// SPDX-License-Identifier: GPL-2.0 /* * STM32 Timer Encoder and Counter driver * * Copyright (C) STMicroelectronics 2018 * * Author: Benjamin Gaignard * */ #include #include #include #include #include #include #include #include #include #define TIM_CCMR_CCXS (BIT(8) | BIT(0)) #define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \ TIM_CCMR_IC1F | TIM_CCMR_IC2F) #define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \ TIM_CCER_CC2P | TIM_CCER_CC2NP) #define STM32_CH1_SIG 0 #define STM32_CH2_SIG 1 #define STM32_CLOCK_SIG 2 #define STM32_CH3_SIG 3 #define STM32_CH4_SIG 4 struct stm32_timer_regs { u32 cr1; u32 cnt; u32 smcr; u32 arr; }; struct stm32_timer_cnt { struct regmap *regmap; struct clk *clk; u32 max_arr; bool enabled; struct stm32_timer_regs bak; bool has_encoder; unsigned int nchannels; unsigned int nr_irqs; spinlock_t lock; /* protects nb_ovf */ u64 nb_ovf; }; static const enum counter_function stm32_count_functions[] = { COUNTER_FUNCTION_INCREASE, COUNTER_FUNCTION_QUADRATURE_X2_A, COUNTER_FUNCTION_QUADRATURE_X2_B, COUNTER_FUNCTION_QUADRATURE_X4, }; static int stm32_count_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cnt; regmap_read(priv->regmap, TIM_CNT, &cnt); *val = cnt; return 0; } static int stm32_count_write(struct counter_device *counter, struct counter_count *count, const u64 val) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 ceiling; regmap_read(priv->regmap, TIM_ARR, &ceiling); if (val > ceiling) return -EINVAL; return regmap_write(priv->regmap, TIM_CNT, val); } static int stm32_count_function_read(struct counter_device *counter, struct counter_count *count, enum counter_function *function) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 smcr; regmap_read(priv->regmap, TIM_SMCR, &smcr); switch (smcr & TIM_SMCR_SMS) { case TIM_SMCR_SMS_SLAVE_MODE_DISABLED: *function = COUNTER_FUNCTION_INCREASE; return 0; case TIM_SMCR_SMS_ENCODER_MODE_1: *function = COUNTER_FUNCTION_QUADRATURE_X2_A; return 0; case TIM_SMCR_SMS_ENCODER_MODE_2: *function = COUNTER_FUNCTION_QUADRATURE_X2_B; return 0; case TIM_SMCR_SMS_ENCODER_MODE_3: *function = COUNTER_FUNCTION_QUADRATURE_X4; return 0; default: return -EINVAL; } } static int stm32_count_function_write(struct counter_device *counter, struct counter_count *count, enum counter_function function) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1, sms; switch (function) { case COUNTER_FUNCTION_INCREASE: sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED; break; case COUNTER_FUNCTION_QUADRATURE_X2_A: if (!priv->has_encoder) return -EOPNOTSUPP; sms = TIM_SMCR_SMS_ENCODER_MODE_1; break; case COUNTER_FUNCTION_QUADRATURE_X2_B: if (!priv->has_encoder) return -EOPNOTSUPP; sms = TIM_SMCR_SMS_ENCODER_MODE_2; break; case COUNTER_FUNCTION_QUADRATURE_X4: if (!priv->has_encoder) return -EOPNOTSUPP; sms = TIM_SMCR_SMS_ENCODER_MODE_3; break; default: return -EINVAL; } /* Store enable status */ regmap_read(priv->regmap, TIM_CR1, &cr1); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms); /* Make sure that registers are updated */ regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); /* Restore the enable status */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1); return 0; } static int stm32_count_direction_read(struct counter_device *counter, struct counter_count *count, enum counter_count_direction *direction) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; regmap_read(priv->regmap, TIM_CR1, &cr1); *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD : COUNTER_COUNT_DIRECTION_FORWARD; return 0; } static int stm32_count_ceiling_read(struct counter_device *counter, struct counter_count *count, u64 *ceiling) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 arr; regmap_read(priv->regmap, TIM_ARR, &arr); *ceiling = arr; return 0; } static int stm32_count_ceiling_write(struct counter_device *counter, struct counter_count *count, u64 ceiling) { struct stm32_timer_cnt *const priv = counter_priv(counter); if (ceiling > priv->max_arr) return -ERANGE; /* TIMx_ARR register shouldn't be buffered (ARPE=0) */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0); regmap_write(priv->regmap, TIM_ARR, ceiling); return 0; } static int stm32_count_enable_read(struct counter_device *counter, struct counter_count *count, u8 *enable) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; regmap_read(priv->regmap, TIM_CR1, &cr1); *enable = cr1 & TIM_CR1_CEN; return 0; } static int stm32_count_enable_write(struct counter_device *counter, struct counter_count *count, u8 enable) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; if (enable) { regmap_read(priv->regmap, TIM_CR1, &cr1); if (!