages in
the bitmap. For each one that is free, the �ags are cleared and the page
is freed to the physical page allocator (See next chapter) so the runtime
allocator can set up its free lists

Table 5.1: Boot Memory Allocator API for UMA Architectures
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unsigned long(init_bootmem_node)

pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, un-
signed long endpfn For use with NUMA architectures. It initialise
the memory between PFNs startpfn and endpfn with the �rst usable
PFN at freepfn. Once initialised, the pgdat node is inserted into the
pgdat_list

void(reserve_bootmem_node)

pg_data_t *pgdat, unsigned long physaddr, unsigned long size Mark
the pages between the address addr and addr+size on the speci�ed node
pgdat reserved. Requests to partially reserve a page will result in the full
page being reserved

void(free_bootmem_node)

pg_data_t *pgdat, unsigned long physaddr, unsigned long size Mark
the pages between the address addr and addr+size on the speci�ed node
pgdat free

void *(alloc_bootmem_node)

pg_data_t *pgdat, unsigned long size Allocate size number of bytes
from ZONE_NORMAL on the speci�ed node pgdat. The allocation will be
aligned to the L1 hardware cache to get the maximum bene�t from the
hardware cache

void *(alloc_bootmem_pages_node)

pg_data_t *pgdat, unsigned long size Allocate size number of bytes
from ZONE_NORMAL on the speci�ed node pgdat aligned on a page size so
that full pages will be returned to the caller

void *(alloc_bootmem_low_pages_node)

pg_data_t *pgdat, unsigned long size Allocate size number of bytes
from ZONE_NORMAL on the speci�ed node pgdat aligned on a page size so
that full pages will be returned to the caller

unsigned long(free_all_bootmem_node)

pg_data_t *pgdat Used at the boot allocator end of life. It cycles
through all pages in the bitmap for the speci�ed node. For each one that
is free, the page �ags are cleared and the page is freed to the physical
page allocator (See next chapter) so the runtime allocator can set up its
free lists

Table 5.2: Boot Memory Allocator API for NUMA Architectures



Chapter 6

Physical Page Allocation

Page allocation

This chapter describes how physical pages are managed and allocated in Linux.

The principal algorithmm used is the Binary Buddy Allocator , devised by Knowl-

ton [Kno65] and further described by Knuth [Knu68]. It is has been shown to be

extremely fast in comparison to other allocators [KB85].

This is an allocation scheme which combines a normal power-of-two allocator

with free bu�er coalescing [Vah96]Buddy coalescing and the basic concept behind

it is quite simple. Memory is broken up into large blocks of pages where each block

is a power of two number of pages. If a block of the desired size is not available,

a large block is broken up in half and the two blocks are buddiesBuddies to each

other. One half is used for the allocation and the other is free. The blocks are

continuously halved as necessary until a block of the desired size is available. When

a block is later freed, the buddy is examined and the two coalesced if it is free.

This chapter will begin with describing how Linux remembers what blocks of

memory are free. After that the methods for allocating and freeing pages will be

discussed in details. The subsequent section will cover the �ags which a�ect the

allocator behaviour and �nally the problem of fragmentation and how the allocator

handles it will be covered.

6.1 Managing Free Blocks

Free lists

As stated, the allocator maintains blocks of free pages where each block is a

power of two number of pages. The exponent for the power of two sized block is

referred to as the orderOrder allocation. An array of free_area_t structs are

115
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maintained for each order that points to a linked list of blocks of pages that are free

as indicated by Figure 6.1.

Figure 6.1: Free page block management

Hence, the 0th element of the array will point to a list of free page blocks of

size 20 or 1 page, the 1st element will be a list of 21 (2) pages up to 2MAX_ORDER−1

number of pages, where the MAX_ORDER is currently de�ned as 10. This eliminates

the chance that a larger block will be split to satisfy a request where a smaller

block would have su�ced. The page blocks are maintained on a linear linked list

via page→list.

Each zone has a free_area_t struct array called free_area[MAX_ORDER]. It is

declared in <linux/mm.h> as follows:

22 typedef struct free_area_struct {

23 struct list_head free_list;

24 unsigned long *map;

25 } free_area_t;

The �elds in this struct are simply:

free_list A linked list of free page blocks;

map A bitmap representing the state of a pair of buddies.

Linux saves memory by only using one bit instead of two to represent each pair

of buddies. Each time a buddy is allocated or freed, the bit representing the pair of

buddies is toggled so that the bit is zero if the pair of pages are both free or both full

and 1 if only one buddy is in use. To toggle the correct bit, the macro MARK_USED()

in page_alloc.c is used which is declared as follows:

164 #define MARK_USED(index, order, area) \

165 __change_bit((index) >> (1+(order)), (area)->map)
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index is the index of the page within the global mem_map array. By shifting

it right by 1+order bits, the bit within map representing the pair of buddies is

revealed.

6.2 Allocating Pages

Linux provides a quite sizable API for the allocation of page frames. All of them take

a gfp_mask as a parameter which is a set of �ags that determine how the allocator

will behave. The �ags are discussed in Section 6.4.

The allocation API functions all use the core function __alloc_pages() but the

APIs exist so that the correct node and zone will be chosen. Di�erent users will

require di�erent zones such as ZONE_DMA for certain device drivers or ZONE_NORMAL

for disk bu�ers and callers should not have to be aware of what node is being used.

A full list of page allocation APIs are listed in Table 6.1.

struct page *(alloc_page)

unsigned int gfp_mask Allocate a single page and return a struct
address

struct page *(alloc_pages)

unsigned int gfp_mask, unsigned int order Allocate 2order number of
pages and returns a struct page

unsigned long(get_free_page)

unsigned int gfp_mask Allocate a single page, zero it and return a
virtual address

unsigned long(__get_free_page)

unsigned int gfp_mask Allocate a single page and return a virtual
address

unsigned long(__get_free_pages)

unsigned int gfp_mask, unsigned int order Allocate 2order number of
pages and return a virtual address

struct page *(__get_dma_pages)

unsigned int gfp_mask, unsigned int order Allocate 2order number of
pages from the DMA zone and return a struct page

Table 6.1: Physical Pages Allocation API

Allocations are always for a speci�ed order, 0 in the case where a single page is

required. If a free block cannot be found of the requested order, a higher order block
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is split into two buddies. One is allocated and the other is placed on the free list for

the lower order. Figure 6.2 shows where a 24 block is split and how the buddies are

added to the free lists until a block for the process is available.

Figure 6.2: Allocating physical pages

When the block is later freed, the buddy will be checked. If both are free, they

are merged to form a higher order block and placed on the higher free list where its

buddy is checked and so on. If the buddy is not free, the freed block is added to the

free list at the current order. During these list manipulations, interrupts have to be

disabled to prevent an interrupt handler manipulating the lists while a process has

them in an inconsistent state. This is achieved by using an interrupt safe spinlock.

The second decision to make is which memory node or pg_data_t to use. Linux

uses a node-local allocation policyNode-Local Allocation which aims to use the

memory bank associated with the CPU running the page allocating process. Here,

the function _alloc_pages() is what is important as this function is di�erent de-

pending on whether the kernel is built for a UMA (function in mm/page_alloc.c)

or NUMA (function in mm/numa.c) machine.

Regardless of which API is used, __alloc_pages() in mm/page_alloc.c is the

heart of the allocator. This function, which is never called directly, examines the

selected zone and checks if it is suitable to allocate from based on the number of

available pages. If the zone is not suitable, the allocator may fall back to other

zones. The order of zones to fall back on are decided at boot time by the function

build_zonelists() but generally ZONE_HIGHMEM will fall back to ZONE_NORMAL and

that in turn will fall back to ZONE_DMA. If number of free pages reaches the pages_low

watermark, it will wake kswapd to begin freeing up pages from zones and if memory

is extremely tight, the caller will do the work of kswapd itself.
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Figure 6.3: Call Graph: alloc_pages()

Once the zone has �nally been decided on, the function rmqueue() is called to

allocate the block of pages or split higher level blocks if one of the appropriate size

is not available.

6.3 Free Pages

The API for the freeing of pages is a lot simpler and exists to help remember the

order of the block to free as one disadvantage of a buddy allocator is that the caller

has to remember the size of the original allocation. The API for freeing is listed in

Table 6.2.

void(__free_pages)

struct page *page, unsigned int order Free an order number of pages
from the given page

void(__free_page)

struct page *page Free a single page

void(free_page)

void *addr Free a page from the given virtual address

Table 6.2: Physical Pages Free API

The principal function for freeing pages is __free_pages_ok() and it should not
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be called directly. Instead the function __free_pages() is provided which performs

simple checks �rst as indicated in Figure 6.4.

Figure 6.4: Call Graph: __free_pages()

When a buddy is freed, Linux tries to coalesce the buddiesBuddy coalescing

together immediately if possible. This is not optimal as the worst case scenario will

have many coalitions followed by the immediate splitting of the same blocks [Vah96].

To detect if the buddies can be merged or not, Linux checks the bit corresponding

to the a�ected pair of buddies in free_area→map. As one buddy has just been freed

by this function, it is obviously known that at least one buddy is free. If the bit in

the map is 0 after toggling, we know that the other buddy must also be free because

if the bit is 0, it means both buddies are either both free or both allocated. If both

are free, they may be merged.

Calculating the address of the buddy is a well known concept [Knu68]. As the

allocations are always in blocks of size 2k, the address of the block, or at least its

o�set within zone_mem_map will also be a power of 2k. The end result is that there

will always be at least k number of zeros to the right of the address. To get the

address of the buddy, the kth bit from the right is examined. If it is 0, then the

buddy will have this bit �ipped. To get this bit, Linux creates a mask which is

calculated as

mask = (∼ 0 << k)

The mask we are interested in is

imask = 1+ ∼ mask
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Linux takes a shortcut in calculating this by noting that

imask = −mask = 1+ ∼ mask

Once the buddy is merged, it is removed for the free list and the newly coalesced

pair moves to the next higher order to see if it may also be merged.

6.4 Get Free Page (GFP) Flags

GFP �ags Get Free Pages (GFP) �ags

A persistent concept through the whole VM is the Get Free Page (GFP)GFP

�ags �ags. These �ags determine how the allocator and kswapd will behave for the

allocation and freeing of pages. For example, an interrupt handler may not sleep so

it will not have the __GFP_WAIT �ag set as this �ag indicates the caller may sleep.

There are three sets of GFP �ags, all de�ned in <linux/mm.h>.

The �rst of the three is the set of zone modi�ersZone modi�ers listed in Table

6.3. These �ags indicate that the caller must try to allocate from a particular zone.

The reader will note there is not a zone modi�er for ZONE_NORMAL. This is because

the zone modi�er �ag is used as an o�set within an array and 0 implicitly means

allocate from ZONE_NORMAL.

Flag Description
__GFP_DMA Allocate from ZONE_DMA if possible
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM if possible
GFP_DMA Alias for __GFP_DMA

Table 6.3: Low Level GFP Flags A�ecting Zone Allocation

The next �ags are action modi�ers listed in Table 6.4. They change the behaviour

of the VM and what the calling process may do. The low level �ags on their own

are too primitive to be easily used.

It is di�cult to know what the correct combinations are for each instance so

a few high level combinations are de�ned and listed in Table 6.5. For clarity the

__GFP_ is removed from the table combinations so, the __GFP_HIGH �ag will read as

HIGH below. The combinations to form the high level �ags are listed in Table 6.6 To

help understand this, take GFP_ATOMIC as an example. It has only the __GFP_HIGH

�ag set. This means it is high priority, will use emergency pools (if they exist) but
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Flag Description
__GFP_WAIT Indicates that the caller is not high priority and can

sleep or reschedule
__GFP_HIGH Used by a high priority or kernel process. Kernel 2.2.x

used it to determine if a process could access emergency
pools of memory. In 2.4.x kernels, it does not appear to
be used

__GFP_IO Indicates that the caller can perform low level IO.
In 2.4.x, the main a�ect this has is determining if
try_to_free_buffers() can �ush bu�ers or not. It
is used by at least one journaled �lesystem

__GFP_HIGHIO Determines that IO can be performed on pages mapped
in high memory. Only used in try_to_free_buffers()

__GFP_FS Indicates if the caller can make calls to the �lesystem
layer. This is used when the caller is �lesystem related,
the bu�er cache for instance, and wants to avoid recur-
sively calling itself

Table 6.4: Low Level GFP Flags A�ecting Allocator behaviour

will not sleep, perform IO or access the �lesystem. This �ag would be used by an

interrupt handler for example.

Flag Low Level Flag Combination
GFP_ATOMIC HIGH
GFP_NOIO HIGH | WAIT
GFP_NOHIGHIO HIGH | WAIT | IO
GFP_NOFS HIGH | WAIT | IO | HIGHIO
GFP_KERNEL HIGH | WAIT | IO | HIGHIO | FS
GFP_NFS HIGH | WAIT | IO | HIGHIO | FS
GFP_USER WAIT | IO | HIGHIO | FS
GFP_HIGHUSER WAIT | IO | HIGHIO | FS | HIGHMEM
GFP_KSWAPD WAIT | IO | HIGHIO | FS

Table 6.5: Low Level GFP Flag Combinations For High Level Use

6.4.1 Process Flags

Process �ags

A process may also set �ags in the task_struct which a�ects allocator be-

haviour. The full list of process �ags are de�ned in <linux/sched.h> but only the

ones a�ecting VM behaviour are listed in Table 6.7.
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Flag Description
GFP_ATOMIC This �ag is used whenever the caller cannot sleep and must be serviced

if at all possible. Any interrupt handler that requires memory must use
this �ag to avoid sleeping or performing IO. Many subsystems during
init will use this system such as buffer_init() and inode_init()

GFP_NOIO This is used by callers who are already performing an IO related func-
tion. For example, when the loop back device is trying to get a page
for a bu�er head, it uses this �ag to make sure it will not perform some
action that would result in more IO. If fact, it appears the �ag was
introduced speci�cally to avoid a deadlock in the loopback device.

GFP_NOHIGHIO This is only used in one place in alloc_bounce_page() during the
creating of a bounce bu�er for IO in high memory

GFP_NOFS This is only used by the bu�er cache and �lesystems to make sure they
do not recursively call themselves by accident

GFP_KERNEL The most liberal of the combined �ags. It indicates that the caller is
free to do whatever it pleases. Strictly speaking the di�erence between
this �ag and GFP_USER is that this could use emergency pools of pages
but that is a no-op on 2.4.x kernels

GFP_USER Another �ag of historical signi�cance. In the 2.2.x series, an allocation
was given a LOW, MEDIUM or HIGH priority. If memory was tight, a
request with GFP_USER (low) would fail where as the others would keep
trying. Now it has no signi�cance and is not treated any di�erent to
GFP_KERNEL

GFP_HIGHUSER This �ag indicates that the allocator should allocate from
ZONE_HIGHMEM if possible. It is used when the page is allocated on
behalf of a user process

GFP_NFS This �ag is defunct. In the 2.0.x series, this �ag determined what the
reserved page size was. Normally 20 free pages were reserved. If this
�ag was set, only 5 would be reserved. Now it is not treated di�erently
anywhere

GFP_KSWAPD More historical signi�cance. In reality this is not treated any di�erent
to GFP_KERNEL

Table 6.6: High Level GFP Flags A�ecting Allocator Behaviour

6.5 Avoiding Fragmentation

FragmentationPage Fragmentation

One important problem that must be addressed with any allocator is the prob-

lem of internalInternal fragmentation and externalExternal fragmentation

fragmentation. External fragmentation is the inability to service a request because

the available memory exists only in small blocks. Internal fragmentation is de�ned

as the wasted space where a large block had to be assigned to service a small re-

quest. In Linux, external fragmentation is not a serious problem as large requests

for contiguous pages are rare and usually vmalloc() (see Chapter 7) is su�cient to
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Flag Description
PF_MEMALLOC This �ags the process as a memory allocator. kswapd

sets this �ag and it is set for any process that is about
to be killed by the Out Of Memory (OOM) killer which
is discussed in Chapter 12. It tells the buddy allocator
to ignore zone watermarks and assign the pages if at
all possible

PF_MEMDIE This is set by the OOM killer and functions the same
as the PF_MEMALLOC �ag by telling the page allocator
to give pages if at all possible as the process is about
to die

PF_FREE_PAGES Set when the buddy allocator calls
try_to_free_pages() itself to indicate that free
pages should be reserved for the calling process in
__free_pages_ok() instead of returning to the free
lists

Table 6.7: Process Flags A�ecting Allocator behaviour

service the request. The lists of free blocks ensure that large blocks do not have to

be split unnecessarily.

Internal fragmentation is the single most serious failing of the binary buddy

system. While fragmentation is expected to be in the region of 28% [WJNB95],

it has been shown that it can be in the region of 60%, in comparison to just 1%

with the �rst �t allocator [JW98]. It has also been shown that using variations of

the buddy system will not help the situation signi�cantly [PN77]. To address this

problem, Linux uses a slab allocator [Bon94] to carve up pages into small blocks of

memory for allocation [Tan01] which is discussed further in Chapter 8. With this

combination of allocators, the kernel can ensure that the amount of memory wasted

due to internal fragmentation is kept to a minimum.

6.6 What's New In 2.6

Allocating Pages The �rst noticeable di�erence seems cosmetic at �rst. The

function alloc_pages() is now a macro and de�ned in <linux/gfp.h> instead of

a function de�ned in <linux/mm.h>. The new layout is still very recognisable and

the main di�erence is a subtle but important one. In 2.4, there was speci�c code

dedicated to selecting the correct node to allocate from based on the running CPU

but 2.6 removes this distinction between NUMA and UMA architectures.

In 2.6, the function alloc_pages() calls numa_node_id() to return the logical
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ID of the node associated with the current running CPU. This NID is passed to

_alloc_pages() which calls NODE_DATA() with the NID as a parameter. On UMA

architectures, this will unconditionally result in contig_page_data being returned

but NUMA architectures instead set up an array which NODE_DATA() uses NID as

an o�set into. In other words, architectures are responsible for setting up a CPU

ID to NUMA memory node mapping. This is e�ectively still a node-local allocation

policy as is used in 2.4 but it is a lot more clearly de�ned.

Per-CPU Page Lists The most important addition to the page allocation is the

addition of the per-cpu lists, �rst discussed in Section 2.6.

