/* * Low-level SPU handling * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define DEBUG 1 #include #include #include #include #include #include #include #include #include #include #include #include #include "interrupt.h" static int __spu_trap_invalid_dma(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); force_sig(SIGBUS, /* info, */ current); return 0; } static int __spu_trap_dma_align(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); force_sig(SIGBUS, /* info, */ current); return 0; } static int __spu_trap_error(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); force_sig(SIGILL, /* info, */ current); return 0; } static void spu_restart_dma(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); } static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) { struct spu_priv2 __iomem *priv2; struct mm_struct *mm; pr_debug("%s\n", __FUNCTION__); if (REGION_ID(ea) != USER_REGION_ID) { pr_debug("invalid region access at %016lx\n", ea); return 1; } priv2 = spu->priv2; mm = spu->mm; if (spu->slb_replace >= 8) spu->slb_replace = 0; out_be64(&priv2->slb_index_W, spu->slb_replace); out_be64(&priv2->slb_vsid_RW, (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) | SLB_VSID_USER); out_be64(&priv2->slb_esid_RW, (ea & ESID_MASK) | SLB_ESID_V); spu_restart_dma(spu); pr_debug("set slb %d context %lx, ea %016lx, vsid %016lx, esid %016lx\n", spu->slb_replace, mm->context.id, ea, (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT)| SLB_VSID_USER, (ea & ESID_MASK) | SLB_ESID_V); return 0; } static int __spu_trap_data_map(struct spu *spu, unsigned long ea) { unsigned long dsisr; struct spu_priv1 __iomem *priv1; pr_debug("%s\n", __FUNCTION__); priv1 = spu->priv1; dsisr = in_be64(&priv1->mfc_dsisr_RW); wake_up(&spu->stop_wq); return 0; } static int __spu_trap_mailbox(struct spu *spu) { wake_up_all(&spu->ibox_wq); kill_fasync(&spu->ibox_fasync, SIGIO, POLLIN); /* atomically disable SPU mailbox interrupts */ spin_lock(&spu->register_lock); out_be64(&spu->priv1->int_mask_class2_RW, in_be64(&spu->priv1->int_mask_class2_RW) & ~0x1); spin_unlock(&spu->register_lock); return 0; } static int __spu_trap_stop(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->stop_code = in_be32(&spu->problem->spu_status_R); wake_up(&spu->stop_wq); return 0; } static int __spu_trap_halt(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); spu->stop_code = in_be32(&spu->problem->spu_status_R); wake_up(&spu->stop_wq); return 0; } static int __spu_trap_tag_group(struct spu *spu) { pr_debug("%s\n", __FUNCTION__); /* wake_up(&spu->dma_wq); */ return 0; } static int __spu_trap_spubox(struct spu *spu) { wake_up_all(&spu->wbox_wq); kill_fasync(&spu->wbox_fasync, SIGIO, POLLOUT); /* atomically disable SPU mailbox interrupts */ spin_lock(&spu->register_lock); out_be64(&spu->priv1->int_mask_class2_RW, in_be64(&spu->priv1->int_mask_class2_RW) & ~0x10); spin_unlock(&spu->register_lock); return 0; } static irqreturn_t spu_irq_class_0(int irq, void *data, struct pt_regs *regs) { struct spu *spu; spu = data; spu->class_0_pending = 1; wake_up(&spu->stop_wq); return IRQ_HANDLED; } static int spu_irq_class_0_bottom(struct spu *spu) { unsigned long stat; spu->class_0_pending = 0; stat = in_be64(&spu->priv1->int_stat_class0_RW); if (stat & 1) /* invalid MFC DMA */ __spu_trap_invalid_dma(spu); if (stat & 2) /* invalid DMA alignment */ __spu_trap_dma_align(spu); if (stat & 4) /* error on SPU */ __spu_trap_error(spu); out_be64(&spu->priv1->int_stat_class0_RW, stat); return 0; } static irqreturn_t spu_irq_class_1(int irq, void *data, struct pt_regs *regs) { struct spu *spu; unsigned long stat, dar; spu = data; stat = in_be64(&spu->priv1->int_stat_class1_RW); dar = in_be64(&spu->priv1->mfc_dar_RW); if (stat & 1) /* segment fault */ __spu_trap_data_seg(spu, dar); if (stat & 2) { /* mapping fault */ __spu_trap_data_map(spu, dar); } if (stat & 4) /* ls compare & suspend on get */ ; if (stat & 8) /* ls compare & suspend on put */ ; out_be64(&spu->priv1->int_stat_class1_RW, stat); return stat ? IRQ_HANDLED : IRQ_NONE; } static irqreturn_t spu_irq_class_2(int irq, void *data, struct pt_regs *regs) { struct spu *spu; unsigned long stat; spu = data; stat = in_be64(&spu->priv1->int_stat_class2_RW); pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, in_be64(&spu->priv1->int_mask_class2_RW)); if (stat & 1) /* PPC core mailbox */ __spu_trap_mailbox(spu); if (stat & 2) /* SPU stop-and-signal */ __spu_trap_stop(spu); if (stat & 4) /* SPU halted */ __spu_trap_halt(spu); if (stat & 8) /* DMA tag group complete */ __spu_trap_tag_group(spu); if (stat & 0x10) /* SPU mailbox threshold */ __spu_trap_spubox(spu); out_be64(&spu->priv1->int_stat_class2_RW, stat); return stat ? IRQ_HANDLED : IRQ_NONE; } static int spu_request_irqs(struct spu *spu) { int ret; int irq_base; irq_base = IIC_NODE_STRIDE * spu->node + IIC_SPE_OFFSET; snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", spu->number); ret = request_irq(irq_base + spu->isrc, spu_irq_class_0, 0, spu->irq_c0, spu); if (ret) goto out; out_be64(&spu->priv1->int_mask_class0_RW, 0x7); snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", spu->number); ret = request_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc, spu_irq_class_1, 0, spu->irq_c1, spu); if (ret) goto out1; out_be64(&spu->priv1->int_mask_class1_RW, 0x3); snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", spu->number); ret = request_irq(irq_base + 2*IIC_CLASS_STRIDE + spu->isrc, spu_irq_class_2, 0, spu->irq_c2, spu); if (ret) goto out2; out_be64(&spu->priv1->int_mask_class2_RW, 0xe); goto out; out2: free_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc, spu); out1: free_irq(irq_base + spu->isrc, spu); out: return ret; } static void spu_free_irqs(struct spu *spu) { int irq_base; irq_base = IIC_NODE_STRIDE * spu->node + IIC_SPE_OFFSET; free_irq(irq_base + spu->isrc, spu); free_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc, spu); free_irq(irq_base + 2*IIC_CLASS_STRIDE + spu->isrc, spu); } static LIST_HEAD(spu_list); static DECLARE_MUTEX(spu_mutex); static void spu_init_channels(struct spu *spu) { static const struct { unsigned channel; unsigned count; } zero_list[] = { { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, }, count_list[] = { { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, }; struct spu_priv2 *priv2; int i; priv2 = spu->priv2; /* initialize all channel data to zero */ for (i = 0; i < ARRAY_SIZE(zero_list); i++) { int count; out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); for (count = 0; count < zero_list[i].count; count++) out_be64(&priv2->spu_chnldata_RW, 0); } /* initialize channel counts to meaningful values */ for (i = 0; i < ARRAY_SIZE(count_list); i++) { out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); } } static void spu_init_regs(struct spu *spu) { out_be64(&spu->priv1->int_mask_class0_RW, 0x7); out_be64(&spu->priv1->int_mask_class1_RW, 0x3); out_be64(&spu->priv1->int_mask_class2_RW, 0xe); } struct spu *spu_alloc(void) { struct spu *spu; down(&spu_mutex); if (!list_empty(&spu_list)) { spu = list_entry(spu_list.next, struct spu, list); list_del_init(&spu->list); pr_debug("Got SPU %x %d\n", spu->isrc, spu->number); } else { pr_debug("No SPU left\n"); spu = NULL; } up(&spu_mutex); if (spu) { spu_init_channels(spu); spu_init_regs(spu); } return spu; } EXPORT_SYMBOL(spu_alloc); void spu_free(struct spu *spu) { down(&spu_mutex); spu->ibox_fasync = NULL; spu->wbox_fasync = NULL; list_add_tail(&spu->list, &spu_list); up(&spu_mutex); } EXPORT_SYMBOL(spu_free); extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX static int spu_handle_mm_fault(struct spu *spu) { struct spu_priv1 __iomem *priv1; struct mm_struct *mm = spu->mm; struct vm_area_struct *vma; u64 ea, dsisr, is_write; int ret; priv1 = spu->priv1; ea = in_be64(&priv1->mfc_dar_RW); dsisr = in_be64(&priv1->mfc_dsisr_RW); #if 0 if (!IS_VALID_EA(ea)) { return -EFAULT; } #endif /* XXX */ if (mm == NULL) { return -EFAULT; } if (mm->pgd == NULL) { return -EFAULT; } down_read(&mm->mmap_sem); vma = find_vma(mm, ea); if (!vma) goto bad_area; if (vma->vm_start <= ea) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; #if 0 if (expand_stack(vma, ea)) goto bad_area; #endif /* XXX */ good_area: is_write = dsisr & MFC_DSISR_ACCESS_PUT; if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (dsisr & MFC_DSISR_ACCESS_DENIED) goto bad_area; if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } ret = 0; switch (handle_mm_fault(mm, vma, ea, is_write)) { case VM_FAULT_MINOR: current->min_flt++; break; case VM_FAULT_MAJOR: current->maj_flt++; break; case VM_FAULT_SIGBUS: ret = -EFAULT; goto bad_area; case VM_FAULT_OOM: ret = -ENOMEM; goto bad_area; default: BUG(); } up_read(&mm->mmap_sem); return ret; bad_area: up_read(&mm->mmap_sem); return -EFAULT; } static int spu_handle_pte_fault(struct spu *spu) { struct spu_priv1 __iomem *priv1; u64 ea, dsisr, access, error = 0UL; int ret = 0; priv1 = spu->priv1; ea = in_be64(&priv1->mfc_dar_RW); dsisr = in_be64(&priv1->mfc_dsisr_RW); access = (_PAGE_PRESENT | _PAGE_USER); if (dsisr & MFC_DSISR_PTE_NOT_FOUND) { if (hash_page(ea, access, 0x300) != 0) error |= CLASS1_ENABLE_STORAGE_FAULT_INTR; } if ((error & CLASS1_ENABLE_STORAGE_FAULT_INTR) || (dsisr & MFC_DSISR_ACCESS_DENIED)) { if ((ret = spu_handle_mm_fault(spu)) != 0) error |= CLASS1_ENABLE_STORAGE_FAULT_INTR; else error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR; } if (!error) spu_restart_dma(spu); return ret; } int spu_run(struct spu *spu) { struct spu_problem __iomem *prob; struct spu_priv1 __iomem *priv1; struct spu_priv2 __iomem *priv2; unsigned long status; int ret; prob = spu->problem; priv1 = spu->priv1; priv2 = spu->priv2; /* Let SPU run. */ spu->mm = current->mm; eieio(); out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); do { ret = wait_event_interruptible(spu->stop_wq, (!((status = in_be32(&prob->spu_status_R)) & 0x1)) || (in_be64(&priv1->mfc_dsisr_RW) & MFC_DSISR_PTE_NOT_FOUND) || spu->class_0_pending); if (status & SPU_STATUS_STOPPED_BY_STOP) ret = -EAGAIN; else if (status & SPU_STATUS_STOPPED_BY_HALT) ret = -EIO; else if (in_be64(&priv1->mfc_dsisr_RW) & MFC_DSISR_PTE_NOT_FOUND) ret = spu_handle_pte_fault(spu); if (spu->class_0_pending) spu_irq_class_0_bottom(spu); if (!ret && signal_pending(current)) ret = -ERESTARTSYS; } while (!ret); /* Ensure SPU is stopped. */ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); while (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) cpu_relax(); out_be64(&priv2->slb_invalidate_all_W, 0); out_be64(&priv1->tlb_invalidate_entry_W, 0UL); eieio(); spu->mm = NULL; /* Check for SPU breakpoint. */ if (unlikely(current->ptrace & PT_PTRACED)) { status = in_be32(&prob->spu_status_R); if ((status & SPU_STATUS_STOPPED_BY_STOP) && status >> SPU_STOP_STATUS_SHIFT == 0x3fff) { force_sig(SIGTRAP, current); ret = -ERESTARTSYS; } } return ret; } EXPORT_SYMBOL(spu_run); static void __iomem * __init map_spe_prop(struct device_node *n, const char *name) { struct address_prop { unsigned long address; unsigned int len; } __attribute__((packed)) *prop; void *p; int proplen; p = get_property(n, name, &proplen); if (proplen != sizeof (struct address_prop)) return NULL; prop = p; return ioremap(prop->address, prop->len); } static void spu_unmap(struct spu *spu) { iounmap(spu->priv2); iounmap(spu->priv1); iounmap(spu->problem); iounmap((u8 __iomem *)spu->local_store); } static int __init spu_map_device(struct spu *spu, struct device_node *spe) { char *prop; int ret; ret = -ENODEV; prop = get_property(spe, "isrc", NULL); if (!prop) goto out; spu->isrc = *(unsigned int *)prop; spu->name = get_property(spe, "name", NULL); if (!spu->name) goto out; prop = get_property(spe, "local-store", NULL); if (!prop) goto out; spu->local_store_phys = *(unsigned long *)prop; /* we use local store as ram, not io memory */ spu->local_store = (void __force *)map_spe_prop(spe, "local-store"); if (!spu->local_store) goto out; spu->problem= map_spe_prop(spe, "problem"); if (!spu->problem) goto out_unmap; spu->priv1= map_spe_prop(spe, "priv1"); if (!spu->priv1) goto out_unmap; spu->priv2= map_spe_prop(spe, "priv2"); if (!spu->priv2) goto out_unmap; ret = 0; goto out; out_unmap: spu_unmap(spu); out: return ret; } static int __init find_spu_node_id(struct device_node *spe) { unsigned int *id; struct device_node *cpu; cpu = spe->parent->parent; id = (unsigned int *)get_property(cpu, "node-id", NULL); return id ? *id : 0; } static int __init create_spu(struct device_node *spe) { struct spu *spu; int ret; static int number; ret = -ENOMEM; spu = kmalloc(sizeof (*spu), GFP_KERNEL); if (!spu) goto out; ret = spu_map_device(spu, spe); if (ret) goto out_free; spu->node = find_spu_node_id(spe); spu->stop_code = 0; spu->slb_replace = 0; spu->mm = NULL; spu->class_0_pending = 0; spin_lock_init(&spu->register_lock); out_be64(&spu->priv1->mfc_sdr_RW, mfspr(SPRN_SDR1)); out_be64(&spu->priv1->mfc_sr1_RW, 0x33); init_waitqueue_head(&spu->stop_wq); init_waitqueue_head(&spu->wbox_wq); init_waitqueue_head(&spu->ibox_wq); spu->ibox_fasync = NULL; spu->wbox_fasync = NULL; down(&spu_mutex); spu->number = number++; ret = spu_request_irqs(spu); if (ret) goto out_unmap; list_add(&spu->list, &spu_list); up(&spu_mutex); pr_debug(KERN_DEBUG "Using SPE %s %02x %p %p %p %p %d\n", spu->name, spu->isrc, spu->local_store, spu->problem, spu->priv1, spu->priv2, spu->number); goto out; out_unmap: up(&spu_mutex); spu_unmap(spu); out_free: kfree(spu); out: return ret; } static void destroy_spu(struct spu *spu) { list_del_init(&spu->list); spu_free_irqs(spu); spu_unmap(spu); kfree(spu); } static void cleanup_spu_base(void) { struct spu *spu, *tmp; down(&spu_mutex); list_for_each_entry_safe(spu, tmp, &spu_list, list) destroy_spu(spu); up(&spu_mutex); } module_exit(cleanup_spu_base); static int __init init_spu_base(void) { struct device_node *node; int ret; ret = -ENODEV; for (node = of_find_node_by_type(NULL, "spe"); node; node = of_find_node_by_type(node, "spe")) { ret = create_spu(node); if (ret) { printk(KERN_WARNING "%s: Error initializing %s\n", __FUNCTION__, node->name); cleanup_spu_base(); break; } } /* in some old firmware versions, the spe is called 'spc', so we look for that as well */ for (node = of_find_node_by_type(NULL, "spc"); node; node = of_find_node_by_type(node, "spc")) { ret = create_spu(node); if (ret) { printk(KERN_WARNING "%s: Error initializing %s\n", __FUNCTION__, node->name); cleanup_spu_base(); break; } } return ret; } module_init(init_spu_base); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnd Bergmann ");