(cr1 & TIM_CR1_CEN)) clk_enable(priv->clk); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); } else { regmap_read(priv->regmap, TIM_CR1, &cr1); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); if (cr1 & TIM_CR1_CEN) clk_disable(priv->clk); } /* Keep enabled state to properly handle low power states */ priv->enabled = enable; return 0; } static int stm32_count_prescaler_read(struct counter_device *counter, struct counter_count *count, u64 *prescaler) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 psc; regmap_read(priv->regmap, TIM_PSC, &psc); *prescaler = psc + 1; return 0; } static int stm32_count_prescaler_write(struct counter_device *counter, struct counter_count *count, u64 prescaler) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 psc; if (!prescaler || prescaler > MAX_TIM_PSC + 1) return -ERANGE; psc = prescaler - 1; return regmap_write(priv->regmap, TIM_PSC, psc); } static int stm32_count_cap_read(struct counter_device *counter, struct counter_count *count, size_t ch, u64 *cap) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 ccrx; if (ch >= priv->nchannels) return -EOPNOTSUPP; switch (ch) { case 0: regmap_read(priv->regmap, TIM_CCR1, &ccrx); break; case 1: regmap_read(priv->regmap, TIM_CCR2, &ccrx); break; case 2: regmap_read(priv->regmap, TIM_CCR3, &ccrx); break; case 3: regmap_read(priv->regmap, TIM_CCR4, &ccrx); break; default: return -EINVAL; } dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx); *cap = ccrx; return 0; } static int stm32_count_nb_ovf_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct stm32_timer_cnt *const priv = counter_priv(counter); unsigned long irqflags; spin_lock_irqsave(&priv->lock, irqflags); *val = priv->nb_ovf; spin_unlock_irqrestore(&priv->lock, irqflags); return 0; } static int stm32_count_nb_ovf_write(struct counter_device *counter, struct counter_count *count, u64 val) { struct stm32_timer_cnt *const priv = counter_priv(counter); unsigned long irqflags; spin_lock_irqsave(&priv->lock, irqflags); priv->nb_ovf = val; spin_unlock_irqrestore(&priv->lock, irqflags); return 0; } static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4); static struct counter_comp stm32_count_ext[] = { COUNTER_COMP_DIRECTION(stm32_count_direction_read), COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write), COUNTER_COMP_CEILING(stm32_count_ceiling_read, stm32_count_ceiling_write), COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read, stm32_count_prescaler_write), COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array), COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write), }; static const enum counter_synapse_action stm32_clock_synapse_actions[] = { COUNTER_SYNAPSE_ACTION_RISING_EDGE, }; static const enum counter_synapse_action stm32_synapse_actions[] = { COUNTER_SYNAPSE_ACTION_NONE, COUNTER_SYNAPSE_ACTION_BOTH_EDGES }; static int stm32_action_read(struct counter_device *counter, struct counter_count *count, struct counter_synapse *synapse, enum counter_synapse_action *action) { enum counter_function function; int err; err = stm32_count_function_read(counter, count, &function); if (err) return err; switch (function) { case COUNTER_FUNCTION_INCREASE: /* counts on internal clock when CEN=1 */ if (synapse->signal->id == STM32_CLOCK_SIG) *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X2_A: /* counts up/down on TI1FP1 edge depending on TI2FP2 level */ if (synapse->signal->id == STM32_CH1_SIG) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X2_B: /* counts up/down on TI2FP2 edge depending on TI1FP1 