In 2.4, a page allocation requires an interrupt safe spinlock to be held while the

allocation takes place. In 2.6, pages are allocated from a struct per_cpu_pageset

by buffered_rmqueue(). If the low watermark (per_cpu_pageset→low) has not

been reached, the pages will be allocated from the pageset with no requirement for

a spinlock to be held. Once the low watermark is reached, a large number of pages

will be allocated in bulk with the interrupt safe spinlock held, added to the per-cpu

list and then one returned to the caller.

Higher order allocations, which are relatively rare, still require the interrupt safe

spinlock to be held and there will be no delay in the splits or coalescing. With 0

order allocations, splits will be delayed until the low watermark is reached in the

per-cpu set and coalescing will be delayed until the high watermark is reached.

However, strictly speaking, this is not a lazyLazy buddy buddy algorithm [BL89].

While pagesets introduce a merging delay for order-0 allocations, it is a side-e�ect

rather than an intended feature and there is no method available to drain the page-

sets and merge the buddies. In other words, despite the per-cpu and new accounting

code which bulks up the amount of code in mm/page_alloc.c, the core of the buddy

algorithm remains the same as it was in 2.4.

The implication of this change is straight forward; the number of times the spin-

lock protecting the buddy lists must be acquired is reduced. Higher order allocations

are relatively rare in Linux so the optimisation is for the common case. This change

will be noticeable on large number of CPU machines but will make little di�erence

to single CPUs. There are a few issues with pagesets but they are not recognised as

a serious problem. The �rst issue is that high order allocations may fail if the page-

sets hold order-0 pages that would normally be merged into higher order contiguous
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blocks. The second is that an order-0 allocation may fail if memory is low, the

current CPU pageset is empty and other CPU's pagesets are full, as no mechanism

exists for reclaiming pages from �remote� pagesets. The last potential problem is

that buddies of newly freed pages could exist in other pagesets leading to possible

fragmentation problems.

Freeing Pages Two new API function have been introduced for the freeing of

pages called free_hot_page() and free_cold_page(). Predictably, the determine

if the freed pages are placed on the hot or cold lists in the per-cpu pagesets. However,

while the free_cold_page() is exported and available for use, it is actually never

called.

Order-0 page frees from __free_pages() and frees resuling from page cache re-

leases by __page_cache_release() are placed on the hot list where as higher order

allocations are freed immediately with __free_pages_ok(). Order-0 are usually re-

lated to userspace and are the most common type of allocation and free. By keeping

them local to the CPU lock contention will be reduced as most allocations will also

be of order-0.

Eventually, lists of pages must be passed to free_pages_bulk() or the pageset

lists would hold all free pages. This free_pages_bulk() function takes a list of

page block allocations, the order of each block and the count number of blocks

to free from the list. There are two principal cases where this is used. The �rst

is higher order frees passed to __free_pages_ok(). In this case, the page block is

placed on a linked list, of the speci�ed order and a count of 1. The second case is

where the high watermark is reached in the pageset for the running CPU. In this

case, the pageset is passed, with an order of 0 and a count of pageset→batch.

Once the core function __free_pages_bulk() is reached, the mechanisms for

freeing pages is to the buddy lists is very similar to 2.4.

GFP Flags There are still only three zones, so the zone modi�ers remain the

same but three new GFP �ags have been added that a�ect how hard the VM will

work, or not work, to satisfy a request. The �ags are:

__GFP_NOFAIL This �ag is used by a caller to indicate that the allocation

should never fail and the allocator should keep trying to allocate inde�nitely.
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__GFP_REPEAT This �ag is used by a caller to indicate that the request

should try to repeat the allocation if it fails. In the current implementation,

it behaves the same as __GFP_NOFAIL but later the decision might be made to

fail after a while

__GFP_NORETRY This �ag is almost the opposite of __GFP_NOFAIL. It

indicates that if the allocation fails it should just return immediately.

At time of writing, they are not heavily used but they have just been introduced

and are likely to be used more over time. The __GFP_REPEAT �ag in particular is

likely to be heavily used as blocks of code which implement this �ags behaviour exist

throughout the kernel.

The next GFP �ag that has been introduced is an allocation modi�er called

__GFP_COLD which is used to ensure that cold pages are allocated from the per-cpu

lists. From the perspective of the VM, the only user of this �ag is the function

page_cache_alloc_cold() which is mainly used during IO readahead. Usually

page allocations will be taken from the hot pages list.

The last new �ag is __GFP_NO_GROW. This is an internal �ag used only be the

slab allocator (discussed in Chapter 8) which aliases the �ag to SLAB_NO_GROW. It is

used to indicate when new slabs should never be allocated for a particular cache. In

reality, the GFP �ag has just been introduced to complement the old SLAB_NO_GROW

�ag which is currently unused in the main kernel.



Chapter 7

Non-Contiguous Memory Allocation

It is preferable when dealing with large amounts of memory to use physically con-

tiguous pages in memory both for cache related and memory access latency reasons.

Unfortunately, due to external fragmentationFragmentation elimination (exter-

nal) problems with the buddy allocator, this is not always possible. Linux provides

a mechanism via vmalloc() where non-contiguous physically memory can be used

that is contiguous in virtual memory.

An area is reserved in the virtual address space between VMALLOC_START and

VMALLOC_END. The location of VMALLOC_START depends on the amount of available

physical memory but the region will always be at least VMALLOC_RESERVE in size,

which on the x86 is 128MiB. The exact size of the region is discussed in Section 4.1.

The page tables in this region are adjusted as necessary to point to physical

pages which are allocated with the normal physical page allocator. This means that

allocation must be a multiple of the hardware page size. As allocations require

altering the kernel page tables, there is a limitation on how much memory can be

mapped with vmalloc() as only the virtual addresses space between VMALLOC_START

and VMALLOC_END is available. As a result, it is used sparingly in the core kernel. In

2.4.22, it is only used for storing the swap map information (see Chapter 11) and

for loading kernel modules into memory.

This small chapter begins with a description of how the kernel tracks which areas

in the vmalloc address space are used and how regions are allocated and freed.

7.1 Describing Virtual Memory Areas

vmalloc areas

The vmalloc address space is managed with a resource map allocator [Vah96].

128
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The struct vm_structvm_struct is responsible for storing the base,size pairs. It

is de�ned in <linux/vmalloc.h> as:

14 struct vm_struct {

15 unsigned long flags;

16 void * addr;

17 unsigned long size;

18 struct vm_struct * next;

19 };

A fully-�edged VMA could have been used but it contains extra information that

does not apply to vmalloc areas and would be wasteful. Here is a brief description

of the �elds in this small struct.

�ags These set either to VM_ALLOC, in the case of use with vmalloc() or

VM_IOREMAP when ioremap is used to map high memory into the kernel virtual

address space;

addr This is the starting address of the memory block;

size This is, predictably enough, the size in bytes;

next is a pointer to the next vm_struct. They are ordered by address and the

list is protected by the vmlist_lock lock.

As is clear, the areas are linked together via the next �eld and are ordered by

address for simple searches. Each area is separated by at least one page to protect

against overruns. This is illustrated by the gaps in Figure 7.1.vmalloc address

space

Figure 7.1: vmalloc Address Space

When the kernel wishes to allocate a new area, the vm_struct list is searched

linearly by the function get_vm_area(). Space for the struct is allocated with

kmalloc(). When the virtual area is used for remapping an area for IO (commonly

referred to as ioremapping), this function will be called directly to map the requested

area.



7.2. Allocating A Non-Contiguous Area 130

7.2 Allocating A Non-Contiguous Area

Figure 7.2: Call Graph: vmalloc()

The functions vmalloc(), vmalloc_dma() and vmalloc_32() are provided to

allocate a memory area that is contiguous in virtual address space. They all take

a single parameter size which is rounded up to the next page alignment. They all

return a linear address for the new allocated area.

As is clear from the call graph shown in Figure 7.2, there are two steps to

allocating the area. The �rst step taken by get_vm_area() is to �nd a region large

enough to store the request. It searches through a linear linked list of vm_structs

and returns a new struct describing the allocated region.

The second step is to allocate the necessary PGD entries with vmalloc_area_pages(),

PMD entries with alloc_area_pmd() and PTE entries with alloc_area_pte() be-

fore �nally allocating the page with alloc_page().

The page table updated by vmalloc() is not the current process but the reference

page table stored at init_mm→pgd. This means that a process accessing the vmalloc

area will cause a page fault exception as its page tables are not pointing to the correct

area. There is a special case in the page fault handling code which knows that the
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void *(vmalloc)

unsigned long size Allocate a number of pages in vmalloc space that
satisfy the requested size

void *(vmalloc_dma)

unsigned long size Allocate a number of pages from ZONE_DMA

void *(vmalloc_32)

unsigned long size Allocate memory that is suitable for 32 bit address-
ing. This ensures that the physical page frames are in ZONE_NORMAL which
32 bit devices will require

Table 7.1: Non-Contiguous Memory Allocation API

fault occured in the vmalloc area and updates the current process page tables using

information from the master page table. How the use of vmalloc() relates to the

buddy allocator and page faulting is illustrated in Figure 7.3.

7.3 Freeing A Non-Contiguous Area

The function vfree() is responsible for freeing a virtual area. It linearly

searches the list of vm_structs looking for the desired region and then calls

vmfree_area_pages() on the region of memory to be freed.

` vmfree_area_pages is the exact opposite of vmalloc_area_pages(). It walks

the page tables freeing up the page table entries and associated pages for the region.

void(vfree)

void *addr Free a region of memory allocated with vmalloc(),
vmalloc_dma() or vmalloc_32()

Table 7.2: Non-Contiguous Memory Free API

7.4 Whats New in 2.6

Non-contiguous memory allocation remains essentially the same in 2.6. The main

di�erence is a slightly di�erent internal API which a�ects when the pages are al-

located. In 2.4, vmalloc_area_pages() is responsible for beginning a page ta-

ble walk and then allocating pages when the PTE is reached in the function

alloc_area_pte(). In 2.6, all the pages are allocated in advance by __vmalloc()
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Figure 7.3: Relationship between vmalloc(), alloc_page() and Page Faulting

and placed in an array which is passed to map_vm_area() for insertion into the

kernel page tables.

The get_vm_area() API has changed very slightly. When called, it behaves the

same as previously as it searches the entire vmalloc virtual address space for a free

area. However, a caller can search just a subset of the vmalloc address space by

calling __get_vm_area() directly and specifying the range. This is only used by

the ARM architecture when loading modules.

The last signi�cant change is the introduction of a new interface vmap() for the

insertion of an array of pages in the vmalloc address space and is only used by

the sound subsystem core. This interface was backported to 2.4.22 but it is totally

unused. It is either the result of an accidental backport or was merged to ease the

application of vendor-speci�c patches that require vmap().
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Figure 7.4: Call Graph: vfree()



Chapter 8

Slab Allocator

Slab allocator Object allocation

In this chapter, the general-purpose allocator is described. It is a slab alloca-

tor which is very similar in many respects to the general kernel allocator used in

Solaris [MM01]. Linux's implementation is heavily based on the �rst slab allocator

paper by Bonwick [Bon94] with many improvements that bear a close resemblance

to those described in his later paper [BA01]. We will begin with a quick overview of

the allocator followed by a description of the di�erent structures used before giving

an in-depth tour of each task the allocator is responsible for.

The basic idea behind the slab allocator is to have caches of commonly used

objects kept in an initialised state available for use by the kernel. Without an

object based allocator, the kernel will spend much of its time allocating, initialising

and freeing the same object. The slab allocator aims to to cache the freed object so

that the basic structure is preserved between uses [Bon94].

The slab allocator consists of a variable number of caches that are linked together

on a doubly linked circular list called a cache chainSlab cache chainCache chain.

A cacheSlab cache, in the context of the slab allocator, is a manager for a number

of objects of a particular type like the mm_struct or fs_cache cache and is managed

by a struct kmem_cache_s discussed in detail later. The caches are linked via the

next �eld in the cache struct.

Each cache maintains blocks of contiguous pages in memory called slabsSlabs

which are carved up into small chunks for the data structures and objects the cache

manages. The relationship between these di�erent structures is illustrated in Figure

8.1.

The slab allocator has three principle aims:

• The allocation of small blocks of memory to help eliminate internal fragmen-

134
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Figure 8.1: Layout of the Slab Allocator

tation that would be otherwise caused by the buddy system;

• The caching of commonly used objects so that the system does not waste

time allocating, initialising and destroying objects. Benchmarks on Solaris

showed excellent speed improvements for allocations with the slab allocator in

use [Bon94];

• The better utilisation of hardware cache by aligning objects to the L1 or L2

caches.

To help eliminate internal fragmentationEliminating fragmentation (inter-

nal) Small allocation caches normally caused by a binary buddy allocator, two

sets of caches of small memory bu�ers ranging from 25 (32) bytes to 217 (131072)

bytes are maintained. One cache set is suitable for use with DMA devices. These

caches are called size-N and size-N(DMA) where N is the size of the allocation, and

a function kmalloc() (see Section 8.4.1) is provided for allocating them. With this,

the single greatest problem with the low level page allocator is addressed. The sizes

caches are discussed in further detail in Section 8.4.
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The second task of the slab allocator is to maintain caches of commonly used

objects. For many structures used in the kernel, the time needed to initialise an

object is comparable to, or exceeds, the cost of allocating space for it. When a

new slab is created, a number of objects are packed into it and initialised using a

constructor if available. When an object is freed, it is left in its initialised state so

that object allocation will be quick.

The �nal task of the slab allocator is hardware cache utilization. If there is

space left over after objects are packed into a slab, the remaining space is used to

colorObject coloringColoring the slab. Slab coloring is a scheme which attempts

to have objects in di�erent slabs use di�erent lines in the cache. By placing objects

at a di�erent starting o�set within the slab, it is likely that objects will use di�erent

lines in the CPU cache helping ensure that objects from the same slab cache will

be unlikely to �ush each other. With this scheme, space that would otherwise be

wasted ful�lls a new function. Figure 8.2 shows how a page allocated from the buddy

allocator is used to store objects that using coloring to align the objects to the L1

CPU cache.

Figure 8.2: Slab page containing Objects Aligned to L1 CPU Cache
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Linux does not attempt to color page allocations based on their physical ad-

dress [Kes91]Page colour, or order where objects are placed such as those described

for data [GAV95] or code segments [HK97] but the scheme used does help improve

cache line usage. Cache colouringCache colouringColoring is further discussed

in Section 8.1.5. On an SMP system, a further step is taken to help cache utiliza-

tion where each cache has a small array of objects reserved for each CPU. This is

discussed further in Section 8.5.

The slab allocator provides the additional option of slab debuggingSlab debug-

ging if the option is set at compile time with CONFIG_SLAB_DEBUG. Two debugging

features are providing called red zoning and object poisoning. With red zoning, a

marker is placed at either end of the object. If this mark is disturbed, the allocator

knows the object where a bu�er over�ow occured and reports it. Poisoning an object

will �ll it with a prede�ned bit pattern(de�ned 0x5A in mm/slab.c) at slab creation

and after a free. At allocation, this pattern is examined and if it is changed, the

allocator knows that the object was used before it was allocated and �ags it.

The small, but powerful, API which the allocator exports is listed in Table 8.1.

8.1 Caches

Caches (slab allocator)

One cache exists for each type of object that is to be cached. For a full list of

caches available on a running system, run cat /proc/slabinfoslabinfo . This �le

gives some basic information on the caches. An excerpt from the output of this �le

looks like;

slabinfo - version: 1.1 (SMP)

kmem_cache 80 80 248 5 5 1 : 252 126

urb_priv 0 0 64 0 0 1 : 252 126

tcp_bind_bucket 15 226 32 2 2 1 : 252 126

inode_cache 5714 5992 512 856 856 1 : 124 62

dentry_cache 5160 5160 128 172 172 1 : 252 126

mm_struct 240 240 160 10 10 1 : 252 126

vm_area_struct 3911 4480 96 112 112 1 : 252 126

size-64(DMA) 0 0 64 0 0 1 : 252 126

size-64 432 1357 64 23 23 1 : 252 126

size-32(DMA) 17 113 32 1 1 1 : 252 126

size-32 850 2712 32 24 24 1 : 252 126

Each of the column �elds correspond to a �eld in the struct kmem_cache_s
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structure. The columns listed in the excerpt above are:

cache-name A human readable name such as �tcp_bind_bucket�;

num-active-objs Number of objects that are in use;

total-objs How many objects are available in total including unused;

obj-size The size of each object, typically quite small;

num-active-slabs Number of slabs containing objects that are active;

total-slabs How many slabs in total exist;

num-pages-per-slab The pages required to create one slab, typically 1.

If SMP is enabled like in the example excerpt, two more columns will be displayed

after a colon. They refer to the per CPU cache described in Section 8.5. The

columns are:

limit This is the number of free objects the pool can have before half of it is given

to the global free pool;

batchcount The number of objects allocated for the processor in a block when

no objects are free.

To speed allocation and freeing of objects and slabs they are arranged into three

lists; slabs_full, slabs_partial and slabs_free. slabs_full has all its objects

in use. slabs_partial has free objects in it and so is a prime candidate for allocation

of objects. slabs_free has no allocated objects and so is a prime candidate for slab

destruction.

8.1.1 Cache Descriptor

All information describing a cache is stored in a struct kmem_cache_s declared in

mm/slab.c. This is an extremely large struct and so will be described in parts.

190 struct kmem_cache_s {

193 struct list_head slabs_full;

194 struct list_head slabs_partial;

195 struct list_head slabs_free;

196 unsigned int objsize;

197 unsigned int flags;
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198 unsigned int num;

199 spinlock_t spinlock;

200 #ifdef CONFIG_SMP

201 unsigned int batchcount;

202 #endif

203

Most of these �elds are of interest when allocating or freeing objects.

slabs_* These are the three lists where the slabs are stored as described in the

previous section;

objsize This is the size of each object packed into the slab;

�ags These �ags determine how parts of the allocator will behave when dealing

with the cache. See Section 8.1.2;

num This is the number of objects contained in each slab;

spinlock A spinlock protecting the structure from concurrent accessses;

batchcount This is the number of objects that will be allocated in batch for the

per-cpu caches as described in the previous section.

