// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2019 Xilinx, Inc. * Copyright (C) 2022 - 2023, Advanced Micro Devices, Inc. */ #include #include #include #include #include #include #define SILICON_REVISION_MASK 0xF #define P_USER_0_64_UPPER_MASK GENMASK(31, 16) #define P_USER_127_LOWER_4_BIT_MASK GENMASK(3, 0) #define WORD_INBYTES 4 #define SOC_VER_SIZE 0x4 #define EFUSE_MEMORY_SIZE 0x177 #define UNUSED_SPACE 0x8 #define ZYNQMP_NVMEM_SIZE (SOC_VER_SIZE + UNUSED_SPACE + \ EFUSE_MEMORY_SIZE) #define SOC_VERSION_OFFSET 0x0 #define EFUSE_START_OFFSET 0xC #define EFUSE_END_OFFSET 0xFC #define EFUSE_PUF_START_OFFSET 0x100 #define EFUSE_PUF_MID_OFFSET 0x140 #define EFUSE_PUF_END_OFFSET 0x17F #define EFUSE_NOT_ENABLED 29 /* * efuse access type */ enum efuse_access { EFUSE_READ = 0, EFUSE_WRITE }; /** * struct xilinx_efuse - the basic structure * @src: address of the buffer to store the data to be write/read * @size: read/write word count * @offset: read/write offset * @flag: 0 - represents efuse read and 1- represents efuse write * @pufuserfuse:0 - represents non-puf efuses, offset is used for read/write * 1 - represents puf user fuse row number. * * this structure stores all the required details to * read/write efuse memory. */ struct xilinx_efuse { u64 src; u32 size; u32 offset; enum efuse_access flag; u32 pufuserfuse; }; static int zynqmp_efuse_access(void *context, unsigned int offset, void *val, size_t bytes, enum efuse_access flag, unsigned int pufflag) { struct device *dev = context; struct xilinx_efuse *efuse; dma_addr_t dma_addr; dma_addr_t dma_buf; size_t words = bytes / WORD_INBYTES; int ret; int value; char *data; if (bytes % WORD_INBYTES != 0) { dev_err(dev, "Bytes requested should be word aligned\n"); return -EOPNOTSUPP; } if (pufflag == 0 && offset % WORD_INBYTES) { dev_err(dev, "Offset requested should be word aligned\n"); return -EOPNOTSUPP; } if (pufflag == 1 && flag == EFUSE_WRITE) { memcpy(&value, val, bytes); if ((offset == EFUSE_PUF_START_OFFSET || offset == EFUSE_PUF_MID_OFFSET) && value & P_USER_0_64_UPPER_MASK) { dev_err(dev, "Only lower 4 bytes are allowed to be programmed in P_USER_0 & P_USER_64\n"); return -EOPNOTSUPP; } if (offset == EFUSE_PUF_END_OFFSET && (value & P_USER_127_LOWER_4_BIT_MASK)) { dev_err(dev, "Only MSB 28 bits are allowed to be programmed for P_USER_127\n"); return -EOPNOTSUPP; } } efuse = dma_alloc_coherent(dev, sizeof(struct xilinx_efuse), &dma_addr, GFP_KERNEL); if (!efuse) return -ENOMEM; data = dma_alloc_coherent(dev, sizeof(bytes), &dma_buf, GFP_KERNEL); if (!data) { ret = -ENOMEM; goto efuse_data_fail; } if (flag == EFUSE_WRITE) { memcpy(data, val, bytes); efuse->flag = EFUSE_WRITE; } else { efuse->flag = EFUSE_READ; } efuse->src = dma_buf; efuse->size = words; efuse->offset = offset; efuse->pufuserfuse = pufflag; zynqmp_pm_efuse_access(dma_addr, (u32 *)&ret); if (ret != 0) { if (ret == EFUSE_NOT_ENABLED) { dev_err(dev, "efuse access is not enabled\n"); ret = -EOPNOTSUPP; } else { dev_err(dev, "Error in efuse read %x\n", ret); ret = -EPERM; } goto efuse_access_err; } if (flag == EFUSE_READ) memcpy(val, data, bytes); efuse_access_err: dma_free_coherent(dev, sizeof(bytes), data, dma_buf); efuse_data_fail: dma_free_coherent(dev, sizeof(struct xilinx_efuse), efuse, dma_addr); return ret; } static int zynqmp_nvmem_read(void *context, unsigned int offset, void *val, size_t bytes) { struct device *dev = context; int ret; int pufflag = 0; int idcode; int version; if (offset >= EFUSE_PUF_START_OFFSET && offset <= EFUSE_PUF_END_OFFSET) pufflag = 1; switch (offset) { /* Soc version offset is zero */ case SOC_VERSION_OFFSET: if (bytes != SOC_VER_SIZE) return -EOPNOTSUPP; ret = zynqmp_pm_get_chipid((u32 *)&idcode, (u32 *)&version); if (ret < 0) return ret; dev_dbg(dev, "Read chipid val %x %x\n", idcode, version); *(int *)val = version & SILICON_REVISION_MASK; break; /* Efuse offset starts from 0xc */ case EFUSE_START_OFFSET ... EFUSE_END_OFFSET: case EFUSE_PUF_START_OFFSET ... EFUSE_PUF_END_OFFSET: ret = zynqmp_efuse_access(context, offset, val, bytes, EFUSE_READ, pufflag); break; default: *(u32 *)val = 0xDEADBEEF; ret = 0; break; } return ret; } static int zynqmp_nvmem_write(void *context, unsigned int offset, void *val, size_t bytes) { int pufflag = 0; if (offset < EFUSE_START_OFFSET || offset > EFUSE_PUF_END_OFFSET) return -EOPNOTSUPP; if (offset >= EFUSE_PUF_START_OFFSET && offset <= EFUSE_PUF_END_OFFSET) pufflag = 1; return zynqmp_efuse_access(context, offset, val, bytes, EFUSE_WRITE, pufflag); } static const struct of_device_id zynqmp_nvmem_match[] = { { .compatible = "xlnx,zynqmp-nvmem-fw", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, zynqmp_nvmem_match); static int zynqmp_nvmem_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct nvmem_config econfig = {}; econfig.name = "zynqmp-nvmem"; econfig.owner = THIS_MODULE; econfig.word_size = 1; econfig.size = ZYNQMP_NVMEM_SIZE; econfig.dev = dev; econfig.add_legacy_fixed_of_cells = true; econfig.reg_read = zynqmp_nvmem_read; econfig.reg_write = zynqmp_nvmem_write; return PTR_ERR_OR_ZERO(devm_nvmem_register(dev, &econfig)); } static struct platform_driver zynqmp_nvmem_driver = { .probe = zynqmp_nvmem_probe, .driver = { .name = "zynqmp-nvmem", .of_match_table = zynqmp_nvmem_match, }, }; module_platform_driver(zynqmp_nvmem_driver); MODULE_AUTHOR("Michal Simek , Nava kishore Manne "); MODULE_DESCRIPTION("ZynqMP NVMEM driver"); MODULE_LICENSE("GPL");