/* * SN1 Platform specific SMP Support * * Copyright (C) 2000-2002 Silicon Graphics, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public * License along with this program; if not, write the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/NoticeExplan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The following structure is used to pass params thru smp_call_function * to other cpus for flushing TLB ranges. */ typedef struct { union { struct { unsigned long start; unsigned long end; unsigned long nbits; unsigned int rid; atomic_t unfinished_count; } ptc; char pad[SMP_CACHE_BYTES]; }; } ptc_params_t; #define NUMPTC 512 static ptc_params_t ptcParamArray[NUMPTC] __attribute__((__aligned__(128))); /* use separate cache lines on ptcParamsNextByCpu to avoid false sharing */ static ptc_params_t *ptcParamsNextByCpu[NR_CPUS*16] __attribute__((__aligned__(128))); static volatile ptc_params_t *ptcParamsEmpty __cacheline_aligned; /*REFERENCED*/ static spinlock_t ptcParamsLock __cacheline_aligned = SPIN_LOCK_UNLOCKED; static int ptcInit = 0; #ifdef PTCDEBUG static int ptcParamsAllBusy = 0; /* debugging/statistics */ static int ptcCountBacklog = 0; static int ptcBacklog[NUMPTC+1]; static char ptcParamsCounts[NR_CPUS][NUMPTC] __attribute__((__aligned__(128))); static char ptcParamsResults[NR_CPUS][NUMPTC] __attribute__((__aligned__(128))); #endif /* * Make smp_send_flush_tlbsmp_send_flush_tlb() a weak reference, * so that we get a clean compile with the ia64 patch without the * actual SN1 specific code in arch/ia64/kernel/smp.c. */ extern void smp_send_flush_tlb (void) __attribute((weak)); /* * The following table/struct is for remembering PTC coherency domains. It * is also used to translate sapicid into cpuids. We don't want to start * cpus unless we know their cache domain. */ #ifdef PTC_NOTYET sn_sapicid_info_t sn_sapicid_info[NR_CPUS]; #endif /** * sn1_ptc_l_range - purge local translation cache * @start: start of virtual address range * @end: end of virtual address range * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) * * Purges the range specified from the local processor's translation cache * (as opposed to the translation registers). Note that more than the specified * range *may* be cleared from the cache by some processors. * * This is probably not good enough, but I don't want to try to make it better * until I get some statistics on a running system. At a minimum, we should only * send IPIs to 1 processor in each TLB domain & have it issue a ptc.g on it's * own FSB. Also, we only have to serialize per FSB, not globally. * * More likely, we will have to do some work to reduce the frequency of calls to * this routine. */ static inline void sn1_ptc_l_range(unsigned long start, unsigned long end, unsigned long nbits) { do { __asm__ __volatile__ ("ptc.l %0,%1" :: "r"(start), "r"(nbits<<2) : "memory"); start += (1UL << nbits); } while (start < end); ia64_srlz_d(); } /** * sn1_received_flush_tlb - cpu tlb flush routine * * Flushes the TLB of a given processor. */ void sn1_received_flush_tlb(void) { unsigned long start, end, nbits; unsigned int rid, saved_rid; int cpu = smp_processor_id(); int result; ptc_params_t *ptcParams; ptcParams = ptcParamsNextByCpu[cpu*16]; if (ptcParams == ptcParamsEmpty) return; do { start = ptcParams->ptc.start; saved_rid = (unsigned int) ia64_get_rr(start); end = ptcParams->ptc.end; nbits = ptcParams->ptc.nbits; rid = ptcParams->ptc.rid; if (saved_rid != rid) { ia64_set_rr(start, (unsigned long)rid); ia64_srlz_d(); } sn1_ptc_l_range(start, end, nbits); if (saved_rid != rid) ia64_set_rr(start, (unsigned long)saved_rid); ia64_srlz_i(); result = atomic_dec(&ptcParams->ptc.unfinished_count); #ifdef PTCDEBUG { int i = ptcParams-&ptcParamArray[0]; ptcParamsResults[cpu][i] = (char) result; ptcParamsCounts[cpu][i]++; } #endif /* PTCDEBUG */ if (++ptcParams == &ptcParamArray[NUMPTC]) ptcParams = &ptcParamArray[0]; } while (ptcParams != ptcParamsEmpty); ptcParamsNextByCpu[cpu*16] = ptcParams; } /** * sn1_global_tlb_purge - flush a translation cache range on all processors * @start: start of virtual address range to flush * @end: end of virtual address range * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) * * Flushes the translation cache of all processors from @start to @end. */ void sn1_global_tlb_purge (unsigned long start, unsigned long end, unsigned long nbits) { ptc_params_t *params; ptc_params_t *next; unsigned long irqflags; #ifdef PTCDEBUG ptc_params_t *nextnext; int backlog = 0; #endif if (smp_num_cpus == 1) { sn1_ptc_l_range(start, end, nbits); return; } if (in_interrupt()) { /* * If at interrupt level and cannot get spinlock, * then do something useful by flushing own tlbflush queue * so as to avoid a possible deadlock. */ while (!spin_trylock(&ptcParamsLock)) { local_irq_save(irqflags); sn1_received_flush_tlb(); local_irq_restore(irqflags); udelay(10); /* take it easier on the bus */ } } else { spin_lock(&ptcParamsLock); } if (!ptcInit) { int cpu; ptcInit = 