// SPDX-License-Identifier: GPL-2.0-only /* * emc1403.c - SMSC Thermal Driver * * Copyright (C) 2008 Intel Corp * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #define THERMAL_PID_REG 0xfd #define THERMAL_SMSC_ID_REG 0xfe #define THERMAL_REVISION_REG 0xff enum emc1403_chip { emc1402, emc1403, emc1404, emc1428 }; struct thermal_data { enum emc1403_chip chip; struct regmap *regmap; struct mutex mutex; }; static ssize_t power_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct thermal_data *data = dev_get_drvdata(dev); unsigned int val; int retval; retval = regmap_read(data->regmap, 0x03, &val); if (retval < 0) return retval; return sprintf(buf, "%d\n", !!(val & BIT(6))); } static ssize_t power_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct thermal_data *data = dev_get_drvdata(dev); unsigned long val; int retval; if (kstrtoul(buf, 10, &val)) return -EINVAL; retval = regmap_update_bits(data->regmap, 0x03, BIT(6), val ? BIT(6) : 0); if (retval < 0) return retval; return count; } static DEVICE_ATTR_RW(power_state); static struct attribute *emc1403_attrs[] = { &dev_attr_power_state.attr, NULL }; ATTRIBUTE_GROUPS(emc1403); static int emc1403_detect(struct i2c_client *client, struct i2c_board_info *info) { int id; /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */ id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG); if (id != 0x5d) return -ENODEV; id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG); switch (id) { case 0x20: strscpy(info->type, "emc1402", I2C_NAME_SIZE); break; case 0x21: strscpy(info->type, "emc1403", I2C_NAME_SIZE); break; case 0x22: strscpy(info->type, "emc1422", I2C_NAME_SIZE); break; case 0x23: strscpy(info->type, "emc1423", I2C_NAME_SIZE); break; case 0x25: strscpy(info->type, "emc1404", I2C_NAME_SIZE); break; case 0x27: strscpy(info->type, "emc1424", I2C_NAME_SIZE); break; case 0x29: strscpy(info->type, "emc1428", I2C_NAME_SIZE); break; case 0x59: strscpy(info->type, "emc1438", I2C_NAME_SIZE); break; case 0x60: strscpy(info->type, "emc1442", I2C_NAME_SIZE); break; default: return -ENODEV; } id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG); if (id < 0x01 || id > 0x04) return -ENODEV; return 0; } static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case 0x00: /* internal diode high byte */ case 0x01: /* external diode 1 high byte */ case 0x02: /* status */ case 0x10: /* external diode 1 low byte */ case 0x1b: /* external diode fault */ case 0x23: /* external diode 2 high byte */ case 0x24: /* external diode 2 low byte */ case 0x29: /* internal diode low byte */ case 0x2a: /* externl diode 3 high byte */ case 0x2b: /* external diode 3 low byte */ case 0x35: /* high limit status */ case 0x36: /* low limit status */ case 0x37: /* therm limit status */ case 0x41: /* external diode 4 high byte */ case 0x42: /* external diode 4 low byte */ case 0x43: /* external diode 5 high byte */ case 0x44: /* external diode 5 low byte */ case 0x45: /* external diode 6 high byte */ case 0x46: /* external diode 6 low byte */ case 0x47: /* external diode 7 high byte */ case 0x48: /* external diode 7 low byte */ return true; default: return false; } } static const struct regmap_config emc1403_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_MAPLE, .volatile_reg = emc1403_regmap_is_volatile, }; enum emc1403_reg_map {temp_min, temp_max, temp_crit, temp_input}; static u8 ema1403_temp_map[] = { [hwmon_temp_min] = temp_min, [hwmon_temp_max] = temp_max, [hwmon_temp_crit] = temp_crit, [hwmon_temp_input] = temp_input, }; static