// SPDX-License-Identifier: GPL-2.0-or-later /* * NET3: Garbage Collector For AF_UNIX sockets * * Garbage Collector: * Copyright (C) Barak A. Pearlmutter. * * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. * If it doesn't work blame me, it worked when Barak sent it. * * Assumptions: * * - object w/ a bit * - free list * * Current optimizations: * * - explicit stack instead of recursion * - tail recurse on first born instead of immediate push/pop * - we gather the stuff that should not be killed into tree * and stack is just a path from root to the current pointer. * * Future optimizations: * * - don't just push entire root set; process in place * * Fixes: * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. * Cope with changing max_files. * Al Viro 11 Oct 1998 * Graph may have cycles. That is, we can send the descriptor * of foo to bar and vice versa. Current code chokes on that. * Fix: move SCM_RIGHTS ones into the separate list and then * skb_free() them all instead of doing explicit fput's. * Another problem: since fput() may block somebody may * create a new unix_socket when we are in the middle of sweep * phase. Fix: revert the logic wrt MARKED. Mark everything * upon the beginning and unmark non-junk ones. * * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS * sent to connect()'ed but still not accept()'ed sockets. * Fixed. Old code had slightly different problem here: * extra fput() in situation when we passed the descriptor via * such socket and closed it (descriptor). That would happen on * each unix_gc() until the accept(). Since the struct file in * question would go to the free list and might be reused... * That might be the reason of random oopses on filp_close() * in unrelated processes. * * AV 28 Feb 1999 * Kill the explicit allocation of stack. Now we keep the tree * with root in dummy + pointer (gc_current) to one of the nodes. * Stack is represented as path from gc_current to dummy. Unmark * now means "add to tree". Push == "make it a son of gc_current". * Pop == "move gc_current to parent". We keep only pointers to * parents (->gc_tree). * AV 1 Mar 1999 * Damn. Added missing check for ->dead in listen queues scanning. * * Miklos Szeredi 25 Jun 2007 * Reimplement with a cycle collecting algorithm. This should * solve several problems with the previous code, like being racy * wrt receive and holding up unrelated socket operations. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct unix_sock *unix_get_socket(struct file *filp) { struct inode *inode = file_inode(filp); /* Socket ? */ if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { struct socket *sock = SOCKET_I(inode); const struct proto_ops *ops; struct sock *sk = sock->sk; ops = READ_ONCE(sock->ops); /* PF_UNIX ? */ if (sk && ops && ops->family == PF_UNIX) return unix_sk(sk); } return NULL; } static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) { /* If an embryo socket has a fd, * the listener indirectly holds the fd's refcnt. */ if (edge->successor->listener) return unix_sk(edge->successor->listener)->vertex; return edge->successor->vertex; } static bool unix_graph_maybe_cyclic; static bool unix_graph_grouped; static void unix_update_graph(struct unix_vertex *vertex) { /* If the receiver socket is not inflight, no cyclic * reference could be formed. */ if (!vertex) return; unix_graph_maybe_cyclic = true; unix_graph_grouped = false; } static LIST_HEAD(unix_unvisited_vertices); enum unix_vertex_index { UNIX_VERTEX_INDEX_MARK1, UNIX_VERTEX_INDEX_MARK2, UNIX_VERTEX_INDEX_START, }; static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) { struct unix_vertex *vertex = edge->predecessor->vertex; if (!vertex) { vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); vertex->index = unix_vertex_unvisited_index; vertex->out_degree = 0; INIT_LIST_HEAD(&vertex->edges); INIT_LIST_HEAD(&vertex->scc_entry); list_move_tail(&vertex->entry, &unix_unvisited_vertices); edge->predecessor->vertex = vertex; } vertex->out_degree++; list_add_tail(&edge->vertex_entry, &vertex->edges); unix_update_graph(unix_edge_successor(edge)); } static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) { struct unix_vertex *vertex = edge->predecessor->vertex; if (!fpl->dead) unix_update_graph(unix_edge_successor(edge)); list_del(&edge->vertex_entry); vertex->out_degree--; if (!vertex->out_degree) { edge->predecessor->vertex = NULL; list_move_tail(&vertex->entry, &fpl->vertices); } } static void unix_free_vertices(struct scm_fp_list *fpl) { struct unix_vertex *vertex, *next_vertex; list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { list_del(&vertex->entry); kfree(vertex); } } static DEFINE_SPINLOCK(unix_gc_lock); unsigned int unix_tot_inflight; void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) { int