// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2018 HUAWEI, Inc. * https://www.huawei.com/ * Copyright (C) 2022 Alibaba Cloud */ #include "compress.h" #include #include #include #define Z_EROFS_PCLUSTER_MAX_PAGES (Z_EROFS_PCLUSTER_MAX_SIZE / PAGE_SIZE) #define Z_EROFS_INLINE_BVECS 2 /* * let's leave a type here in case of introducing * another tagged pointer later. */ typedef void *z_erofs_next_pcluster_t; struct z_erofs_bvec { union { struct page *page; struct folio *folio; }; int offset; unsigned int end; }; #define __Z_EROFS_BVSET(name, total) \ struct name { \ /* point to the next page which contains the following bvecs */ \ struct page *nextpage; \ struct z_erofs_bvec bvec[total]; \ } __Z_EROFS_BVSET(z_erofs_bvset,); __Z_EROFS_BVSET(z_erofs_bvset_inline, Z_EROFS_INLINE_BVECS); /* * Structure fields follow one of the following exclusion rules. * * I: Modifiable by initialization/destruction paths and read-only * for everyone else; * * L: Field should be protected by the pcluster lock; * * A: Field should be accessed / updated in atomic for parallelized code. */ struct z_erofs_pcluster { struct erofs_workgroup obj; struct mutex lock; /* A: point to next chained pcluster or TAILs */ z_erofs_next_pcluster_t next; /* L: the maximum decompression size of this round */ unsigned int length; /* L: total number of bvecs */ unsigned int vcnt; /* I: pcluster size (compressed size) in bytes */ unsigned int pclustersize; /* I: page offset of start position of decompression */ unsigned short pageofs_out; /* I: page offset of inline compressed data */ unsigned short pageofs_in; union { /* L: inline a certain number of bvec for bootstrap */ struct z_erofs_bvset_inline bvset; /* I: can be used to free the pcluster by RCU. */ struct rcu_head rcu; }; /* I: compression algorithm format */ unsigned char algorithmformat; /* L: whether partial decompression or not */ bool partial; /* L: indicate several pageofs_outs or not */ bool multibases; /* L: whether extra buffer allocations are best-effort */ bool besteffort; /* A: compressed bvecs (can be cached or inplaced pages) */ struct z_erofs_bvec compressed_bvecs[]; }; /* the end of a chain of pclusters */ #define Z_EROFS_PCLUSTER_TAIL ((void *) 0x700 + POISON_POINTER_DELTA) #define Z_EROFS_PCLUSTER_NIL (NULL) struct z_erofs_decompressqueue { struct super_block *sb; atomic_t pending_bios; z_erofs_next_pcluster_t head; union { struct completion done; struct work_struct work; struct kthread_work kthread_work; } u; bool eio, sync; }; static inline bool z_erofs_is_inline_pcluster(struct z_erofs_pcluster *pcl) { return !pcl->obj.index; } static inline unsigned int z_erofs_pclusterpages(struct z_erofs_pcluster *pcl) { return PAGE_ALIGN(pcl->pclustersize) >> PAGE_SHIFT; } #define MNGD_MAPPING(sbi) ((sbi)->managed_cache->i_mapping) static bool erofs_folio_is_managed(struct erofs_sb_info *sbi, struct folio *fo) { return fo->mapping == MNGD_MAPPING(sbi); } /* * bit 30: I/O error occurred on this folio * bit 0 - 29: remaining parts to complete this folio */ #define Z_EROFS_FOLIO_EIO (1 << 30) static void z_erofs_onlinefolio_init(struct folio *folio) { union { atomic_t o; void *v; } u = { .o = ATOMIC_INIT(1) }; folio->private = u.v; /* valid only if file-backed folio is locked */ } static void z_erofs_onlinefolio_split(struct folio *folio) { atomic_inc((atomic_t *)&folio->private); } static void z_erofs_onlinefolio_end(struct folio *folio, int err) { int orig, v; do { orig = atomic_read((atomic_t *)&folio->private); v = (orig - 1) | (err ? Z_EROFS_FOLIO_EIO : 0); } while (atomic_cmpxchg((atomic_t *)&folio->private, orig, v) != orig); if (v & ~Z_EROFS_FOLIO_EIO) return; folio->private = 0; folio_end_read(folio, !(v & Z_EROFS_FOLIO_EIO)); } #define Z_EROFS_ONSTACK_PAGES 32 /* * since pclustersize is variable for big pcluster feature, introduce slab * pools implementation for different pcluster sizes. */ struct z_erofs_pcluster_slab { struct kmem_cache *slab; unsigned int maxpages; char name[48]; }; #define _PCLP(n) { .maxpages = n } static struct z_erofs_pcluster_slab pcluster_pool[] __read_mostly = { _PCLP(1), _PCLP(4), _PCLP(16), _PCLP(64), _PCLP(128), _PCLP(Z_EROFS_PCLUSTER_MAX_PAGES) }; struct z_erofs_bvec_iter { struct page *bvpage; struct z_erofs_bvset *bvset; unsigned int nr, cur; }; static struct page *z_erofs_bvec_iter_end(struct z_erofs_bvec_iter *iter) { if (iter->bvpage) kunmap_local(iter->bvset); return iter->bvpage; } static struct page *z_erofs_bvset_flip(struct z_erofs_bvec_iter *iter) { unsigned long base = (unsigned long)((struct z_erofs_bvset *)0)->bvec; /* have to access nextpage in advance, otherwise it will be unmapped */ struct page *nextpage = iter->bvset->nextpage; struct page *oldpage; DBG_BUGON(!nextpage); oldpage = z_erofs_bvec_iter_end(iter); iter->bvpage = nextpage; iter->bvset = kmap_local_page(nextpage); iter->nr = (PAGE_SIZE - base) / sizeof(struct z_erofs_bvec); iter->cur = 0; return oldpage; } static void z_erofs_bvec_iter_begin(struct z_erofs_bvec_iter *iter, struct z_erofs_bvset_inline *bvset, unsigned int bootstrap_nr, unsigned int cur) { *iter = (struct z_erofs_bvec_iter) { .nr = bootstrap_nr, .bvset = (struct z_erofs_bvset *)bvset, }; while (cur > iter->nr) { cur -= iter->nr; z_erofs_bvset_flip(iter); } iter->cur = cur; } static int z_erofs_bvec_enqueue(struct z_erofs_bvec_iter *iter, struct z_erofs_bvec *bvec, struct page **candidate_bvpage, struct page **pagepool) { if (iter->cur >= iter->nr) { struct page *nextpage = *candidate_bvpage; if (!nextpage) { nextpage = erofs_allocpage(pagepool, GFP_KERNEL); if (!nextpage) return -ENOMEM; set_page_private(nextpage, Z_EROFS_SHORTLIVED_PAGE); } DBG_BUGON(iter->bvset->nextpage); iter->bvset->nextpage = nextpage; z_erofs_bvset_flip(iter); iter->bvset->nextpage = NULL; *candidate_bvpage = NULL; } iter->bvset->bvec[iter->cur++] = *bvec; return 0; } static void z_erofs_bvec_dequeue(struct z_erofs_bvec_iter *iter, struct z_erofs_bvec *bvec, struct page **old_bvpage) { if (iter->cur == iter->nr) *old_bvpage = z_erofs_bvset_flip(iter); else *old_bvpage = NULL; *bvec = iter->bvset->bvec[iter->cur++]; } static void z_erofs_destroy_pcluster_pool(void) { int i; for (i = 0; i < ARRAY_SIZE(pcluster_pool); ++i) { if (!pcluster_pool[i].slab) continue; kmem_cache_destroy(pcluster_pool[i].slab); pcluster_pool[i].slab = NULL; } } static int z_erofs_create_pcluster_pool(void) { struct z_erofs_pcluster_slab *pcs; struct z_erofs_pcluster *a; unsigned int size; for (pcs = pcluster_pool; pcs < pcluster_pool + ARRAY_SIZE(pcluster_pool); ++pcs) { size = struct_size(a, compressed_bvecs, pcs->maxpages); sprintf(pcs->name, "erofs_pcluster-%u", pcs->maxpages); pcs->slab = kmem_cache_create(pcs->name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); if (pcs->slab) continue; z_erofs_destroy_pcluster_pool(); return -ENOMEM; } return 0; } static struct z_erofs_pcluster *z_erofs_alloc_pcluster(unsigned int size) { unsigned int nrpages = PAGE_ALIGN(size) >> PAGE_SHIFT; struct z_erofs_pcluster_slab *pcs = pcluster_pool; for (; pcs < pcluster_pool + ARRAY_SIZE(pcluster_pool); ++pcs) { struct z_erofs_pcluster *pcl; if (nrpages > pcs->maxpages) continue; pcl = kmem_cache_zalloc(pcs->slab, GFP_KERNEL); if (!pcl) return ERR_PTR(-ENOMEM); pcl->pclustersize = size; return pcl; } return ERR_PTR(-EINVAL); } static void z_erofs_free_pcluster(struct z_erofs_pcluster *pcl) { unsigned int pclusterpages = z_erofs_pclusterpages(pcl); int i; for (i = 0; i < ARRAY_SIZE(pcluster_pool); ++i) { struct z_erofs_pcluster_slab *pcs = pcluster_pool + i; if (pclusterpages > pcs->maxpages) continue; kmem_cache_free(pcs->slab, pcl); return; } DBG_BUGON(1); } static struct workqueue_struct *z_erofs_workqueue __read_mostly; #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD static struct kthread_worker __rcu **z_erofs_pcpu_workers; static void erofs_destroy_percpu_workers(void) { struct kthread_worker *worker; unsigned int cpu; for_each_possible_cpu(cpu) { worker = rcu_dereference_protected( z_erofs_pcpu_workers[cpu], 1); rcu_assign_pointer(z_erofs_pcpu_workers[cpu], NULL); if (worker) kthread_destroy_worker(worker); } kfree(z_erofs_pcpu_workers); } static struct kthread_worker *erofs_init_percpu_worker(int cpu) { struct kthread_worker *worker = kthread_create_worker_on_cpu(cpu, 0, "erofs_worker/%u", cpu); if (IS_ERR(worker)) return worker; if (IS_ENABLED(CONFIG_EROFS_FS_PCPU_KTHREAD_HIPRI)) sched_set_fifo_low(worker->task); return worker; } static int erofs_init_percpu_workers(void) { struct kthread_worker *worker; unsigned int cpu; z_erofs_pcpu_workers = kcalloc(num_possible_cpus(), sizeof(struct kthread_worker *), GFP_ATOMIC); if (!z_erofs_pcpu_workers) return -ENOMEM; for_each_online_cpu(cpu) { /* could miss cpu{off,on}line? */ worker = erofs_init_percpu_worker(cpu); if (!IS_ERR(worker)) rcu_assign_pointer(z_erofs_pcpu_workers[cpu], worker); } return 0; } #else static inline void erofs_destroy_percpu_workers(void) {} static inline int erofs_init_percpu_workers(void) { return 0; } #endif #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_EROFS_FS_PCPU_KTHREAD) static DEFINE_SPINLOCK(z_erofs_pcpu_worker_lock); static enum cpuhp_state erofs_cpuhp_state; static int erofs_cpu_online(unsigned int cpu) { struct kthread_worker *worker, *old; worker = erofs_init_percpu_worker(cpu); if (IS_ERR(worker)) return PTR_ERR(worker); spin_lock(&z_erofs_pcpu_worker_lock); old = rcu_dereference_protected(z_erofs_pcpu_workers[cpu], lockdep_is_held(&z_erofs_pcpu_worker_lock)); if (!old) rcu_assign_pointer(z_erofs_pcpu_workers[cpu], worker); spin_unlock(&z_erofs_pcpu_worker_lock); if (old) kthread_destroy_worker(worker); return 0; } static int erofs_cpu_offline(unsigned int cpu) { struct kthread_worker *worker; spin_lock(&z_erofs_pcpu_worker_lock); worker = rcu_dereference_protected(z_erofs_pcpu_workers[cpu], lockdep_is_held(&z_erofs_pcpu_worker_lock)); rcu_assign_pointer(z_erofs_pcpu_workers[cpu], NULL); spin_unlock(&z_erofs_pcpu_worker_lock); synchronize_rcu(); if (worker) kthread_destroy_worker(worker); return 0; } static int erofs_cpu_hotplug_init(void) { int state; state = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "fs/erofs:online", erofs_cpu_online, erofs_cpu_offline); if (state < 0) return state; erofs_cpuhp_state = state; return 0; } static void erofs_cpu_hotplug_destroy(void) { if (erofs_cpuhp_state) cpuhp_remove_state_nocalls(erofs_cpuhp_state); } #else /* !CONFIG_HOTPLUG_CPU || !CONFIG_EROFS_FS_PCPU_KTHREAD */ static inline int erofs_cpu_hotplug_init(void) { return 0; } static inline void erofs_cpu_hotplug_destroy(void) {} #endif void z_erofs_exit_zip_subsystem(void) { erofs_cpu_hotplug_destroy(); erofs_destroy_percpu_workers(); destroy_workqueue(z_erofs_workqueue); z_erofs_destroy_pcluster_pool(); } int __init z_erofs_init_zip_subsystem(void) { int err = z_erofs_create_pcluster_pool(); if (err) goto out_error_pcluster_pool; z_erofs_workqueue = alloc_workqueue("erofs_worker", WQ_UNBOUND | WQ_HIGHPRI, num_possible_cpus()); if (!z_erofs_workqueue) { err = -ENOMEM; goto out_error_workqueue_init; } err = erofs_init_percpu_workers(); if (err) goto out_error_pcpu_worker; err = erofs_cpu_hotplug_init(); if (err < 0) goto out_error_cpuhp_init; return err; out_error_cpuhp_init: erofs_destroy_percpu_workers(); out_error_pcpu_worker: destroy_workqueue(z_erofs_workqueue); out_error_workqueue_init: z_erofs_destroy_pcluster_pool(); out_error_pcluster_pool: return err; } enum z_erofs_pclustermode { Z_EROFS_PCLUSTER_INFLIGHT, /* * a weak form of Z_EROFS_PCLUSTER_FOLLOWED, the difference is that it * could be dispatched into bypass queue later due to uptodated managed * pages. All related online pages cannot be reused for inplace I/O (or * bvpage) since it can be directly decoded without I/O submission. */ Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE, /* * The