u8 emc1403_temp_regs[][4] = { [0] = { [temp_min] = 0x06, [temp_max] = 0x05, [temp_crit] = 0x20, [temp_input] = 0x00, }, [1] = { [temp_min] = 0x08, [temp_max] = 0x07, [temp_crit] = 0x19, [temp_input] = 0x01, }, [2] = { [temp_min] = 0x16, [temp_max] = 0x15, [temp_crit] = 0x1a, [temp_input] = 0x23, }, [3] = { [temp_min] = 0x2d, [temp_max] = 0x2c, [temp_crit] = 0x30, [temp_input] = 0x2a, }, [4] = { [temp_min] = 0x51, [temp_max] = 0x50, [temp_crit] = 0x64, [temp_input] = 0x41, }, [5] = { [temp_min] = 0x55, [temp_max] = 0x54, [temp_crit] = 0x65, [temp_input] = 0x43 }, [6] = { [temp_min] = 0x59, [temp_max] = 0x58, [temp_crit] = 0x66, [temp_input] = 0x45, }, [7] = { [temp_min] = 0x5d, [temp_max] = 0x5c, [temp_crit] = 0x67, [temp_input] = 0x47, }, }; static s8 emc1403_temp_regs_low[][4] = { [0] = { [temp_min] = -1, [temp_max] = -1, [temp_crit] = -1, [temp_input] = 0x29, }, [1] = { [temp_min] = 0x14, [temp_max] = 0x13, [temp_crit] = -1, [temp_input] = 0x10, }, [2] = { [temp_min] = 0x18, [temp_max] = 0x17, [temp_crit] = -1, [temp_input] = 0x24, }, [3] = { [temp_min] = 0x2f, [temp_max] = 0x2e, [temp_crit] = -1, [temp_input] = 0x2b, }, [4] = { [temp_min] = 0x53, [temp_max] = 0x52, [temp_crit] = -1, [temp_input] = 0x42, }, [5] = { [temp_min] = 0x57, [temp_max] = 0x56, [temp_crit] = -1, [temp_input] = 0x44, }, [6] = { [temp_min] = 0x5b, [temp_max] = 0x5a, [temp_crit] = -1, [temp_input] = 0x46, }, [7] = { [temp_min] = 0x5f, [temp_max] = 0x5e, [temp_crit] = -1, [temp_input] = 0x48, }, }; static int __emc1403_get_temp(struct thermal_data *data, int channel, enum emc1403_reg_map map, long *val) { unsigned int regvalh; unsigned int regvall = 0; int ret; s8 reg; ret = regmap_read(data->regmap, emc1403_temp_regs[channel][map], ®valh); if (ret < 0) return ret; reg = emc1403_temp_regs_low[channel][map]; if (reg >= 0) { ret = regmap_read(data->regmap, reg, ®vall); if (ret < 0) return ret; } if (data->chip == emc1428) *val = sign_extend32((regvalh << 3) | (regvall >> 5), 10) * 125; else *val = ((regvalh << 3) | (regvall >> 5)) * 125; return 0; } static int emc1403_get_temp(struct thermal_data *data, int channel, enum emc1403_reg_map map, long *val) { int ret; mutex_lock(&data->mutex); ret = __emc1403_get_temp(data, channel, map, val); mutex_unlock(&data->mutex); return ret; } static int emc1403_get_hyst(struct thermal_data *data, int channel, enum emc1403_reg_map map, long *val) { int hyst, ret; long limit; mutex_lock(&data->mutex); ret = __emc1403_get_temp(data, channel, map, &limit); if (ret < 0) goto unlock; ret = regmap_read(data->regmap, 0x21, &hyst); if (ret < 0) goto unlock; if (map == temp_min) *val = limit + hyst * 1000; else *val = limit - hyst * 1000; unlock: mutex_unlock(&data->mutex); return ret; } static int emc1403_temp_read(struct thermal_data *data, u32 attr, int channel, long *val) { unsigned int regval; int ret; switch (attr) { case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_crit: case hwmon_temp_input: ret = emc1403_get_temp(data, channel, ema1403_temp_map[attr], val); break; case hwmon_temp_min_hyst: ret = emc1403_get_hyst(data, channel, temp_min, val); break; case hwmon_temp_max_hyst: ret = emc1403_get_hyst(data, channel, temp_max, val); break; case hwmon_temp_crit_hyst: ret = emc1403_get_hyst(data, channel, temp_crit, val); break; case hwmon_temp_min_alarm: if (data->chip == emc1402) { ret = regmap_read(data->regmap, 0x02, ®val); if (ret < 0) break; *val = !!(regval & BIT(5 - 2 * channel)); } else { ret = regmap_read(data->regmap, 0x36, ®val); if (ret < 0) break; *val = !!