206 unsigned int gfporder;

209 unsigned int gfpflags;

210

211 size_t colour;

212 unsigned int colour_off;

213 unsigned int colour_next;

214 kmem_cache_t *slabp_cache;

215 unsigned int growing;

216 unsigned int dflags;

217

219 void (*ctor)(void *, kmem_cache_t *, unsigned long);

222 void (*dtor)(void *, kmem_cache_t *, unsigned long);

223

224 unsigned long failures;

225

This block deals with �elds of interest when allocating or freeing slabs from the

cache.

gfporder This indicates the size of the slab in pages. Each slab consumes 2gfporder

pages as these are the allocation sizes the buddy allocator provides;
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gfp�ags The GFP �ags used when calling the buddy allocator to allocate pages

are stored here. See Section 6.4 for a full list;

colour Each slab stores objects in di�erent cache lines if possible. Cache colouring

will be further discussed in Section 8.1.5;

colour_o� This is the byte alignment to keep slabs at. For example, slabs for

the size-X caches are aligned on the L1 cache;

colour_next This is the next colour line to use. This value wraps back to 0 when

it reaches colour;

growing This �ag is set to indicate if the cache is growing or not. If it is, it is

much less likely this cache will be selected to reap free slabs under memory

pressure;

d�ags These are the dynamic �ags which change during the cache lifetime. See

Section 8.1.3;

ctor A complex object has the option of providing a constructor function to be

called to initialise each new object. This is a pointer to that function and may

be NULL;

dtor This is the complementing object destructor and may be NULL;

failures This �eld is not used anywhere in the code other than being initialised

to 0.

227 char name[CACHE_NAMELEN];

228 struct list_head next;

These are set during cache creation

name This is the human readable name of the cache;

next This is the next cache on the cache chain.

229 #ifdef CONFIG_SMP

231 cpucache_t *cpudata[NR_CPUS];

232 #endif

cpudata This is the per-cpu data and is discussed further in Section 8.5.
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233 #if STATS

234 unsigned long num_active;

235 unsigned long num_allocations;

236 unsigned long high_mark;

237 unsigned long grown;

238 unsigned long reaped;

239 unsigned long errors;

240 #ifdef CONFIG_SMP

241 atomic_t allochit;

242 atomic_t allocmiss;

243 atomic_t freehit;

244 atomic_t freemiss;

245 #endif

246 #endif

247 };

These �gures are only available if the CONFIG_SLAB_DEBUG option is set during

compile time. They are all beancounters and not of general interest. The statistics

for /proc/slabinfo are calculated when the proc entry is read by another process

by examining every slab used by each cache rather than relying on these �elds to be

available.

num_active The current number of active objects in the cache is stored here;

num_allocations A running total of the number of objects that have been allo-

cated on this cache is stored in this �eld;

high_mark This is the highest value num_active has had to date;

grown This is the number of times kmem_cache_grow() has been called;

reaped The number of times this cache has been reaped is kept here;

errors This �eld is never used;

allochit This is the total number of times an allocation has used the per-cpu

cache;

allocmiss To complement allochit, this is the number of times an allocation

has missed the per-cpu cache;

freehit This is the number of times a free was placed on a per-cpu cache;

freemiss This is the number of times an object was freed and placed on the global

pool.
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8.1.2 Cache Static Flags

Slab cache static �ags

A number of �ags are set at cache creation time that remain the same for the

lifetime of the cache. They a�ect how the slab is structured and how objects are

stored within it. All the �ags are stored in a bitmask in the flags �eld of the

cache descriptor. The full list of possible �ags that may be used are declared in

<linux/slab.h>.

There are three principle sets. The �rst set is internal �ags which are set only

by the slab allocator and are listed in Table 8.2. The only relevant �ag in the set is

the CFGS_OFF_SLAB �ag which determines where the slab descriptor is stored.

The second set are set by the cache creator and they determine how the allocator

treats the slab and how objects are stored. They are listed in Table 8.3.

The last �ags are only available if the compile option CONFIG_SLAB_DEBUG is set.

They determine what additional checks will be made to slabs and objects and are

primarily of interest only when new caches are being developed.

To prevent callers using the wrong �ags a CREATE_MASK is de�ned in mm/slab.c

consisting of all the allowable �ags. When a cache is being created, the requested

�ags are compared against the CREATE_MASK and reported as a bug if invalid �ags

are used.

8.1.3 Cache Dynamic Flags

Slab cache dynamic �ags

The dflags �eld has only one �ag, DFLGS_GROWN, but it is important. The �ag

is set during kmem_cache_grow() so that kmem_cache_reap() will be unlikely to

choose the cache for reaping. When the function does �nd a cache with this �ag set,

it skips the cache and removes the �ag.

8.1.4 Cache Allocation Flags

Slab cache allocation �ags

These �ags correspond to the GFP page �ag options for allocating pages for

slabs. Callers sometimes call with either SLAB_* or GFP_* �ags, but they really

should use only SLAB_* �ags. They correspond directly to the �ags described in

Section 6.4 so will not be discussed in detail here. It is presumed the existence of
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these �ags are for clarity and in case the slab allocator needed to behave di�erently

in response to a particular �ag but in reality, there is no di�erence.

A very small number of �ags may be passed to constructor and destructor func-

tions which are listed in Table 8.6.

8.1.5 Cache Colouring

Slab cache colouring

To utilise hardware cache better, the slab allocator will o�set objects in di�erent

slabs by di�erent amounts depending on the amount of space left over in the slab.

The o�set is in units of BYTES_PER_WORD unless SLAB_HWCACHE_ALIGN is set in which

case it is aligned to blocks of L1_CACHE_BYTES for alignment to the L1 hardware

cache.

During cache creation, it is calculated how many objects can �t on a slab (see

Section 8.2.7) and how many bytes would be wasted. Based on wastage, two �gures

are calculated for the cache descriptor

colour This is the number of di�erent o�sets that can be used;

colour_o� This is the multiple to o�set each objects by in the slab.

With the objects o�set, they will use di�erent lines on the associative hardware

cache. Therefore, objects from slabs are less likely to overwrite each other in memory.

The result of this is best explained by an example. Let us say that s_mem (the

address of the �rst object) on the slab is 0 for convenience, that 100 bytes are

wasted on the slab and alignment is to be at 32 bytes to the L1 Hardware Cache on

a Pentium II.

In this scenario, the �rst slab created will have its objects start at 0. The second

will start at 32, the third at 64, the fourth at 96 and the �fth will start back at 0.

With this, objects from each of the slabs will not hit the same hardware cache line

on the CPU. The value of colour is 3 and colour_off is 32.

8.1.6 Cache Creation

Slab cache creationCache creation (Slab)

The function kmem_cache_create() is responsible for creating new caches and

adding them to the cache chain. The tasks that are taken to create a cache are
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• Perform basic sanity checks for bad usage;

• Perform debugging checks if CONFIG_SLAB_DEBUG is set;

• Allocate a kmem_cache_t from the cache_cache slab cache ;

• Align the object size to the word size;

• Calculate how many objects will �t on a slab;

• Align the object size to the hardware cache;

• Calculate colour o�sets ;

• Initialise remaining �elds in cache descriptor;

• Add the new cache to the cache chain.

Figure 8.3 shows the call graph relevant to the creation of a cache; each function

is fully described in the Code Commentary.

Figure 8.3: Call Graph: kmem_cache_create()

8.1.7 Cache Reaping

Slab cache reap

When a slab is freed, it is placed on the slabs_free list for future use. Caches

do not automatically shrink themselves so when kswapd notices that memory is

tight, it calls kmem_cache_reap() to free some memory. This function is responsible

for selecting a cache that will be required to shrink its memory usage. It is worth

noting that cache reaping does not take into account what memory node or zone

is under pressure. This means that with a NUMA or high memory machine, it is

possible the kernel will spend a lot of time freeing memory from regions that are
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under no memory pressure but this is not a problem for architectures like the x86

which has only one bank of memory.

Figure 8.4: Call Graph: kmem_cache_reap()

The call graph in Figure 8.4 is deceptively simple as the task of selecting the

proper cache to reap is quite long. In the event that there are numerous caches

in the system, only REAP_SCANLEN(currently de�ned as 10) caches are examined in

each call. The last cache to be scanned is stored in the variable clock_searchp so

as not to examine the same caches repeatedly. For each scanned cache, the reaper

does the following

• Check �ags for SLAB_NO_REAP and skip if set;

• If the cache is growing, skip it;

• if the cache has grown recently or is current growing, DFLGS_GROWN will be set.

If this �ag is set, the slab is skipped but the �ag is cleared so it will be a reap

canditate the next time;

• Count the number of free slabs in slabs_free and calculate how many pages

that would free in the variable pages;

• If the cache has constructors or large slabs, adjust pages to make it less likely

for the cache to be selected;

• If the number of pages that would be freed exceeds REAP_PERFECT, free half

of the slabs in slabs_free;

• Otherwise scan the rest of the caches and select the one that would free the

most pages for freeing half of its slabs in slabs_free.
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8.1.8 Cache Shrinking

Slab cache shrinking

When a cache is selected to shrink itself, the steps it takes are simple and brutal

• Delete all objects in the per CPU caches;

• Delete all slabs from slabs_free unless the growing �ag gets set.

Linux is nothing, if not subtle.

Figure 8.5: Call Graph: kmem_cache_shrink()

Two varieties of shrink functions are provided with confusingly similar names.

kmem_cache_shrink() removes all slabs from slabs_free and returns the number

of pages freed as a result. This is the principal function exported for use by the slab

allocator users.

Figure 8.6: Call Graph: __kmem_cache_shrink()

The second function __kmem_cache_shrink() frees all slabs from slabs_free

and then veri�es that slabs_partial and slabs_full are empty. This is for inter-

nal use only and is important during cache destruction when it doesn't matter how

many pages are freed, just that the cache is empty.
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8.1.9 Cache Destroying

Slab cache deletion

When a module is unloaded, it is responsible for destroying any cache with

the function kmem_cache_destroy(). It is important that the cache is properly

destroyed as two caches of the same human-readable name are not allowed to exist.

Core kernel code often does not bother to destroy its caches as their existence persists

for the life of the system. The steps taken to destroy a cache are

• Delete the cache from the cache chain;

• Shrink the cache to delete all slabs;

• Free any per CPU caches (kfree());

• Delete the cache descriptor from the cache_cache.

Figure 8.7: Call Graph: kmem_cache_destroy()

8.2 Slabs

Slabs

This section will describe how a slab is structured and managed. The struct

which describes it is much simpler than the cache descriptor, but how the slab is

arranged is considerably more complex. It is declared as follows:

typedef struct slab_s {

struct list_head list;

unsigned long colouroff;

void *s_mem;

unsigned int inuse;

kmem_bufctl_t free;

} slab_t;

The �elds in this simple struct are as follows:
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list This is the linked list the slab belongs to. This will be one of slab_full,

slab_partial or slab_free from the cache manager;

colouro� This is the colour o�set from the base address of the �rst object within

the slab. The address of the �rst object is s_mem + colouroff;

s_mem This gives the starting address of the �rst object within the slab;

inuse This gives the number of active objects in the slab;

free This is an array of bufctls used for storing locations of free objects. See

Section 8.2.3 for further details.

The reader will note that given the slab manager or an object within the slab,

there does not appear to be an obvious way to determine what slab or cache they

belong to. This is addressed by using the list �eld in the struct page that makes

up the cache. SET_PAGE_CACHE() and SET_PAGE_SLAB() use the next and prev

�elds on the page→list to track what cache and slab an object belongs to. To get

the descriptors from the page, the macros GET_PAGE_CACHE() and GET_PAGE_SLAB()

are available. This set of relationships is illustrated in Figure 8.8.

Figure 8.8: Page to Cache and Slab Relationship

The last issue is where the slab management struct is kept. Slab managers are

kept either on (CFLGS_OFF_SLAB set in the static �ags) or o�-slab. Where they

are placed are determined by the size of the object during cache creation. It is

important to note that in 8.8, the struct slab_t could be stored at the beginning
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of the page frame although the �gure implies the struct slab_ is seperate from

the page frame.

8.2.1 Storing the Slab Descriptor

Slab descriptors

If the objects are larger than a threshold (512 bytes on x86), CFGS_OFF_SLAB is

set in the cache �ags and the slab descriptor is kept o�-slab in one of the sizes cache

(see Section 8.4). The selected sizes cache is large enough to contain the struct

slab_t and kmem_cache_slabmgmt() allocates from it as necessary. This limits the

number of objects that can be stored on the slab because there is limited space for

the bufctls but that is unimportant as the objects are large and so there should

not be many stored in a single slab.

Figure 8.9: Slab With Descriptor On-Slab

Alternatively, the slab manager is reserved at the beginning of the slab.

When stored on-slab, enough space is kept at the beginning of the slab to store

both the slab_t and the kmem_bufctl_t which is an array of unsigned inte-

gerskmem_bufctl_t types. The array is responsible for tracking the index of

the next free object that is available for use which is discussed further in Section

8.2.3. The actual objects are stored after the kmem_bufctl_t array.

Figure 8.9 should help clarify what a slab with the descriptor on-slab looks like

and Figure 8.10 illustrates how a cache uses a sizes cache to store the slab descriptor

when the descriptor is kept o�-slab.
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Figure 8.10: Slab With Descriptor O�-Slab

8.2.2 Slab Creation

Slab creation

Figure 8.11: Call Graph: kmem_cache_grow()

At this point, we have seen how the cache is created, but on creation, it is an

empty cache with empty lists for its slab_full, slab_partial and slabs_free.

New slabs are allocated to a cache by calling the function kmem_cache_grow().

This is frequently called �cache growing� and occurs when no objects are left in the

slabs_partial list and there are no slabs in slabs_free. The tasks it ful�lls are

• Perform basic sanity checks to guard against bad usage;

• Calculate colour o�set for objects in this slab;

• Allocate memory for slab and acquire a slab descriptor;
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• Link the pages used for the slab to the slab and cache descriptors described in

Section 8.2;

• Initialise objects in the slab;

• Add the slab to the cache.

8.2.3 Tracking Free Objects

Slab free object tracking

The slab allocator has got to have a quick and simple means of tracking where

free objects are on the partially �lled slabs. It achieves this by using an array of

unsigned integers called kmem_bufctl_t that is associated with each slab manager

as obviously it is up to the slab manager to know where its free objects are.

Historically, and according to the paper describing the slab allocator [Bon94],

kmem_bufctl_t was a linked list of objects. In Linux 2.2.x, this struct was a union

of three items, a pointer to the next free object, a pointer to the slab manager and

a pointer to the object. Which it was depended on the state of the object.

Today, the slab and cache an object belongs to is determined by the struct

page and kmem_bufctl_t is simply an integer array of object indices. The number

of elements in the array is the same as the number of objects on the slab.

141 typedef unsigned int kmem_bufctl_t;

As the array is kept after the slab descriptor and there is no pointer to the �rst

element directly, a helper macro slab_bufctl() is provided.

163 #define slab_bufctl(slabp) \

164 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

This seemingly cryptic macro is quite simple when broken down. The parameter

slabp is a pointer to the slab manager. The expression ((slab_t*)slabp)+1 casts

slabp to a slab_t struct and adds 1 to it. This will give a pointer to a slab_t

which is actually the beginning of the kmem_bufctl_t array. (kmem_bufctl_t *)

casts the slab_t pointer to the required type. The results in blocks of code that

contain slab_bufctl(slabp)[i]. Translated, that says �take a pointer to a slab

descriptor, o�set it with slab_bufctl() to the beginning of the kmem_bufctl_t

array and return the ith element of the array�.
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The index to the next free object in the slab is stored in slab_t→free elimi-

nating the need for a linked list to track free objects. When objects are allocated or

freed, this pointer is updated based on information in the kmem_bufctl_t array.

8.2.4 Initialising the kmem_bufctl_t Array

Initialising kmem_bufctl_t

When a cache is grown, all the objects and the kmem_bufctl_t array on the slab

are initialised. The array is �lled with the index of each object beginning with 1

and ending with the marker BUFCTL_END. For a slab with 5 objects, the elements of

the array would look like Figure 8.12.

Figure 8.12: Initialised kmem_bufctl_t Array

The value 0 is stored in slab_t→free as the 0th object is the �rst free object to

be used. The idea is that for a given object n, the index of the next free object will

be stored in kmem_bufctl_t[n]. Looking at the array above, the next object free

after 0 is 1. After 1, there are two and so on. As the array is used, this arrangement

will make the array act as a LIFO for free objects.

8.2.5 Finding the Next Free Object

Slabs, �nding free objects

When allocating an object, kmem_cache_alloc() performs the �real� work of

updating the kmem_bufctl_t() array by calling kmem_cache_alloc_one_tail().

The �eld slab_t→free has the index of the �rst free object. The index of the next

free object is at kmem_bufctl_t[slab_t→free]. In code terms, this looks like

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;

1254 slabp->free=slab_bufctl(slabp)[slabp->free];

The �eld slabp→s_mem is a pointer to the �rst object on the slab. slabp→free

is the index of the object to allocate and it has to be multiplied by the size of an

object.

The index of the next free object is stored at kmem_bufctl_t[slabp→free].

There is no pointer directly to the array hence the helper macro slab_bufctl()
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is used. Note that the kmem_bufctl_t array is not changed during allocations but

that the elements that are unallocated are unreachable. For example, after two

allocations, index 0 and 1 of the kmem_bufctl_t array are not pointed to by any

other element.

8.2.6 Updating kmem_bufctl_t

The kmem_bufctl_t list is only updated when an object is freed in the function

kmem_cache_free_one(). The array is updated with this block of code:

1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

1452

1453 slab_bufctl(slabp)[objnr] = slabp->free;

1454 slabp->free = objnr;

The pointer objp is the object about to be freed and objnr is its index.

kmem_bufctl_t[objnr] is updated to point to the current value of slabp→free,

e�ectively placing the object pointed to by free on the pseudo linked list.

slabp→free is updated to the object being freed so that it will be the next one

allocated.

8.2.7 Calculating the Number of Objects on a Slab

Slabs, number of objects

During cache creation, the function kmem_cache_estimate() is called to calcu-

late how many objects may be stored on a single slab taking into account whether the

slab descriptor must be stored on-slab or o�-slab and the size of each kmem_bufctl_t

needed to track if an object is free or not. It returns the number of objects that

may be stored and how many bytes are wasted. The number of wasted bytes is

important if cache colouring is to be used.