level */ if (synapse->signal->id == STM32_CH2_SIG) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X4: /* counts up/down on both TI1FP1 and TI2FP2 edges */ if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; default: return -EINVAL; } } struct stm32_count_cc_regs { u32 ccmr_reg; u32 ccmr_mask; u32 ccmr_bits; u32 ccer_bits; }; static const struct stm32_count_cc_regs stm32_cc[] = { { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1, TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP }, { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2, TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP }, { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3, TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP }, { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4, TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP }, }; static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch, bool enable) { struct stm32_timer_cnt *const priv = counter_priv(counter); const struct stm32_count_cc_regs *cc; u32 ccmr, ccer; if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) { dev_err(counter->parent, "invalid ch: %d\n", ch); return -EINVAL; } cc = &stm32_cc[ch]; /* * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2... * Select both edges / non-inverted to trigger a capture. */ if (enable) { /* first clear possibly latched capture flag upon enabling */ if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits)) regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch)); regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask, cc->ccmr_bits); regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits); } else { regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits); regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask); } regmap_read(priv->regmap, cc->ccmr_reg, &ccmr); regmap_read(priv->regmap, TIM_CCER, &ccer); dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis", ch, ccmr, ccer); return 0; } static int stm32_count_events_configure(struct counter_device *counter) { struct stm32_timer_cnt *const priv = counter_priv(counter); struct counter_event_node *event_node; u32 dier = 0; int i, ret; list_for_each_entry(event_node, &counter->events_list, l) { switch (event_node->event) { case COUNTER_EVENT_OVERFLOW_UNDERFLOW: /* first clear possibly latched UIF before enabling */ if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE)) regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF); dier |= TIM_DIER_UIE; break; case COUNTER_EVENT_CAPTURE: ret = stm32_count_capture_configure(counter, event_node->channel, true); if (ret) return ret; dier |= TIM_DIER_CC_IE(event_node->channel); break; default: /* should never reach this path */ return -EINVAL; } } /* Enable / disable all events at once, from events_list, so write all DIER bits */ regmap_write(priv->regmap, TIM_DIER, dier); /* check for disabled capture events */ for (i = 0 ; i < priv->nchannels; i++) { if (!(dier & TIM_DIER_CC_IE(i))) { ret = stm32_count_capture_configure(counter, i, false); if (ret) return ret; } } return 0; } static int stm32_count_watch_validate(struct counter_device *counter, const struct counter_watch *watch) { struct stm32_timer_cnt *const priv = counter_priv(counter); /* Interrupts are optional */ if (!priv->nr_irqs) return -EOPNOTSUPP; switch (watch->event) { case COUNTER_EVENT_CAPTURE: if (watch->channel >= priv->nchannels) { dev_err(counter->parent, "Invalid channel %d\n", watch->channel); return -EINVAL; } return 0; case COUNTER_EVENT_OVERFLOW_UNDERFLOW: return 0; default: return -EINVAL; } } static const struct counter_ops stm32_timer_cnt_ops = { .count_read = stm32_count_read, .count_write = stm32_count_write, .function_read = stm32_count_function_read, .function_write = stm32_count_function_write, .action_read = stm32_action_read, .events_configure = stm32_count_events_configure, .watch_validate = stm32_count_watch_validate, }; static int stm32_count_clk_get_freq(struct counter_device *counter, struct counter_signal *signal, u64 *freq) { struct stm32_timer_cnt *const priv = counter_priv(counter); *freq = clk_get_rate(priv->clk); return 0; } static struct counter_comp stm32_count_clock_ext[] = { COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq), }; static struct counter_signal stm32_signals[] = { /* * Need to declare all the signals as a static array, and keep the signals order here, * even if they're unused or unexisting on some timer instances. It's an abstraction, * e.g. high level view of the counter features. * * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2", * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used, * to indicate that a signal doesn't affect the counter. */ { .id = STM32_CH1_SIG, .name = "Channel 1" }, { .id = STM32_CH2_SIG, .name = "Channel 2" }, { .id = STM32_CLOCK_SIG, .name = "Clock", .ext = stm32_count_clock_ext, .num_ext = ARRAY_SIZE(stm32_count_clock_ext), }, { .id = STM32_CH3_SIG, .name = "Channel 3" }, { .id = STM32_CH4_SIG, .name = "Channel 4" }, }; static struct counter_synapse stm32_count_synapses[] = { { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[STM32_CH1_SIG] }, { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[STM32_CH2_SIG] }, { .actions_list = stm32_clock_synapse_actions, .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions), .signal = &stm32_signals[STM32_CLOCK_SIG] }, { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[STM32_CH3_SIG] }, { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[STM32_CH4_SIG] }, }; static struct counter_count stm32_counts = { .id = 0, .name = "STM32 Timer Counter", .functions_list = stm32_count_functions, .num_functions = ARRAY_SIZE(stm32_count_functions), .synapses = stm32_count_synapses, .num_synapses = ARRAY_SIZE(stm32_count_synapses), .ext = stm32_count_ext, .num_ext = ARRAY_SIZE(stm32_count_ext) }; static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr) { struct counter_device *counter = ptr; struct stm32_timer_cnt *const priv = counter_priv(counter); u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */ u32 sr, dier; int i; regmap_read(priv->regmap, TIM_SR, &sr); regmap_read(priv->regmap, TIM_DIER, &dier); /* * Some status bits in SR don't match with the enable bits in DIER. Only take care of * the possibly enabled bits in DIER (that matches in between SR and DIER). */ dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE); sr &= dier; if (sr & TIM_SR_UIF) { spin_lock(&priv->lock); priv->nb_ovf++; spin_unlock(&priv->lock); counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0); dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n"); /* SR flags can be cleared by writing 0, only clear relevant flag */ clr &= ~TIM_SR_UIF; } /* Check capture events */ for (i = 0 ; i < priv->nchannels; i++) { if (sr & TIM_SR_CC_IF(i)) { counter_push_event(counter, COUNTER_EVENT_CAPTURE, i); clr &= ~TIM_SR_CC_IF(i); dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i); } } regmap_write(priv->regmap, TIM_SR, clr); return IRQ_HANDLED; }; static void stm32_timer_cnt_detect_channels(struct device *dev, struct stm32_timer_cnt *priv) { u32 ccer, ccer_backup; regmap_read(priv->regmap, TIM_CCER, &ccer_backup); regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE); regmap_read(priv->regmap, TIM_CCER, &ccer); regmap_write(priv->regmap, TIM_CCER, ccer_backup); priv->nchannels = hweight32(ccer & TIM_CCER_CCXE); dev_dbg(dev, "has %d cc channels\n", priv->nchannels); } /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */ #define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7)) static const char * const stm32_timer_trigger_compat[] = { "st,stm32-timer-trigger", "st,stm32h7-timer-trigger", }; static int stm32_timer_cnt_probe_encoder(struct device *dev, struct stm32_timer_cnt *priv) { struct device *parent = dev->parent; struct device_node *tnode = NULL, *pnode = parent->of_node; int i, ret; u32 idx; /* * Need to retrieve the trigger node index from DT, to be able * to determine if the counter supports encoder mode. It also * enforce backward compatibility, and allow to support other * counter modes in this driver (when the timer doesn't support * encoder). */ for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++) tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]); if (!tnode) { dev_err(dev, "Can't find trigger node\n"); return -ENODATA; } ret = of_property_read_u32(tnode, "reg", &idx); if (ret) { dev_err(dev, "Can't get index (%d)\n", ret); return ret; } priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx)); dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no"); return 0; } static int stm32_timer_cnt_probe(struct platform_device *pdev) { struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct stm32_timer_cnt *priv; struct counter_device *counter; int i, ret; if (IS_ERR_OR_NULL(ddata)) return -EINVAL; counter = devm_counter_alloc(dev, sizeof(*priv)); if (!counter) return -ENOMEM; priv = counter_priv(counter); priv->regmap = ddata->regmap; priv->clk = ddata->clk; priv->max_arr = ddata->max_arr; priv->nr_irqs = ddata->nr_irqs; ret = stm32_timer_cnt_probe_encoder(dev, priv); if (ret) return ret; stm32_timer_cnt_detect_channels(dev, priv); counter->name = dev_name(dev); counter->parent = dev; counter->ops = &stm32_timer_cnt_ops; counter->counts = &stm32_counts; counter->num_counts = 1; counter->signals = stm32_signals; counter->num_signals = ARRAY_SIZE(stm32_signals); spin_lock_init(&priv->lock); platform_set_drvdata(pdev, priv); /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */ if (priv->nr_irqs == 1) { /* All events reported through the global interrupt */ ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr, 0, dev_name(dev), counter); if (ret) { dev_err(dev, "Failed to request irq %d (err %d)\n", ddata->irq[0], ret); return ret; } } else { for (i = 0; i < priv->nr_irqs; i++) { /* * Only take care of update IRQ for overflow events, and cc for * capture events. */ if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC) continue; ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr, 0, dev_name(dev), counter); if (ret) { dev_err(dev, "Failed to request irq %d (err %d)\n", ddata->irq[i], ret); return ret; } } } /* Reset input selector to its default input */ regmap_write(priv->regmap, TIM_TISEL, 0x0); /* Register Counter device */ ret = devm_counter_add(dev, counter); if (ret < 0) dev_err_probe(dev, ret, "Failed to add counter\n"); return ret; } static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev) { struct stm32_timer_cnt *priv = dev_get_drvdata(dev); /* Only take care of enabled counter: don't disturb other MFD child */ if (priv->enabled) { /* Backup registers that may get lost in low power mode */ regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr); regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr); regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt); regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1); /* Disable the counter */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); clk_disable(priv->clk); } return pinctrl_pm_select_sleep_state(dev); } static int __maybe_unused stm32_timer_cnt_resume(struct device *dev) { struct stm32_timer_cnt *priv = dev_get_drvdata(dev); int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; if (priv->enabled) { clk_enable(priv->clk); /* Restore registers that may have been lost */ regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr); regmap_write(priv->regmap, TIM_ARR, priv->bak.arr); regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt); /* Also re-enables the counter */ regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1); } return 0; } static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend, stm32_timer_cnt_resume); static const struct of_device_id stm32_timer_cnt_of_match[] = { { .compatible = "st,stm32-timer-counter", }, {}, }; MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match); static struct platform_driver stm32_timer_cnt_driver = { .probe = stm32_timer_cnt_probe, .driver = { .name = "stm32-timer-counter", .of_match_table = stm32_timer_cnt_of_match, .pm = &stm32_timer_cnt_pm_ops, }, }; module_platform_driver(stm32_timer_cnt_driver); MODULE_AUTHOR("Benjamin Gaignard "); MODULE_ALIAS("platform:stm32-timer-counter"); MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(COUNTER);