(regval & BIT(channel)); } break; case hwmon_temp_max_alarm: if (data->chip == emc1402) { ret = regmap_read(data->regmap, 0x02, ®val); if (ret < 0) break; *val = !!(regval & BIT(6 - 2 * channel)); } else { ret = regmap_read(data->regmap, 0x35, ®val); if (ret < 0) break; *val = !!(regval & BIT(channel)); } break; case hwmon_temp_crit_alarm: if (data->chip == emc1402) { ret = regmap_read(data->regmap, 0x02, ®val); if (ret < 0) break; *val = !!(regval & BIT(channel)); } else { ret = regmap_read(data->regmap, 0x37, ®val); if (ret < 0) break; *val = !!(regval & BIT(channel)); } break; case hwmon_temp_fault: ret = regmap_read(data->regmap, 0x1b, ®val); if (ret < 0) break; *val = !!(regval & BIT(channel)); break; default: return -EOPNOTSUPP; } return ret; } static int emc1403_get_convrate(struct thermal_data *data, long *val) { unsigned int convrate; int ret; ret = regmap_read(data->regmap, 0x04, &convrate); if (ret < 0) return ret; if (convrate > 10) convrate = 4; *val = 16000 >> convrate; return 0; } static int emc1403_chip_read(struct thermal_data *data, u32 attr, long *val) { switch (attr) { case hwmon_chip_update_interval: return emc1403_get_convrate(data, val); default: return -EOPNOTSUPP; } } static int emc1403_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct thermal_data *data = dev_get_drvdata(dev); switch (type) { case hwmon_temp: return emc1403_temp_read(data, attr, channel, val); case hwmon_chip: return emc1403_chip_read(data, attr, val); default: return -EOPNOTSUPP; } } static int emc1403_set_hyst(struct thermal_data *data, long val) { int hyst, ret; long limit; if (data->chip == emc1428) val = clamp_val(val, -128000, 127000); else val = clamp_val(val, 0, 255000); mutex_lock(&data->mutex); ret = __emc1403_get_temp(data, 0, temp_crit, &limit); if (ret < 0) goto unlock; hyst = limit - val; if (data->chip == emc1428) hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 127); else hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255); ret = regmap_write(data->regmap, 0x21, hyst); unlock: mutex_unlock(&data->mutex); return ret; } static int emc1403_set_temp(struct thermal_data *data, int channel, enum emc1403_reg_map map, long val) { unsigned int regval; int ret; u8 regh; s8 regl; regh = emc1403_temp_regs[channel][map]; regl = emc1403_temp_regs_low[channel][map]; mutex_lock(&data->mutex); if (regl >= 0) { if (data->chip == emc1428) val = clamp_val(val, -128000, 127875); else val = clamp_val(val, 0, 255875); regval = DIV_ROUND_CLOSEST(val, 125); ret = regmap_write(data->regmap, regh, (regval >> 3) & 0xff); if (ret < 0) goto unlock; ret = regmap_write(data->regmap, regl, (regval & 0x07) << 5); } else { if (data->chip == emc1428) val = clamp_val(val, -128000, 127000); else val = clamp_val(val, 0, 255000); regval = DIV_ROUND_CLOSEST(val, 1000); ret = regmap_write(data->regmap, regh, regval); } unlock: mutex_unlock(&data->mutex); return ret; } static int emc1403_temp_write(struct thermal_data *data, u32 attr, int channel, long val) { switch (attr) { case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_crit: return emc1403_set_temp(data, channel, ema1403_temp_map[attr], val); case hwmon_temp_crit_hyst: return emc1403_set_hyst(data, val); default: return -EOPNOTSUPP; } } /* Lookup table for temperature conversion times in msec */ static const u16 ina3221_conv_time[] = { 16000, 8000, 4000, 2000, 1000, 500, 250, 125, 62, 31, 16 }; static int emc1403_set_convrate(struct thermal_data *data, unsigned int interval) { int convrate; convrate = find_closest_descending(interval, ina3221_conv_time, ARRAY_SIZE(ina3221_conv_time)); return regmap_write(data->regmap, 0x04, convrate); } static int emc1403_chip_write(struct thermal_data *data, u32 attr, long val) { switch (attr) { case hwmon_chip_update_interval: return emc1403_set_convrate(data, clamp_val(val, 0, 100000)); default: return -EOPNOTSUPP; } } static int emc1403_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct thermal_data *data = dev_get_drvdata(dev); switch (type) { case hwmon_temp: return emc1403_temp_write(data, attr, channel, val); case hwmon_chip: return emc1403_chip_write(data, attr, val); default: return -EOPNOTSUPP; } } static umode_t emc1403_temp_is_visible(const void *_data, u32 attr, int channel) { const struct thermal_data *data = _data; if (data->chip == emc1402 && channel > 1) return 0; if (data->chip == emc1403 && channel > 2) return 0; if (data->chip != emc1428 && channel > 3) return 0; switch (attr) { case hwmon_temp_input: case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_fault: case hwmon_temp_min_hyst: case hwmon_temp_max_hyst: return 0444; case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_crit: return 0644; case hwmon_temp_crit_hyst: if (channel == 0) return 0644; return 0444; default: return 0; } } static umode_t emc1403_chip_is_visible(const void *_data, u32 attr) { switch (attr) { case hwmon_chip_update_interval: return 0644; default: return 0; } } static umode_t emc1403_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_temp: return emc1403_temp_is_visible(data, attr, channel); case hwmon_chip: return emc1403_chip_is_visible(data, attr); default: return 0; } } static const struct hwmon_channel_info * const emc1403_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_MIN_HYST | HWMON_T_MAX_HYST | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT ), NULL }; static const struct hwmon_ops emc1403_hwmon_ops = { .is_visible = emc1403_is_visible, .read = emc1403_read, .write = emc1403_write, }; static const struct hwmon_chip_info emc1403_chip_info = { .ops = &emc1403_hwmon_ops, .info = emc1403_info, }; /* Last digit of chip name indicates number of channels */ static const struct i2c_device_id emc1403_idtable[] = { { "emc1402", emc1402 }, { "emc1403", emc1403 }, { "emc1404", emc1404 }, { "emc1412", emc1402 }, { "emc1413", emc1403 }, { "emc1414", emc1404 }, { "emc1422", emc1402 }, { "emc1423", emc1403 }, { "emc1424", emc1404 }, { "emc1428", emc1428 }, { "emc1438", emc1428 }, { "emc1442", emc1402 }, { } }; MODULE_DEVICE_TABLE(i2c, emc1403_idtable); static int emc1403_probe(struct i2c_client *client) { struct thermal_data *data; struct device *hwmon_dev; const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client); data = devm_kzalloc(&client->dev, sizeof(struct thermal_data), GFP_KERNEL); if (!data) return -ENOMEM; data->chip = id->driver_data; data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); mutex_init(&data->mutex); hwmon_dev = devm_hwmon_device_register_with_info(&client->dev, client->name, data, &emc1403_chip_info, emc1403_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const unsigned short emc1403_address_list[] = { 0x18, 0x1c, 0x29, 0x3c, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END }; static struct i2c_driver sensor_emc1403 = { .class = I2C_CLASS_HWMON, .driver = { .name = "emc1403", }, .detect = emc1403_detect, .probe = emc1403_probe, .id_table = emc1403_idtable, .address_list = emc1403_address_list, }; module_i2c_driver(sensor_emc1403); MODULE_AUTHOR("Kalhan Trisal