i = 0, j = 0; spin_lock(&unix_gc_lock); if (!fpl->count_unix) goto out; do { struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); struct unix_edge *edge; if (!inflight) continue; edge = fpl->edges + i++; edge->predecessor = inflight; edge->successor = receiver; unix_add_edge(fpl, edge); } while (i < fpl->count_unix); receiver->scm_stat.nr_unix_fds += fpl->count_unix; WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); out: WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); spin_unlock(&unix_gc_lock); fpl->inflight = true; unix_free_vertices(fpl); } void unix_del_edges(struct scm_fp_list *fpl) { struct unix_sock *receiver; int i = 0; spin_lock(&unix_gc_lock); if (!fpl->count_unix) goto out; do { struct unix_edge *edge = fpl->edges + i++; unix_del_edge(fpl, edge); } while (i < fpl->count_unix); if (!fpl->dead) { receiver = fpl->edges[0].successor; receiver->scm_stat.nr_unix_fds -= fpl->count_unix; } WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); out: WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); spin_unlock(&unix_gc_lock); fpl->inflight = false; } void unix_update_edges(struct unix_sock *receiver) { /* nr_unix_fds is only updated under unix_state_lock(). * If it's 0 here, the embryo socket is not part of the * inflight graph, and GC will not see it, so no lock needed. */ if (!receiver->scm_stat.nr_unix_fds) { receiver->listener = NULL; } else { spin_lock(&unix_gc_lock); unix_update_graph(unix_sk(receiver->listener)->vertex); receiver->listener = NULL; spin_unlock(&unix_gc_lock); } } int unix_prepare_fpl(struct scm_fp_list *fpl) { struct unix_vertex *vertex; int i; if (!fpl->count_unix) return 0; for (i = 0; i < fpl->count_unix; i++) { vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); if (!vertex) goto err; list_add(&vertex->entry, &fpl->vertices); } fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), GFP_KERNEL_ACCOUNT); if (!fpl->edges) goto err; return 0; err: unix_free_vertices(fpl); return -ENOMEM; } void unix_destroy_fpl(struct scm_fp_list *fpl) { if (fpl->inflight) unix_del_edges(fpl); kvfree(fpl->edges); unix_free_vertices(fpl); } static bool unix_vertex_dead(struct unix_vertex *vertex) { struct unix_edge *edge; struct unix_sock *u; long total_ref; list_for_each_entry(edge, &vertex->edges, vertex_entry) { struct unix_vertex *next_vertex = unix_edge_successor(edge); /* The vertex's fd can be received by a non-inflight socket. */ if (!next_vertex) return false; /* The vertex's fd can be received by an inflight socket in * another SCC. */ if (next_vertex->scc_index != vertex->scc_index) return false; } /* No receiver exists out of the same SCC. */ edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); u = edge->predecessor; total_ref = file_count(u->sk.sk_socket->file); /* If not close()d, total_ref > out_degree. */ if (total_ref != vertex->out_degree) return false; return true; } enum unix_recv_queue_lock_class { U_RECVQ_LOCK_NORMAL, U_RECVQ_LOCK_EMBRYO, }; static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) { struct unix_vertex *vertex; list_for_each_entry_reverse(vertex, scc, scc_entry) { struct sk_buff_head *queue; struct unix_edge *edge; struct unix_sock *u; edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); u = edge->predecessor; queue = &u->sk.sk_receive_queue; spin_lock(&queue->lock); if (u->sk.sk_state == TCP_LISTEN) { struct sk_buff *skb; skb_queue_walk(queue, skb) { struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; /* listener -> embryo order, the inversion never happens. */ spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO); skb_queue_splice_init(embryo_queue, hitlist); spin_unlock(&embryo_queue->lock); } } else { skb_queue_splice_init(queue, hitlist); #if IS_ENABLED(CONFIG_AF_UNIX_OOB) if (u->oob_skb) { kfree_skb(u->oob_skb); u->oob_skb = NULL; } #endif } spin_unlock(&queue->lock); } } static bool unix_scc_cyclic(struct list_head *scc) { struct unix_vertex *vertex; struct unix_edge *edge; /* SCC containing multiple vertices ? */ if (!list_is_singular(scc)) return true; vertex = list_first_entry(scc, typeof(*vertex), scc_entry); /* Self-reference or a embryo-listener circle ? */ list_for_each_entry(edge, &vertex->edges, vertex_entry) { if (unix_edge_successor(edge) == vertex) return true; } return false; } static LIST_HEAD(unix_visited_vertices); static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, struct sk_buff_head *hitlist) { LIST_HEAD(vertex_stack); struct unix_edge *edge; LIST_HEAD(edge_stack); next_vertex: /* Push vertex to vertex_stack and mark it as on-stack * (index >= UNIX_VERTEX_INDEX_START). * The vertex will be popped when finalising SCC later. */ list_add(&vertex->scc_entry, &vertex_stack); vertex->index = *last_index; vertex->scc_index = *last_index; (*last_index)++; /* Explore neighbour vertices (receivers of the current vertex's fd). */ list_for_each_entry(edge, &vertex->edges, vertex_entry) { struct unix_vertex *next_vertex = unix_edge_successor(edge); if (!next_vertex) continue; if (next_vertex->index == unix_vertex_unvisited_index) { /* Iterative deepening depth first search * * 1. Push a forward edge to edge_stack and set * the successor to vertex for the next iteration. */ list_add(&edge->stack_entry, &edge_stack); vertex = next_vertex; goto next_vertex; /* 2. Pop the edge directed to the current vertex * and restore the ancestor for backtracking. */ prev_vertex: edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); list_del_init(&edge->stack_entry); next_vertex = vertex; vertex = edge->predecessor->vertex; /* If the successor has a smaller scc_index, two vertices * are in the same SCC, so propagate the smaller scc_index * to skip SCC finalisation. */ vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); } else if (next_vertex->index != unix_vertex_grouped_index) { /* Loop detected by a back/cross edge. * * The successor is on vertex_stack, so two vertices are in * the same SCC. If the successor has a smaller *scc_index*, * propagate it to skip SCC finalisation. */ vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); } else { /* The successor was already grouped as another SCC */ } } if (vertex->index == vertex->scc_index) { struct list_head scc; bool scc_dead = true; /* SCC finalised. * * If the scc_index was not updated, all the vertices above on * vertex_stack are in the same SCC. Group them using scc_entry. */ __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); list_for_each_entry_reverse(vertex, &scc, scc_entry) { /* Don't restart DFS from this vertex in unix_walk_scc(). */ list_move_tail(&vertex->entry, &unix_visited_vertices); /* Mark vertex as off-stack. */ vertex->index = unix_vertex_grouped_index; if (scc_dead) scc_dead = unix_vertex_dead(vertex); } if (scc_dead) unix_collect_skb(&scc, hitlist); else if (!unix_graph_maybe_cyclic) unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); list_del(&scc); } /* Need backtracking ? */ if (!list_empty(&edge_stack)) goto prev_vertex; } static void unix_walk_scc(struct sk_buff_head *hitlist) { unsigned long last_index = UNIX_VERTEX_INDEX_START; unix_graph_maybe_cyclic = false; /* Visit every vertex exactly once. * __unix_walk_scc() moves visited vertices to unix_visited_vertices. */ while (!list_empty(&unix_unvisited_vertices)) { struct unix_vertex *vertex; vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); __unix_walk_scc(vertex, &last_index, hitlist); } list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); unix_graph_grouped = true; } static void unix_walk_scc_fast(struct sk_buff_head *hitlist) { unix_graph_maybe_cyclic = false; while (!list_empty(&unix_unvisited_vertices)) { struct unix_vertex *vertex; struct list_head scc; bool scc_dead = true; vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); list_add(&scc, &vertex->scc_entry); list_for_each_entry_reverse(vertex, &scc, scc_entry) { list_move_tail(&vertex->entry, &unix_visited_vertices); if (scc_dead) scc_dead = unix_vertex_dead(vertex); } if (scc_dead) unix_collect_skb(&scc, hitlist); else if (!unix_graph_maybe_cyclic) unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); list_del(&scc); } list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); } static bool gc_in_progress; static void __unix_gc(struct work_struct *work) { struct sk_buff_head hitlist; struct sk_buff *skb; spin_lock(&unix_gc_lock); if (!unix_graph_maybe_cyclic) { spin_unlock(&unix_gc_lock); goto skip_gc; } __skb_queue_head_init(&hitlist); if (unix_graph_grouped) unix_walk_scc_fast(&hitlist); else unix_walk_scc(&hitlist); spin_unlock(&unix_gc_lock); skb_queue_walk(&hitlist, skb) { if (UNIXCB(skb).fp) UNIXCB(skb).fp->dead = true; } __skb_queue_purge(&hitlist); skip_gc: WRITE_ONCE(gc_in_progress, false); } static DECLARE_WORK(unix_gc_work, __unix_gc); void unix_gc(void) { WRITE_ONCE(gc_in_progress, true); queue_work(system_unbound_wq, &unix_gc_work); } #define UNIX_INFLIGHT_TRIGGER_GC 16000 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) void wait_for_unix_gc(struct scm_fp_list *fpl) { /* If number of inflight sockets is insane, * force a garbage collect right now. * * Paired with the WRITE_ONCE() in unix_inflight(), * unix_notinflight(), and __unix_gc(). */ if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && !READ_ONCE(gc_in_progress)) unix_gc(); /* Penalise users who want to send AF_UNIX sockets * but whose sockets have not been received yet. */ if (!fpl || !fpl->count_unix || READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) return; if (READ_ONCE(gc_in_progress)) flush_work(&unix_gc_work); }