The calculation is quite basic and takes the following steps

• Initialise wastage to be the total size of the slab i.e. PAGE_SIZEgfp_order;

• Subtract the amount of space required to store the slab descriptor;

• Count up the number of objects that may be stored. Include the size of the

kmem_bufctl_t if the slab descriptor is stored on the slab. Keep increasing

the size of i until the slab is �lled;

• Return the number of objects and bytes wasted.
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8.2.8 Slab Destroying

Slab deletion

When a cache is being shrunk or destroyed, the slabs will be deleted. As the

objects may have destructors, these must be called, so the tasks of this function are:

• If available, call the destructor for every object in the slab;

• If debugging is enabled, check the red marking and poison pattern;

• Free the pages the slab uses.

The call graph at Figure 8.13 is very simple.

Figure 8.13: Call Graph: kmem_slab_destroy()

8.3 Objects

Slab objects, see ObjectsObjects

This section will cover how objects are managed. At this point, most of the

really hard work has been completed by either the cache or slab managers.

8.3.1 Initialising Objects in a Slab

Object initialisation Initialising Objects

When a slab is created, all the objects in it are put in an initialised state. If a

constructor is available, it is called for each object and it is expected that objects are

left in an initialised state upon free. Conceptually the initialisation is very simple,

cycle through all objects and call the constructor and initialise the kmem_bufctl for

it. The function kmem_cache_init_objs() is responsible for initialising the objects.
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8.3.2 Object Allocation

Object allocation Slab object allocation

The function kmem_cache_alloc() is responsible for allocating one object to the

caller which behaves slightly di�erent in the UP and SMP cases. Figure 8.14 shows

the basic call graph that is used to allocate an object in the SMP case.

Figure 8.14: Call Graph: kmem_cache_alloc()

There are four basic steps. The �rst step (kmem_cache_alloc_head()) covers

basic checking to make sure the allocation is allowable. The second step is to select

which slabs list to allocate from. This will be one of slabs_partial or slabs_free.

If there are no slabs in slabs_free, the cache is grown (see Section 8.2.2) to create

a new slab in slabs_free. The �nal step is to allocate the object from the selected

slab.

The SMP case takes one further step. Before allocating one object, it will check

to see if there is one available from the per-CPU cache and will use it if there is. If

there is not, it will allocate batchcount number of objects in bulk and place them

in its per-cpu cache. See Section 8.5 for more information on the per-cpu caches.

8.3.3 Object Freeing

Object freeing Slab object allocation

kmem_cache_free is used to free objects and it has a relatively simple task.

Just like kmem_cache_alloc(), it behaves di�erently in the UP and SMP cases.

The principal di�erence between the two cases is that in the UP case, the object is

returned directly to the slab but with the SMP case, the object is returned to the

per-cpu cache. In both cases, the destructor for the object will be called if one is

available. The destructor is responsible for returning the object to the initialised

state.
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Figure 8.15: Call Graph: kmem_cache_free()

8.4 Sizes Cache

Small allocation caches

Linux keeps two sets of caches for small memory allocations for which the physical

page allocator is unsuitable. One set is for use with DMA and the other is suitable

for normal use. The human readable names for these caches are size-N cache and

size-N(DMA) cache which are viewable from /proc/slabinfo. Information for each

sized cache is stored in a struct cache_sizes, typede�ed to cache_sizes_t, which

is de�ned in mm/slab.c as:

331 typedef struct cache_sizes {

332 size_t cs_size;

333 kmem_cache_t *cs_cachep;

334 kmem_cache_t *cs_dmacachep;

335 } cache_sizes_t;

The �elds in this struct are described as follows:

cs_size The size of the memory block;

cs_cachep The cache of blocks for normal memory use;

cs_dmacachep The cache of blocks for use with DMA.

As there are a limited number of these caches that exist, a static array called

cache_sizes is initialised at compile time beginning with 32 bytes on a 4KiB ma-

chine and 64 for greater page sizes.
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337 static cache_sizes_t cache_sizes[] = {

338 #if PAGE_SIZE == 4096

339 { 32, NULL, NULL},

340 #endif

341 { 64, NULL, NULL},

342 { 128, NULL, NULL},

343 { 256, NULL, NULL},

344 { 512, NULL, NULL},

345 { 1024, NULL, NULL},

346 { 2048, NULL, NULL},

347 { 4096, NULL, NULL},

348 { 8192, NULL, NULL},

349 { 16384, NULL, NULL},

350 { 32768, NULL, NULL},

351 { 65536, NULL, NULL},

352 {131072, NULL, NULL},

353 { 0, NULL, NULL}

As is obvious, this is a static array that is zero terminated consisting of bu�ers

of succeeding powers of 2 from 25 to 217 . An array now exists that describes each

sized cache which must be initialised with caches at system startup.

8.4.1 kmalloc()

With the existence of the sizes cache, the slab allocator is able to o�er a new allocator

function, kmalloc() for use when small memory bu�ers are required. When a

request is received, the appropriate sizes cache is selected and an object assigned

from it. The call graph on Figure 8.16 is therefore very simple as all the hard work

is in cache allocation.

Figure 8.16: Call Graph: kmalloc()
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8.4.2 kfree()

Just as there is a kmalloc() function to allocate small memory objects for use, there

is a kfree() for freeing it. As with kmalloc(), the real work takes place during

object freeing (See Section 8.3.3) so the call graph in Figure 8.17 is very simple.

Figure 8.17: Call Graph: kfree()

8.5 Per-CPU Object Cache

Per-CPU cacheSlab caches, per-CPU

One of the tasks the slab allocator is dedicated to is improved hardware cache

utilization. An aim of high performance computing [CS98] in general is to use

data on the same CPU for as long as possible. Linux achieves this by trying to

keep objects in the same CPU cache with a Per-CPU object cache, simply called a

cpucache for each CPU in the system.

When allocating or freeing objects, they are placed in the cpucache. When there

are no objects free, a batch of objects is placed into the pool. When the pool gets

too large, half of them are removed and placed in the global cache. This way the

hardware cache will be used for as long as possible on the same CPU.

The second major bene�t of this method is that spinlocks do not have to be held

when accessing the CPU pool as we are guaranteed another CPU won't access the

local data. This is important because without the caches, the spinlock would have

to be acquired for every allocation and free which is unnecessarily expensive.

8.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache

descriptor as

231 cpucache_t *cpudata[NR_CPUS];
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This structure is very simple

173 typedef struct cpucache_s {

174 unsigned int avail;

175 unsigned int limit;

176 } cpucache_t;

The �elds are as follows:

avail This is the number of free objects available on this cpucache;

limit This is the total number of free objects that can exist.

A helper macro cc_data() is provided to give the cpucache for a given cache

and processor. It is de�ned as

180 #define cc_data(cachep) \

181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the

cpucache array (cpudata). The index needed is the ID of the current processor,

smp_processor_id().

Pointers to objects on the cpucache are placed immediately after the cpucache_t

struct. This is very similar to how objects are stored after a slab descriptor.

8.5.2 Adding/Removing Objects from the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the

array. To add an object (obj) to the CPU cache (cc), the following block of code is

used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

There is a helper macro called cc_entry() which gives a pointer to the �rst

object in the cpucache. It is de�ned as

178 #define cc_entry(cpucache) \

179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of the

cpucache_t descriptor giving the �rst object in the cache.
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8.5.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled and memory allocated for

it using kmalloc(). The function enable_cpucache() is responsible for deciding

what size to make the cache and calling kmem_tune_cpucache() to allocate memory

for it.

Obviously a CPU cache cannot exist until after the various sizes caches have

been enabled so a global variable g_cpucache_up is used to prevent CPU caches

being enabled prematurely. The function enable_all_cpucaches() cycles through

all caches in the cache chain and enables their cpucache.

Once the CPU cache has been setup, it can be accessed without locking as a

CPU will never access the wrong cpucache so it is guaranteed safe access to it.

8.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU is signalled via

an IPI. It is not su�cient to change all the values in the cache descriptor as that

would lead to cache coherency issues and spinlocks would have to used to protect

the CPU caches. Instead a ccupdate_t struct is populated with all the information

each CPU needs and each CPU swaps the new data with the old information in the

cache descriptor. The struct for storing the new cpucache information is de�ned as

follows

868 typedef struct ccupdate_struct_s

869 {

870 kmem_cache_t *cachep;

871 cpucache_t *new[NR_CPUS];

872 } ccupdate_struct_t;

cachep is the cache being updated and new is the array of the cpucache descriptors

for each CPU on the system. The function smp_function_all_cpus() is used to get

each CPU to call the do_ccupdate_local() function which swaps the information

from ccupdate_struct_t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

8.5.5 Draining a Per-CPU Cache

When a cache is being shrunk, its �rst step is to drain the cpucaches of any objects

they might have by calling drain_cpu_caches(). This is so that the slab allocator
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will have a clearer view of what slabs can be freed or not. This is important because

if just one object in a slab is placed in a per-cpu cache, that whole slab cannot be

freed. If the system is tight on memory, saving a few milliseconds on allocations has

a low priority.

8.6 Slab Allocator Initialisation

Slab initialisation Initialising Slab Allocator

Here we will describe how the slab allocator initialises itself. When the slab allo-

cator creates a new cache, it allocates the kmem_cache_t from the cache_cache or

kmem_cache cache. This is an obvious chicken and egg problem so the cache_cache

has to be statically initialised as

357 static kmem_cache_t cache_cache = {

358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),

359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),

360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),

361 objsize: sizeof(kmem_cache_t),

362 flags: SLAB_NO_REAP,

363 spinlock: SPIN_LOCK_UNLOCKED,

364 colour_off: L1_CACHE_BYTES,

365 name: "kmem_cache",

366 };

This code statically initialised the kmem_cache_t struct as follows:

358-360 Initialise the three lists as empty lists;

361 The size of each object is the size of a cache descriptor;

362 The creation and deleting of caches is extremely rare so do not consider it for

reaping ever;

363 Initialise the spinlock unlocked;

364 Align the objects to the L1 cache;

365 Record the human readable name.

That statically de�nes all the �elds that can be calculated at compile time. To

initialise the rest of the struct, kmem_cache_init() is called from start_kernel().
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8.7 Interfacing with the Buddy Allocator

Slabs, buddy interaction

The slab allocator does not come with pages attached, it must ask the phys-

ical page allocator for its pages. Two APIs are provided for this task called

kmem_getpages() and kmem_freepages(). They are basically wrappers around the

buddy allocators API so that slab �ags will be taken into account for allocations.

For allocations, the default �ags are taken from cachep→gfpflags and the order

is taken from cachep→gfporder where cachep is the cache requesting the pages.

When freeing the pages, PageClearSlab() will be called for every page being freed

before calling free_pages().

8.8 Whats New in 2.6

The �rst obvious change is that the version of the /proc/slabinfo format has

changed from 1.1 to 2.0 and is a lot friendlier to read. The most helpful change is

that the �elds now have a header negating the need to memorise what each column

means.

The principal algorithms and ideas remain the same and there is no major al-

gorithm shakeups but the implementation is quite di�erent. Particularly, there is a

greater emphasis on the use of per-cpu objects and the avoidance of locking. Sec-

ondly, there is a lot more debugging code mixed in so keep an eye out for #ifdef

DEBUG blocks of code as they can be ignored when reading the code �rst. Lastly,

some changes are purely cosmetic with function name changes but very similar be-

havior. For example, kmem_cache_estimate() is now called cache_estimate()

even though they are identical in every other respect.

Cache descriptor The changes to the kmem_cache_s are minimal. First, the

elements are reordered to have commonly used elements, such as the per-cpu related

data, at the beginning of the struct (see Section 3.9 to for the reasoning). Secondly,

the slab lists (e.g. slabs_full) and statistics related to them have been moved to

a separate struct kmem_list3. Comments and the unusual use of macros indicate

that there is a plan to make the structure per-node.
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Cache Static Flags The �ags in 2.4 still exist and their usage is the same.

CFLGS_OPTIMIZE no longer exists but its usage in 2.4 was non-existent. Two new

�ags have been introduced which are:

SLAB_STORE_USER This is a debugging only �ag for recording the function

that freed an object. If the object is used after it was freed, the poison bytes

will not match and a kernel error message will be displayed. As the last

function to use the object is known, it can simplify debugging.

SLAB_RECLAIM_ACCOUNT This �ag is set for caches with objects that

are easily reclaimable such as inode caches. A counter is maintained in a vari-

able called slab_reclaim_pages to record how many pages are used in slabs

allocated to these caches. This counter is later used in vm_enough_memory()

to help determine if the system is truly out of memory.

Cache Reaping This is one of the most interesting changes made to the slab

allocator. kmem_cache_reap() no longer exists as it is very indiscriminate in how

it shrinks caches when the cache user could have made a far superior selection.

Users of caches can now register a �shrink cache� callback with set_shrinker()

for the intelligent aging and shrinking of slabs. This simple function populates a

struct shrinker with a pointer to the callback and a �seeks� weight which indi-

cates how di�cult it is to recreate an object before placing it in a linked list called

shrinker_list.

During page reclaim, the function shrink_slab() is called which steps through

the full shrinker_list and calls each shrinker callback twice. The �rst call passes

0 as a parameter which indicates that the callback should return how many pages

it expects it could free if it was called properly. A basic heuristic is applied to

determine if it is worth the cost of using the callback. If it is, it is called a second

time with a parameter indicating how many objects to free.

How this mechanism accounts for the number of pages is a little tricky. Each

task struct has a �eld called reclaim_state. When the slab allocator frees

pages, this �eld is updated with the number of pages that is freed. Before call-

ing shrink_slab(), this �eld is set to 0 and then read again after shrink_cache

returns to determine how many pages were freed.
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Other changes The rest of the changes are essentially cosmetic. For example, the

slab descriptor is now called struct slab instead of slab_t which is consistent with

the general trend of moving away from typedefs. Per-cpu caches remain essentially

the same except the structs and APIs have new names. The same type of points

applies to most of the rest of the 2.6 slab allocator implementation.
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kmem_cache_t

*(kmem_cache_create)

const char
*name,
size_t size,
size_t offset,

unsigned long

flags,

void

(*ctor)(void*,

kmem_cache_t

*, unsigned

long),

void

(*dtor)(void*,

kmem_cache_t

*, unsigned

long)

Creates a new cache and adds it to the cache chain

int(kmem_cache_reap)

int gfp_mask
Scans at most
REAP_SCANLEN

caches and se-
lects one for
reaping all per-
cpu objects and
free slabs from.
Called when
memory is tight

int(kmem_cache_shrink)

kmem_cache_t
*cachep This
function will
delete all per-cpu
objects asso-
ciated with a
cache and delete
all slabs in the
slabs_free list.
It returns the
number of pages
freed.

void

*(kmem_cache_alloc)

kmem_cache_t
*cachep, int �ags
Allocate a single
object from the
cache and return
it to the caller

void(kmem_cache_free)

kmem_cache_t
*cachep, void
*objp Free an
object and return
it to the cache

void

*(kmalloc)

size_t size, int
�ags Allocate
a block of mem-
ory from one of
the sizes cache

void(kfree)

const void *objp
Free a block
of memory al-
located with
kmalloc

int(kmem_cache_destroy)

kmem_cache_t
* cachep De-
stroys all objects
in all slabs and
frees up all asso-
ciated memory
before removing
the cache from
the chain

Table 8.1: Slab Allocator API for caches
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Flag Description
CFGS_OFF_SLAB Indicates that the slab managers for this cache are

kept o�-slab. This is discussed further in Section 8.2.1
CFLGS_OPTIMIZE This �ag is only ever set and never used

Table 8.2: Internal cache static �ags

Flag Description
SLAB_HWCACHE_ALIGN Align the objects to the L1 CPU cache
SLAB_MUST_HWCACHE_ALIGN Force alignment to the L1 CPU cache even

if it is very wasteful or slab debugging is
enabled

SLAB_NO_REAP Never reap slabs in this cache
SLAB_CACHE_DMA Allocate slabs with memory from

ZONE_DMA

Table 8.3: Cache static �ags set by caller

Flag Description
SLAB_DEBUG_FREE Perform expensive checks on free
SLAB_DEBUG_INITIAL On free, call the constructor as a veri�er to en-

sure the object is still initialised correctly
SLAB_RED_ZONE This places a marker at either end of objects to

trap over�ows
SLAB_POISON Poison objects with a known pattern for trap-

ping changes made to objects not allocated or
initialised

Table 8.4: Cache static debug �ags

Flag Description
SLAB_ATOMIC Equivalent to GFP_ATOMIC

SLAB_DMA Equivalent to GFP_DMA

SLAB_KERNEL Equivalent to GFP_KERNEL

SLAB_NFS Equivalent to GFP_NFS

SLAB_NOFS Equivalent to GFP_NOFS

SLAB_NOHIGHIO Equivalent to GFP_NOHIGHIO

SLAB_NOIO Equivalent to GFP_NOIO

SLAB_USER Equivalent to GFP_USER

Table 8.5: Cache Allocation Flags
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Flag Description
SLAB_CTOR_CONSTRUCTOR Set if the function is being called as a constructor for

caches which use the same function as a constructor
and a destructor

SLAB_CTOR_ATOMIC Indicates that the constructor may not sleep
SLAB_CTOR_VERIFY Indicates that the constructor should just verify the

object is initialised correctly

Table 8.6: Cache Constructor Flags



Chapter 9

High Memory Management

High Memory

The kernel may only directly address memory for which it has set up a page

table entry. In the most common case, the user/kernel address space split of

3GiB/1GiB3GiB/1GiB Split implies that at best only 896MiB of memory may be

directly accessed at any given time on a 32-bit machine as explained in Section 4.1.

On 64-bit hardware, this is not really an issue as there is more than enough virtual

address space. It is highly unlikely there will be machines running 2.4 kernels with

more than terabytes of RAM.

There are many high end 32-bit machines that have more than 1GiB of memory

and the inconveniently located memory cannot be simply ignored. The solution

Linux uses is to temporarily map pages from high memory into the lower page

tables. This will be discussed in Section 9.2.

High memory and IO have a related problem which must be addressed, as not

all devices are able to address high memory or all the memory available to the CPU.

This may be the case if the CPU has PAE extensions enabled, the device is limited

to addresses the size of a signed 32-bit integer (2GiB) or a 32-bit device is being

used on a 64-bit architecture. Asking the device to write to memory will fail at best

and possibly disrupt the kernel at worst. The solution to this problem is to use a

bounce bu�erBounce bu�ers and this will be discussed in Section 9.4.