pcluster was just linked to a decompression chain by us. It can * also be linked with the remaining pclusters, which means if the * processing page is the tail page of a pcluster, this pcluster can * safely use the whole page (since the previous pcluster is within the * same chain) for in-place I/O, as illustrated below: * ___________________________________________________ * | tail (partial) page | head (partial) page | * | (of the current pcl) | (of the previous pcl) | * |___PCLUSTER_FOLLOWED___|_____PCLUSTER_FOLLOWED_____| * * [ (*) the page above can be used as inplace I/O. ] */ Z_EROFS_PCLUSTER_FOLLOWED, }; struct z_erofs_decompress_frontend { struct inode *const inode; struct erofs_map_blocks map; struct z_erofs_bvec_iter biter; struct page *pagepool; struct page *candidate_bvpage; struct z_erofs_pcluster *pcl; z_erofs_next_pcluster_t owned_head; enum z_erofs_pclustermode mode; erofs_off_t headoffset; /* a pointer used to pick up inplace I/O pages */ unsigned int icur; }; #define DECOMPRESS_FRONTEND_INIT(__i) { \ .inode = __i, .owned_head = Z_EROFS_PCLUSTER_TAIL, \ .mode = Z_EROFS_PCLUSTER_FOLLOWED } static bool z_erofs_should_alloc_cache(struct z_erofs_decompress_frontend *fe) { unsigned int cachestrategy = EROFS_I_SB(fe->inode)->opt.cache_strategy; if (cachestrategy <= EROFS_ZIP_CACHE_DISABLED) return false; if (!(fe->map.m_flags & EROFS_MAP_FULL_MAPPED)) return true; if (cachestrategy >= EROFS_ZIP_CACHE_READAROUND && fe->map.m_la < fe->headoffset) return true; return false; } static void z_erofs_bind_cache(struct z_erofs_decompress_frontend *fe) { struct address_space *mc = MNGD_MAPPING(EROFS_I_SB(fe->inode)); struct z_erofs_pcluster *pcl = fe->pcl; unsigned int pclusterpages = z_erofs_pclusterpages(pcl); bool shouldalloc = z_erofs_should_alloc_cache(fe); bool standalone = true; /* * optimistic allocation without direct reclaim since inplace I/O * can be used if low memory otherwise. */ gfp_t gfp = (mapping_gfp_mask(mc) & ~__GFP_DIRECT_RECLAIM) | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; unsigned int i; if (i_blocksize(fe->inode) != PAGE_SIZE || fe->mode < Z_EROFS_PCLUSTER_FOLLOWED) return; for (i = 0; i < pclusterpages; ++i) { struct page *page, *newpage; /* Inaccurate check w/o locking to avoid unneeded lookups */ if (READ_ONCE(pcl->compressed_bvecs[i].page)) continue; page = find_get_page(mc, pcl->obj.index + i); if (!page) { /* I/O is needed, no possible to decompress directly */ standalone = false; if (!shouldalloc) continue; /* * Try cached I/O if allocation succeeds or fallback to * in-place I/O instead to avoid any direct reclaim. */ newpage = erofs_allocpage(&fe->pagepool, gfp); if (!newpage) continue; set_page_private(newpage, Z_EROFS_PREALLOCATED_PAGE); } spin_lock(&pcl->obj.lockref.lock); if (!pcl->compressed_bvecs[i].page) { pcl->compressed_bvecs[i].page = page ? page : newpage; spin_unlock(&pcl->obj.lockref.lock); continue; } spin_unlock(&pcl->obj.lockref.lock); if (page) put_page(page); else if (newpage) erofs_pagepool_add(&fe->pagepool, newpage); } /* * don't do inplace I/O if all compressed pages are available in * managed cache since it can be moved to the bypass queue instead. */ if (standalone) fe->mode = Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE; } /* called by erofs_shrinker to get rid of all cached compressed bvecs */ int erofs_try_to_free_all_cached_folios(struct erofs_sb_info *sbi, struct erofs_workgroup *grp) { struct z_erofs_pcluster *const pcl = container_of(grp, struct z_erofs_pcluster, obj); unsigned int pclusterpages = z_erofs_pclusterpages(pcl); int i; DBG_BUGON(z_erofs_is_inline_pcluster(pcl)); /* There is no actice user since the pcluster is now freezed */ for (i = 0; i < pclusterpages; ++i) { struct folio *folio = pcl->compressed_bvecs[i].folio; if (!folio) continue; /* Avoid reclaiming or migrating this folio */ if (!folio_trylock(folio)) return -EBUSY; if (!erofs_folio_is_managed(sbi, folio)) continue; pcl->compressed_bvecs[i].folio = NULL; folio_detach_private(folio); folio_unlock(folio); } return 0; } static bool z_erofs_cache_release_folio(struct folio *folio, gfp_t gfp) { struct z_erofs_pcluster *pcl = folio_get_private(folio); unsigned int pclusterpages = z_erofs_pclusterpages(pcl); bool ret; int i; if (!folio_test_private(folio)) return true; ret = false; spin_lock(&pcl->obj.lockref.lock); if (pcl->obj.lockref.count <= 0) { DBG_BUGON(z_erofs_is_inline_pcluster(pcl)); for (i = 0; i < pclusterpages; ++i) { if (pcl->compressed_bvecs[i].folio == folio) { pcl->compressed_bvecs[i].folio = NULL; folio_detach_private(folio); ret = true; break; } } } spin_unlock(&pcl->obj.lockref.lock); return ret; } /* * It will be called only on inode eviction. In case that there are still some * decompression requests in progress, wait with rescheduling for a bit here. * An extra lock could be introduced instead but it seems unnecessary. */ static void z_erofs_cache_invalidate_folio(struct folio *folio, size_t offset, size_t length) { const size_t stop = length + offset; /* Check for potential overflow in debug mode */ DBG_BUGON(stop > folio_size(folio) || stop < length); if (offset == 0 && stop == folio_size(folio)) while (!z_erofs_cache_release_folio(folio, 0)) cond_resched(); } static const struct address_space_operations z_erofs_cache_aops = { .release_folio = z_erofs_cache_release_folio, .invalidate_folio = z_erofs_cache_invalidate_folio, }; int erofs_init_managed_cache(struct super_block *sb) { struct inode *const inode = new_inode(sb); if (!inode) return -ENOMEM; set_nlink(inode, 1); inode->i_size = OFFSET_MAX; inode->i_mapping->a_ops = &z_erofs_cache_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_KERNEL); EROFS_SB(sb)->managed_cache = inode; return 0; } /* callers must be with pcluster lock held */ static int z_erofs_attach_page(struct z_erofs_decompress_frontend *fe, struct z_erofs_bvec *bvec, bool exclusive) { struct