/** * struct __drm_i915_memory_region_info - Describes one region as known to the * driver. * * Note this is using both struct drm_i915_query_item and struct drm_i915_query. * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS * at &drm_i915_query_item.query_id. */ struct __drm_i915_memory_region_info { /** @region: The class:instance pair encoding */ struct drm_i915_gem_memory_class_instance region; /** @rsvd0: MBZ */ __u32 rsvd0; /** * @probed_size: Memory probed by the driver * * Note that it should not be possible to ever encounter a zero value * here, also note that no current region type will ever return -1 here. * Although for future region types, this might be a possibility. The * same applies to the other size fields. */ __u64 probed_size; /** * @unallocated_size: Estimate of memory remaining * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting. * Without this (or if this is an older kernel) the value here will * always equal the @probed_size. Note this is only currently tracked * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here * will always equal the @probed_size). */ __u64 unallocated_size; union { /** @rsvd1: MBZ */ __u64 rsvd1[8]; struct { /** * @probed_cpu_visible_size: Memory probed by the driver * that is CPU accessible. * * This will be always be <= @probed_size, and the * remainder (if there is any) will not be CPU * accessible. * * On systems without small BAR, the @probed_size will * always equal the @probed_cpu_visible_size, since all * of it will be CPU accessible. * * Note this is only tracked for * I915_MEMORY_CLASS_DEVICE regions (for other types the * value here will always equal the @probed_size). * * Note that if the value returned here is zero, then * this must be an old kernel which lacks the relevant * small-bar uAPI support (including * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on * such systems we should never actually end up with a * small BAR configuration, assuming we are able to load * the kernel module. Hence it should be safe to treat * this the same as when @probed_cpu_visible_size == * @probed_size. */ __u64 probed_cpu_visible_size; /** * @unallocated_cpu_visible_size: Estimate of CPU * visible memory remaining * * Note this is only tracked for * I915_MEMORY_CLASS_DEVICE regions (for other types the * value here will always equal the * @probed_cpu_visible_size). * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable * accounting. Without this the value here will always * equal the @probed_cpu_visible_size. Note this is only * currently tracked for I915_MEMORY_CLASS_DEVICE * regions (for other types the value here will also * always equal the @probed_cpu_visible_size). * * If this is an older kernel the value here will be * zero, see also @probed_cpu_visible_size. */ __u64 unallocated_cpu_visible_size; }; }; }; /** * struct __drm_i915_gem_create_ext - Existing gem_create behaviour, with added * extension support using struct i915_user_extension. * * Note that new buffer flags should be added here, at least for the stuff that * is immutable. Previously we would have two ioctls, one to create the object * with gem_create, and another to apply various parameters, however this * creates some ambiguity for the params which are considered immutable. Also in * general we're phasing out the various SET/GET ioctls. */ struct __drm_i915_gem_create_ext { /** * @size: Requested size for the object. * * The (page-aligned) allocated size for the object will be returned. * * Note that for some devices we have might have further minimum * page-size restrictions (larger than 4K), like for device local-memory. * However in general the final size here should always reflect any * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS * extension to place the object in device local-memory. The kernel will * always select the largest minimum page-size for the set of possible * placements as the value to use when rounding up the @size. */ __u64 size; /** * @handle: Returned handle for the object. * * Object handles are nonzero. */ __u32 handle; /** * @flags: Optional flags. * * Supported values: * * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that * the object will need to be accessed via the CPU. * * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only * strictly required on configurations where some subset of the device * memory is directly visible/mappable through the CPU (which we also * call small BAR), like on some DG2+ systems. Note that this is quite * undesirable, but due to various factors like the client CPU, BIOS etc * it's something we can expect to see in the wild. See * &__drm_i915_memory_region_info.probed_cpu_visible_size for how to * determine if this system applies. * * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to * ensure the kernel can always spill the allocation to system memory, * if the object can't be allocated in the mappable part of * I915_MEMORY_CLASS_DEVICE. * * Also note that since the kernel only supports flat-CCS on objects * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with * flat-CCS. * * Without this hint, the kernel will assume that non-mappable * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the * kernel can still migrate the object to the mappable part, as a last * resort, if userspace ever CPU faults this object, but this might be * expensive, and so ideally should be avoided. * * On older kernels which lack the relevant small-bar uAPI support (see * also &__drm_i915_memory_region_info.probed_cpu_visible_size), * usage of the flag will result in an error, but it should NEVER be * possible to end up with a small BAR configuration, assuming we can * also successfully load the i915 kernel module. In such cases the * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as * such there are zero restrictions on where the object can be placed. */ #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0) __u32 flags; /** * @extensions: The chain of extensions to apply to this object. * * This will be useful in the future when we need to support several * different extensions, and we need to apply more than one when * creating the object. See struct i915_user_extension. * * If we don't supply any extensions then we get the same old gem_create * behaviour. * * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see * struct drm_i915_gem_create_ext_memory_regions. * * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see * struct drm_i915_gem_create_ext_protected_content. */ #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1 __u64 extensions; };