This chapter begins with a brief description of how the Persistent Kernel Map

(PKMap) address space is managed before talking about how pages are mapped and

unmapped from high memory. The subsequent section will deal with the case where

the mapping must be atomic before discussing bounce bu�ers in depth. Finally we

will talk about how emergency pools are used for when memory is very tight.

168
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9.1 Managing the PKMap Address Space

PKMap address space

Space is reserved at the top of the kernel page tables from PKMAP_BASE to

FIXADDR_START for a PKMap. The size of the space reserved varies slightly. On the

x86, PKMAP_BASE is at 0xFE000000 and the address of FIXADDR_START is a compile

time constant that varies with con�gure options but is typically only a few pages

located near the end of the linear address space. This means that there is slightly

below 32MiB of page table space for mapping pages from high memory into usable

space.

For mapping pages, a single page set of PTEs is stored at the beginning of the

PKMap area to allow 1024 high pages to be mapped into low memory for short

periods with the function kmap() and unmapped with kunmap(). The pool seems

very small but the page is only mapped by kmap() for a very short time. Comments

in the code indicate that there was a plan to allocate contiguous page table entries

to expand this area but it has remained just that, comments in the code, so a large

portion of the PKMap is unused.

The page table entry for use with kmap() is called pkmap_page_table which is

located at PKMAP_BASE and set up during system initialisation. On the x86, this

takes place at the end of the pagetable_init() function. The pages for the PGD

and PMD entries are allocated by the boot memory allocator to ensure they exist.

The current state of the page table entries is managed by a simple array called

called pkmap_count which has LAST_PKMAP entries in it. On an x86 system without

PAE, this is 1024 and with PAE, it is 512. More accurately, albeit not expressed in

code, the LAST_PKMAP variable is equivalent to PTRS_PER_PTE.

Each element is not exactly a reference count but it is very close. If the entry

is 0, the page is free and has not been used since the last TLB �ush. If it is 1, the

slot is unused but a page is still mapped there waiting for a TLB �ush. Flushes are

delayed until every slot has been used at least once as a global �ush is required for

all CPUs when the global page tables are modi�ed and is extremely expensive. Any

higher value is a reference count of n-1 users of the page.

9.2 Mapping High Memory Pages

High memory mapping
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The API for mapping pages from high memory is described in Table 9.1. The

main function for mapping a page is kmap(). For users that do not wish to block,

kmap_nonblock() is available and interrupt users have kmap_atomic(). The kmap

pool is quite small so it is important that users of kmap() call kunmap() as quickly

as possible because the pressure on this small window grows incrementally worse as

the size of high memory grows in comparison to low memory.

Figure 9.1: Call Graph: kmap()

The kmap() function itself is fairly simple. It �rst checks to make sure an inter-

rupt is not calling this function(as it may sleep) and calls out_of_line_bug() if true.

An interrupt handler calling BUG() would panic the system so out_of_line_bug()

prints out bug information and exits cleanly. The second check is that the page is

below highmem_start_page as pages below this mark are already visible and do not

need to be mapped.

It then checks if the page is already in low memory and simply returns the address

if it is. This way, users that need kmap() may use it unconditionally knowing that

if it is already a low memory page, the function is still safe. If it is a high page to

be mapped, kmap_high() is called to begin the real work.

The kmap_high() function begins with checking the page→virtual �eld which

is set if the page is already mapped. If it is NULL, map_new_virtual() provides a

mapping for the page.
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Creating a new virtual mapping with map_new_virtual() is a simple case of

linearly scanning pkmap_count. The scan starts at last_pkmap_nr instead of

0 to prevent searching over the same areas repeatedly between kmap()s. When

last_pkmap_nr wraps around to 0, flush_all_zero_pkmaps() is called to set all

entries from 1 to 0 before �ushing the TLB.

If, after another scan, an entry is still not found, the process sleeps on the

pkmap_map_wait wait queue until it is woken up after the next kunmap().

Once a mapping has been created, the corresponding entry in the pkmap_count

array is incremented and the virtual address in low memory returned.

void *(kmap)

struct page *page Takes a struct page from high memory and maps
it into low memory. The address returned is the virtual address of the
mapping

void *(kmap_nonblock)

struct page *page This is the same as kmap() except it will not block
if no slots are available and will instead return NULL. This is not the
same as kmap_atomic() which uses specially reserved slots

void *(kmap_atomic)

struct page *page, enum km_type type There are slots maintained
in the map for atomic use by interrupts (see Section 9.3). Their use is
heavily discouraged and callers of this function may not sleep or schedule.
This function will map a page from high memory atomically for a speci�c
purpose

Table 9.1: High Memory Mapping API

9.2.1 Unmapping Pages

The API for unmapping pages from high memory is described in Table 9.2. The

kunmap() function, like its complement, performs two checks. The �rst is an iden-

tical check to kmap() for usage from interrupt context. The second is that the page

is below highmem_start_page. If it is, the page already exists in low memory and

needs no further handling. Once established that it is a page to be unmapped,

kunmap_high() is called to perform the unmapping.
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Figure 9.2: Call Graph: kunmap()

The kunmap_high() is simple in principle. It decrements the corresponding ele-

ment for this page in pkmap_count. If it reaches 1 (remember this means no more

users but a TLB �ush is required), any process waiting on the pkmap_map_wait

is woken up as a slot is now available. The page is not unmapped from

the page tables then as that would require a TLB �ush. It is delayed until

flush_all_zero_pkmaps() is called.

void(kunmap)

struct page *page Unmaps a struct page from low memory and frees
up the page table entry mapping it

void(kunmap_atomic)

void *kvaddr, enum km_type type Unmap a page that was mapped
atomically

Table 9.2: High Memory Unmapping API

9.3 Mapping High Memory Pages Atomically

High memory atomic mappings

The use of kmap_atomic() is discouraged but slots are reserved for each CPU

for when they are necessary, such as when bounce bu�ers, are used by devices from

interrupt. There are a varying number of di�erent requirements an architecture has

for atomic high memory mapping which are enumerated by km_type. The total

number of uses is KM_TYPE_NR. On the x86, there are a total of six di�erent uses for

atomic kmaps.
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There are KM_TYPE_NR entries per processor are reserved at boot time for atomic

mapping at the location FIX_KMAP_BEGIN and ending at FIX_KMAP_END. Obviously

a user of an atomic kmap may not sleep or exit before calling kunmap_atomic() as

the next process on the processor may try to use the same entry and fail.

The function kmap_atomic() has the very simple task of mapping the requested

page to the slot set aside in the page tables for the requested type of operation

and processor. The function kunmap_atomic() is interesting as it will only clear

the PTE with pte_clear() if debugging is enabled. It is considered unnecessary

to bother unmapping atomic pages as the next call to kmap_atomic() will simply

replace it making TLB �ushes unnecessary.

9.4 Bounce Bu�ers

Bounce bu�ers High Memory IO

Bounce bu�ers are required for devices that cannot access the full range of mem-

ory available to the CPU. An obvious example of this is when a device does not

address with as many bits as the CPU, such as 32-bit devices on 64-bit architec-

tures or recent Intel processors with PAE enabled.

The basic concept is very simple. A bounce bu�er resides in memory low enough

for a device to copy from and write data to. It is then copied to the desired user

page in high memory. This additional copy is undesirable, but unavoidable. Pages

are allocated in low memory which are used as bu�er pages for DMA to and from

the device. This is then copied by the kernel to the bu�er page in high memory

when IO completes so the bounce bu�er acts as a type of bridge. There is signi�cant

overhead to this operation as at the very least it involves copying a full page but it

is insigni�cant in comparison to swapping out pages in low memory.

9.4.1 Disk Bu�ering

Blocks, typically around 1KiB are packed into pages and managed by a struct

buffer_head allocated by the slab allocator. Users of bu�er heads have the option of

registering a callback function. This function is stored in buffer_head→b_end_io()

and called when IO completes. It is this mechanism that bounce bu�ers uses to

have data copied out of the bounce bu�ers. The callback registered is the function

bounce_end_io_write().
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Any other feature of bu�er heads or how they are used by the block layer is

beyond the scope of this document and more the concern of the IO layer.

9.4.2 Creating Bounce Bu�ers

The creation of a bounce bu�er is a simple a�air which is started by the

create_bounce() function. The principle is very simple, create a new bu�er using

a provided bu�er head as a template. The function takes two parameters which are

a read/write parameter (rw) and the template bu�er head to use (bh_orig).

Figure 9.3: Call Graph: create_bounce()

A page is allocated for the bu�er itself with the function alloc_bounce_page()

which is a wrapper around alloc_page() with one important addition. If the

allocation is unsuccessful, there is an emergency pool of pages and bu�er heads

available for bounce bu�ers. This is discussed further in Section 9.5.

The bu�er head is, predictably enough, allocated with alloc_bounce_bh()

which, similar in principle to alloc_bounce_page(), calls the slab allocator for

a buffer_head and uses the emergency pool if one cannot be allocated. Addition-

ally, bd�ush is woken up to start �ushing dirty bu�ers out to disk so that bu�ers

are more likely to be freed soon.

Once the page and buffer_head have been allocated, information is copied

from the template buffer_head into the new one. Since part of this opera-

tion may use kmap_atomic(), bounce bu�ers are only created with the IRQ safe

io_request_lock held. The IO completion callbacks are changed to be either

bounce_end_io_write() or bounce_end_io_read() depending on whether this is

a read or write bu�er so the data will be copied to and from high memory.

The most important aspect of the allocations to note is that the GFP �ags specify
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that no IO operations involving high memory may be used. This is speci�ed with

SLAB_NOHIGHIO to the slab allocator and GFP_NOHIGHIO to the buddy allocator.

This is important as bounce bu�ers are used for IO operations with high memory. If

the allocator tries to perform high memory IO, it will recurse and eventually crash.

9.4.3 Copying via bounce bu�ers

Figure 9.4: Call Graph: bounce_end_io_read/write()

Data is copied via the bounce bu�er di�erently depending on whether it is a

read or write bu�er. If the bu�er is for writes to the device, the bu�er is populated

with the data from high memory during bounce bu�er creation with the function

copy_from_high_bh(). The callback function bounce_end_io_write() will com-

plete the IO later when the device is ready for the data.

If the bu�er is for reading from the device, no data transfer may take place

until the device is ready. When it is, the interrupt handler for the device calls the

callback function bounce_end_io_read() which copies the data to high memory

with copy_to_high_bh_irq().

In either case the bu�er head and page may be reclaimed by bounce_end_io()

once the IO has completed and the IO completion function for the template

buffer_head() is called. If the emergency pools are not full, the resources are

added to the pools otherwise they are freed back to the respective allocators.

9.5 Emergency Pools

Two emergency pools of buffer_heads and pages are maintained for the express

use by bounce bu�ers. If memory is too tight for allocations, failing to complete IO

requests is going to compound the situation as bu�ers from high memory cannot be
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freed until low memory is available. This leads to processes halting, thus preventing

the possibility of them freeing up their own memory.

The pools are initialised by init_emergency_pool() to contain POOL_SIZE en-

tries each which is currently de�ned as 32. The pages are linked via the page→list

�eld on a list headed by emergency_pages. Figure 9.5 illustrates how pages are

stored on emergency pools and acquired when necessary.

The buffer_heads are very similar as they linked via the buffer_head→inode_buffers

on a list headed by emergency_bhs. The number of entries left on the pages and

bu�er lists are recorded by two counters nr_emergency_pages and nr_emergency_bhs

respectively and the two lists are protected by the emergency_lock spinlock.

Figure 9.5: Acquiring Pages from Emergency Pools

9.6 What's New in 2.6

Memory Pools Memory pools

In 2.4, the high memory manager was the only subsystem that maintained emer-

gency pools of pages. In 2.6, memory pools are implemented as a generic concept

when a minimum amount of �stu�� needs to be reserved for when memory is tight.

�Stu�� in this case can be any type of object such as pages in the case of the high

memory manager or, more frequently, some object managed by the slab allocator.

Pools are initialised with mempool_create() which takes a number of arguments.
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They are the minimum number of objects that should be reserved (min_nr), an al-

locator function for the object type (alloc_fn()), a free function (free_fn()) and

optional private data that is passed to the allocate and free functions.

The memory pool API provides two generic allocate and free functions called

mempool_alloc_slab() and mempool_free_slab(). When the generic functions

are used, the private data is the slab cache that objects are to be allocated and

freed from.

In the case of the high memory manager, two pools of pages are created. On

page pool is for normal use and the second page pool is for use with ISA devices that

must allocate from ZONE_DMA. The allocate function is page_pool_alloc() and the

private data parameter passed indicates the GFP �ags to use. The free function is

page_pool_free(). The memory pools replace the emergency pool code that exists

in 2.4.

To allocate or free objects from the memory pool, the memory pool API functions

mempool_alloc() and mempool_free() are provided. Memory pools are destroyed

with mempool_destroy().

Mapping High Memory Pages In 2.4, the �eld page→virtual was used to

store the address of the page within the pkmap_count array. Due to the number of

struct pages that exist in a high memory system, this is a very large penalty to pay

for the relatively small number of pages that need to be mapped into ZONE_NORMAL.

2.6 still has this pkmap_count array but it is managed very di�erently.

In 2.6, a hash table called page_address_htable is created. This table is hashed

based on the address of the struct page and the list is used to locate struct

page_address_slot. This struct has two �elds of interest, a struct page and a

virtual address. When the kernel needs to �nd the virtual address used by a mapped

page, it is located by traversing through this hash bucket. How the page is actually

mapped into lower memory is essentially the same as 2.4 except now page→virtual

is no longer required.

Performing IO The last major change is that the struct bio is now used in-

stead of the struct buffer_head when performing IO. How bio structures work

is beyond the scope of this book. However, the principle reason that bio structures

were introduced is so that IO could be performed in blocks of whatever size the un-
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derlying device supports. In 2.4, all IO had to be broken up into page sized chunks

regardless of the transfer rate of the underlying device.



Chapter 10

Page Frame Reclamation

Page reclaimation

A running system will eventually use all available page frames for purposes like

disk bu�ers, dentries, inode entries, process pages and so on. Linux needs to select

old pages which can be freed and invalidated for new uses before physical memory

is exhausted. This chapter will focus exclusively on how Linux implements its page

replacement policy and how di�erent types of pages are invalidated.

The methods Linux uses to select pages are rather empirical in nature and the

theory behind the approach is based on multiple di�erent ideas. It has been shown

to work well in practice and adjustments are made based on user feedback and

benchmarks. The basics of the page replacement policy is the �rst item of discussion

in this Chapter.

The second topic of discussion is the Page cache. All data that is read from disk

is stored in the page cache to reduce the amount of disk IO that must be performed.

Strictly speaking, this is not directly related to page frame reclamation, but the

LRU lists and page cache are closely related. The relevant section will focus on how

pages are added to the page cache and quickly located.

This will being us to the third topic, the LRU listsLRU lists. With the exception

of the slab allocator, all pages in use by the system are stored on LRU lists and

linked together via page→lru so they can be easily scanned for replacement. The

slab pages are not stored on the LRU lists as it is considerably more di�cult to age

a page based on the objects used by the slab. The section will focus on how pages

move through the LRU lists before they are reclaimed.

From there, we'll cover how pages belonging to other caches, such as the dcache,

and the slab allocator are reclaimed before talking about how process-mapped pages

are removed. Process mapped pages are not easily swappable as there is no way to
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map struct pages to PTEs except to search every page table which is far too

expensive. If the page cache has a large number of process-mapped pages in it, pro-

cess page tables will be walked and pages swapped out by swap_out() until enough

pages have been freed but this will still have trouble with shared pages. If a page is

shared, a swap entry is allocated, the PTE �lled with the necessary information to

�nd the page in swap again and the reference count decremented. Only when the

count reaches zero will the page be freed. Pages like this are considered to be in the

Swap cache.

Finally, this chaper will cover the page replacement daemon kswapd, how it is

implemented and what it's responsibilities are.

10.1 Page Replacement Policy

Page replacement policy

During discussions the page replacement policy is frequently said to be a Least

Recently Used (LRU)-based algorithm but this is not strictly speaking true as the

lists are not strictly maintained in LRU order. The LRU in Linux consists of two lists

called the active_list and inactive_list. The objective is for the active_list

to contain the working set [Den70] of all processes and the inactive_list to contain

reclaim canditates. As all reclaimable pages are contained in just two lists and pages

belonging to any process may be reclaimed, rather than just those belonging to a

faulting process, the replacement policy is a global one.

The lists resemble a simpli�ed LRU 2Q [JS94]LRU 2Q where two lists called

Am and A1 are maintained. With LRU 2Q, pages when �rst allocated are placed

on a FIFO queue called A1. If they are referenced while on that queue, they are

placed in a normal LRU managed list called Am. This is roughly analogous to us-

ing lru_cache_add() to place pages on a queue called inactive_list (A1) and

using mark_page_accessed() to get moved to the active_list (Am). The algo-

rithm describes how the size of the two lists have to be tuned but Linux takes a

simpler approach by using refill_inactive() to move pages from the bottom of

active_list to inactive_list to keep active_list about two thirds the size of

the total page cache. Figure 10.1 illustrates how the two lists are structured, how

pages are added and how pages move between the lists with refill_inactive().

The lists described for 2Q presumes Am is an LRU list but the list in Linux
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Figure 10.1: Page Cache LRU Lists

closer resembles a Clock algorithm [Car84] where the hand-spread is the size of the

active list. When pages reach the bottom of the list, the referenced �ag is checked,

if it is set, it is moved back to the top of the list and the next page checked. If it is

cleared, it is moved to the inactive_list.

The Move-To-Front heuristicMove-To-Front heuristic means that the lists

behave in an LRU-like manner but there are too many di�erences between the

Linux replacement policy and LRU to consider it a stack algorithm [MM87]Stack

algorithm. Even if we ignore the problem of analysing multi-programmed sys-

tems [CD80] and the fact the memory size for each process is not �xed , the policy

does not satisfy the inclusion property as the location of pages in the lists depend

heavily upon the size of the lists as opposed to the time of last reference. Neither is

the list priority ordered as that would require list updates with every reference. As

a �nal nail in the stack algorithm co�n, the lists are almost ignored when paging

out from processes as pageout decisions are related to their location in the virtual

address space of the process rather than the location within the page lists.