z_erofs_pcluster *pcl = fe->pcl; int ret; if (exclusive) { /* give priority for inplaceio to use file pages first */ spin_lock(&pcl->obj.lockref.lock); while (fe->icur > 0) { if (pcl->compressed_bvecs[--fe->icur].page) continue; pcl->compressed_bvecs[fe->icur] = *bvec; spin_unlock(&pcl->obj.lockref.lock); return 0; } spin_unlock(&pcl->obj.lockref.lock); /* otherwise, check if it can be used as a bvpage */ if (fe->mode >= Z_EROFS_PCLUSTER_FOLLOWED && !fe->candidate_bvpage) fe->candidate_bvpage = bvec->page; } ret = z_erofs_bvec_enqueue(&fe->biter, bvec, &fe->candidate_bvpage, &fe->pagepool); fe->pcl->vcnt += (ret >= 0); return ret; } static void z_erofs_try_to_claim_pcluster(struct z_erofs_decompress_frontend *f) { struct z_erofs_pcluster *pcl = f->pcl; z_erofs_next_pcluster_t *owned_head = &f->owned_head; /* type 1, nil pcluster (this pcluster doesn't belong to any chain.) */ if (cmpxchg(&pcl->next, Z_EROFS_PCLUSTER_NIL, *owned_head) == Z_EROFS_PCLUSTER_NIL) { *owned_head = &pcl->next; /* so we can attach this pcluster to our submission chain. */ f->mode = Z_EROFS_PCLUSTER_FOLLOWED; return; } /* type 2, it belongs to an ongoing chain */ f->mode = Z_EROFS_PCLUSTER_INFLIGHT; } static int z_erofs_register_pcluster(struct z_erofs_decompress_frontend *fe) { struct erofs_map_blocks *map = &fe->map; struct super_block *sb = fe->inode->i_sb; bool ztailpacking = map->m_flags & EROFS_MAP_META; struct z_erofs_pcluster *pcl; struct erofs_workgroup *grp; int err; if (!(map->m_flags & EROFS_MAP_ENCODED) || (!ztailpacking && !erofs_blknr(sb, map->m_pa))) { DBG_BUGON(1); return -EFSCORRUPTED; } /* no available pcluster, let's allocate one */ pcl = z_erofs_alloc_pcluster(map->m_plen); if (IS_ERR(pcl)) return PTR_ERR(pcl); spin_lock_init(&pcl->obj.lockref.lock); pcl->obj.lockref.count = 1; /* one ref for this request */ pcl->algorithmformat = map->m_algorithmformat; pcl->length = 0; pcl->partial = true; /* new pclusters should be claimed as type 1, primary and followed */ pcl->next = fe->owned_head; pcl->pageofs_out = map->m_la & ~PAGE_MASK; fe->mode = Z_EROFS_PCLUSTER_FOLLOWED; /* * lock all primary followed works before visible to others * and mutex_trylock *never* fails for a new pcluster. */ mutex_init(&pcl->lock); DBG_BUGON(!mutex_trylock(&pcl->lock)); if (ztailpacking) { pcl->obj.index = 0; /* which indicates ztailpacking */ } else { pcl->obj.index = erofs_blknr(sb, map->m_pa); grp = erofs_insert_workgroup(fe->inode->i_sb, &pcl->obj); if (IS_ERR(grp)) { err = PTR_ERR(grp); goto err_out; } if (grp != &pcl->obj) { fe->pcl = container_of(grp, struct z_erofs_pcluster, obj); err = -EEXIST; goto err_out; } } fe->owned_head = &pcl->next; fe->pcl = pcl; return 0; err_out: mutex_unlock(&pcl->lock); z_erofs_free_pcluster(pcl); return err; } static int z_erofs_pcluster_begin(struct z_erofs_decompress_frontend *fe) { struct erofs_map_blocks *map = &fe->map; struct super_block *sb = fe->inode->i_sb; erofs_blk_t blknr = erofs_blknr(sb, map->m_pa); struct erofs_workgroup *grp = NULL; int ret; DBG_BUGON(fe->pcl); /* must be Z_EROFS_PCLUSTER_TAIL or pointed to previous pcluster */ DBG_BUGON(fe->owned_head == Z_EROFS_PCLUSTER_NIL); if (!(map->m_flags & EROFS_MAP_META)) { grp = erofs_find_workgroup(sb, blknr); } else if ((map->m_pa & ~PAGE_MASK) + map->m_plen > PAGE_SIZE) { DBG_BUGON(1); return -EFSCORRUPTED; } if (grp) { fe->pcl = container_of(grp, struct z_erofs_pcluster, obj); ret = -EEXIST; } else { ret = z_erofs_register_pcluster(fe); } if (ret == -EEXIST) { mutex_lock(&fe->pcl->lock); z_erofs_try_to_claim_pcluster(fe); } else if (ret) { return ret; } z_erofs_bvec_iter_begin(&fe->biter, &fe->pcl->bvset, Z_EROFS_INLINE_BVECS, fe->pcl->vcnt); if (!z_erofs_is_inline_pcluster(fe->pcl)) { /* bind cache first when cached decompression is preferred */ z_erofs_bind_cache(fe); } else { void *mptr; mptr = erofs_read_metabuf(&map->buf, sb, blknr, EROFS_NO_KMAP); if (IS_ERR(mptr)) { ret = PTR_ERR(mptr); erofs_err(sb, "failed to get inline data %d", ret); return ret; } get_page(map->buf.page); WRITE_ONCE(fe->pcl->compressed_bvecs[0].page, map->buf.page); fe->pcl->pageofs_in = map->m_pa & ~PAGE_MASK; fe->mode = Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE; } /* file-backed inplace I/O pages are traversed in reverse order */ fe->icur = z_erofs_pclusterpages(fe->pcl); return 0; } /* * keep in mind that no referenced pclusters will be freed * only after a RCU grace period. */ static void z_erofs_rcu_callback(struct rcu_head *head) { z_erofs_free_pcluster(container_of(head, struct z_erofs_pcluster, rcu)); } void erofs_workgroup_free_rcu(struct erofs_workgroup *grp) { struct z_erofs_pcluster *const pcl = container_of(grp, struct z_erofs_pcluster, obj); call_rcu(&pcl->rcu, z_erofs_rcu_callback); } static void z_erofs_pcluster_end(struct z_erofs_decompress_frontend *fe) { struct z_erofs_pcluster *pcl = fe->pcl; if (!pcl) return; z_erofs_bvec_iter_end(&fe->biter); mutex_unlock(&pcl->lock); if (fe->candidate_bvpage) fe->candidate_bvpage = NULL; /* * if all pending pages are added, don't hold its reference * any longer if the pcluster isn't hosted by ourselves. */ if (fe->mode < Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE) erofs_workgroup_put(&pcl->obj); fe->pcl = NULL; } static int z_erofs_read_fragment(struct super_block *sb, struct page *page, unsigned int cur, unsigned int end, erofs_off_t pos) { struct inode *packed_inode = EROFS_SB(sb)->packed_inode; struct erofs_buf buf = __EROFS_BUF_INITIALIZER; unsigned int cnt; u8 *src; if (!packed_inode) return -EFSCORRUPTED; buf.inode = packed_inode; for (; cur < end; cur += cnt, pos += cnt) { cnt = min_t(unsigned int, end - cur, sb->s_blocksize - erofs_blkoff(sb, pos)); src = erofs_bread(&buf, erofs_blknr(sb, pos), EROFS_KMAP); if (IS_ERR(src)) { erofs_put_metabuf(&buf); return PTR_ERR(src); } memcpy_to_page(page, cur, src + erofs_blkoff(sb, pos), cnt); } erofs_put_metabuf(&buf); return 0; } static int z_erofs_scan_folio(struct z_erofs_decompress_frontend *fe, struct folio *folio, bool ra) { struct inode *const inode = fe->inode; struct erofs_map_blocks *const map = &fe->map; const loff_t offset = folio_pos(folio); const unsigned int bs = i_blocksize(inode), fs = folio_size(folio); bool tight = true, exclusive; unsigned int cur, end, len, split; int err = 0; z_erofs_onlinefolio_init(folio); split = 0; end = fs; repeat: if (offset + end - 1 < map->m_la || offset + end - 1 >= map->m_la + map->m_llen) { z_erofs_pcluster_end(fe); map->m_la = offset + end - 1; map->m_llen = 0; err = z_erofs_map_blocks_iter(inode, map, 0); if (err) goto out; } cur = offset > map->m_la ? 