1; memset(ptcParamArray, 0, sizeof(ptcParamArray)); ptcParamsEmpty = &ptcParamArray[0]; for (cpu=0; cpu= &ptcParamArray[0]) { if (atomic_read(&ptr->ptc.unfinished_count) == 0) break; ++backlog; } if (backlog) { /* check the end of the array */ ptr = &ptcParamArray[NUMPTC]; while (--ptr > params) { if (atomic_read(&ptr->ptc.unfinished_count) == 0) break; ++backlog; } } ptcBacklog[backlog]++; } #endif /* PTCDEBUG */ /* wait for the next entry to clear...should be rare */ if (atomic_read(&next->ptc.unfinished_count) > 0) { #ifdef PTCDEBUG ptcParamsAllBusy++; if (atomic_read(&nextnext->ptc.unfinished_count) == 0) { if (atomic_read(&next->ptc.unfinished_count) > 0) { panic("\nnonzero next zero nextnext %lx %lx\n", (long)next, (long)nextnext); } } #endif /* it could be this cpu that is behind */ local_irq_save(irqflags); sn1_received_flush_tlb(); local_irq_restore(irqflags); /* now we know it's not this cpu, so just wait */ while (atomic_read(&next->ptc.unfinished_count) > 0) { barrier(); } } params->ptc.start = start; params->ptc.end = end; params->ptc.nbits = nbits; params->ptc.rid = (unsigned int) ia64_get_rr(start); atomic_set(¶ms->ptc.unfinished_count, smp_num_cpus); /* The atomic_set above can hit memory *after* the update * to ptcParamsEmpty below, which opens a timing window * that other cpus can squeeze into! */ mb(); /* everything is ready to process: * -- global lock is held * -- new entry + 1 is free * -- new entry is set up * so now: * -- update the global next pointer * -- unlock the global lock * -- send IPI to notify other cpus * -- process the data ourselves */ ptcParamsEmpty = next; spin_unlock(&ptcParamsLock); smp_send_flush_tlb(); local_irq_save(irqflags); sn1_received_flush_tlb(); local_irq_restore(irqflags); /* Currently we don't think global TLB purges need to be atomic. * All CPUs get sent IPIs, so if they haven't done the purge, * they're busy with interrupts that are at the IPI level, which is * priority 15. We're asserting that any code at that level * shouldn't be using user TLB entries. To change this to wait * for all the flushes to complete, enable the following code. */ #if defined(SN1_SYNCHRONOUS_GLOBAL_TLB_PURGE) || defined(BUS_INT_WAR) /* this code is not tested */ /* wait for the flush to complete */ while (atomic_read(¶ms->ptc.unfinished_count) > 0) barrier(); #endif } /** * sn_send_IPI_phys - send an IPI to a Nasid and slice * @physid: physical cpuid to receive the interrupt. * @vector: command to send * @delivery_mode: delivery mechanism * * Sends an IPI (interprocessor interrupt) to the processor specified by * @physid * * @delivery_mode can be one of the following * * %IA64_IPI_DM_INT - pend an interrupt * %IA64_IPI_DM_PMI - pend a PMI * %IA64_IPI_DM_NMI - pend an NMI * %IA64_IPI_DM_INIT - pend an INIT interrupt */ void sn_send_IPI_phys(long physid, int vector, int delivery_mode) { long *p; long nasid, slice; static int off[4] = {0x1800080, 0x1800088, 0x1a00080, 0x1a00088}; #ifdef BUS_INT_WAR if (vector != ap_wakeup_vector) { return; } #endif nasid = cpu_physical_id_to_nasid(physid); slice = cpu_physical_id_to_slice(physid); p = (long*)(0xc0000a0000000000LL | (nasid<<33) | off[slice]); mb(); *p = (delivery_mode << 8) | (vector & 0xff); } /** * sn1_send_IPI - send an IPI to a processor * @cpuid: target of the IPI * @vector: command to send * @delivery_mode: delivery mechanism * @redirect: redirect the IPI? * * Sends an IPI (interprocessor interrupt) to the processor specified by * @cpuid. @delivery_mode can be one of the following * * %IA64_IPI_DM_INT - pend an interrupt * %IA64_IPI_DM_PMI - pend a PMI * %IA64_IPI_DM_NMI - pend an NMI * %IA64_IPI_DM_INIT - pend an INIT interrupt */ void sn1_send_IPI(int cpuid, int vector, int delivery_mode, int redirect) { long physid; physid = cpu_physical_id(cpuid); sn_send_IPI_phys(physid, vector, delivery_mode); } #ifdef CONFIG_SMP #ifdef PTC_NOTYET static void __init process_sal_ptc_domain_info(ia64_sal_ptc_domain_info_t *di, int domain) { ia64_sal_ptc_domain_proc_entry_t *pe; int i, sapicid, cpuid; pe = __va(di->proc_list); for (i=0; iproc_count; i++, pe++) { sapicid = id_eid_to_sapicid(pe->id, pe->eid); cpuid = cpu_logical_id(sapicid); sn_sapicid_info[cpuid].domain = domain; sn_sapicid_info[cpuid].sapicid = sapicid; } } static void __init process_sal_desc_ptc(ia64_sal_desc_ptc_t *ptc) { ia64_sal_ptc_domain_info_t *di; int i; di = __va(ptc->domain_info); for (i=0; inum_domains; i++, di++) { process_sal_ptc_domain_info(di, i); } } #endif /* PTC_NOTYET */ /** * init_sn1_smp_config - setup PTC domains per processor */ void __init init_sn1_smp_config(void) { if (!ia64_ptc_domain_info) { printk("SMP: Can't find PTC domain info. Forcing UP mode\n"); smp_num_cpus = 1; return; } #ifdef PTC_NOTYET memset (sn_sapicid_info, -1, sizeof(sn_sapicid_info)); process_sal_desc_ptc(ia64_ptc_domain_info); #endif } #else /* CONFIG_SMP */ void __init init_sn1_smp_config(void) { #ifdef PTC_NOTYET sn_sapicid_info[0].sapicid = hard_smp_processor_id(); #endif } #endif /* CONFIG_SMP */