In summary, the algorithm does exhibit LRU-like behaviour and it has been

shown by benchmarks to perform well in practice. There are only two cases where
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the algorithm is likely to behave really badly. The �rst is if the candidates for recla-

mation are principally anonymous pages. In this case, Linux will keep examining

a large number of pages before linearly scanning process page tables searching for

pages to reclaim but this situation is fortunately rare.

The second situation is where there is a single process with many �le backed

resident pages in the inactive_list that are being written to frequently. Processes

and kswapd may go into a loop of constantly �laundering� these pages and placing

them at the top of the inactive_list without freeing anything. In this case, few

pages are moved from the active_list to inactive_list as the ratio between the

two lists sizes remains not change signi�cantly.

10.2 Page Cache

Page cache

The page cache is a set of data structures which contain pages that are backed

by regular �les, block devices or swap. There are basically four types of pages that

exist in the cache:

• Pages that were faulted in as a result of reading a memory mapped �le;

• Blocks read from a block device or �lesystem are packed into special pages

called bu�er pages. The number of blocks that may �t depends on the size of

the block and the page size of the architecture;

• Anonymous pages exist in a special aspect of the page cache called the swap

cache when slots are allocated in the backing storage for page-out, discussed

further in Chapter 11;

• Pages belonging to shared memory regions are treated in a similar fashion to

anonymous pages. The only di�erence is that shared pages are added to the

swap cache and space reserved in backing storage immediately after the �rst

write to the page.

The principal reason for the existance of this cache is to eliminate unnecessary

disk reads. Pages read from disk are stored in a page hash table which is hashed on

the struct address_space and the o�set which is always searched before the disk

is accessed. An API is provided that is responsible for manipulating the page cache

which is listed in Table 10.1.
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10.2.1 Page Cache Hash Table

Page hash table

There is a requirement that pages in the page cache be quickly located. To

facilitate this, pages are inserted into a table page_hash_table and the �elds

page→next_hash and page→pprev_hash are used to handle collisions.

The table is declared as follows in mm/filemap.c:

45 atomic_t page_cache_size = ATOMIC_INIT(0);

46 unsigned int page_hash_bits;

47 struct page **page_hash_table;

Initialising page hash tableThe table is allocated during system initialisation

by page_cache_init() which takes the number of physical pages in the system as

a parameter. The desired size of the table (htable_size) is enough to hold pointers

to every struct page in the system and is calculated by

htable_size = num_physpages ∗ sizeof(struct page ∗)

To allocate a table, the system begins with an order allocation large enough to

contain the entire table. It calculates this value by starting at 0 and incrementing it

until 2order > htable_size. This may be roughly expressed as the integer component

of the following simple equation.

order = log2((htable_size ∗ 2)− 1))

An attempt is made to allocate this order of pages with __get_free_pages().

If the allocation fails, lower orders will be tried and if no allocation is satis�ed, the

system panics.

The value of page_hash_bits is based on the size of the table for use with the

hashing function _page_hashfn(). The value is calculated by successive divides by

two but in real terms, this is equivalent to:

page_hash_bits = log2

∣∣∣∣∣PAGE_SIZE ∗ 2order

sizeof(struct page ∗)

∣∣∣∣∣
This makes the table a power-of-two hash table which negates the need to use a

modulus which is a common choice for hashing functions.
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10.2.2 Inode Queue

Inode queue

The inode queue is part of the struct address_space introduced in Section

4.4.2. The struct contains three lists: clean_pages is a list of clean pages associated

with the inode; dirty_pages which have been written to since the list sync to

disk; and locked_pages which are those currently locked. These three lists in

combination are considered to be the inode queue for a given mapping and the

page→list �eld is used to link pages on it. Pages are added to the inode queue

with add_page_to_inode_queue() which places pages on the clean_pages lists

and removed with remove_page_from_inode_queue().

10.2.3 Adding Pages to the Page Cache

Page cache

Pages read from a �le or block device are generally added to the page

cache to avoid further disk IO. Most �lesystems use the high level function

generic_file_read() as their file_operations→read(). The shared memory

�lesystem, which is covered in Chatper ??, is one noteworthy exception but, in gen-

eral, �lesystems perform their operations through the page cache. For the purposes

of this section, we'll illustrate how generic_file_read() operates and how it adds

pages to the page cache.

For normal IO1, generic_file_read() begins with a few basic checks be-

fore calling do_generic_file_read(). This searches the page cache, by calling

__find_page_nolock() with the pagecache_lock held, to see if the page already

exists in it. If it does not, a new page is allocated with page_cache_alloc(),

which is a simple wrapper around alloc_pages(), and added to the page cache

with __add_to_page_cache(). Once a page frame is present in the page cache,

generic_file_readahead() is called which uses page_cache_read() to read the

page from disk. It reads the page using mapping→a_ops→readpage(), where

mapping is the address_space managing the �le. readpage() is the �lesystem

speci�c function used to read a page on disk.

Anonymous pages are added to the swap cache when they are unmapped from a

process, which will be discussed further in Section 11.4. Until an attempt is made

1Direct IO is handled di�erently with generic_file_direct_IO().
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Figure 10.2: Call Graph: generic_file_read()

to swap them out, they have no address_space acting as a mapping or any o�set

within a �le leaving nothing to hash them into the page cache with. Note that these

pages still exist on the LRU lists however. Once in the swap cache, the only real

di�erence between anonymous pages and �le backed pages is that anonymous pages

will use swapper_space as their struct address_space.

Shared memory pages are added during one of two cases. The �rst is during

shmem_getpage_locked() which is called when a page has to be either fetched

from swap or allocated as it is the �rst reference. The second is when the swapout

code calls shmem_unuse(). This occurs when a swap area is being deactivated and a

page, backed by swap space, is found that does not appear to belong to any process.

The inodes related to shared memory are exhaustively searched until the correct

page is found. In both cases, the page is added with add_to_page_cache().

Figure 10.3: Call Graph: add_to_page_cache()

10.3 LRU Lists

LRU lists

As stated in Section 10.1, the LRU lists consist of two lists called active_list
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and inactive_list. They are declared in mm/page_alloc.c and are protected by

the pagemap_lru_lock spinlock. They, broadly speaking, store the �hot� and �cold�

pages respectively, or in other words, the active_list contains all the working sets

in the system and inactive_list contains reclaim canditates. The API which deals

with the LRU lists that is listed in Table 10.2.

10.3.1 Re�lling inactive_list

Re�lling inactive_list

When caches are being shrunk, pages are moved from the active_list to the

inactive_list by the function refill_inactive(). It takes as a parameter the

number of pages to move, which is calculated in shrink_caches() as a ratio de-

pending on nr_pages, the number of pages in active_list and the number of pages

in inactive_list. The number of pages to move is calculated as

pages = nr_pages ∗ nr_active_pages

2 ∗ (nr_inactive_pages + 1)

This keeps the active_list about two thirds the size of the inactive_list

and the number of pages to move is determined as a ratio based on how many pages

we desire to swap out (nr_pages).

Pages are taken from the end of the active_list. If the PG_referenced �ag

is set, it is cleared and the page is put back at top of the active_list as it has

been recently used and is still �hot�. This is sometimes referred to as rotatingLRU

rotation the list. If the �ag is cleared, it is moved to the inactive_list and the

PG_referenced �ag set so that it will be quickly promoted to the active_list if

necessary.

10.3.2 Reclaiming Pages from the LRU Lists

LRU list page reclaim

The function shrink_cache() is the part of the replacement algorithm which

takes pages from the inactive_list and decides how they should be swapped out.

The two starting parameters which determine how much work will be performed

are nr_pages and priority. nr_pages starts out as SWAP_CLUSTER_MAX, currently

de�ned as 32 in mm/vmscan.c. The variable priority starts as DEF_PRIORITY,

currently de�ned as 6 in mm/vmscan.c.
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Two parameters, max_scan and max_mapped determine how much work the

function will do and are a�ected by the priority. Each time the function

shrink_caches() is called without enough pages being freed, the priority will be

decreased until the highest priority 1 is reached.

The variable max_scan is the maximum number of pages will be scanned by this

function and is simply calculated as

max_scan =
nr_inactive_pages

priority

where nr_inactive_pages is the number of pages in the inactive_list. This

means that at lowest priority 6, at most one sixth of the pages in the inactive_list

will be scanned and at highest priority, all of them will be.

The second parameter is max_mapped which determines how many process pages

are allowed to exist in the page cache before whole processes will be swapped out.

This is calculated as the minimum of either one tenth of max_scan or

max_mapped = nr_pages ∗ 2(10−priority)

In other words, at lowest priority, the maximum number of mapped pages al-

lowed is either one tenth of max_scan or 16 times the number of pages to swap out

(nr_pages) whichever is the lower number. At high priority, it is either one tenth

of max_scan or 512 times the number of pages to swap out.

From there, the function is basically a very large for-loop which scans at most

max_scan pages to free up nr_pages pages from the end of the inactive_list or

until the inactive_list is empty. After each page, it checks to see whether it

should reschedule itself so that the swapper does not monopolise the CPU.

For each type of page found on the list, it makes a di�erent decision on what to

do. The di�erent page types and actions taken are handled in this order:

Page is mapped by a process. This jumps to the page_mapped label which we

will meet again in a later case. The max_mapped count is decremented. If it reaches

0, the page tables of processes will be linearly searched and swapped out by the

function swap_out()

Page is locked and the PG_launder bit is set. The page is locked for IO so could

be skipped over. However, if the PG_launder bit is set, it means that this is the

second time the page has been found locked so it is better to wait until the IO com-
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pletes and get rid of it. A reference to the page is taken with page_cache_get()

so that the page will not be freed prematurely and wait_on_page() is called which

sleeps until the IO is complete. Once it is completed, the reference count is decre-

mented with page_cache_release(). When the count reaches zero, the page will

be reclaimed.

Page is dirty, is unmapped by all processes, has no bu�ers and belongs to a

device or �le mapping. As the page belongs to a �le or device mapping, it has

a valid writepage() function available via page→mapping→a_ops→writepage.

The PG_dirty bit is cleared and the PG_launder bit is set as it is about to start

IO. A reference is taken for the page with page_cache_get() before calling the

writepage() function to synchronise the page with the backing �le before dropping

the reference with page_cache_release(). Be aware that this case will also syn-

chronise anonymous pages that are part of the swap cache with the backing storage

as swap cache pages use swapper_space as a page→mapping. The page remains on

the LRU. When it is found again, it will be simply freed if the IO has completed

and the page will be reclaimed. If the IO has not completed, the kernel will wait for

the IO to complete as described in the previous case.

Page has bu�ers associated with data on disk. A reference is taken to the page

and an attempt is made to free the pages with try_to_release_page(). If it

succeeds and is an anonymous page (no page→mapping, the page is removed from

the LRU and page_cache_released() called to decrement the usage count. There

is only one case where an anonymous page has associated bu�ers and that is when

it is backed by a swap �le as the page needs to be written out in block-sized chunk.

If, on the other hand, it is backed by a �le or device, the reference is simply dropped

and the page will be freed as usual when the count reaches 0.

Page is anonymous and is mapped by more than one process. The LRU is un-

locked and the page is unlocked before dropping into the same page_mapped label

that was encountered in the �rst case. In other words, the max_mapped count is

decremented and swap_out called when, or if, it reaches 0.

Page has no process referencing it. This is the �nal case that is �fallen� into

rather than explicitly checked for. If the page is in the swap cache, it is removed

from it as the page is now sychronised with the backing storage and has no process

referencing it. If it was part of a �le, it is removed from the inode queue, deleted

from the page cache and freed.
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10.4 Shrinking all caches

The function responsible for shrinking the various caches is shrink_caches() which

takes a few simple steps to free up some memory. The maximum number of pages

that will be written to disk in any given pass is nr_pages which is initialised by

try_to_free_pages_zone() to be SWAP_CLUSTER_MAX. The limitation is there so

that if kswapd schedules a large number of pages to be written to disk, it will

sleep occasionally to allow the IO to take place. As pages are freed, nr_pages is

decremented to keep count.

The amount of work that will be performed also depends on the priority ini-

tialised by try_to_free_pages_zone() to be DEF_PRIORITY. For each pass that

does not free up enough pages, the priority is decremented for the highest priority

been 1.

The function �rst calls kmem_cache_reap() (see Section 8.1.7) which selects a

slab cache to shrink. If nr_pages number of pages are freed, the work is complete

and the function returns otherwise it will try to free nr_pages from other caches.

If other caches are to be a�ected, refill_inactive() will move pages from the

active_list to the inactive_list before shrinking the page cache by reclaiming

pages at the end of the inactive_list with shrink_cache().

Finally, it shrinks three special caches, the dcache (shrink_dcache_memory()),

the icache (shrink_icache_memory()) and the dqcache (shrink_dqcache_memory()).

These objects are quite small in themselves but a cascading e�ect allows a lot more

pages to be freed in the form of bu�er and disk caches.

Figure 10.4: Call Graph: shrink_caches()

10.5 Swapping Out Process Pages

Process pageoutPageout of process pages
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When max_mapped pages have been found in the page cache, swap_out() is called

to start swapping out process pages. Starting from the mm_struct pointed to by

swap_mm and the address mm→swap_address, the page tables are searched forward

until nr_pages have been freed.

Figure 10.5: Call Graph: swap_out()

All process mapped pages are examined regardless of where they are in the lists

or when they were last referenced but pages which are part of the active_list or

have been recently referenced will be skipped over. The examination of hot pages

is a bit costly but insigni�cant in comparison to linearly searching all processes for

the PTEs that reference a particular struct page.

Once it has been decided to swap out pages from a process, an attempt will be

made to swap out at least SWAP_CLUSTER_MAX number of pages and the full list of

mm_structs will only be examined once to avoid constant looping when no pages

are available. Writing out the pages in bulk increases the chance that pages close

together in the process address space will be written out to adjacent slots on disk.

The marker swap_mm is initialised to point to init_mm and the swap_address

is initialised to 0 the �rst time it is used. A task has been fully searched when

the swap_address is equal to TASK_SIZE. Once a task has been selected to swap

pages from, the reference count to the mm_struct is incremented so that it will not be

freed early and swap_out_mm() is called with the selected mm_struct as a parameter.

This function walks each VMA the process holds and calls swap_out_vma() for it.
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This is to avoid having to walk the entire page table which will be largely sparse.

swap_out_pgd() and swap_out_pmd() walk the page tables for given VMA until

�nally try_to_swap_out() is called on the actual page and PTE.

The function try_to_swap_out() �rst checks to make sure that the page is not

part of the active_list, has been recently referenced or belongs to a zone that we

are not interested in. Once it has been established this is a page to be swapped

out, it is removed from the process page tables. The newly removed PTE is then

checked to see if it is dirty. If it is, the struct page �ags will be updated to match

so that it will get synchronised with the backing storage. If the page is already a

part of the swap cache, the RSS is simply updated and the reference to the page is

dropped, otherwise the process is added to the swap cache. How pages are added to

the swap cache and synchronised with backing storage is discussed in Chapter 11.

10.6 Pageout Daemon (kswapd)

Pageout DaemonPaging out

During system startup, a kernel thread called kswapd is started from kswapd_init()

which continuously executes the function kswapd() in mm/vmscan.c which usually

sleeps. This daemon is responsible for reclaiming pages when memory is running

low. Historically, kswapd used to wake up every 10 seconds but now it is only

woken by the physical page allocator when the pages_low number of free pages in

a zone is reached (see Section 2.2.1).

Figure 10.6: Call Graph: kswapd()
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It is this daemon that performs most of the tasks needed to maintain the

page cache correctly, shrink slab caches and swap out processes if necessary. Un-

like swapout daemons such, as Solaris [MM01], which are woken up with in-

creasing frequency as there is memory pressure, kswapd keeps freeing pages un-

til the pages_high watermark is reached. Under extreme memory pressure, pro-

cesses will do the work of kswapd synchronously by calling balance_classzone()

which calls try_to_free_pages_zone(). As shown in Figure 10.6, it is at

try_to_free_pages_zone() where the physical page allocator synchonously per-

forms the same task as kswapd when the zone is under heavy pressure.

When kswapd is woken up, it performs the following:

• Calls kswapd_can_sleep() which cycles through all zones checking the

need_balance �eld in the struct zone_t. If any of them are set, it can

not sleep;

• If it cannot sleep, it is removed from the kswapd_wait wait queue;

• Calls the functions kswapd_balance(), which cycles through all zones. It will

free pages in a zone with try_to_free_pages_zone() if need_balance is set

and will keep freeing until the pages_high watermark is reached;

• The task queue for tq_disk is run so that pages queued will be written out;

• Add kswapd back to the kswapd_wait queue and go back to the �rst step.

10.7 What's New in 2.6

kswapd As stated in Section 2.6, there is now a kswapd for every memory node

in the system. These daemons are still started from kswapd() and they all execute

the same code except their work is con�ned to their local node. The main changes

to the implementation of kswapd are related to the kswapd-per-node change.

The basic operation of kswapd remains the same. Once woken, it calls

balance_pgdat() for the pgdat it is responsible for. balance_pgdat() has two

modes of operation. When called with nr_pages == 0, it will continually try to

free pages from each zone in the local pgdat until pages_high is reached. When

nr_pages is speci�ed, it will try and free either nr_pages or MAX_CLUSTER_MAX *

8, whichever is the smaller number of pages.
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Balancing Zones The two main functions called by balance_pgdat() to free

pages are shrink_slab() and shrink_zone(). shrink_slab() was covered in Sec-

tion 8.8 so will not be repeated here. The function shrink_zone() is called to free

a number of pages based on how urgent it is to free pages. This function behaves

very similar to how 2.4 works. refill_inactive_zone() will move a number of

pages from zone→active_list to zone→inactive_list. Remember as covered

in Section 2.6, that LRU lists are now per-zone and not global as they are in 2.4.

shrink_cache() is called to remove pages from the LRU and reclaim pages.

Pageout Pressure In 2.4, the pageout priority determined how many pages

would be scanned. In 2.6, there is a decaying average that is updated by

zone_adj_pressure(). This adjusts the zone→pressure �eld to indicate how

many pages should be scanned for replacement. When more pages are required, this

will be pushed up towards the highest value of DEF_PRIORITY � 10 and then decays

over time. The value of this average a�ects how many pages will be scanned in a

zone for replacement. The objective is to have page replacement start working and

slow gracefully rather than act in a bursty nature.