0 : map->m_la - offset; /* bump split parts first to avoid several separate cases */ ++split; if (!(map->m_flags & EROFS_MAP_MAPPED)) { folio_zero_segment(folio, cur, end); tight = false; goto next_part; } if (map->m_flags & EROFS_MAP_FRAGMENT) { erofs_off_t fpos = offset + cur - map->m_la; len = min_t(unsigned int, map->m_llen - fpos, end - cur); err = z_erofs_read_fragment(inode->i_sb, &folio->page, cur, cur + len, EROFS_I(inode)->z_fragmentoff + fpos); if (err) goto out; tight = false; goto next_part; } if (!fe->pcl) { err = z_erofs_pcluster_begin(fe); if (err) goto out; fe->pcl->besteffort |= !ra; } /* * Ensure the current partial folio belongs to this submit chain rather * than other concurrent submit chains or the noio(bypass) chain since * those chains are handled asynchronously thus the folio cannot be used * for inplace I/O or bvpage (should be processed in a strict order.) */ tight &= (fe->mode > Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE); exclusive = (!cur && ((split <= 1) || (tight && bs == fs))); if (cur) tight &= (fe->mode >= Z_EROFS_PCLUSTER_FOLLOWED); err = z_erofs_attach_page(fe, &((struct z_erofs_bvec) { .page = &folio->page, .offset = offset - map->m_la, .end = end, }), exclusive); if (err) goto out; z_erofs_onlinefolio_split(folio); if (fe->pcl->pageofs_out != (map->m_la & ~PAGE_MASK)) fe->pcl->multibases = true; if (fe->pcl->length < offset + end - map->m_la) { fe->pcl->length = offset + end - map->m_la; fe->pcl->pageofs_out = map->m_la & ~PAGE_MASK; } if ((map->m_flags & EROFS_MAP_FULL_MAPPED) && !(map->m_flags & EROFS_MAP_PARTIAL_REF) && fe->pcl->length == map->m_llen) fe->pcl->partial = false; next_part: /* shorten the remaining extent to update progress */ map->m_llen = offset + cur - map->m_la; map->m_flags &= ~EROFS_MAP_FULL_MAPPED; end = cur; if (end > 0) goto repeat; out: z_erofs_onlinefolio_end(folio, err); return err; } static bool z_erofs_is_sync_decompress(struct erofs_sb_info *sbi, unsigned int readahead_pages) { /* auto: enable for read_folio, disable for readahead */ if ((sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_AUTO) && !readahead_pages) return true; if ((sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_FORCE_ON) && (readahead_pages <= sbi->opt.max_sync_decompress_pages)) return true; return false; } static bool z_erofs_page_is_invalidated(struct page *page) { return !page->mapping && !z_erofs_is_shortlived_page(page); } struct z_erofs_decompress_backend { struct page *onstack_pages[Z_EROFS_ONSTACK_PAGES]; struct super_block *sb; struct z_erofs_pcluster *pcl; /* pages with the longest decompressed length for deduplication */ struct page **decompressed_pages; /* pages to keep the compressed data */ struct page **compressed_pages; struct list_head decompressed_secondary_bvecs; struct page **pagepool; unsigned int onstack_used, nr_pages; }; struct z_erofs_bvec_item { struct z_erofs_bvec bvec; struct list_head list; }; static void z_erofs_do_decompressed_bvec(struct z_erofs_decompress_backend *be, struct z_erofs_bvec *bvec) { struct z_erofs_bvec_item *item; unsigned int pgnr; if (!((bvec->offset + be->pcl->pageofs_out) & ~PAGE_MASK) && (bvec->end == PAGE_SIZE || bvec->offset + bvec->end == be->pcl->length)) { pgnr = (bvec->offset + be->pcl->pageofs_out) >> PAGE_SHIFT; DBG_BUGON(pgnr >= be->nr_pages); if (!be->decompressed_pages[pgnr]) { be->decompressed_pages[pgnr] = bvec->page; return; } } /* (cold path) one pcluster is requested multiple times */ item = kmalloc(sizeof(*item), GFP_KERNEL | __GFP_NOFAIL); item->bvec = *bvec; list_add(&item->list, &be->decompressed_secondary_bvecs); } static void z_erofs_fill_other_copies(struct z_erofs_decompress_backend *be, int err) { unsigned int off0 = be->pcl->pageofs_out; struct list_head *p, *n; list_for_each_safe(p, n, &be->decompressed_secondary_bvecs) { struct z_erofs_bvec_item *bvi; unsigned int end, cur; void *dst, *src; bvi = container_of(p, struct z_erofs_bvec_item, list); cur = bvi->bvec.offset < 0 ? -bvi->bvec.offset : 0; end = min_t(unsigned int, be->pcl->length - bvi->bvec.offset, bvi->bvec.end); dst = kmap_local_page(bvi->bvec.page); while (cur < end) { unsigned int pgnr, scur, len; pgnr = (bvi->bvec.offset + cur + off0) >> PAGE_SHIFT; DBG_BUGON(pgnr >= be->nr_pages); scur = bvi->bvec.offset + cur - ((pgnr << PAGE_SHIFT) - off0); len = min_t(unsigned int, end - cur, PAGE_SIZE - scur); if (!be->decompressed_pages[pgnr]) { err = -EFSCORRUPTED; cur += len; continue; } src = kmap_local_page(be->decompressed_pages[pgnr]); memcpy(dst + cur, src + scur, len); kunmap_local(src); cur += len; } kunmap_local(dst); z_erofs_onlinefolio_end(page_folio(bvi->bvec.page), err); list_del(p); kfree(bvi); } } static void z_erofs_parse_out_bvecs(struct z_erofs_decompress_backend *be) { struct z_erofs_pcluster *pcl = be->pcl; struct z_erofs_bvec_iter biter; struct page *old_bvpage; int i; z_erofs_bvec_iter_begin(&biter, &pcl->bvset, Z_EROFS_INLINE_BVECS, 0); for (i = 0; i < pcl->vcnt; ++i) { struct z_erofs_bvec bvec; z_erofs_bvec_dequeue(&biter, &bvec, &old_bvpage); if (old_bvpage) z_erofs_put_shortlivedpage(be->pagepool, old_bvpage); DBG_BUGON(z_erofs_page_is_invalidated(bvec.page)); z_erofs_do_decompressed_bvec(be, &bvec); } old_bvpage = z_erofs_bvec_iter_end(&biter); if (old_bvpage) z_erofs_put_shortlivedpage(be->pagepool, old_bvpage); } static int z_erofs_parse_in_bvecs(struct z_erofs_decompress_backend *be, bool *overlapped) { struct z_erofs_pcluster *pcl = be->pcl; unsigned int pclusterpages = z_erofs_pclusterpages(pcl); int i, err = 0; *overlapped = false; for (i = 0; i < pclusterpages; ++i) { struct z_erofs_bvec *bvec = &pcl->compressed_bvecs[i]; struct page *page = bvec->page; /* compressed data ought to be valid before decompressing */ if (!page) { err = -EIO; continue; } be->compressed_pages[i] = page; if (z_erofs_is_inline_pcluster(pcl) || erofs_folio_is_managed(EROFS_SB(be->sb), page_folio(page))) { if (!PageUptodate(page)) err = -EIO; continue; } DBG_BUGON(z_erofs_page_is_invalidated(page)); if (z_erofs_is_shortlived_page(page)) continue; z_erofs_do_decompressed_bvec(be, bvec); *overlapped = true; } return err; } static int z_erofs_decompress_pcluster(struct z_erofs_decompress_backend *be, int err) { struct erofs_sb_info *const sbi = EROFS_SB(be->sb); struct z_erofs_pcluster *pcl = be->pcl; unsigned int pclusterpages = z_erofs_pclusterpages(pcl); const struct z_erofs_decompressor *decomp = &erofs_decompressors[pcl->algorithmformat]; int i, err2; struct page *page; bool overlapped; mutex_lock(&pcl->lock); be->nr_pages = PAGE_ALIGN(pcl->length + pcl->pageofs_out) >> PAGE_SHIFT; /* allocate (de)compressed page arrays if cannot be kept on stack */ be->decompressed_pages = NULL; be->compressed_pages = NULL; be->onstack_used = 0; if (be->nr_pages <= Z_EROFS_ONSTACK_PAGES) { be->decompressed_pages = be->onstack_pages; be->onstack_used = be->nr_pages; memset(be->decompressed_pages, 0, sizeof(struct page *) * be->nr_pages); } if (pclusterpages + be->onstack_used <= Z_EROFS_ONSTACK_PAGES) be->compressed_pages = be->onstack_pages + be->onstack_used; if (!be->decompressed_pages) be->decompressed_pages = kvcalloc(be->nr_pages, sizeof(struct page *), GFP_KERNEL | __GFP_NOFAIL); if (!be->compressed_pages) be->compressed_pages = kvcalloc(pclusterpages, sizeof(struct page *), GFP_KERNEL | __GFP_NOFAIL); z_erofs_parse_out_bvecs(be); err2 = z_erofs_parse_in_bvecs(be, &overlapped); if (err2) err = err2; if (!err) err = decomp->decompress(&(struct z_erofs_decompress_req) { .sb = be->sb, .in = be->compressed_pages, .out = be->decompressed_pages, .pageofs_in = pcl->pageofs_in, .pageofs_out = pcl->pageofs_out, .inputsize = pcl->pclustersize, .outputsize = pcl->length, .alg = pcl->algorithmformat, .inplace_io = overlapped, .partial_decoding = pcl->partial, .fillgaps = pcl->multibases, .gfp = pcl->besteffort ? GFP_KERNEL | __GFP_NOFAIL : GFP_NOWAIT | __GFP_NORETRY }, be->pagepool); /* must handle all compressed pages before actual file pages */ if (z_erofs_is_inline_pcluster(pcl)) { page = pcl->compressed_bvecs[0].page; WRITE_ONCE(pcl->compressed_bvecs[0].page, NULL); put_page(page); } else { for (i = 0; i < pclusterpages; ++i) { /* consider shortlived pages added when decompressing */ page = be->compressed_pages[i]; if (!page || erofs_folio_is_managed(sbi, page_folio(page))) continue; (void)z_erofs_put_shortlivedpage(be->pagepool, page); WRITE_ONCE(pcl->compressed_bvecs[i].page, NULL); } } if (be->compressed_pages < be->onstack_pages || be->compressed_pages >= be->onstack_pages + Z_EROFS_ONSTACK_PAGES) kvfree(be->compressed_pages); z_erofs_fill_other_copies(be, err); for (i = 0; i < be->nr_pages; ++i) { page = be->decompressed_pages[i]; if (!page) continue; DBG_BUGON(z_erofs_page_is_invalidated(page)); /* recycle all individual short-lived pages */ if (z_erofs_put_shortlivedpage(be->pagepool, page)) continue; z_erofs_onlinefolio_end(page_folio(page), err); } if (be->decompressed_pages != be->onstack_pages) kvfree(be->decompressed_pages); pcl->length = 0; pcl->partial = true; pcl->multibases = false; pcl->besteffort = false; pcl->bvset.nextpage = NULL; pcl->vcnt = 0; /* pcluster lock MUST be taken before the following line */ WRITE_ONCE(pcl->next, Z_EROFS_PCLUSTER_NIL); mutex_unlock(&pcl->lock); return err; } static void z_erofs_decompress_queue(const struct z_erofs_decompressqueue *io, struct page **pagepool) { struct z_erofs_decompress_backend be = { .sb = io->sb, .pagepool = pagepool, .decompressed_secondary_bvecs = LIST_HEAD_INIT(be.decompressed_secondary_bvecs), }; z_erofs_next_pcluster_t owned = io->head; while (owned != Z_EROFS_PCLUSTER_TAIL) { DBG_BUGON(owned == Z_EROFS_PCLUSTER_NIL); be.pcl = container_of(owned, struct z_erofs_pcluster, next); owned = READ_ONCE(be.pcl->next); z_erofs_decompress_pcluster(&be, io->eio ? -EIO : 0); if (z_erofs_is_inline_pcluster(be.pcl)) z_erofs_free_pcluster(be.pcl); else erofs_workgroup_put(&be.pcl->obj); } } static void z_erofs_decompressqueue_work(struct work_struct *work) { struct z_erofs_decompressqueue *bgq = container_of(work, struct z_erofs_decompressqueue, u.work); struct page *pagepool = NULL; DBG_BUGON(bgq->head == Z_EROFS_PCLUSTER_TAIL); z_erofs_decompress_queue(bgq, &pagepool); erofs_release_pages(&pagepool); kvfree(bgq); } #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD static void z_erofs_decompressqueue_kthread_work(struct kthread_work *work) { z_erofs_decompressqueue_work((struct work_struct *)work); } #endif static void z_erofs_decompress_kickoff(struct z_erofs_decompressqueue *io, int bios) { struct erofs_sb_info *const sbi = EROFS_SB(io->sb); /* wake up the caller thread for sync decompression */ if (io->sync) { if (!atomic_add_return(bios, &io->pending_bios)) complete(&io->u.done); return; } if (atomic_add_return(bios, &io->pending_bios)) return; /* Use (kthread_)work and sync decompression for atomic contexts only */ if (!in_task() || irqs_disabled() || rcu_read_lock_any_held()) { #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD struct kthread_worker *worker; rcu_read_lock(); worker = rcu_dereference( z_erofs_pcpu_workers[raw_smp_processor_id()]); if (!worker) { INIT_WORK(&io->u.work, z_erofs_decompressqueue_work); queue_work(z_erofs_workqueue, &io->u.work); } else { kthread_queue_work(worker, &io->u.kthread_work); } rcu_read_unlock(); #else queue_work(z_erofs_workqueue, &io->u.work); #endif /* enable sync decompression for readahead */ if (sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_AUTO) sbi->opt.sync_decompress = EROFS_SYNC_DECOMPRESS_FORCE_ON; return; } z_erofs_decompressqueue_work(&io->u.work); } static void z_erofs_fill_bio_vec(struct bio_vec *bvec, struct z_erofs_decompress_frontend *f, struct z_erofs_pcluster *pcl, unsigned int nr, struct address_space *mc) { gfp_t gfp = mapping_gfp_mask(mc); bool tocache = false; struct z_erofs_bvec zbv; struct address_space *mapping; struct page *page; int bs = i_blocksize(f->inode); /* Except for inplace folios, the entire folio can be used for I/Os */ bvec->bv_offset = 0; bvec->bv_len = PAGE_SIZE; repeat: spin_lock(&pcl->obj.lockref.lock); zbv = pcl->compressed_bvecs[nr]; spin_unlock(&pcl->obj.lockref.lock); if (!zbv.folio) goto out_allocfolio; bvec->bv_page = &zbv.folio->page; DBG_BUGON(z_erofs_is_shortlived_page(bvec->bv_page)); /* * Handle preallocated cached folios. We tried to allocate such folios * without triggering direct reclaim. If allocation failed, inplace * file-backed folios will be used instead. */ if (zbv.folio->private == (void *)Z_EROFS_PREALLOCATED_PAGE) { zbv.folio->private = 0; tocache = true; goto out_tocache; } mapping = READ_ONCE(zbv.folio->mapping); /* * File-backed folios for inplace I/Os are all locked steady, * therefore it is impossible for `mapping` to be NULL. */ if (mapping && mapping != mc) { if (zbv.offset < 0) bvec->bv_offset = round_up(-zbv.offset, bs); bvec->bv_len = round_up(zbv.end, bs) - bvec->bv_offset; return; } folio_lock(zbv.folio); if (zbv.folio->mapping == mc) { /* * The cached folio is still in managed cache but without * a valid `->private` pcluster hint. Let's reconnect them. */ if (!folio_test_private(zbv.folio)) { folio_attach_private(zbv.folio, pcl); /* compressed_bvecs[] already takes a ref before */ folio_put(zbv.folio); } /* no need to submit if it is already up-to-date */ if (folio_test_uptodate(zbv.folio)) { folio_unlock(zbv.folio); bvec->bv_page = NULL; } return; } /* * It has been truncated, so it's unsafe to reuse this one. Let's * allocate a new page for compressed data. */ DBG_BUGON(zbv.folio->mapping); tocache = true; folio_unlock(zbv.folio); folio_put(zbv.folio); out_allocfolio: page = erofs_allocpage(&f->pagepool, gfp | __GFP_NOFAIL); spin_lock(&pcl->obj.lockref.lock); if (pcl->compressed_bvecs[nr].folio) { erofs_pagepool_add(&f->pagepool, page); spin_unlock(&pcl->obj.lockref.lock); cond_resched(); goto repeat; } pcl->compressed_bvecs[nr].folio = zbv.folio = page_folio(page); spin_unlock(&pcl->obj.lockref.lock); bvec->bv_page = page; out_tocache: if (!tocache || bs != PAGE_SIZE || filemap_add_folio(mc, zbv.folio, pcl->obj.index + nr, gfp)) { /* turn into a temporary shortlived folio (1 ref) */ zbv.folio->private = (void *)Z_EROFS_SHORTLIVED_PAGE; return; } folio_attach_private(zbv.folio, pcl); /* drop a refcount added by allocpage (then 2 refs in total here) */ folio_put(zbv.folio); } static struct z_erofs_decompressqueue *jobqueue_init(struct super_block *sb, struct z_erofs_decompressqueue *fgq, bool *fg) { struct z_erofs_decompressqueue *q; if (fg && !*fg) { q = kvzalloc(sizeof(*q), GFP_KERNEL | __GFP_NOWARN); if (!q) { *fg = true; goto fg_out; } #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD kthread_init_work(&q->u.kthread_work, z_erofs_decompressqueue_kthread_work); #else INIT_WORK(&q->u.work, z_erofs_decompressqueue_work); #endif } else { fg_out: q = fgq; init_completion(&fgq->u.done); atomic_set(&fgq->pending_bios, 0); q->eio = false; q->sync = true; } q->sb = sb; q->head = Z_EROFS_PCLUSTER_TAIL; return q; } /* define decompression jobqueue types */ enum { JQ_BYPASS, JQ_SUBMIT, NR_JOBQUEUES, }; static void move_to_bypass_jobqueue(struct z_erofs_pcluster *pcl, z_erofs_next_pcluster_t qtail[], z_erofs_next_pcluster_t owned_head) { z_erofs_next_pcluster_t *const submit_qtail = qtail[JQ_SUBMIT]; z_erofs_next_pcluster_t *const bypass_qtail = qtail[JQ_BYPASS]; WRITE_ONCE(pcl->next, Z_EROFS_PCLUSTER_TAIL); WRITE_ONCE(*submit_qtail, owned_head); WRITE_ONCE(*bypass_qtail, &pcl->next); qtail[JQ_BYPASS] = &pcl->next; } static void z_erofs_endio(struct bio *bio) { struct z_erofs_decompressqueue *q = bio->bi_private; blk_status_t err = bio->bi_status; struct folio_iter fi; bio_for_each_folio_all(fi, bio) { struct folio *folio = fi.folio; DBG_BUGON(folio_test_uptodate(folio)); DBG_BUGON(z_erofs_page_is_invalidated(&folio->page)); if (!erofs_folio_is_managed(EROFS_SB(q->sb), folio)) continue; if (!err) folio_mark_uptodate(folio); folio_unlock(folio); } if (err) q->eio = true; z_erofs_decompress_kickoff(q, -1); if (bio->bi_bdev) bio_put(bio); } static void z_erofs_submit_queue(struct z_erofs_decompress_frontend *f, struct z_erofs_decompressqueue *fgq, bool *force_fg, bool readahead) { struct super_block *sb = f->inode->i_sb; struct address_space *mc = MNGD_MAPPING(EROFS_SB(sb)); z_erofs_next_pcluster_t qtail[NR_JOBQUEUES]; struct z_erofs_decompressqueue *q[NR_JOBQUEUES]; z_erofs_next_pcluster_t owned_head = f->owned_head; /* bio is NULL initially, so no need to initialize last_{index,bdev} */ erofs_off_t last_pa; unsigned int nr_bios = 0; struct bio *bio = NULL; unsigned long pflags; int memstall = 0; /* No need to read from device for pclusters in the bypass queue. */ q[JQ_BYPASS] = jobqueue_init(sb, fgq + JQ_BYPASS, NULL); q[JQ_SUBMIT] = jobqueue_init(sb, fgq + JQ_SUBMIT, force_fg); qtail[JQ_BYPASS] = &q[JQ_BYPASS]->head; qtail[JQ_SUBMIT] = &q[JQ_SUBMIT]->head; /* by default, all need io submission */ q[JQ_SUBMIT]->head = owned_head; do { struct erofs_map_dev mdev; struct z_erofs_pcluster *pcl; erofs_off_t cur, end; struct bio_vec