Manipulating LRU Lists In 2.4, a spinlock would be acquired when removing

pages from the LRU list. This made the lock very heavily contended so, to relieve

contention, operations involving the LRU lists take place via struct pagevec struc-

tures. This allows pages to be added or removed from the LRU lists in batches of

up to PAGEVEC_SIZE numbers of pages.

To illustrate, when refill_inactive_zone() and shrink_cache() are remov-

ing pages, they acquire the zone→lru_lock lock, remove large blocks of pages and

store them on a temporary list. Once the list of pages to remove is assembled,

shrink_list() is called to perform the actual freeing of pages which can now per-

form most of it's task without needing the zone→lru_lock spinlock.

When adding the pages back, a new page vector struct is initialised with

pagevec_init(). Pages are added to the vector with pagevec_add() and then

committed to being placed on the LRU list in bulk with pagevec_release().

There is a sizable API associated with pagevec structs which can be seen in

<linux/pagevec.h> with most of the implementation in mm/swap.c.
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void(add_to_page_cache)

struct page * page, struct address_space * mapping, unsigned long o�set
Adds a page to the LRU with lru_cache_add() in addition to adding it
to the inode queue and page hash tables

void(add_to_page_cache_unique)

struct page * page, struct address_space *mapping, unsigned long o�set,
struct page **hash This is imilar to add_to_page_cache() except it
checks that the page is not already in the page cache. This is required
when the caller does not hold the pagecache_lock spinlock

void(remove_inode_page)

struct page *page This function removes a page from the in-
ode and hash queues with remove_page_from_inode_queue() and
remove_page_from_hash_queue(), e�ectively removing the page from
the page cache

struct page *(page_cache_alloc)

struct address_space *x This is a wrapper around alloc_pages()

which uses x→gfp_mask as the GFP mask

void(page_cache_get)

struct page *page Increases the reference count to a page already in
the page cache

int(page_cache_read)

struct �le * �le, unsigned long o�set This function adds a
page corresponding to an offset with a file if it is not already
there. If necessary, the page will be read from disk using an
address_space_operations→readpage function

void(page_cache_release)

struct page *page An alias for __free_page(). The reference count
is decremented and if it drops to 0, the page will be freed

Table 10.1: Page Cache API
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void(lru_cache_add)

struct page * page Add a cold page to the inactive_list. Will be
moved to active_list with a call to mark_page_accessed() if the page
is known to be hot, such as when a page is faulted in.

void(lru_cache_del)

struct page *page Removes a page from the LRU lists by calling either
del_page_from_active_list() or del_page_from_inactive_list(),
whichever is appropriate.

void(mark_page_accessed)

struct page *page Mark that the page has been accessed. If it was
not recently referenced (in the inactive_list and PG_referenced �ag
not set), the referenced �ag is set. If it is referenced a second time,
activate_page() is called, which marks the page hot, and the referenced
�ag is cleared

void(activate_page)

struct page * page Removes a page from the inactive_list and places
it on active_list. It is very rarely called directly as the caller has to
know the page is on inactive_list. mark_page_accessed() should be
used instead

Table 10.2: LRU List API



Chapter 11

Swap Management

Swap management

Just as Linux uses free memory for purposes such as bu�ering data from disk,

there eventually is a need to free up private or anonymous pages used by a process.

These pages, unlike those backed by a �le on disk, cannot be simply discarded to be

read in later. Instead they have to be carefully copied to backing storageBacking

storage, sometimes called the swap areaSwap area. This chapter details how

Linux uses and manages its backing storage.

Strictly speaking, Linux does not swap as �swapping�Swapping refers to coping

an entire process address space to disk and �paging�Paging to copying out indi-

vidual pages. Linux actually implements paging as modern hardware supports it,

but traditionally has called it swapping in discussions and documentation. To be

consistent with the Linux usage of the word, we too will refer to it as swapping.

There are two principle reasons that the existence of swap space is desirable.

First, it expands the amount of memory a process may use. Virtual memory and

swap space allows a large process to run even if the process is only partially resident.

As �old� pages may be swapped out, the amount of memory addressed may easily

exceed RAM as demand paging will ensure the pages are reloaded if necessary.

The casual reader1 may think that with a su�cient amount of memory, swap is

unnecessary but this brings us to the second reason. A signi�cant number of the

pages referenced by a process early in its life may only be used for initialisation and

then never used again. It is better to swap out those pages and create more disk

bu�ers than leave them resident and unused.

It is important to note that swap is not without its drawbacks and the most

important one is the most obvious one; Disk is slow, very very slow. If processes are

1Not to mention the a�uent reader.
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frequently addressing a large amount of memory, no amount of swap or expensive

high-performance disks will make it run within a reasonable time, only more RAM

will help. This is why it is very important that the correct page be swapped out

as discussed in Chapter 10, but also that related pages be stored close together in

the swap space so they are likely to be swapped in at the same time while reading

ahead. We will start with how Linux describes a swap area.

This chapter begins with describing the structures Linux maintains about each

active swap area in the system and how the swap area information is organised on

disk. We then cover how Linux remembers how to �nd pages in the swap after they

have been paged out and how swap slots are allocated. After that the Swap Cache

is discussed which is important for shared pages. At that point, there is enough

information to begin understanding how swap areas are activated and deactivated,

how pages are paged in and paged out and �nally how the swap area is read and

written to.

11.1 Describing the Swap Area

Swap area, describing

Each active swap area, be it a �le or partition, has a struct swap_info_struct

describing the area. All the structs in the running system are stored in a statically

declared array called swap_info which holds MAX_SWAPFILES, which is statically

de�ned as 32, entries. This means that at most 32 swap areas can exist on a running

system. The swap_info_struct is declared as follows in <linux/swap.h>:

64 struct swap_info_struct {

65 unsigned int flags;

66 kdev_t swap_device;

67 spinlock_t sdev_lock;

68 struct dentry * swap_file;

69 struct vfsmount *swap_vfsmnt;

70 unsigned short * swap_map;

71 unsigned int lowest_bit;

72 unsigned int highest_bit;

73 unsigned int cluster_next;

74 unsigned int cluster_nr;

75 int prio;

76 int pages;

77 unsigned long max;

78 int next;

79 };
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Here is a small description of each of the �elds in this quite sizable struct.

�ags This is a bit �eld with two possible values. SWP_USED is set if the swap area

is currently active. SWP_WRITEOK is de�ned as 3, the two lowest signi�cant

bits, including the SWP_USED bit. The �ags is set to SWP_WRITEOK when Linux

is ready to write to the area as it must be active to be written to;

swap_device The device corresponding to the partition used for this swap area

is stored here. If the swap area is a �le, this is NULL;

sdev_lock As with many structs in Linux, this one has to be protected too.

sdev_lock is a spinlock protecting the struct, principally the swap_map. It is

locked and unlocked with swap_device_lock() and swap_device_unlock();

swap_�le This is the dentry for the actual special �le that is mounted as a swap

area. This could be the dentry for a �le in the /dev/ directory for example

in the case a partition is mounted. This �eld is needed to identify the correct

swap_info_struct when deactiating a swap area;

vfs_mount This is the vfs_mount object corresponding to where the device or

�le for this swap area is stored;

swap_map This is a large array with one entry for every swap entry, or page

sized slot in the area. An entry is a reference count of the number of users of

this page slot. The swap cache counts as one user and every PTE that has

been paged out to the slot counts as a user. If it is equal to SWAP_MAP_MAX, the

slot is allocated permanently. If equal to SWAP_MAP_BAD, the slot will never be

used;

lowest_bit This is the lowest possible free slot available in the swap area and

is used to start from when linearly scanning to reduce the search space. It is

known that there are de�nitely no free slots below this mark;

highest_bit This is the highest possible free slot available in this swap area.

Similar to lowest_bit, there are de�nitely no free slots above this mark;

cluster_next This is the o�set of the next cluster of blocks to use. The swap area

tries to have pages allocated in cluster blocks to increase the chance related

pages will be stored together;
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cluster_nr This the number of pages left to allocate in this cluster;

prio Each swap area has a priority which is stored in this �eld. Areas are arranged

in order of priority and determine how likely the area is to be used. By default

the priorities are arranged in order of activation but the system administrator

may also specify it using the -p �ag when using swapon;

pages As some slots on the swap �le may be unusable, this �eld stores the number

of usable pages in the swap area. This di�ers from max in that slots marked

SWAP_MAP_BAD are not counted;

max This is the total number of slots in this swap area;

next This is the index in the swap_info array of the next swap area in the system.

The areas, though stored in an array, are also kept in a pseudo list called

swap_list which is a very simple type declared as follows in <linux/swap.h>:

153 struct swap_list_t {

154 int head; /* head of priority-ordered swapfile list */

155 int next; /* swapfile to be used next */

156 };

The �eld swap_list_t→head is the swap area of the highest priority swap area

in use and swap_list_t→next is the next swap area that should be used. This is

so areas may be arranged in order of priority when searching for a suitable area but

still looked up quickly in the array when necessary.

Each swap area is divided up into a number of page sized slots on disk which

means that each slot is 4096 bytes on the x86 for example. The �rst slot is always

reserved as it contains information about the swap area that should not be overwrit-

ten. The �rst 1 KiB of the swap area is used to store a disk label for the partition

that can be picked up by userspace tools. The remaining space is used for infor-

mation about the swap area which is �lled when the swap area is created with the

system program mkswap. The information is used to �ll in a union swap_header

which is declared as follows in <linux/swap.h>:

25 union swap_header {

26 struct

27 {

28 char reserved[PAGE_SIZE - 10];

29 char magic[10];
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30 } magic;

31 struct

32 {

33 char bootbits[1024];

34 unsigned int version;

35 unsigned int last_page;

36 unsigned int nr_badpages;

37 unsigned int padding[125];

38 unsigned int badpages[1];

39 } info;

40 };

A description of each of the �elds follows

magic The magic part of the union is used just for identifying the �magic� string.

The string exists to make sure there is no chance a partition that is not a

swap area will be used and to decide what version of swap area is is. If

the string is �SWAP-SPACE�, it is version 1 of the swap �le format. If it is

�SWAPSPACE2�, it is version 2. The large reserved array is just so that the

magic string will be read from the end of the page;

bootbits This is the reserved area containing information about the partition

such as the disk label;

version This is the version of the swap area layout;

last_page This is the last usable page in the area;

nr_badpages The known number of bad pages that exist in the swap area are

stored in this �eld;

padding A disk section is usually about 512 bytes in size. The three �elds

version, last_page and nr_badpages make up 12 bytes and the padding

�lls up the remaining 500 bytes to cover one sector;

badpages The remainder of the page is used to store the indices of up to

MAX_SWAP_BADPAGES number of bad page slots. These slots are �lled in by

the mkswap system program if the -c switch is speci�ed to check the area.

MAX_SWAP_BADPAGES is a compile time constant which varies if the struct changes

but it is 637 entries in its current form as given by the simple equation;
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MAX_SWAP_BADPAGES =
PAGE_SIZE− 1024− 512− 10

sizeof(long)

Where 1024 is the size of the bootblock, 512 is the size of the padding and 10 is

the size of the magic string identi�ng the format of the swap �le.

11.2 Mapping Page Table Entries to Swap Entries

Swap entries PTE to Swap Entry Mapping

When a page is swapped out, Linux uses the corresponding PTE to store enough

information to locate the page on disk again. Obviously a PTE is not large enough in

itself to store precisely where on disk the page is located, but it is more than enough

to store an index into the swap_info array and an o�set within the swap_map and

this is precisely what Linux does.

Each PTE, regardless of architecture, is large enough to store a swp_entry_t

which is declared as follows in <linux/shmem_fs.h>

16 typedef struct {

17 unsigned long val;

18 } swp_entry_t;

Two macros are provided for the translation of PTEs to swap entries and vice

versa. They are pte_to_swp_entry() and swp_entry_to_pte() respectively.

Each architecture has to be able to determine if a PTE is present or swapped

out. For illustration, we will show how this is implemented on the x86. In the

swp_entry_t, two bits are always kept free. On the x86, Bit 0 is reserved for the

_PAGE_PRESENT �ag and Bit 7 is reserved for _PAGE_PROTNONE. The requirement for

both bits is explained in Section 3.2. Bits 1-6 are for the type which is the index

within the swap_info array and are returned by the SWP_TYPE() macro.

Bits 8-31 are used are to store the o�set within the swap_map from the

swp_entry_t. On the x86, this means 24 bits are available, �limiting� the size

of the swap area to 64GiB. The macro SWP_OFFSET() is used to extract the o�set.

To encode a type and o�set into a swp_entry_t, the macro SWP_ENTRY() is avail-

able which simply performs the relevant bit shifting operations. The relationship

between all these macros is illustrated in Figure 11.1.

It should be noted that the six bits for �type� should allow up to 64 swap

areas to exist in a 32 bit architecture instead of the MAX_SWAPFILES restriction
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Figure 11.1: Storing Swap Entry Information in swp_entry_t

of 32. The restriction is due to the consumption of the vmalloc address space.

If a swap area is the maximum possible size then 32MiB is required for the

swap_map (224 ∗ sizeof(short)); remember that each page uses one short for the ref-

erence count. For just MAX_SWAPFILES maximum number of swap areas to exist,

1GiB of virtual malloc space is required which is simply impossible because of the

user/kernel linear address space split.

This would imply supporting 64 swap areas is not worth the additional complex-

ity but there are cases where a large number of swap areas would be desirable even

if the overall swap available does not increase. Some modern machines2 have many

separate disks which between them can create a large number of separate block de-

vices. In this case, it is desirable to create a large number of small swap areas which

are evenly distributed across all disks. This would allow a high degree of parallelism

in the page swapping behaviour which is important for swap intensive applications.

11.3 Allocating a swap slot

All page sized slots are tracked by the array swap_info_struct→swap_map which

is of type unsigned short. Each entry is a reference count of the number of users

of the slot which happens in the case of a shared page and is 0 when free. If the

entry is SWAP_MAP_MAX, the page is permanently reserved for that slot. It is unlikely,

if not impossible, for this condition to occur but it exists to ensure the reference

2A Sun E450 could have in the region of 20 disks in it for example.
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count does not over�ow. If the entry is SWAP_MAP_BAD, the slot is unusable.

Figure 11.2: Call Graph: get_swap_page()

The task of �nding and allocating a swap entry is divided into two major tasks.

The �rst performed by the high level function get_swap_page(). Starting with

swap_list→next, it searches swap areas for a suitable slot. Once a slot has been

found, it records what the next swap area to be used will be and returns the allocated

entry.

The task of searching the map is the responsibility of scan_swap_map(). In

principle, it is very simple as it linearly scan the array for a free slot and return.

Predictably, the implementation is a bit more thorough.

Linux attempts to organise pages into clusters on disk of size SWAPFILE_CLUSTER.

It allocates SWAPFILE_CLUSTER number of pages sequentially in swap keeping count

of the number of sequentially allocated pages in swap_info_struct→cluster_nr

and records the current o�set in swap_info_struct→cluster_next. Once a se-

quential block has been allocated, it searches for a block of free entries of size

SWAPFILE_CLUSTER. If a block large enough can be found, it will be used as another

cluster sized sequence.

If no free clusters large enough can be found in the swap area, a simple �rst-free

search starting from swap_info_struct→lowest_bit is performed. The aim is to

have pages swapped out at the same time close together on the premise that pages

swapped out together are related. This premise, which seems strange at �rst glance,

is quite solid when it is considered that the page replacement algorithm will use swap

space most when linearly scanning the process address space swapping out pages.

Without scanning for large free blocks and using them, it is likely that the scanning

would degenerate to �rst-free searches and never improve. With it, processes exiting

are likely to free up large blocks of slots.
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11.4 Swap Cache

Swap cache

Pages that are shared between many processes can not be easily swapped out

because, as mentioned, there is no quick way to map a struct page to every PTE

that references it. This leads to the race condition where a page is present for

one PTE and swapped out for another gets updated without being synced to disk

thereby losing the update.

To address this problem, shared pages that have a reserved slot in backing storage

are considered to be part of the swap cache. The swap cache is purely conceptual as

it is simply a specialisation of the page cache. The �rst principal di�erence between

pages in the swap cache rather than the page cache is that pages in the swap cache

always use swapper_space as their address_space in page→mapping. The second

di�erence is that pages are added to the swap cache with add_to_swap_cache()

instead of add_to_page_cache().

Figure 11.3: Call Graph: add_to_swap_cache()

Anonymous pages are not part of the swap cache until an attempt is made to

swap them out. The variable swapper_space is declared as follows in swap_state.c:

39 struct address_space swapper_space = {

40 LIST_HEAD_INIT(swapper_space.clean_pages),

41 LIST_HEAD_INIT(swapper_space.dirty_pages),

42 LIST_HEAD_INIT(swapper_space.locked_pages),

43 0,

44 &swap_aops,

45 };

A page is identi�ed as being part of the swap cache once the page→mapping �eld

has been set to swapper_space which is tested by the PageSwapCache() macro.
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Linux uses the exact same code for keeping pages between swap and memory in

sync as it uses for keeping �le-backed pages and memory in sync as they both share

the page cache code, the di�erences are just in the functions used.

The address space for backing storage, swapper_space uses swap_ops for

it's address_space→a_ops. The page→index �eld is then used to store the

swp_entry_t structure instead of a �le o�set which is it's normal purpose. The

address_space_operations struct swap_aops is declared as follows in swap_state.c:

34 static struct address_space_operations swap_aops = {

35 writepage: swap_writepage,

36 sync_page: block_sync_page,

37 };

When a page is being added to the swap cache, a slot is allocated with

get_swap_page(), added to the page cache with add_to_swap_cache() and then

marked dirty. When the page is next laundered, it will actually be written to backing

storage on disk as the normal page cache would operate. This process is illustrated

in Figure 11.4.

Figure 11.4: Adding a Page to the Swap Cache

Subsequent swapping of the page from shared PTEs results in a call to

swap_duplicate() which simply increments the reference to the slot in the

swap_map. If the PTE is marked dirty by the hardware as a result of a write,
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the bit is cleared and the struct page is marked dirty with set_page_dirty() so

that the on-disk copy will be synced before the page is dropped. This ensures that

until all references to the page have been dropped, a check will be made to ensure

the data on disk matches the data in the page frame.

When the reference count to the page �nally reaches 0, the page is eligible to

be dropped from the page cache and the swap map count will have the count of

the number of PTEs the on-disk slot belongs to so that the slot will not be freed

prematurely. It is laundered and �nally dropped with the same LRU aging and logic

described in Chapter 10.

If, on the other hand, a page fault occurs for a page that is �swapped out�, the

logic in do_swap_page() will check to see if the page exists in the swap cache by

calling lookup_swap_cache(). If it does, the PTE is updated to point to the page

frame, the page reference count incremented and the swap slot decremented with

swap_free().

swp_entry_t(get_swap_page)

This function allocates a slot in a swap_map by searching active swap
areas. This is covered in greater detail in Section 11.3 but included here
as it is principally used in conjunction with the swap cache

int(add_to_swap_cache)

struct page *page, swp_entry_t entry This function adds a page
to the swap cache. It �rst checks if it already exists by calling
swap_duplicate() and if not, is adds it to the swap cache via the normal
page cache interface function add_to_page_cache_unique()

struct page *(lookup_swap_cache)

swp_entry_t entry This searches the swap cache and returns the
struct page corresponding to the supplied entry. It works by searching
the normal page cache based on swapper_space and the swap_map o�set

int(swap_duplicate)

swp_entry_t entry This function veri�es a swap entry is valid and if
so, increments its swap map count

void(swap_free)

swp_entry_t entry The complement function to swap_duplicate().
It decrements the relevant counter in the swap_map. When the count
reaches zero, the slot is e�ectively free

Table 11.1: Swap Cache API
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11.5 Reading Pages from Backing Storage

Swap reading

The principal function used when reading in pages is read_swap_cache_async()

which is mainly called during page faulting. The function begins be searching

the swap cache with find_get_page(). Normally, swap cache searches are per-

formed by lookup_swap_cache() but that function updates statistics on the num-

ber of searches performed and as the cache may need to be searched multiple times,

find_get_page() is used instead.

Figure 11.5: Call Graph: read_swap_cache_async()

The page can already exist in the swap cache if another process has the same

page mapped or multiple processes are faulting on the same page at the same time.

If the page does not exist in the swap cache, one must be allocated and �lled with

data from backing storage.

Once the page is allocated with alloc_page(), it is added to the swap cache

with add_to_swap_cache() as swap cache operations may only be performed on

pages in the swap cache. If the page cannot be added to the swap cache, the swap

cache will be searched again to make sure another process has not put the data in

the swap cache already.

To read information from backing storage, rw_swap_page() is called which is

discussed in Section 11.7. Once the function completes, page_cache_release() is

called to drop the reference to the page taken by find_get_page().
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11.6 Writing Pages to Backing Storage

Swap writing

When any page is being written to disk, the address_space→a_ops is con-

sulted to �nd the appropriate write-out function. In the case of backing storage,

the address_space is swapper_space and the swap operations are contained in

swap_aops. The struct swap_aops registers swap_writepage() as it's write-out

function.

Figure 11.6: Call Graph: sys_writepage()

The function swap_writepage() behaves di�erently depending on whether the

writing process is the last user of the swap cache page or not. It knows this by

calling remove_exclusive_swap_page() which checks if there is any other pro-

cesses using the page. This is a simple case of examining the page count with the

pagecache_lock held. If no other process is mapping the page, it is removed from

the swap cache and freed.

If remove_exclusive_swap_page() removed the page from the swap cache and

freed it swap_writepage() will unlock the page as it is no longer in use. If it still

exists in the swap cache, rw_swap_page() is called to write the data to the backing

storage.

11.7 Reading/Writing Swap Area Blocks

Swap reading

The top-level function for reading and writing to the swap area is rw_swap_page().

This function ensures that all operations are performed through the swap cache to
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prevent lost updates. rw_swap_page_base() is the core function which performs

the real work.

It begins by checking if the operation is a read. If it is, it clears the uptodate

�ag with ClearPageUptodate() as the page is obviously not up to date if IO is

required to �ll it with data. This �ag will be set again if the page is successfully

read from disk. It then calls get_swaphandle_info() to acquire the device for the

swap partition of the inode for the swap �le. These are required by the block layer

which will be performing the actual IO.

The core function can work with either swap partition or �les as it uses the block

layer function brw_page() to perform the actual disk IO. If the swap area is a �le,

bmap() is used to �ll a local array with a list of all blocks in the �lesystem which

contain the page data. Remember that �lesystems may have their own method of

storing �les and disk and it is not as simple as the swap partition where information

may be written directly to disk. If the backing storage is a partition, then only

one page-sized block requires IO and as there is no �lesystem involved, bmap() is

unnecessary.

Once it is known what blocks must be read or written, a normal block IO op-

eration takes place with brw_page(). All IO that is performed is asynchronous so

the function returns quickly. Once the IO is complete, the block layer will unlock

the page and any waiting process will wake up.

11.8 Activating a Swap Area

Initialising swap areas Swap area initialising

As it has now been covered what swap areas are, how they are represented and

how pages are tracked, it is time to see how they all tie together to activate an

area. Activating an area is conceptually quite simple; Open the �le, load the header

information from disk, populate a swap_info_struct and add it to the swap list.

The function responsible for the activation of a swap area is sys_swapon() and it

takes two parameters, the path to the special �le for the swap area and a set of �ags.

While swap is been activated, the Big Kernel Lock (BKL) is held which prevents

any application entering kernel space while this operation is been performed. The

function is quite large but can be broken down into the following simple steps;

• Find a free swap_info_struct in the swap_info array an initialise it with
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default values

• Call user_path_walk() which traverses the directory tree for the supplied

specialfile and populates a namidata structure with the available data on

the �le, such as the dentry and the �lesystem information for where it is

stored (vfsmount)

• Populate swap_info_struct �elds pertaining to the dimensions of the swap

area and how to �nd it. If the swap area is a partition, the block size will

be con�gured to the PAGE_SIZE before calculating the size. If it is a �le, the

information is obtained directly from the inode

• Ensure the area is not already activated. If not, allocate a page from mem-

ory and read the �rst page sized slot from the swap area. This page con-

tains information such as the number of good slots and how to populate the

swap_info_struct→swap_map with the bad entries

• Allocate memory with vmalloc() for swap_info_struct→swap_map and ini-

tialise each entry with 0 for good slots and SWAP_MAP_BAD otherwise. Ideally

the header information will be a version 2 �le format as version 1 was limited

to swap areas of just under 128MiB for architectures with 4KiB page sizes like

the x863

• After ensuring the information indicated in the header matches the actual

swap area, �ll in the remaining information in the swap_info_struct such

as the maximum number of pages and the available good pages. Update the

global statistics for nr_swap_pages and total_swap_pages

• The swap area is now fully active and initialised and so it is inserted into the

swap list in the correct position based on priority of the newly activated area

At the end of the function, the BKL is released and the system now has a new

swap area available for paging to.

11.9 Deactivating a Swap Area

Deactivating swap area Swap area deactivating

3See the Code Commentary for the comprehensive reason for this.
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In comparison to activating a swap area, deactivation is incredibly expensive.

The principal problem is that the area cannot be simply removed, every page that

is swapped out must now be swapped back in again. Just as there is no quick way

of mapping a struct page to every PTE that references it, there is no quick way

to map a swap entry to a PTE either. This requires that all process page tables

be traversed to �nd PTEs which reference the swap area to be deactivated and

swap them in. This of course means that swap deactivation will fail if the physical

memory is not available.

The function responsible for deactivating an area is, predictably enough,

called sys_swapoff(). This function is mainly concerned with updating the

swap_info_struct. The major task of paging in each paged-out page is the re-

sponsibility of try_to_unuse() which is extremely expensive. For each slot used

in the swap_map, the page tables for processes have to be traversed searching for

it. In the worst case, all page tables belonging to all mm_structs may have to be

traversed. Therefore, the tasks taken for deactivating an area are broadly speaking;

• Call user_path_walk() to acquire the information about the special �le to be

deactivated and then take the BKL

• Remove the swap_info_struct from the swap list and update the global

statistics on the number of swap pages available (nr_swap_pages) and the

total number of swap entries (total_swap_pages. Once this is acquired, the

BKL can be released again

• Call try_to_unuse() which will page in all pages from the swap area

to be deactivated. This function loops through the swap map using

find_next_to_unuse() to locate the next used swap slot. For each used

slot it �nds, it performs the following;

� Call read_swap_cache_async() to allocate a page for the slot saved on

disk. Ideally it exists in the swap cache already but the page allocator

will be called if it is not

� Wait on the page to be fully paged in and lock it. Once locked, call

unuse_process() for every process that has a PTE referencing the page.

This function traverses the page table searching for the relevant PTE

and then updates it to point to the struct page. If the page is a shared
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memory page with no remaining reference, shmem_unuse() is called in-

stead

� Free all slots that were permanently mapped. It is believed that slots will

never become permanently reserved so the risk is taken.

� Delete the page from the swap cache to prevent try_to_swap_out()

referencing a page in the event it still somehow has a reference in swap

map

• If there was not enough available memory to page in all the entries, the swap

area is reinserted back into the running system as it cannot be simply dropped.

If it succeeded, the swap_info_struct is placed into an uninitialised state and

the swap_map memory freed with vfree()

11.10 Whats New in 2.6

The most important addition to the struct swap_info_struct is the addition of

a linked list called extent_list and a cache �eld called curr_swap_extent for the

implementation of extents.

Extents, which are represented by a struct swap_extent, map a contiguous

range of pages in the swap area into a contiguous range of disk blocks. These

extents are setup at swapon time by the function setup_swap_extents(). For block

devices, there will only be one swap extent and it will not improve performance but

the extent it setup so that swap areas backed by block devices or regular �les can

be treated the same.

It can make a large di�erence with swap �les which will have multiple extents rep-

resenting ranges of pages clustered together in blocks. When searching for the page

at a particular o�set, the extent list will be traversed. To improve search times, the

last extent that was searched will be cached in swap_extent→curr_swap_extent.



Chapter 12

Out Of Memory Management

OOM Management

The last aspect of the VM we are going to discuss is the Out Of Memory (OOM)

manager. This intentionally is a very short chapter as it has one simple task; check

if there is enough available memory to satisfy, verify that the system is truely out of

memory and if so, select a process to kill. This is a controversial part of the VM and

it has been suggested that it be removed on many occasions. Regardless of whether

it exists in the latest kernel, it still is a useful system to examine as it touches o� a

number of other subsystems.

12.1 Checking Available Memory

OOM Prevention

For certain operations, such as expaning the heap with brk() or remapping an

address space with mremap(), the system will check if there is enough available

memory to satisfy a request. Note that this is separate to the out_of_memory()

path that is covered in the next section. This path is used to avoid the system being

in a state of OOM if at all possible.

When checking available memory, the number of required pages is passed as a

parameter to vm_enough_memory(). Unless the system administrator has speci�ed

that the system should overcommit memory, the mount of available memory will be

checked. To determine how many pages are potentially available, Linux sums up

the following bits of data:

Total page cache as page cache is easily reclaimed

Total free pages because they are already available
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Total free swap pages as userspace pages may be paged out

Total pages managed by swapper_space although this double-counts the free

swap pages. This is balanced by the fact that slots are sometimes reserved but

not used

Total pages used by the dentry cache as they are easily reclaimed

Total pages used by the inode cache as they are easily reclaimed

If the total number of pages added here is su�cient for the request, vm_enough_memory()

returns true to the caller. If false is returned, the caller knows that the memory is

not available and usually decides to return -ENOMEM to userspace.

12.2 Determining OOM Status

OOM Detectioon

When the machine is low on memory, old page frames will be reclaimed (see

Chapter 10) but despite reclaiming pages is may �nd that it was unable to free

enough pages to satisfy a request even when scanning at highest priority. If it does

fail to free page frames, out_of_memory() is called to see if the system is out of

memory and needs to kill a process.

Unfortunately, it is possible that the system is not out memory and simply needs

to wait for IO to complete or for pages to be swapped to backing storage. This is

unfortunate, not because the system has memory, but because the function is being

called unnecessarily opening the possibly of processes being unnecessarily killed.

Before deciding to kill a process, it goes through the following checklist.

• Is there enough swap space left (nr_swap_pages > 0) ? If yes, not OOM

• Has it been more than 5 seconds since the last failure? If yes, not OOM

• Have we failed within the last second? If no, not OOM

• If there hasn't been 10 failures at least in the last 5 seconds, we're not OOM

• Has a process been killed within the last 5 seconds? If yes, not OOM

It is only if the above tests are passed that oom_kill() is called to select a

process to kill.
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Figure 12.1: Call Graph: out_of_memory()

12.3 Selecting a Process

OOM Killing

The function select_bad_process() is responsible for choosing a process to

kill. It decides by stepping through each running task and calculating how suitable

it is for killing with the function badness(). The badness is calculated as follows,

note that the square roots are integer approximations calculated with int_sqrt();

badness_for_task =
total_vm_for_task√

(cpu_time_in_seconds) ∗ 4

√
(cpu_time_in_minutes)

This has been chosen to select a process that is using a large amount of memory

but is not that long lived. Processes which have been running a long time are

unlikely to be the cause of memory shortage so this calculation is likely to select a

process that uses a lot of memory but has not been running long. If the process

is a root process or has CAP_SYS_ADMIN capabilities, the points are divided by four

as it is assumed that root privilege processes are well behaved. Similarly, if it has

CAP_SYS_RAWIO capabilities (access to raw devices) privileges, the points are further

divided by 4 as it is undesirable to kill a process that has direct access to hardware.
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12.4 Killing the Selected Process

Process killing

Once a task is selected, the list is walked again and each process that shares the

same mm_struct as the selected process (i.e. they are threads) is sent a signal. If

the process has CAP_SYS_RAWIO capabilities, a SIGTERM is sent to give the process a

chance of exiting cleanly, otherwise a SIGKILL is sent.

12.5 Is That It?

Yes, thats it, out of memory management touches a lot of subsystems otherwise,

there is not much to it.

12.6 What's New in 2.6

The majority of OOM management remains essentially the same for 2.6 except for

the introduction of VM accounted objects. These are VMAs that are �agged with

the VM_ACCOUNT �ag, �rst mentioned in Section 4.8. Additional checks will be made

to ensure there is memory available when performing operations on VMAs with this

�ag set. The principal incentive for this complexity is to avoid the need of an OOM

killer.

Some regions which always have the VM_ACCOUNT �ag set are the process stack,

the process heap, regions mmap()ed with MAP_SHARED, private regions that are

writable and regions set up shmget(). In other words, most userspace mappings

have the VM_ACCOUNT �ag set.

Linux accounts for the amount of memory that is committed to these VMAs with

vm_acct_memory() which increments a variable called committed_space. When the

VMA is freed, the committed space is decremented with vm_unacct_memory(). This

is a fairly simple mechanism, but it allows Linux to remember how much memory

it has already committed to userspace when deciding if it should commit more.

The checks are performed by calling security_vm_enough_memory() which in-

troduces us to another new feature. 2.6 has a feature available which allows se-

curity related kernel modules to override certain kernel functions. The full list of

hooks available is stored in a struct security_operations called security_ops.

There are a number of dummy, or default, functions that may be used which are
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all listed in security/dummy.c but the majority do nothing except return. If there

are no security modules loaded, the security_operations struct used is called

dummy_security_ops which uses all the default function.

By default, security_vm_enough_memory() calls dummy_vm_enough_memory()

which is declared in security/dummy.c and is very similar to 2.4's vm_enough_memory()

function. The new version adds the following pieces of information together to de-

termine available memory:

Total page cache as page cache is easily reclaimed

Total free pages because they are already available

Total free swap pages as userspace pages may be paged out

Slab pages with SLAB_RECLAIM_ACCOUNT set as they are easily reclaimed

These pages, minus a 3% reserve for root processes, is the total amount of

memory that is available for the request. If the memory is available, it makes a

check to ensure the total amount of committed memory does not exceed the al-

lowed threshold. The allowed threshold is TotalRam * (OverCommitRatio/100) +

TotalSwapPage, where OverCommitRatio is set by the system administrator. If the

total amount of committed space is not too high, 1 will be returned so that the

allocation can proceed.
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The Final Word

Make no mistake, memory management is a large, complex and time consuming �eld

to research and di�cult to apply to practical implementations. As it is very di�cult

to model how systems behave in real multi-programmed systems [CD80], developers

often rely on intuition to guide them and examination of virtual memory algorithms

depends on simulations of speci�c workloads. Simulations are necessary as mod-

eling how scheduling, paging behaviour and multiple processes interact presents a

considerable challenge. Page replacement policies, a �eld that has been the focus

of considerable amounts of research, is a good example as it is only ever shown to

work well for speci�ed workloads. The problem of adjusting algorithms and policies

to di�erent workloads is addressed by having administrators tune systems as much

as by research and algorithms.

The Linux kernel is also large, complex and fully understood by a relatively small

core group of people. It's development is the result of contributions of thousands

of programmers with a varying range of specialties, backgrounds and spare time.

The �rst implementations are developed based on the all-important foundation that

theory provides. Contributors built upon this framework with changes based on real

world observations.

It has been asserted on the Linux Memory Management mailing list that the VM

is poorly documented and di�cult to pick up as �the implementation is a nightmare

to follow�1 and the lack of documentation on practical VMs is not just con�ned

to Linux. Matt Dillon, one of the principal developers of the FreeBSD VM2 and

considered a �VM Guru� stated in an interview3 that documentation can be �hard

1http://mail.nl.linux.org/linux-mm/2002-05/msg00035.html
2His past involvement with the Linux VM is evident from http://mail.nl.linux.org/linux-

mm/2000-05/msg00419.html
3http://kerneltrap.com/node.php?id=8
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to come by�. One of the principal di�culties with deciphering the implementation

is the fact the developer must have a background in memory management theory to

see why implementation decisions were made as a pure understanding of the code

is insu�cient for any purpose other than micro-optimisations.

This book attempted to bridge the gap between memory management theory

and the practical implementation in Linux and tie both �elds together in a single

place. It tried to describe what life is like in Linux as a memory manager in a

manner that was relatively independent of hardware architecture considerations. I

hope after reading this, and progressing onto the code commentary, that you, the

reader feels a lot more comfortable with tackling the VM subsystem. As a �nal

parting shot, Figure 13.1 broadly illustrates how of the sub-systems we discussed in

detail interact with each other.

On a �nal personal note, I hope that this book encourages other people to pro-

duce similar works for other areas of the kernel. I know I'll buy them!

Figure 13.1: Broad Overview on how VM Sub-Systems Interact
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