bvec; unsigned int i = 0; bool bypass = true; DBG_BUGON(owned_head == Z_EROFS_PCLUSTER_NIL); pcl = container_of(owned_head, struct z_erofs_pcluster, next); owned_head = READ_ONCE(pcl->next); if (z_erofs_is_inline_pcluster(pcl)) { move_to_bypass_jobqueue(pcl, qtail, owned_head); continue; } /* no device id here, thus it will always succeed */ mdev = (struct erofs_map_dev) { .m_pa = erofs_pos(sb, pcl->obj.index), }; (void)erofs_map_dev(sb, &mdev); cur = mdev.m_pa; end = cur + pcl->pclustersize; do { z_erofs_fill_bio_vec(&bvec, f, pcl, i++, mc); if (!bvec.bv_page) continue; if (bio && (cur != last_pa || bio->bi_bdev != mdev.m_bdev)) { io_retry: if (!erofs_is_fscache_mode(sb)) submit_bio(bio); else erofs_fscache_submit_bio(bio); if (memstall) { psi_memstall_leave(&pflags); memstall = 0; } bio = NULL; } if (unlikely(PageWorkingset(bvec.bv_page)) && !memstall) { psi_memstall_enter(&pflags); memstall = 1; } if (!bio) { bio = erofs_is_fscache_mode(sb) ? erofs_fscache_bio_alloc(&mdev) : bio_alloc(mdev.m_bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOIO); bio->bi_end_io = z_erofs_endio; bio->bi_iter.bi_sector = cur >> 9; bio->bi_private = q[JQ_SUBMIT]; if (readahead) bio->bi_opf |= REQ_RAHEAD; ++nr_bios; } if (cur + bvec.bv_len > end) bvec.bv_len = end - cur; DBG_BUGON(bvec.bv_len < sb->s_blocksize); if (!bio_add_page(bio, bvec.bv_page, bvec.bv_len, bvec.bv_offset)) goto io_retry; last_pa = cur + bvec.bv_len; bypass = false; } while ((cur += bvec.bv_len) < end); if (!bypass) qtail[JQ_SUBMIT] = &pcl->next; else move_to_bypass_jobqueue(pcl, qtail, owned_head); } while (owned_head != Z_EROFS_PCLUSTER_TAIL); if (bio) { if (!erofs_is_fscache_mode(sb)) submit_bio(bio); else erofs_fscache_submit_bio(bio); if (memstall) psi_memstall_leave(&pflags); } /* * although background is preferred, no one is pending for submission. * don't issue decompression but drop it directly instead. */ if (!*force_fg && !nr_bios) { kvfree(q[JQ_SUBMIT]); return; } z_erofs_decompress_kickoff(q[JQ_SUBMIT], nr_bios); } static void z_erofs_runqueue(struct z_erofs_decompress_frontend *f, bool force_fg, bool ra) { struct z_erofs_decompressqueue io[NR_JOBQUEUES]; if (f->owned_head == Z_EROFS_PCLUSTER_TAIL) return; z_erofs_submit_queue(f, io, &force_fg, ra); /* handle bypass queue (no i/o pclusters) immediately */ z_erofs_decompress_queue(&io[JQ_BYPASS], &f->pagepool); if (!force_fg) return; /* wait until all bios are completed */ wait_for_completion_io(&io[JQ_SUBMIT].u.done); /* handle synchronous decompress queue in the caller context */ z_erofs_decompress_queue(&io[JQ_SUBMIT], &f->pagepool); } /* * Since partial uptodate is still unimplemented for now, we have to use * approximate readmore strategies as a start. */ static void z_erofs_pcluster_readmore(struct z_erofs_decompress_frontend *f, struct readahead_control *rac, bool backmost) { struct inode *inode = f->inode; struct erofs_map_blocks *map = &f->map; erofs_off_t cur, end, headoffset = f->headoffset; int err; if (backmost) { if (rac) end = headoffset + readahead_length(rac) - 1; else end = headoffset + PAGE_SIZE - 1; map->m_la = end; err = z_erofs_map_blocks_iter(inode, map, EROFS_GET_BLOCKS_READMORE); if (err) return; /* expand ra for the trailing edge if readahead */ if (rac) { cur = round_up(map->m_la + map->m_llen, PAGE_SIZE); readahead_expand(rac, headoffset, cur - headoffset); return; } end = round_up(end, PAGE_SIZE); } else { end = round_up(map->m_la, PAGE_SIZE); if (!map->m_llen) return; } cur = map->m_la + map->m_llen - 1; while ((cur >= end) && (cur < i_size_read(inode))) { pgoff_t index = cur >> PAGE_SHIFT; struct page *page; page = erofs_grab_cache_page_nowait(inode->i_mapping, index); if (page) { if (PageUptodate(page)) unlock_page(page); else z_erofs_scan_folio(f, page_folio(page), !!rac); put_page(page); } if (cur < PAGE_SIZE) break; cur = (index << PAGE_SHIFT) - 1; } } static int z_erofs_read_folio(struct file *file, struct folio *folio) { struct inode *const inode = folio->mapping->host; struct erofs_sb_info *const sbi = EROFS_I_SB(inode); struct z_erofs_decompress_frontend f = DECOMPRESS_FRONTEND_INIT(inode); int err; trace_erofs_read_folio(folio, false); f.headoffset = (erofs_off_t)folio->index << PAGE_SHIFT; z_erofs_pcluster_readmore(&f, NULL, true); err = z_erofs_scan_folio(&f, folio, false); z_erofs_pcluster_readmore(&f, NULL, false); z_erofs_pcluster_end(&f); /* if some compressed cluster ready, need submit them anyway */ z_erofs_runqueue(&f, z_erofs_is_sync_decompress(sbi, 0), false); if (err && err != -EINTR) erofs_err(inode->i_sb, "read error %d @ %lu of nid %llu", err, folio->index, EROFS_I(inode)->nid); erofs_put_metabuf(&f.map.buf); erofs_release_pages(&f.pagepool); return err; } static void z_erofs_readahead(struct readahead_control *rac) { struct inode *const inode = rac->mapping->host; struct erofs_sb_info *const sbi = EROFS_I_SB(inode); struct z_erofs_decompress_frontend f = DECOMPRESS_FRONTEND_INIT(inode); struct folio *head = NULL, *folio; unsigned int nr_folios; int err; f.headoffset = readahead_pos(rac); z_erofs_pcluster_readmore(&f, rac, true); nr_folios = readahead_count(rac); trace_erofs_readpages(inode, readahead_index(rac), nr_folios, false); while ((folio = readahead_folio(rac))) { folio->private = head; head = folio; } /* traverse in reverse order for best metadata I/O performance */ while (head) { folio = head; head = folio_get_private(folio); err = z_erofs_scan_folio(&f, folio, true); if (err && err != -EINTR) erofs_err(inode->i_sb, "readahead error at folio %lu @ nid %llu", folio->index, EROFS_I(inode)->nid); } z_erofs_pcluster_readmore(&f, rac, false); z_erofs_pcluster_end(&f); z_erofs_runqueue(&f, z_erofs_is_sync_decompress(sbi, nr_folios), true); erofs_put_metabuf(&f.map.buf); erofs_release_pages(&f.pagepool); } const struct address_space_operations z_erofs_aops = { .read_folio = z_erofs_read_folio, .readahead = z_erofs_readahead, };